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Abstract

While music composition used to be a pen and paper activity, these days these days music
is often composed with the aid of computer software. This can be taken a step further by
having the computer compose parts of the score on its own.

The composition of most styles of music is governed by rules. We show that by approach-
ing the automation, analysis and verification of composition as a knowledge representation
task and formalising these rules in a suitable logical language, powerful and expressive in-
telligent composition tools can be easily built.

This paper describes the use of answer set programming to construct an automated sys-
tem, named Anton, that can compose both melodic and harmonic music, diagnose errors
in human compositions and serve as a computer-aided composition tool. The combination
of harmonic and melodic composition in a single framework makes Anton unique in the
growing area of algorithmic composition.

With real-time composition in some areas, Anton can not only be used as a component
in an interactive composition tool but also for live performances and concerts or automat-
ically generated background music in a variety of applications. With the use of a fully
declarative language and an “off-the-shelf” reasoning tool, Anton provides a tool for the
human composer which is significantly simpler, compact and versatile than other existing
systems.

KEYWORDS: Answer set programming, music composition, harmonic and melodic com-
position, diagnosis

1 Introduction

Music, although it seeks to communicate via emotions, is almost always governed
by complex and rigorous rules which provide the base from which artistic expression
can be attempted. In the case of musical composition, in most styles there are rules
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which describe the progression of a melody, both at the local level (the choice of
the next note) and at the global level (the overall structure). Other rules describe
the harmony, which arises from the relationship between the melodic line and the
supporting instruments.

These rules were developed to guide and support human composers working in
the style of their choice, but we wish to demonstrate here that by using knowledge
representation techniques, we can create a computer system that can reason about
and apply compositional rules. Such a system will provide a simple and flexible way
of composing music automatically, but, provided that the representation technology
used is sufficiently flexible to allow changes at the level of the rules themselves, it
will also help the human composer to understand, explore and extend the rules he
is working with.

Composers of music have since the beginning of recorded time used a number
of processes to generate the next note, be it simple scales or arpeggios, or com-
plex mathematical structures. Our interest in developing computational systems
for composing, harmonising and accompanying music is also old. We have used
a variety of mechanisms in searching for a viable system, including encodings of
the stochastic and symbolic music of Xenakis (1992), and attempts to find simpler
schemes to the major work in artificial intelligence on the harmonisation of Bach
chorales by Ebcioğlu (1986).

This paper describes Anton, an automatic composition system capable of simple
melodies with accompaniment, in particular for species one counterpoint as prac-
tised in the early Renaissance. The insights gained from this system can be and are
being extended to other musical styles, by adding or changing the rules. What has
impressed us has been particularly the ease in which musical experience could be
converted into code which is succinct and easy to verify.

Anton uses Answer Set Programming(ASP) (Gelfond and Lifschitz 1988a), a
logic programming paradigm, to represent the music knowledge and rules of the
system. A detailed description is provided in Section 3, after a short description of
the musical aspects of the project (Section 2).

The initial system, Anton1.0, was first presented in (Boenn et al. 2008). In this
paper, we present Anton1.5. The simplicity of the basic encoding is presented in
Section 4. As we will demonstrate, the new version excluding rhythm is significantly
faster allowing Anton to be used in real-time rather than just an interactive tool.

The initial system (Boenn et al. 2008), has only an extremenly simple concept of
rhythm, all notes having the same length. In Section 5 we show how this restriction
has been relaxed, allowing interesting, but “correct” rhythmic patterns. The paper
is completed with a discussion of the performance, both musical and computational
in Section 6, the use of ASP in Section 7 and future work (Section 8).

Our overall aim is multi-faceted; on one hand we can test the quality and utility
of ASP solvers in real-world applications, and on the other develop musicological
ideas, create music, and test musical thoughts. We also note that Anton is usable
as part of a student marking system, checking that harmonisations fit the rules.
Alternatively, the system can be used as a diagnostic tool or music completion tool,
where part of the piece is given to the program to be correctly completed.
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2 Music Theory

Music is a world-wide phenomenon across all cultures. The details of what con-
stitutes music may vary from nation to nation, but it is clear that music is an
important component of being human.

In the work of this paper we are concentrating on western traditional tonal musics,
but the underlying concepts can be translated to other traditions. The particular
area of interest here is composition; that is creating new musical pieces.

Creating melodies, that is sequences of pitched sounds, is not as easy as it sounds.
We have cultural preferences for certain sequences of notes and preferences dictated
by the biology of how we hear. This may be viewed as an artistic (and hence
not scientific) issue, but most of us would be quick to challenge the musicality
of a composition created purely by random whim. Students are taught rules of
thumb to ensure that their works do not run counter to cultural norms and also
fit the algorithmically definable rules of pleasing harmony when sounds are played
together.

“Western tonal” simply refers to what most people in the West think of as “clas-
sical music”, the congenial Bach through Brahms music which feels comfortable
to the modern western ear because of its adherence to familiar rules. Students of
composition in conservatoires are taught to write this sort of music as basic train-
ing. They learn to write melodies and to harmonise given melodies in a number of
sub-versions. If we concentrate on early music then the scheme often called infor-
mally “Palestrina Rules” is an obvious example for the basis of this work. Similarly,
harmonising Bach chorales is a common student exercise, and has been the subject
of many computational investigations using a variety of methods.

For the start of this work we have opted to work with Renaissance Counterpoint.
This style was used by composers like Josquin, Dufay or Palestrina and is very
distinct from the Baroque Counterpoint used by composers like Bach, Haendel.

We have used the teaching at one conservatoire in Köln to provide the basic
rules, which were then refined in line with the general style taught. The point about
generating melodies is that the “tune” must be capable of being accompanied by
one or more other lines of notes, to create a harmonious whole. The requirement for
the tune to be capable of harmonisation is a constraint that turns a simple sequence
(a monody) to a melody.

Our experience with this work is to realise how many acceptable melodies can be
created with only a few rules, and as we add rules, how much better the musical
results are.

In this particular style of music complete pieces are not usually created in one
go. Composers create a number of sections of melody, harmonising them as needed,
and possibly in different ways, and then structuring the piece around these basic
sections. Composing between 4 bars and 16 bars is not only a computationally
convenient task, it is actually what the human would do, creating components from
which the whole is constructed. So although the system described here may be
limited in its melodic scope, it has the potential to become a useful tool across a
range of sub-styles.
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2.1 Automatic Composition

A common problem in musical composition can be summarised in the question
“where is the next note coming from?”. For many composers over the years the
answer has been to use some process to generate notes. It is clear that in many
pieces from the Baroque period that simple note sequences are being elaborated in
a fashion we would now call algorithmic. For this reason we can say that algorithmic
composition is a subject that has been around for a very long time. It is usual to
credit Mozart’s Musikalisches Würfelspiel (Musical Dice Game) (Chuang 1995) as
the oldest classical algorithmic composition, although there is some doubt if the
game form is really his. In essence the creator provides a selection of short sections,
which are then assembled according to a few rules and the roll of a set of dice to
form a Minuet1. Two dice are used to choose the 16 minuet measures from a set
of 176, and another die selects the 16 trio measures2, this time from 96 possible.
This gives a total number of 1.3× 1029 possible pieces. This system however, while
using some rules, relies on the coherence of the individual measures. It remains a
fun activity, and recently web pages have appeared that allow users to create their
own original(ish) “Mozart” compositions.

In the music of the second Viennese school (“12-tone”, serial music) there is a
process in action, rotating, inverting and use of retrograde, but usually performed
by hand.

More recent algorithmic composition systems have concentrated on the genera-
tion of monody3, either from a mathematical sequence, chaotic processes, or Markov
chains, trained by consideration of acceptable other works. Frequently the systems
rely on a human to select which monodies should be admitted, based on judgement
rather than rules. Great works have been created this way, in the hands of great
talents. Probably the best known of the Markov chain approach is Cope’s significant
corpus of Mozart pastiche (Cope 2006).

