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Abstract: Iron deficiency (ID) is estimated to affect one-third of the world’s population.  

As an essential micronutrient, iron is required for DNA synthesis, cellular proliferation, 

and oxygen transport.  Iron is potentially toxic through its ability to promote the 

generation of ROS, thus cellular iron is tightly controlled.  Although a family of cytosolic 

RNA binding proteins plays a central role in maintaining cellular iron homeostasis, 

evidence suggests that iron levels may be coordinated by microRNA (miRNA).  miRNA 

are noncoding RNA that recognize and bind to partially complementary sites of target 

mRNA and regulate gene expression via translational repression and mRNA degradation.  

With the previous identification of ~10 differentially expressed miRNA in ID rat livers, 

we chose to study two of the identified miRNA, miR-181d and miR-210.  The central 

hypothesis was miRNA regulated by dietary iron deficiency play a role in the modulation 

of target mRNA, and function as key elements in regulating iron homeostasis. Using the 

bioinformatics programs miRWalk and TargetScan, we identified mitoferrin 1 and 

isocitrate dehydrogenase 1 were conserved predicted targets of miR-181d and cytoglobin 

was a conserved predicted target of miR-210.  Next, reporter assays confirmed the direct 

interaction of the miRNA and their respective mRNA targets.  Finally, in vitro 

experiments were conducted to demonstrate iron chelation and miRNA overexpression 

influenced mRNA abundance and translational repression of target mRNA.  Our results 

confirm that miR-181d contributes to the regulation of isocitrate dehydrogenase 1.   

Additionally, although miR-210 was significantly upregulated in response to ID in rat 

livers and in vitro iron chelation, cytoglobin expression was upregulated in both 

conditions.  Therefore, the results demonstrate dietary iron deficiency and chelation 

upregulate (1) miR-181d expression that influences isocitrate dehydrogenase 1 gene 

expression and translation and (2) cytoglobin gene expression and translation.   
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CHAPTER I 
 

 

INTRODUCTION 

 

 

Background Information 

Iron is an essential micronutrient to most living organisms.  Mammals, in particular, 

require iron for numerous biological processes including DNA synthesis, energy metabolism, and 

oxygen transport via red blood cells (RBC) or erythrocytes [1] [2].  Despite the recognized 

critical need for iron, iron deficiency (ID) remains the most common nutritional deficiency in 

humans, affecting nearly 2 billion people or approximately one-third of the world’s population [3] 

[4].  The deleterious effects of ID include cognitive decline, immune system suppression, and 

impaired erythropoiesis [5].  Excess iron also leads to cellular complications due to iron’s ability 

to catalyze the production of free radicals, resulting in protein, lipid, and DNA damage [6].  Thus, 

understanding the mechanisms that control iron homeostasis is imperative.  

Sophisticated pathways exist to balance iron homeostasis. For example, enterocytes  
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absorb only a small amount of iron each day because no regulated physiological pathway for iron 

excretion exists.  The limited iron that does enter the intestinal cells is exported into the plasma for 

distribution throughout the body.  Iron is rarely found circulating freely due to its potential toxic 

effects [7] [8]; instead, iron travels via plasma and transmembrane proteins and is tightly regulated at 

the systemic and cellular level.  The majority of iron is incorporated into heme-containing proteins 

such as myoglobin and cytochromes, and to a lesser extent neuroglobin and cytoglobin [9].  The 

primary heme containing protein is hemoglobin which functions to transport oxygen by means of 

heme’s oxygen-carrying moiety in erythrocytes [10].  Heme biosynthesis occurs primarily in the bone 

marrow of developing erythroid cells, but a small amount occurs in the liver [9][11].  In order for 

erythrocytes to meet the body’s needs for globin proteins, a steady production of heme must be 

maintained; thus iron is recycled from senescent RBCs by macrophages in the spleen.  In the first step 

of the recycling process, macrophages remove the erythrocyte from circulation and it is then lysed, 

making heme accessible for degradation.  Next, heme oxygenase-1 (HO-1) cleaves heme and 

catalyzes its degradation to iron, biliverdin, and carbon monoxide.  The iron molecule can then be 

stored in ferritin (FT), the iron storage protein, or exported out of the senescent RBC via ferroportin 

(SLC40A1).  Upon reentry into circulation, iron is bound to transferrin (TF) and is available for 

internalization by transferrin receptor (TRFC) on cell surfaces.   The majority is transported back to 

the bone marrow and to a lesser extent the liver to maintain the steady-state levels of heme [9].  It is 

critical an abundant amount of iron is available to maintain heme biosynthesis for oxygen transport 

via erythrocytes.           

  Functional erythrocyte development depends on key energy-consuming processes; thus, 

linking erythropoiesis to the powerhouse of the cell.  Mitochondria are the primary location of iron 

sulfur [Fe-S] cluster (ISCU) assembly and heme biosynthesis [1] [2] [12] [13].  ISCU assembly 

involves approximately 20 proteins that culminate in the formation of an [Fe-S] cluster after the 

delivery of iron from frataxin and sulfur from a cysteine desulfurase, NFS1.  In addition to key roles 
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in the electron transport chain and in a heme biosynthesis protein, ferrochelatase (FECH) [14], [Fe-S] 

clusters are involved in sensing cellular iron homeostasis through their interaction with iron 

regulatory protein 1 (IRP1) [15].  IRP1 is a bifunctional cytosolic mRNA binding protein.  When 

IRP1 contains an [Fe-S] cluster it assumes its enzymatic form as a cytosolic aconitase.  IRP1 binding 

is activated when the [Fe-S] cluster is absent such as under low iron conditions or oxidative stress.  

During ID, IRPs regulate iron metabolism by binding with high affinity to iron regulatory elements 

(IRE) in the 5’ untranslated regions (UTR) of mRNA which encode for erythroid-specific δ-

aminolevulinate synthase (ALAS2), FT, and hypoxia inducible factor 2 alpha (HIF-2α) or the 3’ UTR 

of mRNA including divalent metal transporter 1 (DMT1), TFRC, and amyloid precursor protein 

(APP) [16] [17].  Unlike the bifunctional role of IRP1, IRP2 loses its IRE binding activity and is 

targeted for proteasomal degradation by F-box leucine rich repeat protein 5 (FBXL5) during iron 

sufficient conditions [18]–[20].    

As mentioned earlier, [Fe-S] clusters are involved in heme biosynthesis.  Heme biosynthesis 

includes 8 enzymatic steps that begin and end in the mitochondria with 4 intermediate steps occurring 

in the cytosol.  The final step involves FECH inserting iron into a protoporphyrin IX structure 

resulting in a heme capable of transporting oxygen via RBCs [11].  Therefore, it is not surprising that 

dysfunction of the mitochondria lead to human diseases such as Friedriech’s ataxia, preventing 

complete [Fe-S] cluster formation from a decrease or loss of frataxin, or X-linked sideroblastic 

anemia, from a defect in ALAS2 involved in the first step in heme synthesis [21] [22] [23].   

The canonical fates of heme post synthesis are hemoproteins, namely globins and cytochrome 

proteins [9].   Recently, heme has also been implicated in microRNA (miRNA) processing [24] [25].  

miRNA are a class of small non-coding molecules approximately 22 nucleotides in length in their 

mature form.  miRNA processing begins in the nucleus where primary miRNA (pri-miRNA) is 

transcribed by RNA polymerase II adopting a hairpin-like structure.  The transcript is next processed 

by an RNA III-like enzyme, Drosha, and DiGeorge syndrome critical region 8 (DGCR8) by cleavage 
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of the 5’ or 3’ ends and forms precursor miRNA (pre-miRNA) [24] [26].  This molecule is then 

exported into the cytosol by exportin-5 where it is furthered processed by Dicer to its mature ~18-22 

nucleotide miRNA form.  Once processed, mature miRNA interact with argonaute proteins (AGO) to 

form a functional RNA-induced silencing complex (RISC) and are referred to as holo-RISC [26].   

The miRNA guides the holo-RISC to a target mRNA where nucleotides 2-8, known as the miRNA 

‘seed sequence’, bind with partial complementarity to the mRNA target site and regulate mRNA by 

either repressing translation or diminishing mRNA stability [25] [27].  Interestingly, heme plays a 

critical role in miRNA processing as it functions as a cofactor for DGCR8, a heme-binding protein, 

which promotes dimerization of DGCR8.  Preventing this dimerization decreases the activity of 

DGCR8 and thereby decreases the processing of pri-miRNA to functional mature miRNA.  This 

connection suggests mitochondrial iron homeostasis and iron levels play a critical role in miRNA 

processing [24].  Consequently, if iron is limited for heme synthesis, then hemoprotein production 

and miRNA processing will be diminished.  

Not only are miRNA predicted to interact with more than half of all human genes, they are 

also involved in the regulation of many cellular processes including development, apoptosis, and 

metabolism [28] [29].  For example, TFRC1 is targeted by miR-320 in differentiated human leukemia 

cells [30].  Wang et al. demonstrated that during erythroid maturation, miR-27a and miR-24 form a 

regulatory circuit that deactivates the transcription factor GATA2.  The targeting of GATA2 enables 

the transcription factor GATA1, thereby promoting terminal erythroid development [20] .  Lastly,  

hypoxia-sensitive miR-210, which is activated by HIF-1α when oxygen levels are inadequate [33] has 

been shown to influence mitochondrial metabolism by targeting [Fe-S] cluster assembly proteins 

(ISCU1/2) and cytochrome c oxidase assembly protein (COX10) in cultured cells [34] [35].  ISCU2 

and COX10 are important for the mitochondrial TCA cycle and the electron transport chain, 

additionally ISCU2 is important for IRP1 to function as aconitase.  These findings suggest iron 
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homeostasis is controlled in part by miRNA through their role in the regulation of iron uptake on the 

cell surface, erythrocyte development, and the assembly of [Fe-S] clusters.   

 Iron deficiency remains the single most common nutritional deficiency in the world, affecting 

approximately one-third of the world’s population and is the leading cause of anemia [3] [4].  The 

recognized fates of iron are well established regarding [Fe-S] cluster biogenesis and heme synthesis; 

however, during ID the mechanisms of control are less understood.  The negative health 

consequences of ID have resulted in much research centering on [Fe-S] cluster biogenesis and heme 

synthesis independently, but recent attention has been directed at the interactions between the two 

pathways [2] [12] [22] [23] [36].  The most common type of anemia, microcytic anemia, results from 

insufficient globin production and impaired erythroid maturation [37] [38].  Interestingly, the last step 

in heme biosynthesis is dependent on [Fe-S] cluster protein FECH.  The developing erythrocyte is 

dependent on sufficient iron levels in the mitochondria, thus the mechanisms of iron homeostasis 

must be finely regulated [39].  Interestingly, miRNA processing depends on heme as a cofactor, 

providing one connection between cellular iron status and miRNA expression.  With a new class of 

molecular regulators being recognized for their role in iron homeostasis and many cellular processes, 

miRNA may modulate the adaptive response to ID.  Thus, understanding the mechanisms involved in 

the targeting of mRNA by miRNA in response to ID may lead to a greater physiological 

understanding of ID.   

 

Primary Objectives 

The primary objectives of this study were to characterize posttranscriptional control of 

mRNA encoding proteins involved in the maintenance of iron metabolism by miRNA in ID 

conditions.  Based on the identification of significantly upregulated miR-181d and miR-210 in livers 

of ID animals previously identified by our lab (Clarke unpublished data), the central hypothesis was 

miRNA expression is regulated by dietary iron deficiency and plays a role in the modulation of target 
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mRNA, and functioned as key elements in regulating iron homeostasis.  In order to test this 

hypothesis our primary aims were to (1) to examine the ability of differentially expressed miR-181d 

to control mitochondrial iron import and heme biosynthesis through its potential targeting of 

mitoferrin 1 (2) to examine the ability of differentially expressed miR-181d to regulate the cytosolic 

NADP-dependent isocitrate dehydrogenase 1, and (3) to examine the ability of differentially 

expressed miR-210 to regulate the hemoprotein cytoglobin.  The results from the current project 

provide insight into the molecular coordination by miRNA that occurs during iron deficiency.   
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

 

Importance of Iron 

Iron is an essential nutrient and is involved in many mammalian processes including 

DNA synthesis, erythropoiesis, ATP production, and oxygen transport  [17] [40].  In humans, 

iron deficiency (ID) remains the single most common nutrient deficiency and affects 

approximately 30% of the world’s population or 2 billion people according to the World Health 

Organization [41].  Due to its importance in biological functions, inadequate levels of iron can 

lead to microcytic anemia, diminished cognitive development, and decreased ATP production 

[17] [42].  Iron deficiency results when dietary iron absorption cannot meet physiological 

demands [43].  This arises from many biological factors including infections and inflammation.  

Additionally, rapid growth can exceed iron supply increasing an individual’s risk for anemia [44]. 

On the contrary, the body does not actively excrete iron and due to its reactivity as an electron 

donor in aerobic conditions it can be toxic.  Iron toxicity can result in the generation of free 

radicals, thus increasing cellular apoptosis and risk for tissue damage in extreme instances [45]–

[47].   
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Iron absorption  

 Adult humans contain approximately 3-5 g of iron, the majority of which can be 

found in heme containing proteins such as hemoglobin or myoglobin [13].  The remaining iron 

can be found in macrophages and hepatocytes [13].  It is estimated 1-2 mg of iron is lost daily 

from blood, perspiration or urine, and enterocyte sloughing; thus iron absorption is limited to 

simply recover the losses [40].  The two forms of dietary iron, non-heme and heme, are absorbed 

into the enterocyte and each possesses an independent transport pathway.  Heme iron is found in 

animal sources, conversely non-heme iron is found in plant-based foods or fortified foods.  Each 

source of iron has specific transport proteins and mechanisms to aid intestinal iron absorption.  

The most bioavailable form of iron, heme, is absorbed in the enterocyte; however, the 

mechanisms involved are less understood.  The current thoughts support membrane-bound 

transporters, heme carrier proteins, and receptor mediated endocytosis [49].  For example, the 

recognized intestinal heme carrier protein 1 (HCP1) is thought to transport heme into the 

enterocyte.  Once heme is in the enterocyte, it is catabolized by heme-oxygenase 1 into ferrous 

iron, biliverdin, and carbon monoxide, thus mobilizing iron for transfer into circulation.   [51] 

[52].  Dietary non-heme iron absorption begins in the intestinal lumen with the reduction of ferric 

(Fe3+) iron to ferrous (Fe2+) iron by a duodenal ferrireductase cytochrome b (DCYTB) or other 

reducing agents [13] [40] [48] [53].  After this reduction, Fe2+ can be transported across the apical 

membrane of the enterocyte by divalent metal ion transporter 1 (DMT1) where it can either be 

stored in ferritin or exported into circulation by ferroportin (FPN) [50].  The release of iron into 

circulation also involves the iron oxidases, ceruloplasmin (CP) or hephaestin (HEPN) [54]; 

together, FPN and HEPN make iron available to the binding of transferrin and thus available for 

cellular distribution [50].  Two ferric iron molecules can then bind to transferrin in the plasma 

and transferrin delivers the iron molecules to other tissues.     
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Iron uptake by mammalian cells 

In mammals, well developed pathways exist to assist in iron uptake.  The majority of iron 

can be found in hemoglobin where it functions via its oxygen-carrying moiety and aids in oxygen 

transportation throughout the body [46].  The remaining iron is found stored in ferritin primarily 

in the liver, or in iron-sulfur clusters and heme containing proteins which are involved in many 

cellular processes including the electron transport chain and cytochrome proteins [47].    

Cellular iron uptake occurs via a well-recognized transferrin-transferrin receptor (TF-

TFRC) mediated pathway.  The majority of dietary iron from intestinal absorption or recycled 

iron from senescent red cells can be found bound in its ferric (Fe3+) form to TF, the major carrier 

protein in the blood [55].  Fe3+-TF then travels to most cells and binds with high affinity to the 

transmembrane protein TFRC.  After binding, the loaded TF-TFRC complex is endocytosed in 

clathrin-coated pits forming an endosome and is internalized in the cells [56].  In order to release 

iron from the TF-TFRC complex, an ATP-dependent proton pump drops the pH of the endosome 

significantly creating an environment that encourages the disassociation of Fe3+ from TF [57].  

Next, iron is reduced again to ferrous iron by another ferrireductase, six-transmembrane epithelial 

antigen of the prostate-3 (STEAP3) [58].  Apo TF-TFRC, a complex lacking a diferric iron 

(Fe3+), is then recycled back to the plasma and cellular membrane where TF and TFRC dissociate, 

allowing for the cycle to begin again [59].  Emerging literature is suggesting more proteins exist 

to aid in the acquisition of iron uptake and the recycling of TFRC in various cell types.  For 

example, sorting nexin 3 (SNX3) has been shown to facilitate the recycling of TFRC in 

hematopoietic cells [60].  Additionally, two forms of TFRC (1/2) exist; TFRC1 is ubiquitously 

expressed and TFRC2 is restricted to hepatocytes and erythroid cells.  However, TFRC2 is not 

sufficient to maintain iron internalization in the absence of TFRC1 [48] [61].  
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 The plasma contains high levels of apo-TF limiting non-transferrin bound iron transport 

(NTBI) [40].  NTBI occurs when iron influx exceeds TF levels and can lead to oxidative damage 

to tissue.  For example, hereditary hemochromatosis is an iron overload disorder that results from 

a mutation in the HFE gene responsible for signaling systemic regulation of iron [62].  Once iron 

is transferred to the cytosolic labile iron pool (LIP) it has several fates; it can be stored as ferritin 

(FT), utilized for cellular metabolism, or recycled back to the extracellular space of the existing 

cell.   Thus, it is evident the system is complex and different tissues and cells may obtain iron by 

different mechanisms.   

 

Systemic iron homeostasis 

The control of systemic iron uptake is mediated within the hepatocytes by a small peptide 

hormone called hepcidin.  In high Fe conditions, the hepatocytes release hepcidin into the plasma 

where it can exert its effect on the iron exporter FPN resulting in the reduction of dietary iron 

absorption from intestinal cells and the prevention of iron release from macrophages in the 

reticuloendothial system [63].  The binding of hepcidin to FPN stimulates FPN internalization 

and lysosomal degradation, therefore preventing Fe export [64].  Conversely, in low Fe 

conditions, hepcidin levels are reduced allowing for the absorption and recycling of iron [65].  

Hepcidin is known to be regulated by other mechanisms aside iron levels.   For instance, 

inflammation and endoplasmic reticulum stress are known to signal a cascade of cellular events 

leading to increased production of hepcidin, thus providing a protective mechanism to reduce iron 

transport to the site of inflammation.  In inflammatory states, increases in the cytokine 

interleukin-6 (IL-6) and the IL-6 receptor signal the transcriptional activation of hepcidin.  

Another pathway known to regulate hepcidin is the bone morphogenic protein (BMP) pathway.   

BMP binds to an iron-specific ligand, hemojuvelin (HJV), activating a suppressor of mothers 
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against decapentaplegic (SMAD) pathway that inhibits hepcidin transcription [66].  Hepcidin 

levels are also influenced by the increase in erythropoiesis; it is thought erythroid precursors 

signal to the liver and down regulate the production of hepcidin [67].  Taken together, the liver is 

considered the master regulator of systemic iron homeostasis by means of hepcidin. 

 

Cellular iron homeostasis 

Iron regulatory proteins (IRP) are cytosolic mRNA-binding proteins that are activated in 

response to ID.  Together they post-transcriptionally regulate cellular iron homeostasis by binding 

to iron responsive elements (IRE) of mRNA encoding proteins [40] [68].  IREs exist in the 5’ 

untranslated region (UTR) of mRNA such as ferritin, the iron storage protein, leading to 

inhibition of its translation or in the 3’ UTR of mRNA such as transferrin receptor, the cellular 

iron import protein, leading to its stabilization.  This model has been demonstrated reliably using 

a number of iron chelators to induce IRP RNA binding of ferritin’s IRE [69] [70].  One such 

chelator, desferrioxamine, induces ferritin degradation through the activation of autophagy in the 

lysosomes [71].  Following the degradation of ferritin, the iron molecules are released and 

desferrioxamine sequesters the iron molecules.  The sequestration of iron then activates IRP RNA 

binding of ferritin mRNA preventing its translation.  Two forms of IRP exist, IRP1 and IRP2.  

IRP1 is a bifunctional protein that switches roles based on two primary conditions; first, in low 

iron conditions it binds with high affinity to IREs located within mRNA and second, in iron 

sufficient conditions it exhibits enzymatic activity as the cytosolic version of the TCA cycle 

enzyme, aconitase [72] [73].  The state of IRP1 is based on the conditional presence or absence of 

an iron-sulfur [Fe-S] cluster.  In apo form, IRP1 lacks an [Fe-S] cluster whereas in holo form, 

IRP1 contains an [Fe-S] cluster functioning as a cytosolic aconitase (Figure 1) [74].   
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It was originally understood both proteins’ function overlapped; however, IRP2 has been 

suggested to dominate iron homeostasis in mammalian tissues [69] [75].  IRP2 activation was 

demonstrated in marginally low iron and low oxygen conditions while IRP1 remains in its 

cytosolic aconitase form, suggesting IRP2 may be more sensitive to marginal iron changes [76].   

Not only is IRP2 responsive to iron status, it is also sensitive to hypoxia [77]–[80].  In hypoxic 

environments, or low oxygen tension conditions, a transcription factor known as hypoxia 

inducible factor 1-alpha (HIF-1α) is activated and stabilizes IRP2.  This adaptation induces the 

stability of IRP2 by removing the iron source for IRP2’s E3 ubiquitin ligase, F-box and leucine-

rich repeat protein 5 (FBXL5), therefore, preventing FBXL5 degradation of IRP2 by a ubiquitin 

proteasomal pathway [79].  Together, IRP1 and IRP2 are known to regulate cellular iron 

homeostasis, however, much has yet to be elucidated with IRP regulation during iron deficiency 

and also with regard to tissue and cell specificity.   

 

 

 



13 
 

 

 

Figure 1 IRPs regulate translation and stability of IRE-containing mRNAs. IRPs bind to IREs 

located in either the 5′ or 3′ untranslated regions of specific mRNAs. When iron is limited, IRPs 

bind with high affinity to 5′ IRE mRNAs and repress translation, and to the five 3′ IREs in TfR1 

mRNA and to the single IRE in DMT1 mRNA and stabilize these mRNAs. When iron is 

abundant, IRPs do not bind IREs, resulting in the translation of 5′ IRE-containing mRNAs and 

degradation of TfR1 mRNA. Iron mediates the conversion of the IRP1 RNA binding form into 

the [4Fe–4S] cluster c-aconitase form and the ubiquitination and targeted proteasomal 

degradation IRP2 by FBXL5 E3 ligase. IRE-containing mRNAs indicated are those that have 

been shown to be functional in vivo. Abbreviations: IRP, iron regulatory protein; IRE, iron 

responsive element; TfR1, transferrin receptor 1; DMT1, divalent metal ion transporter 1; 

FBXL5, f-box leucine rich repeat protein 5. 

 

 

 

Anderson, Shen, Eisenstein, and Leibold, 2012 
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Mitochondrial importance in iron homeostasis 

 Mitochondria are cytoplasmic organelles that play very important cellular roles as they 

are involved in ATP production, apoptosis, and oxidative stress [81].  Additionally, they are 

involved in the regulation of iron metabolism.  The mitochondria are the primary sites for heme 

synthesis and [Fe-S] cluster biosynthesis, additionally they store iron in mitochondrial ferritin 

[10] [82].  Together, both biosynthesis pathways utilize the majority of iron in the body, therefore 

it is critical that mitochondrial coordination of iron is tightly regulated.  The canonical 

mechanism of iron import across the outer mitochondrial membrane (OMM) into the 

mitochondria is through TF-TFRC mediated endocytosis [56].   

Recently, new mechanisms for iron import are emerging.  First, an endosomal “kiss-and-

run” mechanism may assist in the import.  Second, iron may be taken up directly due to 

mitochondrial membrane potential.  For example, voltage-dependent anion channels (VDACs) 

may play a role in the process due to their high level of metabolite permeability of other energy 

metabolites such as ATP.  Third, a direct protein-protein interaction could occur from the labile 

iron pool.   For instance, a mitochondrial DMT1 isoform may interact with poly (rC)-binding 

proteins (PCBPs) to shuttle iron across the OMM [1].  After iron enters the cell it must then be 

transported into the mitochondrial matrix, thus crossing another membrane, the inner 

mitochondrial membrane (IMM).  Compared to the OMM, the IMM has been extensively 

characterized for iron import.   

Two isoforms of mitoferrin (MFRN) exist in mammals and bind with high affinity to iron 

before transporting it into the mitochondrial matrix, MFRN1 (SLC25A37) and MFRN2 

(SLC25A28) [83].  MFRN1 is the primary isoform found in the mitochondria of erythroid 

specific cells while MFRN2 is ubiquitously expressed.  Although MFRN2 is ubiquitously 

expressed and has 65% amino acid similarity to MFRN1, MFRN2 does not recover iron import 



15 
 

into the mitochondria of erythroid specific cells after a targeted loss of MFRN1 [83] [84].  

Additionally, small interfering RNA (siRNA) silencing in mouse erythroleukemia cells (MEL) 

and antisense morpholino degradation in mouse embryos of MFRN1 result in inadequate heme 

synthesis and anemia as globin accumulation is decreased [1] [83]–[85].  Thus, MFRN1 is 

essential to developing erythroid cells based on its important role in transporting iron from the 

outer membrane space into the mitochondrial matrix and each MFRN isoform is not redundant in 

erythrocytes.  Once iron is finally in the mitochondrial matrix it can be stored in mitochondrial 

ferritin (mFT) or be used for [Fe-S] biogenesis and heme synthesis.   

