
Automation of the Solution of Kakuro Puzzles

R. P. Davies, P. A. Roach, S. Perkins

Department of Computing and Mathematical Sciences, University of Glamorgan, Pontypridd,
CF37 1DL, United Kingdom, rpdavies@glam.ac.uk

Abstract

Kakuro puzzles, also called cross sum puzzles, are grids containing clues to the
completion of numerical ‘words’. Being structured in a similar way to crossword
puzzles, Kakuro grids contain overlapping continuous runs that are exclusively ei-
ther horizontal or vertical. The ‘clues’ take the form of specified run totals, and a
puzzle is solved by placing a value in each cell such that every run sums to its
specified total, and no run contains duplicate values. While most puzzles have
only a single solution, longer runs may be satisfied using many arrangements of
values, leading to the puzzle having a deceptively large search space. The associ-
ated, popular Sudoku puzzle has been linked with important real-world applica-
tions including timetabling and conflict free wavelength routing, and more re-
cently, coding theory due to its potential usefulness in the construction of erasure
correction codes. It is possible that Kakuro puzzles will have similar applications,
particularly in the construction of codes, where run totals may form a generalised
type of parity check. A project has begun to investigate the properties of the Ka-
kuro puzzles, and thereby establish its potential usefulness to real-world applica-
tions including coding theory. This paper reports some early findings from that
project, specifically concerning puzzle complexity and the appropriateness of heu-
ristic approaches for its automated solution. It highlights the use of heuristics to
guide search by a backtracking solver, in preference to local search optimisation,
and reports on the effectiveness of two heuristics and a pruning technique for re-
ducing solution time. The authors believe this to be the first published work in the
use of heuristics, in combination with pruning, for the automated solution of Ka-
kuro puzzles.

1 Introduction

Kakuro puzzles are number puzzles that have strong similarities with the more
familiar crossword puzzle, due to their use of ‘clues’ to specify correct numerical
‘words’ within a grid structure. Unlike crosswords, Kakuro puzzles more easily
transcend language barriers due to their use of number sequences. Puzzles of this

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of South Wales Research Explorer

https://core.ac.uk/display/227087472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 R. P Davies, P. A. Roach, S. Perkins

type typically consist of an mn× grid containing black and white cells. All white
cells are initially empty and are organised into overlapping continuous runs that
are exclusively either horizontal or vertical. A run-total, given in a black ‘clue’
cell, is associated with each and every run. The puzzle is solved by entering values
(typically in the range inclusive) into the white cells such that each run
sums to the specified run-total and such that no value is repeated in any horizontal
or vertical run.

9,...,1

Most published puzzles consist of an mn× grid and are well-formed [6], mean-
ing that only one unique solution exists. Such puzzles are also called promise-
problems (the promise being a unique solution) [1]. The puzzles are designed so
that this unique solution may be determined through the employment of a range of
types of logical deduction and reasoning; no guesswork should be needed. Many
puzzles have reflective or rotational symmetry, although this is only to improve
the visual appearance of the grid.

The name ‘Kakuro’ comes from the Japanese pronunciation of the English word
‘cross’ appended to the Japanese word for ‘addition’. The name was part of a re-
branding by Japan’s Nikoli Puzzles Group of Dell Magazines’ ‘Cross Sum’ puz-
zles, which can be traced back as early as 1966 [4]. Currently, the popularity of
Kakuro in Japan is reported second only to Sudoku puzzles [4], but it is only dur-
ing the last four years that the puzzle has gained wider global popularity, particu-
larly in the West.

Related puzzles include: ‘Cryptic Kakuro’ [11], in which alphametric clues
must be solved as a prerequisite to the Kakuro puzzle itself; ‘Cross-sum Sudoku’
[11], which combines the rules of standard Kakuro puzzles with the constraints of
standard Sudoku puzzles; ‘Cross Products’, in which ‘clue’ cells suggest the prod-
uct of digits in a run, rather than their sum; and ‘Survo Puzzles’ [7], in which the
values must be placed, once each, into an mn,...,1 mn× grid that often contains
givens, so as to satisfy row and column sums.

