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Abstract 

After a concussion there is a complex cascade of events, termed the neurometabolic 

cascade, that includes changes in ion flux, neurotransmission, and cellular energetics. 

How this pathophysiological process translates into cognitive deficits remains poorly 

understood. Magnetic resonance spectroscopy (MRS) provides a non-invasive technique 

that allows for the quantification of brain metabolites that are involved in these processes, 

including glutamate and glutamine, which are involved in neurotransmission. Moreover, 

female athletes are underrepresented in studies on concussion, limiting our knowledge and 

understanding of sex differences. The overall goal of this thesis was to examine metabolite 

changes using MRS in female athletes before and after concussion, with the added goal of 

quantifying glutamate and glutamine separately. The second objective was to replicate 

metabolite changes in an animal model of concussion, to position future studies to probe 

the reasons for these changes, and to explore whether these changes represent potential 

therapeutic targets.  

  MRS was acquired from the prefrontal WM of female athletes (contact and non-

contact sports) and sedentary women at 3T to explore metabolite differences between 

groups and changes after concussion. In addition, an animal model of repeated closed 

head impacts was studied at 9.4T, in an effort to replicate the findings observed in 

humans.  

 In the contact athlete cohort, reduced glutamine and glutamine/total creatine (Gln/Cr) 

were found following concussion, and after a season of play in non-concussed athletes. In 

the non-contact athlete cohort, metabolite levels did not change over the course of a 

season, and they did not differ from age matched sedentary women, except for a small 

difference in myo-inositol.  Most interestingly, glutamine levels were significantly 

elevated in contact athletes compared to sedentary and non-contact groups, suggesting that 

sub-concussive impacts may have a long-term effect on brain metabolite levels. 

Furthermore, the large difference in glutamine levels between contact and non-contact 

athletes has implications in study design in regards to control groups versus test-retest 

paradigm. 
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 In the final study, we used a murine model (C57BL6) of repeated closed head injury 

to investigate metabolite level changes post-injury. Elevated Gln/Cr was observed 10-

weeks post-injury, suggesting that the model may be appropriate to study sub-concussive 

injury. 

 Together, these studies suggest that there exists a cumulative effect on the brain from 

sub-concussive impacts in contact sports, that manifests as elevated glutamine levels. 

Moreover, concussion in the same cohort of athletes results in reduced glutamine levels. 

Further work aimed at replicating these findings in animal models will be crucial to 

understanding the effects of cumulative impacts and concussion. 
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Lay Summary 
 

After a concussion there is a complex cascade of events, termed the neurometabolic cascade, 

that includes changes in ion flux, neurotransmission, and cellular energetics. How this 

process translates into cognitive deficits remains poorly understood. Magnetic resonance 

spectroscopy (MRS) provides a non-invasive technique that allows for the quantification of 

brain metabolites that are involved in these processes, including glutamate and glutamine, 

which are involved in neurotransmission. Moreover, female athletes are underrepresented in 

studies on concussion, limiting our knowledge and understanding of sex differences. The 

overall goal of this thesis was to examine metabolite changes using MRS in female athletes 

before and after concussion, with the added goal of quantifying glutamate and glutamine 

separately. The second objective was to replicate metabolite changes in an animal model of 

concussion, to position future studies to probe the reasons for these changes, and to explore 

whether these changes represent potential therapeutic targets.  

  MRS was acquired from the prefrontal white matter of female athletes (contact and 

non-contact sports) and sedentary women to explore metabolite differences between groups 

and changes after concussion. In the non-contact athlete cohort, metabolite levels did not 

change over the course of a season, and they did not differ from age matched sedentary 

women, except for a small difference in myo-inositol.  Most interestingly, glutamine levels 

were significantly elevated in these contact athletes compared to sedentary and non-contact 

groups, suggesting that sub-concussive impacts may have a long-term effect on brain 

metabolite levels. Moreover, reduced glutamine levels were found following concussion in 

the contact cohort. 

 In the final study, we used a mouse model of repeated closed head injury to 

investigate metabolite level changes post-injury. Elevated Glutamine/Creatine was observed 

10-weeks post-injury, suggesting that the model may be appropriate to study sub-concussive 

injury. 

 

 Together, these studies suggest that there exists a cumulative effect on the brain from 

sub-concussive impacts in contact sports, that manifests as elevated glutamine levels. 
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Moreover, concussion in the same cohort of athletes results in reduced glutamine levels. 

Further work aimed at replicating these findings in animal models will be crucial to 

understanding the effects of cumulative impacts and concussion. 

Keywords 
Mild traumatic brain injury, magnetic resonance imaging, magnetic resonance spectroscopy, 

concussion, sub-concussion, metabolites, glutamine 
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Chapter 1  

1 Introduction 

1.1 Prevalence and Clinical Definition 
Traumatic brain injury (TBI) imposes a healthcare burden of $60 billion annually in the 

United States alone1 and an estimated 57 million people worldwide have been hospitalized 

with one or more TBIs2. The severity of TBIs is typically classified as mild, moderate, to 

severe, with “concussion” and “mild TBI” often being used interchangeably3. Furthermore, 

the National Collegiate Athletic Association Injury Surveillance Program has reported the 

concussion rate among student-athletes in 25 different sports to be 4.47 per 10,000 Athlete-

Exposures (defined as one athlete participating in one practice or competition) overall, with 

some sports (e.g. hockey, football, wrestling) as high as 20 concussions per 10,000 Athlete 

Exposures4. Additionally, Hirschhorn et al. (2018)5 found that the most commonly injured 

body part among emergency transport incidents (ETIs) in both collegiate and high school 

players to be the head and face, followed by the neck, with concussion as a frequent 

diagnosis at both levels. Although concussions can occur in many situations, including 

motor vehicle accidents, domestic violence, and slips and falls, athletes participating in 

contact sports have a high risk of sustaining a concussion due to the nature of the activity1. 

  Concussion can be defined as a complex pathophysiological process affecting the 

brain, induced by traumatic biomechanical forces that may be caused by a direct blow to 

the head, face, neck, or elsewhere on the body with an impulsive force transmitted to the 

head6,7. Traditionally, concussion is considered a subset of traumatic brain injury (TBI) and 

is less severe than impacts that cause cranial fractures and intracranial hemorrhage. 

Clinical symptoms can include physical, cognitive, emotional, and sleep disturbances. 

Onset of symptoms is typically rapid, short-lived, and the mechanism of impairment is 

usually a functional disturbance rather than structural injury. Additionally, brain loading 

patterns of stress and strain vary throughout the brain depending on factors including 

external forces, geometry, tissue properties and bony architecture of the skull, such that 

clinical symptoms may vary from person to person6. 
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  Although an athletic trainer is often the first health care provider on the scene to 

provide initial care5, diagnosis of concussion is made through clinical assessment by a 

sport medicine physician based on mechanism of injury and symptomatology8. In sports, 

this diagnosis is often made with the aid of clinical tests such as the Sport Concussion 

Assessment Tool (SCAT) or Immediate Post-Concussion Assessment and Cognitive 

Testing (ImPACT). The SCAT is a standardized tool that integrates the Glasgow Coma 

Scale (GCS) and Maddocks score9. The GCS assesses visual, verbal and motor response on 

a 15-point scale, with concussed athlete’s scoring 14-15, and more severe TBI’s scoring 

lower, while the Maddocks score consists of simple questions such as “Who scored last in 

this match” to assess short-term memory. Furthermore, the SCAT requires the athlete to 

rank 22 different symptoms (including headache, neck pain, nausea, dizziness, blurred 

vision, etc.) on a scale of 0-6, followed by questions and tasks that specifically assess 

orientation, immediate memory, concentration and balance. The ImPACT is a 

computerized test that also assesses 22 symptoms (on a 7-point scale) and employs 

neurocognitive tests that evaluate verbal and visual memory, processing speed, reaction 

time and impulse control10. However, these assessments are limited since they are 

subjective, and rely on athletes to voluntarily report symptoms that are often delayed. 

Additionally, athletes with musculoskeletal injuries have been found to have impaired 

neurocognitive test results similar to those of concussed athletes, demonstrating the lack of 

specificity to concussion11. Furthermore, the proper testing environment needed for these 

tests in addition to the training required to properly review the results (e.g. ideally by a 

neuropsychologist), are impractical for schools and organizations12. Therefore, an objective 

biomarker that could be diagnostic and/or prognostic is greatly needed for concussion, 

especially in sports where the decision to remove the athlete and return to play is time 

sensitive. 

1.2 Concussion and Clinical Practice 

1.2.1 Motivation and Overview 

After a concussion there is a complex cascade of events, termed the neurometabolic 

cascade, that includes changes in ion flux, neurotransmission, and cellular energetics13. 

Although magnetic resonance spectroscopy provides a technique that is able to measure 
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several different metabolites that may be associated with this process, glutamate and 

glutamine are hardly ever reported separately, because their signals overlap and are 

confounded by macromolecules, reducing quantification precision and reliability14. 

However, it is important to quantify these metabolites separately due to their involvement 

in neurotransmission, and several metabolic pathways is the central theme throughout this 

thesis.  

  In order to appreciate the complex pathophysiological process of concussion, this 

section begins by introducing the basics of the central nervous system, including 

neurotransmission, the metabolic demands of the brain, and traumatic brain injury, before 

describing the biochemical changes associated with the neurometabolic cascade. Then an 

overview of medical imaging in concussion follows, before describing the basics of 

magnetic resonance and the metabolites that are measurable by magnetic resonance 

spectroscopy, and their relevance to concussion. 

  This thesis then uses magnetic resonance spectroscopy to explore metabolite 

changes in the prefrontal white matter of female contact athletes before and after 

concussion, with the added goal of quantifying glutamate and glutamine separately. With 

the findings from these female human studies, an animal model of repeated closed head 

impacts is developed to replicate these findings, to position future studies to probe the 

reasons for these changes, and how to use these changes as potential therapeutic targets.  

1.2.2 Concussion Management and Recovery 

Every concussion is unique and it is therefore necessary to have an individualized approach 

to concussion management and return to play as well as return to learn. First and foremost, 

it is important that the athlete is removed from play and not allowed to return to play the 

same day. Studies have shown that athletes that return to play the same day are at greater 

risk of having a recovery period longer than 21 days15. While it is recommended that 

athletes reduce their physical and cognitive activity acutely after a concussion, studies have 

shown that some physical activity is beneficial, so long as it does not exacerbate 

symptoms12. Alternatively, it has been suggested that subthreshold aerobic exercise 

(progressive exercise to the point of symptom exacerbation) may improve patient outcomes 
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after concussion and post-concussion syndrome, by aiding in the restoration of autonomic 

function16. 

  Return to play is usually accomplished by following the graduated stepwise 

program updated by the Berlin Concussion in Sport Group6, which starts with (1) 

symptom-limited activity, then moves the athlete into (2) light aerobic exercise, (3) sport-

specific exercise, (4) non-contact training drills, (5) full-contact practice, and last (6) return 

to sport. If at any of these stages symptoms are triggered, the athlete falls back to the 

previous step. Ideally, the progression through these stages is monitored by a health care 

provider or athletic trainer12. Depending on the nature of the injury, athletes may have also 

experienced cervical strain, vestibular injuries or oculomotor dysfunction (resulting in 

prolonged dizziness or balance deficits), which would likely require physical therapy and 

rehabilitation during the recovery stage as well.  

  There are no current medications that treat concussion specifically, however, the 

recommendation of medications is common among primary care, emergency department, 

and sports medicine physicians12 to treat sleep disturbances and somatic, emotional, or 

cognitive symptoms17. Acetaminophen and nonsteroidal anti-inflammatory medications are 

the most commonly used12. Melatonin, an endogenous hormone produced by the pineal 

gland from serotonin, can be prescribed for sleep disturbances, as well as Trazodone, a 

serotonin reuptake inhibitor. Antidepressants such as amitriptyline are commonly used to 

treat posttraumatic headaches as well as more severe emotional disturbances17.  

1.2.3 Female Concussion 

Estrogens and androgens can influence neuronal and glial structure and function in the 

brain, due to the distribution of receptors throughout the cerebral cortex and other brain 

regions18, providing a neurobiological foundation for potential sex differences in brain 

injury. How these neurobiological differences influence brain injury following concussion, 

however, is not well understood. Females tend to report a greater number of symptoms, 

present with a different collection of symptoms, and take longer to recover19. It has been 

proposed that these disparities could be due to the neck musculature and head/neck 

stability, making females more susceptible to injury20. It has also been suggested that 
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changes in hormonal levels in females, due to the menstrual cycle, can impact recovery 

outcomes20. For example, the reduction of progesterone after concussion may impact 

recovery outcomes, with a greater reduction reflecting worse outcome20. 

  Even though sex may be a risk factor for concussion or influence injury severity, 

there exists a disparity between male and female studies in the concussion and TBI 

literature. Males have dominated the majority of TBI cases, with greater hospitalization 

rates that were attributed to differences in societal roles and risk-taking behavior20. 

Furthermore, the majority of studies on concussion have been male dominated due to the 

high rates of concussions in American football19. However, females actually suffer more 

concussions in sports where males and females compete equally, such as soccer or 

basketball (9.5% versus 6.4%)19. Therefore, it is clear that more studies focused on female 

concussion are greatly needed, to better understand the clinical significance of sex 

differences in concussion. 

1.3 The Human Brain 

1.3.1 Basics of the Central Nervous System: Key Components 

Understanding the neurobiological effects of concussion requires a brief introduction to the 

central nervous system. The nervous system can be divided into two broad cell types: nerve 

cells, or neurons, and glial cells18. Neurons and glia contain the same organelles found in 

all cells, however the localization of organelles and general morphology of these cell types 

differ. Generally, neurons are composed of a cell body, axons, and dendrites. Dendrites, 

which can be highly branched, are the primary location for synaptic input from the axon 

terminals of other neurons18, while an axon is an extension of the cell body that carries 

electrical signals known as action potentials18.   

  Neurons are specialized cells for electrical signaling over long distances18. These 

signals transition from one neuron to the next through synapses, or synaptic transmission. 

A synapse consists of a presynaptic and postsynaptic neuron, and usually there is no 

physical continuity between these two components, but rather an elegant transmission of 

molecules from the presynaptic neuron to receptors on the postsynaptic cell through 
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extracellular space known as the synaptic cleft. The number of synaptic inputs to a given 

neuron vary throughout the nervous system from 1 to 100,00018.  

  Glia, like neurons, have complex processes extending from their cell bodies, but 

do not serve the same purposes as axons and dendrites. They do not participate directly in 

synaptic transmission or electrical signalling but provide supportive functions that are 

imperative to maintaining the neurons signalling abilities, in addition to providing a 

scaffold during neurodevelopment and aiding neurons after injury18. In the mature brain, 

glia can be further subdivided into astrocytes, oligodendrocytes, and microglia. Astrocytes 

help maintain the chemical environment for neuronal signalling, oligodendrocytes produce 

and maintain the lipid-rich myelin around axons (Schwann cells in the periphery), and 

microglia are immune cells involved in regulating neuronal development, innate immune 

response and wound healing21. 

  Together, an ensemble of neurons (and surrounding glia) are organized into neural 

circuits, which process specific information, setting the foundation for sensation, 

perception, movement, and behavior18. The basic constituents of a neural circuit are 

afferent neurons, efferent neurons, and interneurons. Afferent neurons carry information 

from the periphery to the central nervous system while efferent neurons carry information 

away, and interneurons act locally within the circuit, evident by their short axons18. Neural 

circuits that process similar types of information make up a neural system. Neural systems 

can be broadly divided into sensory systems (visual, auditory), motor systems, and 

associational systems18. Nerves cells are further organized in the brain into regions rich in 

neuronal cell bodies called gray matter and regions rich in axons called white matter. The 

segregation of the brain into gray and white matter is a ubiquitous feature of the vertebrate 

anatomy22. In the human brain, there are approximately 32.8 billion total cells in gray 

matter with a glial to neuron ratio of about 3:2, whereas of the 44.4 billion cells in white 

matter the majority are glial cells23. 

1.3.2 Neurotransmission 

As a function of cortical firing rate, the amount of glutamate that is packaged into vesicles, 

released, and then recycled through glial cells is proportional across species24. The intricate 
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activity of neurotransmitters and their receptors are the basis for nerve cell 

communication18. Neurons generate electrical signals based on the flow of ions across their 

plasma membranes. When at rest, neurons generate a constant voltage across their 

membrane, called the resting membrane potential, typically -40 to -90 mV18. The resting 

membrane potential is primarily due to the selective permeability of potassium ions (K+) 

caused by K+-permeable membrane channels, resulting in more K+ inside the neuron than 

outside18. Electrical signals produced by neurons are caused by responses to stimuli, which 

then change the resting membrane potential, resulting in an action potential. During an 

action potential the membrane becomes transiently permeable to sodium (Na+) by the 

opening of Na+ channels, allowing Na+ influx, causing the membrane potential to 

depolarize. This rise in Na+ permeability is followed by a transient rise in membrane K+ 

permeability by the opening of K+ channels, allowing K+ efflux, repolarizing the neuronal 

membrane18. The Na+-K+ ATPase restores the resting membrane potential by actively 

moving Na+ out, and K+ into the cell. Local depolarization causes neighbouring Na+ 

channels to open and continue the generation of the action potential. Myelination of an 

axon further speeds up action potential conduction by acting as an electrical insulator18. 

  While action potentials allow the transmission of a signal along an axon, 

communication from one neuron to the next is made possible by synapses, the functional 

contact between neurons. There are two general classes of synapses in the human brain: 

electrical and chemical. In electrical synapses, the presynaptic and postsynaptic neurons 

are actually linked by gap junctions, and ionic current is allowed to flow passively through 

the pores created by these gap junctions18. However, the majority of synapses throughout 

the central nervous system are not electrical, but chemical. In chemical synapses, 

neurotransmitters are packaged into membrane-bound organelles called synaptic vesicles 

within the presynaptic terminal. The arrival of an action potential leads to the opening of 

calcium (Ca2+) channels causing a rapid influx of Ca2+. The rapid influx of Ca2+ allows the 

synaptic vesicles to fuse with the plasma membrane, releasing the neurotransmitters into 

the synaptic cleft. The neurotransmitters diffuse across the synaptic cleft to where they 

bind to their receptors on the postsynaptic neuron causing channels to open or close, 

depending on the nature of the neurotransmitter and receptor, resulting in an increased or 

decreased probability that the neuron will fire an action potential. 
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  Although there are over 100 different neurotransmitters in the human brain, the 

main excitatory neurotransmitter in the brain is glutamate, and the main inhibitory 

neurotransmitter is !-aminobutyric acid (GABA)18. Glutamate is a nonessential amino acid 

that does not cross the blood brain barrier, and therefore must be synthesized in the brain 

from local precursors. These precursors include tricarboxylic acid (TCA) cycle 

intermediates ("-ketoglutarate), and predominantly glutamine by the mitochondrial 

enzyme glutaminase18. Glutamate is then packaged into synaptic vesicles by vesicular 

glutamate transporters. Once released into the synaptic cleft, glutamate is rapidly removed 

by excitatory amino acid transporters (EAATs, a family of Na+-dependent co-transporters), 

present on some presynaptic terminals and primarily on glial cells, specifically astrocytes18. 

Once in the astrocyte, glutamate is converted to glutamine by glutamine synthetase25. 

Glutamine is then transported back to the neuron, where it can be converted to glutamate. 

The sequence of these events is better known as the glutamate-glutamine cycle, see Figure 

1.1. GABA on the other hand, while most commonly found in local circuit interneurons, is 

primarily synthesized from glutamate by the glutamic acid decarboxylase (GAD) enzyme 

and can also be synthesized from glutamine and pyruvate18. GABA is then similarly 

packaged into vesicles, released into the synaptic cleft, and removed by Na+-dependent co-

transporters found on neurons and astrocytes. GABA is then converted to succinate by 

GABA transaminase and succinic semialdehyde dehydrogenase (SSADH), a TCA cycle 

intermediate18. These tightly coupled glutamatergic and GABAergic systems are better 

known as the GABA-glutamate-glutamine cycle, and is depicted in Figure 1.1. 

  Glutamatergic neurotransmission is excitatory due to the postsynaptic receptors 

that glutamate binds. There are metabotropic glutamate receptors (mGluR) that can excite 

or inhibit, and therefore are actually quite varied in their physiological roles18. However, 

the vast majority of glutamate receptors are ionotropic receptors (AMPA, NMDA, and 

Kainate) that always produce excitatory responses due to the influx of Na+ and K+, and 

sometimes Ca2+, when activated18. Activation of these receptors can also result in 

excitotoxicity, the ability of prolonged glutamate synaptic transmission to destroy neurons. 

Evidence of excitotoxicity causing neuronal damage after brain injury has been observed 

during studies of ischemia and epilepsy18,26. GABAergic neurotransmission on the other 
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hand, is inhibitory because activation of these receptors causes an influx of Cl-, which 

hyperpolarizes the membrane and therefore transiently inhibits an action potential18.  

 

 

Figure 1.1: Illustration of the GABA-Glutamate-Glutamine Cycle. Glutamate is packaged 

into synaptic vesicles and released into the synaptic cleft. Glutamate is rapidly removed by 

excitatory amino acid transporters, present on some presynaptic terminals and primarily on 

glial cells, specifically astrocytes. Once in the astrocyte, glutamate is converted to 

glutamine by glutamine synthetase. Glutamine is then transported back to the neuron, 

where it can be converted to glutamate. The sequence of these events is better known as the 

glutamate-glutamine cycle. GABA on the other hand, is primarily synthesized from 

glutamate by the glutamic acid decarboxylase (GAD) enzyme and can also be synthesized 

from glutamine and pyruvate. GABA is then similarly packaged into vesicles, released into 

the synaptic cleft, and removed by Na+-dependent co-transporters found on neurons and 

astrocytes. GABA is then converted to succinate by GABA transaminase and succinic 

semialdehyde dehydrogenase (SSADH), a TCA cycle intermediate. These tightly coupled 

glutamatergic and GABAergic systems are better known as the GABA-glutamate-

glutamine cycle. 
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1.3.3 Metabolic demands of the human brain 

The principal nutrients that support biosynthesis in mammalian cells are glucose and 

glutamine27. Although the regulation of glutamine through signalling pathways is still 

being elucidated27, the brain utilizes 20% of the body’s total glucose and oxygen to 

generate ATP to fuel physiologic functions28. Glucose is also a key substrate in forming the 

second messenger inositol, as well as glutamate and GABA for neurotransmission, as 

discussed earlier29. It is generally accepted that glucose is the obligatory energy substrate 

for the brain30,31, and crosses the blood brain barrier through glucose transporters, primarily 

GLUT1. Even though neurons possess the glucose transporter, GLUT3, several studies 

suggest that glucose is mostly consumed by glial cells while neurons depend on glucose 

metabolites released from the glia32. Further studies have suggested other useful energy 

substrates for the brain, including lactate and acetate32. In astrocytes, after glycolysis, 

pyruvate can easily be converted into lactate, and is potentially a major source to support 

axonal function33. Although controversial, it has also been proposed that this lactate is 

transported to neurons where it serves as the primary metabolic fuel, known as the 

astrocyte-neuron lactate shuttle hypothesis32,34. Acetate, which can be metabolized to 

acetyl CoA to enter the TCA cycle, has been shown to be metabolized in vitro to glutamate 

and aspartate by neurons, and to glutamine by astrocytes35. In vivo studies have found 

acetate to be rapidly incorporated into glutamine, GABA, glutamate, and aspartate, with 

the greatest amount metabolized to glutamine32. The role of other substrates over glucose is 

particularly important in pathological conditions where glucose supply is disrupted or 

limited.  

  The human brain is highly energy demanding, as ATP is consumed through non-

signaling and signaling processes in the brain36. Non-signaling processes include 

housekeeping mechanisms and maintaining the resting potential, while signaling processes 

include the neural firing rate, action potential conduction, synaptic transmission, 

neurotransmitter recycling, and calcium activity24. The calculated average neuronal firing 

rate in the resting awake human is approximately 1.15Hz, much lower than the rat 

(approximately 4.3Hz)24. Experimental studies have observed brain energy metabolism 

from glucose oxidation to correlate with signaling processes37,38. Several studies 
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investigating energy budgets did not include glial activity39,40, even though it has been 

reported that astrocytes and oligodendrocytes have active calcium responses to spiking 

processes41,42. It has been reported that the nonsignaling costs of glial cells are three times 

higher than neurons, and nearly half of glial metabolism is due to calcium signaling24. 

Furthermore, Yu et al. (2018)24 estimated energy budgets for gray matter by taking into 

account neuronal and glial energy demands, and validated their findings with in vivo PET 

and 13C magnetic resonance spectroscopy (MRS). They found that 70% and 30% of the 

energy demand in gray matter is related to signaling and non-signaling processes 

respectively, while in white matter the cost is approximately 20% and 80%. These results 

matched well with other studies, for example, a recent in vivo 13C-MRS study in rat and 

human brain suggested 70-75% and 25-30% of the energy in the awake state supports 

signaling and nonsignaling functions respectively in gray matter43. The main difference 

between gray and white matter energy demand stems from the cost of neuronal signaling in 

the cerebral cortex, and the higher biosynthesis turnover demands in white matter24. 

1.3.4 Traumatic Brain Injury 

Traumatic brain injury (TBI) begins not as a disease but as an event that causes traumatic 

impact to the brain44. The primary injury is the result of immediate mechanical damage 

from direct or indirect contact to the brain. This damage can be due to, for example, 

acquired brain injury, a stroke, an aneurysm, hemorrhaging, or axonal shearing. Next, 

secondary injury evolves over minutes to days after the primary injury due to a cascade of 

metabolic, cellular and molecular events3. These include glutamate excitotoxicity, 

disrupted calcium homeostasis, mitochondrial dysfunction, increased free radicals, 

inflammation, and diffuse axonal injury (DAI)3. 

  More specifically, when the brain is damaged, damage-associated molecular 

patterns (DAMPs) are passively released by injured cells. DAMPs, which can include 

proteins, ATP, and DNA, bind pattern recognition receptors (PRR) on microglia and 

astrocytes to initiate innate immune activation45 through the production of cytokines and 

chemokines3. These molecules will further activate other receptors that in turn initiate 

inflammatory signaling cascades and the recruitment of immune cells (leukocytes) to the 

site of damage3,45. Studies have shown leukocyte recruitment to contribute to the 
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development of BBB breakdown, edema formation, and potentially contribute to secondary 

damage3. As a result, several studies have investigated the therapeutic potential of blocking 

leukocyte migration and adhesion in animal models of TBI46,47. However, the extent to 

which leukocyte recruitment is harmful to brain parenchyma remains controversial. 

  Taken together, it appears that TBI is a multimodal disease process with primary 

and secondary injury mechanisms that cause structural and functional damage. These 

deficits include cognitive, behavioral, emotional and physical, resulting in diminished 

quality of life3. These deficits can include communication problems, mood disorders, and 

cognitive impairment even six months after mild TBI3. Post traumatic seizures, although 

more prevalent following severe TBI, can follow mild and moderate TBIs3. Furthermore, 

the vast majority of studies done of TBI in the literature have examined severe or 

penetrating TBI, leaving mild TBI less well characterized.  

