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Abstract 

Statistical learning is proposed as a mechanism for discovering structural patterns in speech 

through incidental exposure. However, studies have largely relied on assessing explicit 

memory after learning has occurred, which does not capture the time course and process of 

statistical learning per se. To better understand the dynamics of statistical learning, we 

assessed 8- to 12-year-old children using an EEG measure of learning, which captures 

changes in neural entrainment to words embedded in a continuous artificial language. 

Statistical learning was assessed post-learning using implicit and explicit behavioural tests. 

The neural entrainment results demonstrated rapid learning of word-level information, while 

post-learning tasks demonstrated syllable prediction and recognition of the trisyllabic words. 

These results replicate findings in adults and hint to the possibility that children and adults 

use similar language learning mechanisms. Importantly, this is the first study to demonstrate 

that neural entrainment is a sensitive indicator of statistical learning in children. 
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Summary for Lay Audience 

The ability to learn language relies on our sensitivity to structural patterns in speech. 

Statistical learning is proposed as a mechanism for discovering these patterns through 

incidental exposure. This means that language is implicitly learned and does not require 

explicit learning strategies. Statistical learning has largely been assessed through a single 

explicit memory task and has been assessed only after learning has occurred. This approach 

does not capture the time course and process of statistical learning on its own. Additionally, 

while prior studies have demonstrated that children do as well as adults on statistical learning 

tasks, we do not know the degree of statistical learning in children. To better understand the 

dynamics of statistical learning, we assessed the degree of learning to a six-minute artificial 

language in 8- to 12-year-old children. The artificial language was made up of pseudowords 

and knowledge of the language was tested via implicit and explicit post-learning behavioural 

tests. We also assessed the time course of learning by using a direct electroencephalography 

(EEG) measure, which records electrical potentials in the brain created by external stimuli. 

The EEG measure captured changes in neural entrainment to words embedded in a 

continuous artificial language stream. Neural entrainment is an especially useful measure of 

EEG as it determines whether brainwave frequencies are temporally synchronizing to the 

external stimuli. The neural entrainment results demonstrated rapid implicit learning of word-

level information, while post-learning behavioural tasks demonstrated significant syllable 

prediction and recognition of the trisyllabic words. Importantly, this is the first study to 

demonstrate that neural entrainment is a sensitive indicator of statistical learning in children. 

These results replicate previous findings in adults and hint to the possibility that children and 

adults use similar language learning mechanisms. Our results also demonstrate that there are 

age-related differences in statistical learning that may be due to the development of attention.   
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Chapter 1  

1 Introduction 

We are born unable to produce and understand speech but quickly learn language 

simply by listening to others speak. What is even more remarkable is that language is 

implicitly learned and does not require explicit learning strategies (Reber, 1967). Years of 

research on language learning have culminated in the proposal that humans rapidly learn 

language via a mechanism that picks up patterns from the environment through incidental 

exposure. This process, known as statistical learning, is thought to play an essential role 

in speech segmentation and language acquisition (Saffran, Newport, & Aslin, 1996). 

In natural speech, there are no reliable acoustic cues for word boundaries, 

therefore language learners must use other information to segment words (Saffran, 2003). 

The term “statistical learning” was first coined by Saffran, Aslin and Newport (1996) to 

explain infants’ ability to segment words from connected speech. Specifically, they 

determined that 8-month-old infants and adults were capable of segmenting words by 

simply using transitional probabilities of syllables, defined as the relative probability of 

syllables co-occurring (Saffran, Newport, & Aslin, 1996; Saffran, Aslin & Newport, 

1996). Transitional probabilities can be calculated as follows: 

𝑝(𝑌|𝑋) =  
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑝𝑎𝑖𝑟 𝑋𝑌

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑥
 

Transitional probabilities between syllables are higher within words than between 

words. As an example, in “yellow flower”, the syllables “yell” and “o” have a higher 

transitional probability. Transitional probabilities between word boundaries are lower 
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because syllable pairs such as “o-flow” occur less frequently in natural speech 

than “yell-o”. This is because the word “yellow” can be followed by many other 

words, such as “yellow dress” or “yellow banana”. The lower transitional 

probability for the syllable pair “o-flow” also provides a cue that these are 

separate words. 

1.1 How statistical learning has traditionally been tested 

Auditory statistical learning tasks begin with a familiarization phase in 

which participants listen to an artificial language (Saffran, Aslin, & Newport, 

1996). This artificial language is usually made up of trisyllabic pseudowords 

(hereafter, words). These words are combined in a pseudorandom order to ensure 

that the same word is not repeated twice in a row (Saffran, Newport, & Aslin, 

1996). For instance, the first statistical learning study had the trisyllabic words 

pabiku, tibudo, golatu, and daropi, play continuously for two minutes at a rate of 

270 syllables per minute (Saffran, Aslin, & Newport, 1996). The only cues to 

word boundaries are the transitional probabilities of syllable pairs. The 

transitional probabilities between syllable pairs within word boundaries is 1.0 as 

these syllables always co-occur and .33 across word boundaries as these syllables 

co-occur a third of the time. 

In infants, knowledge of the artificial language stream is assessed via 

listening times (Saffran, Aslin, & Newport, 1996). Infants heard words and 

nonword or partword foils. The partword foils were created by using the last 

syllable of a word and the first two syllables of another word (pipabi). Nonwords 

were made up of three-syllable sequences that would not have co-occurred in the 
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speech stream (pilado). Longer listening times to the foils would indicate a dishabituation 

effect, demonstrating that infants distinguished novel from familiar syllable strings. In 

adults and older children, knowledge of the artificial language stream has traditionally 

been tested with a post-learning two-alternative forced choice (2AFC) task. Participants 

would hear a word paired with a nonword foil or a partword foil (Saffran, Newport, & 

Aslin, 1996). Chance performance is 50% and if the group performs significantly better 

than chance, this provides evidence for statistical learning. 

 Using similar methodologies, statistical learning has been found to occur in other 

sensory modalities, such as vision and touch (e.g., Conway & Christiansen, 2005). 

Kirkham, Slemmer and Johnson (2002) investigated visual statistical learning. Infants 

were familiarized with six colored shapes that they saw one at a time, grouped into 

hidden pair sequences. The test trials consisted of a task with familiar sequences and 

novel sequences. Looking times were recorded to determine whether infants 

dishabituated to the presentation of novel sequences. Novel sequences had longer looking 

times, meaning previously seen sequences were more familiar, evidencing statistical 

learning of visual shape sequences. Conway and Christiansen (2005) found additional 

evidence for visual statistical learning as well as tactile statistical learning. Non-linguistic 

stimuli were used so that the training and test phases were comparable across the visual, 

auditory and touch modalities. For each modality, the stimuli were presented for 250 ms. 

The stimuli appeared in five spatial locations for the visual modality, sequences of five 

pure tones were played for the auditory modality and sequences of pulses were delivered 

to five fingers on one hand for the touch modality. Statistical learning was tested through 

legality judgements. The authors found that statistical learning occurred in all three 
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modalities; however, the auditory modality had a quantitative and qualitative learning 

advantage. In other words, participants were better at learning the auditory sequence and 

had a better memory for the final part of the auditory sequence. These studies provided 

support for statistical learning outside of the auditory domain and opened the door to 

more diverse research. 

1.2 The introduction of additional post-learning measures 

Saffran et al.’s (1996a) work provided the basis for research on statistical 

learning in language. The research following this study has painted an 

increasingly detailed picture of statistical learning as a learning mechanism. The 

process of statistical learning has not only been found in infants but has also been 

found to occur in older children and adults (e.g., Arciuli & Simpson, 2012; 

Campbell, Healey, Lee, Zimerman, & Hasher, 2012), and in participants who 

speak languages other than English (e.g., Frost, Siegelman, Narkiss, & Afek, 

2013; Hay, Pelucchi, Graf Estes, & Saffran, 2011; Toro, Sinnett, & Soto-Faraco, 

2005). 