The associated, popular Sudoku puzzle has been linked with important real-
world applications including timetabling [5] and conflict free wavelength routing
[3], and more recently, coding theory due to its potential usefulness in the con-
struction of erasure correction codes [10]. At present, very little has been pub-
lished specifically on Kakuro and its related puzzles. The authors have previously
reported on the use of binary integer programming and local search approaches to
the solution of Kakuro [2], concluding on the need for heuristics to guide solution
and for the need to reduce the size of the search space to be examined. The solu-
tion of Kakuro puzzles has been shown to be NP-Complete [9], through demon-
strating the relationship between Kakuro and the Hamiltonian Path Problem, and
3SAT (the restriction of the Boolean satisfiability problem). It is possible that Ka-
kuro-type puzzles will have similar applications to Sudoku, particularly in the
construction of codes, where run totals may form a generalised type of parity
check.

A project has begun to investigate the properties of the class of Kakuro puzzles,
and thereby establish its potential usefulness within a range of applications, in-

Automation of the Solution of Kakuro Puzzles

cluding coding theory. This paper reports some early findings from that project,
specifically concerning puzzle complexity and the appropriateness of heuristic ap-
proaches for its automated solution. It highlights the use of heuristics to guide
search by a backtracking solver, in preference to local search optimisation.
Evaluation is presented of the effectiveness of two heuristics for guiding search
and a method for pruning the search space that need be considered by the solver.
The authors believe this to be the first published work in the use of heuristics, in
combination with pruning, for the automated solution of Kakuro puzzles.

2 Problem Analysis

Let a Kakuro grid be termed K, where K has dimension mn× , and the cell at row i
and column j is termed . Each cell is either a white cell (to be assigned a nu-

merical value in the range) or a black ‘clue’ cell. Grid K contains a collec-
tion of runs of white cells. Each of these individual runs is exclusively either hori-
zontal or vertical and is termed a tuple (

jik ,

9,...,1

lr pl ...,,1=) where rrl ∈ , the set of all
tuples, and p is the number of runs contained in the puzzle grid. We define the tu-
ple to be such that it contains no repeated elements. lr

Therefore is described either as a tuple of connected horizontal white cells or
of connected vertical white cells. A horizontal run is defined:

lr

),...,(,, es jijil kkr = lji rk
x
∈, , exs ≤≤

where the run is in row i (ni ≤≤1), beginning in column js and ending in column
je, (). A vertical run is defined:mjj es ≤<≤1

),...,(,, jijil es
kkr = ljix

k r, ∈ , exs ≤≤

where the run is in column j (mj ≤≤1), beginning in row is and ending in row ie
(nii es ≤<≤1).

The values to be placed within each white cell, , are governed by puzzle

constraints, namely that:
i,jk

• In each and every run, rrl ∈ , the same value must appear in no more than one
cell:

ujik , ≠

vjik , lji rk
x
∈, , vu jj ≠

 R. P Davies, P. A. Roach, S. Perkins

 jiu

k , ≠ jiv
k , ljix

k r, ∈ , vu ii ≠ .

• nd every run, In each a rrl ∈ , the corresponding run-total, , must be satis-

 grids can vary in the difficulty of their solution. Generally, the com-
pl

lt
fied:

l
rk

ji tk
lji

=∑
∈,

,

Kakuro
exity of a given puzzle cannot be determined by the size of the grid alone, but

should instead be determined from a combination of the number of empty (white)
cells in its initial state, the grid size and the magnitudes of the run-totals.

In order to establish the potential size of the search space for a puzzle, we could
consider the number of options for assigning values to a cell and thereby deter-
mine an upper bound for the number of different grid arrangements of values. (We
note that, for a well-formed puzzle, all but one of these grids, the unique solution,
would be invalid due to the puzzle constraints.)

Fig. 1. A 5 5 initial puzzle grid

ber of grid arrangements for a puzzle grid with w
w

ld ther

bl

×

A crude upper bound for the num
white squares is 9 , since each square can take any of nine numerical values, as-
suming the standard range of values (9...,,1) is being used. The puzzle grid in
Fig. 1, with sixteen white squares, wou efore have an upper bound of 916 ≈
1.853 x 1015 possible arrangements.