1.4 Concussion 

1.4.1 The Neurometabolic Cascade 
During a concussive injury, the brain may experience linear and rotational accelerations, 

with dynamic shear, tensile, and compressive strains within the tissue48. As depicted in 

Figure 1.2, these stresses can result in mechanoporation, leading to altered ion flux, 

including calcium influx, and glutamate release immediately after injury13,49,50. Glutamate 

release can interact with immune receptors and trigger a series of events resulting in 

synaptic injury and cellular damage51. Higher intracellular calcium can lead to 

phosphorylation of neurofilaments, resulting in loss of axonal structural integrity13,52, and 

interruption of axonal transport48, producing diffuse axonal injury (DAI). Subsequently, the 

shift in intracellular and extracellular ions requires ATP ionic pumps to restore balance, 

leading to an acute depletion of intracellular energy reserves13,53. Additionally, this 

increased demand for energy is accompanied by reduced cerebral blood flow54, further 

prolonging the mismatch between energy demand and supply. This reduced cerebral blood 

flow has been sustained for up to 2 weeks post-concussion55. Furthermore, the 

sequestration of calcium into mitochondria can result in mitochondrial dysfunction, 

worsening the cellular energy crisis13. The extent to which these events are sustained 
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appears to vary, from calcium influx lasting 3-5 days, to reduced cerebral blood flow as 

long as 7-14 days13. 

 

  Fluorodeoxyglucose (FDG) PET and single photon emission computed 

tomography (SPECT) studies have characterized changes in glucose and oxygen 

consumption, and cerebral blood flow (CBF) after concussion and TBI56. Generally, 

hypermetabolism has been found acutely after concussion, followed by reduced glucose 

metabolism in various brain regions. Additionally, a reduced cerebral metabolic rate of 

oxygen has been observed, indicating diminished oxidative metabolism57,58. Although 

global CBF often appears unchanged, reduced regional CBF has been found in several 

studies (ranging from frontal and temporal cortex to cerebellum and brainstem), which is 

consistent with functional deficits in attention, working memory, verbal fluency, and 

processing speed56. 

 

  Activation and infiltration of microglia have been well documented in TBI59,60, 

and more recent studies suggest that inflammation is also triggered in concussion61,62. 

Madathil et al., (2018)62 observed robust microglial activation after single and repeated 

impacts using a rodent closed-head concussive impact injury model, that resolved by 72 

hours after a single impact but persisted in rodents with repeated impacts. Even though 

these inflammatory processes are currently being studied in concussion and TBI, their role 

in injury severity is largely unknown. Additionally, techniques such as carbon-13 (13C) and 

phosphorus-31 (31P) NMR spectroscopy may be useful in identifying shifts in cerebral 

metabolism, intracellular pH, free magnesium, and cellular bioenergetic status63 after 

concussion. In fact, Bartnik and colleagues (2007)64 found reduced glutamine labeling up 

to 24-hrs post-injury in a fluid percussion injury rodent model using 13C NMR, suggesting 

reduced oxidative metabolism after injury. Additionally, Cernak and colleagues (2004)63 

found a decline in free magnesium and reduced bioenergetic status 4-hours after an impact-

acceleration induced severe diffuse axonal injury in rats using 31P NMR, suggesting 

increased energy demand in response to attempts to restore ionic balance. These studies 

can provide insights into neuronal and glial energetics after injury, due to the location of 

specific metabolic enzymes, such as glutamine synthetase, which is exclusively found in 
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glial cells65. By combining these findings on inflammation, cerebral energetics, and other 

disturbances after concussion, it is possible to build a more detailed picture of the 

metabolic changes post-concussion and move towards identifying an objective biomarker 

for diagnosis and prognosis.  

1.4.2 From Clinical Practice to Areas of Active Research: A Historical 
Perspective of Imaging Concussion 

Although the notion of closed head injury dates as far back as Ancient Greek medicine, the 

entity of concussion was first described as an abnormal transient physiologic state without 

gross brain lesions by the Arabic physician, Rhazes around 900 AD66,67. It wasn’t until 

1280 that concussion was first discussed as a separate entity from penetrating brain wounds 

by the modern physician Lanfrancus67,68. Over the next few centuries, the clinical 

description would be further refined and the term concussion would come into widespread 

use. Following the development of the microscope in 1694, the focus shifted to a 

pathophysiological approach to understanding the well documented clinical entity of 

concussion through animal models and case reports67,69,70, resulting in several new 

physiologic theories focusing on functional rather than structural injuries. This led to two 

broad schools of thought: structural versus functional brain injury, which have both led to 

several hypotheses and studies aimed at exploring diffuse axonal injury, mechanoporation, 

and subsequent events following concussion.  

  It wouldn’t be until 1895, with the discovery of the x-ray, that the era of medical 

imaging would commence, from the introduction of nuclear medicine and PET in the 

1950’s, to the advent of CT and MRI in the 1970’s71. CT and MRI became commonly used 

in hospitals throughout the 80’s and 90’s, with CT traditionally used to rule out a more 

serious TBI injury such as structural lesions, fractures or intracranial hemorrhages72. In the 

clinical setting, CT is beneficial due to low cost and greater speed compared to an MRI, 

but convention structural neuroimaging by CT and MRI is rather insensitive to 

concussion72. From the end of the 1980’s into the 21st century, fluorodeoxyglucose (FDG) 

PET and single photon emission computed tomography (SPECT) studies characterized 

changes in glucose and oxygen consumption, and cerebral blood flow (CBF) after 

concussion and TBI56. More recently, over the last two decades,  
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Figure 1.2: Flow Chart of the Neurometabolic Cascade after Concussion
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thanks to the advancement of novel ligands, PET has been used to explore activated 

microglia and tauopathies after concussion and TBI to investigate neuroinflammation and 

neurodegenerative changes. 

  Alongside the advancement of concussion with PET imaging, several different 

MRI techniques that were developed throughout the 1990’s were also investigated, 

including arterial spin labeling (ASL), diffusion tensor imaging (DTI), and functional MRI 

(fMRI). ASL is a perfusion technique that allows the assessment of CBF73. Similar to what 

was found with PET, some ASL studies observed regional decreases in CBF55,74 that were 

associated with changes in processing speed, learning and memory, executive function and 

verbal fluency74. Furthermore, studies have found reduced regional CBF to persist in 

athletes that take longer to recover75. However, other studies have found significantly 

elevated regional CBF76. These discrepancies are likely due to the heterogenous nature of 

the injury, timing of data acquisition relative to the concussion, and the specific brain 

region.  

  The MRI technique, diffusion tensor imaging (DTI), is a type of diffusion 

weighted imaging that quantifies an elliptical diffusion tensor within a voxel. Radial (RD) 

and axial diffusivity (AD) describe the magnitude of diffusion along the radial and long 

axes of the ellipsoid, respectively. The mean diffusivity (MD) represents the average 

magnitude of water diffusion, while fractional anisotropy (FA), describes the directionality 

of water diffusion on a scale of 0 (isotropic) to 1 (maximum anisotropy). Human studies 

using DTI have found an acute period of high FA with low RD, followed by decreases and 

increases in FA and RD respectively77,78, while other studies have found the exact 

opposite79. Changes in AD and MD have also been observed80. Alterations in these 

diffusion parameters may reflect neuronal swelling, edema77,81, or axonal pathology80. 

Furthermore, decreased FA in frontal and temporal regions relative to healthy controls has 

been observed several months to years following concussion, indicating a loss of myelin 

and potentially degenerative changes81,82. However, a study by Ilvesmaki et al., (2014)83 

found no differences in DTI metrics between mTBI patients and healthy controls. Future 

research directions include the application of multi-compartmental models of diffusion and 
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multi-shell imaging. More information on these techniques can be found in Delouche et al., 

201684. 

  Early fMRI studies found hyperactivation in frontoparietal brain regions in 

concussed patients relative to healthy controls under moderate processing loads, and 

hypoactivation for lower processing loads85,86. Hypoactivation in the dorsolateral prefrontal 

cortex and other brain regions during working memory tasks has also been reported after 

concussion in several studies87–90, as well as associations between hypoactivation and 

clinical measures such as symptom severity91. Furthermore, studies have found different 

areas of activation and/or hypoactivation depending on the mode of injury91. To date, 

several resting state (RS) fMRI studies have also found changes in connectivity in the 

default mode network (DMN), intrinsic connectivity networks (ICN), and other networks 

using seed-based approaches or independent component analysis (ICA)91,92. 

1.5 Magnetic Resonance Spectroscopy 
 

Magnetic resonance spectroscopy (MRS) is a magnetic resonance-based method that can 

be used to detect and quantify specific metabolites in a brain region of interest. Quantifying 

metabolite changes following concussion could aid in identifying altered 

neurotransmission from the secondary chemical cascade of ion flux that occurs after 

receiving a hit to the head.13 In this section, the basic principles of MRS are outlined, 

followed by the acquisition and post-processing of MRS data, and finally a description of 

the metabolites that can be measured and their relevance to concussion, in humans and 

animal models. 

1.5.1 Magnetic Resonance Principles 

 

NMR is the study of the magnetic properties and energies of nuclei. In NMR, only nuclei 

with nonzero nuclear spin are detectable (For example; 1H, 31P, 13C)93. This is because 

nuclei with a nonzero spin quantum number have a nonzero spin angular momentum 

 

! = #$,                             (Eq. 1.1) 
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where L is the spin angular momentum, # is the gyromagnetic ratio, an intrinsic property of 

each nuclei (1H # = 42.58 MHz/T), and !  is the magnetic moment. The spin angular 

momentum (L) is quantized and given by94 

 

$ = &
'( )*(* + 1),     (Eq. 1.2) 

 

where h is Planck’s constant and I is the spin quantum number, which can only be an 

integral or half-integral. By substituting (Eq. 1.1) into (Eq. 1.2) we show that the magnetic 

moment is also quantized: 

 

! = # &
'( )*(* + 1).                 (Eq. 1.3) 

 

Nuclear magnetic resonance occurs when a nucleus with a magnetic moment, ! , is placed 

in an external magnetic field (B0). The magnetic field will exert a torque on the magnetic 

moment, leading to precession of the nucleus about B0. The frequency of this precession is 

known as the Larmor frequency (v) and is given by: 

0 = 1 2'(345.     (Eq. 1.4) 

 

It is convention that the z-direction is set along B0, and a magnetic moment in a magnetic 

field will have potential energy (E) given by: 

 

6 = −!849.     (Eq. 1.5)  

 

 

In quantum mechanics the direction of angular momentum is specified by the quantum 

number, m, which can have I(I+1) values given by I, I-1, I-2, …, -I. The component of the 

magnetic moment in the z direction is given by: 
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!8 = # 1 &'(3:,      (Eq. 1.6) 

 

where !8	is the component of the magnetic moment in the z direction. By substituting (Eq. 

1.6) into (Eq. 1.5) we show that the energy levels are also quantized: 

 

6 = −# &
'( :49.     (Eq. 1.7) 

 

In a magnetic field, for a 1H of spin I=1/2 94, there are only two energy levels (m = -1/2 and 

+1/2), and the energy difference (∆6) is given by: 

 

∆6 = # 1 &'(349.     (Eq. 1.8) 

 

The two spin states m= +1/2 (parallel to B0), and m= -1/2 (antiparallel to B0) are referred to 

as the = and > spin states respectively. In a macroscopic sample there are many spins that 

distribute themselves among these two orientations according to the Boltzmann Equation94. 

Due to energy differences between these spin states, as shown by Equation 1.8, there will 

also be a difference in the population of these spin states, given by: 

 

?@A@BC = D∆E FGH = D&I FGH ,               (Eq. 1.9) 

 

where n is the number of spins the low energy state (=) and high energy state (>), k is the 

Boltzmann constant and T is the absolute temperature. 

  The total net magnetic moment, the magnetization (M), of a macroscopic sample 

is the sum over all the individual magnetic moments, !. Due to the population difference in 

z, there will be a net component of M parallel with B0 along the +z axis, known as the 

longitudinal magnetization, M0. At thermal equilibrium, the amplitude of this 

magnetization is given by: 

 

J9 = 12&'(3
'
1@KLMFG3,    (Eq. 1.10) 
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where N = NO + NP, the total number of 1H nuclear spins in the macroscopic sample. 

 

  MRI scanners are designed to detect magnetization that is perpendicular to the 

main magnetic field (in the transverse plane). However, at thermal equilibrium the spins 

have no phase coherence in the transverse plane, and the net longitudinal magnetization, 

M0, is a static vector94. Therefore, the net magnetization must be rotated onto the transverse 

plane for detection. This is achieved by applying a second magnetic field, B1, in the 

transverse plane, oscillating in the radio frequency (RF) MHz range. While this RF pulse 

(B1) is applied, the magnetization will precess about B0 and B1, resulting in a rotation of 

the magnetization towards the transverse plane. If the B1 field is applied long enough, M0 

will be excited onto the transverse plane (90º excitation) or even inverted to the -z axis 

(180º excitation). Following the RF pulse, M0 will only experience B0 and will precess 

around it at the Larmor frequency, v, inducing an electromotive force (emf) in the receiver 

coil, giving rise to the detected NMR signal. This signal is an alternating current with 

frequency equal to the Larmor frequency, that decays exponentially due to transverse and 

longitudinal relaxation. The Fourier Transform of this signal produces a Lorentzian 

lineshape in the frequency domain94. 

1.5.2 Chemical Shift and J-Coupling 
  

If the frequency of nuclear spins were solely determined by Equation 1.4, then in vivo 1H 

MRS would have little value, since every 1H nucleus in all metabolites would precess at 

the same frequency, determined by their identical gyromagnetic ratios. Fortunately, this is 

not the case. In fact, in addition to the gyromagnetic ratio and magnetic field, the resonance 

frequency of a given nucleus depends on the chemical environment of the nucleus, also 

known as the chemical shift. The chemical shift arises because electrons surrounding the 

nucleus effectively shield the nucleus from the external magnetic field, ultimately reducing 

the magnetic field that is experienced by the nucleus94. The effective magnetic field (Beff) 

experience by the nucleus is given by: 
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4QRR = 49(1 − S),    (Eq. 1.11) 

 

where S is the shielding coefficient in units of parts per million (ppm), and is independent 

of B0. Therefore, within the same molecule, each 1H that is in a different chemical 

environment will precess at a slightly different frequency, resulting in a distribution of 

resonance frequencies, which produces a fingerprint for the given metabolite. 

 

  Chemical shifts are generally not expressed in units of Hz, since this would make 

them dependent on the magnetic field strength. Alternatively, chemical shifts (T) are 

expressed in terms of ppm defined as: 

 

T = RURVWX
RVWX

× 10[,    (Eq. 1.12) 

 

where f is the frequency of the nucleus under investigation and fref is the frequency of a 

reference compound. Proton MRS commonly uses sodium 3-trimethylsilyl-propionic acid 

(TSP) as a chemical shift reference94. 

 

  In addition to the chemical shift phenomenon, nuclei with magnetic moments can 

influence each other through electrons in covalent bonds, resulting in more complex 

spectral patterns, known as spin-spin coupling or J-coupling. J-coupling results in slight 

frequency shifts, that appears as splitting of the peaks. For example, in the case of 

glutamine, there is a single methine proton and 4 methylene protons, in a total of 3 

different chemical environments (Figure 1.3A). Without J-coupling, this would produce 3 

different peaks resonating at slightly different frequencies due to the chemical shift (Figure 

1.3B). However, in reality a peak is split according to the spin orientation of the non-

identical spin (or spins) it is coupled to. In the example of glutamine, the methine proton 

(2CH) is split into three sub-peaks with relative areas in a 1:2:1 ratio (Figure 1.3C) because 

the spins of the coupled 3CH2 protons have three possible spin configurations, resulting in 

different energy states: (up, up) one way, (up, down) two ways, and (down, down) one 

way. In general, a coupled nucleus will be split by n magnetically equivalent nuclei into 
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n+1 peaks, and the amplitudes of these peaks are given by Pascal’s triangle (1:1, 1:2:1, 

1:3:3:1, etc.)94. The frequency difference between these peaks is given by the scalar 

coupling constant (Hz), and is independent of the applied external magnetic field. 

Furthermore, the scalar coupling constant rapidly decreases with increasing number of 

chemical bonds and can typically be ignored for four or more bonds. 

 

Figure 1.3: (A) Structure of Glutamine molecule, with MRS visible protons in red (B) 

MRS spectrum of glutamine according to chemical shift, and (C) splitting of glutamine 

methine group according to J-coupling 

1.5.3 1H MRS Acquisition 
Single voxel acquisition is the magnetic resonance spectroscopy technique used in this 

thesis. To acquire MRS data from a specific region of the brain, a voxel is placed in the 
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region of interest by an MRI technician using sagittal, axial, and coronal images to guide 

the voxel placement (see Figure 1.4). Saturation bands are placed near the boundaries of 

the voxel to reduce signal from the surrounding tissue. The signal detected by the MR 

scanner is localized to the voxel by using gradients that selectively excite three orthogonal 

planes, where the intersection of these planes defines the voxel of interest. This is achieved 

by using the Point Resolved Spectroscopy Sequence (PRESS), which uses a slice-selective 

excitation (90º) combined with two slice-selective refocusing pulses (180º). Signal from 

outside the voxel of interest is either not excited (by the 90º pulse), or not refocused (by the 

180º pulse). Furthermore, most MRS studies of sport concussion have utilized a short echo 

time (TE < 50 ms), which makes metabolite quantification more challenging due to the 

overlapping broad macromolecule resonances that are most prominent within the 2-4 ppm 

region of the spectrum. To avoid this complication, a long echo time (TE = 135 ms) was 

chosen for the work presented in this thesis. 

 

  The most abundant compound in mammalian tissue is water, and as a result the 

NMR signal is dominated by the water resonance at 4.7 ppm94. This becomes problematic 

when trying to detect metabolites with concentrations that are 10 000 times lower than that 

of water. Therefore, to properly resolve the metabolite signals it is important that the water 

signal is suppressed during acquisition. This is often achieved by chemical shift selective 

(CHESS) water suppression, which uses a frequency selective RF pulse to excite the water 

followed by strong crusher gradients to dephase the magnetization in the transverse plane, 

ideally leaving the metabolite resonances unperturbed. 

 

  Although the above techniques are used for the majority of this thesis, different 

acquisition methodology is used in Chapter 4. Specifically, MRS spectroscopy data were 

acquired on an Agilent 9.4 Tesla small-bore MRI scanner (Santa Clara, CA, USA). 

Magnetic resonance spectroscopy was acquired using Localization by Adiabatic Selective 

Refocusing (LASER), a localization method that uses adiabatic excitation and refocusing 

RF pulses. This sequence, excites the entire sample with a nonselective adiabatic half 

passage pulse (90º), followed by three pairs of adiabatic full passage (AFP, 180º) pulses in 

the presence of magnetic field gradients to achieve slice-selective refocusing. Pairs of AFP 
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are used to refocus the phase that accumulates across the slice when a single AFP is 

applied along with a slice select gradient. 

 

  Water suppression was achieved by variable pulse powers and optimized 

relaxation delays (VAPOR), which uses seven frequency selective RF pulses interspersed 

with optimized T1 recovery delays. Moreover, a short echo time of TE = 18 ms was used, 

which required the addition of an extra step to remove macromolecule signals, before the 

spectrum could be fitted. This was achieved by acquiring a macromolecule only spectra 

interleaved with the acquisition of the full spectrum using a single-inversion preparation 

pulse. This subject specific macromolecule spectrum was then subtracted from the full 

spectrum, leaving behind only the metabolites. 
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Figure 1.4: (A) From left to right; axial, sagittal, and coronal views of a T1-weighted 

anatomical image with the spectroscopy voxel overlaid in green in the prefrontal region.  

(B) Spectrum acquired (green) from the voxel in A, reconstructed spectrum (red), the 

residual after fitting (blue), and the individual prior knowledge components of the 

spectrum shown in black. Glc = Glucose; Myo = Myo-inositol; Glu = Glutamate; Gln = 

Glutamine; Cr = Creatine; Cho = Choline; NAA = N-acetyl aspartate; ppm = parts per 

million. 

1.5.4 1H MRS Post Processing 

Lineshape distortions can be induced from time dependent, spatially dependent, and time 

and spatially dependent B0 inhomogeneities. Popular methods to correct the lineshape use a 

reference signal, which is typically the unsuppressed water signal from the MRS voxel. 

The two methods employed in this thesis are QUALITY (QUAntification improvement by 

converting Lineshapes to the lorentzian TYpe) deconvolution95 and ECC (Eddy Current 

Correction)96. QUALITY deconvolution divides the time-domain signal by the 

unsuppressed water time-domain signal, and effectively removes spectral distortions and 

restores the Lorentzian lineshape. However, the T2 of water is shorter than the T2 of most 

metabolites, resulting in division by near-zero water signals towards the end of the time-

domain signal. By employing ECC towards the end portion of the time-domain signal, a 

subtraction of just the phases of the two signals, the division of near-zero values can be 

avoided. This combined spectroscopic lineshape correction is known as QUECC97, and is 

the technique used in this thesis. Once the lineshapes are restored, the spectrum is then 

fitted to a prior knowledge template. Spectra were reconstructed using linear combinations 

of metabolite lineshapes obtained from spectra of in vitro metabolites solutions that were 

acquired under controlled temperature and pH.  

  The concentration of a metabolite is determined from the area of the resonance 

peak(s) because the area is directly proportional to the number of nuclei resonating at that 

frequency. In order to calculate the absolute tissue concentration of the metabolites from 

the measured signals, several assumptions must be made. First, we must assume that water 

densities and signal relaxation times of GM, WM, and CSF in the voxel can be reliably 

estimated and do not change significantly among groups98. Second, we assume that volume 
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fractions are accurately measured, and this is done in this thesis by segmentation of the T1-

Weighted MPRAGE anatomical image (for Chapter 4, the animal study, a 2D fast spin-

echo anatomical image was segmented for tissue/CSF partial volume correction). Third, we 

assume the relative proton density of water, compared to that of pure water to be 0.82, 0.73 

and 1.0 for GM, WM, and CSF, respectively. The relative proton density of metabolites in 

GM, WM and CSF are not known and therefore assumed to be 1. 

  The fully relaxed signal (S) from water or any metabolite in the spectroscopy 

voxel will be proportional to the number of moles (n) of the molecule in the voxel: 

 
\]W^_`_VWb_cWd
\efL_VWb_cWd

= @]W^_`
@efg

.      (Eq. 1.13) 
 
Provided that the metabolite(s) and water come from the same volume of the voxel, we can 

solve for the metabolite concentration (M): 

 
[J] = \]W^_`_VWb_cWd

\efL_VWb_cWd
[j'k].     (Eq. 1.14) 

 

Note that to obtain the fully relaxed signal described above, we must correct for T1 and T2 

relaxation lmGnmGfo, number of signal averages (NA), number of protons (p), and any 

gain/scaling factors (G): 

 

[J] = \]W^_`/lrsnrsf]W^_`o(tu)(v)(w)
\efL		/	lrsnrsfx_^WVo(tu)(v)(w)

[j'k].    (Eq. 1.15) 

 
 
To correct the water signal for T1 and T2 related signal loss, we directly apply the 

following to our signal: 

(Eq. 1.16) 
mGnmGfyz{Q| = }w~=w~l1 − DUGr/Gn�ÄolDUGE/Gf�Äo

+ }Å~=Å~l1 − DUGr/GnÇÄolDUGE/GfÇÄo
+ }É\Ñ=É\Ñl1 − DUGr/GnÖÜáolDUGE/GfÖÜáo, 
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which describes relaxation of the transverse magnetization, where fx denotes the volume 

fraction of x = GM, WM, or CSF in the spectroscopic voxel, =à denotes the relative proton 

density, and TR/TE represent the repetition and echo time of the spectroscopy experiment 

(2000/135 ms for human experiments, and 3250/18.9 ms for mouse experiments in this 

thesis). To correct the metabolite signal for T1 and T2 related signal loss, a similar approach 

is taken, except that no correction is applied for the CSF compartment, because metabolites 

are assumed to be exclusively found in tissue: 

(Eq. 1.17) 

mGnmGfâQ{zä =
}w~

}w~ + }Å~
l1 − DUGr/Gn�ÄolDUGE/Gf�Äo

+ }Å~
}w~ + }Å~

l1 − DUGr/GnÇÄolDUGE/GfÇÄo. 

Since the relative proton densities of metabolites are assumed to be 1, they are omitted 

from the equation. By substituting (Eq. 1.16) and (Eq. 1.17) into (Eq. 1.15), the final 

equation for the corrected metabolite concentration with respect to the entire volume of the 

voxel is as follows: 

 
(Eq. 1.18) 
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Finally, Equation 1.18 can be multiplied by (}w~ + }Å~)Uñ to determine the concentration 

of the metabolite in brain tissue alone, and this is how the absolute concentrations are 

reported in this thesis. 
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1.5.5 1H MRS Metabolites and findings in Concussion Studies 

There are several metabolites of interest that are measurable by in vivo 1H MRS. Table 1.1 

outlines these metabolites, including their main functions within the brain and relevance to 

concussion. Briefly, the main metabolites found in human 1H MRS include N-acetyl 

aspartate (NAA), total choline (Cho), total creatine (Cr), glutamate (Glu), glutamine (Gln), 

and myo-inositol (Myo). Several different changes in these metabolites, as well as different 

directions in these changes, have been observed after sport concussion. This section 

outlines the main function of each of these metabolites, and introduces the current findings 

in sport concussion (Table 1.2) and the timing of these changes (Table 1.3).  

  The MRS creatine peak incorporates signals from both creatine and 

phosphocreatine (total creatine), which is used as a marker of energy metabolism, due to 

their primary role as an intracellular buffer for ATP99,100. Creatine is primarily synthesized 

in the liver and transported to the brain99, although it is also suggested that the brain is able 

to endogenously synthesize its own creatine100. Furthermore, creatine plays an important 

role in energy metabolism through interconversion to the high energy phosphorylated 

analogue, phosphocreatine (PCr)100. The N-phosphoryl group is transferred from PCr to 

ADP, yielding ATP100. Moreover, creatine and PCr allow for the shuttle of high-energy 

phosphates from mitochondria to sites of utilization in the cytoplasm100. Therefore, the Cr 

measured by MRS may be sensitive to the energy supply and demand mismatch that can 

occur after a concussive injury. The MRS signal of total creatine (Cr) produces two 

singlets at 3.03 and 3.93 ppm94. In human studies, no change in Cr has been observed after 

concussion, however elevated Cr has been reported in the motor cortex of contact athletes 

at the beginning of season compared to non-contact athletes, followed by reduced Cr 

during the season101. Moreover, creatine is commonly used as the denominator when 

calculating metabolite ratios in the MRS literature. Therefore, to compare to the literature, 

metabolite ratios are reported in this thesis in addition to absolute quantification, as already 

discussed. 