 Based on the important role mitochondria play, it is no surprise that mitochondrial 

dysfunction or diseases have many deleterious effects.  In fact, mitochondrial dysfunction and 

disease have been linked to neurodegeneration, cancer, and diabetes [81] [86] [87].  Additionally, 

mitochondrial dysfunction and disease are related to iron metabolism.  For instance, Freidreich 

ataxia results from a mutation in the frataxin (FXN) gene.  FXN is involved in the generation of 

[Fe-S] clusters, therefore this impairment has serious implications for processes that require [Fe-

S] clusters such as the respiratory chain and heme biosynthesis [22].  Another mitochondrial 

disease linked to iron is X-linked sideroblastic anemia which is an inherited disorder that inhibits 

the rate limiting step of heme biosynthesis due to a mutation in δ-aminolevulinic acid synthase 2 

(ALAS2) [21].  Based on the key functions of mitochondria, defects in the important organelles 

such [Fe-S] cluster biogenesis and heme synthesis contribute to the pathogenesis of disease. 

 

Iron-sulfur cluster biogenesis and function 

 One mechanism of iron processing involves the generation of [Fe-S] clusters that are 

used as versatile cofactors in many reactions.  For instance, [Fe-S] clusters are involved in 

electron transfer as they can serve as both electron donors and acceptors.  A primary example of 
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this occurs in the mitochondrial respiratory chain in which [Fe-S] clusters shuttle electrons in 

complexes I-III, thus aiding in energy metabolism [88].  As mentioned previously, the highly 

conserved [Fe-S] clusters play a role in environmental sensing via their indirect regulation of 

RNA coding molecules by IRP1 [17].  Based on the availability of iron, labile [Fe-S] clusters 

assemble and disassemble in IRP1 altering its ability to function as an enzyme and instead 

regulate gene expression post-transcriptionally [88].  More than 20 proteins have been recognized 

to play a role in the [Fe-S] assembly process; briefly, a cysteine desulfurase (NFS1) provides the 

sulfur group after obtaining the atom from cysteine and FXN provides the iron which are then 

assembled on a group of scaffold proteins, iron-sulfur cluster (ISCU) [14] [11].  After assembly, 

[Fe-S] clusters are shuttled to their recipient location via heat shock protein 70 (HSP70) and are 

either exported out of the mitochondria by ATP-binding cassette 7 protein (ABCB7) or are used 

within the mitochondria [82] [89].   

While [Fe-S] cluster assembly is tightly regulated, the process can be readily disrupted by 

hypoxia or ID.  In both of these conditions, the transcription factors HIF-1α and HIF-2α are 

activated; they dimerize with the constitutively active HIF-1β and translocate to the nucleus 

where they exert their effect by increasing transcription of genes such as TFRC and glycolytic 

enzymes [90].  Furthermore, HIF is a transcription factor that targets hypoxia response elements 

(HRE) in the promotors of two important regulators of iron homeostasis, hepcidin and 

erythropoietin (EPO) [91].  Similar to IRP2, HIFs are degraded by the proteasome after targeted 

hydroxylation by prolyl hydroxylases (PHDs) and interaction with the von Hippel-Lindau protein 

[92].  Interestingly, IRP1 has been shown to regulate the IRE containing HIF-2α.  The IRP1-HIF-

2α interaction is involved in intestinal iron absorption as well as erythropoiesis, as it pertains to 

erythrocyte development [93] [94].  Recently HIFs have been implicated in other levels of 

transcriptional control for maintaining iron homeostasis.  HIF-1α has been involved in the 

activation of microRNAs (miRNA), more specifically miR-210, which is involved in 
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mitochondrial metabolism via its targeting of ISCU mRNA and decreasing [Fe-S] cluster 

assembly [33]–[35].   

 

Cellular control of heme synthesis 

The second major pathway for iron in the mitochondria is heme synthesis.  The principal 

fate of the prosthetic group iron is to be incorporated into a protoporphyrin ring forming 

hemoglobin which can then bind and transport oxygen to tissues.  The primary site for heme 

synthesis occurs in the developing erythrocyte in the bone marrow, however limited production 

occurs in the liver. The process begins in the mitochondria with the condensation of glycine and 

succinyl CoA by δ-aminolevulinic acid synthase (ALAS) [10].  The two forms of ALAS, ALAS1 

and ALAS2, differ based on cellular location; ALAS1 is expressed ubiquitously while ALAS2 is 

erythroid specific [9] [95].  The condensation of the two molecules results in the formation of δ-

aminolevulinic acid (ALA) which is then transported into the cytosol for several reactions to form 

coproporphyrinogen III (CPGENIII).  Next, CPGENIII reenters the mitochondria and goes 

through one more step proceeding the insertion of ferrous iron which is coordinated by 

ferrochelatase (FECH) into the protoporphyrin IX complex resulting in heme [10].   

In order for heme synthesis to occur, iron must be readily available in the mitochondria 

for the insertion of ferrous iron by FECH to occur [96].  Thus, mitochondria need sophisticated 

mechanisms to attain iron.  As mentioned previously, the IMM is more characterized with regard 

to iron import and much of the characterization was determined using both in vivo and in vitro 

models of erythrocyte development [83] [84].   In erythrocytes, MFRN1 serves as the main iron 

importer and is activated by the transcription factor GATA 1 [97].  It was recently recognized that 

MFRN1 is stabilized by physically interacting with ATP-binding cassette transporter 10 

(ABCB10) in MEL cells, resulting in iron import into the mitochondria [98].  MFRN1 and 
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ABCB10 then complex with FECH which proceeds with the insertion of iron into protoporphyrin 

IX resulting in an assembled heme molecule (Figure 2) [98] [99].  Heme is used for hemoproteins 

such as globins and cytochromes, and heme is used as a cofactor for many cellular process such 

as circadian rhythm and oxygen transport [10] [100].   

The primary heme containing protein, hemoglobin, accounts for 65-75% of the body’s 

iron and functions to transport oxygen by means of heme’s oxygen-carrying moiety in 

erythrocytes [10].  In adults, heme biosynthesis occurs predominantly in the bone marrow of 

developing erythrocytes, though a small amount occurs in the liver [9] [11].  In order for 

erythrocytes to meet the body’s needs for hemoglobin a steady production of heme must be 

maintained; thus adequate iron delivery to the bone marrow is imperative. Considering a minimal 

amount of dietary iron is absorbed daily, the majority of iron for heme biosynthesis is present in 

senescent RBCs and must be scavenged and recycled by the reticuloendothial system in the 

spleen.  Macrophages remove the senescent RBCs from circulation and lyse them, making heme 

accessible for cleavage and degradation by heme oxygenase-1.  Following the degradation of 

heme, iron is released and can be either stored in ferritin (FT), the iron storage protein, or 

exported out of the macrophage into the plasma via ferroportin (SLC40A1).  Upon reentry into 

circulation, iron is bound to transferrin (TF) and is available for internalization by transferrin 

receptor (TRFC) on cell surfaces.   The majority of recycled iron is transported back to the bone 

marrow to maintain the steady-state levels of heme [9].  Recently, heme has been implicated in 

early stages of miRNA processing, thus leading to another pathway that conceivably could be 

influenced by iron homeostasis.  

 

 

 



19 
 

 

Figure 2 Heme biosynthesis. Schematic representation of the heme biosynthetic pathway. Heme 

synthesis starts with the condensation of Succynil-CoA and glycine to form ALA. ALA is then 

transported through the two mitochondrial membranes in the cytosol where it is converted to 

CPGENIII through a series of enzymatic reactions. Briefly, the aminolevulinate dehydratase 

(ALAD) catalyzes the condensation of two molecules of ALA to form one molecule of the 

monopyrrole porphobilinogen. Then, the hydroxymethylbilane synthase (HMBS) catalyzes the 

head-to-tail synthesis of four porphobilinogen molecules to form the linear tetrapyrrole 

hydroxymethylbilane which is converted to uroporphyrinogen III by uroporphyrinogen synthase 

(UROS). The last cytoplasmic step, the synthesis of CPGENIII, is catalyzed by uroporphyrinogen 

decarboxylase (UROD). CPOX is a homodimer weakly associated with the outside of the inner 

mitochondrial membrane and it converts CPGENIII to protoporphyrinogen IX. The following 

oxidation of protoporphyrinogen IX to PPIX is catalyzed by PPOX, located on the outer surface 

of the inner mitochondrial membrane. Finally, ferrous iron is incorporated into PPIX to form 

heme in the mitochondrial matrix, a reaction catalyzed by FECH. In hematopoietic tissue, iron is 

imported into mitochondria by MFRN1. FECH is localized in the inner mitochondrial membrane 

Chiabrando, Mercurio, and Tolosano, 2014 
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in association to MFRN1 and ABCB10. SLC25A38 and ABCB10 have been proposed as 

mitochondrial ALA exporters on the inner mitochondrial membrane. The ALA transporter 

located on the outer mitochondrial membrane has not been identified yet. ABCB6 has been 

proposed as a putative mitochondrial CPGENIII importer. However, this role is still 

controversial. Finally, several data suggest that FLVCR1b is a mitochondrial heme exporter. 

Abbreviations: ALA, δ-aminolevulenic acid; CPGENIII, coproporphyrinogen III; CPOX, 

coproporphyrinogen oxidase; PPIX, protoporphyrin IX; PPOX, protoporphyrinogen oxidase; 

MFRN1, mitoferrin 1; FECH, ferrochelatase; ABCB10, ATP-binding cassette, sub-family B, 

member 10; ABCB6, ATP-binding cassette, sub-family B, member 6; FLVCR1β, feline leukemia 

virus subgroup C receptor 1β. 
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microRNA  

Characterization of gene expression has allowed for a better understanding of how 

mammalian systems respond to disease, environmental stressors, and nutrient status [44] [101]–

[103].  In fact, different cell types have the same genes, but the expression patterns and how 

genes are used distinguish cell types from one another [38] [104].  With the development of 

microarray and RNA sequencing technologies, small noncoding RNAs (ncRNAs) have emerged 

as a new class of molecular regulators that influence gene expression [105].  One such class of 

noncoding RNAs is microRNA (miRNA).   

MicroRNAs (miRNAs) are one of three types of small non-coding RNAs that function to 

suppress protein-coding genes, thus potentially providing regulation of many cellular processes 

[106].  In fact, it has been suggested that miRNA can influence nearly 60% of all protein-coding 

genes based on the evolutionary conservation of at least one miRNA-binding site in a target gene 

[28].  Not surprisingly, miRNAs have now been identified in mammals and have been implicated 

to play a role in many cellular functions including but not limited to erythropoiesis, cell 

development, and iron homeostasis [25] [27] [31] [106] [107].          

 

microRNA nomenclature and biogenesis  

miRNAs are a class of small non-coding RNAs approximately 22 nucleotides in length.  

The majority, ~80%, of miRNA are located in the introns of protein-coding genes, of which many 

are clustered relatively close together making them polycintronic.  Many mature miRNAs of a 

polycintronic cluster contain identical nucleotide sequences at positions 2-8, thus, these miRNAs 

are referred to as a ‘miRNA family’.  The individual miRNA within a family are referred to as 

‘sister miRNA’ and are identified with a different letter suffix (for example, miR-181c and miR-

181d).  In many instances miRNA come varying loci within the 3’UTR of a gene, in this case a 
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numeric suffix is added to miRNA nomenclature (for example, miR-125b-1 and miR-125b-2) 

[108].  As of the late 2000’s, it was determined 34 conserved miRNA families exist [109]; 

however, the overlap or distinct roles of sister miRNA have yet to be determined.   

The canonical processing of miRNA begins in the nucleus where RNA polymerase II 

transcribes a primary miRNA (pri-miRNA) transcript containing a hairpin-like structure that 

contains the mature miRNA.  The pri-miRNA includes a 5’ cap and a 3’ polyadenlyated tail 

[110].  The transcripts are next processed by an RNA III-like endonuclease enzyme, Drosha, but 

first the RNA binding protein, DiGeorge syndrome critical region 8 (DGCR8), serves as a guide 

protein directing Drosha to the stem-loop where it cleaves the stem-loop approximately one 

helical turn above the base resulting in a 70-100 base pairs (bp) precursor-miRNA (pre-miRNA) 

[26].  Pre-miRNA molecules are then exported out of the nucleus and into the cytosol by a 

nuclear export protein, exportin-5, in a Ran-GTP dependent manner.  They are further processed 

by the RNase III endonuclease enzyme, Dicer.  Dicer cleaves and lops off the hairpin end, 

resulting in a mature ~18-22 nucleotide miRNA [111].   

Mature miRNA production generates two strands from the precursor miRNA, a 5’ (5p) 

strand and a 3’ (3p).  One of the strands is considered more biologically active than the other and 

this strand is referred to as the mature miRNA; the other strand is considered the passenger or star 

strand (miRNA*) and is thought to be degraded.  The determination of the biologically active 

strand is thought to be based on pairing; therefore, less pairing at the 5’ end of a strand increases 

the likelihood of becoming the miRNA guide strand [106]. Once processed, a mature miRNA is 

loaded with an argonaute protein onto a functional RNA-induced silencing complex (RISC) and 

serves as the guide strand.  This complex is then referred to as holo-RISC complex [26].   The 

RISC complex is guided by the miRNA to a target mRNA where is can regulate mRNA 

expression via degradation and/or translational repression (Figure 3).   
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Interestingly, heme plays a critical role in miRNA processing as it functions as a cofactor 

for DGCR8, a heme-binding protein, which promotes dimerization of DGCR8.  Preventing this 

dimerization decreases the activity of DGCR8 and thereby decreases the processing of pri-

miRNA to functionally mature miRNA.  This connection suggests mitochondrial iron 

homeostasis and sufficient iron levels play a critical role in miRNA processing [24].  

Furthermore, if iron is limited for heme synthesis, then hemoprotein production and miRNA 

processing will be diminished.  

 

microRNA target recognition and regulatory function  

The canonical mechanism of miRNA function is to translationally suppress or degrade 

target protein-coding genes, also known as mRNA.  This occurs via the interaction of the miRNA 

‘seed sequence’ (nucleotides 2-8) and an existing complementary miRNA target site located in 

the 3’ UTR of most mRNA; however, can occur in the 5’ UTR and coding region of the mRNA, 

although with much less frequency [112].  It is estimated 85% of mRNA are degraded by miRNA 

while only 15% are translationally repressed in mammals [113].  The silencing begins with 

argonaute (AGO) proteins binding directly to the target gene in the complementary seed 

sequence.  Once bound, the silencing complex translationally represses or degrades the target 

gene.  The translational degradation results from the AGO protein endonucleolitically cleaving to 

the mRNA which in turn recruits a deadenylase complex to the poly-A tail of the mRNA.  After 

deadenylation of the poly-A tail, the 5’ cap of the mRNA is removed, leaving the mRNA 

vulnerable to exoribonucleases [114].  There are four known AGO proteins, AGO1-4; AGO2 is 

suggested to be the only active endonuclease in mammals [115].   

The critical theories that increase the probabilities of the RISC complex binding to 

mRNA include several ideas.  First, more Watson-Crick pairing in the seed sequence of the 
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miRNA and the mRNA increase the likelihood of an interaction.  For example, a 7 nucleotide 

match (7-mer) or nucleotides 2-8 is more likely to be targeted by the RISC complex than a 6-mer 

match or nucleotides 2-7 and an 8-mer or nucleotides 1-8 is more likely to be targeted than a 7-

mer.  Thus, the probability of an interaction increases with more Watson-Crick pairing.  Second, 

conservation of mature miRNA among different mammalian species and conservation of 

potential target sites in mRNA among different mammalian species increases the likelihood of an 

interaction between a miRNA and mRNA.  For example, if one miRNA is conserved in 10 

different mammalian species and another is only conserved in two mammalian species, the 

miRNA conserved in 10, is considered to be more evolutionarily conserved and likely has a more 

important biological function via its targeting of mRNA.  Next, if a potential miRNA target site in 

a mRNA is conserved among different mammalian species, this too increases the probability of 

the RISC complex binding and regulating a mRNA.  With the availability of many mammalian 

species genomes, finding miRNA targets with Watson-Crick pairing, conservation of miRNA, 

and conservation of target sites in mRNA greatly improves the likelihood of a positive mRNA 

target [106].  Target prediction programs have been developed and are based on the above 

mentioned theories.  A few commonly used programs are miRWalk, TargetScan, and miRanda 

[116].  Each program is similar, however, each does have slight differences.  For example, 

TargetScan species genomes are based on Ensembl, while miRanda uses University of California 

Santa Cruz species genomes.  miRWalk on the other hand, is a compilation of many target 

prediction programs results.   
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Figure 3 Canonical microRNA processing. miRNA biogenesis begins in the nucleus where it is 

transcribed by RNA polymerase II into a transcript that folds into a hairpin-like structure, primary 

miRNA (pri-miRNA).  The pri-miRNA transcript is processed by an endonuclease, Drosha, and 

DiGeorge syndrome critical region 8 (DGCR8) by cleavage approximately one helical turn from 

the base of the hairpin and forms a ~70-nucletide (nt) precursor miRNA (pre-miRNA).  The pre-

miRNA is exported into the cytosol by exportin-5 where it is furthered processed by another 

endonuclease, Dicer, resulting in an ~18-22-nt mature miRNA.  One of the mature miRNA 

transcripts complexes with an argonaute protein (AGO) thus forming a functional RNA-induced 

silencing complex (RISC).   The miRNA guides the RISC complex to a target mRNA where 

nucleotides 2-8, known as the miRNA ‘seed sequence’, cleave to the mRNA target site and 

regulate mRNA by repressing translation or destabilizing mRNA [117]. 

 

 

Huang, Le, and Giaccia, 2010 
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MicroRNA influence on ID 

Not only are miRNA predicted to interact with more than half of human genes, they have 

also been implicated in the regulation of many cellular functions including cell development, 

apoptosis, and metabolism [28] [29].  For example, hypoxia-sensitive miR-210, activated by 

hypoxia inducible factor 1-alpha (HIF-1α) during low oxygen tension and iron chelation, 

modulates mitochondrial energy metabolism by targeting ISCU, cytochrome c oxidase assembly 

protein (COX10), and FECH [34] [118].  Another example of miRNA control occurs during 

erythroid differentiation; miR-27a and miR-24 form a ‘regulatory feedback loop’ that activate and 

deactivate the transcription factors GATA1 and GATA2 during erythroid maturation [31] [32].  

Lastly, the transferrin cycle is also recognized to be controlled by the targeting of TFRC1 by 

miR-320; reducing the availability of iron and cell cycle proliferation [30].  Thus, the relationship 

between miRNA and iron homeostasis is a critical control mechanism in many cellular functions. 

As stated previously, heme plays a critical role in miRNA processing as it serves as a cofactor for 

DGCR8 enhancing its dimerization and preventing this dimerization decreases DGCR8 activity.  

This connection suggests mitochondrial iron homeostasis and iron levels play a critical role in 

miRNA processing [24].   miRNA have been demonstrated to regulate numerous genes involved 

in iron homeostasis (Table 1), via translation repression or mRNA stability.  The extent to which 

this regulation occurs during nutrient deficiencies (i.e. iron deficiency) remains unknown.   

Recent investigations provide evidence that dietary nutrients and antioxidant rich foods 

may modulate miRNA expression profiles.  For instance, rats fed a folate deficient diet resulted in 

downregulated miR-122 and increased hepatocarcinogenesis [119].  In another study, human 

pancreatic cancer cells were treated with a natural antioxidant curcumin that resulted in 29 

differentially expressed miRNA [120].  These results provide evidence that dietary nutrients and 

antioxidant rich foods influence miRNA expression and may have important roles in health and 

disease.  
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Table 1: Established miRNA targets associated with mammalian iron metabolism. 

microRNA Target genes 

miR-485-3p Fpn 

miR-320 Tfrc1 

miR-22 Tfrc1 

miR-Let-7d Dmt1B 
 

Bach1 

miR-210 Fech 
 

Tfrc1 
 

Iscu 1/2 

miR-200a Tfrc1 

miR-200b FtH1 

miR-122 Hfe and Hjv 

miR-221 Tfrc2 

miR-222 Tfrc2 

miR-214 Lf 

miR-584 Lf 

miR-31 Tfrc1 

miR-194 Fpn 

miR-19a Dmt1 

miR-133a FnL 

miR-141 Tfrc1 

miR-145 Tfrc1 

miR-149 Dmt1 

miR-182 Tfrc1 

miR-758 Tfrc1 

miR-196 Bach1 

Fpn, Ferroportin; Tfrc, transferrin receptor; Dmt1, Divalent Metal Transporter 1; 

Bach1, BTB domain and CNC homolog 1; Fech, Ferrochelatase; Iscu, iron-sulfur 

cluster assembly proteins; FtH, Ferritin heteropolymers heavy chains; Hfe, Human 

hemochromatosis protein;  Hjv, hemojuvelin; Lf, Factoferrin; FnL: Ferritin light 

chain. 
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CHAPTER III 
 

 

EVALUATION OF CANDIDATE REFERENCE GENES FOR QUANTITATIVE REAL-TIME 

PCR ANALYSIS IN A RAT MODEL OF DIETARY IRON DEFICIENCY 

 

Note: The following manuscript is a work in progress that is being considered for submission 

to the Journal of Genes and Nutrition. 

 



29 
 

Joanna L. Fiddler1, Emily Jones1, McKale Davis2, Edralin A. Lucas1, Brenda J. Smith1, and 

Stephen L. Clarke1.   

 

Evaluation of candidate reference genes for quantitative real-time PCR analysis in a rat model of 

dietary iron deficiency 

1. Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, 

Stillwater, OK 74078, USA 

2. Department of Biomedical Sciences, Midwestern University, 19555 N 59th Ave, Glendale, AZ 

85308  

Email: Stephen.clarke@okstate.edu 

Phone: (405)744-2033 

Fax: (405)744-1357 

 

 

 

 

 

 

 

 

mailto:Stephen.clarke@okstate.edu


30 
 

ABSTRACT 

Quantitative real-time polymerase chain reaction (qPCR) is a reliable and efficient method for 

quantitation of gene expression.  Due to the increased use of qPCR in examining nutrient-gene 

interactions it is important to examine, develop, and utilize standardized approaches for data 

analyses and interpretation.  A common method used to normalize expression data involves the 

use of reference genes (RG) to determine relative mRNA abundance.  When calculating the 

relative abundance, the selection of RG can influence experimental results and has the potential to 

skew data interpretation.  Although common RG may be used for normalization, often little 

consideration given is to the suitability of RG selection for an experimental condition or specific 

tissue/cell-type.  In the current study, we examined the stability of gene expression in a variety of 

tissues obtained from iron-deficient (ID) and pair-fed (PF) rats to determine the optimal selection 

from ten candidate RG.  Using BestKeeper, comparative delta quantitation cycle (Cq), 

NormFinder, and RefFinder software and calculations, we examined the relative stability of RG 

between ID and PF animals in different tissues.  Our results suggest that some of the more 

commonly used RG (e.g., Actb and Gapdh) exhibit less stability compared to other candidate RG 

(e.g., Rpl19 and Rps29) regardless of treatment.  These results indicate that the selection and use 

of RG should be empirically determined and that RG selection may not necessarily be similar 

across experimental conditions or biological tissues. 

Keywords: Iron deficiency, Reference genes, Housekeeping genes, Normalization, Quantitative 

real-time PCR 

 

 

 

 



31 
 

Introduction 

Iron is an essential nutrient and is involved in many mammalian processes including 

DNA synthesis, erythropoiesis, ATP production, and oxygen transport [1] [2].  In humans, iron 

deficiency (ID) remains the most common single nutrient deficiency and affects approximately 

25% of the world’s population or 1.62 billion people according to the World Health Organization 

[3].  Due to its importance in biological functions, inadequate levels of iron lead to microcytic 

anemia, diminished cognitive development, and decreased ATP production [2] [4].   

 A variety of methodologies exist to investigate iron status; for example, measuring 

serum ferritin and transferrin saturation are common practices and often employed together to 

enhance the detection of systemic iron deficiency [5].  In order to investigate the iron content of 

biological samples directly, inductively-coupled plasma mass spectrometry (ICP-MS) is a useful 

strategy due to its low detection limits [6].  In many instances however, indirect measures are 

needed to further understand iron homeostasis.  In these instances, the addition of but not limited 

to immunoblotting, quantitative real-time PCR, and Iron Regulatory Protein (IRP) RNA binding 

assays can be utilized to determine the abundance of proteins such as ferritin and transferrin [7], 

the gene expression of mRNA encoding proteins such as transferrin receptor or hepcidin [8], and 

IRP binding activity [9].  Of these approaches, quantitative real-time PCR (qPCR) has become 

the gold standard for evaluating gene expression due to its sensitivity, accuracy, and simplicity 

[10] [11].  Therefore, fully understanding this technique and standardizing the methods, along 

with analyzing and interpreting qPCR results are of great importance. 

qPCR is used to compare differences in gene expression (i.e., mRNA abundance) 

between experimental groups by applying Kary Mullis’ novel method of amplifying DNA and 

using probe based chemistries [11]–[13].  Following exposure to experimental conditions, there 

are 4 major steps to successfully complete qPCR: (1) harvest quality RNA from experimental 
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groups, (2) reverse transcribe RNA template into complementary DNA (cDNA), (3) amplify 

cDNA with probe based chemistries by qPCR, and (4) quantify relative mRNA abundance.  First, 

it is essential that RNA integrity is maintained during isolation and purification as poor-quality 

RNA may compromise experimental results  [14].  In order to ensure the highest quality RNA, 

the standard set forth by Bustin et al. recommends nucleic acid purity or RNA free of protein and 

genomic DNA, and nondegraded 18S and 28S ribosomal RNA bands analyzed by gel 

electrophoresis [15].  Confirming quality RNA is often overlooked and may lead to data 

inconsistency and a lack of repeatability between experiments [14].   Second, since qPCR 

amplifies only DNA by taking advantage of DNA polymerases, the quality RNA must be reverse 

transcribed (RT) into cDNA by the enzyme reverse transcriptase [11].  Preceding the RT step, it 

is highly recommended to treat the RNA with DNase to remove trace amounts of genomic DNA 

that could be amplified during qPCR and result in inaccurate quantification [16].  The third step, 

amplification of the cDNA, utilizes fluorescence based chemistries that bind to DNA and 

fluoresce.  As each qPCR cycle is repeated and generates new copies of the cDNA template, there 

is more binding of DNA and fluorescence.  Finally, to quantify relative mRNA abundance it is 

important to control for sample-to-sample variation.  A normalization process is generally used 

by amplifying the target gene and a control gene, then the Cq values of the target gene are 

normalized to the control gene before comparing experimental groups.   