This upper bound is greatly reduced by considering which of the nine availa e
values can legitimately be placed in each of the white cells, ic , depending on the

run(s), lr (each with corresponding run-total lt), in which the ell resides.

 c

Automation of the Solution of Kakuro Puzzles

A set of values, , that may be assigned to cells in a run is constructed, such
that:

lP lr

lP = {1, … , 9} if 9>lt

lP = {1, …, a-1} if atl = , 9≤a

The improved upper bound would then be:

}|{min
1

l

w

i
il rcP ∈∏

=

For example, the white cell at the uppermost left of the grid in Fig. 1 is a mem-

ber of a run totalling 11 and of another totalling 5. Concentrating on the lower of
the two run-totals, only a value in the range can be placed in this cell.
When all cells are considered in this way, a new upper bound equalling
1,133,740,800 arrangements can be calculated for this example.

4...,,1

The positioning of runs, and the selections of run totals of Kakuro puzzles can
vary greatly. This makes the task of devising a general formula for the exact num-
ber of possible Kakuro grid arrangements of a given size difficult, if not impossi-
ble, to achieve. Instead we focus on determining the total number of arrangements
of values within a single run which would satisfy the puzzle constraints – the run
total constraint, and the requirement to have no duplicated values in the run. Dif-
ferent sets of distinct values might meet the run constraints, but each set can be
permuted into different orderings – only one of which will match the puzzle solu-
tion. The total number of such arrangements of values can be derived from the co-
efficients obtained from a series expansion of the generating function:

∏
=

+=
9

1

)1(!)(
i

i
l axrxF

The coefficient of ll tr xa represents the number of ordered cell value composi-

tions of length lr that have no repeated value and that sum to . This generating

function has been used to develop a look-up table that is employed in a heuristic in
Sect. 3.3.2. It is worth noting that the function is generalisable to Kakuro puzzles
that use larger sets of assigned values (i.e. beyond).

lt

9...,,1

3 Automating the Solution

Automated approaches to the solution of a given Kakuro puzzle can be placed into
two categories. One category of approaches would use similar methods to those
used by a human solver, where the constraints of the puzzle (run-totals and non-

 R. P Davies, P. A. Roach, S. Perkins

duplication of values within runs) are considered in turn in some logical order un-
til a valid solution is found. Alternatively, the secondary category would use
search algorithms, possibly along with heuristics and objective functions for opti-
misation. These heuristics and objective functions would incorporate problem do-
main information.

3.1 Selecting a Suitable Approach

A given Kakuro puzzle could be solved exhaustively. That is, all possible values
are tried in all cells, fully enumerating the search space in order to locate the solu-
tion. This approach is adequate for smaller grids or when a smaller range of num-
bers is to be used but very time consuming and inefficient for most puzzle grids
where very large numbers of puzzle states would have to be checked.

The puzzle constraints, non-duplication of values within runs and the summa-
tion requirement of values to a specified run-total, make the puzzle seemingly ap-
propriate for a constraint-based approach to a solution. Binary integer program-
ming is one such approach, and such a formulation of the puzzle has previously
been presented by the authors [2]. In that formulation, ten binary decision vari-
ables, , are associated with every cell, where row i and column j specify the

cell position, and k specifies an available value for assignment to the cell (with
zero indicating a black square). Puzzle constraints and trivial constraints (such as
there only being one value per cell and only values in the range can be
added to white cells) are expressed explicitly. The solution is indicated by the col-
lection of binary decision variables that are set to 1, showing which value k should
be assigned to the cell at row i and column j. The results for this approach, using
XPress MP (a suite of optimisation packages) showed that this approach works
well for small puzzles [2]. However, the large number of binary decision variables
for larger grids may make this an inefficient general approach.

i,j,kA

9,...,1

The difficulty of search space size might be overcome by the use of heuristics
in a local search optimisation approach [8]. This approach would employ some
objective function to determine an efficient path through the search space, begin-
ning from some initial state. This initial state might be a particular arrangement of
values within cells such that run duplication constraints are met but not run-total
constraints. An operator would then change the values within one or more of the
cells so that successor states, different arrangements of values within cells, are
produced following each iteration of the search (as illustrated in Fig. 2).