  NAA is one of the highest concentrated free amino acids in the brain102, and is 

commonly regarded as a marker of neuronal health and integrity, as it is synthesized in 

neurons and its spatial distribution in GM has been shown to be correlated with the density 
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of neuronal cells99. Although the exact function of NAA is not fully understood, it is 

implicated in acetyl-CoA and aspartate storage, a source for lipid synthesis in 

oligodendrocytes, a potential osmolyte, and involved in NAAG synthesis103,104. NAA is 

synthesized in the mitochondria of neurons from acetyl coenzyme A and aspartate, where it 

is then transported along axons to oligodendrocytes, except for a small amount that is 

converted with glutamate to NAAG102. In oligodendrocytes, NAA is catabolized to 

aspartate and acetate, where the acetate can then be used in the synthesis of fatty acids, 

such as myelin102,103. Studies of diseases in which there is a loss of neurons or axons, such 

as infarctions, brain tumors, and multiple sclerosis, have presented with decreased NAA105. 

The NAA MRS signal is composed of a singlet at 2.01 ppm, as well as smaller resonances 

at 2.49, 2.67, and 4.38 ppm94. In the case of concussion and TBI, a decrease in NAA has 

the potential to aid in the assessment of irreversible and temporary neuronal damage99. In 

human studies, mostly decreases in NAA and NAA/Cr have been reported106–110, with a 

single study reporting elevated NAA/Cr111 in the WM of the frontal lobes. 

  The choline signal is made up of choline, glycerophosphocholine and 

phosphocholine. Choline is an essential nutrient that is involved in neurotransmitter 

synthesis (acetylcholine), lipid transport (lipoproteins), and cell membrane signaling 

(phospholipids)112. The majority of choline, however, is converted to phosphatidylcholine, 

the predominant phospholipid in cell membranes112. The most prominent signal produced 

from total choline is at 3.2 ppm94. Quantification of the MRS choline peak can be used to 

infer changes in membrane turnover rate such as demyelination after injury113, likely due to 

the degradation of myelin phospholipids114. Elevated Cho/Cr115 has been observed after 

sport concussion, as well as reduced Cho80. Additionally, changes in Cho have been 

observed in retired athletes116–118. 

  Mentioned previously, glutamate is a nonessential amino acid that is synthesized 

in the brain from local TCA cycle precursors (=-ketoglutarate), but predominantly from 

glutamine18. Glutamate is an excitatory neurotransmitter, and up to 90% of neurons excrete 

glutamate during neurotransmission99. Moreover, there is evidence of glutamatergic 

signaling in the white matter as well119, although the role of WM signaling is less well 
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understood. In regards to the spectral pattern of glutamate, it is complex with a resonance 

at 3.75 ppm and multiplets from 2.04-2.35 ppm94.  

  As demonstrated in Figure 1.1, glutamine is important in recycling 

neurotransmitters, as part of the tightly coupled GABA-glutamate-glutamine cycle. 

Additionally, glutamine is involved in brain nitrogen homeostasis120, and there is also 

evidence suggesting that the metabolite is immunomodulatory in models of infection and 

trauma121. Glutamine is structurally similar to glutamate, resulting in a resonance at 3.76 

ppm, and multiplets from 2.12-2.46 ppm (Figure 1.3)94. In more severe head injuries, 

studies have shown glutamine synthetase (GS) activity, the enzyme that converts glutamate 

to glutamine, to be reduced due to increased oxidative stress, and that this inhibition in GS 

can lead to reduced glutamine122,123, suggesting that glutamine levels could change post-

concussion. However, most studies to date do not differentiate between glutamate and 

glutamine, but instead report the sum of these metabolites as Glx. In human studies of sport 

concussion, reductions in Glx/Cr have been observed108,109, as well as increases124. 

  Myo-inositol is a simple isomer of glucose that is synthesized in the brain from 

glucose-6-phosphate125. Myo-inositol was initially found in astrocytes and assumed to be a 

useful marker of glial proliferation35,125. However, myo-inositol is also involved in many 

biochemical and signaling pathways including synthesis of inositol-containing 

phospholipids and as a component of the secondary messenger system, the 

phosphoinositide pathway125, which has been shown to be activated immediately following 

experimental rodent TBI126. Myo-inositol has resonances at 3.52, 3.61, and 4.05 ppm, as 

well as a resonance at 3.27 ppm that is obscured by the Cho resonance. An increase109 and 

decrease127 in Myo/Cr has been reported 6 months post-concussion, as well as elevated 

Myo in retired athletes116,118.
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Table 1.1: Summary of 1H MRS visible metabolites

Metabolite Function Where it is synthesized Relevance to Concussion Other Notes
Is a sensitive tool to assess irreversible and 
temporary neuronal damage. (Bittsansky 
et al., 2012 )

Studies of diseases in which there is a loss of neurons or 
axons (infarctions, brain tumors, multiple sclerosis) 
confirm a decrease in NAA (Barker and Lin 2006 ). 

Has been found to decrease after several 
studies of concussion (see Table 1.2 )

Decreases in NAA also reflect neuronal dysfunction, 
which can be reversible, opposed to neuronal death 
(Bittsansky et al., 2012 )

Neurotransmitter synthesis 
(acetylcholine), cell-membrane 
signaling (phospholipids) and lipid 
transport (lipoproteins) 

Essential Nutrient; can be acquired from diet 
(crosses blood brain barrier) and de novo 
synthesis from phosphatidylethanolamine

Active demyelination causes an increase in tCho (Davie 
et al., 1993 ); likely due to the degradation of myelin 
phospholipids to GPC, or as a result of inflammation 
(Brenner et al., 1993 ). 

Major fate of choline is conversion to 
phosphatidylcholine, the predominant 
phospholipid in cell membranes (Zeisel 
et al., 2009)

Creatine (Cr)                                               
Creatine and 
Phosphocreatine

Phosphorylated to phosphocreatine 
which can be used as energy storage 
and can create ATP from ADP without 
oxygen consumption (Bittsansky et al., 
2012 )

Synthesized in Liver and transported to the 
brain (Bittsansky et al., 2012 )

May be sensitive to energy supply and 
demand mismatch seen after a concussive 
injury

Since creatine is synthesized in the liver, its brain 
concentration would decrease during liver damage 
(Barker and Lin 2006 ). 

Synthesized in astrocytes from glutamate and 
ammonia (Albrecht et al., 2019 )

Could detect changes in the glutamate-
glutamine cycle, as a result of altered 
neurotransmission

GABA Main inhibitory neurotransmitter in the 
brain (Purves et al., 2012 )

Synthesized predominantly from glutamate, 
but can also be synthesized from glutamine 
and pyruvate (Purves et al., 2012 )

Increased GABA/Cr has been observed 2 
weeks post-concussion in the frontal 
region of the brain (Friedman et al., 2017 )

Studies investigating GABA after concussion tend to 
specifically use MEGA-PRESS (see Table 1.2 )

Myo -Inositol (Myo) Glial marker, osmolyte, synthesis of 
inositol-containing phospholipids, and 
component of phosphoinositide 
pathway (Kim et al., 2005 )

Synthesized in brain de novo from glucose-6-
phosphate and transported from blood (Kim et 
al., 2005 )

Believed to represent glial proliferation 
(Harris et al., 2012 )                                                                    
Phosphoinositide pathways have been 
implicated in TBI studies (Lyeth et al., 
1996; Chen et al., 2012 )

Primary source of myo -insoitol in neurons is from 
recycling of phosphoinositide pathway constituents (Kim 
et al., 2005 )

Most abundant amino acid in the CNS.                                                            
Serves as a precursor to glutamate and 
as energy fuel (Albrecht et al., 2019 )

Most studies to date do not differentiate between 
glutamate and glutamine, but instead report the sum of 
these metabolites as Glx                                                                                                              
At 3 T, glutamate and glutamine can be reliably 
separated (Provencher 1993; Srinivasan et al., 2005)

N -acetyl aspartate (NAA)

Choline (Cho)              
Glycerophosphocholine 
(GPC), Phosphocholine (PC) 
and a small amount of 
choline itself

Glutamate (Glu)

Glutamine (Gln)

Marker of neuronal health and integrity 
(Bittsansky et al., 2012 )                                                        
Storage substance for acetyl-CoA and 
aspartate, regulator of protein 
synthesis, source of acetyl group for 
lipid synthesis, catabolic product of 
NAAG, and osmolyte (Moffett and 
Namboodiri 2006 ) 

Synthesized in the mitochondria of Neurons 
(Bittsansky et al., 2012 )                                                              
Exogenous sources of NAA do not cross the 
blood brain barrier, but NAA can be exported 
out of the brain via astrocytes (can be 
detected in blood and urine) (Karaman et al., 
2011; Prokesch et al., 2016 )

Can detect changes in memrane turnover 
rate, such as demyelination after injury 
(Davie et al., 1993)                                                                       
Elevated levels have been found in retired 
athletes with a history of concussion (see 
Table 1.2 )

Is an excitatory neurotransmitter                                                                              
Up to 90% of neurons excrete 
glutamate during their excitation. 
(Bittsansky et al., 2012 )

Synthesized predominantly from glutamine, 
but also from TCA cycle intermediates (Purves 
et al., 2012 )

Could detect changes in the glutamate-
glutamine cycle, as a result of altered 
neurotransmission

Table 1.1: Summary of 1H MRS visible metabolites 
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Table 1.2: Review of MRS in Sport Concussions

Lab ROI Type of MRS Study Designs Sex Sport Main Finding References
London, UK Right Lentiform Nucleus 1.5 T STEAM (TR/TE/TM = 

2270/270/12 ms)
Followed Ex-Boxers with Parkinsonian syndrome 
(n=3), idiopathic Parkinson's Disease (n=6), Age 
Matched Controls (n=6)

M Ex-Boxers ↓ [NAA] in ex-boxers vs. 
Controls 

Davie et al. 1995 J of Neurology, 
Neurosurgery, and Psychiatry

Mixed Concussed Athletes (n=13) scanned at 3, 15 
and 30 DPI were compared to age-matched control 
volunteers (not specified as athletes or not)

M/F Mixed; Skiing, soccer, 
kickboxing, rugby

↓ NAA/Cr at 3 and 15 DPI 
Compared to controls

Vagnozzi et al. 2008 Neurosurgery

Concussed Athletes (n=40) scanned at 3, 15, 22, and 
30 DPI, and heathy control subjects (n=30) 

M/F Mixed; soccer, rugby, 
horse riding, boxing, 
basketball, kickboxing, 
skiing, bike riding

↓ NAA/Cr and /Cho at 3 and 
15 DPI Compared to controls     
*Values did not differ across 
MRI centres

Vagnozzi et al. 2010 Brain

Concussed Athletes (n=11) sanned at 3, 15, 30, 45 
DPI, and healthy control subjects (n=11) 

M/F Mixed; Soccer, Skiing, 
Boxing, Baskteball, 
Rugby, Kickboxing

↑NAA/Cr at 3 and 15 DPI;      
↓NAA/Cr at 30 DPI;   
↓NAA/Cho at 3, 15, 30 DPI;                        
↑Cho/Cr 3, 15 DPI

Vagnozzi et al. 2013 J Head Trauma Rehabil

Bilateral DLPFC, Hippocampus, 
M1

Concussed (n=12) to non-concussed (n=12) athletes 
scanned 1-6 DPI

M Mixed ↓Glu/Cr and NAA/Cr 1-6 DPI Henry et al. 2010 J Neurotrauma

Bilateral DLPFC and M1 Concussed football players (n=10) and non-concussed 
(n=10) athletes scanned 1-6 DPI and at 6-months

M American Football ↓Glu/Cr (M1) , NAA/Cr 
(M1&DLPFC) 1-6 DPI                          
↑Myo/Cr (M1)

Henry et al. 2011 BMC Neurology

Corpus Callosum *Chamard 2012 used TE=35 ms Hockey players were scanned pre- and postseason; 
concussed athletes were scanned 72hrs, 2 weeks and 
2 months post injury

M/F Varsity Hockey ↓NAA/Cr in non-concussed 
female athletes Post-Season

Chamard et al. 2012 Neurosurg Focus

Bilateral DLPFC, M1, 
Hippocampus

Female athletes with concussion (n=10) and control 
female athletes (n=10) were scanned 7 months post-
concussion

F Mixed ↓Myo/Cr Hippocampus and 
M1 (7 Months)

Chamard et al. 2013 Brain Injury

Dominant M1 De Beaumont 2013 used 
TR=1200 ms

Former university-level athletes (ages 51-75) with 
and without a history of concussion

M Mixed ↓Glu; Concussed group had 
exacerbated declines in Glu 
compared to control

De Beaumont et al. 2013 BMC Neurology

Bilateral PFC and MTL Former athletes who sustained their last sports 
concussion >3 decades (n=15) prior to testing were 
compared with those with no history of TBI (n=15)

M Hockey or Football ↑Myo , ↓Cho (L MTL)      
↑Cho (R PFC)

Tremblay e al. 2013 Cerebral Cortex

Bilateral DLPFC, M1, 
Hippocampus 

Female concussed athletes (n=11) and female 
control athletes (n=10) were scanned 7-10 DPI and at 
6 months

F Mixed ↑Glx/Cr in concussed 6 
months in DLPFC (trend) and 
M1                                                         
↓NAA/Cr 6 months in 
controls athletes

Chamard et al. 2014 J Neurotrauma

Left M1 3 T MEGA-PRESS (Edit off 
spectra summed to look at 
other metabolites)

Football players with a concussion history (n=16) and 
football players without (n=14) were scanned at a 
single session

M Football No changes but GABA and 
Glx not correlated in 
experimental group

Tremblay et al. 2014 Clin Neurophysiol

Left M1 and PFC 3 T MEGA-PRESS, TE=68 ms 
(Edit off spectra summed to 
look at other metabolites)

Nonathletes (n=24), contact athletes (n=24), non-
contact athletes (n=24) came in for a single session

M/F Contact (Rugby, 
Soccer); Non-contact 
(Swimming)

↑Myo in contact (M1)  ↓Glx 
in contact (DLPFC)

Lefebvre et al. 2018 J Neurotrauma

Pennsylvania, USA Corpus Callosum 3D CSI (TR/TE=1510/135 ms; 
NA=1)

Concussed Athletes (n=28) and athletes with no 
history of concussion (n=20) were scanned with a 
week to 3 weeks of injury (were scanned 1, 2 or >3 
weeks post injury)

M/F Mixed ↓NAA/Cr and /Cho in genu 
(Greatest alterations 
observed in those recovering 
from 1st concussion)

Johnson et al. 2012 J Neurotrauma

Ohio, USA Anterior cingulate gyrucs, Left 
DLPFC and Thalamus

3 T PRESS (TR/TE=3000/144 
ms)

Concussed pediatrics subjects and control group (not 
specified as athletes)

M/F Mixed; soccer, footbal, 
wrestling

no changes in NAA at any of 
the time points in any ROIs

Maugans et al. 2012 Pediatrics

Loma Linda, California Corpus Callosum and Parietal 
WM

3 T MRSI 9 x 8 x 6 cm volume 
covering corpus callosum and 
midbrain; PRESS 
(TR/TE=1700/144 ms, NA = 1)

Concussed pediatric subjects (n = 15) and control 
group (n = 15, not specified if athletes)

M/F Mixed; soccer, football, 
softball

↓NAA/Cr and /Cho in corpus 
callosum and in parietal WM 
region

Bartnik-Olson et al. 2014 J Neurotrauma

Catania and Rome, Italy WM of Frontal Lobes (Bilateral)  3 T PRESS (TR/TE = 2000/144 
ms)                                                                                 
*Vagnozzi et al. 2010 used 1.5 
and 3 T  (one centre used CSI 
with TE = 135 ms instead)

Montreal, Canada 3 T PRESS (TR/TE = 1500/30 
ms)  

DPI, days post injury; DLPFC, dorsolateral prefrontal cortex; M1, motr cortex; PFC, prefrontal cortex; MTL, medial temporal lobe; AC, anterior commissure; PC, posterior commisure; PCG, 
posterior cingulate gyrus; ACG, anterior cingulate gyrus

Table 1.2: Review of MRS in Sport Concussions 
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Table 1.2: Review of MRS in Sport Concussions Continued 
Table 1.2: Review of MRS in Sport Concussions Continued

Lab ROI Type of MRS Study Designs Sex Sport Main Finding References
Contact (n=34) and non-contact (n=10) athletes were 
scanned prior to and during their active season

M Contact (High School 
Football); Non-contact 
(swimming, track and 
field, tennis)

↑Myo (DLPFC), Glx and Cr 
(M1) in contact at baseline; 
↓Glx and Cho (M1), Cr 
(DLPFC & M1)

Poole et al. 2014 and 2015 Developmental 
Neuropsychology

Collision athletes were scanned at pre-season, twice 
during the season, and at post-season (4-8 weeks) 
and 20-24 weeks post-season; Non-contact athletes 
were scanned twice during their season, 5-18 weeks 
apart

M/F Collision (Male 
Football, Female 
Soccer);                      
Non-contact (cross-
country, swimming, 
track and field, 
basketball, softball)

Males:                          
↓Glx/Cr, ↑Cho/Cr (DLPFC) 
during season             
Females:                      
↑Glx/Cr (M1) in season and 
post-season

Bari et al. 2018 Brain Imaging and Behavior

New Mexico, USA Above Lateral Ventricles, 
Parallel to AC&PC

3 T PRESS (TR/TE=1500/40 ms) MMA Fighters were scanned in season and at a 1 
year follow up; Healthy controls were scanned in 
season and at 3-6 months follow up

M Mixed Martial Arts 
Fighters

↓NAA at 1 year follow up Mayer et al. 2015 J Neurotrauma

3 T L-COSY Former NFL athletes (n=5) and male healthy controls 
(professionals with no history of concussion, n=5) 
were examined

M Football ↑Cho, Glx, Phenylalanine, 
Fucose

Lin et al. 2015 Alzheimer's Research & 
Therapy

3 T PRESS (TR/TE=2000/30 ms) Retired soccer players (no history of concussion) 
were examined in comparison to age matched 
controls (non-contact)

M Soccer ↑Cho/Cr, Myo/Cr Koerte et al. 2015 J Neurotrauma

Corpus Callosum (Splenium) 3T PRESS (TR/TE=2000/35 ms) 
(Same Dataset at Chamard et 
al. 2012)

Pre- and post-season scans of male and female 
varsity ice hocey athletes

M/F Varsity Hockey ↓NAA (M/F), ↓Cho (M/F 
trend)

Panchal et al. 2018 Frontier in Neurolgy

ACG and PCG, Left Parietal WM
3T PRESS (TR/TE=2000/35 ms) Retired NFL Players, symptomatic vs asymptomatic M NFL Football ↓NAA (PWM) Alosco et al. 2019 Brain Imaging and 

Behavior
Seattle, USA PCG, Frontal Lobe 3 T MEGA-PRESS, TE=68 ms   Pediatric sport concussion compared to healthy 

controls (admitted to emergency for non-head 
related injuries)

M/F Physical education, 
weight lifting, football, 
soccer, lacrosse, 
ultimate frisbee, 
skateboarding

↑GABA/Cr (Frontal), 
↓GABA/Cr (PCG, trend)

Friedman et al. 2017 American Academy of 
Neurology

Newcastle, Australia PCG, Parietal WM 3 T PRESS (TR/TE=2000/40 ms) Retired Rugby Players and Matched Controls (No 
History of contact play or concussion)

M Rugby ↓Glutathione (PCG) Gardner et al. 2017 Int J Sports Med

Toronto, Canada Left and Right Motor Cortex 
(Values averged together)

3 T STEAM (TR/TE/TM = 
2000/30/10 ms)

Non-contact, contact, and collision athletes recruited 
from varsity teams (n = 65) were scanned during 
preseason

M/F Mixed ↓NAA/Cr in collision 
compared to non-contact

Churchill et al. 2017 Frontiers in Neurology

London, Canada Prefrontal White Matter 3 T PRESS (TR/TE=2000/135 
ms)

Concussed Hockey players recruited from the banting 
division (n = 17) were scanned 24-72 hours and 3 
months post-concussion, compared to non-concussed 
hockey players (n=26)

M Hockey ↓Cho 3 months after 
concussion compared to 
controls

Manning et al. 2017 Neuroloy

DPI, days post injury; DLPFC, dorsolateral prefrontal cortex; M1, motr cortex; PFC, prefrontal cortex; MTL, medial temporal lobe; AC, anterior commissure; PC, posterior commisure; PCG, 
posterior cingulate gyrus; ACG, anterior cingulate gyrus

PCGBoston, USA

Indiana, USA DLPFC, M1 3 T PRESS (TR/TE=1500/30 ms)
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Table 1.3: Review of MRS Timepoints in Sport Concussions

Reference In Seaon During Off Season Retired Non Athletes Baseline 24-72 Hours 2 Weeks 1 Month 2 Months 3 Months 6 Months Retired
Davie et al. 1995 J of Neurology, 
Neurosurgery, and Psychiatry

- - - - - - - - - - ↓[NAA]

Vagnozzi et al. 2008 Neurosurgery - - - - "Control 
Volunteers"

- ↓NAA/Cr      
(3 DPI)

↓NAA/Cr    
(15 DPI)

(30 DPI) - - - -

Vagnozzi et al. 2010 Brain - - - - "Control 
Volunteers"

- ↓NAA/Cr      
(3 DPI)

↓NAA/Cr    
(15 DPI)

(22 and 30 
DPI)

- - - -

Vagnozzi et al. 2013 J Head Trauma 
Rehabil

- - - - "Control 
Volunteers"

- ↑NAA/Cr, 
Cho/Cr        

↓NAA/Cho 
(3 DPI)

↑NAA/Cr, 
Cho/Cr        

↓NAA/Cho 
(15 DPI)

↑NAA/Cr, 
Cho/Cr        

(30 DPI)

(45 DPI) - - -

Henry et al. 2010 J Neurotrauma - No History of 
Concussion

- - - - - - - - -

Henry et al. 2011 BMC Neurology - Nonconcussed 
Athletes

(18 months 
later)

- - - - - - ↑Myo/Cr 
(M1)

-

Chamard et al. 2012 Neurosurg Focus Pre-Season - ↓NAA/Cr 
(Females) 

Post-Season

- - Pre-Season (72 Hours) (2 weeks) - (2 months) - - -

Chamard et al. 2013 Brain Injury - Female Athlete 
Control Group

- - - - - - - - - ↓Myo/Cr     
(M1 and 
Hippo)               

(7 Months)

-

De Beaumont et al. 2013 BMC 
Neurology

- - - Mixed 
Athletes

- - - - - - - - ↓Glu

Tremblay e al. 2013 Cerebral Cortex - - - No History of 
TBI

- - - - - - - - ↑Myo , ↓Cho 
(L MTL)      

↑Cho (R PFC)
Chamard et al. 2014 J Neurotrauma - ↓NAA/Cr (2nd 

scan; 6 months)
- - - - - (9 DPI) - - - ↑Glx/Cr to 9 

DPI                       
(6 months)

-

Tremblay et al. 2014 Clin Neurophysiol - Glx and GABA do 
not correlate in 
experimental 

group

- - - - - - - - - - -

Lefebvre et al. 2018 J Neurotrauma - ↑Myo in contact 
(M1)                      

↓Glx in contact 
(DLPFC)

- - Non-athletes - - - - - - - -

Johnson et al. 2012 J Neurotrauma - Normal Volunteer 
Student-Athletes 

with no mTBI 
History

- - - - - - - - -

Maugans et al. 2012 Pediatrics - - - - "Healthy 
Controls"

- (24-72 
Hours)

(2 Weeks) - - -

Bartnik-Olson et al. 2014 J 
Neurotrauma

- - - - "Healthy 
Controls"

- - - -

IPD, idiopathic parkinson' disease; DPI, days post injury; Hippo, hippocampus; DLPFC, dorsolateral prefrontal cortex; M1, motr cortex; PFC, prefrontal cortex; MTL, medial temporal lobe; AC, anterior commissure; PC, posterior 
commisure; PCG, posterior cingulate gyrus; ACG, anterior cingulate gyrus; F, female; M, male

↓NAA/Cr, /Cho                      
(1-3 Weeks Post Injury)

↓NAA/Cr, /Cho                                                                              
(2-12 months post-injury)

NonConcussed Group / Control Group Concussed Group

IPD and Age matched

↓Glu/Cr (M1),           
↓NAA/Cr (M1&DLPFC)                  

(1-6 DPI)
↓Glu/Cr (M1),           

↓NAA/Cr (M1&DLPFC)                  
(1-6 DPI)

(1 Month or Greater)

Table 1.3: Review of MRS Timepoints in Sport Concussions 
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Table 1.3: Review of MRS Timepoints in Sport Concussions Continued

Reference In Seaon During Off Season Retired Non Athletes Baseline 24-72 Hours 2 Weeks 1 Month 2 Months 3 Months 6 Months Retired
Poole et al. 2014 and 2015 
Developmental Neuropsychology

↑Myo 
(DLPFC), Glx 

and Cr (M1) in 
contact

↓Glx and Cho 
(M1), Cr (DLPFC & 

M1)

- - - - - - - - - - -

Bari et al. 2018 Brain Imaging and 
Behavior

Pre-Season ↓Glx/Cr, ↑Cho/Cr 
(M, DLPFC)                

↑Glx/Cr (F, M1)

↑Glx/Cr (F, 
M1)

- - - - - - - - - -

Mayer et al. 2015 J Neurotrauma Baseline ↓NAA (2 Scans, 1 
year apart) from 

baseline

- - Healthy Controls 
(no changes)

- - - - - - - -

Lin et al. 2015 Alzheimer's Research & 
Therapy

- - - - Healthy Controls 
(No History of 

concussion)

- - - - - - - ↑Cho, Glx

Koerte et al. 2015 J Neurotrauma - - - - Retired (Non-
Contact)

- - - - - - - ↑Cho/Cr, 
Myo/Cr

Panchal et al. 2018 Frontier in 
Neurolgy

Pre-Season - ↓NAA 
(M/F), ↓Cho 
(M/F trend)

- - - - - - - - - -

Alosco et al. 2019 Brain Imaging and 
Behavior

- - - - Asymptomatic 
Retired NFL 

Players

- - - - - - - ↓NAA (PWM)

Friedman et al. 2017 American 
Academy of Neurology

- - - - Admitted to 
emerg for non-

head related 
injuries

- - ↑GABA/Cr 
(Frontal), 

↓GABA/Cr 
(PCG, trend)          

(12 DPI)

- - - - -

Gardner et al. 2017 Int J Sports Med - - - - No History of 
contact play or 

concussion

- - - - - - - ↓Glutathione 
(PCG)

Churchill et al. 2017 Frontiers in 
Neurology

↓NAA/Cr in 
collision vs non-

contact

- - - - - - - - - - - -

Manning et al. 2017 Neuroloy - Male Hockey 
Control Group

- - - - (24-72 hrs 
DPI)

- - - ↓Cho - -

NonConcussed Group / Control Group Concussed Group

IPD, idiopathic parkinson' disease; DPI, days post injury; Hippo, hippocampus; DLPFC, dorsolateral prefrontal cortex; M1, motr cortex; PFC, prefrontal cortex; MTL, medial temporal lobe; AC, anterior commissure; PC, posterior 
commisure; PCG, posterior cingulate gyrus; ACG, anterior cingulate gyrus; F, female; M, male

Table 1.3: Review of MRS Timepoints in Sport Concussions Continued 



 

36 

 

The spectroscopy acquired from mice in this thesis (Chapter 4) additionally quantifies 

taurine (Tau), lactate (Lac), and glutathione (GSH). Tables 1.4, 1.5, and 1.6 highlight 

single and repetitive closed head impact MRS findings from the literature, as well as the 

timing of these findings. The exact function of taurine is not known but it has been 

proposed to be an osmoregulator, play a role in modulating neurotransmission94, and cell 

volume regulation128. Taurine has two triplets at 3.25 and 3.42 ppm, with the former 

overlapping with the total choline peak94. Animal models have found elevated Tau129, and 

reduced Tau/Cr128. Lactate is the end product of anaerobic glycolysis94, and has been 

shown to increase in more severe cases of TBI, due to hypoxic/ischemic conditions130,131. 