In another variation on this approach, the accompanist, either knowing the chord
structure and style in advance, or using machine-listening techniques, infers a style
of accompaniment. The former of these approaches can be found in commercial
products, and the latter has been used by some jazz performers to great effect, for
example by George E. Lewis.

A more recent trend is to cast the problem as one of constraint satisfaction.
For example PWConstraints is an extension for IRCAM’s Patchwork, a Common-
Lisp-based graphical programming system for composition. It uses a custom con-
straint solver employing backtracking over finite integer domains. OMSituation and
OMClouds are similar and are more recently developed for Patchwork’s successor
OpenMusic. A detailed evaluation of them can be found in (Anders 2007), where
the author gives an example of a 1st-species counterpoint (two voices, note against
note) after (Fux 1725) developed with Strasheela, a constraint system for music

1 A dance form in triple time, i.e. with 3 beats in each measure
2 A Trio is a short contrasting section played before the minuet is repeated
3 A monody is a single solo line, in opposition to homophony and polyphony
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built on the multi-paradigm language Oz. Our musical rules however implement
the melody and counterpoint rules described by (Thakar 1990), which we find give
better musical results.

One can distinguish between improvisation systems and composition systems. In
the former the note selection progresses through time, without detailed knowledge of
what is to come. In practice this is informed either by knowing the chord progression
or similar musical structures (Brothwell and ffitch 2008), or using some machine
listening. In this paper we are concerned with composition, so the process takes
place out of time, and we can make decisions in any order.

It should also be noted that these algorithmic systems compose pieces of music of
this style in either a melodic or a harmonic fashion, and are frequently associated
with computer-based synthesis. The system we will propose later is unique as it
deals with both simultaneously.

2.1.1 Melodic Composition

In melodic generation a common approach is the use of some kind of probabilistic
finite state automaton or an equivalent scheme, which is either designed by hand
(some based on chaotic oscillators or some other stream of numbers) or built via
some kind of learning process. Various Markov models are commonly used, but
there have been applications of n-grams, genetic algorithms and neural nets. What
these methods have in common is that there is no guarantee that melodic frag-
ments generated have acceptable harmonic derivations. Our approach, described
below is fundamentally different in this respect, as our rules cover both aspects
simultaneously.

In contrast to earlier methods, which rely on learning, and which are capable
of giving only local temporal structure, a common criticism of algorithmic melody
(Leach 1999), we do not rely on learning and hence we can aspire to a more global,
whole melody, approach. In addition we are no longer subject to the limitations of
the kind of process which, because it only works in time in one direction, is hard
to use in a partially automated fashion; for example operations like “fill in the 4
notes between these sections” is not a problem for us.

We are also trying to move beyond experiments with random note generation,
which we have all tried and abandoned because the results are too lacking in struc-
ture. Predictably, the alternative of removing the non-determinism at the design
stage (or replacing with a probabilistic choice) runs the risk of ‘sounding pre-
dictable’ ! There have been examples of good or acceptable melodies created like
this, but the restriction inherent in the process means it probably works best in the
hands of geniuses.

2.1.2 Harmonic Composition

A common usage of algorithmic composition is to add harmonic lines to a melody;
that is notes played at the same time as the melody that are in general consonant
and pleasing. This is exemplified in the harmonisation of 4-part chorales, and has
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been the subject of a number of essays in rule-based or Markov-chain systems.
Perhaps a pinnacle of this work is (Ebcioğlu 1986) who used early expert system
technology to harmonise in the style of Bach, and was very successful. Subsequently
there have been many other systems, with a range of technologies. There is a review
included in (Rohrmeier 2006).

Clearly harmonisation is a good match to constraint programming based systems,
there being accepted rules4. It also has a history from musical education.

But these systems all start with a melody for which at least one valid harmoni-
sation exists, and the program attempts to find one, which is clearly soluble. This
differs significantly from our system, as we generate the melody and harmonisation
together, the requirement for harmonisation affecting the melody.

3 Answer Set Programming

In answer set programming (Baral 2003) a logic program is used to describe the
requirements that must be fulfilled by the solutions of a certain problem. The answer
sets of the program, usually defined through (a variant/extension of) the stable
model semantics (Gelfond and Lifschitz 1988b), then correspond to the solutions
of the problem. This technique has been successfully applied in domains such as
planning (Eiter et al. 2002; Lifschitz 2002), configuration and verification (Soininen
and Niemelä 1999), super-optimisation (Brain et al. 2006), diagnosis (Eiter et al.
1999), game theory (De Vos and Vermeir 1999) multi-agent systems (Baral and
Gelfond 2000; Buccafurri and Gottlob 2002; De Vos and Vermeir 2004; Buccafurri
and Caminiti 2005; Cliffe et al. 2006), reasoning about biological networks (Grell
et al. 2006), voting theory (Konczak 2006), policy mechanisms(Mileo and Schaub
2006), generation of phylogenetic trees (Erdem et al. 2006), evolution of language
(Erdem et al. 2003) and game character descriptions (Padovani and Provetti 2004).

There is a large body of literature on ASP: for in-depth coverage see (Baral 2003;
Gelfond and Lifschitz 1988b), but for the sake of making this paper self-contained
we will cover the essentials as they pertain to our usage here.

Basic Concepts: The answer set semantics is a model based semantics for normal
logic programs. Following the notation of (Baral 2003), we refer to the language
over which answer set semantics is defined as AnsProlog.

The smallest building block of an AnsPrologis an atom or predicate, e.g. r(X, Y)
denotes XrY . X and Y are variables which can be grounded with constants. Each
ground atom can be assigned the truth value true or false.

For current purposes, we only require answer sets with one type of negation,
namely negation-as-failure denoted not. This type of negation states that something
should be assumed false when it cannot be proven to be true. A literal is an atom a

or its negation not a. We extend the notation to sets: not S is the set {not l | l ∈ S}
with S a set of literals.

An AnsProlog program consist of a finite set of statements, called rules. Each

4 For example see: http://www.wikihow.com/Harmonise-a-Chorale-in-the-Style-of-Bach
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rule r : a← B. or ⊥ ← B. is made of two parts namely the body B, denoted B(r),
which is a set of literals, and a head atom a or ⊥, denoted H(r). The body can
be divided in two parts: the set of positive atoms, denoted as B+(r), and the set
of negated atoms, denoted B−(r). A rule should be read as: “a is supported if all
elements of B are true”. A rule with empty body is called a fact and we often only
mention the head. A rule with head ⊥ is referred to as an (integrity) constraint.
We often omit the ⊥ symbol and leave the head empty. ⊥ is always assigned the
truth value “false”. A program is called positive if it does not contain any negated
atoms.

The finite set of all constants that appear in the program P is referred to as
the Herbrand universe, denoted UP . Using the Herbrand universe, we can ground
the entire program. Each rule is replaced by its grounded instances, which can
be obtained by replacing each variable symbol by an element of UP . The ground
program, denoted ground(P ), is the union of all ground instances of the rules in P .

The set of all atoms grounded over the Herbrand universe of a program is called
the Herbrand base, denoted as BP . These are exactly those atoms that will appear
the grounded program.

An assignment of truth values to all atoms in the program (or all elements from
the Herbrand base), without causing contradiction, is called an interpretation. Often
only those literals that are considered true are mentioned, as all the others are false
by definition (negation as failure).

Given a ground rule r, we say a r is applicable w.r.t. an interpretation I ⊆ BP

if all the body elements are true (B+(r) ⊆ I and B−(r) ∩ I = ∅). The rule is
applied w.r.t. I when it is applicable and Hr ∈ I. A ground rule is satisfied w.r.t.
an interpretation I if it is either not applicable or applied w.r.t. I. An atom is
supported w.r.t. I if there is an applied rule with this atom in the head. Obviously,
we want to make sure that interpretations satisfy every rule in the program. So, an
interpretation I is a model for a program P iff all rules in ground(P ) are satisfied.