Automation of the Solution of Kakuro Puzzles

Fig. 2. A sample search space containing puzzle states

All states would then be evaluated and scored by the objective function, so that the
state with highest ‘score’ would be explored next. However, such an approach is
only feasible if a sensible and effective objective function can be constructed, such
that it is possible to move reliably towards the goal state. Unfortunately, the
amount of problem domain information that can usefully be incorporated into an
effective objective function is limited. This puzzle information relates specifically
to how closely the current horizontal and vertical run sums match the specified
run-totals. There is a likelihood of many different states mapping to the same
score and of the method becoming stuck in plateaus [8] in the search space. Simi-
lar difficulties have been reported in a local search optimisation approach to the
solution to Sudoku puzzles [6]. Also, since each value in a particular cell can be
replaced by up to eight alternative values, the search space can grow very rapidly.
Solutions of larger puzzles would inevitably involve the storage of a very large
number of states.

Meta-heuristic approaches might be employed to overcome the limitations of
the objective function, however the authors wish to employ problem domain in-
formation more directly. For the above reasons, search optimisation approaches
are not pursued here. Instead we employ a backtracking approach to solving Ka-
kuro puzzles, as described below.

3.2 Backtracking Solver

An approach that takes more direct advantage of the problem complexity charac-
teristics – notably the permutations of the values that may legitimately be assigned
to runs – is desired. A backtracking algorithm, employing a depth-first approach to
examining the search space, can be made appropriate for the solution of Kakuro
puzzles if suitable heuristics to guide the backtracker, and effective pruning condi-
tions can be determined to reduce search space size. In this section, a backtracking
algorithm, implemented through the use of a stack, is described that incorporates

 R. P Davies, P. A. Roach, S. Perkins

conditions to prune parts of the search space in which valid solutions will defi-
nitely not be located.

BACKTRACKING ALGORITHM
Initialise puzzle information and stack.
Current_State becomes the initial-state. Add Current_State to stack.
Current_Cell is set to be the first available white cell.
Current_Value = 1.
WHILE [empty white cells exist]
 Place Current_Value into Current_Cell.
 Increment Iteration_Count.
 Determine runs in which Current_Cell resides, and corresponding run totals.
 IF [no duplicates in runs] and ([run-total(s) not exceeded] or [run(s) com-
pleted correctly])
 Push Current_State to stack.
 IF [empty white cells exist]
 Current_Cell becomes next available cell.
 END-IF
 Reset Current_Value to 1.
 ELSE-IF ([runs under target run-totals] or [duplicate in run(s)]) and [Cur-
rent_Value<9]
 Current_Value = Current_Value +1.
 ELSE
 Pop state from stack to become Current_State.
 Current_Cell becomes previous cell.
 Current_Value becomes value within Current_Cell.
 WHILE [Current_Value = 9]
 Pop state from stack to become Current_State.
 Current_Cell becomes previous cell.
 Current_Value becomes value within Current_Cell.
 END-WHILE
 Current_Value = Current_Value +1.
 END-IF
END-WHILE
Output Current_State as solution.

This approach begins with an empty grid and attempts assignments of values to
each white cell in turn, starting with the lowest numerical value, and beginning the
placements from the top leftmost cell. It follows a depth-first [8] enumeration of
the search space, favouring the assignment of low numerical values, but tests
within the algorithm ensure that some fruitless paths through the search space are
avoided. An apparently successful assignment of a value to a cell (one which does
not violate puzzle constraints) results in the current grid being pushed onto the
stack. Violations of the puzzle constraints – a duplicate value in a run, or an ex-

Automation of the Solution of Kakuro Puzzles

ceeded or under-target run total where all possible values have been considered for
the final cell of a run – result in the algorithm backtracking, and popping the last
successful grid state from the stack. The stack only stores incomplete states, that
are apparently valid, along one branch of the search space, thus avoiding the
memory based issues which can arise in search approaches in which all valid par-
tial states encountered are stored (for example in the queue of a local search opti-
misation approach [8]). An iteration count is incremented each time an attempt is
made to assign a value to a cell, and is used as a measure of algorithm perform-
ance in Sect. 4.

While this approach is ideal for smaller puzzles, the algorithm can be required
to perform a great deal of backtracking in larger puzzles. This necessitates the ad-
dition of further components. The heuristics and pruning conditions that have been
tested in this project are described in Sect. 3.3 below.

