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In the gravity field, density changes triggered by a kinetic scheme as simple as Aþ B ! C can induce

or affect buoyancy-driven instabilities at a horizontal interface between two solutions containing initially

the scalars A and B. On the basis of a general reaction-diffusion-convection model, we analyze to what

extent the reaction can destabilize otherwise buoyantly stable density stratifications. We furthermore show

that, even if the underlying nonreactive system is buoyantly unstable, the reaction breaks the symmetry of

the developing patterns. This is demonstrated both numerically and experimentally on the specific

example of a simple acid-base neutralization reaction.
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Convective motion due to hydrodynamic instabilities of
an interface between two different fluids are known to
impact the spatiotemporal distribution and dynamics of
passive scalars in numerous applications. Much less
studied is the active role that processes involving such
scalars can have upon the flow dynamics if these scalars
influence a physical property of the fluid such as its density
for instance [1–4]. However, coupling between reactive-
type processes and hydrodynamics is at the heart of appli-
cations in fields as diverse as earth mantle dynamics [5],
geological formations [6], supernovae dynamics [7] or
CO2 sequestration [8], to name a few. Often, the specific
active role of the scalars on the flow remains difficult to
interpret due to difficulties of in situ experiments, as well
as a lack of quantitative modeling and of simple bench-
mark experiments on which theories could be tested. In this
respect, it is still unclear to what extent reactions involving
these scalars can trigger hydrodynamic instabilities in a
system that would otherwise remain stable and whether
convective structures have the same symmetries in reactive
and nonreactive situations.

To gain insight into these issues, let us consider the
generic case of a solution containing the scalar A put on
top of a solution of B in the gravity field. For nonreactive
systems, various hydrodynamic instabilities can impact
such a stratification of miscible fluids. The Rayleigh-
Taylor instability occurs when the heavier fluid overlies
the lighter fluid [9]. If the upper fluid is lighter, the system
can also be destabilized either if B diffuses faster than A,
because of double-diffusive fingering [10,11], or if a
diffusive-layer convection (DLC) instability is triggered
when A diffuses faster than B [12]. In all cases, these
buoyancy-driven instabilities lead, in nonreactive miscible
fluids, to convective motions which develop similarly
above and below the initial contact line because of the
symmetry of the underlying density gradient [9–12]. The
situation can however be very different if a chemical

reaction takes place between species A and B upon contact
and mixing of the solutions.
We demonstrate indeed both theoretically and experi-

mentally that a reaction as simple as Aþ B ! C can
strongly impact buoyancy-driven instabilities of a miscible
interface between reactive solutions. We show that, not
only are chemical reactions able to trigger instabilities in
otherwise stable situations, they also break the symmetry
of convective structures and instabilities.
To do so, we develop a unifying theoretical reaction-

diffusion-convection (RDC) model describing the dynam-
ics inside a porous medium or a vertically orientated Hele-
Shaw cell in which a solution of a scalar A at concentration
a0 is placed on top of a solution containing a scalar B at
concentration b0. Species A and B react via the second
order mechanism Aþ B ! C to produce species C.
Typical situations where the reaction destabilizes other-
wise stable situations are presented. The resulting pat-
terns are shown to be asymmetric. We next illustrate our
general findings experimentally with an acid-base reaction
and visualize the dynamics using nonintrusive interfero-
metric and particle image velocimetry (PIV) techniques.
Quantitative agreement between experimental results and
theoretical predictions is obtained.
We consider a dimensionless RDC model for the con-

centrations a, b and c of the reactants A, B and product C,
respectively, coupled to a Darcy-Brinkman equation for the
fluid velocity u with r � u ¼ 0 in the Boussinesq approxi-
mation [13]:

rp ¼ �uþ Brr2u� �ða; b; cÞix; (1a)

� ¼ aþ Rbbþ Rcc; (1b)

at þ u � ra ¼ r2a�Dab; (1c)

bt þ u � rb ¼ �br2b�Dab; (1d)

ct þ u � rc ¼ �cr2cþDab: (1e)

The parameters of the problem are the ratios of the expan-
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sion coefficients ðRb; RcÞ ¼ ð@�@b ; @�@cÞ= @�
@a , and of the diffu-

sion coefficients ð�b; �cÞ ¼ ðDB;DCÞ=DA, the initial con-
centration ratio � ¼ b0=a0, the Damköhler number D
which is the ratio between characteristic hydrodynamic
and chemical time scales, and the Brinkman parameter
Br quantifying the correction to Darcy’s law when the
Hele-Shaw cell gap width h is not sufficiently small with
regard to the appearing wavelength of the instability [14].
To follow the evolution of the system in time, system (1) is
numerically solved using a spectral method [15].