To find actual solutions, models alone are not sufficient. To prevent this, we need
to make sure that only those literals that are supported are considered true. This
results in the so-called minimal model semantics. A model M for a program P is
minimal if no other model N exists such that N ⊂ M . Programs can have any
number of minimal models, while programs without constraints will always admit
at least one. Positive programs will have at most one, and exactly one when they
do not admit any constraints.

The minimal model of a positive program without constraints can be found using
a fixpoint, called the deductive closure, which can be computed in polynomial time.
We start with the empty set and find all atoms that are supported. With this new
set we continue to find supported atoms. When the set no longer changes, we have
found the deductive closure or minimal model of the program. If the specification
contains constraints, we can follow the same principle but the process fails when a
unsatisfied constraint is found.

Definition 1
Let P be a positive AnsProlog program and let I be an interpretation. We define
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the immediate consequence operator TP as:

TP(I) = {aBP | ∃ r ∈ P ·Br ⊆ I}

TP is monotonic so it has a least fixpoint: the deductive closure.

Definition 2
Let P be a positive AnsProlog program. The deductive closure of P , is the least
fixpoint TP

ω(∅) of TP.

While the minimal model semantics gives the required solutions with a positive
program, it is, in the presence of negation-as-failure, insufficient. A simple example
of such a program is: {a : −not a.; b : −a}. This program has one minimal model
{a, b}, while the truth of a depends on a being false. Negation-as-failure gives us
no guarantee that something is indeed false and that information derived from
it is actually correct. To obtain intuitive solutions, we need to verify that our
assumptions are indeed correct. This is done by reducing the program to a simpler
program containing no instances of negation-as-failure. Given an interpretation, all
rules that contain not l that are considered false are removed while the remaining
rules only retain their literals. This reduction is often referred to as the Gelfond-
Lifschitz transformation (Gelfond and Lifschitz 1988a; Gelfond and Lifschitz 1991).
When this program gives the same supported literals as the ones with which we
began, we have found an answer set.

Definition 3
Let P be a ground AnsProlog program. The Gelfond-Lifschitz transformation of
P w.r.t S, a set of ground atoms is the program PS containing the rules l ← B

such that l← B,not C ∈ P with C ∩ S = ∅, and B and C are sets of literals.

Definition 4
Let P be a AnsProlog . A set of ground atoms S ⊆ BP is an answer set of P iff S

is the minimal model of ground(PS).

The uncertain nature of negation-as-failure gives rise to several answer sets, which
are all acceptable solutions to the problem that has been modelled. It is in this non-
determinism that the strength of answer set programming lies.

Extensions The basic formalism, single head and negation-as-failure only appearing
in the head, already enables the representation of many problems. However, for
some applications the programmer is forced to write code in a more round-about
non intuitive way. To overcome this, extensions are introduced.

From a programmer’s perspective, choice rules(Niemelä et al. 1999) and symbolic
functions are probably the most commonly used extensions. A lot of problems re-
quire choices between a set of atoms to made. Although this can be modelled in the
basic formalism it tends to increase to the number of rules and increases the possi-
bility of errors. To solve this, choices are introduced. Choices written L{l1, . . . ln}M
are a convenient construct to indicate that at least L and at most M from the set
{l1 ln} must be true in order to satisfy the construct. L defaults to 0 while M



Music Composition using ASP 9

defaults to n. Choice rules are often used in conjunction with a grounding predi-
cate: L{A(X) : B(X)}M represents the choice of a number of atoms A(X) where
is grounded with all values of X for which B(X) is true.

A symbolic function f(X, Y) defines a new constant that is the value of the func-
tion. It is used as a shorthand to group sets of variables together in a meaningful
way. An example could be to group coordinates together: position(X, Y). This can
then be used like: rectangle(position(2, 5), position(5, 8)).

Implementations: Algorithms and implementations for obtaining answer sets of
logic programs are referred to as answer set solvers. The most popular and widely
used solvers are DLV(Eiter et al. 1998) and Smodels(Niemelä and Simons 1997)
and more recently clasp (Gebser et al. 2007a).

Alternatives are Cmodels(Giunchiglia et al. 2004) and Sup(Lierler 2008), solvers
based on translating the program to a SAT problem, and smodels-ie(Brain et al.
2007), the cache-efficient version of smodels. Furthermore, there is the distributed
solver platypus (Gressmann et al. 2005).

To solve a problem it first needs to be grounded. Currently three grounders are
used: the grounder supplied with dlv, lparse, the grounder that was developed
together with smodels but is used by most solvers, and the very recent one Gringo

(Gebser et al. 2007) which works together with claps. During the grounding phase,
not only are the variables substituted for constants, but also the rules that lead to
nothing are eliminated. Furthermore, the grounders try to optimise the program as
much as possible. The second phase is solving which takes a grounded program as
input and generates the set of its answer sets.

Current answer set solvers can be divided in three groups depending on the style
of algorithm they use or the mapping the use: branch-and-bound (Eiter et al. 1998;
Niemelä and Simons 1997; Brain et al. 2007; Gressmann et al. 2005), clause learning
(Giunchiglia et al. 2004; Gebser et al. 2007a) and a mapping to SAT (Giunchiglia
et al. 2004; Lierler 2008). All use a variety of heuristics to improve the performance
of the basic algorithm. In this paper, we will only provide a very high-level overview
of both ASP-only algorithms.

Branch and bound is a bottom-up approach working with partial interpretation
containing those atoms that are considered true and those that are false. Each
iteration consists of two phases: branch and bound. The latter considers, using the
partial information, which atoms have to true and which ones should be false based
on the support or lack thereof already generated by this partial interpretation.
When no further information can be deduced, the branch phase selects an atom
which truth value is the branching point. One branch continue with this atom true
and the other which the atom false. The process terminates if the truth value of all
atoms in the program is determined.

In clause learning, the AnsProlog program is translated in a collection of logic
clauses using Clark’s completion. The solver will then try to find a truth assignments
that satisfies all clauses in a bottom up fashion. Each time an inconsistency is found.
This new constraint may reduce the search space, as future partial evaluations may
be found inconsistent without further search.
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4 Anton

4.1 System Description

Anton applies ASP techniques to compositional rules to produce an algorithmic
composition system. AnsProlog is used to write a description of the rules that
govern the melodic and harmonic properties of a correct piece of music; in this way
the program works as a model for music composition that can be used to assist the
composer by suggesting, completing and verifying short pieces.

The composition rules are modelled so that the AnsProlog program defines the
requirements for a piece to be musically valid, and thus every answer set corresponds
to a different valid piece. To generate a new piece the composition system simply has
to generate an (arbitrary) answer set. Rather than the traditional problem/solution
mapping of answer set programming, this is using an AnsProlog program to create
a ‘random’ (arbitrary) example of a complex, structured object.

In this section we will only discuss the basic system of Anton1.5.
The AnsProlog program of the basic system is divided among various files:

notes.lp, modes.lp, chord.lp, progression.lp, melody.lp and harmony.lp. The first
contains the general background rules on notes and intervals while the second de-
scribes the various modes/keys the system can use and their consequences for note
selection and position. The current system is able to work with major, minor, Do-
rian, Lydian and Phrygian keys. Chord.lp provides the description of chords and
chordal progression and the effects of node choices. Rules for the progression of all
parts, either melodic and harmonic, are handled in progression.lp These part of the
program is responsible for selecting the next node in each of the parts on the basis
of a previous note. The rules for melodic parts and for working with multiple parts
are encoded in melodic.lp and harmonic.lp respectively.

We will discuss progression, melody and harmony in more detail. The whole
system is licensed under the GPL and publicly available via http://www.cs.bath.

ac.uk/~mjb/anton/.
Figure 1 presents a selection of rules dealing with progression of nodes. The

model is defined over a number of time steps, given by the variable T. The key
proposition is chosenNote(P,T,N) which represents the concept “At time T, part
P plays note N”. To encode the options for melodic progress (“the tune either steps
up or down one note in the key, leaps more than one note, repeats or rests”),
choice rules are used. For diagnostic and debugging purposes, we decided not to
encode compositional errors immediately as constraints, but instead use error rules
like error(P,T,err ip) :- incorrectProgression(P,T). Using a constraints to
include answer sets with error-atoms or excluding them entirely, we can alter the
functionality of our system without changing the code. We will later return to
various uses of our system.