3.3 Modifications to the Backtracking Algorithm

In this section, three modifications to the Backtracking Algorithm of Sect. 3.2 are
proposed. The results of using these approaches are presented and analysed in
Sect. 4.

3.3.1 Cell Ordering

It is proposed here that the path taken through the search space be guided by con-
sideration of how many valid arrangements of values there are for each run. The
cell ordering heuristic employed is that by favouring the completion of cells in
runs having fewest valid arrangements, a reduction can be achieved in the maxi-
mum amount of backtracking required due to incorrect assignments to cells con-
sidered near the start of the search process. Those cells in runs having most poten-
tial valid arrangements will be considered later, tending to push the consideration
of cells requiring most backtracking to a deeper level in the search space.

As an example, a run-total of 6 over two cells can be filled using the tuples (1,
5), (5, 1), (2, 4) and (4, 2). (The tuple (3, 3) would be invalid due to the duplica-
tion constraint). Hence this run can be filled in four different ways.

A look-up table is constructed using the generating function of Sect. 2. This ta-
ble explicitly states how many distinct compositions of values exist for each run-
total and all possible run lengths lt lr .

As this approach uses calculations based on entire runs, rather than single cells,
a cell inherits the lowest number of choices of any run in which it is situated. This
represents an upper bound for the actual number of choices for that cell. (We note
that a more accurate measure is to be found in the intersection of the arrangements
in runs, which is more difficult to calculate, and remains as future work.)

 R. P Davies, P. A. Roach, S. Perkins

3.3.2 Reverse Value Ordering

This heuristic favours the assignment of values in the range in reverse or-
der, essentially being based on the ‘assumption’ that puzzles will be solved more
quickly in this manner. Clearly, all values are equally likely to be the content of a
cell of a puzzle solution, in a general sense; the actual likelihood of, for example, a
1 or 9 appearing more frequently in a solution will be puzzle-specific. This is a
poor heuristic, but no worse in general that the reverse assumption. Hence it pro-
vides a useful test of the performance of the algorithm, when measuring the results
of many puzzles. A puzzle having several high values in cells considered at the
start of solution will probably solve more quickly when using this heuristic.

9...,,1

3.3.3 Projected Run Pruning

The Backtracking Algorithm of Sect. 3.2 checks for invalid assignments to a run
on the completion of that run. This will still allow poor choices of values to be
placed at the beginning of a run, such that the run total can not be met with legiti-
mate value assignments in the remaining cells. As an example, consider a run of 5
cells having the run total 35. A placement of 1 in the initial cell will seem legiti-
mate, but even the assignment of the largest values to the remaining cells – 9, 8, 7
and 6 – will only lead to a total of 31. In such a case, considerable processing time
would be wasted attempting to fill the remaining cells, until the Backtracking Al-
gorithm eventually places a value larger than 4 in the initial cell. By considering
whether a run can possibly be completed to meet its total, each time an assignment
is made, fruitless branches of the search space can be pruned.

An additional validity check is added to the Backtracking Algorithm of Sect.
3.2. On assigning a value to a cell in a run that still possesses unassigned cells, a
calculation is performed of the sum of the largest possible values that may still le-
gitimately be added to the remaining cells of that run. If this sum would yield a
run total at least matching the specified run total for that cell, the backtracker con-
tinues, otherwise this branch of the search space is pruned. This approach will re-
duce the number of puzzle states that need to be considered and hence should, in
general, decrease the time taken to obtain a solution to a given puzzle.

4 Results and Timings

There is no published work with which to compare the findings of this project, and
so the results obtained using the heuristics and the projected run pruning from
Sect. 3 will be compared to results obtained using the backtracking solver alone,
for specific puzzles of varying sizes. Tests were performed on a Viglen Intel Core

Automation of the Solution of Kakuro Puzzles

2 Duo processor 2.66GHz, with 2GB RAM. Programs were developed in Java (us-
ing Oracle Jdeveloper 10.1.3.3.0) and executed in the J2SE runtime environment.

Initial experimentation focused on establishing the relative and general effec-
tiveness of the methods proposed in Sect. 3, and results are shown in Table 1. Few
puzzles of small size were available for testing, but those tested were deemed suf-
ficient to examine the methods and to demonstrate the puzzle-specific nature of
their effectiveness. The numbers of iterations (explained in Sec. 3.2) are shown for
a range of puzzle sizes.