To highlight the role of the reaction in the various
possible instability scenarios we focus here first on the
situations under which a simple Aþ B ! C scheme is
able to destabilize a system that would otherwise be stable
in its absence. This is the case for equimolar reacting
solutions with identical properties (Ra ¼ Rb, �b ¼ 1), for
example. The nonreactive system, with species A and B
undergoing purely diffusive mass transfer, is then genu-
inely stable. However, if the reaction Aþ B ! C occurs in
the contact zone, a hydrodynamic instability is triggered
when the product C has different physical properties.

If the product C diffuses at the same rate as the reactants
but is heavier for instance, the reaction yields below the
contact line a local Rayleigh-Taylor instability of heavy C
on top of light B which induces convection and distorts the
initially planar reaction front. In the nonlinear regime
[Fig. 1(a)], long narrow fingers then fall downwards from
the reaction zone while convection pushes the reaction
front upwards. The symmetry around the initial contact
zone is broken since the upper stratification of light A on
top of heavier C is stable.

The sole effect of differential diffusion can also be
isolated by considering a product with a solutal expansion
coefficient equal to the sum of the reactants’ solutal ex-
pansion coefficients. In that case, the density profile is

nonconstant only if �c � 1. Figure 1(b) shows such a
situation when �c < 1. Two different local instabilities
can be observed. As the slower diffusing productC overlies
the reactant B, double-diffusive fingering develops be-
tweenC and B as confirmed by the presence of long narrow
fingers falling downwards through the lower solution (like
salt fingers [10]). Simultaneously the product C is beneath
the faster diffusing reactant A which leads to a DLC
instability in the upper part characterized by wider solutal
plumes rising upwards. Again, the resulting convection
distorts the reaction front and is asymmetric with regard
to the initial front position. In both cases of Fig. 1, the
chemically induced convection enhances the reaction rate.
To test our instability scenarios in the most general case

where Ra � Rb, �b � 1, we resort to analyzing the
buoyancy-driven instabilities that can be triggered by the
neutralization reactionHClþ NaOH ! NaClþ H2Owith
equimolar initial concentrations of the reactants in aqueous
solutions. Even though this reaction is exothermic, it can
be modeled in porous media or in Hele-Shaw cells by the
isothermal system (1) with A ¼ HCl, B ¼ NaOH and C ¼
NaCl. Indeed, as heat diffuses much faster than mass, its
contribution to the density gradients is found here to be
quantitatively negligible. Typical dimensionless parame-
ters for such a system are �b � 0:61, �c � 0:50, Rb �
2:22, and Rc � 2:17 [16]. As D is large for this quasi-
instantaneous reaction, the density profile �, computed
using the large-time asymptotic reaction diffusion concen-
tration profiles [17] through Eq. (1b), provides information
on the instability scenario expected [Fig. 2(b)]. For com-
parison the density profile associated with a nonreactive
classical DLC instability is presented in Fig. 2(a). The fast
diffusing species A leaves the upper layer faster down-
wards than species B diffuses upwards. In the absence of
a reaction, this diffusivity difference between A and B
leads to an antisymmetric density profile with respect to

FIG. 1 (color online). 2D density fields obtained by numeri-
cally solving (1) using Br ¼ 0, Rb ¼ �b ¼ D ¼ � ¼ 1 with
(a) �c ¼ 1, Rc ¼ 2:5, t ¼ 3:3� 105 and domain width 1:9�
104; (b) �c ¼ 0:5, Rc ¼ 2, t ¼ 105 and domain width 8:2� 103.
The black line corresponds to the initial contact line.

FIG. 2 (color online). Total dimensionless density profile
�ðxÞ ¼ �a þ �b þ �c at t ¼ 3� 105 where �� corresponds to

the density contribution from species �. (a) Nonreactive case
(D ¼ 0, �b ¼ 0:3, Rb ¼ 2:22). (b) Reactive case with experi-
mental values. Shaded zones show the sources of instability, i.e.,
with unstable density stratifications.

PRL 104, 044501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

29 JANUARY 2010

044501-2



the initial contact line x ¼ 0 with depletion of the fast
diffusing species on top and accumulation of it in the lower
part. The resulting nonmonotonic density profile yields two
distinct zones of convective motion [shaded zones on
Fig. 2(a)] that develop at symmetric distances from x ¼
0 in the nonreactive DLC. Figure 2(b) reports the corre-
sponding density profile for the acid-base system with
equimolar initial concentrations. The reactive system be-
haves differently as the reactants cannot coexist outside of
the reaction zone and the density profile is asymmetric
[Fig. 2(b)]. The only locally unstable density stratification
is in the upper solution, where the resulting convection
remains confined by a stabilizing monotonically increasing
density in the basic solution.