To encode the melodic limits on the pattern of notes and the harmonic limits
on which combinations of notes may be played at once, error-rules like the one in
progression.lp are included. Figure 2 shows how we encoded rules that forbid repe-
tition of notes in the melodic parts, octave leaps except for special circumstances,
impulses, repetition of more than two notes and certain lengths of intervals. While
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%% Each part picks at most one note per time step

time(1..t).

%% Each part can only play one note at a given time

:- 2 choosenNote(P,T,NN) : note(NN), rest(P,T) .

%% At every time step the note may change

%% It changes by stepping (moving one note in the scale)

%% or leaping (moving more than one note)

%% These can either be upwards or downwards

1 { changes(P,T), repeated(P,T), toRest(P,T), fromRest(P,T),

incorrectProgression(P,T) } 1 :- T != t.

1 { stepAt(P,T), leapAt(P,T) } 1 :- changes(P,T), T != t.

1 { downAt(P,T), upAt(P,T) } 1 :- changes(P,T), T != t.

stepDown(P,T) :- stepAt(P,T), downAt(P,T).

stepUp(P,T) :- stepAt(P,T), upAt(P,T).

#const err ip="Incorrect progression".

reason(err ip).

error(P,T,err ip) :- incorrectProgression(P,T).

%% If we step, we must pick an amount to step by

1 { stepBy(P,T,SS) : stepSize(SS) : SS < 0 } 1 :- stepDown(P,T).

1 { stepBy(P,T,SS) : stepSize(SS) : SS > 0 } 1 :- stepUp(P,T).

%% Make it so

choosenNote(P,T + 1,N + S) :- choosenNote(P,T,N), stepAt(P,T), stepBy(P,T,S), note(N + S).

choosenNote(P,T + 1,N + L) :- choosenNote(P,T,N), leapAt(P,T), leapBy(P,T,L), note(N + L).

choosenNote(P,T + 1,N) :- choosenNote(P,T,N), repeated(P,T).

Fig. 1. A code fragment from progression.lp

some of these rules might be valid in other types of music, renaissance counterpoint
explicitly forbids them.

Interaction between parts is governed by the harmony. Figure 3 show how we
encoded the musical rules that specify that you cannot have dissonant intervals
between parts, limit the distance between parts and that parts cannot cross-overs.

While the fragments shown in Figures 1-3 are only a selection of the entire, they
demonstrate that the rules are very simple and intuitive (with the necessary musical
background). The modelling of this style of music, excluding rhythm, contains less
than 200 ungrounded logic rules.

4.2 Features

In the previous section we discussed the basic components of the Anton system.
However, in order to have a complete system, we are still missing one component:
the specification of parts. Currently, the system comes with descriptions for solos,
duets, trios and quartets but the basic system is written with no fixed number of
parts in mind. Figure 4 shows the description for a quartet.

Depending on how the system is used, composition or diagnosis, you will either
be interested in those pieces that do not result in errors at all, or in an answer set
that mentions the error messages. For the former we simply specify the constraint
:- error(P,T,R). effectively making any error rule into a constraint. For the latter we
include the rules: errorFound :- error(P,T,R). and :- not errorFound. requiring that
an error is found (i.e. returning no answers if the diagnosed piece is error free).
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%% Melodic parts are not allowed to repeat notes

#const err nrmp="No repeated notes in melodic parts".

reason(err nrmp).

error(MP,T,err nrmp) :- repeated(MP,T).

#const err olnf="Leap of an octave from a note other than the fundamental".

reason(err olnf).

error(MP,T,err olnf) :- leapBy(MP,T,12), not choosenChromatic(MP,T,1).

error(MP,T,err olnf) :- leapBy(MP,T,-12), not choosenChromatic(MP,T,1).

%% Impulse %% Stepwise linear progression creates impulse

%% Leaps create impulse - using the notes in between resolves this

downwardImpulse(MP,T+1) :- leapDown(MP,T), time(T+1).

downwardImpulse(MP,T+3) :- stepDown(MP,T+2), stepDown(MP,T+1), stepDown(MP,T), time(T+3).

upwardImpulse(MP,T+1) :- leapUp(MP,T), time(T+1).

upwardImpulse(MP,T+3) :- stepUp(MP,T+2), stepUp(MP,T+1), stepUp(MP,T), time(T+3).

%% No repetition of two or more notes

#const err rn="Repeated notes".

reason(err rn).

error(MP,T1,err rn) :- choosenNote(MP,T1,N), stepBy(MP,T1,S1),

choosenNote(MP,T2,N), stepBy(MP,T2,S1),

T1 + 1 < T2, T2 < T1 + 2 + RW.

error(MP,T1,err rn) :- choosenNote(MP,T1,N), leapBy(MP,T1,L1),

choosenNote(MP,T2,N), leapBy(MP,T2,L1),

T1 + 1 < T2, T2 < T1 + 2 + RW.

#const err dc="Dissonant contour".

reason(err dc).

error(MP,t,err dc) :- lowestNote(MP,N1), highestNote(MP,N2),

chromatic(N1,C1), chromatic(N2,C2),

not consonant(C1,C2), N1 < N2.

Fig. 2. A code fragment from melody.lp

#const err dibp="Dissonant interval between parts".

reason(err dibp).

error(P1,T,err dibp) :- choosenChromatic(P1,T,C1), choosenChromatic(P2,T,C2),

P1 < P2, chromaticInterval(C1,C2,D),

not validInterval(D).

%% The maximum distance between parts is an octave plus 4 semitones (i.e. 16 semitones).

#const err mdbp="Over maximum distance between parts".

reason(err mdbp).

error(P,T,err mdbp) :- choosenNote(P,T,N1), choosenNote(P+1,T,N2),

N1 > N2 + 16, part(P+1).

%% Parts cannot cross over.

#const err pcc="Parts can not cross".

reason(err pcc).

error(P,T,err pcc) :- choosenNote(P,T,N1), choosenNote(P+1,T,N2),

N1 < N2, part(P+1).

Fig. 3. A code fragment from harmony.lp

These simple rules are encoding in composing.lp and diagnosis.lp so that can be
included when our scripts assemble to program.

By adding constraints on which notes can be included, it is possible to specify
part or all of a melody, harmony or complete piece. This allows Anton to be used
for a number of other tasks beyond automatic composition. By fixing the melody it
is possible to use it as an automatic harmonisation tool. By fixing part of a piece,
it can be used as computer aided composition tool. By fixing a complete piece, it is
possible to check its conformity with the rules, for marking student compositions
or harmonisations. Alternatively we could request the system to complete part of
a piece. In order to do so, we provide the system with a set of AnsProlog facts
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%% This is a quartet

style(quartet).

%% There are four parts

part(1..4).

%% The top part plays the melody

melodicPart(1).

%% For chords we need to know the lowest part

lowestPart(4).

%% We need a range of up to 2 octaves (24 steps) for each part,

%% thus need 24 notes above and below the lowest / highest start

#const quartetBottomNote=1.

#const quartetTopNote=68.

note(quartetBottomNote..quartetTopNote).

bottomNote(quartetBottomNote).

topNote(quartetTopNote).

%% Starting positions are 1 - 5 - 1 - 5

#const err isn="Incorrect starting note".

reason(err isn). error(1,1,err isn) :- not choosenNote(1,1,44).

error(2,1,err isn) :- not choosenNote(2,1,37).

error(3,1,err isn) :- not choosenNote(3,1,32).

error(4,1,err isn) :- not choosenNote(4,1,25).