Table 1. Iteration counts for specific puzzles, in each method

 Heuristic Used

Backtracking

Alone
Cell

Ordering
Value

Ordering

Projected
Run

Pruning

Projected
Run Prun-
ing & Cell
Ordering

2×2 96 96 16 42 42
3×3 68 22 60 60 22
4×4 444 311 40 86 131
5×5(a) 142 213 309 142 213
5×5(b) 2,917 209 2,562 2,383 100
5×5(c) 983 423 424 149 111
5×5(d) 2,735 237 1,353 429 195
6×6 210 650 675 210 650
7×7 20,393,677 1,052,747 495,945 12,455,461 24,636

Pu
zz

le
 G

rid
 S

iz
e

8×8 14,347 71,168 3,140 7,032 27,440

As would be expected, the reverse value ordering worked best on certain puzzles –
these being ones in which the first few cells that considered had high values. Cell
ordering was often effective, but seemed less so for larger puzzles – for certain
puzzles it performed worse than backtracking alone. In contrast, the projected run
pruning performed more consistently, never requiring more iterations than the
backtracker alone (as would be expected), and often requiring far fewer iterations.
A method that encourages rapid and early pruning is desired. The combination of
cell ordering and projected run pruning occasionally reduced the number iterations
below the count achieved by either approach individually, suggesting that the
methods might combine well in guiding the search method to earlier pruning of
the search space. However, this behaviour was not consistent.

Puzzles of small size generally solve quite rapidly, but the processing overhead of
the methods is of interest here. Table 2 shows the average time taken per iteration,
measured in milliseconds, for the puzzle set of Table 1, this time banded accord-

 R. P Davies, P. A. Roach, S. Perkins

ing to puzzle size. As would be expected, the average time per iteration is gener-
ally higher for smaller puzzles, as the search spaces are small, hence the benefits
of pruning are less significant. It seems reasonably clear that the processing over-
heads of cell ordering (arising from a pre-processing step and indexing of an ar-
ray) and pruning are small.

Table 2. Average time (milliseconds) taken per iteration

 Heuristic Used

Backtracking

Alone
Cell

Ordering
Value

Ordering

Project
Run Prun-

ing

Projected
Run Prun-
ing & Cell
Ordering

< 5x5 3.5107 3.8425 3.2736 3.6641 3.6108

5x5 & 6x6 3.3865 3.7496 3.4823 3.5374 3.6190

Pu
zz

le
 G

rid

Si
ze

> 6x6 3.4648 3.5826 3.4903 3.5685 3.5518

While few puzzles of small sizes are available, a larger number of published

puzzles exist for a more ‘standard’ challenge. For a test set of puzzles of size
, we pursue the most promising methods of projected run pruning and its

combination with cell ordering. Table 3 shows results for thirteen puzzles of grid
size .

99×

99×

Table 3. Iteration statistics for thirteen puzzles with grid size 9x9.

Minimum
Iterations

Maximum
Iterations

Median
Iterations

Average It-
erations

% of cases where
method performed best

Projected Run
Pruning

5,829 1,554,208 65,760 256,455 76.92%

Projected Run
Pruning & Cell

Ordering
2,543 28,039,107 284,512 5,795,832 23.08%

In a small number of cases, the combination of the cell-ordering heuristic and

pruning improved results (shown by the minimum number of iterations and the
percentage of cases where improvement occurred), but the median and maximum
number of iterations show both that the combination is an unreliable approach and
that on certain puzzles, performance is greatly worsened. Hence the projected run
pruning method is considered here to be the most reliable approach.

Automation of the Solution of Kakuro Puzzles

An extended test set of 20 puzzles of size 99× were solved using just projected
run pruning. The fastest solution time (in milliseconds) was 21,096, the longest
36,075,603, the median 323,694 and the average 4,675,317. The average time per
iteration was 3.6738 ms to 4 decimal places. This approach is relatively promis-
ing, but further pruning methods to force an earlier and more rapid reduction in
search space size, and heuristics to guide search, are sought to enable more rapid
solution.