However, past studies have mostly tested statistical learning with a single 

explicit learning measure, the 2AFC task. This task alone is not sensitive enough 

to detect individual differences and may underestimate the amount of knowledge 

acquired from the artificial language (Batterink, Reber et al., 2015; Siegelman, 

Bogaerts, & Frost, 2017). Performance on the post-learning 2AFC task is 

primarily sensitive to explicit learning. However, statistical learning has been 

described to occur primarily implicitly (e.g., Conway & Christiansen, 2005; 

Kirkham et al., 2002). This is problematic as this task cannot capture the full 
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range of learning abilities. This affects the task’s validity to assess statistical learning 

(Siegelman, Bogaerts, & Frost, 2017). Therefore, the full breadth of individual variation 

in statistical learning cannot be captured by the 2AFC task per se. 

Alternatives to the 2AFC task were first introduced in visual statistical learning 

procedures. Turk-Browne, Jungé, and Scholl (2005) introduced a post-learning task that 

assessed implicit learning of visual shapes by measuring reaction times (RTs) and 

accuracy to responses to target shapes in a sequence. Participants had faster RTs to final 

shapes, demonstrating that they were anticipating the final shapes of the triplet sequences. 

The authors concluded that statistical learning can be accurately assessed without the use 

of familiarity judgement tasks like the 2AFC task. Alternative explicit learning tasks 

were also introduced, such as the pattern completion task (Kim, Seitz, Feenstra, & Sham, 

2009). Participants were shown one shape and had to complete the triplet sequence. 

Eleven options were shown, perhaps making this task too complicated as participants did 

not perform significantly above chance. Even though this explicit learning task was not 

sensitive enough to pick up on statistical learning, other pattern completion tasks have 

been more successful (e.g., Siegelman, Bogaerts, & Frost, 2017).  

Siegelman and colleagues (2017) recently proposed a set of explicit learning 

measures that improve upon the validity and reliability of post-learning tasks by varying 

the level of difficulty and variability of the test items. Their task introduced a mixture of 

2, 3, and 4AFC tasks of pair and triplet sequences, as well as pattern completion tasks of 

shape pairs and triplets. Since the introduction of this more psychometrically sound task, 

studies have successfully employed these measures to test visual statistical learning in 

various populations (e.g., Parks & Stevenson, 2018; Perfors & Kidd, preprint). However, 
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these tasks were designed to assess visual statistical learning and would be difficult to 

translate to the auditory domain as the 4AFC and pattern completion tasks could interfere 

with the elements learned during the familiarization period. 

Batterink, Reber and colleagues (2015) were the first to address the 

methodological issues of post-learning tasks in the auditory domain by 

introducing tasks that capture a larger range of individual variability and tap into 

explicit and implicit learning. Batterink, Reber et al. (2015) used a speeded target 

detection task (TDT), similar to the one used by Turke-Browne et al. (2005), to 

assess statistical learning of their artificial language. For this task, participants 

heard short speech streams made up of the words from the language and had to 

respond every time they heard the target syllable (e.g., “ta”). RT was fastest for 

the final syllable and slowest for the first syllable, providing evidence of implicit 

statistical learning. There was also no correlation between the TDT and the 2AFC 

task, demonstrating that statistical learning produces both implicit and explicit 

knowledge that may be dissociable. Statistical learning in participants who 

performed at or below chance on the 2AFC task was still observed on the TDT. 

These findings demonstrate that this task is a more sensitive post-learning 

measure of statistical learning compared to the 2AFC task.  

Batterink, Reber and colleagues (2015) also introduced additional explicit 

learning tasks which improve upon the traditional 2AFC task as graded 

differences between individuals’ responses can be observed. For instance, a meta-

memory judgement task, the remember/know procedure, was completed after 

each response on the 2AFC task which provided information on participants’ 
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awareness of their knowledge of the artificial language. Additionally, in order to get a 

better picture of participants’ ability to learn the trisyllabic words from the artificial 

language, Batterink and Paller (2017) introduced a familiarity rating task. Words, 

partwords and nonwords were presented one at a time and participants were asked to give 

a familiarity rating. Participants rated words as significantly more familiar than 

partwords, with nonwords having the lowest familiarity rating. This task is a direct and 

sensitive measure of explicit learning as we can visualize participants’ familiarity with 

words and foils. This task also demonstrates that transitional probabilities do play an 

important role in discrimination between words and foils. Nonword foils have the lowest 

transitional probabilities as they are made up of syllables that never co-occurred in the 

artificial language, and partword foils have intermediate transitional probabilities as they 

include a syllable pair from a word. Therefore, foils containing syllable pairs with the 

lowest transitional probabilities are least familiar, whereas foils with intermediate 

transitional probabilities are more familiar and still discriminable from words.  

1.3 The use of online measures in statistical learning 

Even though the aforementioned tasks provide us with richer data on participants’ 

explicit and implicit learning of the artificial language, post-learning measures do not 

track learning as it unfolds and only assess knowledge after learning has occurred 

(Siegelman, Bogaerts, Kronenfeld, & Frost, 2017). This means that these tasks do not tap 

into the full scope of learning. In fact, due to the nature of post-learning tasks, it is 

difficult to disentangle statistical learning from other cognitive processes, which 

impinges on the validity of post-learning tasks (Batterink & Paller, 2017; Siegelman, 

Bogaerts, & Frost, 2017). Specifically, because there are robust individual differences in 
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long-term memory abilities (Unsworth, 2019), differences found on the post-

learning tasks could in part be due to long-term memory abilities and not solely 

due to differences in statistical learning. In addition, because data are not 

collected during the learning phase, it can be difficult to differentiate the good 

from the bad performers and the slow from the fast learners. Thus, a more 

sensitive measure of statistical learning would be one that measures online 

learning. Online measures can provide us with information on individual learners’ 

time course of learning (Batterink & Paller, 2017). 

To address these methodological issues, electroencephalography (EEG) 

has been recorded to capture electrical activity in the brain during familiarization 

and post-familiarization of the artificial language. EEG recordings provide a 

useful measure of the time course and degree of speech segmentation (Sanders, 

Newport, & Neville, 2002). Event-related potentials (ERPs), which are 

waveforms that represent the average of EEG changes to repeated sensory or 

cognitive events (Sur & Sinha, 2009), have been used to investigate neural 

evidence of statistical learning. Studies have looked at various ERP components, 

which are component waves of the ERP waveform, as each component refers to 

different cognitive processes and provides varied information on the nature of 

learning (Woodman, 2010). The first experiments studying the relationship 

between ERPs and word segmentation looked at the N100 component, which has 

been proposed to reflect attention to word onsets. These studies found that a larger 

N100 was elicited at word onset rather than acoustically similar mid-word 

syllables, providing neural evidence for statistical learning (Sanders & Neville, 
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2003; Sanders et al., 2002). Following these initial findings, other studies have looked at 

various ERP components involved in the process of statistical learning. 

The ERP studies following Sanders et al.’s (2002) seminal work led to several 

important findings. Cunillera et al. (2009) examined the time course of learning during a 

speech segmentation task. The results demonstrated that speech segmentation was 

achieved after only one minute of exposure to the artificial speech stream. ERP 

components have also successfully been used with post-learning measures, such as with 

the 2AFC task and the TDT (Batterink, Reber et al., 2015). The ERP components on the 

post-learning tasks demonstrated a facilitation effect due to learning of the statistical 

probabilities in the continuous speech stream. 

One of the hallmarks of statistical learning in the context of speech segmentation 

is that syllables are gradually represented as whole words. However, the continuous 

nature of the speech stream poses a problem for a traditional ERP analysis as listeners are 

producing discrete ERPs to each individual acoustic event, thereby complicating the 

computation of a baseline voltage level to the acoustic event of interest. This decreases 

signal to noise ratio in ERPs (Buiatti, Peña, & Dehaene-Lambertz, 2009). Buiatti et al. 