%% No rests

#const err nrfw="No rest for the wicked".

reason(err nrfw).

error(P,T,err nrfw) :- rest(P,T).

%% With three or more parts allow intervals of a major fourth

%% (5 semitones) between parts

validInterval(5).

Fig. 4. The quartet specification

expressing the mode (major, minor, etc.), the notes which are already fixed, the
number of notes in the piece, the configuration and the number of parts.

The complete system consists of three major phases; building the program, run-
ning the ASP program and interpreting the results. As a simple example suppose
we wish to create a 4 bar piece in E major one would write

programBuilder.pl --task=compose --mode=major --time=16 > program

which builds the ASP program, giving the length and mode. Then

gringo < program | ./shuffle.pl 6298 | claps 1 > tunes

runs the ASP phase and generates a representation of the piece. We provide a
number of output formats, one of which is a Csound (Boulanger 2000) program
with a suitable selection of sounds.

$ parse.pl --fundamental=e --output=csound < tunes > tunes.csd

generates the Csound input from the generic format, and then

$ csound tunes.csd -o dac

plays the melody. We provide in addition to Csound, output in human readable
format, ASP facts or the Lilypond score language. Figure 5 shows the score of the
tunes piece composed above.

Alternatively we could request the system to complete part of a piece. In order to
do so, we provide the system with a set of ASP facts expressing the keyMode, the
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| 55 60 48 50 48 60 59 62 55 57 53 55 48 52 47 48

| G C C D C C B D G A F G C E B C

| +5 -12 +2 -2 +12 -1 +3 -7 +2 -4 +2 -7 +4 -5 +1

Fig. 5. The score and human readable format for the tunes composition.

keyMode(lydian).

choosenNote(1,1,25).

choosenNote(1,2,24).

choosenNote(1,8,19).

choosenNote(1,9,20).

choosenNote(1,10,24).

choosenNote(1,14,29).

choosenNote(1,15,27).

choosenNote(1,16,25).

#const t=16.

style(solo).

part(1).

Fig. 6. musing.lp: An example of a partial piece

notes which are already fixed, the number of notes in your piece, the configuration
and the number of parts. Figure 6 contains an example of such file. The format is
the same as the one returned from the system except that all the notes in the piece
will have been assigned.

We then run the system just as before with the exception of adding --piece=musing.lp

when we run programBuilder.pl. The system will then return all possible valid com-
position that satisfy the criteria set out in the partial piece.

The AnsProlog programs used in Anton contains just 191 lines (not including
comments and empty lines) and encodes 28 melodic and harmonic rules. Once
instantiated, the generated programs range from 3,500 atoms and 13,400 rules (a
solo piece with 8 notes) to 11,000 atoms and 1,350,000 rules (a 16 note duet). It
should be noted that the 500 lines of code here contrast with the 8000 lines in
Strasheela(Anders 2007) and 88000 in Bol(Bel 1998).

5 Rhythm

5.1 Musical Discussion

Our system used to be limited in terms of one of the most essential musical param-
eters: Rhythm. All music Anton generated so far was based on rules for classical
polyphony, i.e. the combination of musically unique, independent melodic voices,
but all events had the same time interval. Within this restriction we are able to
generate first-species counterpoint up to four independent voices and solo melodies
as well as homophonic 4-part chorales where the rules for the inner voices could be
more relaxed from the strict melodic rules that determine each of the four voices in
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a polyphonic setting. To expand our system, we are currently implementing tempo-
ral interval logic using the classification of Allen (1983), of which an overview is also
given in Goranko et al. (2003). The musical areas of harmony and classical counter-
point often have rules about the conditions when a particular constellation of notes
may occur on the timeline, sometimes with inclusion of the events preceding and
following. For example, a suspended fourth is a dissonant constellation of two or
more voices created on a strong beat. The voice that suspends the consonant note,
i.e. the fourth note of the scale suspending the third, needs to be sounding before
the dissonance occurs. This sound needs also to be consonant. After the dissonance
on the strong beat the suspending voice needs then to resolve on a weak time inter-
val within the measure. That sound again must be a consonance. To help expressing
such rules the interval logic of ’start’, ’end’, ’during’ and ’overlap’ needs to be imple-
mented. In music, however, the time intervals themselves are never ’neutral’. There
are typical alternations of strong and weak beats in nearly every musical style that
is based on an underlying pulse. Those alternating beat patterns form the notion
of meter. But, the concept of meter in Renaissance style is a particular one and not
the same as the concept of bars, beats and time signatures that is prevailing since
the Baroque area and which is still in use today.

There are generally four different kinds of musical time in the Renaissance. When
looking at the subdivision of the brevis, which translates into today’s double whole-
note, there are four different options for the composer of that area, as documented
in the famous treatise ’Ars Nova’ by Philippe de Vitry. The brevis can be inter-
preted either as 3 or 2 semi-breve (today’s whole note) and those further into 3 and
2 subdivisions called minims (today’s half note), so we can subdivide the longa into
3 x 2, 2 x 2, 3 x 3 or 2 x 3 minims5. Those different subdivisions were indicated in the
vocal score using different time-signatures6. The 15th century composer Johannes
Ockeghem wrote his Missa prolationem, a four-voiced polyphonic masterpiece, us-
ing all four different time-signatures together, a different one for each voice, while
at the same time the voices imitate their lines containing the same melodic material
using canons and double-canons7 This complex polyrhythmic structure establishes
a proportion of note durations as 6:4:9:6 between the voices. The effect of super-
imposing different beat qualities can be seen in Table 1. Only the smaller note
durations below the minim are not affected by the proportional scaling. They re-
main at the same length for all four voices regardless of their time-signature. When
transcribed nowadays into common practice notation the voices would need 36 half
notes to complete one large cycle of accent patterns before starting over with a
common ’downbeat’ (de la Motte 1981). The complete cycle therefore translates

5 The order of subdivision is musically important in terms of accentuation and therefore has
consequences for the treatment of consonance and dissonance. Hence, 3 x 2 is not the same as
2 x 3.

6 The four time signatures are called tempus perfectum cum prolationem imperfecta (3 x 2),
tempus imperfectum cum prolationem imperfecta (2 x 2), tempus perfectum cum prolationem
perfecta (3 x 3) and tempus imperfectum cum prolationem perfecta (2 x 3)

7 A canon is a special case of a line that can be imitated simultaneously by another voice n beats
later while their combination at the same time satisfies the rules on consonance/dissonance.
Temporal interval logic will allow us to implement canons in future versions of Anton.
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’X’ marks a downbeat, ’O’ marks a 2nd level beat, ’o’ marks a 3rd level beat
S X o O o O o X o O o O o X o O o O o
A X o O o X o O o X o O o X o O o X o
T X o o O o o O o o X o o O o o O o o
B X o o O o o X o o O o o X o o O o o

S X o O o O o X o O o O o X o O o O o X
A O o X o O o X o O o X o O o X o O o X
T X o o O o o O o o X o o O o o O o o X
B X o o O o o X o o O o o X o o O o o X

Table 1. Polyrhythmic structure of downbeats from Ockeghem’s Missa prolationem
creating a hyper-meter of 36 beats

into the filtered Farey Sequence F ′36, where each of the ratios in the range of [0...1]
denotes the onset time of a half note, see the representation for one voice, the Bass,
in Table 2. According to the time-signature (3 x 2) of that particular voice there are
three distinct metrical layers that govern the note events occurring on such a grid:
The top layer gives us the occurrence of the downbeat, which is the event of most
metrical importance, i.e. no dissonance may occur here unless the voice causing it
prepares the note on the preceding beat. The second layer denotes the beat level.
Although of less metrical weight, no dissonant interval should sound here unless it
is a prepared suspension. The third layer provides the lightest metrical events. Here
dissonances may occur, for instance in form of a passing note. The rule demanding
preparation of the dissonance is relaxed on this level and on all further subdivisions
underneath.