The lactate signal gives rise to a doublet resonance at 1.31 ppm and a quartet at 4.10 

ppm94. Finally, glutathione is an antioxidant that is primarily located in astrocytes and its 

singlet at 3.77 ppm overlaps with glutamate. Reduced GSH has been observed in retired 

athletes with a history of concussion132. 

  Moreover, Pascual et al. (2007)129 observed elevated Tau, Glu, GABA, NAA, 

Myo, and Cr after injury using a weight drop model. Although, this study had a high 

mortality rate, indicating more severe injury than concussion. However, a later study by 

Singh et al. (2017)130 also found elevated Glu, Myo, and Cr in a milder weight drop model. 

Additionally, Singh et al. (2017)130 and Lyons et al. (2018)133 both observed reduced NAA, 

Cr, and Cho, while only Singh et al. (2017) found reduced Gln and GABA. Another study 

found reduced Tau/Cr128, and reduced NAA/Cr107 in male rats after using a weight drop 

model. Moreover, even fewer studies to date have investigated the effects of repeated head 

injury134,135. Therefore, investigating concussion or the effects of repetitive impacts with 

MRS in animal models, remains relatively unexplored. Investigating repetitive CHI will 

help to delineate how the timing between impact and concussion history may affect an 

individual’s metabolic profile. 
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Table 1.4: Review of Single and Repetitive Closed Head Impact MRS Studies

Single: Reference ROI MRS / Study Design Sex, Animal Impact Main Finding
Pascual et al. (2007)                  

J Neurotruma
Whole Brain, ex vivo Divided rats into sham, 4 hours, 1, 2, 

and 3 Days post impact                                   

8.4 T, ex vivo NMR

M, Rats Weight Drop Model             

450g/2m                                             

(High Mortality Rate)

3 Time course Patterns:                                             

(1) ↑Tau, Threonine, Gly at 24hrs                                           

(2) ↑Glu, GABA,  Ala 24-48 hrs,                                 

(3) ↑NAA, Myo, Cr at 48 hrs

Signoretti et al. (2009)                    

Mol Cell Biochem 
Whole Brain, ex vivo Using HPLC* at 2, 6, 24, 48, and 120 

hours post mTBI (n=6 in each group), 

compared to sham control                              

(*High-performance liquid 
chromatograhy on deproteinized whole 
brain extracts)

M, Rats Weight Drop Model                  

450g/1m                                    

Impact: Central portion of the 

skull

↓ Cr and NAA at 2, 6, 24, and 48 hours in 

mTBI group

Schnieder et al. (2015)               

J Neurotrauma
Tissue Punches, ex 
vivo                           
(PFC, Hippocampus, 
Amygdala)

Divded mice into sham or mTBI groups 

and were sacrificed before (naïve) or 

after a fear conditioning paradigm                                              

MRS: 11.7 T High-resolution magic 

angle spinning MRS

M, Mice Closed Head Impactor         

(5mm diameter tip; 5 m/s, 1 

mm depth, 100 ms dwell 

time)                                 

Impact: Midpoint between 

lambda and bregma

↑GABA/Cr in PFC at days 8 in mTBI                                                                                 

↓GABA/Cr in dorsal hippocampus and 

↑Glu/Cr in ventral hippocampus at 25days                                                            

Changes may be reflective of dysregulated 

excitatory and inhibitory neurotransmission 

(overlearning of conditioned fear and 

delayed extinction)

Singh et al. (2016)                    

NMR in Biomedicine
Cortex                             

(1.7 x 4 x 3 mm)           

Hippocampus                

(2 x 4 x 3 mm)

Divided rats into sham, mTBI + repeat 

anesthesia, and mTBI no anesthesia                                              

MRS: 7 T PRESS (TR/TE=2500/20 ms, 

NA=512)

M, Rats Weight Drop Model 

450g/25cm                       

Impact: Sagittal midway of 

brain

↓Tau/Cr in cortex 5 days post mTBI with or 

without anesthesia compared to control.                                                                          

↓Glu/Cr in Injury combined with anesthesia 

in rat cortex 

Singh et al. (2017)                

NMR in Biomedicine
Hippocampus                   

(2 x 4 x 3 mm)

Divided rats into mild and moderate 

injuries (baseline imaging) for in vivo 
MRS: same as Singh et al. 2016                                                                                       

(Also divided another group of rats in 
control, mild and moderate for in vitro 
MRS)

M, Rats Weight Drop Model 

450g/25cm (mild) and 

450g/50cm (moderate)                

Impact: Sagittal midway of 

brain

↑Cho, Myo (Hippo) in moderate injury, no 

changes in mTBI using in vivo  MRS (several 
changes observed using in vitro, see Table 
1.5 )

Lyons et al. (2018)                      

J Neurotrauma
Bilateral dorsal 

hippocampus                

(2 x 5.23 x 1.2 mm)

Divided mice into sham, 3 and 28 days 

post injury                                               

MRS: 7 T PRESS (TR/TE=1500/135 ms, 

NA=400); 2nd experiment used LASER 

(TR/TE=2500/21 ms, NA=200)

M/F Mice Closed Head Impactor (5mm 

flat steel tip; 5m/s, 1mm 

depth, 100 ms dwell time)                              

Impact: Midline impact 

(mediolateral 0mm, 

anteroposterior 1.5mm)

↓NAA, Cr, Cho at 3 Day post injury 

compared to sham

Repetitive: Reference ROI MRS / Study Design Sex, Animal Impact Main Finding
Vagnozzi et al. (2005) 

Neurosurgery   
Whole Brain, ex vivo 2 Repetitive impacts at 3 or 5 days 

apart (Group 1 and 2), single mild 

(Group 3), single severe (Group 4) and 

sham (Group 5)                                                                               

(Using HPLC)

M, Rats Weight Drop Model      

450g/1m (mild);           

450g/2m (severe)           

Impact: Midline between 

bregma and lambda

↓NAA in all groups compared to sham 

(Reductions in 3-rmTBI and severe TBI were 

lower than sham mild/5day)

Fidan et al. (2018)                 

ASN Neuro
Hippocampi                  

(2 x 2 x 2 mm)

Divided rat into sham, single mTBI, and 

rmTBI                                                                                   

7 T, PRESS (TR/TE=1800/40ms, 

NA=576)

M, Rats Closed Head Impactor Model: 

4 ms, 1 mm depth, 50 ms 

duration                            

Impact: 1.8mm caudal to 

bregma, 3mm left of midline

rmTBI Group:                                                                      

↓NAA/Cr (contra. & ips.; vs sham & mTBI), 

↓Cho/Cr & Lip/Cr (ips.) ↑Myo/Cr (contra. & 

ips.)                                                                                                        

mTBI Group:                                           

↓NAA/Cr (ips.), ↑Myo/Cr (contra. & ips.)

Tau, taurine; Gly, glycine; Glu, glutamate; Ala, alanine; NAA, N-acetyl aspartate; Myo, myo-inositol; Cr, creatine; mTBI, mild traumatic brain injury; rmTBI, repeated mTBI; PFC, prefrontal cortex; Hippo, 
hippocampus; contra, contralateral; ips, ipsilateral

Table 1.4: Review of Single and Repetitive Closed Head Impact MRS Studies 
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Table 1.5: MRS Imaging Timepoints in Single Closed Head Injuries

Reference Groups Before CHI 2 Hours 3 Hours 4 Hours 1 Day 2 Days 3 Days 5 Days 1 Week 2 Weeks 1 Month
Sham (n=4) - - - - - - - - - - -

Head Injured (n=4 at 
each time)

- - - (9 Hours) ↑Tau,Thr, 
Gly, Glu, 

GABA, Ala

↑Glu, 
GABA, Ala, 
NAA, Myo, 

Cr

(3 days) - - - -

Sham (n=6) - - - - (Sacrificed) - - - - - -

Head Injured (n=6 at 
each time)

- ↓NAA, Cr - ↓NAA, Cr 
(6 Hours)

↓NAA, Cr ↓NAA, Cr - (120 Hours) - - -

Sham (n=12/10) - - - - - - - - n=12 
Sacrificed 

(Naïve)

n=10 
Sacrificed

Head Injured (n = 
10/6)

- - - - - - - - ↑GABA/Cr 
in PFC       

(Naïve)

↓GABA/Cr in 
dhippo, 

↑Glu/Cr in 
vhippo

Sham Anesthesia 
(n=7)

/ - - / / - / / - - -

mTBI + Anesthesia 
(n=7)

/ - - / / - / ↓Tau/Cr 
(Cortex)

- - -

mTBI Only                               
(n=7)

- - - - - - - ↓Tau/Cr 
(Cortex)

- - -

in vivo mTBI               Yes - - (4 Hours) (Day 1) - - (Day 5) - - -

in vivo moTBI Yes - - (4 Hours) (Day 1) - - ↑Cho, Myo 
(Hippo)

- - -

in vitro sham - - - - - - - - - - -

in vitro mTBI - - - ↓BCAA, 
Gln ↑Cr, 
Glu, Myo, 

Tau

↓BCAA, 
Gln, Succ 
↑Cr, Glu, 
Myo, Tau

- - ↓BCAA, 
Gln, Suc

- - -

in vitro moTBI - - - ↓NAA, 
Succ 

↑Acetate

↓BCAA, 
NAA, Succ, 

Glu      
↑Myo, 
GABA

- - ↓BCAA, 
GABA      

↑Cr, Glu, 
Myo, Tau, 

Lac

- - -

Sham (n=13) - - - - - - - - - - -

mTBI (n=15) - - - - - - ↓NAA, Cr, 
Cho

- - - (28 Days)

/
-

Imaging Timepoints

Fear 
Conditionin
g Days 14-

24

Lyons et al. (2018)                      
J Neurotrauma

Timing of sham, if specified in study
Groups not assessed at this timepoint
Ala, alanine; BCAA, branched chain amino acids; CHI, closed head impact; Cho, choline; Cr, creatine; Gln, glutamine; Glu, glutamate; Gly, glycine; dhippo, dorsal 
hippocampus; vhippo, ventral hippocampus; mTBI, mild traumatic brain injury; moTBI, moderate TBI; Myo, myo -inositol; NAA, N -acetyl aspartate;  PFC, prefrontal 
cortex; Tau, taurine; Thr, theronine

Pascual et al. (2007)                  
J Neurotruma

Signoretti et al. (2009)                    
Mol Cell Biochem 

Schnieder et al. (2015)               
J Neurotrauma

Singh et al. (2016)                    
NMR in Biomedicine

Singh et al. (2017)                
NMR in Biomedicine                      
(n=5 at each 
timepoint)

Table 1.5: MRS Imaging Timepoints in Single Closed Head Injuries 
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Table 1.5: MRS Imaging Timepoints in Single Closed Head Injuries Continued Table 1.6: MRS Imaging Timepoints in Repetitive Closed Head Injuries

Reference Groups Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Before CHI 2 Days 1 Week
Sham                

(n=6)

/ / - (2 Days) -

Single Mild 

(n=6)

� - ↓NAA -

Single Severe              

(n=6)
� - ↓NAA                     

(to sham and 

mild/5day)

-

rmTBI 3          

(n=6)

� � - ↓NAA                         

(to sham and 

mild/5day)

-

rmTBI 5         

(n=6)

� � - ↓NAA -

Sham                    

(n=8)

/ / / - - -

mTBI                   

(n=9)

/ / � - - ↓NAA/Cr (ips.), 

↑Myo/Cr (contra. & 

ips.)

rmTBI                 

(n=10)

� � � - - ↓NAA/Cr (contra. & 

ips.; vs sham & mTBI),            

↓Cho/Cr & Lip/Cr 

(ips.)                                     

↑Myo/Cr (contra. & 

ips.)

/

�

Vagnozzi et al. 

(2005) 

Neurosurgery   

Fidan et al. 

(2018)                 

ASN Neuro

contra, contralateral; Cho, choline; Cr, creatine; ips, ipsilateral; Lip, lipids; Myo, myo -inositol; NAA, N -acetyl aspartate; rmTBI, repeated mild traumatic 

brain injury

Timing of sham, if specified in study

Timing of closed head impacts

Hit Paradigm Imaging Paradigm
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1.5.6 Animal Models of TBI and Concussion 

As previously discussed, the effect of concussion on the brain has been largely studied 

using MRS in athletes participating in contact sports, and various changes in metabolites 

have been observed. The large variability in metabolite findings across the literature is 

likely due to the heterogeneous nature of concussion (e.g. impact site, force of impact, 

timing of imaging post impact, concussion history, sex, diet, etc.)136. Animal models can be 

utilized to minimize many confounding variables, allowing exploration of the mechanisms 

and relevance of specific metabolite changes after concussion137.  

  To date, the majority of MRS animal models have studied moderate to severe 

traumatic brain injuries using fluid percussion injury138–140, controlled cortical impact141–

144, or blast injuries145,146, rather than mild TBI or concussion. Few animal studies to date 

have investigated a closed head impact (CHI) model of concussion, and these are 

summarized in Table 1.4 and Table 1.5. The majority of these single CHIs have used a 

weight drop model of 450g107,128–130 with drop heights from 25-100 cm characterized as 

mild injuries, and >100 cm as moderate to severe, with high mortality rates. Closed-head 

controlled cortical impact models have also been used with 5mm diameter tips at 5-4 m/s at 

a depth of 1 mm being characterized as mild133,134,147. 

1.6 Thesis overview and objectives 
This introductory chapter provided an overview of concussion and the human brain, 

including the neurometabolic cascade of events that occur at the molecular level following 

a concussion. Next, the main principles of in-vivo magnetic resonance spectroscopy were 

provided, including the acquisition and data analysis, followed by descriptions of the 

different brain metabolites measured by this technique, and their relevance in concussion. 

The overall objective of this thesis was to use MRS to explore metabolite changes in the 

prefrontal white matter of female contact athletes before and after concussion, then to 

replicate these findings in an animal model of concussion, to position future studies to 

probe the reasons for these changes, and how to use these changes as potential therapeutic 

targets.  
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  Chapter 2 addresses the first objective by studying a team of female varsity rugby 

athletes over 5 seasons, collecting data at the beginning and end of season, as well as 24-72 

hours, 3 months, and 6 months post-concussion. This study found a reduction in glutamine 

levels in female rugby athletes after concussion, and after a season of play. 

  Chapter 3 further explores the nature of this glutamine change by studying non-

contact athletes and sedentary women, in comparison to contact athletes. This study 

demonstrated that glutamine changes, among other metabolite changes, exist in contact 

athletes likely as a result of the accumulation of sub-concussive impacts. 

  Chapter 4 translates these findings to an animal model that investigates metabolite 

changes in mice after repeated head injury, and similarly finds changes glutamine that 

suggest that the model used might be appropriate as a model of sub-concussive injury. 
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Chapter 2  

2 Reduced brain glutamine in female varsity rugby 
athletes after concussion and in non-concussed 
athletes after a season of play 

Permission to reuse this article has been obtained. Please see Appendix B. 

Schranz AL, Manning KY*, Dekaban GA, Fischer L, Jevremovic T, Blackney K, Barreira C, Doherty 

T, Fraser D, Brown A, Holmes J, Menon RS, Bartha R. Reduced Brain Glutamine in Female Varsity 

Rugby Athletes after Concussion and in Non-Concussed Athletes after a Season of Play. Human Brain 

Mapping 2018; 39(4):1489-1499. doi: 10.1002/hbm.23919 

*Dr. Kathryn Y. Manning analyzed the DTI data and contributed to those written sections. 

The purpose of this study was to use non-invasive proton magnetic resonance 

spectroscopy (MRS) and diffusion tensor imaging (DTI) to monitor changes in prefrontal 

white matter metabolite levels and tissue microstructure in female rugby players with and 

without concussion (ages 18-23, n = 64).  Evaluations including clinical tests and 3T 

MRI were performed at the beginning of a season (in-season) and followed up at the end 

of the season (off-season).  Concussed athletes were additionally evaluated 24-72 hours 

(n = 14), three months (n = 11), and six months (n = 8) post-concussion. Reduced 

glutamine at 24-72 hours and three months post-concussion, and reduced 

glutamine/creatine at three months post-concussion were observed.  In non-concussed 

athletes (n = 46) both glutamine and glutamine/creatine were lower in the off-season 

compared to in-season.  Within the MRS voxel, an increase in fractional anisotropy (FA) 

and decrease in radial diffusivity (RD) were also observed in the non-concussed athletes, 

and correlated with changes in glutamine and glutamine/creatine. Decreases in glutamine 

and glutamine/creatine suggest reduced oxidative metabolism. Changes in FA and RD 

may indicate neuroinflammation or re-myelination. The observed changes did not 

correlate with clinical test scores suggesting these imaging metrics may be more sensitive 

to brain injury and could aid in assessing recovery of brain injury from concussion.  
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2.1 Introduction 
A concussion is a brain injury caused by forces applied to the head or another part of the 

body, causing the brain to experience rapid rotational and translational accelerations 1. 

Momentum from such forces can cause axonal stretching, cell membrane disruption, 

dysregulation in ion fluxes and uncontrolled neurotransmitter release 2,3ultimately leading 

to mitochondrial oxidative dysfunction 4, inflammation and edema 5. 

The National Collegiate Athletic Association Injury Surveillance Program has 

reported the concussion rate among student-athletes in 25 different sports to be 4.47 per 

10,000 Athlete-Exposures (defined as one athlete participating in one practice or 

competition) overall, with some sports as high as 20 concussions per 10,000 Athlete 

Exposures 6. It is likely that the true incidence is even higher as many concussions are not 

reported 6. Although concussions can occur in many situations, including motor vehicle 

accidents, domestic violence, and slips and falls, athletes participating in contact sports 

have a high risk of sustaining a concussion due to the nature of the activity.   

 Currently, concussion diagnosis in sport is made clinically through assessment by 

a physician 7 based on symptomatology, often with the aid of the Sport Concussion 

Assessment Tool III (SCAT3) 8. Such assessments are limited since they rely on athletes 

to voluntarily report symptoms that are often delayed.  The difficulty in identifying when 

a concussion is sustained during a sporting event, and making the decision to remove the 

athlete from the event increases an athlete’s risk for sustaining multiple concussions in a 

short period of time.  Multiple concussions can induce second impact syndrome, which 

has been associated with rapid brain swelling, herniation and, in severe cases, death 9. 

Repetitive head trauma in sports may also be linked to chronic traumatic encephalopathy, 

a neurodegenerative disease characterized by a specific distribution of phosphorylated tau 

in the brain 10.  Chronic traumatic encephalopathy has been found in individuals that have 

sustained multiple concussions 10 as well as in individuals without a history of concussion 
11.  

Axons are vulnerable to biomechanical stretching, which in concussion can lead 

to undulations and beading 12. However, this diffuse axonal injury (DAI) is not easily 
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discernable with conventional CT or MRI 12. Diffusion tensor imaging (DTI) provides a 

means of detecting DAI 13. Along with DAI, a secondary chemical cascade of ion flux 

and altered neurotransmission follows, which can result in mitochondrial dysfunction and 

altered metabolism 13. These events have the potential to manifest as a decrease in N-

acetyl aspartate (NAA), an amino acid marker of neuronal integrity and mitochondrial 

function measured by proton (1H) magnetic resonance spectroscopy (MRS) 14. MRS can 

also measure choline (Cho), creatine (Cr), glutamate (Glu), glutamine (Gln), and myo-

inositol (Myo).  Metabolites such as glutamate and glutamine may also be altered 

following concussion since both are involved in neurotransmission and oxidative 

metabolism 15,16.  

 Over the past decade the effect of concussion on the brain has been studied by 

MRS in athletes participating in various sports including football 17, boxing 18, hockey 19 

and others 20,21. These studies have shown changes in metabolite levels (primarily 

decreases in NAA/Cr) in multiple brain regions, in both white and grey matter.  Brain 

regions studied have included the motor cortex 22, dorsolateral prefrontal cortex 17,23, 

corpus callosum 24, and the white matter of the frontal lobes 25. However, the majority of 

previous studies were cross-sectional, comparing concussed groups to control groups 

rather than longitudinally examining athletes prior to and after concussion.  In addition, 

control groups were often athletes from other contact sports.  Interestingly, several recent 

studies have reported metabolite changes in the brains of non-concussed athletes 

participating in contact sports suggesting such athletes are not ideal controls.  For 

example, Chamard and colleagues (2012)26 found decreased NAA/Cr in the corpus 

callosum in females without concussion after a season of hockey.  Furthermore, Poole 

and colleagues (2014)23 investigated changes in metabolite levels in grey matter in the 

motor cortex and dorsolateral prefrontal cortex in high school football players without 

concussions throughout a single season.  Decreases in choline and creatine, and an 

increase in the sum of glutamate and glutamine (Glx) were found in the motor cortex (1-3 

months into the season).  Decreases in creatine and myo-inositol were subsequently found 

in the dorsolateral prefrontal cortex.  These studies underscore the importance of utilizing 

pre-concussion scans in athletes to better assess metabolic changes post-concussion.   
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Additionally, most studies to date have focused on male athletes.  Therefore, 

studies in female athletes are urgently needed.  The objective of the current prospective 

cohort study was to measure changes in prefrontal white matter metabolite levels using a 

rigorous MRS protocol in female varsity rugby players after a season of play and up to 

six months following concussion.  Based on previous literature, it was predicted that N-

acetyl aspartate would decrease after a season of play in the non-concussed players.   

Immediately post-concussion it was hypothesized that N-acetyl aspartate would decrease, 

and partially recover by six months. It was also hypothesized that decreased N-acetyl 

aspartate would be associated with altered tissue diffusion after concussion, but not after 

a season of play in the non-concussed players.  Additionally, it was predicted that 

changes in the imaging measures would persists beyond clinical assessments. 

2.2 Materials and Methods 

2.2.1 Participants 

This study was approved by the University of Western Ontario’s Health Sciences 

Research Ethics Board.  Informed consent was obtained from each player prior to the 

start of each season.  All participants in this study were university level athletes (21 ± 1.5 

years old) recruited from a women’s varsity rugby team over the course of four seasons.  

Forty-eight athletes participated in this study, 24 athletes played a single season, 14 

played two consecutive seasons, nine played three consecutive seasons, and one played 

two seasons, interspersed with a season of no play.   

The rugby season ran from September to the end of October, with training 

beginning at the end of August.  August through September is referred to as the in-season 

time point throughout the study, and January through March is referred to as the off-

season. There was an average of 14.5 games in a full rugby season, with four contact 

practices per week throughout the season. From October to April players continued to 

participate in tournaments and a weekly practice.  For the detailed training schedule from 

August to April, please see Table 1.  There were 20 documented concussions in 15 

different athletes over the four seasons the team was followed.  Only an athlete’s first 

concussion was used in the analysis.  Athletes were evaluated for a potential concussion 
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when self-reporting symptoms, or symptoms were noticed by the trainers, and a similar 

protocol for return to play was followed as outlined in McCrory et al. (2017)27. 

Participants included in the non-concussed group were concussion free for at least 10 

months prior to their in-season scan, and were not diagnosed with a concussion while 

participating in this study.  Participants with data from multiple seasons were treated as 

separate data sets.  Each athlete was evaluated at the beginning of the season (in-season), 

and followed up at the end of season (off-season), after their last tournament (160 ±	39 

days).  Athletes that were concussed, and available to participate were additionally 

evaluated 24-72 hours post-concussion, and then again at three and six months post-

concussion. Not all concussed athletes attended their scheduled visits or were available to 

participate at each follow-up time point if they had moved away. Please see 

Supplementary Table 2.1 for the complete concussion timeline on these 15 athletes. Each 

evaluation consisted of two clinical assessments, magnetic resonance imaging and MRS, 

and blood collection (data to be reported elsewhere).  In total, we acquired 63 spectra at 

the beginning of season, 56 at the end of season (49 paired sets), 14 at 24-72hours post-

concussion, 11 at three-months post-concussion, and eight at six-months post-concussion.
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Table 2.1: Rugby Players Training Schedule 

 

 Contact Practices 

1 session=2hrs 

Weight Training 

1 session=2hrs 

Light Practice Games Notes 

August 

 

2/day - - 3-4 2-Week Pre-Season Training Camp 

September-October 

 

4/week 1/week - 1/week Regular Season 

November 

 

- - - 1/day* *National Championships (4 days) 

December-April 

 

1/week 3-4/week 3-4/week 1/month† Contact practices focus on technical skill, 

light contact compared to regular season 

†1 day tournament per month (January-

March) 
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2.2.2 Clinical Scores 

Two standard clinical tests were used in this study.  The first was the Sport Concussion 

Assessment Tool III (SCAT3)8. The SCAT3 is a standardized tool used for evaluating 

injured athletes (age 13 and older) on the sidelines. For the complete SCAT3 tests and 

procedures please see SCAT3 (2013).  Briefly, it integrates the Glasgow coma scale 

(GCS) with the Maddocks Score, and includes a brief cognitive and physical evaluation.  

The GCS assesses an athlete’s visual, verbal, and motor responses on a 15-point scale, 

with concussed individuals usually scoring around 14-15, and lower scores requiring 

medical attention.  The Maddocks score consists of five simple questions to assess short-

term memory. The cognitive and physical evaluation consists of questions to assess the 

athlete’s orientation, concentration, balance and coordination, as well as short-term 

memory.  The SCAT3 also documents the athlete’s background information (medication, 

concussion history, etc.), as well as scores 22 different symptoms the athlete may be 

experiencing on a scale of 0 to 6, with a symptom severity score out of 132 (maximum 

points multiplied by number of symptoms).  The second clinical test employed was the 

Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT)28. ImPACT is 

a computerized concussion evaluation system used by clinicians, and consists of four 

different sections.  The first section asks for the athlete’s demographic information and 

medical history.  The second section records concussion history, current medication, and 

rates 22 symptoms on a 7-point scale.  The third section consists of neurocognitive tests 

to evaluate the athlete, and the final section displays the athlete’s results. The results are 

broken into six different composites, verbal memory, visual memory, processing speed, 

reaction time, impulse control, and total symptoms. 