(2009) proposed using a “frequency tagging” approach when measuring neural activity to 

a continuous stream. This approach allows the quantification of neural entrainment at the 

syllable and word frequencies. Neural entrainment can be explained as the brain’s 

tendency to oscillate at the same frequency as rhythmic stimuli. For instance, if a sound 

were to play in a repeating pattern, we would observe that the brainwave frequencies 

correspond to the frequency of the sound (Luck, 2005). In this case, the frequencies are 

based on the rate at which syllables and whole words are presented. This paradigm 
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differed slightly from the typical statistical learning paradigm in that words were 

created in families with a non-adjacent AXC rule. The first and third syllables 

remained constant within each family, and the middle syllable was different for 

each word. This “frequency tagging” approach was found to be a sensitive 

measure of online word learning of non-adjacent dependencies (Buiatti et al., 

2009). Specifically, we can observe whether an individual is learning the words 

from the novel language depending on their entrainment at the word and syllable 

frequencies. Increasingly higher entrainment at the word frequency and lower 

entrainment at the syllable frequency indicate learning.  

This neural entrainment measure was later used in studies measuring 

auditory statistical learning. EEG phase-locking to the word frequency was found 

to increase as a function of time, while phase-locking to the syllable frequency 

was found to decrease as a function of time, providing evidence of a perceptual 

shift of syllable units into integrated words (Batterink & Paller, 2017, 2019). The 

syllable frequency was measured at 3.3 Hz as it corresponded to the presentation 

rate of each syllable and the word frequency was measured at 1.1 Hz as it 

corresponded to the presentation rate of each word. Batterink and Paller (2017) 

further quantified learning across time via the Word Learning Index (WLI). A 

greater WLI value would indicate greater neural entrainment at the triplet 

frequency instead of at the syllable frequency. The WLI also increases as a 

function of time, indicating statistical learning of the hidden triplet sequences. 

Furthermore, the WLI predicted performance on the TDT, validating it as a 

sensitive measure of online statistical learning. These online measures provide 
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critical information on the dynamics of learning, providing data on individual learners’ 

time course and degree of learning. Neural entrainment also provides a “purer” measure 

of statistical learning as peripheral cognitive processes, such as decision-making biases 

and meta-cognition, are not intermixed with online learning. 

1.4 Current Study 

The purpose of the current study is to further understand the dynamics of 

statistical learning in children, especially as it relates to the use of online and implicit 

measures of learning. While prior studies have demonstrated that children do as well as 

adults on statistical learning tasks (e.g., Saffran, Newport, Aslin, Tunick, & Barrueco, 

1997), we do not know the degree and time course of statistical learning in children. To 

address this, we assessed auditory statistical learning to a six-minute artificial language in 

8- to 12-year-old children. We chose this specific age range for two reasons. The first 

was that we needed children to be able to sustain their attention on the tasks and evidence 

suggests that there is a rapid growth in sustained attention around the age of eight (Betts, 

Mckay, Maruff, & Anderson, 2006). The second reason was that implicit sequence 

learning becomes adult-like in adolescence (Janacsek, Fiser, & Nemeth, 2012). Previous 

studies only provide us with information on whether statistical learning occurs and do not 

answer the question of when word segmentation begins. Moreover, because the 2AFC 

task relies heavily on explicit memory, it is difficult to draw concrete conclusions without 

better measures. Because of these limitations, we used implicit and explicit behavioural 

tests, as well as an online measure of learning to test knowledge of the artificial language. 

Given previous findings on explicit and implicit statistical learning, we used a 

rating task, a 2AFC task in conjunction with the remember/know procedure and the TDT 
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(Batterink & Paller, 2017; Batterink, Reber et al., 2015). Other than the 2AFC task, these 

statistical learning tasks have not been used in children. Because auditory statistical 

learning abilities in children and adults have not been found to be significantly different 

(Saffran et al., 1997), we expect that children will perform similarly to the adults who 

were previously tested on these tasks (Batterink & Paller, 2017, 2019; Batterink, Reber et 

al., 2015; Batterink, Reber, & Paller, 2015). For the rating task, children should rate 

words as most familiar, followed by partwords and nonwords. For the 2AFC task, most 

children should perform significantly better than chance (50%). Children should also 

have a higher accuracy rate for the “remember” option for the remember/know task, 

indicating that children have a higher accuracy when they are more confident with their 

answers. The “familiar” option should have the second highest accuracy, with “guess” 

being lowest. However, it would not be unexpected if the memory judgement effect is not 

significant, as Batterink and Paller (2017) did not find a significant judgement effect in 

their adult participants, likely due to the low number of trials within each category. As in 

previous studies (e.g., Batterink et al., 2015; Batterink & Paller, 2017), on the TDT, it is 

expected that participants will have a faster RT on word-final syllables and the slowest 

RT on word-initial syllables.  

Even though EEG has been shown to be a valid and sensitive measure of 

statistical learning, few studies have used EEG to measure online statistical learning in 

children. Most studies have focused on the online process of learning in adults, which 

excludes important information on the dynamics of statistical learning in childhood and 

throughout the lifespan. The few studies that have looked at online learning in children 

via EEG have used grand averaged ERPs (i.e., Jeste et al., 2015; Mandikal Vasuki, 
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Sharma, Ibrahim, & Arciuli, 2017). This makes it difficult to visualize any changes in 

learning throughout the exposure period. Mandikal Vasuki et al. (2017) did look at the 

“triplet onset effect”, the changes in ERPs for the initial and the final shape or tone of a 

sequence. No significant changes in ERPs were found at these time points in typically 

developing children. Jeste et al.’s (2015) study did not focus on the time course of 

learning, therefore it is impossible to determine whether typically developing children 

quickly or gradually learned the hidden shape sequence over the course of exposure. 

We used an online measure of learning during the six minutes of exposure to the 

artificial language. The online measure will capture changes in neural entrainment to 

words embedded in the continuous artificial language stream (Batterink & Paller, 2017, 

2019). We chose to use this measure of neural entrainment as it has been shown to be a 

sensitive indicator of the time course of word segmentation in adults. Similar to previous 

studies, we averaged neural entrainment into three blocks of two minutes. This method 

indexes the perceptual shift of single syllables into whole words throughout the six-

minute period. 

This is the first study to look at online neural entrainment of statistical learning in 

children. We hypothesize that children’s neural entrainment will be comparable to online 

learning in adults. We expect that throughout the six minutes of exposure to the artificial 

language, children’s WLI, the index of overall word learning, will increase with time. In 

addition, we expect that neural entrainment at the syllable frequency will decrease and 

neural entrainment at the word frequency will increase as a function of time.  
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Chapter 2  

2 Methods 

2.1 Participants 

Forty-five English monolingual speakers ages 8-12 (23 female, M = 9.98 years, 

SD = 1.23 years, range: 8.08-12.67 years) were recruited from London, Ontario. Parents 

completed a screening questionnaire via e-mail before participating, which included 

questions about children’s sex, handedness, age, and language history. Children were 

excluded if they had visual impairments that were not corrected or auditory impairments, 

motor dysfunctions, and intellectual impairments. Parents rated language proficiency on a 

scale of 0 to 10 (0 being not at all and 10 being perfect) for speaking, understanding, 

reading, and writing (see Appendix A). Children enrolled in French immersion and/or 

whose parents rated their proficiency higher than a 5/10 in a language other than English 

were considered bilingual and excluded from the study. Children received a small gift 

and parents were compensated for their time and travel expenses. 

2.2 Materials 

The auditory statistical learning task was programmed using Neurobehavioral 

Systems’ Presentation and was run on a Windows 10 laptop. An external number pad was 

used to record children’s responses. They sat in a quiet room in front of a 22-inch 

cathode-ray tube (CRT) monitor placed at a comfortable viewing distance. Children 

listened to the speech stream through a pair of computer speakers.  
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2.3 Tasks 

See Figure 1 for a visual summary of all the statistical learning tasks. Children 

were passively exposed to an auditory speech stream and then completed three tasks 

designed to assess both implicit and explicit knowledge of the artificial language.  

