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Abstract— A review of the current protocols and techniques for 

the anthropometric measurements and postural assessment for 

wheelchair users and individuals with severe musculoskeletal 

problems was given. It was concluded that both contact and non 

contact methods have a number of significant limitations including 

time consuming measurement procedure, high cost and risk of 

excessive exposure to radiation. Many current approaches do not 

enable clinicians to accurately record and analyze the patient’s 

musculoskeletal configuration. The challenge still remains to 

combine the body shape data with the precise identification and 

localization of anatomical landmarks for postural assessment. To 

address the need for easy to use, low cost, reliable measurement of 

anatomical landmarks ultrasound measurement system has been 

proposed. The main elements of the system are: ultrasound 

transmitters, receiver, digital-analog converter, signal conditioning 

equipment and laptop executing the signal processing algorithm. 

The prototype of the system was build and tested. The preliminary 

measurements of ultrasonic signals were realized and demonstrated 

the potential for this technique to be used in anthropometric and 

postural assessments in the future. 

Keywords— Anthropometric Measurements, Localization 

System, Anatomical Landmarks,  Ultrasounds,  Time of Flight 

I.  INTRODUCTION 

Poor sitting posture has been identified as one of the major 

causes of pressure sores, significantly affecting the function, 

comfort, physiology, and mobility of wheelchair users [1]. The 

consequences of poor musculoskeletal configuration upon 

health and well-being are many and varied including pain, 

tissue damage, skeletal deformity and impaired respiration [2]. 

Aside from the obvious health benefits, good musculoskeletal 

configuration is known to facilitate function. Currently the 

healthcare professionals undertaking postural assessments tend 

to use observations external to the patients to imply internal 

musculoskeletal configuration [3]. When conducted in the 

clinic, postural assessments are often subjective, and 

abnormalities are visually inspected. This form of qualitative 

assessment has low sensitivity and it is largely dependent on 

past experiences and subjective interpretations. In addition, the 

current assessment processes do not enable clinicians to 

accurately record the musculoskeletal configuration [4].   

There are many objective techniques to measure 

musculoskeletal configurations [4]. However, these techniques 

either rely on the use of time consuming procedures, resource 

intensive equipment or the ability for the service user to stand 

so that a measurement can be captured. As a result, it is often 

very difficult to interpret, to record and compare subjective 

postural information with sufficient accuracy and precision to 

measure improvement or deterioration reliably. Techniques 

relying on imaging such as MRI, CT or X-RAY, for example, 

are very accurate in determining the underlying 

musculoskeletal configuration, however it is very often not 

practical to deploy these techniques in a clinical environment 

[5]. These techniques also carry a risk of increased exposure to 

radiation. Hence, the need for readily applicable and cost 

effective clinical tool that can accurately and precisely measure 

the anatomical features and help clinicians to identify changes 

in musculoskeletal configuration.  The novel application which 

is investigated in this study is to use ultrasound signals to 

accurately measure anatomical landmarks. These skeletal 

landmarks can be also used to calculate clinical measurements 

such as pelvic obliquity/tilt/rotation, leg abduction/adduction, 

severity of spinal curvature and position of the head and centre 

of gravity.  The paper is organized as follows. In Section II, 

the overview of the anthropometric measurements is 

presented. Section III gives a brief review of the relevant 

literature. The localization method and the measurement 

system are described in Section IV. The preliminary 

experimental results are presented in Section V. 

II. ANTHROPOMETRIC MEASUREMENTS 

Anthropometry is the measurement of individuals physical 

characteristics, body shapes and functional capacities [3]. The 

anthropometric measurements are important for the ergonomic 

design of the industrial environments, clothing, consumer 

products, tools, equipment, architectural planning etc. The 

primary focus of this research, however, is on individuals with 

severe neuromusculoskeletal and postural conditions resulting 

in limited body movement. Many clients of Rehabilitation 

Engineering Units may, for example, suffer from spina bifida, 

cerebral palsy, hemiplegia, dysplegia muscle rigidity and are 

affected by cardiac or respiratory problems [6,7]. These clients 

often have little or no automatic postural control thus, specific 

requirements for anthropometric measurements and postural 

management. Wheelchairs fitted with custom contoured 

seating (CCS) systems are often prescribed to meet the 

postural and mobility needs of such individuals. 
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In clinical practice, posture assessments are conducted as 