2.2.3 Magnetic resonance imaging acquisition 

Siemens 3 T Magnetom Tim Trio and Prisma Fit MRI Scanners (Erlangen, Germany), 

both using a 32 channel head coil, were used for data acquisition.  Anatomical images 

were acquired using a sagittal T1-weighted magnetization-prepared rapid acquisition 

gradient echo sequence (TE/TR=2.94/2300 ms, flip angle=9o, matrix size 256 x 256, 

FOV=256 mm x 240 mm, number of slices=160, slice thickness=1.22 mm).  A rapid T2-



 

65 

 

weighted FLAIR image was acquired to guide the placement of a 6 cm3 (2 cm x 2 cm x 

1.5 cm) voxel in the prefrontal white matter region of the brain (Fig. 1A) for the 

acquisition of the spectroscopy data (slices=50, TE/TR=139/15000 ms, slice thickness=3 

mm, turbo factor=38, matrix size 256 x 256, FOV=256 mm, inversion time=2850 ms).  

Water suppressed (number of acquisitions = 192) and unsuppressed (number of 

acquisitions = 8) spectroscopy data were acquired using the PRESS (point resolved 

spectroscopy) pulse sequence (TE/TR = 135/2000 ms, dwell time = 833 µs, number of 

points = 1024).  A long echo-time was chosen in the current study to reduce the error 

associated with quantification of the macromolecule baseline at shorter echo times.  

Improper quantification of the macromolecule baseline can greatly bias the measurement 

of glutamate and glutamine.  A spin-echo echo-planar diffusion tensor imaging sequence 

(TE/TR = 79/7200 ms, matrix size = 98 x 98, FOV = 200 mm x 200 mm, number of 

slices = 64, slice thickness = 2 mm, b1 = 0, b2 = 1000 s/mm2, gradient directions = 64, 

IPAT acceleration factor = 3) was used to examine tissue microstructure. 

2.2.4 Magnetic resonance spectroscopy analysis 

Spectra were processed and analyzed as previously described 29,30. Spectra with a signal 

to noise ratio (SNR) less than 50 or water linewidth greater than 12 Hz were not included 

in the analysis.  Signal to noise ratio was measured as the NAA peak height divided by 

the standard deviation of the noise.  Briefly, spectra were lineshape corrected by 

combined QUALITY (Quantification improvement by converting lineshapes to the 

lorentzian type) deconvolution and eddy current correction 31 then fitted in the time 

domain using a Levenberg-Marquardt minimization routine 29 using prior knowledge of 

metabolic lineshapes (Fig. 1B).  Analysis software created in our laboratory in the IDL 

(version 5.4 Research Systems Inc., Boulder, CO, USA) programming language was used 

to model the spectra using prior knowledge acquired from in vitro spectra obtained from 

aqueous solutions of metabolites at pH=7.0 prior to the study 29. In the current study, we 

report absolute metabolite levels using unsuppressed water from the voxel as an internal 

standard as previously described in detail 29,30. The calculation of absolute metabolite 

levels incorporated a correction to account for tissue partial volume (grey matter (GM), 

white matter (WM) and cerebrospinal fluid (CSF) voxel fractions) obtained by 
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segmenting the T1-weighted anatomical images using the FMRIB (Functional MRI of the 

Brain) Software Library (FSL) tools (FMRIB, Oxford).  The metabolite levels were also 

corrected for T1 and T2 relaxation related signal loss.  The same relaxation time constants 

were used in all groups and were obtained from the literature from measurements made at 

3 T.  To allow for comparison to other studies, and to eliminate the uncertainty associated 

with partial volume correction from influencing the results, metabolite ratios relative to 

Cr were also calculated.  The reproducibility of voxel placement within subjects, between 

time points was assessed by calculating the relative fraction of gray matter, white matter 

and CSF in the voxels, and by registering the follow-up anatomical images to the baseline 

images to quantify the voxel overlap using the Dice index 32. 
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Figure 2.1: (A) From left to right; axial, sagittal, and coronal views of a T1-weighted 

anatomical image with the spectroscopy voxel overlaid in green in the prefrontal region.  

(B) Spectrum acquired (green) from the voxel in A, reconstructed spectrum (red), the 

residual after fitting (blue), and the individual prior knowledge components of the 

spectrum shown below in black. Glc = Glucose; Myo = Myo-inositol; Glu = Glutamate; 

Gln = Glutamine; Cr = Creatine; Cho = Choline; NAA = N-acetyl aspartate; ppm = parts 

per million. 

 

2.2.5 Diffusion tensor imaging analysis 

Raw DTI data were eddy-current corrected and conservatively brain extracted using FSL 

tools (FMRIB, Oxford). A diffusion tensor was fitted at each voxel to create maps of 

fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial 

diffusivity (AD). These maps were then registered and transformed to standard space 

using the standard Montreal Neurological Institute (MNI) 2 mm atlas 33. The MRS voxel 

varied slightly from person to person and from scan to scan. To ensure alignment to the 

preprocessed and registered DTI data, a slightly smaller volume (1cm × 1cm × 1cm) 

located in MNI space at x = 36, y = 68 and z = 51 that only included WM (GM and CSF 

masked) was used for analysis (Supplementary Fig. 1).  The alignment with the MRS 

voxel and DTI volume was visually inspected for all datasets. The FA, MD, RD, and AD 

values were extracted from this voxel and correlated with the MRS-derived metabolite 

levels. 

2.2.6 Statistical analyses 

All statistical analyses were performed using GraphPad Prism version 6.0 for Mac OS X 

(GraphPad Software, San Diego California USA).  Metabolite levels were compared 

between the in-season and off-season in the non-concussed group (n=49) using a repeated 

measures two-tailed Student’s t-test with an alpha value of 0.05.  In the concussed group, 

data were not available for all athletes at all time points, eliminating the possibility of a 

repeated measures ANOVA.  Alternatively, a one-way ANOVA was used to compare 
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each metabolite across all time points.  Metabolites that changed over time were further 

examined to determine differences between the in-season and the 24-72 hours post-

concussion (N=14), in-season and the three-months post-concussion follow up (N=11), 

and in-season and the six-months post-concussion follow up (N=8) using t-tests with 

Tukey’s multiple comparisons correction.  Additionally, the metabolites that changed 

over time were also examined using a repeated measures two-tailed Student’s t-test with 

an alpha value of 0.05 in all available athletes to confirm differences between the 

mentioned time points. 

The association between metabolite changes and clinical scores (i.e. SCAT3 and 

ImPACT), as well as between metabolite changes and DTI were examined with two-

tailed Spearman correlations.  An alpha value of 0.05 was used. Additionally, the effect 

of concussion history was assessed at the in-season time point using a two-tailed 

Student’s t-test with an alpha value of 0.05. Athletes with no concussion history (Never 

concussed) were compared to those with a concussion history (Ever concussed). Finally, 

metabolite changes across two consecutive seasons (four time points, first and second in-

season and off-season scans) were evaluated using a repeated measures ANOVA in non-

concussed athletes (N=7 using absolute metabolite levels, N=8 using metabolite ratios). 

Metabolites that changed over time were then further examined using Tukey’s multiple 

comparisons test with an alpha value of 0.05 to determine differences between an 

athlete’s first in-season, first off-season, second in-season and second off-season time 

points.  

2.3 Results 

2.3.1 Concussion history 

In the non-concussed group (n = 47), 28 reported no prior concussion history, 12 

individuals reported having 1-2 prior concussions, 1 reported having 3 prior concussions, 

and 6 individuals did not provide a concussion history.  In the concussed group, three 

reported no prior concussions, seven reported having 1-2 prior concussions, and one did 

not provide a concussion history. At the in-season time point no significant differences 

were found in any metabolite concentrations or DTI metrics between athletes with and 
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without a previous history of concussion. Supplementary Figure 2.2 compares imaging 

metrics as a function of concussion history for NAA (p = 0.47), Gln (p = 0.11), FA (p = 

0.07) and RD (p = 0.18) values.  

2.3.2 Quality assurance measures 

The spectroscopy voxel was placed in the prefrontal region with mean (± standard 

deviation) tissue content: GM 20% ± 8%, WM 77% ± 9%, and CSF 3% ± 2%.  The tissue 

composition of the voxel did not significantly change within subjects between time 

points. The voxel overlap between in-season and follow-up scans was 46% on average 

using the Dice similarity coefficient 32.  For all in-season spectra (n = 54), the average 

full-width at half maximum of the water peak was 6.7 Hz and the average signal to noise 

ratio was 92.  Additionally, all spectra were visually inspected prior to statistical analyses 

for artefacts.  No spectra were eliminated from the analysis due to artefacts or insufficient 

quality (SNR<50 or water linewidth > 12 Hz).  Cramér-Rao Lower Bounds (CRLB) were 

calculated for all metabolites but not used to eliminate spectra to avoid bias selection 34.  

For all in-season spectra (n = 54), the average CRLB for N-acetyl aspartate, choline, 

creatine, glutamate, glutamine, and myo-inositol were 0.65%, 1.4%, 1.4%, 4.6%, 35.5% 

and 7.9% respectively. 

2.3.3 Participants 

A total of N = 49 paired metabolite ratio data sets were collected in the non-concussed 

group.  Absolute quantification could not be performed on two athletes due to missing 

data, leaving N = 47 paired data sets.  One additional individual ended the scan prior to 

the acquisition of the DTI, leaving a total of N = 46 paired DTI data sets.  Absolute 

quantification could not be performed on one 24-72 hours post-concussion data set due to 

incomplete data acquisition, leaving N = 13 data sets for that time point. 

2.3.4 Clinical Data 

The complete results of the SCAT3 and ImPACT will be reported in a subsequent 

manuscript focused on resting state fMRI changes in the rugby players. In the subset of 

46 non-concussed rugby players with complete imaging data in the study, ImPACT 



 

70 

 

verbal memory (p = 0.046), ImPACT visual motor speed (p = 0.0003), and SCAT3 

concentration (p = 0.047) all increased in the off-season compared to in-season.  In the 

concussed group the SCAT3 symptom score (p < 0.0001) and symptom severity score (p 

= 0.0008) were higher 24 hours post-concussion compared to the in-season and returned 

to the in-season values at 3 months post-concussion (Supplementary Figure 2.3).   

2.3.5 MRI data 

No changes in N-acetyl aspartate were found in the concussed group (Figure 2.2A) or 

non-concussed group (Figure 2.2B). However, glutamine was significantly lower in the 

concussed group (Figure 2.2C, F = 3.52, p = 0.02), with a 52% decrease in the mean 

observed 24-72 hours post-concussion (p = 0.04) and a 56% decrease 3 months post-

concussion (p = 0.03) compared to the initial in-season level.  The repeated measures t-

test using the subset of subjects with both baseline and post-concussion data yielded the 

same changes in glutamine 24-72 hours post-concussion (N = 6, p = 0.02) and 3 months 

post-concussion (N = 5, p = 0.03).  A 21% decrease in glutamine was also observed in 

the non-concussed group in the off-season compared to the in-season (Figure 2.2D, p = 

0.01).  When examining metabolite ratios, a change in the Gln/Cr ratio was also found in 

the concussed group (Figure 2.2E, F = 3.45, p = 0.03), with a 58% decrease observed 3 

months post-concussion (p = 0.03) relative to the initial in-season value.  The repeated 

measures t-test using the subset of subjects with both baseline and post-concussion data 

showed a 48% decrease in Gln/Cr 24-72 hours post-concussion (N = 6, p = 0.04) and the 

same reduction 3 months post-concussion (N = 5, p = 0.04).  A 25% decrease in Gln/Cr 

in the non-concussed group was observed in the off-season compared to in-season 

(Figure 2.2F, p = 0.005).  No other metabolite changes were found.   

No significant changes in FA within the MRS region of interest (ROI) were found 

in the concussed group (Figure 2.3A), however a small 3.8% increase was observed 

within the voxel in the non-concussed group in the off-season compared to the in-season 

(Figure 2.3B, p = 0.01).  No significant changes in RD were found in the concussed 

group (Figure 2.3C), although a small 2.1% decrease in RD was observed in the non-

concussed group in the off-season compared to the in-season (Fig. 3D, p = 0.048).  No 

other significant changes were observed. 
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In a sub-set of athletes that played two consecutive seasons, Gln was significantly 

altered (Supplementary Figure 2.4A, F = 4.7, p = 0.047), with a 60% decrease in the 

mean observed at the second off-season in comparison to the first in-season (p = 0.03) 

and a 54% decrease in the mean observed at the second off-season in comparison to the 

first off-season (p = 0.02).  Additionally, Gln/Cr was significantly altered 

(Supplementary Figure 2.4B, F = 4.8, p = 0.04), with a 54% decrease in the mean 

observed at the second off-season in comparison to the first in-season (p = 0.002) and 

first off-season (p = 0.02).  Within the ROI, FA significantly changed (Supplementary 

Figure 2.4C, F = 6.4, p = 0.02) with an increase observed at the second off-season 

relative to the first in-season (p = 0.006).  Similarly, RD significantly changed 

(Supplementary Figure 2.4D, F = 5.1, p = 0.04) with an increase observed at the second 

off-season relative to the first in-season (p = 0.015).   

In the non-concussed group, a negative correlation was found between the change 

in Gln/Cr and the change in FA (Figure 2.4A, p = 0.01, r = -0.39) within the ROI.  

Additionally, a positive correlation was observed between the change in Gln/Cr and the 

change in RD (Figure 2.4B, p = 0.002, r = 0.45).  Similar correlations were observed 

between Gln and FA (p = 0.008, r = -0.38, not shown), and Gln and RD (p = 0.002, r = 

0.44, not shown) within the ROI.  No correlations were found between changes in 

metabolite levels and clinical measures. 
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Figure 2.2: Bar graphs showing the mean concentration of N-acetyl aspartate (NAA), 

glutamine (Gln) and the glutamine/creatine ratio (Gln/Cr) in the concussed and non-

concussed groups.  Standard error of the mean (SEM) is represented by vertical bars.  

NAA levels did not change in the concussed (A) or non-concussed group (B).  Gln levels 

(C) decreased in the concussed group (F = 3.52, p = .02) by 52% at 24-72 hours (p = .04) 

and by 56% at 3 months (p = .03).  Gln levels in the non-concussed group (D) decreased 
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by 21% (p = .01).  Gln/Cr (E) decreased in the concussed group (F = 3.45, p = .03) by 

58% at 3 months (p = .03), and in the non-concussed group (F) by 25% (p = .005). 

 

 

Figure 2.3: Bar graphs showing the mean Fractional Anisotropy (FA) and Radial 

Diffusivity (RD) values in the concussed and non-concussed groups found within the 

spectroscopy voxel.  Standard error of the mean (SEM) is represented by vertical bars.  

Mean FA values in the concussed group (A) did not change (F = 1.41, p = .26), but 

increased (B) in the non-concussed group (p = .01). RD values in the concussed group 

(C) did not change (F = 0.14, p = .93), but decreased (D) in the non-concussed group (p = 

.05).   
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Figure 2.4: Correlations between the change in Gln/Cr and the (A) change in FA (p = .01, 

r = -.39), and (B) change in RD (p = .002, r = .45), plotted with 95% confidence bands.   

2.4 Discussion 
The purpose of this study was to examine white matter metabolite levels using MRS in 

female rugby players after a season of play and following concussion.  Based on previous 

studies, it was originally hypothesized that NAA would decrease in both groups, however 

no changes in NAA were found.  Rather, reduced Gln and Gln/Cr were observed in both 

the concussed and non-concussed groups.  Within the same ROI, FA increased and RD 

decreased in the non-concussed group, and both changes correlated with the change in 

Gln and Gln/Cr.  These trends were also observed in the sub-set of athletes that played 

two consecutive seasons concussion free. 

2.4.1 N-acetyl aspartate and previous studies 

In the current study, levels of NAA and Myo remained stable across all time points in 

both groups.  This result was unexpected since previous studies have shown changes in 

these metabolites 35,36. The lack of change observed in the current study may be due to a 

number of factors including differences in concussion severity between the current study 

and previous reports 36, differences in the age and sex of study participants 21,23, and 

differences in the timing and location of measurements. For example, a previous report 

examining more severe cases of traumatic brain injury 37, indicates that decreased NAA 
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and increased Myo may be indicative of a more severe head injury.  Additionally, other 

studies have examined different regions of the brain 19,36 or voxels primarily in the grey 

matter 22. Increases in Myo have also been reported within the first two weeks of brain 

injury 37. Such changes may have been missed in the current study because we did not 

examine the same time points post-concussion. Changes in Myo, Cho, Cr and Glx have 

also been reported in males and in different age cohorts 21,23 compared to the current 

cohort. The methodological differences between studies makes it difficult to draw 

conclusions between potential sex differences in regards to concussion 38. However, a 

meta-analysis by Dougan et al. (2014)39 presented evidence that more severe deficits in 

neuropsychological functioning were seen acutely post-concussion (1-10 days) in female 

athletes in comparison to males.  Alternatively, the study by Reynolds et al. (2017)40 

found no differences in the number or severity of head impacts between males and 

females in collegiate soccer.  Taken together, these studies suggest that potential sex 

related differences are likely due to a range of physiological and metabolic differences, 

and not necessarily differences in the number or severity of head impacts 38.  

2.4.2 Reduced glutamine and Gln/Cr 

A large and significant reduction in Gln and Gln/Cr was found in both concussed athletes 

and non-concussed athletes in the off-season.  The absolute Cr concentration did not 

significantly change, implying the decrease in Gln/Cr was due to the decrease in Gln.  To 

our knowledge, no other human study has found significant changes in Gln post-

concussion, since most 1H-MRS studies do not quantify Gln alone, but instead quantify 

the sum of Glu and Gln as Glx.  Past studies have found increases 35,37 and decreases 23 in 

Glx that could have been caused by changes in Gln.  In the current study a decrease in 

Gln/Cr was observed, but Glu/Cr and Glx/Cr remained stable. The decrease in Gln and 

Gln/Cr observed in the days and months post-concussion in the current study is consistent 

with studies of rodent models using Carbon-13 spectroscopy that have found reduced Gln 

levels up to 24-hours post-injury 41.  A previous cross-sectional study of 13-14 year old 

hockey players using the same methodology as the current study also found a statistical 

trend towards reduced glutamine levels in the concussed athletes three months after 

concussion 42.  Since Gln is a by-product of glucose metabolism these results suggest that 
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the reduction in Gln may be the result of reduced glucose metabolism 41.  Another 

possible explanation for the observed change is that concussion and repetitive sub-

concussive hits over the course of the season could alter oxidative metabolism in the 

brain, causing a shift in the glutamate-glutamine cycle, a major pathway for Gln in the 

brain.  Specifically, the release of Glu and increased oxidation of Glu through the 

tricarboxylic acid cycle post-concussion 43 may decrease the amount of Glu that is 

converted to Gln, causing an overall decrease in Gln.  

2.4.3 Non-concussed brain changes 

In the non-concussed group, we also found a significant increase in FA and decrease in 

RD in the off season.  These results suggest alterations in the white matter microstructure 

within the MRS ROI.  Similar changes have been associated with neuroinflammation 44, 

as well as re-myelination 45. However, neuroinflammation seems an unlikely explanation 

since no significant increase in Myo, a marker of increased glial cell activity, was 

observed.   

Past studies have suggested that similar changes in DTI metrics may be the result 

of sub-concussive hits or undiagnosed concussions 46,47. Additionally, a study by 

McAllister and Colleagues (2013)48 that measured the effect of head impacts on 

diffusivity measures in athletes in contact versus non-contact sports found significant 

group differences in MD and FA, as well as a relationship between the magnitude and 

timing of head impacts and changes in white matter diffusion measures in various brain 

regions. Another study by Chamard and Colleagues (2012)26 examined female varsity 

hockey players and found a decrease in NAA/Cr in the corpus callosum in non-concussed 

players and also attributed these changes to sub-concussive impacts. Furthermore, there 

have been several studies that have examined non-contact athletes, and found no changes 

in 1H MRS or brain structure over time in athletes 23,49. To our knowledge, no other study 

has examined associations between DTI and 1H MRS measures within the same tissue 

region.  Although small, significant correlations were found between the change in 

Gln/Cr and the change in FA and RD, as well as between the change in Gln and change 

in FA and RD.  Additionally, the same changes in Gln, FA and RD were observed in the 

sub-set of athletes that played two consecutive seasons, further suggesting a relationship 
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between these metrics.  These correlations suggest a potential relationship between 

alterations in metabolite levels and white matter integrity.  Remyelination during the off-

season is consistent with the observations of decreased Gln, increased FA, and decreased 

RD.  The metabolic demand in oligodendrocytes increases during myelin synthesis 50. 

Remyelination in the off-season could produce a shift in oxidative metabolism to favor 

lipid formation 50, leading to an overall decrease in the Gln substrate.  Therefore, 

different mechanisms may be responsible for the decrease in Gln observed in the non-

concussed and concussed groups.  In the concussed group, the reductions in Gln with no 

change in DTI metrics suggests altered oxidative metabolism as described above.  

Whereas in the non-concussed athletes, the association between the change in Gln/Cr and 

the change in FA and RD over the course of a season are consistent with changes in 

tissue microstructure suggesting a remyelinating recovery process. 

2.4.4 Clinical correlations 

Consistent with previous studies 51 concussed players reported significantly more 

symptoms 24-72 hours post-concussion compared to in-season.  At 3 months post-

concussion these symptoms had recovered while the reduction in Gln and Gln/Cr 

persisted. This persistent reduction in Gln suggests that metabolic tissue changes due to 

concussion extend well beyond clinical recovery. It is possible that the recovery of Gln 

levels was delayed because the athletes continued to participate in contact sports. 

Examination of Gln levels in non-concussed athletes that played multiple seasons 

demonstrated a partial recovery between seasons suggesting Gln levels can recover.  We 

found no association between Gln or Gln/Cr levels and clinical measures consistent with 

Mayer and colleagues (2015)52 who found no association longitudinally between 

decreased NAA, and self-reported symptoms in MMA Fighters. Additionally, Sasaki and 

colleagues (2014)44, who reported similar DTI findings to this study in hockey players, 

also reported no association with ImPACT or SCAT2 scores. However other studies have 

reported associations 22,46 between MRI and clinical data.  It should be noted that in 

contrast to the concussed group, the non-concussed group had increased verbal memory, 

visual motor speed, and concentration scores in the presence of MRI changes.  Although 
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the MRI changes correlated with each other, these metrics also did not correlate with the 

clinical changes.  

2.4.5 Limitations and strengths 

There are several limitations to the current study.  For one, the placement of the voxel 

was performed manually at the time of the scan, limiting the reproducibility of voxel 

placement within subjects.  However, the tissue partial volume did not differ, and the 

voxel was well within the prefrontal region.  The effect of small shifts in voxel position is 

likely minimal since the affected white matter likely extends beyond the voxel. Although 

the athletes studied are at a greater risk of head injury, the number and magnitude of 

impacts throughout the season were not directly monitored, making it difficult to relate 

the observed changes directly to impact severity.  Recording impacts in future studies 

will facilitate comparisons between studies.  Additionally, in the non-concussed group 

the time between the off-season scan and the last game played was on average 97 (± 25) 

days.  However, weekly contact practices continued up to, and past, the off-season scan 

(Table 2.1), making it difficult to attribute changes to neuroinflammation or a recovery 

mechanism.  There are also many WM tracts that overlap in the prefrontal region of the 

brain, limiting the interpretation of the DTI changes found within the ROI.  Additionally, 

athlete compliance for attending concussion follow up scans was moderate, making it 

difficult to achieve high power in the concussed group. Due to the resultant low sample 

size, the reduced glutamine must be considered exploratory at this point. However, 

further research efforts directed at validating reduced glutamine post-concussion is 

warranted. Greater conspicuity may be achieved with a larger sample size, and use of 

spectral editing or ultra high-field MRI 53. There was also no explicit control group in this 

study.  A future study is now needed with the same experimental design to investigate 

what changes may be found in female athletes from a non-contact sport or non-athletes.  

Such a study will help elucidate the mechanism behind the unexpected metabolite and 

microstructure changes observed in the non-concussed group.  Additionally, future work 

should include a similar study design with male rugby athletes to better elude to how 

differences in sex may affect outcome from concussion. 
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There are many strengths to this current study.  First, we chose to study the 

prefrontal white matter bordering the cortex because past studies have shown this region 

to be susceptible to changes following concussion 22,23. In addition, Bayly and colleagues 

(2005)1 found that regions bordering grey and white matter experience the greatest shear 

forces during mild acceleration due to differences in tissue stiffness.  Pre-concussion 

scans were also used.  Repeated measures additionally detected the small change in 

Gln/Cr at 24-72 hours post-concussion in the concussed group.  Since these metrics can 

vary greatly from subject to subject, an individual’s pre-concussion measures can help 

identify small changes regardless of the inter-subject variability.  Without the concussed 

athletes in-season data for comparison, the changes in the concussed group would not 

have been observed when compared against the non-concussed athletes in-season levels.  

For a biomarker to be clinically relevant for making the decision to return an athlete to 

play it must be sensitive to the structural, metabolic, or functional changes in the brain 

due to a concussion independent of symptoms.  This highlights the importance of having 

pre-concussion measures before the start of a sports season, for self-comparison, rather 

than simply a comparison to an age matched control group. 

2.5 Conclusion 
To conclude, reduced Gln and Gln/Cr were found in the prefrontal region of the brain 

following concussion and in the off-season in non-concussed female varsity athletes.  