Artificial Language Exposure. Stimuli consisted of 12 synthetic speech syllables 

from Batterink and Paller (2017), recorded at a sampling rate of 44100 Hz. Syllables 

were combined into an artificial language consisting of four unique trisyllabic words 

(pautone, nurafi, gabalu, and mailoki). These four words were presented auditorily in a 

six-minute continuous speech stream constructed such that each word immediately 

followed the next with no acoustic word onset cues (i.e., no pauses between words, and 

no other changes in pitch, length or amplitude that could have indicated the onset of any 

given word). Each of the four words was presented 100 times at a rate of 300 

milliseconds per syllable, for a total of 400 words over the 6-minute exposure. The only 

restriction for the ordering of the speech stream was that the same word could not repeat 

twice in a row. As such, the transitional probability of neighbouring syllables within 

words was higher than between words (within: 1.00; between: 0.33). During the exposure 

phase, children passively listened to the speech stream presented via speakers at a 

comfortable volume. As a secondary task to prevent boredom, children watched a silent 

six-minute video clip of “Shaun the Sheep” on the CRT monitor in front of them (Cary & 

Symanowski, 2008).  

Rating task. We next assessed children’s explicit knowledge of the artificial 

language using a familiarity rating task similar to Batterink and Paller (2017). On each 

trial the children heard a three-syllable word or foil and rated their familiarity for the 
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utterance. There were 12 trials: the four words from the speech stream, four partword 

foils and four nonword foils. The partword foils were created by using the last syllable of 

a word and the first two syllables of another word. Nonwords were made up of syllables 

that would not have occurred in the same order as words from the speech stream. For 

each trial, children listened to the stimulus and were then prompted with a response cue, 

“Please give a familiarity rating”. They then had to indicate on a scale of one to four how 

familiar the stimulus sounded. We labelled one as “very unfamiliar” and four as “very 

familiar”. A rating score was calculated by subtracting the mean score for partwords and 

nonwords from the mean score for words. A score of three would indicate perfect 

sensitivity to the language and a score significantly above zero would demonstrate that 

there is explicit learning of the artificial language (Batterink & Paller, 2017).  

Two-alternative forced choice task (2AFC). This task was originally used by 

Saffran, Aslin, and Newport (1996) to assess explicit memory of the words from the 

speech stream. On each trial, the children heard a word from the training set and a 

nonword or partword foil, separated by a 1500 ms pause. Children responded by pressing 

one of two buttons indicating which word was most familiar to them. After each 2AFC, 

the children were asked to provide a remember/familiar/guess response, known as the 

remember/know procedure (Batterink & Paller, 2017). The children were instructed to 

give a meta-memory judgement for their choice. “Remember” indicates they specifically 

remembered hearing the word, “familiar” indicates that they did not specifically 

remember hearing the word, but that it sounded familiar, and “guess” indicates that they 

had no confidence in their response. There was a total of eight test items (i.e., four words 

from the speech stream, two nonwords, and two partwords). The words were 
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exhaustively paired with the partwords and nonwords to create 16 trials. The trials were 

presented in random order. The answer order (i.e., whether the correct answer was the 

first stimulus or the second stimulus) was counterbalanced across children. 

Target detection task. This task assesses RTs to each syllable position (Batterink 

et al., 2015). The logic behind this task is that word-final syllables should be the most 

predictable and elicit the fastest RTs if listeners have acquired statistical information that 

would allow them to implicitly predict upcoming syllables. First, the children completed 

three practice trials, in which they heard syllables that were not part of the alien language 

but were presented at the same rate (350 ms/syllable). This was to ensure that the children 

understood how to complete this task. After the practice trials, the children listened to 24 

short speech streams containing the four words from the artificial language repeated four 

times each. Each speech stream therefore contained a total of four targets.  The words 

were presented at a slower rate than the continuous speech stream (350 ms/syllable). 

Because this task had not been used in children before, we slowed the syllable 

presentations by 50 ms compared to the exposure period to ensure that children were able 

to successfully complete the task. Children were instructed to press the Enter key on the 

number pad every time they heard the target syllable. Each syllable served as the target 

syllable twice across the 24 streams, yielding a total of 32 targets in each syllable 

position. The children had the option to take a short break at the halfway point of this 

task. The order of the speech streams was randomized; however, the ordering of 

individual words for each speech stream was predetermined and consistent across 

children, such that a target was constrained not to occur within the first three syllables or 

last three syllables of the stream. A square at the bottom of the screen changed colour 
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with each button press, which was designed to keep children’s attention on the task and to 

decrease false alarms (i.e., every time the square changed colour, the participant would 

know that their response was recorded). RT and accuracy were calculated for each 

syllable position (first, second, and third). 
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Auditory Exposure 

pautonenurafigabalupautonemailoki 

 

Rating Task 

1-4 familiarity rating 

           pautone (word) 

    kipauto (partword) 

         nepaunu (nonword)  

Two-Alternative Forced Choice Task 

Choose which utterance is more familiar 

    pautone    or     kipauto 

                 word                partword 

    pautone   or      nepaunu   

         word                 nonword  

remember, familiar, or guess?    

Target Detection Task 

                   Target syllable “ga” 

 pautonegabalumailokigabalu 

Figure 1. Auditory statistical learning tasks completed in the order shown. 
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EEG analyses. EEG was recorded for the exposure phase using an Active-Two 

Biosemi system, with 32 Ag/AgCl-tipped electrodes attached to an electrode cap, placed 

according to the International 10-20 system. A total of six electrooculogram (EOG) 

electrodes were placed under, above and next to each of the eyes, and an additional two 

electrodes were placed behind the left and right mastoid. The EEG data was processed 

using EEGLAB (Delorme & Makeig, 2004) and the ERPLAB open-source toolbox 

(Lopez-Calderon, & Luck, 2014). EEG signals were recorded relative to the Common 

Mode Sense (CMS) active electrode and re-referenced offline to the average of the left 

and right mastoids. EEG was recorded at a sampling rate of 512 Hz and were filtered 

offline using a 60 Hz notch filter and a band-pass filter from 0.5 to 20 Hz.  

Data were time-locked to the onset of each word and extracted into epochs of 10.8 

seconds, corresponding to 12 trisyllabic words. Epochs overlap for 11/12 of their length. 

A measure of event-related phase locking, called inter-trial coherence (ITC), was 

calculated at the word (1.1 Hz) and syllable (3.3 Hz) frequencies (Batterink et al., 2017). 

An ITC value of zero indicates purely non-phase locked activity and an ITC value of one 

indicates strictly phase-locked activity. ITC was calculated using a continuous Morlet 

wavelet transformation from 0.2 to 6.2 Hz with the use of the newtimef function of 

EEGLAB. Sensitivity to the structure of the language was quantified using the Word 

Learning Index (WLI) formula (WLI = ITC at word frequency divided by ITC at syllable 

frequency; Batterink & Paller, 2017). A higher WLI score indicates stronger sensitivity to 

the words embedded in the artificial language. ITC was computed across the entire 

exposure period and then averaged across a subset of 14 fronto-central electrodes where 
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ITC at the word and syllable frequencies showed the strongest distribution (i.e., F3, Fz, 

F4, FC5, FC1, FC2, FC6, C3, Cz, C4, CP1, CP2, AF3, AF4).  

 

 

 

 

 

 

Figure 2. Map of electrodes used for the computation of ITC values. The stars are located 

to the right of each electrode used in the ITC computation. BioSemi layout 32 + 2 

electrodes (n.d.). 

Next, we examined the time course of learning by dividing the exposure phase 

into three separate two-minute blocks of 137 epochs each. ITC within each of the three 

blocks was calculated once again with a continuous Morlet wavelet transformation from 

0.2 to 6.2 Hz. For this block analysis, ITC values were averaged across all 32 scalp 

electrodes. We included all electrodes in the time course analysis because the 

topographical plots of the ITC distribution across the scalp demonstrated that activation 

at each electrode site changed as a function of time and frequency. WLI values were 

computed for each block, using the same formula as above.  
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Chapter 3  

3 Results 

3.1 Rating Task 

Data from one child was excluded from the rating task analyses as they did not 

complete it as instructed. Mean rating scores for words, partwords and nonwords are 

plotted in Figure 3. Children performed significantly above chance on the rating task. 