part of the client’s physical examination by experienced 

clinical engineers. First objective of the physical assessment is 

to determine if there are any barriers to achieving a functional, 

comfortable, upright seated posture. The anthropometric 

measurements taken during the assessment are also used in the 

design of the shape of CCS and the selection of the 

appropriate wheelchair and seating product dimensions. For 

instance, the clinicians may have to account for postural 

support pieces such as hip guides and lateral trunk supports 

that can add width to the client in the wheelchair.  Anatomical 

measurements are taken in sitting, but it is crucial that the 

client is supported in the posture which will be assumed in the 

wheelchair. The anthropometric neutral seated posture is 

shown in Fig. 1. This is an optimal position used as a 

reference for recording actual postural/anatomical 

measurements.  

The anatomical landmarks shown in Fig. 1 are identifiable 

skeletal points which generally lie close to the body’s surface 

and are the ‘markers’ which identify the exact location of the 

measurement site. These landmarks include: A - acromiale 

(the point at the most superior and lateral border of the 

acromion process); R- radiale (the point at the proximal and 

lateral border of the head of the radius corresponding to the 

lateral dimple of the elbow), S - stylion (the most distal point 

on the lateral margin of the styloid process of the radius), ST - 

Sphyrion Tibiale (the most distal tip of the medial malleolus), 

I - Iliocristale (the point on the iliac crest representing the 

most lateral aspect of the iliac tubercle), AP - Anterior Patella 

(the most anterior and superior margin of the anterior surface 

of the patella identified when the knee bent is at a right angle) 

and V- vertex (the most superior point on the skull). In 

addition a number of vertebra prominencs (a-f), which are 

palpable from the skin surface can be measured.  

Table 1 shows the anthropometric measurements and their 

relationship to anatomical landmarks measured during the 

clinical assessment. Hip Width (HW) is used to assist in 

determining cushion width, seat width or width between side 

hip supports. Leg Length (LL) is measured to obtain seat 

depth and prevent seat base digging into calf muscles. Lower 

Leg Length (LLL), which is the distance between popliteal 

fossa and heel, determines the seat height and the placement of 

the footrests.  Chest Width (CW) is used to calculate a 

distance between thoracic lateral supports, if required, and to 

ensure free upper limb movement. Axilla Height (AH), which 

is a distance between seat surface to axilla, effects the height 

of the thoracic lateral support. The maximum height allowed 

should be around 25mm less of this measurement to prevent 

impingement of axillary nerve [1]. Shoulder Height (SH) is a 

distance from the surface to shoulder. It is used to determine 

the backrest height from seat surface for those who use tilt in 

space for pressure management. External Knee Width (KW) is 

used to assist in determining seat width and footplate hanger 

style. Shoulder Width (SW) determines the minimum distance 

between arm supports, if upper limb positioning and arm 

supports are required. Head Height (HH) is a vertical distance 

from a horizontal sitting surface to the highest point of the 

head  known as the Vertex (V).  

TABLE I.  ANTHROPOMETRIC MEASUREMENTS 

Symbol 
Clinical Measurements 

Measurement Formula Unit 

SS Seat Surface Reference cm 

HW Hip Width IIL
- IIR cm 

LLR Leg Length (Right) APR
- IIR cm 

LLL Leg Length (Left) APL
- IIL cm 

LLLR Lower Leg Length (Right) APR
- STR cm 

LLLL Lower Leg Length (Left) APL
- STL cm 

CW Chest Width CW cm 

AHR Axilla Height (Right) AXR
- SS cm 

AHL Axilla Height (Left) AXL
- SS cm 

SH Shoulder Height AR
- SS cm 

SW Shoulder Width AR
- AL cm 

HH Head Height V- SS cm 

KW Knee Width APL
- APR  cm 

 