Several other considerations need to be made in order to successfully complete and report 

qPCR results accurately.  It is suggested primers should be designed to span exons, exhibit 

similar melting temperatures, and be roughly 15-20 bases in length to enhance primer annealing 

[17].  It is also important to standardize the method of cDNA synthesis used to ensure 

repeatability and transparency.  Lastly, to account for discrepancies in RNA isolation, RT, and 

qPCR, a normalization process has been established [15] [17].  Normalization utilizes invariant 

control genes that are typically referred to as “housekeeping” or “reference” genes (RG) [18].  
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Ideally RG have little variation in tissue or cell type and under different experimental conditions, 

thus RG are considered stable.  Interestingly, many RG have been reported to be regulated by 

experimental conditions or tissue type [19] and subsequently influence gene expression 

interpretation [15].  

To date, there is infinite information on RG selection for a number of animal and cell 

models, however, there is limited data regarding RG selection in animal models of human 

diseases.  Consequently, the absence of a systematic approach to RG selection makes gene 

expression data potentially difficult to interpret and compare between studies, and less reliable.  

For instance, Suzuki et al. reported Gapdh and Actb were used as control genes in more than 60% 

of articles they reviewed in high impact journals [20].  While these genes may have been the 

appropriate RG in those particular articles, both have been reported to be regulated in various 

conditions such as hypoxia and cell cycle maturation [21] [22], as well as between different tissue 

types [23].  Nevertheless, some progress has been made in terms of RG selection in certain 

models, though the extent to which these results can be applied to all models remains unclear [17] 

[24].  The focus of this study was to examine RG stability in a weanling rat model of dietary iron 

deficiency and determine appropriate RG for use in qPCR.  Additionally, the extent to which 

these RG were responsive to dietary iron deficiency was assessed.  We examined the stability of 

gene expression in ten RG (Actb, Gapdh, Hprt, Ppia, Rpl19, Rpl22, Rpl27, Rplp0, Rps29 and 

Tbp) for their candidacy to be used when comparing iron-deficient and pair-fed rat experimental 

conditions.  RG stability was also determined for individual tissues including the gastrocnemius, 

heart, kidney, liver, lung, and spleen under the same experimental conditions.  Using four 

algorithm-based programs (BestKeeper, comparative delta quantification cycle (∆Cq), 

NormFinder, and RefFinder), we analyzed the gene stability to predict the most suitable RG for 

studying the effects of dietary iron deficiency on the regulation of gene expression [25]–[28].  
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Study design and methods 

Animals 

Twenty-four 21-day old weanling male Sprague-Dawley (Harlan, IN USA) rats were 

housed individually in stainless-steel, wire-bottomed cages at the Oklahoma State University 

(OSU) Laboratory Animal Research facility in a controlled environment and maintained on a 12-

h light:dark cycle with ad libitum access to deionized water.  Rats in each group were allowed 

access to the control diet for 3 days prior to starting dietary treatments.  After the acclimation 

period, rats were randomly assigned to one of three diet groups (n=8/group) for 21-days: control 

(C; 40 mg Fe/kg diet), pair-fed (PF; control diet with grams of food as the ID group) or iron-

deficient (ID; <3 mg Fe/kg diet).  Diets were purchased from Harlan Teklad (Madison, WI, USA; 

C-TD.89300 and ID-TD.80396) based on the recommendations from the American Institute of 

Nutrition’s 1976 (AIN 76) Standards for Nutritional Studies. Individual body weights and food 

intake were measured daily.  After the 21-day experimental period, 75 mg ketamine and 7.5 mg 

xylazine/kg body weight mixture was used to sacrifice the animals, followed by exsanguination 

via the abdominal aorta.  Gastrocnemius, heart, kidney, liver, lung, and spleen were snap-frozen 

in liquid nitrogen immediately following removal and stored at -80ºC for subsequent analysis.  

All institutional guidelines for the care and use of laboratory animals were followed and approved 

by the OSU Institutional Animal Care and Use Committee (IACUC). 

RNA Isolation and cDNA Synthesis 

Total RNA was isolated from tissues including the gastrocnemius, heart, kidney, liver, 

lung, and spleen using STAT-60 (Tel-test, Inc., TX) according to manufacturer’s instructions.  

After isolation, RNA concentration was determined using Nanodrop spectrophotometer (Thermo 

Fisher Scientific, DE, USA) and relative purity of total RNA was assessed by A260/280 ratio.  Only 

A260/280 ratios ≥1.8 were used for this study.  Integrity of RNA was determined by examining 18S 
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and 28S rRNA by agarose gel electrophoresis.  2 µg of total RNA was treated with DNase I 

(Roche, IN, USA) and then reverse-transcribed with SuperScript II (Invitrogen, CA, USA) for a 

final cDNA concentration of 50 ng/µL in a volume of 100 µL.    

Quantitative qPCR and Data Analysis 

Gene expression was determined by qPCR using SYBR Green chemistry on an ABI 

7900HT sequence-detection system instrument and 2.4 SDS software (Applied Biosystems, CA, 

USA).  All reactions were performed in 10 µL volumes, including 50 ng of template, 2.5 µM of 

each forward and reverse primer, and 10 mM of dNTPs (2.5 mM each).  Amplification was 

performed with a 2 min activation step at 50°C, 10 min denaturation step at 95°C, followed by 40 

cycles of 95°C for 15 sec and 60°C for 1 min.  After each cycle, a dissociation curve analysis was 

performed using the default settings of the software to confirm the specificity of the PCR 

products.  For each target RG, the relative stability was assessed using BestKeeper, the 

comparative delta Cq (ΔCq) method, NormFinder, and RefFinder software.   

RG were assessed in individual tissues and based on all tissues combined.  They were 

also assessed between experimental conditions (PF and ID) based on all tissues combined.  

Potential RG analyzed included Actb, Gapdh, Hprt, Ppia, Rpl19, Rpl22, Rpl27, Rplp0, Rps29 and 

Tbp (Table 1; IDT, Coralville, IA).  The two most stable and two least stable genes were further 

used as reference genes to compare Tfrc gene expression in PF versus ID rat livers.  The 

comparative ΔΔCq method was used to analyze mRNA abundance [29].  Oligonucleotide primers 

(Table 2) were obtained from Integrated DNA Technologies (Coralville, IA, USA) and designed 

using Primer Express software 3.0.1 (Applied Biosystems, CA, USA).  Briefly, nucleotide 

sequences were obtained from NCBI and primers were designed to cross exons, not exceed an 

amplicon length of 100 nucleotides, and have the lowest possible error rate. 
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Statistical Analysis 

Statistical analyses using 1-way ANOVA and Student’s t test techniques were performed 

to determine treatment effects using SPSS v23.0 software (IBM-SPSS).  All tests were done at a 

95% confidence level (α=0.05). Descriptive statistics were calculated for all variables and include 

mean ± standard error of the mean (SEM).   
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Results 

Animal anthropometric data and iron status measurements throughout the study are 

published elsewhere [30].  In summary, the ID group exhibited greater than 50% reduction in 

hemoglobin, hematocrit, and serum iron levels compared to both the C and PF groups.  ID 

animals weighed ~20% less than the C group; therefore, the PF group was fed an iron sufficient 

diet to the level of the ID group’s consumption.  Importantly, there were no differences in final 

body weight or rate of weight gain among PF and ID groups.  These results are consistent with 

previous findings indicating that ID animals exhibit decreased food intake and lower body weight 

compared to C animals [31].  All reference gene analyses were made utilizing the PF group 

instead of the C group to alleviate any non-specific changes due to unequal food intake.   

BestKeeper Analysis 

BestKeeper software analysis ranks RG based on a pairwise correlation and then 

calculates the most suitable RG based on geometric means assessing crossing points (CP) or 

threshold cycles (Cq).  Among potential RG examined, criteria (SDCq value < 1.0) was set, and if 

met, RG were considered suitable for qPCR normalization [26].  Interestingly, when analyzing 

RG in both experimental groups (PF and ID) in individual tissues, all RG except one exhibited 

stability based on the criteria (data not shown).   Rplp0 failed to meet the criteria in heart tissue 

(SDCq = 1. 2).  After analyzing each experimental group individually in an all tissues combined 

approach, BestKeeper analyses indicated a high level of variation in RG expression in the PF 

group with only Hprt meeting the criteria (Table 3) and moderate variation in the ID group with 

five of the candidate genes Hprt, Rps29, Tbp, Rpl19, and Rplp0 having a SDCq value < 1.0 

(Table 4).  Finally, when combining datasets from all tissues and both experimental groups to 

determine which RG exhibits the least amount of variability, Hprt and Rpl19 displayed the most 

stability (Table 5).  Interestingly, two commonly used RG in the rat model of ID and other 
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nutrition models, Actb and Gapdh, exhibited poor stability with Actb having the least stability in 

all BestKeeper analyses [32]–[34].  

Comparative ΔCq Analysis 

Gene expression levels were analyzed for stability using the comparative ΔCq method 

and standard deviations [28].  Pairwise comparisons were utilized to determine ΔCq of the 

relative gene expression within individual tissues and also in all tissues combined.  Mean ΔCq 

and standard deviations were then averaged to interpret RG stability values for each experimental 

condition individually (PF and ID) and combined experimental conditions stability among all 

tissues. Similar to Silver et al. results, certain genes exhibited either increased or decreased levels 

of deviation in ΔCq among all tissues and experimental condition analyses [28].  Those genes 

calculated to have the lowest mean SD were interpreted as having the most stability as a RG.  

After examining treatment conditions separately, Rpl22 and Hprt exhibited the most stability in 

PF animals and Rpl19 and Ppia exhibited the most stability in ID animals.  Finally, when 

combining datasets from each tissue and both experimental groups to determine which RG 

exhibits the most stability, Rpl19 and Actb had the lowest mean SD and therefore the most 

stability, while Rplp0 and Ppia had the highest SD or least stability (Table 6). 

NormFinder Analysis 

In contrast to BestKeeper software, NormFinder determines suitability as a function of 

variability.  NormFinder software ranks potential RG using a model-based approach.  The 

methodology examines sample subgroups (PF and ID herein), disparity in intra- and intergroup 

expression, and from these data calculates a stability value for candidate RG [25].  RG were 

assessed first in each tissue individually and then in all tissues combined to determine 

appropriateness of a single RG for use in all tissues.  Among individual tissues, the most stable 

RG were Rps29 in the heart, Tbp in the kidney and lung, Rpl27 in the liver, and Ppia in the 
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gastrocnemius and spleen.  Exhibiting the least stability, Actb ranked poorly in nearly all tissues 

(Fig. 1A-F).  After combining data from the six individual tissues, Rps29 and Rpl27 were 

identified as the most stable RG and Hprt and Gapdh as the least stable RG using NormFinder 

(Fig. 2). 

RefFinder Analysis 

RefFinder is a software program that utilizes multiple established algorithms 

(BestKeeper, ΔCq, geNorm, and NormFinder) to calculate a comprehensive stability value.  Each 

gene is assigned a weight based on each algorithm’s geometric mean and weights are then 

combined to conclude the overall RefFinder ranking (Cotton Est Database, East Carolina; 

http://www.leonxie.com/referencegene.php).   In the individual tissues, the most stable RG were 

Hprt in the heart, Rps29 in the kidney, Rplp0 in the lung, Rpl27 in the liver, and Ppia in the 

gastrocnemius and spleen (Fig. 3A-F).  After combining the six tissues, Rpl19 and Rps29 were 

identified as the most stable RG and Ppia and Gapdh as the least stable (Fig. 4).  Interestingly, 

when experimental conditions were analyzed separately (PF or ID) and combined (PF and ID), 

Actb, Ppia, and Gapdh all were ranked in the bottom half respectively (data not shown). 

Results from BestKeeper, comparative delta Cq, NormFinder, and RefFinder algorithm-

based programs were organized to develop a relative overall ranking.  The ranking was based on 

PF and ID experimental groups and all tissues combined.  The top two candidates (in rank order 

of most suitable to least suitable) were Rpl19 and Rps29.  The least suitable candidate was 

Gapdh, with Actb, Ppia, and Rplp0 ranking second in a three-way tie (Table 7).  It is evident that 

appropriateness of a RG is likely dependent on the tissue of interest in which gene expression is 

being analyzed.  For example, although Rplp0 is one of the most variable RG in the liver, it is the 

least variable RG in the lung based on the RefFinder results.  These tissue differences were 

reflected in poor overall rank when all tissues were combined for analysis (Fig. 4 and Table 6).  

http://www.leonxie.com/referencegene.php
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In contrast, both Rpl19 and Rps29 were relatively stable in all tissues resulting in a high overall 

rank as determined by all software analyses (Table 3, 4, 5, 6 and Fig. 1 and 2).   

Lastly, to compare the impact of RG on target gene abundance and the interpretation of 

data, Tfrc gene expression in liver of PF and ID animals was examined.  Using the two best RG 

based on the overall ranking, (Rpl19 and Rps29), and two commonly used genes that ranked 

poorly in our analyses (Gapdh and Ppia), the relative abundance of Tfrc mRNA was determined 

using the ddCt method [35].  Although Tfrc expression increased significantly in ID animals 

regardless of the RG utilized, the relative fold-changes varied (Fig. 5) (p<0.05). For example, 

using Rpl19 and Rps29 as RG, Tfrc gene expression increased 10-fold and 8-fold, respectively.   

In contrast to Rpl19 and Rps29, using Gapdh and Ppia as RG to assess Tfrc expression, Tfrc 

mRNA abundance increased 6-fold and 7-fold, in ID animals (Figure 5).  For all evaluated RG, 

Tfrc expression significantly increased in ID animals; however, the relative induction varied 

nearly 4-fold between the most suitable (Rpl19) and least suitable (Gapdh) RG.  Taken together, 

selection and use of the most stable RG impacts the overall data interpretation and results. 
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Discussion 

The necessity for ensuring suitable RG in qPCR quantitation has been well recognized 

[23] [25] [27] [36] [37].  Ideal RG should exhibit minimal variation in expression levels among 

various tissues and under experimental manipulations [36].  The existence of an ideal RG is, 

however, uncertain at best.  As of now, limited data has been published on gene expression 

analyses with nutrient-gene interactions in animal models [38] [39] and to our knowledge, an 

empirical determination of appropriate RG selection in the weanling rat model of iron deficiency 

has not been conducted.  Additionally, the extent to which RG vary among specific tissues in the 

same model has not been examined. 

This study was designed to evaluate variation in gene expression in ten commonly used 

endogenous RG in varying dietary (PF and ID) conditions, and to identify the RG most suitable 

for iron deficiency analyses utilizing qPCR in gastrocnemius, heart, kidney, liver, lung, and 

spleen tissues.  Our data is consistent with other research and suggests that commonly used RG 

may be regulated under experimental conditions and expression stability varies between tissues 

[23].  For example, Gapdh ranked poorly in the majority of the algorithm-based programs, both in 

individual tissues and when combining all tissues for analysis.  However, NormFinder and 

RefFinder data concluded Gapdh had increased stability and was ranked in the top 3 RG in 

skeletal muscle.  Another example of RG inconsistency based on tissue occurred with Rplp0; 

although Rplp0 is one of the least stable RG in the liver, it is the most stable RG in the lung based 

on the RefFinder results.  These tissue differences were reflected in poor overall ranking when all 

tissues were combined for analysis.  In contrast, both Rpl19 and Rps29 were relatively stable in 

all tissues resulting in a high overall ranking as determined by all software analyses and our 

combined overall ranking system.  Thus, it is evident that appropriateness of a RG is likely 

dependent on the tissue of interest in which gene expression is being analyzed and when 
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comparing multiple tissues simultaneously, it is important RG exhibit relative stability across all 

tissues.   

The RG selected herein have diverse biological functions and origination.  The RG can 

be categorized by function as ribosomal RNA (rRNA), structural, or enzymatic (refer to Table 1 

for more specification). rRNA are unique as their synthesis is RNA polymerase I (RNAP I) 

dependent and they make up ~80-90% of total cellular RNA [40].  Based on our results, rRNA 

(Rpl19 and Rps29) are the most stable and highest ranking RG for the weanling model of iron 

deficiency.  Although rRNA levels tend to be more stable compared their mRNA counterparts in 

our study, it is important to understand the limitations of using rRNA as RG.  First, synthesis of 

rRNA (RNAP I) and mRNA (RNAP II) are independent and for that reason, it is thought to be 

controversial to choose a RG whose transcription is not regulated in the same manner [41].  

Second, if original RNA samples were enriched for mRNA, rRNA would be excluded from the 

isolation process making it an inappropriate control [17]. Next, according to Derveaux et al., it is 

important to select RG with a similar abundance level to the target mRNA/gene, making rRNA 

unsuitable since they are expressed at much higher levels than mRNA [42].  Finally, like mRNA, 

rRNA have been reported to be regulated [27] 

The use of algorithm-based programs for determination of the most suitable reference 

genes assumes consistent gene expression profiles between experimental groups.  Many 

researchers have limited their reference gene selection to one or two programs [28] [43].  Our 

study, consistent with other studies, shows similar results in overall ranking between all 

algorithm-based programs used [44] [45], though in a few of the RG substantial variation existed.   

For instance, when analyzing all tissues together in both PF and ID animals, Actb ranked as the 

second most stable gene with the ΔCq method, but then ranked in the bottom half of all genes 

with BestKeeper, NormFinder, and RefFinder.  Thus, this type of result should advocate for a 

more robust approach to RG selection.  Despite some similarities between algorithm-based 
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program results, small differences in RG stability do exist and could lead to unreliable data 

interpretation.  For instance, when Tfrc mRNA abundance levels were normalized to the most 

stable RG (Rpl19 and Rps29) and the least stable RG (Actb and Gapdh), as determined by on our 

overall ranking system, Tfrc mRNA abundance was significantly increased in the ID animals 

based on all four RG; however, the magnitude of fold-change differences varied dramatically.  

Indeed, a significant increase in Tfrc mRNA abundance in response to dietary iron deficiency has 

been well established [46] [47], however in studies aiming to evaluate target mRNA that result in 

marginal mRNA abundance changes, a significance may not be detected.  Therefore, it may be 

necessary to use multiple algorithm-based programs when determining the most stable RG for 

nutrient-gene interaction focused studies.  Additionally, as suggested by the MIQE guidelines, 

using more than one RG for normalization and choosing the top ranked RG based on the use of 

multiple algorithm-based programs is likely the superior comprehensive approach investigators 

should use for mRNA normalization [15].   

Minute changes in gene expression may be overlooked or exaggerated if an appropriate 

reference gene is not selected.  Therefore, it may be inappropriate to choose RG for a study based 

solely on previous research or literature reviews instead of taking an empirical approach to 

identifying the most suitable RG.  To our knowledge, this is the first study to examine RG 

stability for qPCR gene expression analyses focused on dietary conditions and tissue type.   Based 

on the ten selected RG, Rpl19 and Rps29 are, respectively, the most suitable RG for 

normalization studies involving gastrocnemius, heart, kidney, liver, lung, and spleen tissue, in 

studies focused on the weanling model of dietary iron deficiency.  The combined ranking system 

provides a more appropriate evaluation of RG suitability because it provides a thorough 

assessment of overall RG stability based on four accepted algorithm-based RG programs.  The 

model illustrated herein provides an appropriate method for validation of RG, specifically for 
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studies involving dietary responses in multiple tissues and should be implemented prior to qPCR 

assays in order to report valid, reliable results. 
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Figure 1. Relative gene stability values of potential RG including both experimental conditions.  

Stability values were determined using NormFinder (A-F).  Stability values of reference genes in 

heart (N=8), kidney (N=8), liver (N=8), lung (N=8), skeletal muscle, and spleen (N=8).  Values 

were plotted based on stability; most stable starting on the left and least stable on the right. 

Figure 2. Relative gene stability values of potential RG.  Stability values were determined using 

NormFinder. Stability values of reference genes based on a combined analysis of gene expression 

in heart, kidney, liver, lung, skeletal muscle, and spleen (N=48).  Values were plotted based on 

stability; most stable starting on the left and least stable on the right. 

Figure 3. Comprehensive stability ranking of potential RG including both experimental 

conditions.  Rankings were determined using RefFinder. (A-F) Ranking of RG in heart (N=8), 

kidney (N=8), liver (N=8), lung (N=8), and skeletal muscle.  Values were plotted based ranking 

number; most stable (1) and least stable (10). 

Figure 4.  Comprehensive stability ranking of potential RG including both experimental 

conditions.  Ranking of RG was based on a combined analysis of gene expression in heart, 

kidney, liver, lung, skeletal muscle, and spleen (N=48).  Values were plotted based ranking 

number; most stable (1) and least stable (10). 

Figure 5. Real-Time quantitative PCR results assessing relative Tfrc mRNA expression in liver 

normalizing to RG Rpl19, Rps29, Ppia, and Gapdh.     
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Table 1. Reference gene information 

Gene Name 
Gene 

Symbol 
Accession Number Function 

Actin, beta Actb NM_031144 Cytoskeletal structural protein 

Glyceraldehyde-3-phosphate dehydrogenase Gapdh NM_017008 Glycolysis enzyme 

Hypoxanthine phosphoribosyltransferase 1 Hprt NM_012583 Salvages purines 

Peptidylprolyl isomerase A (cyclophilin A) Ppia NM_017101 Protein folding 

Ribosomal protein L19 Rpl19 NM_031103 Protein synthesis 

Ribosomal protein L22 Rpl22 NM_031104 Protein synthesis 

Ribosomal protein L27 Rpl27 NM_022514 Protein synthesis 

Ribosomal protein, large, P0 (36b4) Rplp0 NM_022402 Protein synthesis 

Ribosomal protein S29 Rps29 NM_012876 Protein synthesis 

TATA box binding protein Tbp NM_001004198 RNA Polymerase II transcription factor 
 

 

 

 

 

 



52 
 

Table 2. Primer sequences for reference gene analysis by qPCR 

Gene Symbol Forward Primer Reverse Primer 

Actb 5’ CAT CGT GGG CCG CCC TA 5’ CGC CCA CGG AGG AGT CCT TCT G 

Gapdh 5’ GAG GTG ACC GCA TCT TCT TG 5’ CCG ACC TTC ACC ATC TTG TC 

Hprt 5’ GCC GAC CGG TTC TGT CAT 5’ CAT AAC CTG GTT CAT CAT CAC TAA TCA 

Ppia 5’ GGT CTT TGG GAA GGT GAA AGA A 5’ GCC ATT CCT GGA CCC AAA A 

Rpl19 5’ CGT CCT CCG CTG TGG TAA A 5’ TGG CGA TTT CGT TGG TTT 

Rpl22 5' CAC CCT GTA GAA GAT GGA ATC ATG 5' TTC CCG TTC ACC TTG ATC CT 

Rpl27 5’ GCA AAG CCG TCA TCG TAA AGA 5’ CTG GGA TAG CGG TCA ATT CC 

Rplp0 5’ CAC CTT CCC ACT GGC TGA A 5’ TCC TCC GAC TCT TCC TTT GC 

Rps29 5’ GCC AGG GTT CTC GCT CTT G 5’ GGC ACA TGT TCA GCC CGT AT 

Tbp 5’ TGC CAG AAA TGC TGA ATA TAA TCC 5’ GTT CGT GGC TCT CTT ATT CTC ATG 

Tfrc 5' TCG GCT ACC TGG GCT ATT GT 5' CCG CCT  CTT CCG CTT CA 
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Table 3. BestKeeper descriptive statistics and ranking of potential reference genes in pair-fed animals in all selected tissues (N=4) 

  Hprt Rps29 Rplp0 Tbp Rpl27 Rpl22 Gapdh Actb Ppia Rpl19 

geo Mean [CP] 22.68 17.72 19.08 24.32 18.3 17.89 17.92 17.13 19.89 22.72 

cv    0.02 0.06 0.06 0.05 0.06 0.06 0.07 0.07 0.06 0.06 

min [CP] 21.28 15.75 17.05 22.54 15.77 15.87 16.13 14.85 17.79 19.52 

max [CP] 24.66 20.73 22.36 26.45 21.15 20.38 20.65 19.9 25.65 25.29 

std dev [± CP] 0.51 1.06 1.08 1.11 1.13 1.14 1.17 1.22 1.24 1.37 

min [x-fold] -2.64 -3.92 -4.08 -3.45 -5.78 -4.04 -3.46 -4.85 -4.27 -9.18 

max [x-fold] 3.94 8.05 9.71 4.37 7.21 5.64 6.63 6.85 54.44 5.92 

std dev [± x-fold] 1.42 2.08 2.11 2.16 2.19 2.2 2.25 2.33 2.37 2.59 

Ranking 1 2 3 4 5 6 7 8 9 10 

Geometric mean (CP), coefficient of variance (CV), and standard deviation (± CP) of the Cq values for putative reference genes.  RG are ordered 

from left to right according to their SDCq value. Reference genes with a SDCq value < 1.0 is considered to be an appropriate reference gene when 

assessing gene expression in the pair-fed animals.  To determine the under- and over-expression of a reference gene relative to the gene’s 

geometric mean (x-fold), Min, Max, and the standard deviation is calculated by BestKeeper software.   
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Table 4. BestKeeper descriptive statistics and ranking of potential reference genes in iron-deficient animals in all selected tissues (N=4) 