Children had a mean rating score of .500, (SD = .531), which was significantly above 

zero (t(43) = 6.246, p < .001, Cohen’s d = .942).  In addition, a repeated measures 

ANOVA was used to examine the effect of word category (word, partword and nonword 

stimuli) on familiarity ratings. Children rated words as most familiar, followed by 

partwords, and nonwords were rated as the least familiar (Word Category Effect: F(2, 86) 

= 23.524, p < .001, ηp
2 = .354; linear contrast: F(1,43) = 37.285, p < .001, ηp

2= 

.464). Paired sample t-tests demonstrated that words were significantly different from 

partwords and nonwords (t(43) = 5.087, p < .001, Cohen’s d = .656; t(43) = 6.106, p < 

.001, Cohen’s d = .834); however, partwords and nonwords were not significantly 

different (t(43) = 1.446, p = .155, Cohen’s d = .199). 
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Figure 3. Mean rating scores for nonword, partword, and word stimuli. Error bars 

represent standard error of the mean. Significant differences of p < .001 are denoted with 

***. 

3.2 Two-alternative Forced Choice Task 

Children’s mean accuracy scores on the 2AFC task are plotted in Figure 4A. 

A one-sample t-test demonstrated that children performed significantly above 

chance (50%) on the 2AFC task (M = 68.89%, SD = 14.81%, t(44) = 8.557, p < .001, 

Cohen’s d = 1.276). A repeated measures ANOVA for all response categories was 

conducted for the remember/know procedure. Accuracy did not significantly differ as a 

function of familiarity judgement (remember/know effect: F(2, 68) = .559,  p = 

.574, ηp
2 = .016; linear contrast: F(1, 34) = .282, p = .599, ηp

2 = .008). The result may be 

non-significant because children significantly chose “guess” less often than “remember” 

*** 

*** 
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and “familiar” (t(44) = 6.164, p < .001, Cohen’s d = .919; t(44) = 9.157, p < .001, 

Cohen’s d = 1.365, respectively). In fact, 10 children did not choose “guess” at all, which 

limited statistical power. Because of the lower number of responses for “guess”, an 

exploratory paired samples t-test was conducted to determine whether “familiar” and 

“remember” responses had a significantly different accuracy. Accuracy for “remember” 

and “familiar” responses were not significantly different (t(44) = 1.968, p = .055, 

Cohen’s d = .293). 

A one-sample t-test was also conducted for response accuracy on each category 

(remember, familiar, guess) to determine if recognition was above chance. Figure 4b 

demonstrates that all categories are significantly above chance (remember: t(44) 

= 5.770, p < .001, Cohen’s d = .860; familiar: t(44) = 5.278, p < .001, Cohen’s d = 

.787; guess: t(34) = 3.609, p = .001, Cohen’s d = .610).  

A) 
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B)  

 

 

 

 

 

 

 

 

 

Figure 4. Performance on the 2AFC task. A) Children’s mean accuracy scores on the 

2AFC task. The solid line represents chance and the dashed line represents the group 

mean. B) Children’s mean accuracy for each familiarity judgement for the 

remember/know procedure. The solid line represents chance. Error bars represent 

standard error of the mean. 

3.3 Target Detection Task 

One participant was excluded from the TDT analyses as they did not complete the 

task. Responses that were not between 0-1400 ms of syllable onset were considered false 

alarms and not included in the RT analyses. Mean RTs for each syllable position (initial, 

middle, and final) are plotted in Figure 5. A repeated measures ANOVA was conducted 

to determine whether RTs differed as a function of syllable position. Children had 

progressively shorter RTs for the first, second and third syllables (Syllable position 

effect: F(2,86) = 13.211, p < .001, ηp
2 = .235; linear contrast: F(1,43) = 26.484, p < 
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.001, ηp
2 = .381). A paired samples t-test was conducted. Syllable position three was 

significantly faster than syllable positions one and two (t(43) = 5.146, p < .001, Cohen’s 

d = .685; t(43) = 3.126, p = .003, Cohen’s d = .473, respectively). Syllable position one 

and two were not significantly different (t(43) = 1.715, p = .094, Cohen’s d = .245). 

We calculated an RT priming effect, which is defined as the magnitude of the 

difference in RTs between the final syllable and first syllable [(S1 – S3)/S1]. This formula 

was used because it controls for individual differences in RT baselines (Batterink & 

Paller, 2019). The RT priming effect was significantly above zero (M = .132, SD = .168, 

t(43) = 5.205, p < .001, Cohen’s d = .785), providing evidence for implicit statistical 

learning. Split-half reliability was calculated to determine whether RTs changed 

throughout the task. Reliability between the first twelve trials and the last twelve trials 

was acceptable (α = .783), demonstrating modest differences between individuals’ RTs. 

The split-half reliability for the overall number of syllable misses and false alarms was 

also acceptable (α = .764; α = .701, respectively). This suggests that accuracy tended to 

be stable over the course of the TDT. Children missed an average of 26.705 syllables 

(SD = 4.169) out of the 96 target syllables and made an average of 23.455 false alarms 

(SD = 13.741). Sensitivity and response bias of signal and noise discrimination was 

calculated via d’ and β (d’ = 2.137, β = 2.767). The d’ value was significantly above zero 

indicating that the children were able to discriminate the signal over the noise (t(43) = 

25.613, p < .001, Cohen’s d = 3.864). The β value was significantly above one indicating 

that participants were less likely to respond when the target was absent (t(43) = 7.425, p 

< .001, Cohen’s d = 1.119). 
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In addition, we looked at mean target misses per syllable position (see Figure 6). 

There was a significant effect of syllable position for target misses (F(2,86) = 8.661, p < 

.001, ηp
2 = .168; Linear contrast: F(1,43) = 8.055, p = .007, ηp

2 = .180). Paired samples t-

tests demonstrated that the number of target misses at the first syllable was lower than the 

second and third syllables (t(43) = -4.760, p < .001, Cohen’s d = .544; t(43) = -2.838, p = 

.007, Cohen’s d = .372, respectively). The second and third syllable positions were not 

significantly different (t(43) = .936, p = .354, Cohen’s d = .122).  

 

 

 

 

 

 

 

 

 

 

Figure 5. Mean RTs for each syllable position for the target detection task. Error bars 

represent standard error of the mean. Significant differences of p < .001 are denoted with 

*** and p < .01 with **. 

 

 

 

*** 

** 
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Figure 6. Mean target misses per syllable position. Error bars represent standard error of 

the mean. Significant differences of p < .001 are denoted with *** and p < .01 with **. 

3.4 Neural Entrainment 

Figure 7 demonstrates neural entrainment at the predicted word (1.1 Hz) and 

syllable frequencies (3.3 Hz). ITCWord increased and ITCSyllable decreased with exposure; 

however, the effect was not significant (ITCWord Effect: F(1.620, 71.295) = 1.848, p = 

.172, ηp
2 = .04; linear effect: F(1,44) = 2.677, p = .109, ηp

2 = .057; ITCSyllable Effect: 

F(2,88) = .702, p = .498, ηp
2 = .016; linear Effect: F(1,44) = 1.356, p = .251, ηp

2 = .030). 

As expected, the WLI, representing the ratio of the word frequency versus the syllable 

frequency, significantly increased throughout the exposure period (WLI effect: F(2,88) = 

3.424, p = .037, ηp
2 = .072; linear effect: F(1,44) = 6.374, p = .015, ηp

2 = .127; see Figure 

8). The WLI results are consistent with previous findings in adults (Batterink & Paller, 

2017, 2019). A paired samples t-test demonstrates that WLI is only significantly different 

between the first and third blocks (t(44) = 2.525, p = .015, Cohen’s d = .433). Block two 

*** 

** 
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was not significantly different from block one and three (t(44) = -1.686, p = .099, 

Cohen’s d = .263; t(44) = -.975, p = .335, Cohen’s d = .141). 

A) 
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Figure 7. Neural entrainment results. A) Topographical plots of the distribution of ITC 

word and syllable frequencies across the scalp. Different scales are used for the word and 

syllable frequency plots. B) ITC at the word and syllable frequencies.  

 

Figure 8. Mean WLI values denoting the ratio of word frequency versus syllable 

frequency for the first two minutes (Block 1), middle two minutes (Block 2), and last two 

minutes (Block 3). Error bars are standard error of the mean. Significant differences of p 

< .05 are denoted with *. 