III. RELATED WORK 

A. Anthropometric Measurements 

Over the years, a number of techniques have been used to 

perform anthropometric measurements and postural 

assessment. These techniques can be grouped into contact and 

non-contact categories. The contact methods include simple 

Fig.1. Anatomical landmarks on a human body measured during postural 
assessment. V-Vertex, {SR, SL}- Stylion , {RR, RL} – Radiale,   {IR, IL} – 
Iliocristale,   ,   {AR, AL} – Acromiale , {APR, APL} – Anterior patella, {STR, 
STL} – Sphyrion tibiale; where index L stand for left and R for right. (a-f) 
spinal markers. Image was generated using 3D interactive human model 
developed at the University of South Wales and based on skeleton mesh from 
Zygote Media Group Inc., Provo, UT, USA.  
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tactile devices such as anthropometric tapes, stadiometers or 

scoliometers [8]. Non-contact techniques are radiography [9], 

Moire´ fringe topography [10], structured light methods [10], 

laser scanning [11], pressure mapping systems [12] and 

mechanical displacement sensors [4]. The main disadvantages 

of the tactile devices are time-consuming procedure, a lack of 

3D information and a patient’s discomfort. The contact of a 

device with a skin of a patient may cause him/her to react and 

change body posture, which can have an adverse effect on the 

accuracy of the measurement [13]. The non-contact techniques 

usually have greater accuracy, often providing 3D shape data. 

However, the main disadvantage of these methods with 

regards to the sitting postural assessment is the requirement 

for direct exposure of an individual’s back to the measurement 

instrumentation, preferably in the erect, standing position. In 

addition, the non-contact methods are often very expensive 

and difficult to deploy in a clinical environment. Finally, 

radiographs require medical approval and increase the risk of 

excessive exposure. There have been a number of studies 

reported in the literature using ultrasound to identify 

anatomical landmarks in an interrogated tissue (e.g. sacral 

hiatus for caudal epidural anesthesia in pediatric patients [14] 

or anatomic landmarks for soft tissue correction in the 

diagnosis of osteoporosis [15]). The main characteristics of 

these medical diagnostic techniques is the use of imaging 

modalities that relay on the interaction (reflection and 

scattering) between the medium and the ultrasound emitted 

into the medium. These modalities are not suitable for long 

distance localization of anatomical landmarks in the medium 

of air and therefore cannot be considered as a viable 

alternative to the method discussed in the paper. 

B. Postural Assessment 

Assessment forms have been used to collect patient's 

personal data, wheelchair equipment, anthropometric 

measurements, and document evaluations of typical body 

postures [16].  Clinical engineers use these forms to record 

descriptive categories and numerical scores of musculoskeletal 

configurations. These categories include pelvic orientation 

(such as obliquity, tilt and rotation), head anterior/posterior 

tilt, lower limb position and spinal deformities [17].  Newer 

approaches to anthropometry and posture classification 

involve the simultaneous consideration of multiple dimensions 

through various types of multivariate analyses that include 3D 

human modeling [18]. Recent work published by the authors 

of this paper [6-7] described a bespoke feature extraction 

algorithms, which were developed to classify the 

musculoskeletal position of clients’ pelvises and sitting 

postures. It was accomplished by extracting anthropometric 

features from a 3D body shape measurements captured in the 

Cardiff Body Match system. However, in spite of these 

advances, the challenge still remains to combine the body 

shape data with the precise identification and localization of 

anatomical landmarks for postural assessment.  

C. Precise Indoor Localization Systems 

Many attempts to develop indoor localization systems have 

been reported in the literature. These systems make use of a 

range of technologies including infrared beacons, lasers, video 

cameras, Radio Frequency and ultrasonic signals [19-23].  

 
Fig.2. The measurement system for ultrasound localization of anatomical 

landmarks. Positions of anatomical landmarks, indicated by the receiver 
R(x,y,z).  

An important limitation of video technology is the line of 

sight requirement, which means that video systems cannot be 

used in situations with the frequent blockage of the light by 

different structures and obstacles. Moreover, video 

localization is highly dependent on the camera resolution, 

which often results in poor spatial resolution. In comparison, 

ultrasonic methods can be used to estimate location with a 

high degree of accuracy at low cost. The accuracy is mainly 

due to the low velocity of ultrasound propagation coupled with 

the high resolution of Time of Flight (TOF) measurement.  

To the best of our knowledge, no applications employing 

ultrasonic localization systems of anatomical landmarks have 

been reported in the literature.    
 