The hierarchical pattern of one of Ockeghem’s voices in Table 2 shows also some
interesting properties that lead to a general method for the construction of such
tables. Starting with the first metrical level (I) in Table 2, we see that the largest
denominator is always equal to the number of measures required to come back to
square one with all the other voices, i.e the number of measures per hyper-meter.
All the other denominators on level I are divisors of the largest denominator. The
next level (II) shows us how many subdivisions are contained in the hyper-meter on
that particular level. This is again indicated by the largest denominator of the level
and all other denominators are his divisors excluding those already contained on
all lower indexed levels. This principle repeats itself on all higher indexed metrical
levels. For each denominator n in the scheme, the numerators also follow a simple
principle: they traverse the complete ordered list of numbers co-prime to n.

As we have shown in Boenn (2007) and in Boenn (2008), the Farey Sequence is
ideal for tasks like rhythmic modelling, music performance analysis and music the-
ory. Hardy and Wright (1938) on pp.23 gave a description and proved the properties
of the Farey Sequence. Its scalability and general independence from the concepts
of bars and meter is of advantage because it can be applied to numerous different
musical styles. We have given a glimpse in the above Renaissance example (Table
2) how it could be used to encode polyrhythmic structures. Other examples can
include African Polyrhythm, Western Classical, Avantgarde and Popular Music,
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Tempus perfectum cum prolatione imperfecta - 6 measures x 3 x 2 half notes
I 0

1
1
6

1
3

II 1
18

1
9

2
9

5
18

7
18

4
9

III 1
36

1
12

5
36

7
36

1
4

11
36

13
36

5
12

17
36

I 1
2

2
3

5
6

II 5
9

11
18

13
18

7
9

8
9

17
18

III 19
36

7
12

23
36

25
36

3
4

29
36

31
36

11
12

35
36

Table 2. Metrical hierarchy from Ockeghem’s Missa prolationem expressed as F ′36

Greek Verse Rhythms, Indian Percussion and many more. The principle remains
always the same.

Farey Sequences are ordered lists of integer ratios in their lowest terms, of increas-
ing complexity the longer the sequence becomes, and with all ratios in the range of
[0, 1]. As an example, Figure 7 shows a plot of F17 that correlates the position of
the ratios in the interval (0, 1) with the unit fraction built from their corresponding
denominators. The visualisation clearly points out that the smaller the denomina-
tor the larger are the symmetrical gaps around the x-position of the ratio, i.e. the
smaller b of the ratio a/b, the greater the distance. We believe that it is due to those
relatively large gaps surrounding simpler ratios that they form perceptually useful
zones of attraction for more complex ratios that fall into them or that come close
enough. It is left for future field studies to measure and to find evidence whether
these zones of attraction are perceptually relevant or not. Composers who want to
”stay away” from those simple ratios will need to leave a considerable amount of
space around these zones of attraction. It becomes also clear that there are various
accelerandi and ritardandi encoded in every Fn, for example there are Gestalten
that form visible triangles between larger reciprocals and smaller ones in their sur-
rounding area (Figure 7). These Gestalten are formed by monotonically increasing
or decreasing values of the denominators. The increasing or decreasing tendencies
overlap each other. The gaps between the ratios forming those triangles are always
on a logarithmic scale, hence the impression of accelerated or reduced tempo that
becomes evident through the sonification of these triangular Getstalten. It is well
known that timed durations need to be placed on a logarithmic rather than linear
scale in order to convey a ”natural” sense of spacing and tempo modification. These
structures are clearly mirrored around the 1/2 value that is part of every Fn with
n > 1.

The great variety of styles and concepts from medieval to modern eras can be
realised by applying intelligent filtering methods to sieve through the sequences. Ex-
amples for filtering include probabilistic methods and filters exploiting the prime
number composition of integers and ratios, for example b-smooth numbers, or
Clarence Barlow’s function for the ’Indigestibility’ of a natural integer (Hajdu 1993).
The Farey Sequence has been known for a while in the area of musical tuning sys-
tems8. Its use for rhythmic modelling has not been fully exploited yet; Anton is

8 for example Erv Wilson’s annotations of tunings used by Partch (1979)
http://www.anaphoria.com/wilson.html



18 G. Boenn et al.

0
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0.5
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0 0.2 0.4 0.6 0.8 1

b

a/b

Fig. 7. Correlation of a/b ∈ F17 and 1/b in the interval (0, 1)

the first music application for composition where rhythms and musical forms will be
generated on the basis of the principles outlined in this paper. The Farey Sequence
Fn is per se highly symmetrical and unfolds harmonic subdivisions of unity via a
recursive calculation of mediant fractions9. Every music that depends on an under-
lying beat or pulsation can be represented by using Fn to denote the normalised
occurrence of musical events, e.g. note onsets.

Off-Beat rhythms are extremely useful for generative purposes. Two or more of
these rhythms stacked in layers can always generate new combinations by using
different accentuation patterns and different dynamic processes. Again, the Farey-
Sequence proves to be a very useful structure to realise this concept. The details
are beyond what is necessary in this paper, but in ?) it is shown that many styles,
Bebop, Funk and 20th century Avantgarde, are modelled by this mechanism. Speech
rhythm, as used in various musical styles are also within the scope.

Finally, Sima Arom’s study (Arom 1991) on African Polyrhythms has been very
influential on contemporary western composers because of his successful recording
and transcription processes that form the basis of his further analysis. We are
seeking to translate some of these principles into features for Anton for creative
purposes but also in order to proof the general use of our concept. But this is for
the future (section 8).

The main message is that the Farey sequence contains all that is necessary for a
very wide range of rhythmic patterns. With an implementation of them within the
ASP framework we have all the infrastructure we need.

9 see http://mathworld.wolfram.com/FareySequence.html
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%% Each Farey tree has a given depth

depth(F,MD + BD + DD) :- measureDepth(MD), beatDepth(F,BD), durationDepth(F,DD).

level(F,1..DE) :- depth(F,DE).

%% Each Farey tree is divided into three layers (top to bottom)

%% Measure, beats and note duration

%% (bars, time signature and note value)

measureLevel(F,FL) :- depth(F,DE), durationDepth(F,DD), beatDepth(F,BD),

level(F,FL), FL <= DE - (DD + BD).

measureLeafLevel(F,DE - (DD + BD)) :- depth(F,DE), durationDepth(F,DD), beatDepth(F,BD).

%% Beat strength is created at the first level of the beat layer ...

nodeBeatStrength(F,MLL+1,ND2,1) :- measureLeafLevel(F,MLL), node(F,MLL,ND1),

descendant(F,0,MLL,ND1,MLL+1,ND2).

nodeBeatStrength(F,MLL+1,ND2,0) :- measureLeafLevel(F,MLL), node(F,MLL,ND1),

descendant(F,D,MLL,ND1,MLL+1,ND2), D != 0.

%% Map from nodes to time positions

%% Mapping increments each time a node is present

nodeStep(F,0,1).

nodeStep(F,ND,T) :- not present(F,DLL,ND), nodeStep(F,ND-1,T),

node(F,DLL,ND), durationLeafLevel(F,DLL), ND > 0.

nodeStep(F,ND,T+1) :- present(F,DLL,ND), nodeStep(F,ND-1,T),

node(F,DLL,ND), durationLeafLevel(F,DLL), ND > 0.

%% From this we derive a unique mapping from node to time step

timeToNode(P,1,0).

timeToNode(P,T,ND) :- present(F,DLL,ND), nodeStep(F,ND-1,T-1),

node(F,DLL,ND), durationLeafLevel(F,DLL), ND > 0,

partToFareyTree(P,F).

%% Beat strength is created at the first level of the beat layer ...

nodeBeatStrength(F,MLL+1,ND2,1) :- measureLeafLevel(F,MLL), node(F,MLL,ND1),

descendant(F,0,MLL,ND1,MLL+1,ND2).

nodeBeatStrength(F,MLL+1,ND2,0) :- measureLeafLevel(F,MLL), node(F,MLL,ND1),

descendant(F,D,MLL,ND1,MLL+1,ND2), D != 0.