3.5 Correlations 

We also used correlations to assess whether there were age-related effects in 

statistical learning. Age was not correlated with the rating score (r(41) = .098, p = .534), 

the 2AFC task (r(42) .093, p = .48), the TDT (r(42) = .174, p = .259) or number of false 

alarms on the TDT (r(42) = -.154, p = .317); however, it was significantly correlated with 

the number of syllable misses on the TDT (r(42) = -.383, p = .010) and d’, our sensitivity 

* 
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measure for the TDT, (r(42) = .333, p = .027). See Figure 9 for the correlation scatter 

plots. 

Next, we correlated performance on the post-learning tasks. The 2AFC task was 

positively significantly correlated with the rating task and the RT priming effect (r(42) = 

.440, p = .003; r(42) = .344, p = .022, respectively). The rating task and the RT priming 

effect were not correlated (r(43) = .268, p = .075). 

We correlated the WLI with age and the explicit and implicit post-learning tasks. 

We removed two extreme outliers before conducting the correlations as the data points 

were above the third quartile by more than three times the interquartile range (IQR). WLI 

was not significantly correlated with age (r(41) = -.298, p = .053), ITCWord was not 

correlated with age (r(41) = -.106, p = .499). However, ITCSyllable was significantly 

correlated with age (r(42) = .321, p = .033). We did not find any significant correlations 

between the WLI and the post-learning tasks (rating task: r(40) = .236, p = .132; 2AFC: 

r(41) = .147, p = .346; TDT: r(40) = .252, p = .108).  

As an exploratory step, we correlated ITCWord with the behavioural tasks. After 

excluding one extreme outlier, we found a significant correlation between ITCWord and 

the RT priming effect (r(41) = .341, p = .025). The rating task and the 2AFC task were 

not significantly correlated with ITCWord (r(41) = .292, p = .057; r(42) = .177, p = .252, 

respectively). ITCSyllable was not correlated with any of the post-learning measures (rating 

task: r(42) = .095, p = .538; 2AFC: r(43) = -.128, p = .402; TDT: r(43) = .042, p = .788). 
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Figure 7. Correlations between A) number of targets and age (months), B) ITCSyllable and 

age (months), C) d’ on TDT and age (months), D) 2AFC task and rating score, E) 

ITCWord and RT priming effect and F) 2AFC task and RT priming effect. Scatter plots 

include the 95% confidence interval.  
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Chapter 4  

4 Discussion 

 In contrast to the abundance of research on statistical learning as a language 

learning mechanism in adults, few studies have looked at auditory statistical learning in 

children, and none have used measures of EEG to record online statistical learning. As 

cognition in childhood is ever-changing, studying statistical learning in children is crucial 

as it provides information on the development of language learning processes. We 

examined online statistical learning through EEG neural entrainment to a six-minute 

artificial language, in addition to examining offline statistical learning with a range of 

explicit and implicit post-learning tasks. The measures used in the present study have 

been shown to be sensitive indicators of individual differences in statistical learning in 

adults. The aim of this research was twofold; to determine whether the EEG neural 

entrainment measure is a sensitive indicator of statistical learning in children and to 

determine whether the implicit TDT is a valid indicator of individual differences in 

statistical learning in a younger population. Indeed, our study demonstrates that the 

implicit and online learning measures are sensitive indicators of individual differences of 

statistical learning in children. 

Our results replicate and extend previous findings of statistical learning in 

children. As in previous studies, children were able to pick up on the statistical patterns 

of a novel artificial language (e.g., Arciuli, & Simpson, 2012; Evans, Saffran, & Robe-

Torres, 2009; Saffran et al., 1997). Our results demonstrate significant explicit learning 

through the 2AFC task and the rating task. As anticipated, the group performed 

significantly above chance on the 2AFC task, with only a handful of participants below 
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or at chance. The remember/familiar/guess responses for the remember/know procedure 

were all significantly above chance, demonstrating that judgements did not differ 

according to accuracy. These findings are divergent from Batterink, Reber and 

colleagues’ (2015) findings in adults as they found a significant effect of meta-memory 

judgements on accuracy, indicating that participants had knowledge and awareness of 

their own memories (Dienes & Berry, 1997). One explanation for the divergent findings 

for the remember/know procedure is that we had fewer trials than Batterink, Reber et al. 

(2015). Their study had 36 trials, whereas our study had 16 trials. This could have 

affected the task’s sensitivity to detect a significant meta-memory effect. 

As expected, children had an average rating score that was significantly above 

chance, with words rated as the most familiar then partwords, followed by nonwords. 

These findings replicate previous findings in adults (e.g., Batterink & Paller, 2017), 

indicating that the rating task is a sensitive measure of explicit statistical learning in both 

children and adults. Interestingly, the rating score is lower than the average rating score 

previously found in adults (Batterink & Paller, 2017). Children’s rating score was .50, 

whereas the adults’ rating score was .78. A likely explanation for the differences found 

between our study and Batterink and Paller’s (2017) study is the way in which the 

partwords were made. The partwords in our study may have been more difficult to 

distinguish from the words because the transitional probabilities were higher (.33 for 

syllables one and two and 1.0 for syllables two and three), whereas the partwords in 

previous studies had lower transitional probabilities (0.0 for syllables one and two and 

1.0 for syllables two and three; Batterink & Paller, 2017, 2019).  
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Consistent with our hypothesis and previous findings in adults (e.g., Batterink, 

Reber et al., 2015), the RT priming effect for the TDT was significant and children 

showed increasingly faster RTs for more predictable syllable positions. These findings 

indicate that children used their knowledge of the structure of the speech stream to 

predict upcoming syllables. Sensitivity and response bias, as measured by d’ and β, 

demonstrate that children have a greater sensitivity to target syllables rather than noise. 

Saffran and colleagues (1997) did not find a significant difference in performance 

in auditory statistical learning between adults and children. With the use of additional 

measures, our results provide information on the extent of statistical learning in children, 

which allows us to further quantify the differences in statistical learning between age 

groups. By comparing our results to previous findings in adults, we can observe that, 

although children and adults do perform significantly above chance on the implicit and 

explicit learning tasks, there are quantitative differences between age groups. Children 

had slower RTs than adults in previous studies, even though the task was made easier by 

slowing syllable presentation (Batterink & Paller, 2017, 2019; Batterink, Reber, et al., 

2015). One explanation for the slower RTs could be explained by developmental 

differences in motor processes. In a study on the differences in motor sequence learning 

in adults and children, young children’s RTs were significantly slower than older 

children’s and adults’ RTs (Du, Valentini, Kim, Whitall, & Clark, 2017). Children also 

missed more targets than the adults (15.7 target misses in adults) and their false alarm 

rate was almost doubled the adults’ rate of 12.3 (Batterink & Paller, 2017). Interestingly, 

the children’s false alarm rate was only slightly higher than the adults’ 18.9 false alarms 

from Batterink and Paller’s (2019) study on attention. It is possible that the adults’ higher 
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false alarm rate could be due to the amalgamation of the results for the full attention 

group with the divided attention group. The slower RTs, higher false alarm rate and target 

misses in children could be due to a shorter attention span during the exposure period. 

Previous studies have found that sustained attention does increase with age, especially 

between the pre-teen years and adulthood (Lin, Hsiao, & Chen, 1999; McKay, Halperin, 

Schwartz, & Sharma, 1994). As was found by Batterink and Paller (2019), statistical 

learning still occurs when attention is not directly on the speech stream; however, less 

attention on the speech stream can negatively impact long-term memory storage of the 

encoded trisyllabic words. 

In addition to our post-learning tasks, we measured neural entrainment because it 

provides information on statistical learning that is dissociable from long-term memory. 

Our measure of event-related phase locking, inter-trial coherence (ITC), increased at the 

word level and decreased at the syllable level; however, this change was not significant. 

One explanation for these findings is that the change in entrainment over time within a 

single frequency is too weak to reach significance. Once the two frequencies are 

calculated together via the WLI, we see a significant increase in word learning over time. 