  Hprt Rps29 Tbp Rpl19 Rplp0 Ppia Rpl27 Rpl22 Actb Gapdh 

geo Mean [CP] 22.57 17.48 24.16 17.44 19.2 17.6 18.8 17.99 16.64 22.47 

cv    0.03 0.05 0.04 0.05 0.05 0.06 0.06 0.06 0.07 0.07 

min [CP] 21.13 15.55 21.67 15.45 17.26 15.48 16.62 15.68 14.49 19.18 

max [CP] 24.39 18.96 25.7 18.51 20.59 19.05 20.78 19.59 18.16 25.85 

std dev [± CP] 0.64 0.89 0.91 0.93 0.94 1.01 1.06 1.08 1.14 1.48 

min [x-fold] -2.7 -3.81 -5.6 -3.98 -3.83 -4.35 -4.53 -4.95 -4.42 -9.75 

max [x-fold] 3.55 2.79 2.91 2.11 2.62 2.73 3.95 3.02 2.88 10.4 

std dev [± x-fold] 1.56 1.86 1.88 1.9 1.92 2.01 2.09 2.12 2.2 2.8 

ranking 1 2 3 4 5 6 7 8 9 10 

Geometric mean (CP), coefficient of variance (CV), and standard deviation (± CP) of the Cq values for putative reference genes.  RG are ordered 

from left to right according to their SDCq value. Reference genes with a SDCq value < 1.0 is considered to be an appropriate reference gene when 

assessing gene expression in the iron deficient animals.  To determine the under- and over-expression of a reference gene relative to the gene’s 

geometric mean (x-fold), Min, Max, and the standard deviation is calculated by the BestKeeper software.   
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Table 5. BestKeeper descriptive statistics and ranking of potential reference genes in pair-fed and iron-deficient animals in all selected 

tissues (N=8) 

  Hprt Rpl19 Rps29 Tbp Rpl27 Rplp0 Ppia Rpl22 Actb Gapdh 

geo Mean [CP] 22.62 17.58 17.69 24.24 18.94 19.55 17.76 18.15 16.89 22.60 

cv 0.03 0.06 0.06 0.04 0.06 0.06 0.06 0.06 0.07 0.06 

min [CP] 21.13 15.45 15.55 21.67 16.62 17.26 15.48 15.68 14.49 19.18 

max [CP] 24.66 20.73 20.38 26.45 22.36 25.65 20.65 21.15 19.90 25.85 

std dev [± CP] 0.58 0.99 1.00 1.01 1.06 1.10 1.10 1.11 1.18 1.43 

min [x-fold] -2.81 -4.39 -4.39 -5.94 -5.00 -4.88 -4.86 -5.52 -5.26 -10.66 

max [x-fold] 4.10 8.85 6.47 4.62 10.67 68.84 7.38 8.00 8.10 9.52 

std dev [± x-fold] 1.49 1.99 2.00 2.01 2.08 2.14 2.15 2.16 2.27 2.70 

Ranking 1 2 3 4 5 6 7 8 9 10 

Geometric mean (CP), coefficient of variance (CV), and standard deviation (± CP) of the Cq values for putative reference genes.  RG are ordered 

from left to right according to their SDCq value. Reference genes with a SDCq value < 1.0 is considered to be an appropriate reference gene when 

assessing gene expression in pair-fed and iron deficient animals.  To determine the under- and over-expression of a reference gene relative to the 

gene’s geometric mean (x-fold), Min, Max, and the standard deviation is calculated by the BestKeeper software.   
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Table 6. Comparative ΔCq evaluation and ranking of potential RG in pair-fed and iron-deficient animals in all selected tissues  

Sample   Me     Mean 

ΔCq 
SD Mean 

SD 
Sample Mean 

ΔCq 
SD Mean 

SD 
Sample Mean 

ΔCq 
SD Mean 

SD 
Sample Mean 

ΔCq 
SD Mean 

SD 

Rpl19 vs Actb -0.700 0.280 0.400 Tbp vs Actb -7.410 0.250 0.440 Rps29 vs Rpl27 1.460 0.400 0.590 Rplp0 vs Gapdh 2.110 0.650 1.450 

Rpl19 vs Rpl27 1.430 0.280 (1) Tbp vs Rpl27 -6.070 0.250 (4) Rps29 vs Rpl19 0.030 0.420 (7) Rplp0 vs Rpl19 -1.930 0.660 (10) 

Rpl19 vs Rpl22 0.630 0.290   Tbp vs Hprt -2.240 0.280   Rps29 vs Ppia 0.440 0.510   Rplp0 vs Ppia -1.590 0.720   

Rpl19 vs Ppia 0.340 0.310   Tbp vs Ppia -6.380 0.310   Rps29 vs Rpl27 0.740 0.550   Rplp0 vs Act -2.620 0.740   

Rpl19 vs Tbp 6.700 0.360   Tbp vs Rpl19 -6.700 0.360   Rps29 vs Actb -0.590 0.600   Rplp0 vs Hprt 2.050 0.910   

Rpl19 vs Rps29 -0.030 0.420   Tbp vs Rpl27 -5.280 0.360   Rps29 vs Tbp 6.820 0.650   Rplp0 vs Rps29 -2.650 2.080   

Rpl19 vs Hprt 4.460 0.510   Tbp vs Rps29  -6.820 0.650   Rps29 vs Hprt 4.570 0.680   Rplp0 vs Rpl27 -1.210 2.140   

Rpl19 vs Gapdh 4.030 0.540   Tbp vs Gapdh -2.680 0.660   Rps29 vs Gapdh 4.140 0.740   Rplp0 vs Rpl22 -1.880 2.290   

Rpl19 vs Rplp0 1.930 0.660   Tbp vs Rplp0 -4.790 0.840   Rps29 vs Rplp0 2.030 0.750   Rplp0 vs Tbp 3.990 2.850   

                            

Actb vs Tbp 7.410 0.250 0.420 Rpl22 vs Rpl27 0.800 0.240 0.450 Gapdh vs Rpl19 -4.030 0.540 0.630 
    

Actb vs Rpl19 0.700 0.280 (2) Rpl22 vs Tbp 6.070 0.250 (5) Gapdh vs Actb -4.730 0.560 (8) 
    

Actb vs Ppia 1.030 0.290   Rpl22 vs Ppia -0.310 0.290   Gapdh vs Rpl27 -2.600 0.590   
    

Actb vs Rpl22 1.330 0.320   Rpl22 vs Rpl19 -0.630 0.290   Gapdh vs Ppia -3.700 0.620   
    

Actb vs Rpl27 2.120 0.390   Rpl22 vs Hprt 3.830 0.390   Gapdh vs Hprt 0.430 0.630   
    

Actb vs Hprt 5.160 0.410   Rpl22 vs Actb -0.870 0.460   Gapdh vs Rplp0 -2.110 0.650   
    

Actb vs Gapdh 4.730 0.560   Rpl22 vs Rps29 -0.740 0.550   Gapdh vs Rpl22 -3.400 0.650   
    

Actb vs Rps29 0.590 0.600   Rpl22 vs Gapdh 3.400 0.650   Gapdh vs Tbp 2.680 0.660   
    

Actb vs Rplp0 2.620 0.740   Rpl22 vs Rplp0 1.750 0.910   Gapdh vs Rps29 -4.140 0.740   
    

                            

Rpl22 vs Rpl27 -0.800 0.240 0.430 Hprt vs Tbp 2.240 0.280 0.530 Ppia vs Actb -1.030 0.290 1.180 
    

Rpl27 vs Rpl19 -1.430 0.280 (3) Hprt vs Rpl22 -3.830 0.390 (6) Ppia vs Rpl19 -0.340 0.310 (9) 
    

Rpl27 vs Tbp 5.280 0.360   Hprt vs Ppia -4.140 0.420   Ppia vs Hprt 4.140 0.420   
    

Rpl27 vs Ppia -1.090 0.370   Hprt vs Actb -5.170 0.490   Ppia vs Gapdh 3.700 0.620   
    

Rpl27 vs Actb -2.120 0.390   Hprt vs Rpl27 -3.030 0.500   Ppia vs Rplp0 1.570 0.720   
    

Rpl27 vs Rps29 -1.460 0.400   Hprt vs Rpl19 -4.460 0.510   Ppia vs Rpl22 -0.290 1.870   
    

Rpl27 vs Hprt 3.030 0.500   Hprt vs Gapdh -0.430 0.630   Ppia vs Rps29 -1.060 1.880   
    

Rpl27 vs Gapdh 2.600 0.590   Hprt vs Rps29 -4.570 0.680   Ppia vs Rpl27 0.370 2.120   
    

Rpl27 vs Rplp0 0.500 0.730   Hprt vs Rplp0 -2.560 0.910   Ppia vs Tbp 5.580 2.400   
    

Mean ΔCq values are given for the mean difference between the genes over the 8 animals.  Standard deviation (SD) is given for the variation in Cq 

values over the 8 animals (n=4 PF and n=4 ID). 
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Table 7. Relative overall ranking. The two most stable and two least stable RG from BestKeeper, 

comparative ΔCq, NormFinder, and RefFinder were combined to provide an overall ranking of 

PF and ID experimental groups in all tissues. 

 
Ranking BestKeeper ΔCq NormFinder RefFinder 

Most Stable 
1 Hprt Rpl19 Rps29 Rpl19 

2 Rpl19 Actb Rpl27 Rps29 

Least Stable 
1 Gapdh Rplp0 Gapdh Rplp0 

2 Actb Ppia Hprt Ppia 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Supplemental Figure 1. Comprehensive stability ranking of potential RG in PF rats.  Ranking of 

RG was based on a combined analysis of gene expression in heart, kidney, liver, lung, skeletal 

musle, and spleen (N=24).  Values were plotted based ranking number; most stable (1) and least 

stable (10). 

Supplemental Figure 2. Comprehensive stability ranking of potential RG in ID rats.  Ranking of 

RG was based on a combined analysis of gene expression in heart, kidney, liver, lung, skeletal 

musle, and spleen (N=24).  Values were plotted based ranking number; most stable (1) and least 

stable (10). 

Supplemental Figure 1 
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Supplemental Figure 2 
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CHAPTER IV 
 

 

MICRORNA INFLUENCE ON ERYTHROID ESSENTIAL MITOFERRIN 1 IN RESPONSE 

TO IRON DEFICIENCY 
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INTRODUCTION 

Iron is an essential micronutrient to most living organisms.  Mammals, in particular, 

require iron for numerous biological processes including DNA synthesis, energy metabolism, and 

oxygen transport via red blood cells (RBC) or erythrocytes [1] [2].  Despite the recognized 

critical need for iron, iron deficiency (ID) remains the most common nutritional deficiency in 

humans, affecting nearly 2 billion people or approximately one-third of the world’s population [3] 

[4].  The deleterious effects of ID include cognitive decline, immune system suppression, and 

impaired erythropoiesis [5].  Excess iron leads to cellular complications due to iron’s ability to 

catalyze the production of free radicals, resulting in protein, lipid, and DNA damage [6].  Thus, 

understanding the mechanisms that control iron homeostasis is imperative.  

Sophisticated pathways exist to balance the ~3-5 g of iron in the average adult human. 

For example, intestinal enterocytes absorb only a small amount of dietary iron (~0.5-2 mg) each 

day to replace to iron lost via blood, sweat, and enterocyte sloughing.  The limited iron that does 

enter the intestinal cells is exported into the plasma for distribution throughout the body.  Iron is 

rarely found circulating freely due to its potential toxic effects [7] [8]; instead, iron is imported, 

exported, chaperoned or sequestered by plasma and transmembrane proteins.  The majority of 

iron is incorporated into heme-containing proteins such myoglobin and cytochromes, and to a 

lesser extent neuroglobin and cytoglobin [9].  The primary heme containing protein, hemoglobin, 

accounts for 65-75% of the body’s iron and functions to transport oxygen by means of heme’s 

oxygen-carrying moiety in erythrocytes [10].  In adults, heme biosynthesis occurs predominantly 

in the bone marrow of developing erythrocytes, though a small amount occurs in the liver [9] 

[11].  The majority of heme produced in erythrocytes are incorporated into hemoglobin.  In order 

for erythrocytes to meet the body’s needs for hemoglobin a continual production of heme must be 

maintained; thus adequate iron delivery to the bone marrow is imperative. Considering a minimal 

amount of dietary iron is absorbed daily, the majority of iron for heme biosynthesis is present in 
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senescent RBCs and must be scavenged and recycled by the reticuloendothial system in the 

spleen.  Splenic macrophages remove the senescent RBCs from circulation and lyse them, 

making heme accessible for cleavage and degradation by heme oxygenase-1.  Following the 

degradation of heme, iron is released which can then either be stored in ferritin (Ft), the iron 

storage protein, or exported out of the macrophage into the plasma via ferroportin (Slc40a1).  

Upon reentry into circulation, iron is bound to transferrin (Tf) and is available for internalization 

by transferrin receptor (Tfrc) on cell surfaces.   The majority of recycled iron is transported back 

to the bone marrow to maintain the steady-state levels of heme [9].  

  Mitochondria play a predominate role in iron homeostasis as they utilize iron for its 

redox capabilities and consume significant amounts of iron for iron sulfur [Fe-S] cluster assembly 

and heme biosynthesis [1] [2] [12] [13].  Therefore, it is not surprising that dysfunction of these 

important organelles lead to human diseases such as Friedriech’s ataxia, preventing complete [Fe-

S] cluster formation from a decrease or loss of frataxin, or X-linked sideroblastic anemia, from a 

defect in erythroid-specific -aminolevulinate synthase involved in the first step in heme 

synthesis [14] [15] [16].   Interestingly, the mechanism by which iron enters the mitochondria is 

multifaceted and has yet to fully be elucidated.  Iron must pass from the cytosol through two 

membranes, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane 

(IMM).  While the OMM has several methods of iron transfer contingent on iron need and cell 

type, the IMM iron transporters have been comprehensively characterized and are mitoferrin 1 

(Mfrn1; Slc25a37) and its paralog mitoferrin 2 (Mfrn2; Slc25a28) [17]. Both are conserved 

among species and together with ATP binding cassette protein 10 (Abcb10) are responsible for 

import of iron into the IMM [18].  Though Mfrn2 is ubiquitous, Mfrn1 is predominately 

expressed in erythroid specific cells and is essential for heme biosynthesis [17].  

The canonical fates of heme post synthesis are hemoproteins, namely globins and 

cytochrome proteins [9].   Recently, heme has also been implicated in microRNA (miRNA) 
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processing [19] [20].  miRNA are a class of small non-coding molecules approximately 22 

nucleotides in length in their mature form.  miRNA processing begins in the nucleus where 

primary miRNA (pri-miRNA) is transcribed by RNA polymerase II adopting a hairpin-like 

structure.  The transcript is next processed by an RNA III-like enzyme, Drosha, and DiGeorge 

syndrome critical region 8 (Dgcr8) by cleavage of the 5’ and 3’ ends approximately one helical 

turn above the base of the hair-pin and forms precursor miRNA (pre-miRNA) [19] [21].  This 

molecule is then exported into the cytosol by exportin-5 where it is furthered processed by the 

endonuclease Dicer to its mature ~18-22 nucleotide miRNA form.  Once processed, mature 

miRNA interact with argonaute proteins (Ago) to form a functional RNA-induced silencing 

complex (RISC) [21].   The miRNA guides the RISC complex to a target mRNA where 

nucleotides 2-8, known as the miRNA ‘seed sequence’, bind with partial complementarity to the 

mRNA target site and regulate mRNA by either repressing translation or diminishing mRNA 

stability [20] [22].  Interestingly, heme plays a critical role in miRNA processing as it functions 

as a cofactor for Dgcr8, a heme-binding protein, which promotes dimerization of Dgcr8.  

Preventing this dimerization decreases the activity of Dgcr8 and thereby decreases the processing 

of pri-miRNA to functional mature miRNA.  This connection suggests mitochondrial iron 

homeostasis and sufficient iron levels play a critical role in miRNA processing because of the 

necessity of heme [19].  Furthermore, if iron is limited for heme synthesis, then hemoprotein 

production and miRNA processing will be diminished.  

Not only are miRNA predicted to interact with more than half of all human genes, they 

are also involved in the regulation of many cellular processes including development, apoptosis, 

and metabolism [23] [24].  For example, Tfrc1 is targeted by miR-320 in differentiated human 

leukemia cells [25].  Wang et al. demonstrated that during erythroid maturation, miR-27a and 

miR-24 form a regulatory circuit that deactivates the transcription factor Gata2.  The targeting of 

Gata2 enables the transcription factor Gata1, thereby promoting terminal erythroid development 
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[20] .  Lastly,  hypoxia-sensitive miR-210, which is activated by hypoxia inducible factor-1α 

(Hif-1α) when oxygen levels are inadequate [28], has been shown to influence mitochondrial 

metabolism by targeting [Fe-S] cluster assembly proteins (Iscu1/2) and cytochrome c oxidase 

assembly protein (Cox10) in cultured cells [29] [30].  Iscu2 and Cox10 are important for the 

mitochondrial TCA cycle and the electron transport chain.  These findings suggest iron 

homeostasis is controlled in part by miRNA through their role in the regulation of iron uptake on 

the cell surface, erythrocyte development, and the assembly of [Fe-S] clusters.   

 Iron deficiency remains the single most common nutritional deficiency in the world, 

affecting approximately one-third of the world’s population and is the leading cause of anemia [3] 

[4].  The recognized fates of iron are well established regarding [Fe-S] cluster biogenesis and 

heme synthesis; however, during ID the mechanisms of control are less understood.  The most 

common type of anemia, microcytic anemia, results from insufficient globin production and 

impaired erythroid maturation [31] [32].  The developing erythrocyte is dependent on sufficient 

iron levels in the mitochondria, thus the mechanisms of iron homeostasis must be finely regulated 

[33].  Interestingly, miRNA processing depends on heme as a cofactor, providing one connection 

between cellular iron status and miRNA expression.  With a new class of molecular regulators 

being recognized for their role in iron homeostasis and many cellular processes, miRNA may 

modulate the adaptive response to ID.  Thus, understanding the mechanisms involved in the 

targeting of mRNA by miRNA in response to ID may lead to a greater physiological 

understanding of ID.  The primary objectives were to characterize post-transcriptional control of 

mRNA encoding proteins involved in the maintenance of iron metabolism by miRNA in ID 

conditions.  Based on the identification of significantly upregulated miR-181d in livers of ID rats 

previously identified (Clarke unpublished data), the central hypothesis was miR-181d is involved 

in the posttranscriptional modulation of iron related mRNA, and function as key elements in 

regulating iron homeostasis. Taking a conservative approach to identify target mRNA, we 
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determined Mfrn1 was a conserved miR-181d target in humans, rats and mice using miRWalk 

and TargetScan [34] [35].  Using in vitro reporter assays we demonstrated a direct interaction 

between Mfrn1 and miR-181d resulting in significantly reduced luciferase activity.  Additionally, 

we chose to evaluate endogenous Mfrn1 and miR-181d expression in response to iron chelation in 

the murine erythroleukemia cells (MEL) model.  Mfrn1 was determined to be essential for 

mitochondrial iron import in MEL cells [51].  Iron chelation led to an increase miR-181d 

expression in uninduced MEL cells.  Iron chelation followed by MEL cell differentiation led to a 

decrease in both Mfrn1 mRNA abundance and hemoglobin staining.  However, using a lentivirus 

overexpression system we did not have a reduction in Mfrn1 mRNA or protein levels in the 

erythrocyte MEL model.  Together, our data indicates Mfrn1 is a direct target of miR-181d, 

however, future research will need to be completed to endogenously demonstrate a translational 

decrease of the mRNA target.  
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METHODS 

Thirty-six 21-day old weanling male Sprague-Dawley (Harlan, IN USA) rats were 

housed individually in stain-less-steel, wire-bottomed cages at the Oklahoma State University 

(OSU) Laboratory Animal Research facility in a controlled environment and maintained a 12-h 

light:dark cycle with ad libitum access to deionized water.  All rats were allowed access to the 

control diet for 3 days prior to starting dietary treatments.  After the acclimation period, rats were 

randomly assigned to one of three diet groups (n=12/group) for 21-days: control (C; 50 mg Fe/kg 

diet), iron-deficient (ID; <3 mg Fe/kg diet), or pair-fed (PF; control diet with equal grams of food 

as the ID group).  Diets were purchased from Harlan Teklad (Madison, WI, USA; C-TD.80394 

and ID-TD.80396) based on the recommendations from the American Institute of Nutrition’s 

1976 (AIN 76) Standards for Nutritional Studies.  Individual body weights and food intakes were 

measured daily.  After the 21-day experimental period, a ketamine/xylazine (75 mg ketamine and 

7.5 mg xylazine/ kg body weight) mixture was used to anaesthetize the animals, followed by 

exsanguination via the abdominal aorta.  ID animals weigh up to 20% less than C animals and 

importantly, it has previously been shown no differences in final body weight or rate of weight 

gain among ID and PF groups exist [69] [70].  Therefore, the PF group were fed the control diet 

to the level of the ID group consumption.  All analyses were made utilizing the PF group to 

control for any non-specific changes due to unequal food intakes.  All institutional guidelines for 

the care and use of laboratory animals were followed and approved by the OSU Institutional 

Animal Care and Use Committee (IACUC). 

miRNA Target Identification 

To identify miRNA targets, the freely available miRWalk and TargetScan databases were 

used to identify conserved miRNA targets sequences in human, mouse, and rat.  The miRWalk 

algorithm uses Watson-Crick complementarity to identify miRNA and target gene sequence 
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matches, thus predicting miRNA binding sites [34].  miRWalk compares the determined miRNA 

binding sites with other well established miRNA prediction databases and then generates a 

coordinated list of targets based on the compilation of all databases [34].  miR-181d target genes 

were selected based on conservation in human, mouse, and rat species.  They were also selected 

based on perfect complementarity with a minimum seed length of seven nucleotides.    

Cell Culture 

Murine erythroleukemia (MEL) DS19 cells were maintained in DMEM containing 10% 

FBS, 100 units/mL penicillin, 100 units/mL streptomycin, 200 mM L-glutamine, 0.1 mM 

sodium-pyruvate and 0.1 mM non-essential amino acids.   

Mfrn1 was as originally characterized in an anemic zebrafish model by Shaw et al. and 

determined to be a mitochondrial inner membrane iron importer with its paralog, mitoferrin 2 

(Mfrn2) [17].  Later, it was determined Mfrn1 is essential for mitochondrial iron import in early 

mouse erythroid cells and knockout results in severe anemia [51].  Therefore, we chose to 

evaluate endogenous Mfrn1 and miR-181d expression in response to iron chelation in the murine 

erythroleukemia cells (MEL) model.  MEL cells were seeded at a density of 1 x 105 cells/mL and 

allowed to incubate for 24 hours before treatment as previously described [38] with 100 µM 

desferroxamine (Sigma Aldrich, St. Louis, MO) for 16 hr. to chelate intracellular iron, thus 

inducing IRP binding activity and Tfrc1 mRNA expression, indicators of ID previously 

demonstrated [39] [40] [41].   MEL cells were treated with 2% dimethyl sulfoxide (DMSO) 

(Sigma Aldrich, St. Louis, MO) for 3 days to differentiate into globin containing cells [18] [38].   

To verify hemoglobinization, alpha-globin (Hba1) mRNA levels were examined and cells were 

stained with O-Dianisidine for Benzidine positivity [42].  In the presence of hydrogen peroxide, 

o-Dianisidine (3,3′-dimethoxybenzidine) forms a distinct orange/brown color due to the 

peroxidase activity of hemoglobin [43].  After determining baseline levels of iron chelation and 
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hemoglobinization, cells were treated with 10 or 20 µM of desferrioxamine for 16 hours and then 

induced to differentiate with 2% DMSO for 3 days.  Cells were examined for IRP RNA binding 

assays, miR-181d expression, Mfrn1 and Tfrc1 mRNA expression, and Mfrn1 protein levels.    

Human embryonic kidney 293T (HEK 293T) cells were maintained in DMEM containing 

10% FBS, 100 units/mL penicillin, 100 units/mL streptomycin, and 200 mM L-glutamine.   

HEK293T cells were chosen for reporter assays based on their highly transfectable 

characteristics.   

 Luciferase pMIR-REPORT assays 

To evaluate the in-cell functional measurements of miR-181d expression effects on 

Mfrn1, a reporter system was used.  A pMIR-REPORT luciferase vector (Thermo Scientific; 

Grand Island, NY), a pMIR-REPORT luciferase vector containing the entire 3’ UTR of Mfrn1 

cloned downstream of the luciferase coding region, and a miRVana mimic of miR-181d or a 

scrambled miR-181d control (Ambion) was transfected into HEK 293T cells with Lipofectamine 

2000 Transfection Reagent (Invitrogen; Carlsbad, CA) according to manufacturer’s 

recommendations and allowed to incubate for 24 hours.  A beta-galactosidase (β-gal) expression 

plasmid (Thermo Scientific; Grand Island, NY) was simultaneously transfected into cells to 

control for transfection efficiency.  Additionally, site-directed mutagenesis was completed on 

Mfrn1 seed sequence by Mutagenex (Somersest, NJ).  Nucleotides 2-5 in the seed sequence were 

either mutated or deleted.  Luciferase activity was measured by luminescence and β-gal activity 

were measured at an OD of 420 nm on a Synergy HT microplate reader with Gen5 v 2.1 software 

(Biotek; Winooski, VT).  Data were analyzed by subtracting the background from the raw data 

then means were determined by averaging replicates [44].  Next, relative response ratios (RRR) 

were determined after dividing mean luciferase (RRRluc) by mean β-gal (RRRβ-gal) activities.  

Lastly, data were reported as percent repression of the control pMIR-REPORT vector. 
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Cytosolic Protein Extracts  

Cell protein extracts were prepared by lysing the cells with cells lysis buffer (20 mM 

HEPES, 10 mM sodium pyrophosphate, 50 mM β-glycerol phosphate, 50 mM sodium fluoride, 5 

mM EDTA, 1 mM sodium orthovanadate, 2 mM benzamidine, and 0.5% nonidet-P40), protease 

inhibitors (1 mM phenylmethylsulfonyl fluoride,  0.25 mg/mL soybean trypsin inhibitor, 0.1 

µg/mL leupeptin, and 0.1 µg/mL pepstatin), a reductant (1 mM dithiothreitol), an antioxidant (5 

µg/mL butylatedhydroxytoluene), an Fe-S substrate (1 µM citrate), and a protease inhibitor (10 

µM carbobenzoxy-Leu-Leu-leucinal).  After a 20 min cell lysis period with intermittent 

vortexing, extracts were centrifuged at 16,000 x g for 15 min at 4oC and supernatant containing 

cytosolic proteins was reserved.  Cell extract protein concentrations were assessed by 

colorimetric bicinchoninic acid assay (BCA) at an absorbance of 562 nm and determined by 

comparison of a bovine serum albumin (BSA) standard (Thermo Scientific; Rockford, IL).  