5 Conclusion

This paper has analysed the size of a Kakuro search space. This includes establish-
ing an improved upper bound for the number of possible arrangements of values
in a Kakuro grid. More significantly, a generating function has been presented to
determine the exact number of valid arrangements of values in any given run; this
function can be used for different grid sizes and different numbers of values to be
assigned. The suitability of a range of search approaches for the solution of Ka-
kuro has been considered, and a backtracking approach has been presented as the
preferred approach. A cell ordering heuristic, based on the number of valid ar-
rangements of values in a given run, has been proposed and evaluated. Lastly, a
pruning method has been proposed to reduce the part of the search space that need
be examined, by checking whether a run total can possibly be met each time an as-
signment is made to a cell in that run.

The pruning method proved to be most effective in reducing solution time for a
range of puzzle grids. The cell ordering heuristic performed unreliably, making
reasonable improvements in the solution time in some cases, but greatly increased
solution time in other cases. This heuristic might be improved by establishing the
intersection of the arrangements in runs, rather than allowing a cell to inherit the
lowest number of possible arrangements of valid solutions of the two runs in
which it is situated, thus giving a better measure of possibilities for a single cell.
The completion of a started run, in preference to continually jumping to the next
single cell with fewest apparent choices, might also allow the earlier detection of
fruitless branches.

The usefulness of Kakuro for applications, including Coding Theory, will de-
pend in part on the development of methods to reliably enumerate the search
spaces of specific puzzles more rapidly. A more detailed understanding of the size
of the search spaces of puzzles will also be required. For this, it is proposed that
the results of this paper be extended through further improvements to the upper
bound for the number of possible arrangements of values in solution grids,
through consideration of the intersection of runs.

Acknowledgments The authors wish to thank Sian K. Jones for many helpful discussions relat-
ing to this work.

 R. P Davies, P. A. Roach, S. Perkins

References

1. Cadoli, M., Schaerf, M.: Partial solutions with unique completion. Lect. Notes Comput. Sci.
4155, 101-10, (2006)

2. Davies, R.P., Roach P.A., Perkins, S.: Properties of, and Solutions to, Kakuro and related
puzzles. In: Roach, P., Plassman, P. (eds.) Proceedings of the 3rd Research Student Work-
shop, University of Glamorgan, pp. 54-58 (2008)

3. Dotu, I., del Val, A., Cebrian, M.: Redundant modeling for the quasigroup completion prob-
lem. In: Rossi, F. (ed.), Principles and Practice of Constraint Programming, CP 2003 (Lect.
Notes Comput. Sci. 2833), Springer-Verlag, Berlin, pp 288-302 (2003)

4. Galanti, G.: The History of Kakuro,. Conceptis Puzzles (2005).
 http://www.conceptispuzzles.com/articles/kakuro/history.htm. Cited 22 Feb 2008
5. Gomes, C., Shmoys, D.: The promise of LP to boost CP techniques for combinatorial prob-

lems. In: Jussien, N., Laburthe, F. (eds.) Proceedings of the Fourth International Workshop
on Integration of AI and OR techniques in Constraint Programming for Combinatorial Opti-
misation Problems, CPAIOR, France, pp 291–305 (2002)

6. Jones, S.K., Roach P.A., Perkins S.: Construction of heuristics for a search-based approach to
solving Sudoku. In: Bramer M., Coenen F., Petridis M. (eds) Research and Development in
Intelligent Systems XXIV: Proceedings of AI-2007, the Twenty-seventh SGAI International
Conference on Artificial Intelligence, pp. 37-49 (2007)

7. Mustonen, M.: On certain Cross Sum puzzles. Internal Report. (2006)
http://www.survo.fi/papers/puzzles.pdf. Cited 22 Feb 2008

8 Rich, E., Knight, K.: Artificial Intelligence, 2nd Edition. McGraw-Hill, Singapore (1991)
9. Seta, T.: The complexities of puzzles, cross sum and their another solution problems (ASP),.

Senior thesis. Dept. Information Science, University of Tokyo (2002)
10. Soedarmadji, E., McEliece, R.: Iterative decoding for Sudoku and Latin Square codes. In:

Forty-Fifth Annual Allerton Conference, Allerton-07, University of Illinois (2007)
11. Yang, X.: Cryptic Kakuro and Cross Sums Sudoku. Exposure Publishing (2006)