This effect suggests that children started perceiving syllables as whole word units rather 

than individual syllable parts, providing evidence of statistical learning. These findings 

demonstrate that the WLI is more sensitive to changes in entrainment over time than the 

ITC frequency values alone. The increase in WLI over time is consistent with the 

findings in adults (Batterink & Paller, 2017, 2019). This demonstrates that both children 

and adults seem to transition from representing the speech stream to representing whole 

words. The WLI also provides a sensitive measure of individual differences in children as 
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individual variability can be observed during online encoding at the syllable and word 

frequencies.  

An additional explanation for the differences found between the children in this 

study and adults in previous studies, is that children’s explicit memory and working 

memory are not as developed as adults’ (Finn et al., 2016). Working memory, responsible 

for the temporary storage and manipulation of information, and explicit memory have 

been linked to language learning abilities (Baddeley, 2003), which could explain why it 

looks like children do not perform as well or as quickly as adults on the post-learning 

tasks. However, when comparing WLI values, it seems as though the effect is consistent 

across age groups. These findings support Batterink and Paller’s (2019) findings that 

attention does not affect neural entrainment to words but can affect performance on the 

post-learning tasks due to constraints on memory retrieval. This supports the theory that 

differences found between age groups are due to memory processes and not statistical 

learning capabilities. Future studies should directly compare statistical learning between 

adults and children to determine whether the differences across age groups are 

significant. 

4.1 Correlations 

Interestingly, when we correlated the behavioural measures, the 2AFC task was 

positively correlated with the rating task and the RT priming effect. Therefore, the 2AFC 

task is predictive of performance on the rating task and the TDT. These findings are 

unlike previous findings in adults as the TDT was not found to be significantly correlated 

with the 2AFC task (Batterink, Reber et al., 2015). One explanation for these differences 

in findings is that our sample size was larger. It is possible that with a larger sample size, 
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we were able to detect a correlation due to having more statistical power. An additional 

explanation for these findings is that recognition on the 2AFC task taps into both implicit 

and explicit knowledge. This notion fits in with Voss, Baym and Paller’s (2008) findings 

that recognition mechanisms are allied with both implicit and explicit memory. Our 

findings support the notion that implicit knowledge of statistical probabilities is acquired 

in parallel with explicit knowledge.  

Contrary to previous findings, we did not find a significant correlation between 

the WLI and the post-learning measures. These findings are unexpected as previous 

studies looking at the relationship between the WLI and post-learning tasks found a 

significant positive correlation with the RT priming effect (i.e., Batterink & Paller, 2017, 

2019). This could mean that the WLI is not as sensitive of an indicator of statistical 

learning in children as it is in adults. However, when we correlated ITCWord with the RT 

priming effect, we did find a significant positive correlation. This means that children 

who have greater neural entrainment at the word frequency show better performance on 

the speeded TDT. It appears that normalizing word frequency by syllable frequency may 

produce a less sensitive measure of statistical learning in children. Furthermore, ITCSyllable 

was found to be significantly correlated with age, demonstrating that older children have 

a higher entrainment at the syllable level. This is likely due to the maturation of 

attentional processes. Older children may be able to attend to the speech stream longer 

than younger children, which leads to stronger neural responses at the syllable frequency. 

Since younger children have less neural entrainment at the syllable frequency, 

normalizing neural entrainment would be inappropriate as the WLI values would be 

inflated for younger children relative to older children.  
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In addition, age was found to be negatively correlated with the number of syllable 

misses on the TDT and positively correlated with d’, our measure of sensitivity for the 

TDT. This means that the number of syllable misses decreased with age and sensitivity to 

targets increased with age. These results provide further evidence for the role of age in 

attentional processes related to implicit statistical learning. 

4.2 Limitations and Future Directions 

One of the limitations of our study is that even though we shortened the TDT by 

12 streams, it still seemed to be too long for children. Their attention would wander, 

which likely led to more false alarms and missed targets. If the task is further shortened; 

however, the results may not be as powerful. One possibility is to make the task more 

engaging. Our task had a square at the bottom of the screen that would change colour 

with each button press. In the future, a more engaging cover task should be created to 

direct and maintain children’s attention on the TDT. 

 Our study used tasks that remedy the psychometric shortcomings of statistical 

learning tasks detailed by Siegelman et al. (2017). However, there are other psychometric 

concerns that were not addressed. A recent study examining task reliability on several 

statistical learning tasks found that the tasks were not reliable indicators of performance 

in children across time and had low internal consistency (Arnon, 2019). From this study, 

we know that the 2AFC task has some additional psychometric shortcomings that make it 

difficult to predict individual variation in statistical learning in children. The tasks that we 

used in the present study have not been tested for reliability. Future work on statistical 

learning should determine the tasks’ test-retest reliability to determine whether statistical 
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learning as assessed by these tasks is a reliable individual predictor of statistical learning 

across time. 

 The measures used in this study are sensitive and powerful predictors of 

individual variation in statistical learning (e.g., Batterink & Paller, 2017, 2019), therefore 

they could provide useful information on differences between groups. As previously 

mentioned, there were differences on post-learning measures of statistical learning 

between adults and children. However, it is not known whether these differences are 

significant and to what extent they differ. The statistical learning results from our study 

and previous studies in adults cannot be directly compared as there are key differences 

between the studies. Some of these differences include a longer exposure period and 

different syllable presentation rates, which could affect the degree of statistical learning 

and influence the results on the post-learning tasks and the WLI (Batterink & Paller, 

2017, 2019). A direct comparison between children and adults is needed to further 

understand the dynamics of statistical learning across the lifespan. In addition, these tasks 

could be used to discover differences in statistical learning between special populations. 

For instance, there is some debate over whether children with developmental dyslexia 

perform significantly worse than children who are typically developing (Schmalz, Altoè, 

& Mulatti, 2017). Some studies have reported that typically developing participants have 

better statistical learning abilities than participants with dyslexia (e.g., Sigurdardottir et 

al., 2017), whereas other studies have reported that there are no group differences (e.g., 

Nigro, Jimenez-Fernandez, Simpson, & Defior, 2015). The neural entrainment and 

implicit learning measures may shed some light on whether there are truly differences 

between various groups.  
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4.3 Conclusions 

This is the first study to look at online neural entrainment during statistical 

learning in children. The current study has provided important information on the 

dynamics of statistical learning by demonstrating that children acquire both implicit and 

explicit knowledge of a novel language. These findings replicate prior findings that 

explicit and implicit memory play a role in learning the probabilities of a novel language. 

Importantly, these findings demonstrate that both adults and children use similar 

underlying mechanisms of statistical learning. Furthermore, we found that there were 

age-related effects in neural entrainment at the syllable level. Less neural entrainment at 

the syllable level could be due to a shorter attention span in younger children, which 

could have led to more syllable misses and lower sensitivity to target syllables on the 

TDT. 

These findings could have implications for future research on statistical learning 

in children. The neural entrainment results demonstrated rapid implicit learning of word-

level information, while post-learning behavioural tasks demonstrated significant syllable 

prediction and recognition of the trisyllabic words. This opens the door to the possibility 

of using these measures in populations with developmental disabilities. These measures 

could provide important information on the developmental trajectory of statistical 

learning in a wide range of children and inform us on the cognitive mechanisms 

underpinning language learning impairments. 
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Appendices 

Appendix A: Background Questionnaire 

Section 1: General Information 

 

Sex:  Male     Female       You don’t have an option that applies to my child. They 

identify as (please specify): ___________________ 

 

Age (years; months): _________                   Grade: _________ 

 

Is your child right or left-handed (circle one)?   Left  Right   Both 

 

Section 2: Language History 

 

Age at which your child learned to speak: ___________________ 

Age at which your child began to form full sentences: ___________________________ 

Age at which your child learned to read: __________________________________ 

Age at which your child began to read fluently: ___________________ 

 

Is English your child’s first language (circle one)?   Y   N 

If no, please list which language(s) they learned from birth: 

 

 

Using the table below, please list the languages that your child can speak, understand, 

read and write. For each, indicate years of experience and rate how well they can speak, 

understand, read and write in that language.  