IV. METHOD AND EXPERIMENTAL SETUP 

The prototype of the proposed Anatomical Landmarks 
Localization System (ALLS) is shown in Fig. 2. The main 
elements of the system are: four ultrasound transmitters (T1-
T4), ultrasound receiver [R(x,y,z)], DA/AD converter, 
transmitter amplifiers [A1-A4], programmable receiver 
amplifier and a laptop running a signal processing algorithm. 
The transmitters are placed at the vertexes of a rectangular 
reference frame with known coordinates. The localization 
process can be divided into three phases: 1) signal 
transmission and measurement, 2) signal processing and 3) 
receiver position calculation. In the first phase, signals are 
transmitted and captured by the receiver placed in the location 
of an anatomical marker. In the second phase the signals 
captured by the receiver are digitized and processed to extract 
useful parameters such as arrival time, signal strength and 
frequency. A signal processing unit performs further signal 
filtering and validation identifying and discarding possible 
false signals due to echoes and environmental noise. In the 
third phase the physical position of the receiver is determined 
based on the signal parameters obtained in the second phase.  
The operation principle of ALLS is based on measuring the 
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absolute travel time (time of flight (TOF) of the ultrasonic 
signals from a transmitters to a receiver.  The Euclidean 
distance between the receiver and the transmitters can be 
derived by the multiplication of TOF by the wave speed (i.e. 
speed of sound). Under normal conditions this is 340 m/s. In 
order to localize a position in a 3D space, trilateration requires 
at least three measured distances between the transmitters and 
the receiver.  The receiver is at the intersection of the spheres 
whose geometric centres are the transmitter locations and their 
radii are the measured distances. Since the transmitters are 
placed on the corners of rectangular frame, one of the 
solutions is located in front of the frame, while the other 
solution is located behind it. The second can be discarded, or 
used for the cross validation of the results, because ultrasonic 
receiver is known to be in front of the reference plane. 
Assuming that transmitters and the receiver are synchronized, 
i.e. their clocks have exactly the same time without significant 
delays, if at the receiver of unknown position (x, y, z) TOFs to 
each transmitter is measured, then multiplying TOF by the 
speed of sound we obtain a set of distances from the receiver 
to each individual transmitter, rk. From the equation defining a 
sphere of radius rk centered at each transmitter at position (xk, 
yk, zk), a system of N equations (N ≥ 3) is derived, whose 
solution provides the receiver (x, y, z) position as shown 
below: 

  𝑥𝑇𝑘 − 𝑥𝑅 
2 +  𝑦𝑇𝑘 − 𝑦𝑅 

2 +  𝑧𝑇𝑘 − 𝑧𝑅 
2 = 𝑟𝑘       (1)    

 
 

where: XTk, YTk, ZTk, are the coordinates defining the 

position of the k-th transmitter, rk, is the distance between the 

receiver and the k-th transmitter, and XR, YR, ZR are the 

coordinates of the receiver. 

 
Once the receiver is localized, the position of the 

anatomical landmark can be recorded. The different 
component parts of the ALLS prototype are described below:  

a) Ultrasound Transmitters and the Receiver: 

PROWAVE 328ST160 and 328SR160 respectively. 

The transmitters emit pulses in the 30 kHz - 40 kHz 

band and the center frequency 32.8 kHz. The 

transmitters maximum driving voltage is 20 Vrms.  

b) Signal processing unit: a laptop PC running Matlab 

software (The MathWorks, USA) used both for 

generating the ultrasonic pulses that are emitted by the 

transmitters, and for acquiring, storing and analyzing 

the signals captured by the receiver. 

c) DA/AD converter:  DT9836 (Data Translation, MA 

01752-1192 USA). A data acquisition module has four 

D/A and six A/D converters that can sample data 

simultaneously and continuously at maximum 

frequency of 225 kHz per channel for analog inputs 

and run at 500 kHz for each of the analog outputs. The 

module is equipped with three quadrature decoders, 

two user counter timers and 32 bits of digital I/O. All 

subsystems are synchronized to an on-board 36 MHz 

clock, isolated to 500 V and communicate with the PC 

via the USB interface. Each analog input has its own 

A/D converter to eliminate phase shift between 

channels and to allow correlating measurements at the 

exact same instant in time.  

d) Transmitter amplifiers: THS6012 (Texas Instruments, 

USA). The THS6012 has two high-speed drivers 

capable of providing 400 mA output current. These 

drivers can be configured differentially to generate a 

50-VPP output signal. The drivers are current 

feedback amplifiers, designed for the high slew rates 

necessary to support low total harmonic distortion and 

are ideally suited for the amplification of signals to 

drive the transmitters. 

e) Programmable amplifier for the receiver: USBPIA-

S1, (Alligator Technologies, USA). The USBPIA-S1 

is a standalone USB controllable module and provides 

a single channel of high-quality instrumentation 

amplifier and optional AC coupling, for front-end 

signal conditioning compatible with DA/AD 

converter. The USBPIA-S1 can be powered with 9 to 

12 V DC so it can be connected to a battery voltage 

source or the supplied 115-220 V AC. The amplifier is 

programmable from the USB port USBPIA-S1 and 

provides software-selectable gain up to 1000 as well 

as differential inputs with high-common mode 

rejection. 