%% Lowest and highest notes must also be slower

playsHeighestNote(P,T) :- choosenNote(P,T,N), lowestNote(P,N).

playsLowestNote(P,T) :- choosenNote(P,T,N), lowestNote(P,N).

:- playsHeighestNote(P,T), timeStepDuration(P,T,DS), DS > 1.

:- playsLowestNote(P,T), timeStepDuration(P,T,DS), DS > 1.

Fig. 8. A small rhythm code fragment

The question now arises how we can combine these generative rules for rhythms
with the rules for melody, counterpoint and harmony that have been already im-
plemented in Anton. Of central importance for musical experiences in our view is
the constant inter-change of impact and resolution that influences the behaviour
of musical parameters on micro- and macro-structural levels. One can compare im-
pact with gathering musical energy (Thakar 1990) and resolution with the release
of previously built-up energy. We were very careful to make sure that the melodic
lines generated are following this principle. With encoding of rhythms we have now
the possibility to precisely control the timing aspect of when to turn the musical
movement from impact to resolution.

5.2 Encoding

The encoding of rhythm is still in an experimental phase and will improve over time.
As mentioned earlier, the encoding of rhythm is based on the concept of Farey trees.
The encoding can be found in rhythm.lp. In Anton 1.5 the system only creates
an Farey tree and imposes it on the system. The newest version, which is not yet
released, adds rules to deal with beats, their strength, duration and the interplay
between parts.

Figure 8 contains a small code fragment of the current rhythm section of the
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system. The fragments shows a portion of the structure of the Farey tree and its
three layers. Each of these have separate rules that govern them. The fragment also
includes to mapping from notes to time instances. We have included one of the
rules on beat strength and one on the relation between tone and speed.

While not shown in this code fragment, the rhythm code is, like the other sections,
written in such a way that diagnosis and debugging are possible.

In order to include rhythm in a composition, it suffices the include options –
rhythm to the programBuilder.pl script. The command

./programBuilder.pl --task=compose --mode=lydian --time=12 --style=duet

--rhythm > rhythm-comp

composes a duet in Lydian with 12 notes per part.
In the newest version one can also include measures.
The call

./programBuilder.pl --task=compose --mode=minor --time=20 --style=duet

--measure=3 --rhythm > rhythm-comp

composes a quartet in minor with 20 notes per part split over 3 measures.
The program can then be parsed using parse.lp to generate Csound, Lilypond,

Graphviz, human readable output. Figure 9 shows the Farey tree and the human
score for Lydian duet.

6 Evaluation

In this section we evaluate the performance of Anton both from a system’s per-
spective and a musical perspective. While we mainly focus on the released version
1.5 for stability and reproducibility, we will also touch on the performance of the
newer version to identify outstanding issues.

6.0.1 Run-time Results

To evaluate the practicality of using answer set programming in a composition
system we timed Anton 1.5 without the rhythm version while composing a suite
of score with increasing difficulty.

Tables 3-6 contains the timings for a number of answer set solvers (clasp (Geb-
ser et al. 2007b), cmodels (Lierler and Maratea 2004), smodels (Syrjänen and
Niemelä 2001), smodels-ie (Brain et al. 2007), smodelscc (Ward and Schlipf
2004), and sup (Lierler 2008)) in composing solos, duets, trios and quartets of a
given length.

Benchmarks were run using a 2.4Ghz AMD Athlon X2 4600+ processor, running
a 64 bit version of OpenSuSE 11.1. All solvers were built in 32 bit mode. Each test
was limited to 10 minutes of CPU time and 2Gb of RAM. Programs were ground
using GrinGo 2.0.3 and grounding times were excluded from the reported times,
but typically were a few seconds at most. All solvers were run using default options,
except cmodels which was set to use the MiniSAT 2.0 back end as opposed to the
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fareyTree(1)

0

0 1

0 1

0 1

0

0

3

9

3 4

9

27

12

36

3 4

9 10

27

81

30

90 91 92

12 13

36 37

108 111

39 40

117 120

| 65 67 65 77 76 69 71 76 72 74 76 77

| F G F F’ E’ A B E’ C’ D’ E’ F’

| +2 -2 +12 -1 -7 +2 +5 -4 +2 +2 +1

| (((X X) (X X)) ((X (X X X)) ((X X) (X X))))

| 65 60 62 62 60 65 67 67 69 67 67 65

| F C D D C F G G A G G F

| -5 +2 "" -2 +5 +2 "" +2 -2 "" -2

| (((X X) (X X)) ((X (X X X)) ((X X) (X X))))

Fig. 9. The Farey tree and human readable format for the tunes composition.

default (zchaff). The programs used are available from http://www.cs.bath.ac.

uk/~mjb/anton.
The results show a significant increase in performance from the Anton1.0 version

reported in (Boenn et al. 2008). In (Boenn et al. 2008), we were only able to compose
duets up to length 16, which took 29.63 seconds using the fastest solver clasp. The
current system, Anton1.5, only takes 1.01 seconds for the same composition using
the same solver. Furthermore, we can now compose trios and quartets within a
reasonable time frame.

While improvements in the underlying solvers definitely contributed to steep
increase in performance, they are not the main contributor. We obtained most of
our increases by revisiting our encoding and finding more compact encodings. We
have compacted the rule set of minor keys which gives some reduction is space and
run time. We reformatted some of the harmony rules and relaxed them so they
only apply to neighbouring parts rather than all parts. The removal of redundant
constraints compacts the program by a surprising amount. The rewriting of the
repeated notes section produced a massive increase in grounding while the improved
encoding of highest and lowest note saved us about 150,000 grounded rules on 16
note duet and about 30% in run time. Ranges over two octaves is now only noted
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Solvers

Length Clasp 1.2.1 Cmodels 3.79 Smodels 2.33 Smodels-IE 1.0.0 Smodels cc 1.08 Sup 0.4

4 0.02 0.09 0.04 0.02 0.10 0.04

8 0.18 0.38 1.27 0.52 4.55 0.16

12 0.48 1.10 8.99 2.87 27.45 0.64

16 1.05 2.06 36.03 10.19 86.56 1.01

20 2.68 3.11 32.52 10.02 93.61 2.06

24 2.42 4.22 193.40 58.06 Time out 2.11

28 3.84 5.80 239.49 80.56 Time out 4.02

32 3.90 7.11 305.05 102.91 Time out 4.66

Table 3. Time taken (in seconds) for a number of solvers generating a solo piece.

Solvers

Length Clasp 1.2.1 Cmodels 3.79 Smodels 2.33 Smodels-IE 1.0.0 Smodels cc 1.08 Sup 0.4

4 0.14 0.28 0.23 0.10 0.64 0.14

8 0.43 0.98 10.60 4.92 77.07 0.57

12 2.28 2.54 Time out Time out Time out 2.18

16 1.91 3.92 Time out Time out Time out 3.33

20 3.12 6.58 Time out Time out Time out 7.86

24 8.60 8.71 Time out Time out Time out 13.55

28 14.94 19.29 Time out Time out Time out 31.05

32 13.56 26.90 Time out Time out Time out 31.63

Table 4. Time taken (in seconds) for a number of solvers generating a duet piece.

at the end of the program, rather than at the point at which it is triggered. While
this is slightly less informative, it offers a more than significant speed-up.

These results show that the system, using the the more powerful solvers, is not
only fast enough to be used as a component in an interactive composition tool
but, when restricting to shorter sequences, could be used for real-time generation
of music.
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Solvers

Length Clasp 1.2.1 Cmodels 3.79 Smodels 2.33 Smodels-IE 1.0.0 Smodels cc 1.08 Sup 0.4

4 0.26 0.30 0.27 0.04 0.30 0.23

8 0.78 1.52 3.42 1.34 10.39 0.96

12 2.17 3.20 22.44 8.52 77.80 2.88

16 2.81 5.35 104.68 39.20 Time out 4.55

20 6.95 7.63 Time out Time out Time out 9.01

24 11.90 10.92 Time out Time out Time out 9.75

28 41.28 12.32 Time out Time out Time out 10.68

32 52.98 19.33 Time out Time out Time out 47.94

Table 5. Time taken (in seconds) for a number of solvers generating a trio piece.