For number ratings, please use the following scale: 

Not 

at 

all 

Very 

low 

Low Fair Less than 

adequate 

Adequate More than 

adequate 

Good Very 

good 

Excellent Perfect 

0 1 2 3 4 5 6 7 8 9 10 

Language Exposure Speak Understand Read Write 

E.g., 

English 

Entire life 10 10 10 10 
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E.g., 

French 

2 years 5 5 8 8 

 

 

 

     

 

 

 

     

 

 

 

     

 

 

 

Section 3: Learning Challenges 

 

Does your child currently or has ever been diagnosed with any type of reading or 

language disorder (circle one)?  Y   N 

 If yes, please explain:  

 

 

 

Does your child currently or has ever been diagnosed with any type of visual or auditory 

impairment (circle one)?       Y         N 

 If yes, please explain: 

 

 

 

Has your child ever been diagnosed with a learning disorder or neurological impairment 

(ADHD, autism, epilepsy)?  Y   N 

 If yes, please specify:  

 

 

 

Has your child ever had a serious head injury (i.e., concussion)?    Y         N 

 If yes, please specify: 

 

 

 

Does your child take medications regularly?    Y        N 

 If yes, please specify: 

 

Comments: 
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Appendix B: Letter of Information 

Project Title: Statistical Learning in Children 

Document Title: Letter of Information and Consent 

 

Principal Investigator and Contact: Dr. Marc Joanisse, Ph.D. (Western) 

 

Additional Research Staff Contacts: Christine Moreau 

    

Introduction 

Your child is invited to participate in a study that examines visual and auditory learning 

in children with language and reading impairments. We are exploring whether children 

with reading and language impairments differ from typically developing children on an 

artificial language learning task and a visual sequence learning task. Your child is being 

asked to participate in this research because they are English monolingual, are 

neurologically healthy, and are between the ages of 8 to 12 years.  

 

Purpose of the Study 

The purpose of this study is to collect information on the underlying causes of language 

and reading disorders. We will examine your child’s brain activity through the use of 

electroencephalography (EEG), which will allow us to observe the neural components 

involved in language and sequence learning. Information we obtain in this study will 

provide us with knowledge on the underlying structures involved in language and reading 

disorders in children. 

 

Inclusion Criteria 

Children who are English monolingual between the ages of 8 and 12 years, with normal 

or corrected-to-normal vision, no history of hearing, neurological or psychiatric 

disorders. We are looking for children with language and reading impairments, whether 

they be diagnosed or undiagnosed with, for example, dyslexia, and developmental 

language disorder. We are also looking for children who do not have any reading or 

language impairments. 

 

Exclusion Criteria 

Children who are not between 8 and 12 years old are not eligible. Children who are 

bilingual or who have another language other than English as their first language is not 

eligible. Children who have been diagnosed with other developmental/learning disorders 

not related to language or reading are not eligible (i.e., ADHD, autism spectrum). 

 

Study Procedures 

This study will involve a single testing session that will take place in the Western 

Interdisciplinary Research Building on the Western University campus and will take 

approximately two hours to complete. We will explain the procedures to you and your 

child and ask them if they agree to participate. During the study, you will be asked to fill 

out a demographic/language background questionnaire. While you are filling out this 
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questionnaire, your child will complete a series of reading, language and cognitive tasks. 

Some will be done with pen and paper and others will be done on the computer. Next, 

your child will be asked to listen to a short speech stream and afterward respond to tasks 

related to the speech stream. This includes being tested on reaction time responses to the 

auditory stimuli by pressing buttons on a computer or response pad. For the visual 

sequence learning task, your child will be asked to respond to a visual sequence presented 

on a computer screen by pressing buttons on a computer keyboard or response pad and 

filling out a short questionnaire. During the auditory and visual sequence learning tasks, 

we will monitor your child’s brain activity with an electroencephalogram (EEG). 

 

EEG Procedure 

We will put a cap with electrodes on your child’s head and secure it with a chin-strap. 

These electrodes will monitor small changes in neuronal activity during the auditory and 

visual sequence learning tasks. The EEG is non-invasive and completely safe to use. 

Your child will be seated comfortably on a chair positioned in front of the computer. The 

EEG cap will be placed on your child’s head and gel will be applied to the sensors on the 

cap. The electrodes never come into direct contact with your child’s skin and the gel used 

is safe, non-toxic and easily washes off hair and clothes. Afterwards, if needed, there is a 

washing station where you can wash your child’s hair. The set-up of the EEG takes 

approximately 30 minutes to complete, and your child has the option of watching a short 

child-friendly movie. Once the set-up is complete, your child will complete the auditory 

and visual sequence learning tasks on the computer. 

 

Compensation 

You will receive $20 to cover any travel expenses, in addition to free parking at Western 

University. Your child will also receive a $20 gift certificate for the movies. If your child 

does not complete the entire study, you will still be compensated for participating in the 

study. 

 

Possible Risks and Harms 

There are no known or anticipated risks associated with participating in this study. The 

sensors in the EEG cap do not emit electricity or electromagnetic fields. There may be 

some minor discomfort during the set-up of the EEG cap (i.e., while gel is being put on 

the cap sensors). We will be in constant communication with your child and we will be as 

gentle as possible during the set-up process. During all stages of the experiment, your 

child’s comfort level will be monitored. If, at any point, your child feels tired or 

uncomfortable they can take a break or withdraw from the study at any time. 

Possible Benefits 

You and your child may not directly benefit from participating in this study, but 

information gathered may provide benefits which include advancing knowledge on how 

children with language and reading disorders learn new auditory and visual sequences. 

Participation in this study is voluntary. Even if you and your child consent to participate, 

you and your child have the right to not answer any question or to withdraw from the 

study at any time. If you decide to withdraw from the study, there will be no effect on 

your child’s academic standing. Any new learned information that may affect your 
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decision to stay in the study will be reported to you. By signing this consent form, you do 

not waive any legal rights.  

 

Confidentiality  

Representatives of The University of Western Ontario Non-Medical Research Ethics 

Board may require access to your study-related records to monitor the conduct of the 

research. Paper copies of consent forms and participant demographic data will be kept in 

a secure location for a minimum of 7 years before being destroyed. Password protected 

and encrypted electronic files that contain only de-identified data will be stored on a 

secure computer. Anonymized electronic data will be retained indefinitely. The 

anonymized electronic data will not be stored alongside personal information. If you 

indicate that you are interested in participating in future studies, we will need your e-mail 

address or phone number for correspondence purposes. If you provide it, the e-mail 

address or phone number will not be linked to study data and it will be stored in a secure 

location. Your data will be coded with a unique number, and a list linking your name 

with your study number will be securely stored separate from your data for a minimum of 

7 years. If the results of the study are published, your child’s name will not be used. 

 

In addition, the de-identified research data will be stored on the osf.io website, keeping 

with best practices of open and transparent scientific research. This means that any 

member of the public will have access to your child’s research records indefinitely. Raw 

data linked to your child’s unique study ID will be shared on the osf.io website; however, 

the data we release to the general public will, to the best of our knowledge, not contain 

information that can directly or easily identify your child. The research records from this 

study might be used for other, future research projects. Once research records have been 

shared with the general public, it will not be possible for us to fully withdraw or recall it. 

However, if you do indicate you wish for your child’s data to be withdrawn in the future, 

we can only remove it from the public repository to prevent any further access to it. 

 

Your contact and demographic information will be stored in a secure, password-protected 

database. If you would like to be contacted about future research studies for which you 

(or your child) may be eligible, you can choose to have your information entered into 

“OurBrainsCAN: University of Western Ontario’s Cognitive Neuroscience Research 

Registry”. This is a secure database of potential participants for research at the University 

of Western Ontario that aims to enroll 50,000 volunteers over a period of 5 years. The 

records are used only for the purpose of recruiting research participants and will not be 

released to any third party. 

 

Further Information 

If you have questions about this research study, please contact Christine Moreau at X. 

You may also contact Dr. Marc Joanisse at X. If you have any questions about your rights 

as a research participant or the conduct of this study, you may contact The Office of 

Human Research Ethics. 

 

This letter is yours to keep for future reference. 
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Curriculum Vitae 

 
Christine Moreau 

 

Education 
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