V. PRELIMINARY EXPERIMENTAL RESULTS  

In this section, we present preliminary experimental 
measurements of ultrasonic signals taken using the ALLS 
prototype as well as the signal processing algorithm.   

Figure 3a shows a typical example of a sequence of four 
ultrasound signals which were synthesized in MATLAB and 
used to drive the transmitters. Each ultrasound burst consists 
of 137 samples generated at the maximum sampling rate 
provided by the DA/AD converter of 225 kSamples/s and 
contains approximately 20 sine-wave cycles of 32.8 kHz 
frequency. The duration of each ultrasonic burst signal is 0.6 
ms.  The time delay between consecutive signals was chosen 
to be 6 ms. This value was empirically determined to 
minimize the effect of acoustic wave reflections from the 
obstacles in the environment without compromising the time 
response of the measurement system. Figure 3b shows the 
corresponding train of acoustic burst signals captured by the 
receiver, filtered and normalized. The transmitters are placed 
at the vertexes of a square with 24 cm side length. The 
receiver was placed at known locations at the distance varied 
from 20 cm to 100 cm from the reference plane in X direction 
(see Fig. 2).  A time listening window for each train of burst 
signals of 30 ms was chosen. It can be seen that the 
characteristics of the signal captured by the receiver changes 
both in terms of its envelope and duration. The TOF 
computation is performed using a Hilbert transformation (see 
Fig. 3c) of the received signal followed by the frequency 
threshold detection scheme.  A number of preliminary 
measurements were conducted at different locations of the 
receiver with the absolute measurement of the receiver 
localization varying between 0.1 cm and 2 cm. 

 



 

Fig. 3. a) Sequence of four ultrasound signals driving the transmitters, Each 

ultrasound burst contains approximately 20 sine-wave cycles of 32.8 kHz 

frequency. b) Train of ultrasound burst signals captured by the receiver; c) 

Hilbert Transformation of the ultrasound burst signals captured by the receiver. 

 

More work is needed to refine the signal processing 

scheme, identify optimum shape of the ultrasound burst 

signals and account for any wave reflections and inherent 

delay which could be introduced by the system components 

during signal propagation. 

V.  CONCLUSIONS & FUTURE WORK 

 The paper presented a review of the current protocols 

and techniques for the anthropometric measurements and 

postural assessment for wheelchair users and individuals with 

severe musculoskeletal problems. It can concluded from the 

literature that both contact and non contact methods have a 

number of significant limitations including time consuming 

measurement procedure, high cost and risk of excessive 

exposure to radiation. The design and preliminary 

experimental validation of the measurement system for 

localization of anatomical landmarks using ultrasound was 

outlined. The main advantages of the proposed system in 

comparison to other techniques of anthropometric 

measurements are: relatively low cost of the equipment, ease 

of use and noninvasive nature of the measurements. In 

addition the proposed technique could be easily deployed in a 

clinical environment and does not pose any restrictions on the 

patient’s posture and movement during the postural 

assessment session. Although the preliminary results are 

promising more work is needed to improve the accuracy of the 

system. The optimum arrangement of the ultrasonic 

transmitters with respect to the receiving transducers needs to 

be further investigated in order to achieve greatest space 

coverage without compromising the accuracy. The presence of 

echoes or environmental noise in the acquired signal remains a 

problem. The signal processing algorithm needs to counteract 

the effect of noise and acoustic wave reflections from the 

obstacles in the environment very likely to be present during 

clinical assessment. Further work is needed in order to refine 

the signal processing scheme and identify optimum shape of 

the ultrasound burst signals. Finally, a clinical validation of 

the localization system needs to be conducted including the 

development of a new measurement protocol for ALLS very 

likely to be different from conventional anthropometric data 

collection protocols. 
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