Within the same tissue region, increases in FA and decreases in RD were found in the 

non-concussed athletes.  The decrease in Gln and Gln/Cr may suggest a reduction in 

oxidative metabolism, and the changes in FA and RD suggest neuroinflammation or re-

myelination, both of which have been previously reported in concussion.  The absence of 

any correlations with the clinical data in the presence of changes in metabolite levels and 

DTI measures demonstrates the insensitivity of current symptomatic diagnosis and 

emphasizes the need for alternative methods.  
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2.7 Supplemental Material 
 

 

Supplementary Figure 2.1: From left to right; sagittal, coronal, and axial views of the 

mask used in MNI space at x = 36, y = 68 and z = 51 to extract FA, MD, RD, and AD 

values 

 

 

 

 

 

	
 
Supplementary Figure 1.  From left to right; sagittal, coronal, and axial views of the mask used 
in MNI space at x = 36, y = 68 and z = 51 to extract FA, MD, RD, and AD values. 
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Supplementary Figure 2.2: (A) N-acetyl aspartate (p = 0.47) and (B) glutamine (p = 

0.11), (C) fractional anisotropy (p = 0.07), and (D) radial diffusivity (p = 0.18) of Never 

concussed and Ever concussed players at the in-season time point. Standard error of the 

mean (SEM) is represented by vertical bars. 
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Supplementary Figure 2.
(A) N-acetyl aspartate (P=0.47) and (B) glutamine (P=0.11), (C) fractional anisotropy (P=0.07), and (D) 
radial diffusivity (P=0.18) of Never concussed and Ever concussed players at the in-season time point. 
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Supplementary Figure 2.3: Bar graphs showing the mean SCAT3 Symptom Score and 

SCAT3 Symptom Severity Score in the concussed group. Standard error of the mean 

(SEM) is represented by vertical bars. The mean SCAT3 Symptom Score (A) 

significantly increased (F = 17.6, p < 0.0001) post-concussion (p < 0.0001), then 

recovered from post-concussion by 3 (p < 0.0001) and 6 (p = 0.002) months. The mean 

SCAT3 Symptom Severity Score (B) significantly increased (F = 9.7, p = 0.0001) post-

concussion (p = 0.0008), then recovered from post-concussion by 3 (p = 0.0007) and 6 (p 

= 0.02) months.  
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Supplementary Figure 3.
Bar graphs showing the mean SCAT3 Symptom Score and SCAT3 Symptom Severity Score in the concussed 
group.  Standard error of the mean (SEM) is represented by vertical bars.  The mean SCAT3 Symptom Score 
(A) significantly increased (F=17.6, P<0.0001) post-concussion (P<0.0001), then recovered from post-
concussion by 3 (P<0.0001) and 6 (P=0.002) months.  The mean SCAT3 Symptom Severity Score (B) 
significantly increased (F=9.7, P=0.0001) post-concussion (P=0.0008), then recovered from post-concussion 
by 3 (P=0.0007) and 6 (P=0.02) months.   
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Supplementary Figure 2.4: Line graphs showing the mean concentration of Glutamine 

(Gln) and Glutamine/Creatine (Gln/Cr), and Fractional Anisotropy (FA) and Radial 

Diffusivity (RD) in the same non-concussed (N = 7) athletes playing two consecutive 

seasons (Except Gln/Cr, N = 8). Standard error of the mean (SEM) is represented by 

vertical bars. Mean Gln levels (A) decreased (F = 4.7, p = 0.047) by 60% from the first 

in-season to the second off-season (p = 0.03), and by 54% from the first off-season to the 

second off-season (p = 0.02). Mean Gln/Cr levels (B) decreased (F = 4.8, p = 0.04) by 

54% from the first in-season to the second off-season (p = 0.02), and from the first off-

season to the second off-season (p = 0.02). The mean FA value (C) changed over time (F 

= 6.4, p = 0.02), with an increase between the first in-season and second off-season (p = 

0.006), and the mean RD value (D) changed over time (F=5.1, P=0.04), with a decrease 

between the first in-season and second off-season (P=0.015).
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Supplementary Figure 4.
Line graphs showing the mean concentration of Glutamine (Gln) and Glutamine/Creatine (Gln/Cr), and Fractional 
Anisotropy (FA) and Radial Diffusivity (RD) in the same non-concussed (N=7) athletes playing two consecutive 
seasons (Except Gln/Cr, N=8).  Standard error of the mean (SEM) is represented by vertical bars.  Mean Gln levels (A) 
decreased (F=4.7, P=0.047) by 60% from the first in season to the second off season (P=0.03), and by 54% from the 
first off season to the second off season (P=0.02).  Mean Gln/Cr levels (B) decreased (F=4.8, P=0.04) by 54% from the 
first in season to the second off season (P=0.02), and from the first off season to the second off season (P=0.02). The 
mean FA value (C) changed over time (F=6.4, P=0.02), with an increase between the first in season and second off 
season (P=0.006), and the mean RD value (D) changed over time (F=5.1, P=0.04), with a decrease between the first in 
season and second off season (P=0.015).
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 Supplementary Table 2.1: Rugby Timeline of Concussed Athletes Supplementary Table 1. Rugby Timeline of Concussed Athletes

Athlete 1 Athlete 2 Athlete 3 Athlete 4 Athlete 5 Athlete 6 Athlete 7 Athlete 8 Athlete 9 Athlete 10 Athlete 11 Athlete 12 Athlete 13 Athlete 14 Athlete 15
August

Season 1 September In Season Concussion In Season In Season In Season In Season
October Concussion
November
December 3 Month
January 3 Month
February
March Off Season Off Season Off Season
April
May Off Season
June 6 Month
July Concussion Concussion
August In Season Concussion

Season 2 September Concussion In Season In Season In Season
October 3 Month Concussion Concussion Concussion Concussion
November 3 Month
December
January 3 Month 3 Month 3 Month 3 Month 3 Month
February 6 Month 6 Month
March
April 6 Month 6 Month 6 Month 6 Month 6 Month
May
June
July
August In Season In Season In Season In Season

Season 3 September Concussion
October Concussion
November Concussion
December 3 Month
January 3 Month Concussion Concussion
February
March
April 6 Month 3 Month
May 3 Month
June
July
August Concussion

Season 4 September 6 Month Concussion Concussion
October Concussion Concussion
November
December 3 Month
January 3 Month 3 Month
February
March 6 Month
April 6 Month

In Season, Off Season, Concussion, 3 Month, 6 Month ; Data used in analysis
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Chapter 3  

3 Brain Metabolite Levels in Female Rugby Athletes differ 
from Non-Contact Athletes and Sedentary Women 

*Submitted July 18th, 2019 to the Journal of Neurotrauma 

Amy Schranz, Gregory A. Dekaban, Lisa Fischer, Kevin Blackney, Christy Barreira, 

Timothy J. Doherty, Douglas D. Fraser, Arthur Brown, Jeff Holmes, Ravi S. Menon, and 

Robert Bartha 

The objective of this study was to investigate in vivo brain metabolite level 

differences between female varsity athletes engaged in contact and non-contact sports as 

well as sedentary women. These groups were chosen to examine the effects of long-term 

exercise and cumulative sub-concussive impacts on brain metabolites measured by proton 

magnetic resonance spectroscopy (MRS).   

 Single voxel MRS was acquired from the prefrontal white matter at the beginning 

(In-Season) and end (Off-Season) of season in contact (N=54) and non-contact (N=23) 

athletes. Sedentary women (N=23) were scanned once at a time equivalent to the Off-

Season time point. 

 Metabolite levels in non-contact athletes did not change over a season of play, or 

differ from age matched sedentary women except that non-contact athletes had a slightly 

lower myo-inositol level. The non-contact athletes had different levels of myo-inositol, 

glutamate, and glutamine compared to levels previously found in contact athletes. 

Importantly, glutamine levels were significantly higher in contact athletes compared to 

the sedentary (p < 0.001) and non-contact (p < 0.0001) groups.  Taken together, the 

measures from non-contact athletes and sedentary women do not demonstrate long-term 

exercise-induced changes in MRS measured metabolite levels. The differences in myo-

inositol levels may reflect altered glial profiles in athletes.  Altered glutamine levels as 

well as glutamate and myo-inositol between non-contact and contact athletes suggests 

that repetitive sub concussive impacts due to physical contact in high impact sports can 
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alter brain metabolite levels.  This result underscores the need to use proper control 

groups in studies of concussion in high-impact sports. 

3.1 Introduction 
Athletes participating in contact sports are at a high risk of sustaining not just a single 

concussion, but multiple concussions, which can lead to structural and metabolic changes 

in the brain.1 There is also growing concern that such injuries put athletes at an increased 

risk of neurodegeneration later in life.2 These concerns may not be relevant in cases with 

rapid symptom resolution (e.g. 7-10 days), but may be of greater importance in the subset 

of athletes that develop post-concussion syndrome.2 Relevant to this point, studies have 

shown that structural and functional brain changes persist beyond the time of symptom 

resolution.3,4 However, the lack of correlation between existing clinical test scores and 

quantitative brain changes underlies the complexity of interpreting imaging findings 

related to sport concussion. Adding to this complexity are questions regarding the role of 

sex differences, the influence of repeated sub-concussive impacts on brain function and 

metabolism, and the use of proper control groups when evaluating the effects of 

concussion.   

 Although many different non-invasive imaging modalities have been used to 

study changes in the brain following concussion, magnetic resonance spectroscopy 

(MRS) provides neurochemical information that can be directly related to the known 

neurometabolic cascade.5 MRS can be used to quantify specific metabolites relevant to 

concussion injury in a defined brain region of interest, including N-acetyl aspartate 

(NAA; neuronal integrity), creatine (Cr; energy metabolism), choline (Cho; phospholipid 

turnover and myelin), glutamate (Glu; neurotransmission and metabolism), glutamine 

(Gln; involved in neurotransmission and metabolism), and myo-inositol (Myo; glial 

marker).6,7 

 Numerous metabolite level changes have been reported in athletes following 

concussion in several different brain regions, primarily examining males.8,9,18–20,10–17 

Changes have been found, including reduced NAA in ex-boxers,8 reduced NAA/Cr and 

Glu/Cr in concussed athletes (e.g. football players) compared to non-concussed 9,10 as 
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well as elevated Myo/Cr,10 exacerbated Glu declines in former concussed athletes,11 and 

changes in Myo and Cho in hockey and football players.12 There have also been several 

studies that examined male and female athletes together.21,22,31,23–30 Among these studies, 

reported changes included mostly reductions in NAA/Cr and NAA/Cho in the white 

matter of the frontal lobes,21–23 elevated GABA/Cr in the frontal lobes of males and 

females,31 as well as reduced NAA/Cr and NAA/Cho in the genu of the corpus 

callosum.26 However, relatively few studies on female athletes have been reported.4,32,33 

In these studies, reduced Myo/Cr 32 and elevated Glx/Cr 33 (Glx = glutamate + glutamine) 

were found. The previous study by our group in female varsity rugby players,4 found 

reduced glutamine following concussion compared to non-concussed rugby players, and 

decreased glutamine in the non-concussed players at the end of their season. However, 

this study did not include a group to control for an exercise effect across seasons of play. 

 Several previous studies measured metabolite changes in athletes during their 

athletic season, to investigate the effect of cumulative sub-concussive impacts.13,14,16,25,28–

30,34 In contact athletes, elevated Myo25 and reduced Glx14,25,34 have been reported, as 

well as reduced Cho, and Cr.14,34 Moreover, elevated Glx/Cr,28 and reduced NAA16,29 has 

been observed after a season of play. 

 The interpretation of changes detected in previous studies depends to some degree 

on the control groups that are included. Many studies compare to an age-matched control 

group that are not athletes21–23,27,35 or do not specify if they are athletes that participated 

in contact or non-contact sports,9,10,26,31–33 leaving sub-concussive impacts as a potential 

confound in their interpretations.  Studies have also demonstrated that the brains of 

athletes differ from sedentary controls, likely due to neuroanatomical adaptations and 

plastic changes in response to long-term training.36,37 For example, a global increase in 

brain nonoxidative metabolism of carbohydrate substrates, potentially leading to changes 

in proton MRS findings, has been reported.38 Specifically, studies have found increased 

lactate and Glx, as well as acute modulation of glutamate and GABA after vigorous 

exercise.38,39 However, these studies investigated the acute effects of physical activity. 

How these changes translate into long term metabolite changes, such as over the course 

of a sports season, is not known. Perhaps closest to this paradigm is a study by Gonzales 
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and colleagues40 who examined the effect of endurance training and found elevated 

NAA/Cr and Cho/Cr in the endurance trained group compared to normal healthy 

controls. However, this study included only athletes >40 years of age and did not report 

the duration of endurance training. Therefore, the effects of long-term exercise on MRS 

measured metabolites remains to be determined.  

 The main objective of the current study was to determine whether metabolite 

levels differed in female varsity rugby players (contact athletes) compared to female 

varsity rowers and swimmers (non-contact athletes) as well as sedentary females.  The 

comparison of these groups allowed us to examine the effect of exercise on metabolite 

levels, as well as the effect of repetitive sub-concussive hits over the course of a season. 

Based on the results of previous studies, we hypothesized that there would be differences 

in NAA and Cho40 between sedentary individuals and varsity athletes, but no differences 

in metabolite levels between athletes involved in non-contact sports (rowing and 

swimming), and contact sports (rugby). 

3.2 Material and Methods 

3.2.1 Participants 

Sedentary and athletic females were recruited from the same university across three 

varsity sports teams, and studied at the same time during the beginning (In-Season) and 

end of season (Off-Season) to minimize sample heterogeneity. This study was approved 

by the University of Western Ontario’s Health Sciences Research Ethics Board. Informed 

consent was obtained from each participant prior to the start of data collection. All 

participants in this study were university level athletes or students (age 18-30 years old). 

Athletes and sedentary recruits were required to be concussion free for at least 6 months 

to be included in the study. Athletes were recruited from the women’s varsity rugby team 

over the course of five seasons, and women’s varsity rowing and swim teams over a 

single season (for more details on these participants see Chapter 2 and Manning et al., 

2019).4,41  

 Briefly, sports seasons began at the end of August and early September (including 

tryouts). Rugby players had weekly contact practices in addition to weekly games until 
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November, followed by non-contact training until off-season data collection. Rowers 

trained six days a week with regular regatta competitions until November, and swimmers 

trained six days a week with monthly swim meets until March. In-Season data were 

acquired from the end of August to early September for all athletes, and Off-Season data 

were acquired from the end of January through February for rugby players and rowers, 

and in March for swimmers. Sedentary participants were scanned at a single time point 

from the end of January to end of March, to match with the Off-Season timepoint in 

athletes.  

3.2.2 Clinical Measures 

The SCAT3 (Sport Concussion Assessment Tool) was administered by a sports medicine 

physician at the In- and Off-Season timepoints for all athletes, and results are reported 

elsewhere.41 

 For the sedentary group, participants were recruited using the IPAQ (International 

Physical Activity Questionnaire, October 2002), a self-administered questionnaire that 

incorporates (1) job-related physical activity, (2) transportation physical activity, (3) 

housework, house maintenance, and caring for family, and (4) recreation, sport, and 

leisure-time physical activity, where each section is comprised of walking, moderate, and 

vigorous activity levels. Participants were asked to fill out the questionnaire based on 

their average routine over the course of the school semester (September 2018-January 

2019), to match with the duration of the varsity sports seasons. This required participants 

to record their average time spent per activity outlined in each of the four categories. The 

raw time spent per activity was then weighted by its energy requirements defined in 

METs (METabolic equivalent; ratio of work metabolic rate to a standard resting 

metabolic rate) to yield a score of MET-minutes. A MET-minute is computed by 

multiplying the MET score of an activity by the minutes performed. The MET score used 

for walking, moderate, and vigorous activities were 3.3, 4.0, and 8.0 respectively.42 

Additionally, for transportation by cycling a MET score of 6.0 was used.42 A threshold of 

300043 MET minutes were used as the inclusion criteria for the sedentary group (A 

typical week of training for contact athletes would yield a MET score of approximately 

5000). 



 

97 

 

3.2.3 Magnetic resonance imaging acquisition 

Magnetic resonance spectroscopy data acquisition was identical to that reported 

previously.4 Briefly, a Siemens 3T Magnetom Tim Trio and Prisma Fit MRI Scanners 

(Erlangen, Germany), both using a 32-channel head coil, were used for data acquisition. 

A rapid T2-weighted FLAIR image was acquired to guide the placement of a 6 cm3 (2 x 2 

x 1.5 cm) voxel in the prefrontal WM region of the brain (Fig. 1A) for the acquisition of 

the spectroscopy data (slices = 50, TR/TE = 15000/139 ms, slice thickness = 3 mm, turbo 

factor = 38, matrix size 256 x 256, FOV = 256 mm, inversion time = 2850 ms). Water 

suppressed (192 acquisitions) and unsuppressed (8 acquisitions) spectroscopy data were 

acquired using the PRESS (point resolved spectroscopy) pulse sequence (TR/TE = 

2000/135 ms, dwell time = 833 !s, number of points = 1024). A long echo-time was 

chosen in the current study to reduce the metabolite measurement error associated with 

the macromolecule baseline at shorter echo times.44 Anatomical images for the estimation 

of voxel gray matter (GM), white matter (WM), and CSF volume were acquired using a 

sagittal T1-weighted magnetization-prepared rapid acquisition gradient echo sequence 

(TR/TE = 2300/2.94 ms, flip angle = 98, matrix size 256 x 256, FOV = 256 x 240 mm, 

number of slices = 160, slice thickness = 1.22 mm).  

3.2.4 Magnetic resonance spectroscopy  

Spectra were processed and analyzed as previously described,4 with absolute metabolite 

levels quantified using the approach described in Gasparovic and colleagues.45 Spectra 

with a signal to noise ratio (SNR) <50 or water line width >12 Hz were not included in 

the analysis. SNR was measured as the NAA peak height divided by the standard 

deviation of the noise. Briefly, spectra were lineshape corrected by combined QUALITY 

(Quantification improvement by converting lineshapes to the lorentzian type) 

deconvolution and eddy current correction46 and fitted in the time domain using a 

Levenberg–Marquardt minimization routine47 using prior knowledge of metabolite line 

shapes (Fig. 1B). Analysis software created in our laboratory in the IDL (version 5.4 

Research Systems Inc., Boulder, CO) programming language was used to model the 

spectra using prior knowledge acquired from in vitro spectra obtained from aqueous 

solutions of metabolites at pH 7.0 prior to the study.47 Absolute concentrations are 
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reported using unsuppressed water from the MRS voxel as an internal standard as 

previously described.47,48 This incorporates corrections to account for tissue partial 

volume (GM, WM, CSF) using the segmented T1-weighted anatomical image, as well as 

corrections for signal loss due to T1 and T2 relaxation. The relaxation time constants used 

in this study are provided in Table 1. To eliminate the uncertainty associated with partial 

volume correction, and to compare to the literature, metabolite ratios relative to creatine 

(X/Cr) were also calculated.  

3.2.5 Statistical Analysis 

 All statistical analyses were performed using GraphPad Prism Version 7.0 for 

Mac OS X (GraphPad Software, San Diego, CA). For each metabolite, the ROUT 

method was performed to remove outliers and the D’Agostino & Pearson normality test 

was used to test for normality. A two-way ANOVA, followed by two-tailed Sidak’s 

multiple comparisons tests, was used to test for differences between rowers and 

swimmers at both measurement times, and to test for differences between contact (rugby) 

and non-contact (rowers and swimmers) athletes. A one-way ANOVA, followed by two-

tailed Tukey’s multiple comparisons test, was used to test for differences across contact, 

non-contact, and sedentary groups at the end of season. A p-value of 0.05 was used for all 

statistical tests.  

Table 3.1 3 T Relaxation Constants used in Absolute Quantification* 

 

Table 1: 3 T Relaxation Constants used in Absolute Quantification*

Metabolite
T1(s) T2(ms) T1(s) T2(ms) T1(s) T2(ms)

N -acetyl aspartate 3 1.34 318 1.35 343 - -
Choline 9 1.21 246 1.26 209 - -
Creatine 3 1.34 158 1.36 159 - -
Glutamine 5 1.17 134 0.98 134 - -
Glutamate 5 1.27 167 1.17 143 - -
Myo -inositol 6 1.17 221 0.98 195 - -
Glucose 6 1.17 117 0.98 122 - -
Water 2 1.46 95 0.94 75 4.3 503

*Values used were aeraged from values reported in the literature:
Ethofer et al. (2003) MRM Stanisz et al. (2005) MRM
Ganji et al. (2012) NMR Biomed Traber et al. (2004) J MR Imaging
Harris et al. (2015) J Magn Reson. Imaging Wansapura et al. (1999) J Magn Reson. Imaging
Lu et al. (2005) J Magn Reson. Imaging Wyss et al. (2018) MRM
Mlynarik et al. (2001) NMR Biomed Zhang e al. (2016) MRM
Piechnik et al. (2009) MRM

Grey Matter White Matter Cerebrospinal Fluid
# of Protons
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3.3 Results 

3.3.1 Participants, Clinical Data, and Concussion History 

Twenty-five participants were recruited to the sedentary group. Two participants were 

eliminated because one suffered a head injury prior to their scan, and another had a total 

MET-minutes >3000, leaving a total of N = 23 participants in the sedentary group. On 

average, participants had mean (± standard deviation) MET-minutes of 1252 ±	952. Of 

the 23 included participants, six reported having a previous concussion, 9.3 ±5.7 years 

prior to the start of the study. 

 A total of 31 athletes were recruited into the non-contact group from the Western 

varsity rowing and swim teams, with a total of 23 completing both scans at the In- and 

Off-Season time points. Of these 23 athletes, three reported having a previous concussion 

prior to the beginning of the study. For details on the 54 rugby athletes included in 

comparisons and associated concussion histories, please see Schranz et al., 2018.4 

Additionally, the results of the SCAT3 scores for the contact and non-contact teams are 

reported in Manning et al., 201941 and Schranz et al., 2018.4 

3.3.2 Quality assurance measures 

All spectroscopy quality assurance measures calculated for the sedentary and non-contact 

groups did not differ significantly from the measures previously reported in the contact 

athletes.4 The spectroscopy voxel was placed in the prefrontal region with mean (± 

standard deviation) tissue content in the sedentary group: GM 23±6%, WM 73±8%, CSF 

3.5±2%, and non-contact group: GM 23±7%, WM 74±8%, CSF 2.7±2%. For all 

spectra from the sedentary and non-contact groups, the average full-width at half 

maximum of the water peak was 6.2 Hz and the average SNR was 92. All spectra and 

residuals were visually inspected prior to statistical analyses for artefacts and no spectra 

were eliminated from the analysis due to artefacts or insufficient quality (SNR <50 or 

water linewidth >12 Hz). Cramer-Rao Lower Bounds (CRLB) were calculated for all 

metabolites but not used to eliminate spectra to avoid bias selection.49 For all spectra 

(n=184), the average CRLBs were 0.62% for N-acetyl aspartate, 1.5% for choline, 1.3% 

for creatine, 56% for glutamine, 4.2% for glutamate, and 6.9% for myo-inositol.  
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3.3.3 Magnetic Resonance Spectroscopy: Absolute Metabolite 
Concentrations 

3.3.3.1 Non-contact Compared to Contact Athletes over a Season 
of Play 

No significant metabolite level differences were found between the rowers and swimmers 

at either time point, so these athletes were combined into a single non-contact athlete 

group. No metabolite changes were detected over a season of play in this non-contact 

group (Fig. 2). There were no significant differences between contact and non-contact 

groups in levels of NAA (Fig. 2A; Two-way ANOVA, F(1,75) = 3.63, p = 0.06), choline 

(Two-way ANOVA, F(1,75) = 0.99, p = 0.32, data not shown) or creatine (Two-way 

ANOVA, F(1,74) = 1.9, p = 0.17, data not shown).  

 Mean glutamate concentrations were found to be significantly different between 

contact and non-contact groups (Fig. 2B; Two-way ANOVA, F(1,73) = 11.67, p = 0.001).  

Glutamate was lower in the contact group at the In-Season (Fig. 2B; Sidak’s, t146 = 3.36, 

p = 0.002) and Off-Season (Fig. 2B; Sidak’s, t146 = 2.53 p = 0.025) time points, although 

glutamate levels did not change between time points within either group. Additionally, 

mean glutamine concentrations were also found to be significantly different between 

contact and non-contact groups (Fig. 2C; Two-way ANOVA, F(1,75) = 33.06, p < 0.0001), 

with higher concentrations in the contact group at the In- Season (Fig. 2C; Sidak’s, t150 = 

5.6, p < 0.0001) and Off-Season (Fig. 2C; Sidak’s, t150 = 4.1, p = 0.0001) time points. 

 Mean myo-inositol concentrations were found to be significantly different 

between contact and non-contact groups (Fig. 2D; Two-way ANOVA, F(1,69) = 36.78, p < 

0.0001), with lower concentrations in the contact group at the In-Season (Fig. 2D; 

Sidak’s, t138 = 6.14, p < 0.0001) and Off-Season (Fig. 2D; Sidak’s, t138 = 3.36, p = 0.002) 

time points. Additionally, a significant interaction was found between groups (Fig. 3, 

Two-way ANOVA, F(1,69) = 5.01, p = 0.028), where non-contact Myo levels tended to 

decrease over a season, while contact Myo levels tended to increase. 
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Figure 3.1: Measured concentration for (A)NAA, (B) glutamate, (C) glutamine, and (D) 

myo-inositol in the non-contact and contact group. Error bars represent the standard error of 

the mean. # represents the drop in glutamine levels previously reported in Chapter 2.  

(p<0.0001****; p<0.001***; p<0.01**; p<0.05*) 
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Figure 2: Measured concentration for (A)NAA, (B) glutamate, (C) 
glutamine, and (D) myo-inositol in the non-contact and contact group. Error 
bars represent the standard error of the mean. # represents the drop in 
glutamine levels previously reported [Schranz et al., 2018].  (p<0.0001****; 
p<0.001***;p<0.01**; p<0.05*)
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Figure 3.2: Change in myo-inositol over a season of play in non-contact and contact female 

athletes (p<0.05*). Error bars represent standard error of the mean 

 

3.3.3.2 Off-Season Athletes compared to a Sedentary Group 

A one-way ANOVA was used to compare the contact Off-Season, non-contact Off-

Season, and Sedentary females. The ANOVA revealed no significant differences among 

the three groups in NAA (Fig. 4A; F(2,96) = 2.91, p = 0.059) or choline (Fig. 4B; F(2,96) = 

1.43, p = 0.24). However, significant differences were found in glutamate (Fig. 4C; 

ANOVA, F(2,94) = 9.39, p = 0.0002), glutamine (Fig. 4D; ANOVA, F(2,96) = 15.5, p < 

0.0001), creatine (Fig. 4E; ANOVA, F(2,95) = 6.92, p = 0.0016), and myo-inositol (Fig. 4F; 

ANOVA, F(2,90) = 21.02, p < 0.0001) levels.  

 The contact group had significantly lower glutamate levels at the Off-Season 

compared to non-contact (Tukey’s, q94 = 3.82, p = 0.022) and sedentary groups (Tukey’s, 

q94 = 5.72, p = 0.0003), while glutamine levels were significantly elevated in the contact 

group compared to non-contact (Tukey’s, q96 = 6.68, p < 0.0001) and sedentary groups 

(Tukey’s, q96 = 5.95, p = 0.0002).  
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Figure 3: Change in myo-inositol over a season 
of play in non-contact and contact female athletes 
(p<0.05*). Error bars represent standard error of 
the mean
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 Creatine levels were significantly lower in the contact group compared to the 

sedentary group only (Tukey’s, q95 = 5.23, p = 0.001), while myo-inositol levels were 

significantly lower in the contact group compared to the non-contact (Tukey’s, q90 = 4.75, 

p = 0.0033) and sedentary groups (Tukey’s, q90 = 8.95, p < 0.0001). No differences were 

found between the sedentary group and non-contact group, except for lower myo-inositol 

levels (Fig. 4F; Tukey’s, q90 = 3.69, p = 0.028) in the contact group. 

 
Figure 3.3: Measured concentration for (A) NAA, (B) choline, (C) glutamate, (D) glutamine, 

(E) creatine and (F) myo-inositol across groups. Error bars represent the standard error of the 

mean (p<0.0001****; p<0.001***; p<0.01**; p<0.05*) 
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Figure 4: Measured concentration for (A) NAA, (B) choline, (C) glutamate, (D) 
glutamine, (E) creatine and (F) myo-inositol across groups. Error bars represent the 
standard error of the mean (p<0.0001****; p<0.001***;p<0.01**; p<0.05*)
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3.3.3.3 Glutamine levels post-concussion: Group Comparisons  

Due to the large differences in glutamine levels observed between contact and non-

contact athletes in the current study, we chose to compare glutamine levels in the subset 

of contact athletes that obtained a concussion. Specifically, N = 13 contact athletes 

obtained a concussion, and seven of them had baseline scans (e.g. an In-Season scan prior 

to their concussion). Glutamine levels from 24-72 hours after concussion in our contact 

group and baseline levels (previously reported in Schranz et al., 20184 as significantly 

reduced glutamine levels) were compared to the non-contact and sedentary groups (Fig. 