Protein extracts were stored in liquid nitrogen until further use.   

Radiolabeling of RNA Probe  

A plasmid containing the entire rat L-ferritin cDNA IRE was digested and in vitro 

transcribed using T7 RNA polymerase (Promega), oligonucleotides, and [α-32P] UTP (3000 

Ci/mmol; Perkin Elmer) to produce a 73-nucleotide 32P-labeled RNA [45] [46] [47].  RNA was 

purified using a 10% PAGE 8 M urea gel, eluted by rocking with RNase-free Maxam Gilbert 

Elution buffer (0.3 M sodium acetate, pH 5.2), and precipitated with ethanol.  Following the 

precipitation, RNA was resuspended with DEPC-treated water and specific activity was 

quantified by scintillation counting [41].  Radiolabeled RNA was stored at -80°C until further 

use. 
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IRP Binding Assays 

IRP RNA binding was analyzed using cytosolic cell lysates to assess spontaneous IRP1 

and IRP2 and total IRP RNA binding activity.  Spontaneous IRP binding was determined by 

incubating radiolabeled RNA (1 nM) with 5 µg of cell extracts, 20 mg/L bovine serum albumin, 

and gel-shift buffer containing 5% glycerol, 1 mM magnesium acetate, 20 mM HEPES, and 7.5 

mM potassium chloride for 10 min on ice.  Additionally, 3 µL of heparin (5 g/L) was added (to 

reduce non-specific RNA-protein interactions) to each reaction [41].  Total IRP1 RNA binding 

activity was determined by incubating a separate set of reactions (described above) with 2% β-

mercatoethanol at room temperature for 30 min, followed by the addition of heparin.  Reactions 

were loaded into a 2% polyacrylamide gel containing 60:1 acrylamide to bis-acrylamide 

following a pre-warming period at 150 V for 30 min.  Samples were electrophoresed for 65-75 

minutes at 150 V.  After electrophoresis, the gel was transferred to filter paper and vacuum-dried 

(Hydrotech Vacuum Pump; Bio-Rad, Hercules, CA).  Radioisotope imaging was completed with 

a Personal Molecular Imager FX system and a Phosphor K imaging screen (Bio-Rad, Hercules, 

CA).  Quantification of RNA binding activity was evaluated using OptiQuant Acquisition & 

Analysis software (Packard Bioscience, Meriden, CT) and reported as DLU.  A standard curve of 

known radiolabeled RNA was vacuum dried on the filter paper and quantified simultaneously.  

The background was estimated by scanning the area between the standard curve and the free 

radiolabeled RNA and was subtracted from the bound RNA.  Counts per minute (CPM) of the 

standard curve were measured on a Liquid Scintillation Analyzer Tri-carb 2900TK (PerkinElmer, 

Waltham, MA). The specific activity of IRP RNA binding was calculated based on the standard 

curve and reported as fmol RNA/mg protein.    
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Benzidine staining  

To verify hemoglobinization, MEL cells were stained with o-Dianisidine for Benzidine 

positivity [42].  In the presence of hydrogen peroxide (H2O2), o-Dianisidine (3,3′-

dimethoxybenzidine) forms a distinct orange/brown color due to the peroxidase activity of 

hemoglobin [43].  Treated MEL cells were mixed with a working solution of o-Dianisidine and 

H2O2 and 100-200 µL aliquots were transferred to a cytospin funnel and centrifuged at 800 x g for 

5 min at room temperature in a Cytopro Cytocentrifuge (Wescor; Puteaux, France).  100-200 cells 

were counted in 4 fields using a 10X objective lens and the number of stained cells were 

compared to the number of unstained cells.  Values were reported as percentages of the control. 

Lentiviral vector construction and virus packaging 

Human mature miR-181d expression vectors were constructed previously [48].  Briefly, 

mature miR-181d PCR products, flanked on 5’ and 3’ ends with 50% of the precursor sequences, 

were ligated with T4 ligase (Promega) into pLVX-puro lentiviral vector (Clontech).  The miR-

181d PCR products were downstream of the cytomegalovirus promotor (CMV)-driven enhanced 

green fluorescent protein (EGFP).  CMV driven EGFP was included in the vector to monitor 

transfection efficiency.  Packaging of the pLVX-puro expression construct into high titre 

lentivirus was performed by co-transfecting the lentivector and Lenti-X HT packaging plasmids 

(Clontech) with jetPEI DNA transfection reagent (Polyplus Transfection, New York, NY) into 

HEK293A cells.  The supernatant was collected and concentrated.  Viral titre was determined by 

making serial dilutions of the viral stock, infecting HEK293A cells, and counting the virus-

infected cells. Lentiviral stocks were stored at -80ºC until further use.  A lentiviral control vector 

containing a scrambled sequence was generated following the same steps as the miR-181d vector 

and was then used as a negative control.  
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Transduction/Infection of MEL cells with Lentiviruses 

MEL cells were plated in complete medium and incubated at 37ºC with 5% CO2.  After 

24 hours, cells were transduced in low serum media (OptiMEM) with a multiplicity of infection 

(MOI) 175 with lentiviral particles from miR-scrambled control or miR-181d in the presence of 8 

µg/mL of polybrene to increase transduction efficiency.  After an overnight incubation, media 

was replaced with fresh complete medium and incubated for 48 hours.  RNA and protein were 

harvested for analysis of transduced cells.  Green fluorescent protein (GFP) was confirmed with 

fluorescence imaging on a Nikon Eclipse (Nikon Instruments, Melville, NY) inverted microscope 

and EXFO X-Cite 120PC (Excelitas Technologies, Waltham, Massachusetts) fluorescence light 

source.  

RNA Isolation and cDNA Synthesis 

Total RNA was isolated from MEL cells using STAT-60 (Tel-test, Inc., TX) according to 

manufacturer’s instructions.  After isolation, RNA concentration was determined using Nanodrop 

spectrophotometer (Thermo Fisher Scientific, DE, USA) and relative purity of total RNA was 

assessed by A260/280 ratio.  Integrity of RNA was assessed by examining 18S and 28S rRNA by 

agarose gel electrophoresis.  Next, RNA was treated with DNase I (Roche, IN, USA) and then 

reverse-transcribed into complementary DNA (cDNA) with SuperScript II (Invitrogen, CA, USA) 

using random primers (Roche, IN, USA). 

Quantitative RT-qPCR and Data Analysis 

Relative mRNA expression was determined by RT-qPCR using SYBR Green chemistry 

on an ABI 7900HT sequence-detection system instrument and 2.4 SDS software (Applied 

Biosystems, CA).  All reactions were performed in 10 µL volumes, including 50 ng of cDNA and 

2.5 µM of forward and reverse gene-specific primers.  Amplification was performed with a 2 min 

activation step at 50ºC, 10 min denaturation step at 95ºC, followed by 40 cycles of 95ºC for 15 
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sec and 60ºC for 1 min.  A dissociation curve analysis was performed using the default settings of 

the software to confirm the specificity of the PCR products by analyzing the melting 

temperatures.  For each target gene, the comparative delta delta (ΔΔCq) method was used to 

analyze data [49].  Oligonucleotide primers were obtained from Integrated DNA Technologies 

(Coralville, IA) and designed using Primer Express software 3.0.1 (Applied Biosystems, CA).  

Briefly, nucleotide sequences were obtained from NCBI and primers were designed to span an 

intron, not exceed an amplicon length of 100 nucleotides, and have the lowest possible penalty 

score determined by Primer Express. Primers for mouse Alas2, Mfrn1, Tfrc1, Hba1, and Rpl19 

(Table 1) were validated against Cyclo and deemed valid when gene expression slopes of serial 

diluted cDNA were -3.3.  Experiments were conducted in triplicate and results were reported as 

means ± SEM. 

Quantitative RT-qPCR of miRNA expression 

Relative miRNA expression was determined using TaqMan miRNA RT-qPCR Assays 

(ThermoScientific, Grand Island, NY).  Briefly, total RNA was reverse-transcribed with 

MultiScribe Reverse Transcriptase and miRNA specific RT primers.  TaqMan Small RNA assay, 

TaqMan Universal PCR Master Mix II, and cDNA was used for RT-qPCR on an ABI 7900HT 

sequence-detection system instrument and 2.4 SDS software (Applied Biosystems, CA, USA).  

All reactions were performed according to manufacturer’s specifications.  For each target gene, 

the ΔΔCq method was used to analyze data [49].  Experiments were conducted in triplicate and 

results are reported as relative miRNA abundance.  Oligonucleotide primers for miR-181d and 

4.5S were obtained from ThermoScientific (Grand Island, NY).   

SDS-PAGE and Immunoblotting 

Cytosolic extracts were denatured by heating with 5X Laemelli buffer for 5 min at 95ºC.  

Samples were then separated on 10% SDS-PAGE gels for 70 min in SDS-PAGE running buffer 
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and then transferred to a nitrocellulose membrane overnight in transfer buffer for 1000 mA hours.  

The membranes were probed using anti-Mfrn1 (1:1000, a generous gift from Barry Paw) and 

anti-α-tubulin (1:1000, Abcam, Cambridge, UK) antibodies with peroxidase-conjugated goat anti-

rabbit IgG-HRP secondary antibodies (1:25,000; Southern Biotech, Birmingham, AL).  To detect 

the antibodies, SuperSignal West Pico or Femto chemiluminescent substrate (Thermo Fisher) 

were added to the membrane for 5 min and chemiluminescence was measured on a FluorChem R 

(ProteinSimple, San Jose, CA).  Results were analyzed with AlphaView software version 3.4 

from Protein Simple (San Jose, California) using α-tubulin as the control.  

Statistical Analysis 

SPSS statistical software version 23 (IBM-SPSS, IL) was used to analyze the significance 

of treatment effects by Student’s T-tests and one-way or two-way ANOVA for multiple 

comparisons followed by Tukey post-hoc analysis when necessary.   All tests were performed at 

the 95% confidence level (α = 0.05).  Descriptive statistics were calculated on all variables to 

include means, standard deviations, and standard error of the mean.   

 

 

 

 

 

 

 

 



79 
 

RESULTS 

Animal characteristics, iron status measurements, and microRNA identification 

throughout the study are published elsewhere (Davis dissertation).  In summary, after a 21-d 

restricted iron diet, ID animals had ~40% reductions in hemoglobin and hematocrit, and almost a 

~60% reduction in non-heme liver iron compared to the PF controls.  Additionally, low iron 

status in the ID animals resulted in a 1.4-fold upregulation of miR-181d in rodent livers.   

In order to identify potential target genes of miR-181d, we applied the bioinformatics 

algorithms miRWalk and TargetScan [34], [50].  Slc25a37 (mitoferrin 1, Mfrn1) was selected for 

further analysis based on the miR-181d seed sequence being conserved in mus musculus, rattus 

norvegicus, and homo sapiens (Figure 1A), as well as the seed lengths or the sequences through 

which miR-181d could interact were 7-8 consecutive nucleotides which indicates more site 

efficacy in binding potential [23](Figure 1B). Furthermore, it was selected based on its important 

role in iron metabolism as the inner mitochondrial membrane iron importer essential for erythroid 

cells.   
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miR-181d 5’ AACAUUCAUUGUUGUCGGUGGGU 3’ 

        3’ UGGGUGGCUGUUGUUACUUACAA 5’ 

 

Mus musculus  

   acaauua         g ug          guga  ag  

5'        acauucauu u  ucgguggguu    gg  g 

          ||||||||| |  ||||||||||    ||    

3'        uguaaguag g  ggccacccag    cc  c 

   -ugucac         g --          ---a  ga 

Rattus norvegicus 

   ---       auua         g ug          guga  ag  

5'    ggucaca    acauucauu u  ucgguggguu    gg  a 

      |||||||    ||||||||| |  ||||||||||    ||    

3'    ucggugu    uguaaguag g  ggccacccag    cc  a 

   ggg       -cac         g --          ---a  ag 

Homo sapiens 

      ga       auca         g ug          guga  a u  

5' gcc  ggucaca    acauucauu u  ucgguggguu    gg c g 

   |||  |||||||    ||||||||| |  ||||||||||    || |   

3' cgg  ucggugu    uguaaguag g  ggccacccag    cc g a 

      -g       -cac         g --          ---a  - g 

 

Slc25a37 3’UTR 

Mus musculus  

     3' uggguggcuGUUGUUACUUACAa 5' mmu-miR-181d 

                 :|||  |||||||  

 617:5' augggaguuUAAC-UUGAAUGUa 3' Slc25a37 

      

Rattus norvegicus 

     3' ugGGUGGCUGUUGUUACUUACAa 5' rno-miR-181d 

          : :  | : |   |||||||  

 574:5' UGUGGGAGUUUAACUUGAAUGUa 3' Slc25a37 

Homo sapiens 

  3' uggguggcUGUUGUUACUUACAa 5' hsa-miR-181d 

                | | ||:|||||||  

 600:5' aaaguaauAAAUCAGUGAAUGUg 3' SLC25A37 

 

Figure 1 miR-181d is highly conserved among species (A) step-loop sequence of mature miR-

181d sequence (bolded) conservation among species; (B) Predicted binding site for the miR-181d 

seed sequence (bolded) in the 3’UTR of Mfrn1(Slc25a37) of mus musculus, rattus norvegicus, 

and homo sapiens.  Numbers preceding the 5’ end of Slc25a37 indicate the starting position in the 

3’ UTR. 

 

A 

B 
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To evaluate the hypothesis that miR-181d targets Mfrn1, a reporter system was used.  

Previously created reporter plasmids containing the entire 3’ UTR of Mfrn1 downstream of a 

luciferase coding region (Clarke and Davis unpublished) were co-transfected into HEK293T cells 

with a mature miR-181d mimic.  Following a 24-h incubation period, the miR-181d mimic 

reduced the relative luciferase activity of the Mfrn1 3’ UTR by ~30% compared to the vector 

alone group (Figure 2).  To verify the miR-181d site specificity, mutants of Mfrn1 3’ UTR were 

purchased from Mutagenix.  The mutations existed in the seed sequence of Mfrn1 3’ UTR as 

either deletions (Mfrn1∆) or substitutions (Mfrn1 subs) to nucleotides 2-5.   The addition of the 

miR-181d mimic had no significant effect on relative luciferase activity of the Mfrn1∆ or the 

Mfrn1 subs (Figure 2).  Together, these results indicate Mfrn1 is a direct target of miR-181d and 

the intact seed sequence is critical for the interaction to occur.   

 

Figure 2 Mfrn1 mRNA is a direct target of miR-181d.   miR-181d overexpression in HEK293T 

cell inhibits luciferase activity of a luciferase construct containing the 3’UTR of Mfrn1, however, 

does not affect Mfrn1∆ (deletion) or Mfrn1 subs (substitution).  In Mfrn1∆, nucleotides 2-5 in the 

miR-181d target site have been deleted and in Mfrn1 subs, nucleotides 2-5 have been mutated 

from the miR-181d target site.  Data are representative of three independent experiments and are 

presented as mean ± standard error of the mean (SEM).  Error bars represent SEM.  Asterisk 

indicates differences between samples were statistically significant, p<0.05.  Mfrn1 indicates 

mitoferrin 1; UTR, untranslated region.  
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Mfrn1 is essential for mitochondrial iron import in early mouse erythroid cells and 

knockout results in severe anemia [51].  Therefore, the model we chose to evaluate endogenous 

Mfrn1 and miR-181d expression in response to iron chelation was murine erythroleukemia cells 

(MEL).  MEL cells are erythroid precursor cells that can be terminally differentiated by chemical 

reagents to morphologically resemble orthochromatic erythroblasts and biochemically they have 

increased enzymes involved in erythropoiesis [43].  As suspected, treatment of MEL cells with 

100 µM desferrioxamine significantly induced spontaneous IRP1 and IRP2 RNA binding activity 

(Figure 3A-C) and resulted in a 3.5-fold increase in Tfrc1 mRNA abundance (Figure 3E).  Thus, 

indicating the cells were in fact iron deficient.   Total IRP RNA binding was significantly 

increased by ~2-fold in the desferrioxamine treated cells (Figure 3D).  After establishing the cells 

were iron deficient, we used TaqMan ®MicroRNA assay-based RT-qPCR to evaluate miR-181d 

expression in desferrioxamine treated MEL cells.  miR-181d was significantly increased by 3.4-

fold in response to iron chelation (Figure 4).  Next, following MEL cell differentiation with a 2% 

DSMO treatment for 3 days, treated cells stained positively for hemoglobin (Figure 5A-C) and 

relative mRNA expression of Hba1, Mfrn1, and Tfrc1 significantly increased by ~8, 6.5, and 7-

fold, respectively (Figure 6).  Interestingly, the significantly elevated Mfrn1 mRNA in 

differentiated MEL cells was accompanied by a 50% reduction in miR-181d (Figure 7), 

indicating the repression of miR-181d in differentiated MEL cells has an inverse relationship with 

Mfrn1 mRNA levels.   
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E 

 

Figure 3 MEL cell response to iron chelation.  (A) Spontaneous and (B) total Iron Regulatory 

Protein (IRP) RNA binding activity in MEL cells treated with desferrioxamine.  2% BME was 

used to induce total binding.  Quantitative analysis of (C) spontaneous and (D) total IRP RNA 

binding activity.  (E) Relative mRNA expression of Tfrc1 in uninduced MEL cells treated with 

100 µM desferrioxamine for 16 hours.  Total RNA was extracted, reverse transcribed, and RT-

qPCR analysis was performed.  The mRNA levels of Tfrc1 were normalized to ribosomal protein 

L19 (Rpl19).  Data are representative of three independent experiments and are presented as mean 

± standard error of the mean (SEM).  Error bars represent SEM.  Asterisk indicates differences 

between samples were statistically significant, p<0.05. 
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Figure 4 Relative miRNA expression of miR-181d in uninduced MEL cells treated with 100 µM 

desferrioxamine for 16 hours. RT-qPCR was performed with TaqMan ®MicroRNA assays. 

miRNA expression was normalized to U6.  Data are representative of three independent 

experiments and are presented as mean ± standard error of the mean (SEM).  Error bars represent 

SEM.  Asterisk indicates differences between samples were statistically significant, p<0.05. 

  

   

Figure 5 Benzidine staining of MEL cells treated with 2% dimethyl-sulfoxide (DMSO) for 3 

days.  (A) Uninduced cells, (B) induced cell, and (C) pellets of uninduced and induced cells.  
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Figure 6 Relative mRNA expression of Hba1, Mfrn1, and Tfrc1 in MEL cells treated with 2% 

dimethyl-sulfoxide (DMSO) for 3 days.  Total RNA was extracted, reverse transcribed, and RT-

qPCR analysis was performed.  The mRNA levels were normalized to ribosomal protein L19 

(Rpl19).  Data are representative of three independent experiments and are presented as mean ± 

standard error of the mean (SEM).  Error bars represent SEM.  Asterisk indicates differences 

between samples were statistically significant, p<0.05. 

 

Figure 7 Relative miRNA expression of miR-181d in uninduced versus induced MEL cells.  

Cells were treated with 2% dimethyl-sulfoxide (DMSO) for 3 days to induce differentiation. RT-

RT-qPCR was performed with TaqMan ®MicroRNA assays. miRNA expression was normalized 

to U6 or 4.5S.  Data are representative of three independent experiments and are presented as 

mean ± standard error of the mean (SEM).  Error bars represent SEM.  Asterisk indicates 

differences between samples were statistically significant, p<0.05. 
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Based on the assumption miR-181d and Mfrn1 are inversely related during MEL cell 

differentiation, we next tested the hypothesis that iron chelation prior to MEL cell differentiation 

would decrease Mfrn1 mRNA expression and thereby influence the synthesis of heme.  Indeed, 

Mfrn1 mRNA levels were significantly repressed by ~1/3 compared to the differentiated MEL 

cells in response to 10 µM desferrioxamine for 16 hours followed by 3 days of 2% DMSO 

(Figure 8).   Consistent with the mRNA repression, the percent of hemoglobinized cells was also 

reduced by ~1/3 compared to the 2% DMSO treatment alone (Figure 9); this occurred even 

though the mRNA levels of Hba1 were not reduced in response to iron chelation prior to 

differentiation (Figure 8).  Also of importance, the erythroid specific aminolevulinic acid 

synthase 2 (Alas2) and the transcription factor Gata1 were significantly repressed in response to 

iron chelation prior to differentiation (Figure 8).  Surprisingly, miR-181d expression levels were 

not elevated in response to 10 µM desferrioxamine for 16 hours followed by 3 days of 2% DMSO 

(data not shown).  
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Figure 8 Relative mRNA expression of Alas2, Gata1, Glut1, Hba1, Hif-1α, Mfrn1, and Tfrc1 in 

MEL cells treated with 0 or 10 µM desferrioxamine for 16 hours then induced to differentiate 

with 2% dimethyl-sulfoxide (DMSO) for 3 days.  Total RNA was extracted, reverse transcribed, 

and RT-qPCR analysis was performed.  The mRNA levels were normalized to ribosomal protein 

L19 (Rpl19).  Data are representative of three independent experiments and are presented as mean 

± standard error of the mean (SEM).  Error bars represent SEM.  Different superscript indicates 

differences between samples were statistically significant, p<0.05. 

  

Figure 9 Benzidine staining of MEL cells treated with 0 or 10 µM desferrioxamine for 16 hours 

then induced to differentiate with 2% dimethyl-sulfoxide (DMSO) for 3 days.  Data are 

representative of three independent experiments and are presented as mean ± standard error of the 

mean (SEM).  Error bars represent SEM.  Different superscript indicates differences between 

samples were statistically significant, p<0.05. 
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To determine if the higher level of miR-181d would be detectable and if they would 

sequentially repress Mfrn1 levels endogenously, we decided to overexpress miR-181d in MEL 

cells.  To test this hypothesis, we used lentiviral particles containing the mature miR-181d 

sequence downstream of the cytomegalovirus promotor (CMV)-driven enhanced green 

fluorescent protein (EGFP).  MEL cells were transduced with the lentiviral particles in low serum 

media in the presence of 8 µg/mL of polybrene.  GFP was confirmed in MEL cells with 

fluorescence imaging (Figure 10).  Consistent with GFP positivity, miR-181d abundance was 

significantly elevated compared to the miRNA scrambled control (miR-SCR) as detected by 

TaqMan RT-qPCR assays (Figure 11).  No statistical significance was detected in mRNA or 

protein levels of Mfrn1 in response to miR-181d overexpression (Figure 12 and 13A-B). 
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Figure 10 Green fluorescence protein (GFP) in MEL cells treated with miRNA scrambled control 

(miR-SCR) or miR-181d lentiviral particles for 72 hours.  MEL cells were briefly centrifuged at 

200 rpm for 2 min to allow suspension cells to rest on the bottom of the 6-well plates.  Cells 

images were visualized with an inverted light microscope and GFP images were visualized with 

fluorescence imaging.  Data are representative of three independent experiments.  
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Figure 11 Relative miR-181d abundance in MEL cells treated with miR-control or miR-181d 

lentiparticles for 72 hours.  RT-qPCR was performed with TaqMan assays. miRNA expression 

was normalized to 4.5S.  Data are representative of three independent experiments and are 

presented as mean ± standard error of the mean (SEM).  Error bars represent SEM.  Different 

superscript indicates differences between samples were statistically significant, p<0.05. 

 

Figure 12 Relative mRNA expression of Bcl2 and Mfrn1 in MEL cells treated with miR-control 

or miR-181d lentiparticles for 72 hours.  Total RNA was extracted, reverse transcribed, and RT-

qPCR analysis was performed.  The mRNA levels were normalized to ribosomal protein L19 

(Rpl19).  Data are representative of three independent experiments and are presented as mean ± 

standard error of the mean (SEM).  Error bars represent SEM.  Different superscript indicates 

differences between samples were statistically significant, p<0.05. 
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Figure 13 Western blots analysis of MEL cells treated with miR-scrambled control or miR-181d 

lentiparticles for 72 hours.  (A) Representative immunoblots of cells alone, miR-scrambled 

control (miR-SCR), and miR-181d lysates.  (B) Quantitative analysis of protein band intensity of 

Mfrn1 normalized to α-tubulin.   Data are representative of three independent experiments and are 

presented as mean ± standard error of the mean (SEM).  Error bars represent SEM.  Different 

superscript indicates differences between samples were statistically significant, p<0.05. 
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Discussion 

 

MicroRNAs are a class of non-coding RNA that exhibit regulatory functions by post-

transcriptionally targeting and repressing protein-coding mRNA.  Recent evidence has 

established that miRNA are involved in maintaining iron homeostasis and play a critical role in 

mitochondrial function [22] [28] [52].  In our study, we determined miR-181d was significantly 

elevated in erythroid specific MEL cells in response to iron chelation with desferrioxamine 

(Figure 4).  Additionally, iron chelation followed by MEL cell differentiation led to a reduction of 

Mfrn1 gene expression (Figure 8) and a reduction in hemoglobin staining (Figure 9).  These 

results were consistent with our previous findings that animals feed a diet containing minimal 

iron led to significantly increased miR-181d expression and a significant reduction in 

hemoglobin.  Finally, we showed with reporter assays, that Mfrn1 is a direct target of miR-181d.  

Together, these results suggest a connection between the dysregulation of miR-181d during iron 

deficiency and its regulation of the mitochondrial iron import protein, Mfrn1, and further supports 

the evidence that miRNA micromanage iron homeostasis.   