Solvers

Length Clasp 1.2.1 Cmodels 3.79 Smodels 2.33 Smodels-IE 1.0.0 Smodels cc 1.08 Sup 0.4

4 0.43 0.55 0.49 0.08 0.63 0.55

8 1.14 2.55 7.98 3.28 32.20 2.70

12 4.24 5.38 35.11 13.07 128.75 5.46

16 9.59 8.64 336.36 126.21 Time out 16.86

20 69.37 11.87 Time out Time out Time out 17.44

24 194.73 20.44 Time out Time out Time out 30.99

28 246.10 19.32 Time out Time out Time out 79.13

32 Time out 46.61 Time out Time out Time out 113.30

Table 6. Time taken (in seconds) for a number of solvers generating a quartet
piece.

It is also interesting to note that the only solvers able to generate longer sequences
using two or more parts all implement clause learning strategies, suggesting that
the problem is particularly susceptible to this kind of technique.

We have not included run-time results for the rhythm section as this part is still
too much under development and the results would not be representative.
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6.0.2 Music Quality

The interested reader can find examples on the web: http://dream.cs.bath.ac.
uk/Anton
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Fig. 10. Fragments by Anton

The other way to evaluate the system is to judge the music it produces. This is
less certain process, involving personal values. However we feel that the music is
acceptable, at least of the quality of a student of composition, and at times capable
of moments of excitement. Pieces by Anton1.0 have been played to a number of
musicians, who apart from the rhythmic deficiency we are addressing have agreed
that it is valid music. The introduction of rhythm is more recent, and consequently
it has not been subjected to so much scrutiny. There are still some refinements that
could improve the output, in particular an unfortunate tendency to end on shorter
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notes, but many of the short pieces are clearly valid, and musical. In figure 10 we
present a short quartet sequence in the minor key, followed by four major key pieces
that Anton composed especially for this paper; the audio and score can be found
in the same location as the other works.

7 The Use of ASP in Anton

7.1 Why ASP?

While music appreciation is matter of personal taste, musicologists use sets of rules
which determine to which style a musical composition belongs or whether a piece
breaks or expands the common practice of a certain composer or era. These sets of
rules also govern the composition. So an intuitive and obvious way for automatic
composition is to encode these rules and use a rule based algorithm to produce
valid music compositions. This natural and simple way of encoding things is show
in terms of speed of development, roughly 2 man-months, sophistication of the
results, the amount of code (about 200 lines of code) and flexibility; we can not
only easily encode different styles but the same application not only for automated
composition but also diagnosis and human assisted composition. Furthermore, we
automatically gain from any improvements in the underlying solver.

7.2 ASP a the Knowledge Representation Language

For Anton we used ASP for synthesis rather than problem solving. Normally re-
fer to ASP as a problem solving paradigm which it is. In this case we are doing
something subtly, but importantly different; we are using a solver to generate rep-
resentative objects given a specification. This is more knowledge presentation, since
the language is not only used to describe the objects but also to come up with a
computational description. We believe that this opens a new range of possibilities
for ASP as there are lots of applications for we need parametrisable, consistent if
not spectacular contents. Games, virtual worlds and puzzle magazines are just a
few examples.

7.3 ASP Methodology

In constructing Anton a number of advantages of using answer set programming
have become clear, as have a number of limitations.

Firstly, ASP programs are very fast to write and very compact. As well as the
obvious benefits, this means it is possible to develop the system at the same time
as undertaking knowledge capture and to prototype features in the light of the
advice of domain experts. Part of the reason why it is so fast to use is that rules
are fully declarative. Programming thus focuses on expressing the concepts that are
being modelled rather than having to worry about which order to put things in —
such as which rules should come first, which concepts have higher priority, which
choices should be made first. This also makes incremental development easy as new
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constraints can be added one at a time, without having to consider how they affect
the search strategy.

Being able to add rules incrementally during development turns out to be ex-
tremely useful from a software engineering view point. During the development of
Anton, we experimented with a number of different development methodologies.
As argued in (Cliffe et al. 2008), “visualisation” of answer sets is very productive
way bridging the gap between domain and the program. For the musical appli-
cation domain, the most effective approach was found to be first writing a script
that translates answer sets to human readable score or output for a synthesiser.
Next the choice rules were added to the program to create all possible pieces, valid
or not. Finally the constraints were incrementally added to restrict the output to
only valid sequences. By building up a library of valid pieces it was possible to
perform regression testing at each step and thus isolate bugs as soon as they were
introduced.

Using answer set programming was not without issue. One persistent problem
was the lack of mature development support tools, particularly debugging tools.
SPOCK (Brain et al. 2007) was used but as its focus is on computing the reasons
behind the error, rather than the interface issues of explaining these reasons to the
user, it was normally quicker to find bugs by looking at the last changes made and
which regression tests failed. Generally, the bugs that where encountered where due
to subtle mismatches between the intended meaning of a rule and the declarative
reading of the rule used. For example the predicate stepUp(P,T) is used to repre-
sent the proposition “At time T, part P steps up to give the note at time T+1”,
however, it could easily be misinterpreted as “At time T-1, part P steps up to give
the note at time T”. Which of these is used is not important, as long as the same
declarative reading is used for all rules. With the first “meaning” selected for An-

ton, the rule:

chosenNote(P,T,N+S) :- chosenNote(P,T-1,N), stepUp(P,T),

stepBy(P,T,S).

would not encode the intended progression of notes. One possible way of supporting
a programmer in avoiding these subtle errors would be to develop a system that
translated rules into natural language, given the declarative reading of the propo-
sitions involved. It should then be relatively straightforward to check that the rule
encoded what was intended.

8 Conclusions and Future Work

We have presented an algorithmic composition system that uses ASP to implement
rules captured from classical texts on species of one counterpoint. The early system
of Boenn et al. (2008) has been developed in two significant ways: greatly improved
performance and the introduction of a coherent rhythm schema.

The development of Anton is far from complete.
The encoding of rhythm is not finished. Although we now have a basic encoding

of rhythm it still requires a lot of fine tuning. The use of Farey trees is the core
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of this. In Section 5 we have already indicated an area of study where the use of
Farey trees can be further developed.

We have concentrated on species one counterpoint from an early time, but many
of the rules apply to other styles. We have made a few experiments with rules for
Bach chorales and for hymn tunes. We need to partition the current rule-sets into
building blocks to facilitate reuse.

The current system can write short melodies effectively and efficiently. Devel-
opment work is still needed to take this to entire pieces; we can start from these
melodic fragments but a longer piece needs a variety of different harmonisations
for the same melody, and related melodies with the same harmonic structure and
a number of similar techniques. We have not solved the difficult global structure
problem but it does create a starting point on which we can build a system that is
hierarchical over time scales; we have a mechanism for building syntactically correct
sentences, but these need to be built into paragraph and chapters, as it were. It is
not clear if this will be achieved within the current ASP system, or by a procedural
layer, or some other scheme.

To make the system more user-friendly, there is a need for a user interface, prob-
ably graphical, to select from the options and styles. We have avoided this so far,
as the Musician-Machine Interface is a specialist area, but there are plans for such
an interface to be designed in the next phase.

In real life pieces some of the rules are sometimes broken. This could be simulated
by one of a number of extensions to answer set semantics (preferences, consistency
restoring rules, defensible rules, etc.). However how to systematise the knowledge
of when it is acceptable to break the rules and in which contexts it is ‘better’ to
break them is an open problem.

As mentioned earlier, we used ASP as a computational description language
rather than just a knowledge representation one. There is a tempting possibility
to apply the same methodology and approach to other areas of content, such as
maybe game map generation. Initial experiments show promise.
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