5). A one-way ANOVA revealed significant differences across the 4 groups (F(3,61) = 

15.22, p < 0.0001). First, concussed contact group glutamine baselines measures were 

significantly higher than non-contact (Tukey’s, q61 = 8.87, p < 0.0001) and sedentary 

groups (Tukey’s, q61 = 8.42, p < 0.0001). Second, 24-72 hours post-concussion glutamine 

levels were significantly higher than non-contact levels (Tukey’s, q61 = 3.9, p = 0.037), 

but significantly lower than contact baseline measures (Tukey’s, q61 = 5.28, p = 0.0023, 

as previously reported). No significant differences were found between sedentary and 

post-concussion glutamine levels (Tukey’s, q61 = 3.36, p = 0.092). 
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Figure 3.4: Measured glutamine concentration across groups. Error bars represent the 

standard error of the mean. # represents the decrease in glutamine levels previously reported 

between baseline and post-concussion in rugby athletes in Chapter 2. (p<0.0001****; 

p<0.05*) 

 

3.3.4 Magnetic Resonance Spectroscopy: Amplitude Ratios 

3.3.4.1 Non-contact versus Contact Athletes over a Season of Play 

No metabolite ratio changes were found over a season of play in the non-contact group 

(Supplementary Fig. 1). A two-way ANOVA found no significant differences between 

contact and non-contact groups in NAA/Cr (Supplementary Fig. 1A; F(1,74) = 0.059, p = 

0.8), while mean Cho/Cr was significantly different between athlete groups 

(Supplementary Fig. 1B; F(1,73) = 10.05, p = 0.0022), with significantly higher Cho/Cr in 

the contact group at the In-Season time point (Sidak’s, t146 = 3.38, p = 0.0019). Mean 

Myo/Cr were found to be significantly different between contact and non-contact groups 

(Supplementary Fig. 1C; F(1,71) = 14.19, p = 0.0003), with lower concentrations in the 

contact group at the In-Season (Sidak’s, t142 = 3.82, p = 0.0004). Mean Glu/Cr was found 

to be significantly different between contact and non-contact groups (Supplementary Fig. 
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Figure 5: Measured glutamine concentration across groups. Error 
bars represent the standard error of the mean. # represents the 
drop in glutamine levels previously reported between baseline and 
post-concussion in rugby athletes [Schranz et al., 2018]. 
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2D; F(1,74) = 10.7, p = 0.0016), with a lower ratio in the contact group at the In-Season 

(Sidak’s, t148 = 3.43, p =  0.0016). Additionally, mean Gln/Cr were found to be 

significantly different between contact and non-contact groups (Supplementary Fig. 2E; 

F(1,74) = 41.87, p < 0.0001), with a higher ratio in the contact group at the In-Season 

(Sidak’s, t148 = 6.18, p < 0.0001) and Off-Season (Sidak’s, t148 = 4.45, p < 0.0001).  

3.3.4.2 Off-Season changes compared to a Sedentary Group 

A one-way ANOVA revealed no significant differences among the three groups in 

NAA/Cr (Supplementary Fig. 2A; F(2, 95) = 2.82, p = 0.065), Cho/Cr (Supplementary Fig. 

2B; F(2, 95) = 2.94, p = 0.058), or Glu/Cr (Supplementary Fig. 2D; F(2, 95) = 2.099, p = 

0.13). However, significant differences were found among Myo/Cr (Supplementary Fig. 

2C; F(2, 94) = 10.29, p < 0.0001) and Gln/Cr (Supplementary Fig. 2E; F(2, 95) = 19.06, p < 

0.0001).  

 The contact group had significantly elevated Gln/Cr compared to non-contact 

(Tukey’s, q95 = 7.23, p < 0.0001) and sedentary groups (Tukey’s, q95 = 6.77, p < 0.0001), 

while Myo/Cr was significantly lower in the contact group compared to the non-contact 

(Tukey’s, q94 = 3.84, p = 0.021) and sedentary groups (Tukey’s, q94 = 6.04, p = 0.0001). 

No differences were found between the sedentary group and non-contact group. 

3.3.4.3 Glutamine/creatine changes post-concussion:  Group 
comparisons 

Supplementary Fig. 3 shows the results of the one-way ANOVA across the 4 groups 

(F(3,60) = 20.57, p < 0.0001). First, concussed contact Gln/Cr baselines measures were 

significantly higher than non-contact (Tukey’s, q60 = 10.23, p < 0.0001) and sedentary 

groups (Tukey’s, q60 = 9.95, p < 0.0001). Second, post-concussion Gln/Cr levels were 

significantly higher than non-contact levels (Tukey’s, q60 = 4.33, p = 0.017) and 

sedentary groups (Tukey’s, q60 = 3.98, p = 0.033), but significantly lower than baseline 

measures (Tukey’s, q60 = 6.24, p = 0.0002).  
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3.4 Discussion 
The objective of this study was to investigate brain metabolite level differences between 

female varsity athletes engaged in contact and non-contact sports as well as sedentary 

individuals, to examine the long-term effects of exercise and sub-concussive impacts. We 

found that myo-inositol, glutamate, and glutamine levels differ at both In-Season and Off-

Season time points between contact and non-contact female varsity athletes. Furthermore, 

metabolite levels did not differ between non-contact athletes and age matched sedentary 

women, except that non-contact athletes had lower levels of myo-inositol. The current 

study also demonstrates that contact athletes had higher baseline glutamine levels 

compared to non-contact athletes and sedentary women. This unexpected finding 

suggests that the interpretation of glutamine changes previously reported post-concussion 

must be made carefully considering the control group used.  For example, the glutamine 

levels previously reported post-concussion4 were higher than that observed in non-

contact athletes, but lower than baseline measures in the same athletes.  This emphasizes 

the need to include proper control groups in studies of concussion. 

3.4.1 Non-contact versus Contact Teams over a Season of Play 

No changes were measured from In- to Off-Season in non-contact athletes. This suggests 

that previously reported reductions in glutamine and Gln/Cr observed in contact athletes 

from In- to Off-Season4 is not the result of an exercise effect. Instead, it is more likely 

that the previously reported reduction in glutamine and Gln/Cr is caused by the repetitive 

impacts experienced by athletes throughout the season. To confirm that the contact 

athletes were indeed receiving high impacts, a head impact sensor that measured linear 

acceleration and rotational velocity was worn by a subset of players during a preseason 

rugby game.41 During this single rugby game, a total of 151 impacts exceeding 15g were 

recorded across 26 players. Therefore, on average, a single player received six impacts 

>15g per practice, and two impacts >15g per game. For the detailed results on the impact 

data, please see Manning et al., 2019.41 It is important to recognize that previous studies 

reporting higher impact rates used a threshold of >10g,50,51 rather than the >15g used in 

this cohort of athletes. Additionally, it has been shown that 45% of head impacts land 

between 10-15g,52 meaning that there is a large portion of impacts not included in the 
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current analysis. Taken together, the female rugby athletes experience sub-concussive 

impacts throughout their season, and these impacts likely contribute to the reduction in 

glutamine and Gln/Cr, as well as the other major metabolite level differences observed in 

comparison to the non-contact and sedentary groups, further discussed below. 

 A significant interaction in myo-inositol levels was observed between contact and 

non-contact athletes. Even though myo-inositol levels are significantly lower in contact 

athletes at the In- and Off-Season timepoints, it appears that myo-inositol tends to 

increase over the season in contact athletes but decrease over the season in non-contact 

athletes (although, not significantly). A recent study by Lefebvre et al (2018)25 examining 

male and female athletes found increased myo-inositol in contact athletes (rugby and 

soccer), compared to non-contact (swimming) and non-athletes in the motor cortex. This 

is opposite to our finding of lower myo-inositol levels at In- and Off-Season on contact 

athletes, but in line with our observed myo-inositol interaction between the groups. 

Furthermore, studies of retired contact athletes, found higher myo-inositol levels in the 

medial temporal lobe12 and in the posterior cingulate gyrus.18 This suggests that over 

time, myo-inositol levels may continue to rise in athletes playing contact sports. 

3.4.2 End of Season Changes Compared to a Sedentary Group: 
Exercise versus Impacts 

We found no metabolite differences in the prefrontal white matter between sedentary and 

non-contact athletes, asides from a marginal reduction in myo-inositol in non-contact 

athletes. However, there were many differences between the contact group and the 

sedentary and non-contact groups. This further suggests that the contact nature of the 

sport is having a cumulative effect on the brain, as described by others.16,25,53 Although 

we saw no significant changes in NAA in the current study, trends towards reduced NAA 

in the contact athletes were observed (p < 0.1). Other studies have reported reduced NAA 

in male mixed martial arts fighters,16 and in female and male athletes without 

concussion.24,29,33 Moreover, Chamard and colleagues24 found reduced NAA/Cr in female 

athletes only, but with subsequent absolute quantification, found NAA to be reduced in 

males and females.29 However, these NAA changes were found in the corpus callosum, 

not in the prefrontal white matter. Another study that examined high school football 



 

109 

 

players found metabolite differences at the beginning of season, with lower choline and 

creatine levels during the season in a similar region of interest. These results are 

consistent with the lower creatine levels observed at the off-season compared to our 

sedentary group. Moreover, similar to the elevated glutamine levels in contact athletes 

observed in the current study, a study by Bari and colleagues28 examining male football 

and female soccer players found elevated Glx (glutamate + glutamine) levels in the motor 

cortex in females. Furthermore, high school football players were found with elevated 

Glx in a similar region of interest at the beginning of a sports season, and found those Glx 

levels to drop during the season. Interestingly, this change in Glx follows the same 

pattern as glutamine in our contact athletes. 

3.4.3 Elevated Glutamine in Contact Athletes 

In our previous study on concussion in female varsity rugby athletes, we measured 

reduced glutamine levels after concussion compared to baseline measures.4 Moreover, we 

demonstrated that the significance of this reduction is lost when (1) baseline measures are 

not used and (2) when glutamate and glutamine are fitted together as Glx. Now, perhaps 

of even greater interest, we demonstrate that if non-contact athletes or sedentary 

individuals were used as a control group, the directionality of the glutamine change 

would appear to be reversed. For example, by only having non-contact athletes as a 

control group, it would seem that glutamine levels were elevated immediately after 

concussion, while we know from comparison to same-subject baseline measures that 

glutamine is actually decreasing. This highlights the need for proper baseline measures, 

to correctly interpret metabolite changes following concussion. 

 We speculate that the increase in glutamine levels observed in contact athletes and 

the decrease previously reported after concussion, are driven by glutamine synthetase 

(GS) activity and expression. GS is the enzyme that converts glutamate to glutamine, and 

is present in glial cells, including astrocytes and microglia.54 During neurotransmission, 

glutamate is released into the synaptic cleft and is then taken up by astrocytes to be 

converted to glutamine by GS.55 This process is part of the glutamate-glutamine cycle. 

According to Giza and Hovda,5 the neurometabolic cascade of events that occur 

immediately after a concussive injury includes altered ion flux and glutamate release. 
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Moreover, elevated levels of extracellular glutamate can lead to excitotoxicity and tissue 

injury.56 If we assume that glutamate release also occurs in association with sub-

concussive hits, but to a lesser extent than when associated with concussion, it is 

conceivable that over time epigenetic changes could lead to increased GS expression and 

activity to compensate for the elevated glutamate release. This compensation could 

manifest as elevated glutamine levels as observed in our contact athletes. In more severe 

head injuries, one of the most significant pathophysiological processes is the number of 

free radicals, oxygen (ROS) and nitrogen species (NOS), that are created as a 

consequence of glutamate efflux and calcium influx.56 Furthermore, studies have shown 

reduced GS activity to be due to increased oxidative stress, and that this inhibition in GS 

leads to reduced glutamine.54,57 Therefore, it is feasible that following a concussive 

injury, if there is significant production of free radicals, GS inhibition would manifest as 

reduced glutamine levels, as we previously reported post-concussion.4 

3.4.4 Limitations, Strengths, and Future Work 

There are several limitations to consider for this study. The MRS voxel was manually 

placed by the MRI technician, which limits the reproducibility of the voxel placement 

within subjects at follow up scans. However, given the diffuse nature of a concussive 

injury, and the heterogeneity of sub-concussive hits, it is likely that the effected brain 

tissue extends beyond our voxel. Moreover, having impact data from the contact athletes 

would have allowed us to investigate associations between the number of hits and 

glutamine levels. Such data were limited however, because the league did not allow 

impact recording devices to be worn during games.  

 There are several important strengths to the current study. Our contact and non-

contact athletes were recruited from three sports teams, ensuring similar training 

schedules and matched activity levels, and we focused on only female athletes, as sex 

differences have been observed.10,32 Additionally, we chose a longer echo time (TE = 135 

ms) to remove any macromolecule signal, allowing more reproducible quantification of 

the lower amplitude metabolites.  
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3.4.5 Conclusions 

The objective of this study was to compare metabolite levels in sedentary and athletic 

females from the same university and varsity sports teams during the In- and Off-Season 

at the same time of year.  Metabolite levels in non-contact athletes did not differ from age 

matched sedentary women except for a slightly lower myo-inositol level in the non-

contact athletes, suggestive of no long-term exercise-induced change in MRS measured 

metabolite levels. Comparing metabolite levels to a group of female contact athletes 

previously reported, the non-contact athletes had different levels of myo-inositol, 

glutamate, and glutamine compared to the contact athletes. Importantly, glutamine levels 

were significantly higher in contact athletes compared to the sedentary and non-contact 

groups, demonstrating that repetitive sub-concussive impacts due to physical contact in 

high impact sports can alter metabolite levels. These data also demonstrate that the use of 

a sedentary or non-contact control group, instead of a contact control group or same 

subject baseline scans, can change the interpretation of the directionality of metabolite 

changes, specifically glutamine, after concussion. 
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Supplementary Figure 3.1: Amplitude ratio of (A)NAA/Cr, (B) Cho/Cr, (C) myo-inositol/Cr, 

(D) glutamate/Cr, and (E) glutamine/Cr in the non-contact and contact group. Error bars 
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Supplementary Figure 1: Amplitude ratio of (A)NAA/Cr, (B) Cho/Cr, (C) 
myo-inositol/Cr, (D) glutamate/Cr, and (E) glutamine/Cr in the non-contact 
and contact group. Error bars represent the standard error of the mean. # 
represents the drop in glutamine levels previously reported [Schranz et al., 
2018].  (p<0.0001****;p<0.01**)
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represent the standard error of the mean. # represents the drop in glutamine levels previously 

reported in Chapter 2.  (p<0.0001****; p<0.01**) 

 
Supplementary Figure 3.2: Amplitude ratio of (A) NAA/Cr, (B) Cho/Cr, (C) Myo/Cr, (D) 

Glu/Cr, and (E) Gln/Cr across groups. Error bars represent the standard error of the mean 

(p<0.0001****; p<0.001***; p<0.05*) 
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Supplementary Figure 3.3: Measured glutamine/creatine amplitudes across groups. Error 

bars represent the standard error of the mean. # represents the drop in glutamine/creatine 

previously reported between baseline and post-concussion in rugby athletes in Chapter 2. 

(p<0.0001****; p<0.05*) 
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Chapter 4  

4 Longitudinal brain metabolite changes in a murine 
model of mild repetitive closed head injury 

*In preparation for publication 

Amy Schranz, BMSc, Patrick McCunn*, BSc, Kathy Xu, Arthur Brown, PhD, Robert 

Bartha, PhD 

*Patrick McCunn provided the data analysis, interpretation, and written sections on the 

DTI portion of this study 

The number and severity of impacts to the head triggers an unpredictable cascade of 

neurometabolic events. The final outcome of a head injury depends in part on a complex 

network of biochemical pathways, involving both oxidative metabolism and anaerobic 

pathways. These immediate changes in brain neurochemistry following an impact may 

precede microstructural changes.  Previous studies in animal models of concussion have 

normally examined brain metabolism after a single insult.  However, this approach does 

not replicate the environment of competitive contact sports, where athletes receive 

repetitive sub-concussive impacts often daily for months prior to a concussion.  The 

purpose of this study was to investigate the changes and potential associations between 

brain metabolite levels measured by magnetic resonance spectroscopy (MRS) and brain 

microstructure measured by diffusion tensor imaging (DTI) in the mouse brain after a 

repeated mild closed head injury paradigm.  

Male mice were divided into five groups, control (n=12), 48 hours post-injury 

(n=12), 1-week (n=12), 4 weeks (n=12), and 10 weeks post-injury (n=12). Mice received 

a closed-head mild controlled cortical impact, with one impact per day for five days, 

followed by in vivo MRS and DTI data acquisition. 

In this study, we observed changes in DTI and NAA early on (48 hours and 1 

week), that resolved by 4 and 10-weeks, indicating a mild injury that recovered with 

time. However, small changes at 10-weeks in creatine, lactate, taurine, Glu/Cr and 
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Gln/Cr, point towards a subtle shift in these biochemical pathways in order to re-establish 

homeostasis. Moreover, the change in Gln/Cr is consistent with that observed in a 

previous human study of female varsity rugby athletes in comparison to non-contact 

athletes. We speculate that the five hits in five days paradigm used in the current study 

may simulate the impact conditions that contact athletes experience over a season of play, 

eventually causing elevated glutamine levels. 

4.1 Introduction 
Despite recent research efforts to understand the long-term effects of concussion, 

identifying those at risk of post-concussion syndrome, and the development of effective 

treatment methods remains elusive. Failure to make significant progress in this area is 

largely due to the complexity of the underlying pathophysiology of concussion and the 

inability of conventional CT and MRI contrasts to detect brain changes.1 As a result, over 

the last two decades, there have been many studies dedicated to investigating the utility 

of more specialized MRI techniques to detect subtle brain changes following concussion, 

including magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI).1  

 DTI is a complementary MRI modality that provides sensitive measurements 

related to tissue microstructure and structural connectivity, that can be associated with 

pathological changes within the brain.2 Previous work applying DTI in humans after 

sport concussion has shown changes in fractional anisotropy (FA), mean diffusivity 

(MD), axial diffusivity (AD), and radial diffusivity (RD),3 and it has been suggested that 

altered diffusion persists well after clinical assessment scores return to normal.4 For a 

more comprehensive review on DTI in sports concussion see Chamard et al., 20183 and 

Asken et al., 2017.5 Unfortunately, the measured changes in these metrics have been 

inconsistent, and it is important to study them further in pre-clinical models to verify their 

accuracy and suitability for diagnostic medicine. In line with the human literature, 

increases and decreases in DTI metrics have been found in animal models. For example, 

a study performed by Bennett et al. (2012)6 observed decreased FA in the corpus 

callosum of mice after repeated closed-skull TBI, while Robinson et al. (2017)7 found 

reduced AD in mice but no changes in FA within the corpus callosum. It is important to 

note, that even though animal models have the benefit of reducing the heterogeneity in 
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the injury, the model used and chosen parameters still vary from study to study making 

comparisons challenging. 

 After an insult to the head, there is a cascade of neurometabolic events that 

depends on factors including the number and severity of impacts.8–10 The final outcome 

of a head injury is determined by the ability of the brain to modulate a complex network 

of biochemical processes, including the TCA cycle and oxidative metabolism, as well as 

anaerobic pathways. These immediate changes in brain neurochemistry as well as altered 

neurotransmission from the secondary chemical cascade of ion flux that occurs after 

receiving a hit to the head11 precede structural changes,12 and produce metabolite level 

changes that can be detected and quantified by 1H MRS.  

The effect of concussion on the brain has been largely studied by MRS in athletes 

participating in various contact sports. These studies have observed changes in the levels 

of several different metabolites. For example, altered N-acetyl aspartate (NAA),13,14 

choline,15–17 myo-inositol,16,18,19 glutamate20 and glutamine21 have been reported in 

WM4,16,22,23 and GM18,19,24 regions in the brain. The large variability in metabolite 

findings across the literature is likely due to the heterogeneous nature of concussion (e.g. 

impact site, force of impact, timing of imaging post impact, concussion history, sex, diet, 

etc.).25 Animal models can be utilized to control many of these variables, allowing 

exploration of the mechanisms and relevance of specific metabolite changes after 

concussion.1 Numerous animal models exist, and studies to date have reported changes 

including reduced NAA/Cr,26,27 Tau/Cr,8 creatine and glutamine,28 and myo-inositol,29 as 

well as increased glutamine,10,30 lactate, myo-inositol, and choline31 after injury. 

However, the majority of these studies used rather severe models, with craniotomies, that 

are more representative of moderate to severe traumatic brain injury, not 

concussion.10,27,29–31 Therefore, investigating concussion or the effects of repetitive 

impacts with MRS in animal models, remains relatively unexplored. A synopsis of the 

relevant literature in animal models is summarized in Table 1.4. 

Few studies have examined the association of MRS and DTI metrics in 

concussion.  A recent study in rats by Li et al., (2017)9 did find a positive correlation 
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between FA and myo-inositol, which could indicate glial proliferation as the main cause 

of increased FA post TBI. Additionally, we previously reported that changes in FA and 

RD correlate with changes in the MRS measured metabolite, glutamine21 over a season of 

play in female varsity rugby players. Moreover, we further found that these same female 

contact athletes have elevated Gln/Cr and glutamine levels compared to non-contact 

athletes and nonathletes,32 suggesting that repetitive sub-concussive impacts can 

influence brain metabolism. 

The force and direction of impact can vary greatly in different animal models of 

concussion.  The majority of studies utilizing MRS have examined the effects of 

moderate and severe traumatic injuries using a fluid percussion injury,33–35 controlled 

cortical impact,10,36–38 or a blast injury,28,29 rather than concussion (e.g. closed head 

impact model, see Table 1.4). Additionally, for closed head impact (CHI) studies, MRS 

has mainly been used to examine the effects of a single impact, rather than repetitive head 

injury (See Table 1.4). The majority of single CHI have used a weight drop model of 

450g8,31,39,40 with drop heights from 25-100 cm characterized as mild injuries, and >100 

cm characterized as moderate to severe, with high mortality rates. Closed-head controlled 

cortical impact models have also been used with 5mm diameter tips at 5-4 m/s at a depth 

of 1 mm being characterized as mild.26,41,42  

Investigating the effect of mild repetitive head impacts is critical to interpreting 

the changes observed following sport induced concussion.  We propose that the 

metabolic response of the brain after a single concussive injury will be different to the 

response observed after a similar impact delivered within the context of multiple sub-

concussive hits akin to what occurs in high impact sports.  Understanding the metabolic 

changes that occur following multiple light impacts is the first step in answering this 

important question, which has immediate parallels to the effects of sub-concussive 

impacts in contact sports. Therefore, the objective of this study was to investigate the 

changes and potential associations between brain metabolite levels measured by MRS 

and brain microstructure measured by DTI in the mouse brain after a repeated closed 

head injury paradigm. Based on the results of previous studies,42,43 as well as our own 

recent findings21,32 in humans, we hypothesized reduced NAA levels, as well as increases 
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in glutamine, would be associated with altered tissue microstructure. 

4.2 Methods 

4.2.1 Study Design 
Sixty C57BL/6J male mice (weight 22.5 ± 2.5 g) were divided into five groups, control 

(n=12), 48 hours post-injury (n=12), 1-week (n=12), 4 weeks (n=12), and 10 weeks post-

injury (n=12). In preparation for injury, mice were anaesthetized by induction with 4% 

isoflurane followed by maintenance with 2% isoflurane. The animal was positioned under 

a traumatic brain injury device (TBI 0310, Precision Systems and Instrumentation, LLC). 

Following a 10 mm midline incision, the skin and fascia were reflected, and the animals 

received a mild controlled cortical impact, centered at the sagittal suture, with a 5 mm-

diameter, pliant, silicone tip. The device was programmed to impact at a depth 1.0 mm at 

a 3.5 m/s velocity with a 500 ms dwell time. Animals received one impact per day for 

five days. Imaging followed at 48-hours, 1 week, 4 weeks, or 10 weeks after the final 

impact (different mice were studied at each time point). Control mice received no surgery 

or impacts.  

4.2.2 Data Acquisition 

All imaging and spectroscopy were performed on an Agilent 9.4 Tesla small-bore MRI 

scanner (Santa Clara, CA, U.S.A.) at the Robarts Research Institute using a Millipede 

MP30, or MP40 radio frequency coil.  The MP40 coil was used at the last timepoint due 

to failure of the MP30 coil. Diffusion Tensor Imaging (DTI) was acquired using a spin-

echo acquisition sequence (TE=36 ms, TR=1s, max b-value=1085 s/mm2, 12 gradient 

directions, FOV=18.75 mm, 128x128 matrix, 31 – 0.5 mm thick slices). A 2D fast spin-

echo anatomical image (TR/TE=4000/10ms; FOV=19.2x19.2 mm2; matrix=128x128; 

slice thickness=0.5 mm) was acquired for tissue/CSF segmentation. Magnetic resonance 

spectra were acquired from a 2 x 6 x 3 mm3 voxel encompassing both hippocampi 

(Figure 4.1) using VAPOR water suppression44 and the localization by adiabatic selective 

refocusing (LASER) pulse sequence (TR/TE=3250/18.9 ms; averages=128/8; HS2 R15 

adiabatic full passage pulses; bandwidth=6000 Hz).45 Acquisition of a macromolecule 

only spectra was interleaved with the acquisition of the full spectrum using a single-
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inversion recovery technique as previously described46 to remove the contribution of 

macromolecules to the spectrum in post-processing. 

 

 

Figure 4.1: Masks utilized for diffusion tensor imaging analysis of brain microstructure.  

(A) Regions of interest were defined for white matter including Corpus Callosum (teal 

binary mask), and hippocampus (yellow binary mask).  (B) A typical voxel placement 

(green outline) for 1H MRS in the mouse brain including both hippocampi (2 x 6 x 3 

mm3).  

4.2.3 Post-Processing and Statistical Analysis 

DTI images were pre-processed using fMRI Software Library (FSL, v.5.0.10, Oxford, 

UK). Images were first registered to a C57BL/6J atlas using a linear transformation 

(FLIRT)47 followed by a non-linear registration (FNIRT)48 in FSL. The resulting 

transformation matrices were then inverted and used to bring masks of the corpus 

callosum and hippocampus back into the diffusion space of each subject, where mean 

diffusion parameter values for each region were then extracted. Mean region of interest 

(ROI) analysis was performed and focused on two relevant regions of interest: the corpus 

callosum and the hippocampus (Figure 4.1). Within each ROI the mean fractional 

anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity 

(RD) values were extracted.  