Over the last ~10 years, miRNAs have been implicated as key regulatory molecules in 

many cellular processes including apoptosis, development and disease [26] [53].  miRNA are 

considered to be highly evolutionarily conserved within a species [54].  In fact, the miR-181 

family has been suggested to be highly conserved [23].  The miR-181 family was originally 

detected with high levels in brain, lung, and thymus and with lower levels in the spleen and in 

bone marrow [53].  Furthermore, the same group reported miR-181 to be preferentially expressed 

in differentiated B-lymphocytes and when overexpressed in hematopoietic progenitor cells and in 

vivo it altered the distribution of differentiated cell types leading to a higher proportion of B-

lymphocyte.  Sometime later, the miR-181 family was reported to be downregulated in human 

gliomas and was determined to be involved in tumor suppression via the targeting of apoptosis 

genes K-ras and Bcl2.  These discoveries support the important biological roles miRNA play, the 
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preciseness of their influence on tissue specificity, and the ability of a miRNA to regulate many 

target genes.  In our study, the identification of miR-181d was determined in liver tissue.  

Knowing Mfrn1 is essential for erythroid maturation and heme synthesis, we chose MEL cells as 

the in vitro model to study iron chelation effects on miR-181d and its potential target Mfrn1.  

There were many limitations to our model; first, although miR-181d was significantly elevated 

after iron chelation treatment in uninduced cells, Mfrn1 levels remained unchanged. Second, after 

postulating the endogenous changes of Mfrn1 were too low to detect in uninduced cells we 

decided to approach the model from a different angle.  Thus, after confirming with a time course 

experiment that Mfrn1 levels more than doubled after 24-hours post 2% DMSO treatment (data 

not shown), we hypothesized that because Mfrn1 levels are higher, miR-181d may have a 

detectable influence on differentiating cells.  Indeed, Mfrn1 levels were decreased in cells treated 

with desferrioxamine and then induced compared to induced cells alone (Figure 8).  However, the 

low iron chelation treatment followed by 3 days of differentiation did not allow us to detect a 

miR-181d upregulation (data not shown).  We speculated the marginal iron chelation and 

differentiation may have led to an undetectable change in the miRNA itself. 

Based on the limitations of our first models we decided to pursue a lentiviral 

overexpression system to robustly express miR-181d.  Lentiviral particles containing human 

mature miR-181d plus 50% of the pre-miRNA upstream and downstream of the hairpin were 

transduced into MEL cells where they theoretically were processed by the host cells 

microprocessor system.  In order for pre-miRNA to be processed to mature miRNA, 

microprocessor recognition depends on 40 nucleotides upstream and 40 nucleotides downstream 

of the pre-miRNA hairpins [53]. Also, of great importance is determining which transcripts enter 

the host cell’s microprocessor pathway as varying species have failed to process lentiviral particle 

transcripts. For example, Auyeung et al. determined that C. elegans lack a CNNC motif that is 

present in most human pri-miRNA; when the CNNC motif was added to the C. elegans pri-
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miRNA it was processed in human cells [50].  The species difference prevents the C. elegans pri-

miRNA from being recognized and cleaved by the Drosha/Dgcr8 complex.  Unquestionably, C. 

elegans and humans are very different in terms of miRNA, the conservation of miRNA overlaps 

considerably less than between mammalian species [54]; however, it is possible individual 

mammalian species’ microprocessor systems recognize distinct motifs as well.  Therefore, our 

use of human mature miR-181d sequences in mouse cells may have been an oversight and 

rendered the miRNA under processed or not functional.  The verified GFP fluorescence and 

elevated mir-181d in MEL cells treated with miR-181d lentiviral particles supports the latter 

(Figure 10).   

In summary, our results show for the first time that miR-181d is upregulated in response 

to iron deficiency and may be a key player in regulating mitochondrial iron import by targeting 

Mfrn1.  Further, these results confirm that miRNA are responsive to nutrient deprivation and 

likely play a key role in coordinating cellular iron homeostasis.   
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Table 1. RT-qPCR Primers 

Gene 

symbol 

Accession 

number   

Hba1 NM_008218 Forward 5'aagccctggaaaggatgtttgctag 

  Reverse 5'ggcagtggctcaggagcttgaagtt 

Mfrn1 NM_026331 Forward 5'agacacggatgcagagtttgaa 

  Reverse 5'gggcgccatagatgcttgta 

Glut1 NM_011400 Forward 5' cgtcgttggcatccttattg 

  Reverse 5' gaggccacaagtctgcattg 

Hif-1α NM_001313919 Forward 5' caacgtggaaggtgcttca 

  Reverse 5' tgaggttggttactgttggtatca 

Tfrc1 NM_011638 Forward 5' ttggacatgctcatctaggaactg 

  Reverse 5' ctgagatggcggaaactgagt 

Rpl19 NM_000981 Forward 5'gacggaagggcaggcatatg 

  Reverse 5'tgtggatgtgctccatgagg 
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CHAPTER V 
 

 

MIR-181D TARGETING OF ISOCITRATE DEHYDROGENASE 1 FOLLOWING DIETARY 

IRON DEFICIENCY 
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Introduction 

Characterization of gene expression has allowed for a better understanding of how 

mammalian systems respond to disease, environmental stressors, and nutrient status [1] [2] [3] 

[4].  In fact, different cell types have the same genes, but the expression patterns and how they are 

used distinguish cell types from one another [5] [6].  With the development of microarray and 

RNA sequencing technologies, noncoding RNAs (ncRNAs) have emerged as a new class of 

molecular regulators that influence gene expression [7].  One such class of noncoding RNAs is 

microRNA (miRNA).   

miRNAs are small molecules that posttranscriptionally regulate gene expression [8] [9].  

They distinguish themselves from other ncRNA based on their processing.  The canonical 

miRNA biogenesis begins in the nucleus where it is transcribed by RNA polymerase II into a 

transcript that folds into a hairpin-like structure, primary miRNA (pri-miRNA) [10].  The pri-

miRNA transcript is next processed by an endonuclease, Drosha, and DiGeorge syndrome critical 

region 8 (Dgcr8) by cleavage at approximately one helical turn from the base of the hairpin and 

forms a ~70-nucletide (nt) precursor miRNA (pre-miRNA)  [11] [12].  This molecule is exported 

into the cytosol by exportin-5 where it is furthered processed by another endonuclease, Dicer, 

resulting in an ~18-22-nt mature miRNA.  One of the mature miRNA transcripts complexes with 

an argonaute protein (Ago) forming a functional RNA-induced silencing complex (RISC) [12].   

The miRNA guides the RISC complex to a target mRNA where nucleotides 2-8, known as the 

miRNA ‘seed sequence’, cleave to the mRNA target site and regulate mRNA by repressing 

translation or destabilizing mRNA [13] [14].  Not only are miRNA predicted to interact with 

more than ~50% of all human genes, they are essential regulatory molecules in many cellular 

processes [15]. 

Many investigations have taken a unilateral approach to examining the impact of 

miRNAs on various aspects of health and disease.  Researchers approach a disease and look at 
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how miRNA impact target mRNA and thereby impact the overall system.  Recent investigations, 

however, provide evidence that dietary nutrients and chemical compounds found in food may 

modulate miRNA expression profiles.  For instance, rats fed a folate deficient diet resulted in a 

downregulated miR-122 and an increase hepatocarcinogenesis [16].  In another study, human 

pancreatic cancer cells were treated with a natural antioxidant curcumin that resulted in 29 

differentially expressed miRNA [17].  These results provide evidence that dietary nutrients and 

chemical compounds found in food influence miRNA expression and may have important roles in 

health and disease. 

One particularly important nutrient is iron.  As an essential micronutrient, iron is required 

for DNA synthesis, cellular proliferation, and oxygen transport [18] [19] [20] [21].  Iron 

deficiency is a major public health concern as it is the leading nutritional deficiency in the world 

and affects more than 2 billion people [22].  While iron deficiency leads to anemia, iron is 

potentially toxic through its ability to promote the generation of ROS, thus cellular iron is tightly 

controlled [21].  A family of iron-regulated cytosolic RNA binding proteins known as iron 

regulatory proteins (IRP) play a central role in maintaining cellular iron homeostasis by 

repressing translation of ferritin and stabilizing transferrin receptor (Tfrc) mRNA under iron 

deficient conditions [23].  Additionally, the liver specific peptide hormone, hepcidin, plays a 

central role in maintaining systemic iron homeostasis by coordinating dietary iron absorption and 

macrophage iron release [24].  Recently, liver-specific miR-122 was identified to be involved in 

coordinating systemic iron homeostasis.  Following inhibition of miR-122, mice exhibited 

reduced iron levels, marginally diminished liver hematopoiesis, and increased mRNA of genes 

involved in systemic iron homeostasis including the hepcidin gene, Hamp, and genes involved in 

the transcriptional regulation of hepcidin [25].  Furthermore, miR-320 has been implicated to play 

a role in cell proliferation through its targeting of Tfrc [26].  These findings suggest mammalian 
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iron homeostasis is controlled in part by miRNA through their role in the regulation of iron 

absorption and release.   

With the recent emergence of evidence that dietary nutrients modulate miRNA 

expression profiles, it can be postulated that dietary iron deficiency will result in differentially 

expressed miRNA.  Indeed, following a 21-day restricted iron diet, rat livers exhibited 

significantly upregulated miR-181d and miR-210 (Clarke and Davis unpublished data).  To 

characterize the potential roles of miR-181d and miR-210, we used the publicly available 

miRWalk to identify potential target genes and then used both in vitro and in vivo systems to 

examine miR-181d and miR-210 expression.  We hypothesized miR-181d targets cytosolic 

isocitrate dehydrogenase 1 (Idh1), and miR-210 targets heme-containing cytoglobin (Cygb).  Idh1 

and Cygb were chosen for further analysis based on the conservation of the miRNA target sites in 

humans, rats, and mice.  Using reporter assays we demonstrated a direct interaction between miR-

181d and miR-210 with their respective targets, Idh1 and Cygb, resulting in significantly reduced 

luciferase activity.  Finally, using a lentivirus overexpression system we confirmed a significant 

reduction in Idh1 protein levels.  These results demonstrate for the first time that dietary iron 

deficiency up-regulates miR-181d that in-turn inhibits the gene expression and translation of 

Idh1.  Thus, miR-181d plays an important role in the adaptive response to dietary iron deficiency.      
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Methods 

Animal model of iron deficiency 

Thirty-six 21-day old weanling male Sprague-Dawley (Harlan, IN USA) rats were 

housed individually in stain-less-steel, wire-bottomed cages at the Oklahoma State University 

(OSU) Laboratory Animal Research facility in a controlled environment and maintained a 12-h 

light:dark cycle with ad libitum access to deionized water.  All rats were allowed access to the 

control diet for 3 days prior to starting dietary treatments.  After the acclimation period, rats were 

randomly assigned to one of three diet groups (n=12/group) for 21-days: control (C; 50 mg Fe/kg 

diet), iron-deficient (ID; <3 mg Fe/kg diet), or pair-fed (PF; control diet with equal grams of food 

as the ID group).  Diets were purchased from Harlan Teklad (Madison, WI, USA; C-TD.80394 

and ID-TD.80396) based on the recommendations from the American Institute of Nutrition’s 

1976 (AIN 76) Standards for Nutritional Studies.  Individual body weights and food intakes were 

measured daily.  After the 21-day experimental period, 75 mg ketamine and 7.5 mg xylazine/ kg 

body weight mixture was used to anaesthetize the animals, followed by exsanguination via the 

abdominal aorta.  ID animals weigh up to 20% less than C animals and importantly, it has 

previously been shown no differences in final body weight or rate of weight gain among ID and 

PF groups exist [69] [70].  Therefore, the PF group were fed the control diet to the level of the ID 

group consumption.  All analyses will be made utilizing the PF group to control for any non-

specific changes due to unequal food intakes.  All institutional guidelines for the care and use of 

laboratory animals will be followed and approved by the OSU Institutional Animal Care and Use 

Committee (IACUC). 

Brain Collection 

Brains were selected based on the previous identification that Cygb is highly localized in 

areas of the brain with increased neurogenesis and due to Idh1 involvement in fatty acid synthesis 
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in the brain [58] [62].  Rats were exsanguinated by the abdominal aorta and were then 

decapitated.  The brain was then excised from the cranial cavity and micro-dissected on an ice-

cold metal block.  The frontal cortex was obtained following a coronal slice of the brain and was 

next hemisected and snap frozen.  Samples were stored at -80ºC until further analysis. 

Hematology and tissue non-heme iron 

Hemoglobin (Hgb), hematocrit (Hct) and RBC count were measured at the end of the 

experimental period.  Blood was collected from the abdominal aorta into heparinized syringes and 

an aliquot was used for Hgb, Hct and RBC analysis at ANTECH Diagnostics (Irvine, CA).  Liver 

and frontal cortex non-heme iron were determined as previously described by Torrance et al [29] .  

Cell Culture  

Neuro 2a (N2A) cells were maintained in DMEM containing 10% FBS, 100 units/mL 

penicillin, 100 units/mL streptomycin, and 200 mM L-glutamine.  N2A cells were selected based 

on the previous identification that Cygb is highly localized in areas of the brain with increased 

neurogenesis and due to Idh1 involvement in fatty acid synthesis in the brain [58]  

[62].  N2A cells seeded at a density of 10000 cells/mL and allowed to incubate for 24 

hours before treatment as previously described [30] with 100 µM of an iron chelator 

desferrioxamine (Sigma Aldrich, St. Louis, MO), thus inducing IRP RNA binding activity and 

Tfrc mRNA expression, both indicators of ID previously demonstrated [31] [32] [33].     

 Human embryonic kidney 293T (HEK 293T) cells were maintained in DMEM 

containing 10% FBS, 100 units/mL penicillin, 100 units/mL streptomycin, and 200 mM L-

glutamine.   HEK293T cells were chosen for reporter assays based on their highly transfectable 

characteristics.    

miRNA Target Identification 
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To identify miRNA targets, a gene expression microarray was used to identify 

differentially expressed genes in response to dietary iron deficiency (LC Sciences, Houston TX) 

and the freely available miRWalk database (http://mirwalk.uni-hd.de/) was used to identify 

conserved miRNA targets sequences in human, mouse, and rat.  The miRWalk algorithm uses 

Watson-Crick complementarity to identify miRNA and target gene sequence matches, thus 

predicting miRNA binding sites [34].  miRWalk compares the determined miRNA binding sites 

with other well established miRNA prediction databased and then generates a coordinated list of 

targets based on the compilation of all databases [34].  miR-181d and miR-210 target genes were 

selected based on conservation in human, mouse, and rat species.  They were also selected based 

on perfect complementarity with a minimum seed length of seven nucleotides.    

RNA Isolation and cDNA Synthesis 

Total RNA was isolated from tissue culture experiments and rat liver and frontal cortex 

of PF and ID tissues using STAT-60 (Tel-test, Inc., TX) according to manufacturer’s instructions.  

After isolation, RNA concentration was determined using Nanodrop spectrophotometer (Thermo 

Fisher Scientific, DE, USA) and relative purity of total RNA was assessed by A260/280 ratio.  

Integrity of RNA was assessed by examining 18S and 28S rRNA by agarose gel electrophoresis.  

RNA was treated with DNase I (Roche, IN, USA) and then reverse-transcribed with SuperScript 

II (Invitrogen, CA, USA) using random primers (Roche, IN, USA). 

Quantitative RT-qPCR and Data Analysis 

Relative mRNA expression was determined by RT-qPCR using SYBR Green PCR 

master mix chemistry on an ABI 7900HT sequence-detection system instrument and 2.4 SDS 

software (Applied Biosystems, CA, USA).  All reactions were performed in 10 µL volumes, 

including 50 ng of cDNA and 2.5 µM of forward and reverse primers specific to the mRNA of 

interest.  Amplification was performed with a 2 min activation step at 50ºC, 10 min denaturation 

http://mirwalk.uni-hd.de/
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step at 95ºC, followed by 40 cycles of 95ºC for 15 sec and 60ºC for 1 minute.  A dissociation 

curve analysis was performed using the default settings of the software to confirm the specificity 

of the PCR products.  For each target gene, the comparative delta delta Cq (ΔΔCq) method was 

used to analyze data [35].  Oligonucleotide primers for Bcl2, Cygb, Idh1, Hamp1, Glut1, Tfrc, 

Rpl19 and Gapdh were obtained from Integrated DNA Technologies (Coralville, IA, USA) and 

designed using Primer Express software 3.0.1 (Applied Biosystems, CA, USA).  Briefly, 

nucleotide sequences were obtained from NCBI and primers were designed to cross exons, not 

exceed an amplicon length of 100 nucleotides, and have the lowest possible error rate. 

Experiments were conducted in triplicate and results are reported as relative mRNA abundance. 

Quantitative RT-qPCR of miRNA expression 

Relative miRNA expression was determined using TaqMan miRNA RT-qPCR Assays 

(ThermoScientific, Grand Island, NY).  Briefly, total RNA was reverse transcribed with 

MultiScribe Reverse Transcriptase and miRNA specific RT primer.  TaqMan Small RNA assay, 

TaqMan Universal PCR Master Mix II, and complementary DNA (cDNA) were used for RT-

qPCR on an ABI 7900HT sequence-detection system instrument and 2.4 SDS software (Applied 

Biosystems, CA, USA).  All reactions were performed according to manufacturer’s 

specifications.  For each target gene, the comparative delta delta Cq (ΔΔCq) method was used to 

analyze data [35].  Experiments were conducted in triplicate and results are reported as relative 

miRNA abundance.  Oligonucleotide primers for miR-181d, miR-210, RNU6, and 4.5S were 

obtained from ThermoScientific (Grand Island, NY).   

Vector Construction 

The mouse Idh1 3' UTR luciferase reporter plasmid was constructed using similar 

methods as previously described [36].  Mouse Idh1 cDNA was obtained from a cDNA clone 

(accession number: BC088986; CloneID: 6808731; GE Dharmacon). The 3’ UTR was amplified 
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by PCR from the Idh1 cDNA clone.  PCR primers containing SacI and HindIII restriction sites 

(underlined) are as follows: forward 5′- cattaagagctcggtcaaacctgggcttagaat -3′, reverse 5′- 

gtgctcaagcttcaaagaagagtcattagtacttcattttaa -3′.  The PCR cycling conditions were as followed: 35 

cycles at 98ºC for 10 s, 64ºC for 25 s, 72ºC for 2 min with Q5 High-Fidelity DNA Polymerase 

(New England Biolabs). The PCR products were digested and inserted into pMIR-REPORT 

luciferase vector (Applied Biosystems).  The Idh1 3’ UTR containing a deletion or substitution 

mutations in the miR-181d target site were synthesized and inserted into pUC57 using Genscript 

services (Genscript, Piscataway, NJ).  The mutated Idh1 3’ UTRs were synthesized to include 

SacI and HindIII restriction sites as included in non-mutant Idh1 3’ UTR.  The mutants were 

digested from the pUP57 plasmid and then ligated into the pMIR-REPORT luciferase vector.  All 

plasmid constructs were confirmed by directed sequencing (Oklahoma State University, 

Stillwater, Recombinant DNA/Protein Resource Facility).  Cygb 3’ UTR luciferase reporter 

plasmid was previously created in our lab and Cygb site-directed mutagenesis plasmids were 

purchased from Mutagenex (Somersest, NJ).  Nucleotides 2-5 in the seed sequence of Idh1 and 

Cygb were either mutated or deleted.   

pMIR-REPORT assays 

To evaluate the in-cell functional measurement of miR-181d and miR-210 expression on 

Idh1 and Cygb, a reporter system was used.  pMIR-REPORT luciferase vectors (Thermo 

Scientific; Grand Island, NY) containing the entire 3’ UTR of predicted miRNA targets, target 

deletions (∆) or target substitutions (subs) downstream of the luciferase coding region were used 

for luciferase assays.  The pMIR-REPORT vector with a 3’ UTR target insert and a miRVana 

mimic of miR-181d or miR-210 (Ambion) were co-transfected into HEK293T cells using 

Lipofectamine 2000 Transfection Reagent (Invitrogen; Carlsbad, CA)) according to 

manufacturer’s recommendations and allowed to incubate for 24 hours.  A beta-galactosidase (β-

gal) expression plasmid (Thermo Scientific; Grand Island, NY) was simultaneously transfected 
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into cells to control for transfection efficiency.  Luciferase activity was measured by 

luminescence and β-gal activity was measured at an OD of 420 nm on a Synergy HT microplate 

reader with Gen5 v 2.1 software (Biotek; Winooski, VT).  Data were reported as described 

previously [37].  Briefly, background was subtracted from raw data and group means were 

determined by averaging replicates.  Next, relative response ratios (RRR) were determined after 

dividing mean luciferase (RRRluc) by mean β-gal (RRRβ-gal) activities.  Lastly, data were reported 

as percent change of the control pMIR-REPORT vector.  

Cytosolic Protein Extracts from Mammalian Cells 

Cell protein extracts were prepared by lysing the cells with cell lysis (20 mM HEPES, 10 

mM sodium pyrophosphate, 50 mM β-glycerol phosphate, 50 mM sodium fluoride, 5 mM EDTA, 

1 mM sodium orthovanadate, 2 mM benzamidine, and 0.5% nonidet-P40), protease inhibitors (1 

mM phenylmethylsulfonyl fluoride,  0.25 mg/mL soybean trypsin inhibitor, 0.1 µg/mL leupeptin, 

and 0.1 µg/mL pepstatin), a reductant (1 mM dithithreitol), an antioxidant (5 µg/mL 

butylatedhydroxytoluene), an Fe-S cluster stabilizer (1 µM citrate), and a protein stabilizer (10 

µM carbobenzoxy-Leu-Leu-leucinal).  After a 20 min cell lysis period with intermittent 

vortexing, extracts were centrifuged at 16,000 x g for 15 min at 4ºC and the supernatant 

containing cytosolic proteins was reserved.  Cell extract protein concentrations were assessed by 

colorimetric bicinchoninic acid assay (BCA) at an absorbance of 562 nm and determined by 

comparison of a bovine serum albumin (BSA) standard (Thermo Scientific; Rockford, IL).  

Protein extracts were stored in liquid nitrogen until further use.   

Radiolabeling of RNA Probe 

A plasmid containing the entire rat L-ferritin cDNA IRE was digested and in vitro 

transcribed using T7 RNA polymerase (Promega), oligonucleotides (Promega), and [α-32P] UTP 

(3000 Ci/mmol; Perkin Elmer) to produce a 73-nucleotide 32P-labeled RNA [38] [39] [40].  RNA 
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was purified using a 10% PAGE 8 M urea gel, eluted by rocking with RNase-free Maxam Gilbert 

Elution buffer (0.3 M sodium acetate, pH 5.2), and precipitated with ethanol.  Following the 

precipitation, RNA was resuspended with DEPC-treated water and specific activity was 

quantified by scintillation counting [33].  Radiolabeled RNA was stored at -80ºC until further use. 

IRP RNA Binding Assays 

IRP RNA binding was analyzed using cytosolic cell lysates to assess spontaneous IRP1 

and IRP2 and total IRP RNA binding activity.  Spontaneous IRP RNA binding was determined 

by incubating radiolabeled RNA (1 nM) with 10 µg of cell extracts, 20 mg/L bovine serum 

albumin, and gel-shift buffer containing 5% glycerol, 1 mM magnesium acetate, 20 mM HEPES, 

and 7.5 mM potassium chloride for 10 min on ice.  Additionally, 3 µL of heparin (5 g/L) was 

added to each reaction [33].  Total IRP1 RNA binding activity was determined by incubating a 

separate set of reactions (described above) with 2% β-mercatoethanol at room temperature for 30 

min, followed by the addition of heparin. Reactions were loaded into a 2% polyacrylamide gel 

containing 60:1 acrylamide to bis-acrylamide following a pre-warming period at 150 V for 30 

min.  Samples were electrophoresed for 65-75 min at 150 V.    After electrophoresis, the gel was 

transferred to filter paper and the gel was vacuum-dried (Hydrotech Vacuum Pump; Bio-Rad, 

Hercules, CA) for 2 hours.  Radioisotope imaging was completed with a Personal Molecular 

Imager FX system and a Phosphor K imaging screen (Bio-Rad, Hercules, CA).  Quantification of 

IRP RNA binding activity was evaluated using OptiQuant Acquisition & Analysis software 

(Packard Bioscience, Meridien, CT) and reported as DLU.  A standard curve of known 

radiolabeled RNA was vacuum dried on the filter paper and quantified simultaneously.  The 

background was estimated by scanning the area between the standard curve and the free 

radiolabeled RNA and was subtracted from the bound RNA.  Counts per minute (CPM) of the 

standard curve were measured on a Liquid Scintillation Analyzer Tri-carb 2900TK (PerkinElmer, 
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Waltham, MA). The specific activity of IRP RNA binding was calculated based on the standard 

curve and reported as fmol RNA/mg protein.    

Lentiviral vector construction and virus packaging 

Human primary miR-181d or miR-210 PCR products were ligated with T4 ligase 

(Promega) into pLVX-puro lentiviral vector (Clontech).  Products were ligated downstream of the 

cytomegalovirus promotor (CMV)-driven enhanced green fluorescent protein (EGFP).  Packaging 

of the pLVX-puro expression construct into high titre lentivirus was performed by co-transfecting 

the lentivector and Lenti-X HT packaging plasmids (Clontech) with jetPEI DNA transfection 

reagent (Polyplus Transfection, New York, NY) into 293T packaging cells.  The supernatant was 

collected and concentrated.  Titre was determined and lentivirus was stored at -80ºC until further 

use.  A lentiviral control vector containing a scrambled sequence was used as a negative control.  

Transduction/Infection of N2A cells with Lentiviruses 

N2A cells were plated in complete medium and incubated at 37ºC with 5% CO2.  After 

24 hours, cells were transduced in low serum media (OptiMEM) with a multiplicity of infection 

(MOI) 100 with lentiviral particles for miR-scrambled control, miR-181d, or miR-210 in the 

presence of 8 µg/mL of polybrene.  After an overnight incubation, medium was replaced with 

fresh complete medium and incubated for an additional two days.  RNA and protein were 

harvested for analysis of transduced cells.  Green fluorescent protein (GFP) was confirmed with 

fluorescence imaging on a Nikon Eclipse (Nikon Instruments, Melville, NY) inverted microscope 

and EXFO X-Cite 120PC (Excelitas Technologies, Waltham, Massachusetts) fluorescence light 

source. 