In order to confirm this theoretical prediction, we use an
experimental setup consisting of a vertically oriented Hele-
Shaw cell made of two glass plates 3.1 cm wide and 5 cm
high separated by a gap width of either 0.5 or 1 mm. The
initial condition consists of an aqueous HCl solution
placed on top of an equimolar aqueous NaOH solution in
the absence of any color indicator (Fig. 3) and obtained
using a specific device developed for the study of interfa-
cial instabilities [18]. The visualization of the concentra-
tion patterns is obtained by digital interferometry based on
a Mach-Zehnder type interferometer coupled with a CCD
camera. The phase shift ��ðx; yÞ ¼ 2�h�nðx; yÞ=� in-
duced on the light beam (� ¼ 633 nm) by the local varia-
tion of the refractive index �nðx; yÞ in the Hele-Shaw cell
is computed by a Fourier transform algorithm [19]. The
phase image is further corrected by subtracting a reference
image in order to eliminate the possible misalignment of
the Hele-Shaw cell window with the light beam. Solutions
were seeded with neutrally buoyant latex particles of di-
ameter 5 �m to obtain the velocity field by PIV [20],
(Fig. 4). Soon after contact, a sinusoidal perturbation grows

in the zone slightly above the contact line [Fig. 3(a)]. Later
on, fingers develop, merge and grow until they reach the
upper limit of the reactor. The convective flow is observed
to rise within the fingers and sink between them (Fig. 4).
Remarkably, the zone below x ¼ 0 remains unperturbed by
convection and features only a slow downward diffusive
progression of the reaction front in agreement with the
theoretically predicted asymmetry of the pattern.
The experimental pattern is numerically reproduced in

Fig. 3(b) by integration of the model (1) and reconstruction
of the index of refraction n as n ¼ n0 þ �Aaþ �Bbþ
�Cc using the coefficients �i obtained in [16]. All the
characteristics of the experimental dynamics are repro-
duced. Thus the RDC model (1) provides quantitative
agreement with the experiment shown in Fig. 3. We have
further investigated the acid-base dynamics quantitatively
for various Hele-Shaw cell gap widths (0.5 and 1 mm) and
concentrations (0.1, 0.2, 0.5 and 1 M), i.e., varying Br
(Fig. 5). As the convection-free base state depends on
time, the most amplified wavelength of the perturbations
and its instantaneous growth rate slowly evolve in time. We
computed these quantities, for both the numerics and the
experiments, at the end of the quasilinear regime, i.e., at the
time at which the deformations are of the order of the
wavelength. Specifically, we extract from the Fourier trans-
form of the velocity map at this time the value of the most
unstable wave number and its growth rate given by
~A�1d ~A=dt where ~A is the amplitude of the mode. These
values are reported as a function of Br in Fig. 5, showing a
good agreement between the numerics and the experi-
ments. The numerical domain width was chosen so that
around 50 fingers appear at onset. The general asymptotic
dependence on the parameter Br is obtained from model
(1). In the Darcy limit (Br ! 0) the dimensional wave-
length and growth rate scale as h�2a�1

0 and h4a20, respec-
tively. In the opposite limit (Br ! 1), we can neglect u in

FIG. 3. (a) Interferometry picture of experiments using a 1 M
HCl solution on top of a 1 M NaOH solution in a vertical Hele-
Shaw cell of gap width 0.5 mm. The initial contact line position
is indicated by the black segments at the left and right. The width
of the field of view is 13 mm. (b) Corresponding interferometry
figure reconstructed at the same times from numerical integra-
tion of system (1) for � ¼ D ¼ 1, �b ¼ 0:61, �c ¼ 0:5, Rb ¼
2:22, Rc ¼ 2:17 and Br ¼ 3:49� 104.

FIG. 4. Superposition of the interferometry figure and velocity
map at time 85 s for the fingers of Fig. 3. The black arrow
denotes the line of initial contact between solutions. The maxi-
mum velocity measured by PIV is 132 �m=s.
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front of Brr2u in Eq. (1a). When balancing Brr2u with �
of order one and seeing from Eq. (1c) that t scales as the
length squared, we find that for large Br, the problem is

invariant with the length �Br1=3 and time �Br2=3. These
scalings are featured in Fig. 5.

It is important to note that the dynamics presented here
are different from those observed in the same acid-base
system in the presence of a color indicator [21]. Indeed, in
that case, additional convection is obtained in the lower
alkaline layer. This shows that the color indicator is ac-
tually influencing buoyancy-driven instabilities. A modi-
fied version of model (1) including the color indicator is
then necessary to reproduce the experimental results in
[21]. This also justifies the use of nonintrusive visualiza-
tion techniques to highlight the phenomena studied here.

In conclusion, we have theoretically and experimentally
studied the buoyancy-driven instabilities that can be trig-
gered by an Aþ B ! C kinetic scheme when a solution of
A lies on top of a solution of B. We have validated a RDC
model by quantitative agreement with the dynamics of a
HCl=NaOH system in a vertically oriented Hele-Shaw cell.
In contradiction to nonreactive systems, the convection
triggered by the reaction develops asymmetric patterns
with respect to the initial position of the interface.
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