SDS-PAGE and Immunoblotting 
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Cytosolic extracts were denatured by heating with 5X Laemelli buffer for 5 min at 95ºC.  

Samples were electrophoresed on a 10% SDS-PAGE gel for approximately 60-70 min in SDS-

PAGE running buffer and then transferred to a nitrocellulose membrane overnight in transfer 

buffer for 1000 mA hours.  Primary antibodies for Idh1(diluted 1:1000, Abcam), Cygb (diluted 

1:1000, Cell Signaling Technology), Bcl2 (diluted 1:500, Cell Signaling Technology) and α-

tubulin (diluted 1:1000, Abcam), and secondary antibody to rabbit IgG-HRP (diluted 1:25000, 

SouthernBiotech) were used to for immunoblotting.  To detect the antibodies, SuperSignal West 

PICO or FEMTO chemiluminescent substrate (ThermoFisher) was added to the membrane for 5 

min and chemiluminescence was measured on a FluorChem R (ProteinSimple, San Jose, CA).  

Results were analyzed with AlphaView software version 3.4 from Protein Simple (San Jose, 

California) using α-tubulin as the control.  

Statistical Analysis 

SPSS statistical software version 23 (IBM-SPSS, IL) was used to analyze the significance 

of treatment effects by Student’s T-tests and one-way ANOVA for multiple comparisons 

followed by Tukey post-hoc analysis when necessary.   All tests were performed at the 95% 

confidence level (α = 0.05).  Descriptive statistics were calculated on all variables to include 

means, standard deviations, and standard error of the mean.   
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RESULTS 

Following 21-days on a low iron diet, iron-deficient (ID) animals exhibited decreased 

hemoglobin, hematocrit, and red blood cells (RBC) (Table 1).  Hemoglobin levels significantly 

decreased with dietary iron restriction in ID animals (6.29 ± 0.4) compared to control (C) (13.16 

± 0.2) and pair-fed (PF) (13.39 ± 0.2) animals.  Hematocrit levels significantly decreased in ID 

animals (20.33 ± 1.5) compared to C (42.75 ± 0.7) and PF (43.17 ± 0.6) animals.  RBC counts 

significantly decreased in ID animals (4.1 ± 0.3) compared to C (6.4 ± 0.1) and PF (6.5 ± 0.1) 

animals.  The reduction in blood iron levels were further supported by ~50% and ~10% decreases 

in liver and brain non-heme iron, respectively (Table 1).  ID animals weighed ~10% less than the 

C group at the end of the experimental period (Table 1 and Figure 1).  Additionally, beginning at 

day 12 and for the remainder of the study period ID and C body weights reached statistical 

significance; therefore, the PF group was fed an iron sufficient diet to the level of the ID group’s 

consumption.  Notably, there were no differences in final body weight or rate of weight gain 

between PF and ID groups (Table 1 and Figure 1).  These results are consistent with previous 

findings indicating ID animals exhibit decreased food intake and lower body weight compared to 

C animals [28].  All subsequent animal analyses were made utilizing the PF group instead of the 

C group to alleviate any non-specific changes due to unequal food intake.   
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Table 1 Hematological variables and non-heme iron concentrations in rats fed a control (C), pair-

fed (PF) or iron-deficient (ID) diet. 1  

 C PF ID 

Dietary Fe, mg/kg 50 50 <2-6 

Body wt. (g) 240.1 ± 6.8a 223.7 ± 6.8b 220.4 ± 6.3b 

Hemoglobin (d/dL) 13.2 ± 0.2a 13.4 ± 0.2a 6.3 ± 0.4b 

Hematocrit (%) 42.8 ± 0.7a 43.2 ± 0.6a 20.3 ± 1.5b 

RBC (cells/µL) 6.4 ± 0.1a 6.5 ± 0.1a 4.1 ± 0.3b 

Liver Iron (μg/g) 62.0 ± 8.0a 50.2 ± 6.0a 25.6 ± 3.3b 

Brain Iron (μg/g) 13.8 ± 0.3a 14.2 ± 0.5a 12.8 ± 0.3b 

1 Values are mean ± SEMs, n = 12/group. Different superscript letters in a row indicate statistical 

significant (P < 0.05).  

 

 

Figure 1 Body weights were monitored throughout the 21 d experimental period.  At d 12 and 

thereafter, both the PF and ID groups gained significantly less weight than the control group.  

Asterisk indicates weight gain in control animals reached statistical significance compared to PF 

and ID animals.   
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Original miRNA identification of significantly elevated liver miR-181d and miR-210 in 

response to dietary ID was identified previously (Clarke and Davis unpublished).  Consistent with 

our original results, miR-210 miRNA abundance exhibited a 2-fold increase in the ID livers 

(Figure 2).  Although miR-181d miRNA abundance increased ~30% in response to ID, it was not 

significantly elevated (Figure 2) in ID livers.  Based on these findings, we decided to pursue both 

miRNAs in part based on their species conservation (Figures 3A and 4A) and the understanding 

that mammalian miRNA are expressed at low levels that may be difficult to detect [10].  

 

Figure 2 Relative miRNA expression of miR-181d and miR-210 in pair-fed (PF) and iron 

deficient (ID) rat liver (n= 6/group) using RT-qPCR TaqMan assays. miRNA expression was 

normalized to 4.5S.  Data is reported as mean ± standard error of the mean (SEM).  Error bars 

represent SEM.  Asterisk indicates differences between samples were statistically significant, 

p<0.05. 
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miR-181d 5’ AACAUUCAUUGUUGUCGGUGGGU 3’ 

    3’ UGGGUGGCUGUUGUUACUUACAA 5’ 

 

Mus musculus  

   acaauua         g ug          guga  ag  

5'        acauucauu u  ucgguggguu    gg  g 

          ||||||||| |  ||||||||||    ||    

3'        uguaaguag g  ggccacccag    cc  c 

   -ugucac         g --          ---a  ga 

Rattus norvegicus 

   ---       auua         g ug          guga  ag  

5'    ggucaca    acauucauu u  ucgguggguu    gg  a 

      |||||||    ||||||||| |  ||||||||||    ||    

3'    ucggugu    uguaaguag g  ggccacccag    cc  a 

   ggg       -cac         g --          ---a  ag 

Homo sapiens 

      ga       auca         g ug          guga  a u  

5' gcc  ggucaca    acauucauu u  ucgguggguu    gg c g 

   |||  |||||||    ||||||||| |  ||||||||||    || |   

3' cgg  ucggugu    uguaaguag g  ggccacccag    cc g a 

      -g       -cac         g --          ---a  - g 

Idh1 3’UTR 

Mus musculus  

     3' ugGGUGGCUGUUG--UUACUUACAa 5' mmu-miR-181d 

          ::|::| || |  |||||||||  

 173:5' agUUAUUGCCACCUUAAUGAAUGUg 3' Idh1 3’UTR 

Rattus norvegicus 

     3' ugGGUGGCUGUUG--UUACUUACAa 5' rno-miR-181d 

          ::|::| || |  |||||||||  

 171:5' agUUAUUGCCACCUUAAUGAAUGUg 3' Idh1 3’UTR 

Homo sapiens 

            3' uggguggCUGUUGUUACUUACAa 5' hsa-miR-181d 
               |||  :: |||||||  

 532:5' uuguaaaGACCUUGCUGAAUGUu 3' IDH1 3’ UTR 

Figure 3 miR-181d is highly conserved among species (A) step-loop sequence with mature miR-

181d sequence (bolded) conservation among species; (B) Predicted binding site for the miR-181d 

seed sequence (bolded) in the 3’UTR of Idh1 of mus musculus, rattus norvegicus, and homo 

sapiens.  Numbers preceding the 5’ end of Idh1 indicate the starting position in the 3’ UTR. 

 

A 

B 
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miR-210  5’ AGCCACUGCCCACCGCACACUG  3’ 

    3’ GUCACACGCCACCCGUCACCGA  5’ 

 

Mus musculus  

   cc  gg -a  cc u     cu    a     a   cc   -      c  c   gc  

5'   gg  c  gu  c ccagg  cagg cagcc cug  cac cgcaca ug guu  u 

     ||  |  ||  | |||||  |||| ||||| |||  ||| |||||| || |||    

3'   cc  g  cg  g ggucc  gucu gucgg gac  gug gcgugu ac cag  c 

   --  aa cg  ac -     cu    a     c   -a   u      c  c   gc  

 

Rattus norvegicus 

 

   cc  gg -a  cc u     cu    a     a   cc    -     c  c   gc  

5'   gg  c  gu  c ccagg  cagg cagcc cug  caca gcaca ug guu  u 

     ||  |  ||  | |||||  |||| ||||| |||  |||| ||||| || |||    

3'   cc  g  cg  g ggucc  gucu gucgg gac  gugu cgugu ac cag  c 

   --  aa cg  ac -     cu    a     c   -a    g     c  c   gc  

 
Homo sapiens 

 

   accc  ca    -c           gg     c   cc   -      c  c -      

5'     gg  gugc  uccaggcgcag  cagcc cug  cac cgcaca ug g cugc  

       ||  ||||  |||||||||||  ||||| |||  ||| |||||| || | ||| c 

3'     cc  cgcg  ggguccguguc  gucgg gac  gug gcgugu ac c gacc  

   ---c  ag    ac           ua     c   -a   u      c  c a  

 

Cygb 3’UTR 

Mus musculus  

     3' agucggcgacaGU-GUGCGUGUc 5' mmu-miR-210 

                   || ||||||||  

 378:5' caucucuagagCAUCACGCACAc 3' Cygb 3’UTR 

 

Rattus norvegicus 

 

     3' ucGGCGAC-AGU-GUGCGUGUc 5' rno-miR-210 

          || |||  || ||||||||  

 373:5' caUCUCUGAGCAUCACGCACAc 3' Cygb 3’ UTR 

 

Homo sapiens 

 

     3' agucggcgaCAGUGUGCGUGUc 5' hsa-miR-210 

                 ||  ||||||||  

 368:5' ccaucuagaGUAUCACGCACAc 3' CYGB 3’ UTR 

Figure 4 miR-210 is highly conserved among species (A) step-loop sequence with mature miR-

210 sequence (bolded) conservation among species; (B) Predicted binding site for the miR-210 

seed sequence (bolded) in the 3’UTR of Cygb of mus musculus, rattus norvegicus, and homo 

sapiens.  Numbers preceding the 5’ end of Cygb indicate the starting position in the 3’ UTR. 

 

A 
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To identify potential target genes of miR-181d and miR-210, we utilized the 

bioinformatics algorithm miRWalk [34].  Based on the recommended approach of identifying ≥7 

nucleotide matches in the target gene seed sequence and species conservation [10], we identified 

isocitrate-dehydrogenase 1 (Idh1) as a predicted target of miR-181d and cytoglobin (Cygb) as a 

predicted target of miR-210.  Both targets exhibited seed sequence evolutionary conservation in 

mus musculus, rattus norvegicus, and homo sapiens (Figure 3B and 4B). Idh1 selection was 

further supported when gene expression microarray analysis revealed a 45% reduction in Idh1 

FPKM abundance (Table 3) and RT-qPCR resulted in a ~20% reduction in Idh1 mRNA 

abundance in ID animal livers (Figure 5).  Contrary to Idh1’s response to ID in the liver, Cygb 

resulted in no change in the microarray (Table 3) and was significantly elevated ~30% based on 

RT-qPCR analyses (Figure 5).   

To support the reduction of iron in ID animal liver (Table 1), we assessed the liver’s 

response to the dietary iron deficiency by assessing the liver-specific peptide hormone, hepcidin 

(Hamp1), and the diferric transferrin carrier protein, transferrin receptor (Tfrc).  Indeed, 

microarray data indicated Hamp1 was significantly reduced by 8.43-fold and Tfrc was 

significantly elevated by 2.48-fold in ID animals (Table 3).  RT-qPCR further reinforced these 

results as Hamp1 mRNA abundance was reduced by more than 90% and Tfrc mRNA abundance 

increased by ~5.5-fold (Figure 5).   

Based on the recent identification of Idh1 mutations in low-grade gliomas [41] and high 

levels of Cygb gene expression in the brain [42], we hypothesized Idh1 and Cygb would be 

differentially expressed in response to ID in the brain.  As expected, Idh1 mRNA abundance was 

significantly reduced by ~20% in the frontal cortex (Figure 6).  Although not significant, Cygb 

mRNA abundance was reduced by ~15% (p = 0.089) (Figure 6).  Additionally, we evaluated the 

biological responses of miR-181d and miR-210 in ID animal frontal cortex and found neither 

miRNA to be significantly changed (Figure 7). 
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Table 2 LC Sciences microarray FPKM estimated abundance values in pair-fed (PF) vs. iron-

deficient (ID) rat liver.  

Gene Symbol PF ID Fold-

change 

P-value 

      

Isocitrate 

dehydrogenase 1 

 

Idh1 90.09 49.99 -0.85 0.00005 

Isocitrate 

dehydrogenase 2 

 

Idh2 43.19 54.58 0.34 0.124 

Cytoglobin Cygb 1.24 1.59 0.35 1.0 

      

Hypoxia inducible 

factor-1α 

Hif-1α 3.83 2.24 -0.77 0.0009 

      

Hepcidin 

 

Hamp1 1447.87 4.20 -8.43 0.00005 

      

Transferrin receptor  

 

Tfrc 4.15 23.20 2.48 0.00005 

 

 

 

 



121 
 

 

Figure 5 Relative mRNA Expression of Cygb, Idh1, Hamp1, and Tfrc in pair-fed (PF) and iron 

deficient (ID) rat livers (n= 12/group) using RT-qPCR. mRNA expression was normalized to 

ribosomal protein L 19 (Rpl19) expression.  Data reported as mean ± standard error of the mean 

(SEM).  Error bars represent SEM.  Asterisk indicates differences between samples were 

statistically significant, p<0.05. 

 

 

Figure 6 Relative mRNA Expression of Idh1, Cygb, and Bcl2 in pair-fed (PF) and iron deficient 

(ID) rat frontal cortex (n= 12/group) using RT-qPCR. mRNA expression was normalized to 

ribosomal protein L 19 (Rpl19) expression.  Data reported as mean ± standard error of the mean 

(SEM).  Error bars represent SEM. Asterisk indicates differences between samples were 

statistically significant, p<0.05. 
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Figure 7 Relative miRNA Expression of miR-181d and miR-210 in pair-fed (PF) and iron 

deficient (ID) rat frontal cortex (n= 12/group).  RT-qPCR was performed with TaqMan 
®MicroRNA assays. miRNA expression was normalized to 4.5S.  Data are representative of three 

independent experiments and are presented as mean ± standard error of the mean (SEM).  Error 

bars represent SEM.  Asterisk indicates differences between samples were statistically significant, 

p<0.05. 
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8A).  The addition of the miRNA mimics had no significant effects on relative luciferase activity 

of the Idh1 subs (Figure 9), or the Cygb ∆ and Cygb subs (Figure 10).  Together, these results 

indicate Idh1 is an established target of miR-181d and Cygb is an established target of miR-210.  

Additionally, the intact seed sequence is critical for the miRNA and target gene interaction to 

occur.   

 

Idh1 3’ UTR 

     3' ugGGUGGCUGUUG--UUACUUACAa 5' mmu-miR-181d 

          ::|::| || |  |||||||||  

 173:5' agUUAUUGCCACCUUAAUGAAUGUg 3' Idh1 3’UTR 

 DEL:5' agTTATTGCCACCTTA....ATGTg 3' Idh1 3’UTR 

 SUB:5' agTTATTGCCACCTTATACTATGTg 3' Idh1 3’UTR 

 

 

Cygb 3’ UTR 

        3' agucggcgacaGU-GUGCGUGUc 5' mmu-miR-210 

                   || ||||||||  

    378:5' caucucuagagCAUCACGCACAc 3' Cygb 3’UTR 

    DEL:5' caucucuagagCAUC....ACAc 3' Cygb 3’UTR 

    SUB:5' caucucuagagCAUCTGCGACAc 3' Cygb 3’UTR 

 

 

 

Figure 8 Luciferase reporter constructs.  Site-directed mutagenesis was used to mutate the seed 

sequence in the 3’ UTR of (A) Idh1 and (B) Cygb by deletion (DEL) of 4 nucleotides or by 

substitution (SUB) of 4 nucleotides. 
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Figure 9 Idh1 3’ UTR is a direct target of miR-181d.   miR-181d overexpression in HEK293T 

cells inhibits luciferase activity of a pMIR-REPORT luciferase construct containing the 3’UTR of 

Idh1.  Idh1 substitution (subs) harbors a 4 nucleotide mutation from the miR-181d target site in 

the 3’ UTR of Idh1.  Data are representative of three independent experiments and are presented 

as mean ± standard error of the mean (SEM).  Error bars represent SEM.  *P<0.05.  Idh1 

indicates Isocitrate dehydrogenase 1; UTR, untranslated region. 
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Figure 10 Cygb 3’ UTR is a direct target of miR-210.   miR-210 overexpression in HEK 293T 

cells inhibits luciferase activity of a pMIR-REPORT luciferase construct containing the 3’UTR of 

Cygb, however does not affect Cygb ∆ or Cygb subs.  Cygb ∆ (deletion) is missing 4 nucleotides 

from the miR-210 target site in the 3’ UTR of Cygb and Cygb substitution (subs) harbors a 4 

nucleotide mutation from the miR-210 target site in the 3’ UTR of Cygb.  Data are representative 

of three independent experiments and are presented as mean ± standard error of the mean (SEM).  

Error bars represent SEM.  *P<0.05.  Cygb indicates Cytoglobin; UTR, untranslated region. 
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miRNA have been implicated to interact with up to 60% of protein coding genes, 

however, many mammalian miRNA are expressed at low levels [10].  The current biological 

model of ID in the brain exhibited miR-181d and miR-210 expression levels changes that were 

too low to be detected.  Based on the marginal, although significant, changes in non-heme iron in 

the brain (Table 1) and literature supporting a diverse distribution of iron across brain tissue 

during ID [43], it can also be postulated that miR-181d and miR-210 may have stabilized in the 

brain at the 21-day animal sacrifice time point.  To address these biological limitations, we 

utilized an in vitro model to assess miR-181d and miR-210 responses to iron deprivation.  Neuro 

2A (N2A) cells were treated with 100 µM of the iron chelator desferrioxamine for 18 hours.  As 

expected, iron chelation resulted in significantly induced spontaneous IRP1 and IRP2 RNA 

binding activity (Figure 11A-C).  Additionally, total IRP RNA binding was also induced with 

iron chelation; indicating more cytosolic aconitase is present in desferrioxamine treated lysates 

(Figure 11D).  An increasing dose treatment of N2A cells with desferrioxamine resulted in 

significant increases in Tfrc mRNA abundance at all doses (Figure 12).  Interestingly, the dose 

response resulted in a subsequent decrease in Idh1 mRNA abundance that leveled off at ~50% 

reductions in the 50 and 100 µM treatment groups and resulted in an increase in Cygb mRNA 

abundance in the 50 and 100 µM treatment groups (Figure 12).  Iron treatments with ferric 

ammonium citrate (FAC) and hemin did not alter Cygb mRNA abundance, but did significantly 

reduce Tfrc mRNA abundance (Figure 13).  Hemin treatment did increase Idh1 mRNA 

abundance. 
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Figure 11 N2A cell response to iron chelation.  (A) Spontaneous and (B) total Iron Regulatory 

Protein (IRP) RNA binding activity in N2A cells treated with desferrioxamine (DFO). 2% BME 

was used to induce total binding.  Quantitative analysis of (C) spontaneous and (D) total IRP 

RNA binding activity.   Data are representative of two independent experiments and are presented 

as mean ± standard error of the mean (SEM).  Error bars represent SEM.  Asterisk indicates 

differences between samples were statistically significant, p<0.05. 
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Figure 12 Relative mRNA expression of Idh1, Cygb, and Tfrc in N2A cells treated with 

increasing amount of desferrioxamine (DFO) for 18 hours.  Total RNA was extracted, reverse 

transcribed, and RT-qPCR analysis was performed.  The mRNA expression levels of Idh1, Cygb, 

and Tfrc were normalized to glyceraldehyde 3-phosphate dehydrogenase (Gapdh).  Data are 

representative of three independent experiments and are presented as mean ± standard error of the 

mean (SEM).  Error bars represent SEM.  Different superscript indicates differences between 

samples were statistically significant, p<0.05. 
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Figure 13 Relative mRNA expression of Idh1, Cygb, and Tfrc1 in N2A cells treated with 100 µM 

desferrioxamine (DFO), 100 µg/mL ferric ammonium citrate (FAC), or 100 µM hemin.  Total 

RNA was extracted, reverse transcribed, and RT-qPCR analysis was performed.  The mRNA 

expression levels of Idh1, Cygb, and Tfrc were normalized to glyceraldehyde 3-phosphate 

dehydrogenase (Gapdh).  Data are representative of three independent experiments and are 

presented as mean ± standard error of the mean (SEM).  Error bars represent SEM.  Different 

superscript indicates differences between samples were statistically significant, p<0.05. 
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Based on the knowledge that desferrioxamine is a hypoxia-mimetic [44] and that Cygb 

has been shown to be upregulated in response to hypoxia and has a hypoxia response element in 

its promotor region [45], [46], we sought to determine if N2A cell alterations were due to an 

oxygen-dependent regulation.  Following an 18 hr treatment with 1% oxygen, Cygb and Tfrc 

mRNA levels had no significant differences, however, Idh1 mRNA abundance was significantly 

reduced and an established target of hypoxia inducible factor-1α, glucose transporter 1 (Glut1), 

was significantly elevated (Figure 14A).  Interestingly, Idh1 protein levels were not reduced in 

response to hypoxia, but quantitative analysis revealed they were significantly reduced in 

response to iron chelation treatment (Figure 14B).  Cygb protein levels were significantly 

increased in response to hypoxia and were increased ~30% in response to desferrioxamine 

treatment, although not significant (Figure 14C).  Lastly, miR-181d and miR-210 were both 

significantly increased in response to hypoxia and only miR-210 was significantly increased in 

response to iron chelation (Figure 15). 
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Figure 14 Relative mRNA expression and western blot analysis N2A cells treated with 

desferrioxamine (DFO) or 1% oxygen.  (A) mRNA abundance of Idh1, Cygb, Glut1, and Tfrc1.  

Total RNA was extracted, reverse transcribed, and RT-qPCR analysis was performed.  The 

mRNA expression levels of Idh1, Cygb, Glut1, and Tfrc were normalized to glyceraldehyde 3-

phosphate dehydrogenase (Gapdh).  (B) Representative immunoblots and quantitative analysis of 

protein band intensity of Idh1 normalized to α-tubulin.   (C) Representative immunoblots and 

quantitative analysis of protein band intensity of Cygb normalized to α-tubulin.   Data are 

representative of two-three independent experiments and are presented as mean ± standard error 

of the mean (SEM).  Error bars represent SEM.  Different superscript indicates differences 

between samples were statistically significant, p<0.05. 
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Figure 15 Relative miRNA Expression of miR-181d and miR-210 in N2A cells treated with 

desferrioxamine (DFO) or 1% oxygen.  RT-qPCR was performed with TaqMan ®MicroRNA 

assays. miRNA expression was normalized to 4.5S.  Data are representative of three independent 

experiments and are presented as mean ± standard error of the mean (SEM).  Error bars represent 

SEM.  Asterisk indicates differences between samples were statistically significant, p<0.05. 

  

 To overcome the undetectable change in miR-181d and to further support the miR-210 

changes in N2A cells treated with desferrioxamine, we decided to overexpress miR-181d and 

miR-210 in N2A cells to determine if the higher level of each miRNA would be detectable and if 

they would sequentially repress their respective potential gene targets, Idh1 and Cygb.  To test 

this hypothesis, we used lentiviral particles containing the human primary miR-181d or miR-210 

sequences downstream of the cytomegalovirus promotor (CMV)-driven enhanced green 

fluorescent protein (EGFP).  N2A cells were transduced with the lentiviral particles in complete 

medium in the presence of 8 µg/mL of polybrene.  GFP was confirmed in N2A cells with 

fluorescence imaging (Figure 16).  Consistent with GFP positivity, miR-181d and miR-210 

miRNA abundances were significantly elevated compared to the miRNA scrambled control 

(miR-SCR) as detected with TaqMan RT-qPCR assays (Figure 17A-B).  Although no significant 

changes were detected in Idh1 mRNA abundance or established miR-181d target Bcl2 [47] 

(Figure 18A), Idh1 protein levels were significantly reduced compared to the lentiviral miR-SCR 

(Figure 19A-B).  Neither mRNA abundance of Cygb and established target of miR-210, Iscu [48] 
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(Figure 18B), or protein levels of Cygb were significantly altered following miR-210 

overexpression (Figure 20A-B). 

 

 

 

 

Figure 16 Green fluorescence protein (GFP) in N2A cells treated with miRNA scrambled control 

(miR-SCR), miR-181d, or miR-210 lentiviral particles for 72 hours.  Cells images were 

visualized with an inverted light microscope and GFP images were visualized with fluorescence 

imaging.  Data are representative of three independent experiments. 
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Figure 17 Relative (A) miR-181d and (B) miR-210 abundance in N2A cells treated with miR-

control, miR-181d, or miR-210 lentiviral particles for 72 hours.  RT-qPCR was performed with 

TaqMan assays. miRNA expression was normalized to 4.5S.  Data are representative of three 

independent experiments and are presented as mean ± standard error of the mean (SEM).  Error 

bars represent SEM.  Different superscript indicates differences between samples were 

statistically significant, p<0.05. 

 

 

 

Figure 18 Relative mRNA expression of (A) Idh1 and Bcl2, (B) Cygb and Iscu in N2A cells 

treated with miR-control, miR-181d, or miR-210 lentiviral particles for 72 hours.  Total RNA was 

extracted, reverse transcribed, and RT-qPCR analysis was performed.  The mRNA levels were 

normalized to glyceraldehyde 3-phosphate dehydrogenase (Gapdh).  Data are representative of 

three independent experiments and are presented as mean ± standard error of the mean (SEM).  

Error bars represent SEM. Different superscript indicates differences between samples were 

statistically significant, p<0.05. 
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Figure 19 Western blots analysis of N2A cells treated with miR-scrambled control or miR-181d 

lentiviral particles for 72 hours.  (A) Representative immunoblots of cells alone, miR-scrambled 

control (miR-SCR), and miR-181d lysates.  (B) Quantitative analysis of protein band intensity of 

Idh1 normalized to α-tubulin.   Data are representative of three independent experiments and are 

presented as mean ± standard error of the mean (SEM).  Error bars represent SEM.  Different 

superscript indicates differences between samples were statistically significant, p<0.05. 
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Figure 20 Western blots analysis of N2A cells treated with miR-scrambled control or miR-210 

lentiviral particles for 72 hours.  (A) Representative immunoblots of cells alone, miR-scrambled 

control (miR-SCR), and miR-210 lysates.  (B) Quantitative analysis of protein band intensity of 

Cygb normalized to α-tubulin.   Data are representative of three independent experiments and are 

presented as mean ± standard error of the mean (SEM).  Error bars represent SEM.  Different 

superscript indicates differences between samples were statistically significant, p<0.05. 
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Discussion 

 

It has been well established that miRNA are involved in the coordination of many cellular 

processes including iron homeostasis [26] [25].  miRNA have been reported to regulate cell 

proliferation, tumor suppression, and DNA repair [47] [49] [50].  In the present work, we 

demonstrate iron deficiency alters miR-181d and miR-210 expression and in succession miR-

181d targets cytosolic Idh1.  Following 21-days on an iron deficient diet, Idh1 expression was 

significantly decreased in both liver and frontal cortex tissues.  Additionally, iron chelation and 

miR-181d overexpression in N2A cells led to decreases in Idh1 mRNA abundance and protein 

levels.  Together, our data provide evidence that miR-181d are key regulatory molecules involved 

in the molecular coordination of iron homeostasis.   

Iron homeostasis has been well established to be coordinated at two levels [23] [24] [51].  

First, systemic control is achieved by the liver-specific peptide hormone, hepcidin.  Hepcidin 

responds to iron availability; thus, in high iron conditions hepcidin levels increase resulting in the 

reduction of dietary iron absorption and the prevention of iron release from the reticuloendothial 

system [24].  In contrast, in low iron conditions hepcidin levels are reduced allowing for the 

absorption and recycling of iron [51].  The second level of iron coordination occurs at the cellular 

level via IRP RNA binding proteins, IRP1 and IRP2.  Like hepcidin, IRPs respond to iron 

availability.  When iron is available, IRP1 attains an enzymatic form as a cytosolic aconitase and 

IRP2 is targeted for proteasomal degradation by FBXL5 [23].  In low iron conditions, both IRPs 

switch to RNA binding proteins and prevent translation of mRNA with 5’ IREs or stabilize 

mRNA with 3’ IREs [23].  Collectively these pathways play a contributory role in processes that 

require iron.  For instance, when iron is limited, oxygen carrying capacity is diminished because 

heme, hemoglobin, and erythroid maturation is reduced [52].  This is partially controlled by IRPs 

as they posttranscriptionally regulated the erythroid-specific δ-aminolevulinic acid synthase 2 
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(Alas2), thus limiting the first enzymatic reaction in the biosynthesis of heme [19] [23].  Another 

example of iron influence involves the perinatal brain; iron deficiency results in alterations and 

reduced formation of myelin despite IRPs coordinating the adaptive response by stabilizing Tfrc 

and divalent metal transport 1, while simultaneously limiting translation of the iron storage 

protein, ferritin [3] [53].   Overall, these examples elude to the complex role iron status and iron 

homeostasis have on various cell types.   

Our study supports the role miRNA play in iron homeostasis, thus adding another level of 

cellular regulation in addition to IRPs.  It also supports previous evidence that iron deficiency 

results in tissue and cell type specific responses [4] [54].  For example, our data indicate both the 

liver and frontal cortex are iron deficient by evaluation of non-heme iron, however, both miR-

181d and miR-210 are only upregulated in liver tissue.  Certainly, endogenous miRNA changes 

may be difficult to detect in the brain due to lower iron levels than the liver.  The reduction in 

non-heme iron levels in ID rat livers was approximately 50% while the reduction in ID rat frontal 

cortices was only 10%.  Additionally, the different methods of miRNA profiling may not be 

consistent [55]. We previously identified miR-181d using a conservative approach by combining 

multiple bioinformatics program’s output (Clarke and Davis, unpublished).  In the set of animal 

livers used for this study, miR-181d was not significantly elevated using TaqMan assays, despite 

the similar degree of animal iron deficiency seen in the previous experimental animals.  This 

disparity in miRNA expression among our two identification approaches, bioinformatics and 

TaqMan assays, is consistent with other reports indicating miRNA identification techniques are 

inconsistent [55].  Nevertheless, the two sets of animal experimental tissues did find consistent 

responses when comparing a gene expression microarray and RT-qPCR data.  Both approaches 

found iron deficiency resulted in a decrease in Idh1 gene expression in liver and frontal cortex.  

Additionally, the microarray and RT-qPCR results reinforced miR-181d gene regulation when 

two validated targets of miR-181d, K-ras and Bcl2, were significantly repressed [47].   
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The miR-181 family were originally identified to be highly expressed in B-lymphoid 

cells in the bone marrow.  As it turns out, there are four identified members of the miR-181 

family, a-d.  miR-181a and miR-181b reside within a different chromosomal region (chr9) than 

miR-181c and miR-181d (chr19), yet when processed into their mature miRNA form they 

maintain the same ‘seed sequence’ [56] [57].  This suggests the family may overlap in their 

regulation of genes, potentially in a tissue specific manner.  Indeed, miR-181a was recently 

identified to regulate lipid metabolism through its interaction with Idh1 [58].  Thus, our 

identification of the miR-181d interaction with Idh1, though still novel based on iron status 

regulating miR-181d, suggests redundancy in the miR-181 family. In support of redundancy, after 

review of potential miR-181d gene targets, miRWalk and TargetScan both show the miR-181 

family to target many of the same genes.  Furthermore, redundancy in miRNA families has been 

suggested in plants [10].  As such, it is still critical to evaluate each family member and our 

analysis of miR-181d supports its role in lipid metabolism in the liver and brain.  Our gene 

expression microarray and our previous literature provide evidence fatty acid synthesis may be 

enhanced in the liver via the increases in fatty acid synthase (Fas) and ATP citrate lyase (Acly) 

[59].  On the contrary, Fas and Acly gene expressions were significantly reduced in iron deficient 

N2A cells which could result from a decrease in the substrate citrate following the reduction of 

Idh1 gene expression (data not shown).  Together, these data indicate the miR-181 family may be 

somewhat redundant, however, the overlap exists in a tissue specific manner.  Additionally, the 

tissue specific response in the rodent model may be over exaggerated due to the comparison of 

the ID animals with the PF group instead of an animal fed ad libitum.  We have previously shown 

plasma cortisol levels are elevated in PF animals compared to ID animals and glucose, insulin, 

and triglycerides are decreased in PF animals compared to ID animals [59].  These findings 

suggest our model to control for energy intake may have alternatively influenced metabolic 

responses in fatty acid synthesis.  Furthermore, it has been established PF animals generally 
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consume all food shortly after provided or are considered to be meal-fed.  This has the potential 

to impact metabolic response due to the extensive fasting period between meals [60].     

Until now, there is limited evidence dietary nutrients modulate miRNA expression and 

our lab was the first to demonstrate dietary iron deficiency differentially regulates miRNA with 

the identification of miR-181d and miR-210 (Clarke and Davis unpublished).  Furthermore, 

luciferase assays and western blots confirmed Idh1 is a direct target of miR-181d.  Luciferase 

assays also confirm Cygb is a direct target of miR-210, however, our animal and tissue culture 

analyses suggest this target has more layers of regulation.  Our data suggests Cygb expression 

increases following a 21-day restricted iron diet in the liver yet does not change in the frontal 

cortex.  Likewise, our tissue culture model supports the increase of Cygb expression following 

iron chelation.  While the function of Cygb is still under debate, it is known to be ubiquitously 

expressed and have high expression levels in the brain [42].  Additionally, Cygb contains a 

hypoxia response element (HRE) in its promotor region and has been shown to be upregulated in 

response to hypoxia [45].  Certainly, the iron chelator desferrioxamine is a hypoxia-mimetic and 

treatment of N2A cells increased a well-established target of hypoxia inducible factor-1α (Hif-

1α), Glut1, as well as Cygb mRNA and protein (Figure 14).  The level of Cygb elevation varies 

dramatically when comparing the usage of desferrioxamine and hypoxia.  Cygb expression is 

increased almost 4-fold when comparing hypoxia to desferrioxamine treatment.  To complicate 

matters further, recent literature has emerged indicating miR-210 and Hif-1α regulate each other 

[60].  Therefore, it is reasonable to speculate iron deficiency would result in enhanced oxygen 

signaling based on the reduction in oxygen-carrying capacity of hemoglobin and miR-210, Hif-

1α, and Cygb form a regulatory circuit in an effort to balance oxygen signaling and iron supply.  

Additionally, based on miR-210 established regulatory role of the iron sulfur cluster assembly 

gene, Iscu, it certainly can be speculated it regulates the usage of iron [48].   In fact, miR-210 was 
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recently identified as targeting ferrochelatase which provides iron molecules in the last step of 

heme biosynthesis [62].   

Together, our results demonstrate iron deficiency increases the expression of miR-181d 

and miR-210.  Although Cygb was only demonstrated to be regulated by miR-210 with luciferase 

assays, Idh1 was validated more extensively.  Idh1 was confirmed to be repressed with luciferase 

assays and lentiviral particle overexpression.  Furthermore, we have promising data to support a 

tissue specific regulation of fatty acid synthesis and an overlap on regulatory function of miRNA 

from the same family.    
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CHAPTER VI 
 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

Conclusions 

Iron homeostasis is a complex and important biological process that balances systemic 

and cellular iron levels by two key regulatory processes.  Systemically, iron homeostasis is 

regulated by the liver-specific peptide hormone, hepcidin.  At the cellular level, iron homeostasis 

is regulated by cytosolic RNA binding proteins, IRPs.  The balancing act occurs in an effort to 

prevent the deleterious effects of iron overload and iron deficiency.  Unfortunately, in many 

instances iron levels are not in homeostasis.  In fact, not only is iron deficiency the leading 

nutritional deficiency in the world, it also affects westernized countries that have employed 

nutritional strategies to combat the imbalance.  In the UK it is estimated 18% of women between 

the age of 16-64 years old are iron deficient.  In the US it is estimated 9-11% of women between  
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the ages of 19-49 years old are iron deficient.  Additionally, these numbers are estimated to 

double with lower income, less education, and in minority populations [43].  The signaling 

pathways that regulate iron homeostasis have been studied on many levels, however, whether 

there is an additional layer of signaling molecules involved in these processes is not known.   

To address this question, the present studies were designed to look at two miRNAs, miR-

181d and miR-210, that were previously identified by our lab as being upregulated in response to 

dietary iron deficiency.  The central hypothesis was miRNA expression is regulated by dietary 

iron deficiency and plays a role in the modulation of iron related mRNA, and function as key 

elements in regulating iron homeostasis.  The primary objectives were to characterize 

posttranscriptional control of mRNA encoding proteins involved in the maintenance of iron 

metabolism by miRNA in ID conditions.  In order to test this hypothesis our primary aims were to 

(1) to examine the ability of differentially expressed miR-181d to control mitochondrial iron 

import and heme biosynthesis through its potential targeting of mitoferrin 1 (2) to examine the 

ability of differentially expressed miR-181d to regulate the cytosolic NADP-dependent isocitrate 

dehydrogenase 1, and (3) to examine the ability of differentially expressed miR-210 to regulate 

the hemoprotein cytoglobin.  For each aim our findings were as follows: 

 

Aim 1:  To examine the ability of differentially expressed miR-181d to control mitochondrial 

iron import and heme biosynthesis through its potential targeting of mitoferrin 1. 

  

miR-181d was significantly elevated in erythroid specific MEL cells in response to iron 

chelation with desferrioxamine.  Additionally, iron chelation followed by MEL cell 

differentiation led to a reduction of Mfrn1 gene expression and a reduction in hemoglobin 

staining indicating heme biosynthesis may be impaired.  There results were consistent with our 

previous findings that animals feed a diet containing minimal iron led to significantly increased 

miR-181d expression and a significant reduction in hemoglobin. 
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Aim 2:  To examine the ability of differentially expressed miR-181d to regulate the cytosolic 

NADP-dependent isocitrate dehydrogenase 1. 

 

Iron deficiency alters miR-181d expression and consequently miR-181d targets cytosolic 

Idh1.  Following 21-days on an iron deficient diet, Idh1 gene expression was significantly 

decreased in both liver and frontal cortex tissues.  Additionally, iron chelation and miR-181d 

overexpression in N2A cells led to decreases in Idh1 mRNA abundance and protein levels.  

 

Aim 3:  To examine the ability of differentially expressed miR-210 to regulate the hemoprotein 

cytoglobin. 

  

Luciferase assays confirm Cygb is a direct target of miR-210, however, our animal and 

tissue culture analyses suggest this target has more layers of regulation.  Our data suggests Cygb 

gene expression increases following a 21-day restricted iron diet yet Cygb levels did not change 

in the frontal cortex.  Additionally, miR-210 expression was significantly elevated in the livers of 

ID rats, however, there was no change in the frontal cortex.  Likewise, our tissue culture model 

supports the increase of Cygb expression following iron chelation and an increase in miR-210 in 

response to iron chelation and hypoxia.   

 The findings from each of these aims are supportive of our initial hypothesis miRNA 

expression is regulated by dietary iron deficiency and plays a role in the modulation of iron 

related mRNA, and functions as key elements in regulating iron homeostasis. Further, these 

results confirm that miRNA are responsive to nutrient deprivation and likely play a key role in 

coordinating cellular iron homeostasis.   
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Recommendations 

 The current project provides new insight into the molecular coordination that occurs 

during iron deficiency by miRNA.  Iron deficiency is the leading nutritional deficiency in the 

world that primarily affects women of child bearing years and children.  The deleterious effects 

include cognitive decline, impaired myelin formation, and reduced oxygen carrying capacity.  

This data suggests that brain and red blood cell function are impaired in individuals with iron 

deficiency.  Based on the differentially expressed miRNA, miR-181d and miR-210, and their 

validated mRNA target genes, alterations in these tissues may occur as a result of miR-181d and 

miR-210 alterations.  Therefore, these results lead to the question of whether miR-181d and miR-

210 have a tissue specific influence.      

 Based on the luciferase reporter assay validation of miR-181d and Mfrn1 interaction, and 

the assumption that miR-181d upregulation and less hemoglobin staining in iron chelated MEL 

cells is a result of miR-181d targeting of Mfrn1, it is reasonable to speculate miR-181d plays a 

role not only in heme biosynthesis and hemoglobin production, but also iron-sulfur cluster protein 

formation in erythroid cells.  This could be accomplished with two approaches: First, miR-181d 

could be overexpressed in a differentiating immortalized erythroid specific cell line and cells 

could be assessed for hemoglobin staining and key genes involved in hemoglobin production and 

erythroid maturation (i.e., Alas2, Hba1, and Fech).  Additionally, histological evaluation could 

support impairment of erythroblasts. Second, again using an erythroid specific cell and miR-181d 

overexpression, key genes and proteins for iron-sulfur cluster assembly could be assessed (i.e., 

Iscu, Nfu, and Isca).  These data could provide functional information about the regulation of 

mitochondrial iron import and might have therapeutic applications for individuals with iron 

overload.  Certainly, this could have an application for diseases of mitochondrial iron overload 

such as Friedreich’s ataxia, but it also may have an application for the aging population as the 

healthy adult brain is known to accumulate iron and this accumulation is speculated to play a role 

in neurodegeneration [81].  
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 miRNA are known to target more than one gene, thus it was no surprise we identified and 

validated Idh1 as an additional target of miR-181d.  Since we were not the first lab to identify a 

miR-181 family member that targets Idh1, it is of interest to determine if miRNA families have 

redundancy.  Furthermore, redundancy in miRNA families has been suggested in plants [106].  

As it turns out, there are four identified members of the miR-181 family, a-d.  miR-181a and 

miR-181b reside within a different chromosomal region (chr9) than miR-181c and miR-181d 

(chr19), yet when processed into their mature miRNA form they maintain the same ‘seed 

sequence’ [121] [122].  In support of redundancy, after review of potential miR-181d gene 

targets, miRWalk and TargetScan both show the miR-181 family to target many of the same 

genes.  To test this hypothesis, previously validated miR-181 targets (i.e. Bcl2, Idh1, and Kras) 

that are predicted to be targeted by all family members could be studied.  Reporter assays could 

be used to show a direct interaction of the mature miRNA sequences and the target genes.  

Additionally, to test whether one family member can rescue the loss of another, the CRISPR/Cas9 

system could be utilized.  A cell line could be generated to have a loss of one family member, 

then the other family member could be transfected in to see if the known target is repressed.   

 Based on our gene expression microarray and our labs previous published work 

[123], we provide evidence fatty acid synthesis may be enhanced in the liver via the increases in 

fatty acid synthase (Fas) and ATP citrate lyase (Acly).  On the contrary, Fas and Acly gene 

expressions were significantly reduced in iron deficient N2A cells which could result from a 

decrease in the substrate citrate following the reduction of Idh1 gene expression.  Further, based 

on our finding that Idh1 was reduced in the brain, this suggests future research could look at 

alterations of fatty acid synthesis expression patterns in response to iron deficiency between liver 

and brain tissue.  Animal experiments could be used to these analyses.  Gene expression 

microarrays could be employed on both tissues and fatty acid synthesis patterns could be profiled.  

Additionally, the tissue specific response in the rodent model may be over exaggerated due to the 

comparison of the ID animals with the PF group instead of an animal fed ad libitum.  We have 
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previously shown plasma cortisol levels are elevated in PF animals compared to ID animals and 

glucose, insulin, and triglycerides are decreased in PF animals compared to ID animals.  These 

findings suggest our model to control for energy intake may have alternatively influenced 

metabolic responses in fatty acid synthesis.  Furthermore, it has been established PF animals 

generally consume all food shortly after provided or are considered to be meal-fed.  This has the 

potential to impact metabolic response due to the extensive fasting period between meals.     

 Although luciferase assays identify Cygb as a direct target of miR-210, our current data 

does not support that miR-210 regulates Cygb during iron deficiency.  Nevertheless, we’ve shown 

for the first time Cygb expression increases in both in vivo and in vitro models of iron deficiency.  

Since Cygb is a hemoprotein, it would be reasonable to speculate the increase in Cygb protein 

may not be active.  Hemoproteins activity is derived from the redox activity of iron, therefore the 

increase in Cygb seen with iron deficiency may be apo-Cygb (devoid of iron).  To test this 

hypothesis, 55Fe-metabolic labeling could be combined with a tissue culture model.  Media used 

would be devoid of iron, then 55Fe or 55Fe and desferrioxamine would be added to cells.  To 

determine if Cygb incorporated the 55Fe, Cygb would be immunoprecipitated and quantified in a 

liquid scintillation counter.  Not only would this tell us more about Cygb during iron deficiency, it 

could help provide a direction for studying its function in iron deficiency.   

   In summary, the results from the current project provide insight into the molecular 

coordination of miRNA and their impact on target mRNA that occurs during iron deficiency.  

Based on the conclusions from these studies, the data advances the field of mammalian iron 

research following the identification and validation of a miR-181d targeting Idh1 as the result of 

iron deficiency.  Additionally, although miR-210 was significantly upregulated in response to ID 

in rat livers and in vitro iron chelation, cytoglobin expression was upregulated in both conditions.  

Therefore, the results demonstrate dietary iron deficiency and chelation upregulate (1) miR-181d 

expression that influences isocitrate dehydrogenase 1 gene expression and translation and (2) 
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cytoglobin gene expression and translation.  Thus, suggests the involvement of miRNA as an 

additional layer of regulation during conditions of limited iron. 
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LIST OF ABBREVIATIONS 

Abbreviation Description 

∆∆Cq comparative delta delta method  

∆Cq comparative delta quantification cycle  

ABCB10 ATP-binding cassette transporter 10  

ABCB7 ATP-binding cassette 7 protein  

ACLY ATP citrate lyase 

ACTβ actin, beta 

AGO argonaute protein 

AIN 76 American Institute of Nutrition’s 1976 

ALA  δ-aminolevulinic acid 

ALAD aminolevulinate dehydratase  

ALAS2 δ-aminolevulinate synthase 

APP amyloid precursor protein  

BMP bone morphogenic protein 

bp base pairs 

C control 

cDNA complementary DNA 

CHR chromosomal region 

CMV cytomegalovirus promotor  

COX10 cytochrome c oxidase assembly protein  

CP ceruloplasmin 

CP crossing point 

CPGENIII coproporphyrinogen III  

CPOX coproporphyrinogen oxidase 

Cq quantitation cycle 

CYCLO cyclophilin A 

CYGB cytoglobin 

DCYTB duodenal ferrireductase cytochrome b  

DFO desferrioxamine or desferal 

DGCR8 DiGeorge syndrome critical region 8  

DMSO dimethyl sulfoxide 

DMT1 divalent metal transporter 1  

EPO erythropoietin 

FAC ferric ammonium citrate 

FAS fatty acid synthase 

FBXL5 F-box leucine rich repeat protein 5  

Fe2+ Ferrous iron 

Fe3+ Ferric iron 

FECH ferrochelatase 

FLVCR feline leukemia virus subgroup C receptor  

FPN ferroportin 
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FT ferritin 

FXN frataxin 

GAPDH glyceraldehyde-3-phosphate dehydrogenase 

GFP green fluorescent protein 

GLUT1 glucose transporter 1 

HAMP hepcidin 

HBA1 alpha-globin 

HCP heme carrier proteins 

HEK293T human embryonic kidney cells 

HEPN hephaestin 

HFE hemochromatosis protein 

HIF-1α hypoxia inducible factor 1 alpha  

HIF-1β hypoxia inducible factor 1 beta 

HIF-2α hypoxia inducible factor 2 alpha  

HJV hemojuvelin 

HMBS hydroxymethylbilane synthase  

HO-1 heme oxygenase-1 

HPRT hypoxanthine phosphoribosyltransferase 1 

HRE hypoxia response elements 

HSP70 heat shock proten 70 

ICP-MS inductively-coupled plasma mass spectrometry  

ID iron deficiency 

IDH1 isocitrate dehydrogenase 1 

IL-6 interleukin-6 

IMM inner mitochondrial membrane 

IRE iron regulatory element 

IRP1 iron regulatory protein 1 

IRP2 iron regulatory protein 2 

ISCU iron-sulfur cluster 

LIP labile iron pool 

MEL murine erythroleukemia cells 

MFRN1 mitoferrin 1 

MFRN2 mitoferrin 2 

mFT mitochondrial ferritin 

miRNA microRNA 

miR-SCR miRNA scrambled control 

N2A neuro 2A 

ncRNA noncoding RNA 

NFS1 cysteine desulfurase 

nt  nucleotide 

NTBI non-transferrin bound iron  

OMM outer mitochondrial membrane 

PCBP poly (rC)-binding protein 
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PF pair-fed 

PHD prolyl hydroxylases 

PPIA peptidylprolyl isomerase A (cyclophilin A) 

PPIX protoporphyrin IX 

PPOX protoporphyrinogen oxidase 

pre-miRNA precursor microRNA 

pri-miRNA primary microRNA 

qPCR quantitative real-time polymerase chain reaction  

RBC red blood cells 

RG reference genes 

RISC RNA-induced silencing complex  

RPL19 ribosomal protein L19 

RPL22 ribosomal protein L22 

RPL27 ribosomal protein L27 

RPLP0 ribosomal protein, large, P0 (36b4) 

RPS29 ribosomal protein S29 

RT reverse transcribed 

siRNA small interfering RNA 

SLC25A37 mitoferrin 1 

SLC25A38 mitoferrin 2 

SLC40A1 ferroportin 

SMAD suppressor of mothers against decapentaplegic 

SNX3 sorting nexin 3 

STEAP3 six-transmembrane epithelial antigen of the prostate-3 

TBP TATA box binding protein 

TF  transferrin   

TFRC transferrin receptor 

TF-TFRC transferrin-transferrin receptor  

UROD uroporphyrinogen decarboxylase 

UROS uroporphyrinogen synthase  

UTR untranslated region 

VDAC voltage-dependent anion channel 



 

VITA 

 

Joanna Lynn Fiddler 

 

Candidate for the Degree of 

 

Doctor of Philosophy 

 

Thesis:    MICRORNA: MOLECULAR MICROMANAGERS OF IRON 

METABOLISM AND OXYGEN SENSING 

 

 

Major Field:  Nutritional Sciences 

 

Biographical: 

 

Education: 

 

Completed the requirements for the Doctor of Philosophy in Nutritional 

Sciences at Oklahoma State University, Stillwater, Oklahoma in December, 

2016. 

 

Completed the requirements for the Master of Science in Health and Human 

Performance at Oklahoma State University, Stillwater, Oklahoma in 2008. 

  

Completed the requirements for the Bachelor of Science in Nutritional Sciences 

at Oklahoma State University, Stillwater, Oklahoma in 2005. 

 

Experience:   

 

Research Assistant 

Teaching Assistant 

Undergraduate Mentor 

 

Professional Memberships:   

 

American Society for Nutrition 

American College of Sports Medicine 
 