All spectra were lineshape and eddy current corrected using combined QUALITY 

deconvolution (400 points) and eddy current correction.49 Macromolecules were then 

fitted using a Hankel singular value decomposition (HSVD)50 and subtracted from the 

metabolite spectrum. Using in-house analysis software, suppressed (post macromolecule 

BA
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subtraction) and unsuppressed spectra were fitted in the time domain using prior 

knowledge produced by density matrix simulations51 incorporated into a Levenberg-

Marquardt minimization routine52 (Figure 4.2). Metabolites included in the prior 

knowledge template included N-acetyl aspartate (NAA), alanine, $-aminobutyric acid 

(GABA), aspartate, choline, glycerophosphorylcholine (GPC), phosphorylcholine 

(PCho), creatine (Cr), glucose, glutamate (Glu), glutamine (Gln), glutathione, glycine, 

myo-inositol (Myo), lactate, and taurine (See Table 4.1 and Figure 4.2).  

 

Figure 4.2: A typical 1H spectrum after post-processing and macromolecule subtraction 

(orange), with the fitted spectrum (green) superimposed. The residual after fitting (blue) 

is shown above, and the individual prior knowledge components of the spectrum are 

shown below in black. Gly, Glycine; Myo, Myo-inositol; tCr, total Creatine; tCho; total 

Choline; Tau, Taurine; GSH; Glutathione; Gln, Glutamine; Glu, Glutamate; Asp, 

Aspartate; Ala, Alanine; Lac, Lactate; NAA, N-acetyl asparate; ppm, parts per million. 

(Note that GABA and glucose are not shown, as they fit to zero in this dataset) 
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Metabolite absolute concentrations and ratios relative to Cr were calculated in this 

study. Absolute concentrations incorporated a correction to account for tissue partial 

volume (Tissue and CSF) obtained by segmenting the 2D fast spin-echo anatomical 

image. Absolute concentrations also account for T1 and T2 relaxation related signal loss 

using the constants listed in Table 4.1. For spectra acquired from the MP40 coil, the 

unsuppressed spectra were scaled to match the mean water signal obtained from MP30 

coil. Metabolite ratios relative to Cr were also calculated, to eliminate the uncertainty 

associated with partial volume and relaxation corrections from influencing the results. 

Signal-to-noise ratio (SNR) was measured as the N-acetyl aspartate peak height 

divided by the standard deviation of the noise. Spectra with an SNR <10 or water 

linewidth >30 Hz were not included in the analysis. Metabolites with a coefficient of 

variation >40% were excluded from the statistical analysis, except for glutamine 

(CV>40%), which was left in due to the overall study hypothesis.   

  All statistical analyses were performed using GraphPad Prism Version 7.0 

for Mac OS X (GraphPad Software, San Diego, CA). The ROUT method and D’Agostino 

& Pearson normality test were performed on each metabolite in each group to remove 

outliers and test for normality, respectively. A one-way ANOVA (or Kruskal-Wallis) was 

used to assess statistical significance (%=0.05) across groups, using Tukey’s multiple 

comparisons correction (or Dunn’s Test). The associations between metabolic changes 

and metrics of tissue microstructural integrity were examined using two-tailed Spearman 

correlations (%=0.05). 
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Table 4.1: Relaxation Constants used to correct for T1 and T2 related signal loss 

 

4.3 Results 

4.3.1 Quality Assurance Measures 
The spectroscopy voxel placed over the hippocampus was composed of (mean  ± 

standard deviation) 94 ± 3 % tissue and 6 ± 3 % CSF. For all data sets the average full-

width at half maximum of the water peak was 20 ±	3 Hz and the average SNR was 14.7 

±	4. All spectra were visually inspected prior to statistical analyses for artefacts. Four 

spectra were eliminated due to insufficient data quality and SNR (<10), and outliers were 

removed for each data set according to the ROUT test (including DTI data sets). Cramér-

Rao Lower Bounds (CRLB) were not used to eliminate metabolite measurements to 

avoid bias selection,53 however, average CRLBs were 3% for NAA, 13% for lactate, 5% 

for glutamate, 56% for glutamine, 9% for glutathione, 2% for creatine, 2% for taurine, 

and 21% for choline. 

4.3.2 Diffusion Tensor Imaging 

DTI results of the hippocampus and corpus callosum are shown in Figure 4.3. Significant 

differences were observed in FA (p < 0.0001) and RD (p = 0.0004) in the hippocampus, 

Table 4.5. Relaxation Constants used to correct for T1 and T2 related signal loss

Metabolite Protons T1 (s) T2 (ms) T1 (s) T2 (ms) T1 (s) T2 (ms)
NAA 3 1.67 294 1.67 294 - -
NAAG 3 1.67 294 1.67 294 - -
Alanine 4 1.37 148 1.37 148 - -
GABA 6 1.37 105 1.37 105 - -
Aspartate 3 1.37 148 1.37 148 - -
Choline 9 1.35 441 1.35 441 - -
GPC 9 1.35 441 1.35 441 - -
PCho 9 1.35 441 1.35 441 - -
Creatine 3 1.04 128 1.04 128 - -
Glucose 6 1.37 104 1.37 104 - -
Glutamate 5 1.50 89 1.50 89 - -
Glutamine 5 1.50 116 1.50 116 - -
Glutathione 7 1.37 106 1.37 106 - -
Glycine 2 1.37 148 1.37 148 - -
Myo 5 1.37 148 1.37 148 - -
Scyllo 6 1.37 148 1.37 148 - -
Lactate 3 1.37 148 1.37 148 - -
Taurine 4 2.33 93 2.33 93 - -
Water 2 2.16 44 2.16 44 4.29 111

Grey Matter White Matter CSF
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as well as in FA (p = 0.003) and RD (p = 0.0048) in the white matter (corpus callosum). 

There was a statistically significant increase in FA in the hippocampus (Figure 4.3A) at 

48 hours in comparison to the control group (p = 0.019), that persisted out to 1-week (p = 

0.015). A similar increase in FA was observed in the white matter (Figure 4.3B; p = 

0.037) but it did not persist at later time points (p > 0.05). This increase in FA was driven 

by a significant reduction in RD. In the hippocampus (Figure 4.3C) RD was reduced at 

48 hours in comparison to the 10-week group (p = 0.0027), and the decrease remained at 

1-week (p = 0.0014) and 4-weeks (p = 0.043). In the white matter (Figure 4.3D) RD was 

reduced at 48 hours in comparison to the control group (p = 0.0026), but by 4-weeks had 

significantly increased (p = 0.036) back toward baseline levels. There were no 

statistically significant changes in mean diffusivity (MD) or axial diffusivity (AD) at any 

timepoints in either region. 

 

Figure 4.3: Bar graphs indication the individual mouse and mean DTI metric, with 

standard error bars, for the Hippocampus and Corpus Callosum. An asterisk (*) indicates 

significant difference from the control group, the pound (#) indicates significant 
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Figure 4.3. Bar graphs indicating the individual mouse and mean DTI metric, with 
standard error bars, for the Hippocampus and Corpus Callosum. An asterisk (*) 
indicates significant difference from the control group, the pound (#) indicates 
significant difference from 48 hours, and the symbol (&) indicates significant difference 
from the 10 week group
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differences from 48 hours, and the symbol (&) indicates significant differences from the 

10-week group 

4.3.3 Magnetic Resonance Spectroscopy and Correlations 
Gln/Cr was significantly different (Figure 4.4A; p = 0.033), with increased levels at 10 

weeks compared to 48 hours (p = 0.045). Furthermore, examining absolute glutamine 

levels, the ANOVA showed a significant difference (Figure 4.4B; p = 0.025) among 

groups, but individual comparisons between groups were did not reach the level of 

significance (p = 0.07). Additionally, negative correlations between glutamine and MD 

(Figure 4.4C; p = 0.037, r2 = 0.4), and RD (Figure 4.4D; p = 0.046, r2 = 0.37) were 

observed at 10 weeks in the white matter. 

 

Figure 4.4: (A-B) Bar graphs indicating the individual mouse and mean values for Gln/Cr 

and Glutamine absolute concentration, with standard error of the mean. (A) Gln/Cr was 

found to be significant (ANOVA, p = 0.033) with elevated levels at 10 weeks compared to 48 

Hours (p = 0.045). (B) Glutamine was found to be significant (ANOVA, p = 0.025) but 

significance was lost after post hoc testing (p = 0.07). Correlations between Glutamine and 

(C) MD (p = 0.037, r2 = 0.4) and (D) RD (p = 0.046, r2 = 0.37) in the corpus callosum are 

plotted with 95% confidence band 
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Figure 4.4. (A-B) Bar graphs indicating the individual mouse and mean values for Gln/
Cr and Glutamine absolute concentration, with standard error of the mean. (A) Gln/Cr 
was found to be significant (ANOVA, p = 0.033) with elevated levels at 10 weeks 
compared to 48 Hours (p = 0.045). (B) Glutamine was found to be significant (ANOVA, 
p = 0.025) but signifiance was lost after post hoc testing (p = 0.07). Correlations 
between Glutamine and (C) MD (p = 0.037, r2 = 0.4) and (D) RD (p = 0.046, r2 = 0.37) 
in the corpus callosum are plotted with 95% confidence band
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NAA/Cr was also found to be different across groups (Kruskal-Wallis p = 0.04, 

Figure not shown), but individual comparisons between groups did not reach significance 

(Dunn’s test, p>0.05). Measurement of absolute metabolite levels revealed decreased 

NAA (Figure 4.5A; p = 0.018) from 48 hours to the 1-week group (p = 0.018). 

Additionally, creatine concentrations were significantly different (Figure 4.5B; p = 

0.013), with reduced levels at 10 weeks in comparison to the control group (p = 0.011). 

Furthermore, NAA concentrations were positively correlated with FA in the white matter 

(Figure 4.5C; p = 0.011, r2 = 0.11). Examining individual time points, this correlation was 

only significant at 48 hours (Supplementary Figure 4.1A; p = 0.0094, r2 = 0.54). A similar 

positive correlation was observed between creatine and FA in the white matter (p = 

0.015, r2 = 0.11, data not shown) and at 48 hours (Supplementary Figure 4.1B; p = 0.013, 

r2 = 0.51). 

 
Figure 4.5: (A-B) Bar graphs indicating the individual mouse and mean absolute 

concentration for NAA and Creatine, with standard error of the mean. (A) NAA was found to 

be significant (ANOVA, p = 0.018) with reduced concentration between 48 hours and 1 week 

(p = 0.018). (B) Creatine was found to be significant (ANOVA, p = 0.013) with reduced 

concentration at 10 weeks (p = 0.011). Significant Pearson Correlation between NAA levels 
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Figure 4.5. (A-B) Bar graphs indicating the individual mouse and mean absolute 
concentration for NAA and Creatine, with standard error of the mean. (A) NAA was 
found to be significant (ANOVA, p = 0.018) with reduced concentration between 48 
hours and 1 week (p = 0.018). (B) Creatine was found to be significant (ANOVA, p = 
0.013) with reduced concentration at 10 weeks (p = 0.011). Significant Pearson 
Correlation between NAA levels and (C) FA in the corpus callosum (p = 0.011, r2 = 
0.11), and (D) Creatine levels (p<0.0001, r2 = 0.27) are plotted with  95% confidence 
bands
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and (C) FA in the corpus callosum (p = 0.011, r2 = 0.11), and (D) Creatine levels (p<0.0001, 

r2 = 0.27) are plotted with 95% confidence bands 

Glu/Cr was also found to be different across groups (Figure 4.6A; p = 0.026), 

with significantly higher levels at 10 weeks in comparison to control levels (p = 0.035) 

and 1-week levels (p = 0.049). Measurement of absolute metabolite levels revealed 

differences in glutamate (Figure 4.6B; p = 0.044), but the increase did not survive post-

hoc testing (p = 0.056). Additionally, a negative correlation was observed between 

glutamate and FA in the hippocampus (Figure 4.6C; p = 0.0014, r2 = 0.18), which was 

driven by an increase in RD (Figure 4.6D; p = 0.003, r2 = 0.16). A similar correlation 

with FA (Figure 4.6E; p = 0.005, r2 = 0.15) and RD (Figure 4.6F; p = 0.036, r2 = 0.09) 

was found in the white matter. 

 

Figure 4.6: (A-B) Bar graphs indicating the individual mouse and mean values for Glu/Cr 

and Glutamate, with standard error of the mean. (A) Glu/Cr was found to be significant 
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Figure 4.6. (A-B) Bar graphs indicating the individual mouse and mean values for Glu/
Cr and Glutamate, with standard error of the mean. (A) Glu/Cr was found to be 
significant (ANOVA, p = 0.026) with increased levels at 10weeks in comparison to 
controls (p = 0.035) and 1week (p = 0.049). (B) Glutamate concentration was found to 
be significant (ANOVA, p = 0.044), no significance held past post-hoc testing (p = 
0.056). Correlations between Glutamate and (C) FA (p = 0.0014, r2 = 0.18) and (D) RD 
(p = 0.003, r2 = 0.16) in the hippocampus, and between (E) FA (p = 0.005, r2 = 0.15), 
and (F) RD (p = 0.036, r2 = 0.09) in the corpus callosum are plotted with 95% 
confidence bands
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(ANOVA, p = 0.026) with increased levels at 10weeks in comparison to controls (p = 0.035) 

and 1week (p = 0.049). (B) Glutamate concentration was found to be significant (ANOVA, p 

= 0.044), no significance held past post-hoc testing (p = 0.056). Correlations between 

Glutamate and (C) FA (p = 0.0014, r2 = 0.18) and (D) RD (p = 0.003, r2 = 0.16) in the 

hippocampus, and between (E) FA (p = 0.005, r2 = 0.15), and (F) RD (p = 0.036, r2 = 0.09) in 

the corpus callosum are plotted with 95% confidence bands 

No significant changes were observed in Tau/Cr, but absolute taurine levels 

significantly changed (Figure 4.7A; p = 0.0011), with reduced levels compared to 

controls observed at 48 hours (p = 0.0007), 1-week (p = 0.013), and 10 weeks (p = 

0.027). No correlations were found between taurine and DTI metrics. Although Lac/Cr 

did not significantly change, absolute lactate levels did (Figure 4.7B; p = 0.016), showing 

increased levels at 48 hours in comparison to 10 weeks (p = 0.01). Additionally, a 

positive correlation was observed between lactate and FA in the white matter (Figure 

4.7C; p = 0.005, r2 = 0.14), which was driven by an increase in AD (Figure 4.7D; p = 

0.001, r2 = 0.19). Examining individual time points, this FA correlation was only 

significant at 48 hours (Figure 4.7E; p = 0.0019, r2 = 0.47). The same was true for AD 

(Figure 4.7F; p = 0.015, r2 = 0.5). No other significant changes or correlations were 

observed.  
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Figure 4.7: (A-B) Bar graphs indicating the individual mouse and mean absolute 

concentrations for Lactate and Taurine, with standard error of the mean. (A) Taurine was 

found to be significant (ANOVA, p = 0.0011) with reduced concentration at 10 weeks 

compared to Control (p = 0.027), 48 hours (p = 0.0007), and 1 week (p = 0.013). (B) Lactate 

was found to be significant (ANOVA, p = 0.016) with reduced levels at 10 weeks compared 

to 48 hours (p = 0.01). Correlations between Lactate and (C) FA (p = 0.005, r2 = 0.14) and 

(D) AD (p = 0.001, r2 = 0.19) in the corpus callosum, and between (E) FA (p = 0.0019, r2 = 

0.47), and (F) AD (p = 0.015, r2 = 0.5) at 48 hours in the corpus callosum are plotted with 

95% confidence bands 

4.4 Discussion and Conclusion 
The purpose of this study was to investigate the changes and potential associations 

between brain metabolite levels measured by MRS and brain microstructure measured by 

DTI in the mouse brain after a repeated mild closed head injury paradigm. We 
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Figure 4.7. (A-B) Bar graphs indicating the individual mouse and mean absolute 
concentrations for Lactate and Taurine, with standard error of the mean. (A) Taurine 
was found to be significant (ANOVA, p = 0.0011) with reduced concentration at 10 
weeks compared to Control (p = 0.027), 48 hours (p = 0.0007), and 1 week (p = 
0.013). (B) Lactate was found to be significant (ANOVA, p = 0.016) with reduced 
levels at 10 weeks compared to 48 hours (p = 0.01). Correlations between Lactate 
and (C) FA (p = 0.005, r2 = 0.14) and (D) AD (p = 0.001, r2 = 0.19) in the corpus 
callosum, and between (E) FA (p = 0.0019, r2 = 0.47), and (F) AD (p = 0.015, r2 = 
0.5) at 48 hours in the corpus callosum are plotted with 95% confidence bands
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hypothesized reduced NAA levels, as well as increases in glutamine, would be associated 

with altered tissue microstructure. Acutely, at 48 hours, we found elevated FA driven by 

reduced RD in the hippocampus and white matter within the MRS voxel (corpus 

callosum). We additionally observed elevated lactate at 48 hours, followed by reduced 

NAA at 1 week. By 10 weeks we observed reduced Taurine levels and elevated Gln/Cr 

and Glu/Cr which were driven by reduced creatine and elevated Gln and Glu (trends). 

Moreover, several correlations were observed at various timepoints after injury.  Most 

importantly, glutamine was found inversely correlated with MD and RD at 10 weeks, and 

NAA was positively correlated with FA. 

4.4.1 Diffusion Tensor Imaging 

In the current study, ROI analyses of the hippocampus and white matter revealed 

transient increases in FA and decreases in RD.  These results are consistent with several 

previous studies of concussion. For example, Kikinis et al. (2017)54 found increased FA 

in the corpus callosum, the fimbria of the hippocampus and in other regions of the injured 

rat brain, using a weight drop model. Moreover, increases in FA in the corpus callosum 

has been reported in mTBI studies in humans.55–58 These changes could be associated 

with neuroinflammation as well as remyelination.59,60 Additionally, Li et al., (2017)9 

speculated that astrocyte proliferation is the main cause of increased FA after TBI.  

However, two previous studies of repeated head injury in mice found somewhat different 

results. Bennett and colleagues (2012)6 reported no changes in DTI metrics at 24 hours 

post-injury but found reduced AD and MD at 1-week post-injury in the corpus callosum. 

The timeline of changes was similar to the current study, however the DTI metrics 

observed to change were different. Bennett and colleagues (2012)6 used a 2-hit paradigm, 

rather than the 5-hit paradigm used in the current study, as well as different impact 

parameters including a larger impactor tip (9 versus 5 mm), greater depth (3.3 versus 1 

mm) and velocity (5 versus 3.5 m/s). Another study by Yu and colleagues (2016)61 found 

reduced AD at 3, 6, and 42 days post injury in the cerebral cortex, and reduced FA at 42 

days in the corpus callosum. Interestingly, Yu et al., (2016)61 also used a 5-hit paradigm 

and similar impact parameters (3 mm tip, 4 m/s, 1 mm depth), but followed a longitudinal 

study design, rather than a cross-sectional design as implemented in the current study.  
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The increased FA and reduced RD in the current study are also consistent with 

our own previous findings in non-concussed contact sport athletes.21 Specifically, we 

observed increased FA and reduced RD within the white matter of the MRS voxel in 

female rugby players after a season of contact play. Interestingly, a correlation was 

observed between the change in Gln/Cr and the change in FA and RD over the sports 

season. We observed a similar correlation in the current study between glutamine and RD 

at 10 weeks. The similarities observed here with non-concussed rugby players suggest 

that the mild 5- hit paradigm may be a suitable model of repetitive sub-concussive 

impacts.  

4.4.2 1H MRS: Glutamine 

In a previous study by our group in female varsity rugby players, we observed a large 

reduction in glutamine levels after concussion, as well as a smaller reduction after a 

season of contact play in athletes with no diagnosed concussion.21 More recently, we 

have shown that Gln/Cr and absolute glutamine levels are increased in these same female 

varsity rugby players compared to varsity athletes involved in non-contact sports and 

non-athletes.32  These previous studies provided the motivation to investigate the effects 

of multiple light impacts over a short period of time in an animal model to determine 

whether glutamine levels would increase in comparison to controls and to explore 

potential associations with DTI metrics.  Despite the large variability in the glutamine 

measurements, the current study did find increased Gln/Cr at 10 weeks post injury 

compared to the 48-hour time point in the hippocampus (and corpus callosum). There 

was also a trend (p<0.1) toward higher absolute glutamine levels at 10 weeks compared 

to 48 hours after injury. Therefore, the significant increase in Gln/Cr is likely due to a 

small increase in glutamine, and a concomitant reduction in creatine. Interestingly, this 

change in Gln/Cr level is consistent with that observed in the varsity rugby athletes in 

comparison the non-contact athletes.32 We speculate that the five hits in five days 

paradigm used in the current study may simulate the impact conditions that contact 

athletes experience over a season of play, eventually causing elevated glutamine levels. 

Although the reason for this glutamine increase is currently unknown, there are several 

potential explanations that could be explored in future studies. For example, we speculate 
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that elevated glutamine levels may be the results of a primed microglia profile62 in the 

brain after repetitive impacts. Glutamine’s main role in the brain is its involvement in 

neurotransmission by shuttling glutamate back to the neuron through astrocytes.63 The 

conversion of glutamate to glutamine is performed by the enzyme, glutamine 

synthetase.63 Microglia have also been shown to express this enzyme, although they 

hardly convert glutamate into glutamine.62,63 However, studies have shown persistent 

microglia activation after brain injury,62 and have shown that in this state microglia will 

increase the metabolism of glutamate to glutamine, to prevent dangerous levels of 

extracellular glutamate.63 It is possible that persistent microglia activation manifests as a 

shift in the glutamate-glutamine equilibrium, resulting in elevated glutamine levels. 

We also previously found changes in Gln/Cr and glutamine to negatively 

correlate with changes in FA and positively correlate with changes in RD in female 

contact athletes after a season of play.21 In the current study, we did observe negative 

correlations between glutamine and MD as well as RD at the 10-week time point. 

However, a direct comparison cannot be made as a cross sectional study design was used 

in the current study, while our previous study in rugby players used longitudinal 

measures.  

4.4.3 1H MRS: N-acetyl Aspartate and Glutamate 

Reduced NAA concentrations were observed in the current study as we hypothesized, but 

not until 1-week post-injury, compared to 48 hours. There was no change detected 

compared to the control group, which may be in part due to the lack of a sham surgery. 

For example, Lyons and colleagues (2018)26 used a block experimental design in mice 

with a traditional sham set up (surgery without TBI/CHI), and found reductions in NAA 

3 days post injury, in a similar voxel to this current study, in a closed head impact model 

(See Table 1.4). Moreover, a recent study by Fidan et al., (2018)42 that incorporated a 

repeated measures paradigm in male rats, observed reduced NAA/Cr in the hippocampus 

compared to shams at 1-week post injury. Signoretti et al., (2010)40 also found reduced 

NAA at 2 hours, 4 hours, 1 day and 2 days post injury, but by using high-performance 

liquid chromatography on deproteinized whole brain extracts rather than in vivo MRS. 

Furthermore, using a repeated measures paradigm might also have increased sensitivity to 
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changes in NAA levels after injury. For example, a study by Vagnozzi and colleagues 

(2005)43 using a 2 hits paradigm found reduced NAA in whole brain extracts 2 days post-

injury using a weight drop model. 

The NAA correlation with FA, and lack of correlation with glutamate, may 

suggest altered oxidative metabolism that reflects impaired glutamatergic signaling. NAA 

is synthesized in the neuronal mitochondria and is constantly transported along axons into 

oligodendrocytes to be used in myelin synthesis and maintenance, and is also thought to 

be an osmolyte.64 NAA and FA values have been found to correlate in other studies65 

suggesting that changes in NAA and tissue microstructure are linked. Interestingly, NAA 

levels were positively correlated with FA in the white matter in this study. Furthermore, a 

study looking at normal aging in mice, showed that NAA levels and glutamate levels 

correlated extremely well (r2=0.859), because both metabolites mainly reside in 

neurons.66 However, no such correlation was found in the current study, suggesting 

alteration from healthy aging. Additionally, in the same study of normal aging,66 

reductions in glutamate were observed in the hippocampal region at 12, 18, and 24 

months, when compared to 3 months.  The current study found increased Glu/Cr over the 

10-week period post-injury, with a trend towards increased glutamate, reflective of 

altered oxidative metabolism or excitotoxicity. This is further supported by the elevated 

Gln/Cr, discussed earlier. Alternatively, other studies in the literature tended to observe 

decreases in glutamate,38,67 however both of these studies used 13C MRS ex vivo. Lama 

and colleagues (2014)67 used a modified weight drop model of severe TBI, and observed 

lower glutamate labeling 60 mins post TBI, while Robertson and colleagues (2013)38 

used a controlled cortical impact model of TBI and found reduced glutamate labeling 24 

hours post TBI.  

4.4.4 1H MRS: Other Metabolite Changes 

A small decrease in creatine at 10 weeks post-injury compared to control, and a positive 

correlation with FA was observed. Several other studies using mice, rats, and rabbits have 

also observed decreases in creatine after head injuries.26,28,68 Although a small decrease in 

creatine was observed, the magnitude is larger than the expected reductions in creatine 

observed over 21 months in healthy mice.66 The creatine signal is composed of creatine 
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and phosphocreatine, which are involved in tissue energy metabolism.69 It has been 

suggested that phosphocreatine serves as an energy shuttle between mitochondria and 

other sites in the brain.69 Interestingly, NAA and creatine levels were positively 

correlated. Given that NAA is synthesized in the mitochondria where phosphocreatine 

serves as an energy shuttle, mitochondrial energetics may explain why these metabolites 

were correlated.  

Lactate was also increased at 48 hours compared to 10-weeks.  Interpreting this is 

challenging without a significant difference from the control group, which again could be 

due to the lack of a traditional sham group. Lactate is the end product of anaerobic 

glycolysis,69 and has been shown to increase in more severe cases of TBI,31,67 due to the 

presence of hypoxic/ischemic conditions. This result suggests a reduction in oxidative 

metabolism in favour of anaerobic glycolysis 48 hours after the 5-hits paradigm, which 

resolves by 10-weeks. 

In addition to the lactate change, lower taurine levels were observed 10-weeks 

post injury compared to all other time points. Singh et al., (2016)8 found reduced Tau/Cr 

five days after a single mTBI, and suggested that the reduction may be due to taurine’s 

role in cell volume regulation, where astrocytes re-establish normal volume after injury 

by extrusion of ions and amino acids such a taurine.70 Additionally, it has been suggested 

that taurine release may be driven by activation of glutamate receptors,71 however no 

correlations were observed between taurine and glutamate. The subsequent decrease in 

taurine and creatine likely explain why no change was observed in Tau/Cr, further 

demonstrating the importance of quantifying absolute measures in addition to using the 

ratio method. 

4.4.5 Limitations and Future Work 

There are several limitations to the current study. With regard to the animal model, we 

studied repeated impacts at 24-hour intervals in male mice.  The first limitation of this 

work is that we did not examine differences between male and female animals.  Since 

differences have been reported between male and female mice,26 and our hypotheses 

were mainly derived from our previous studies of female athletes, future work must 
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include direct comparison of metabolite changes in male and female mice. Another 

limitation is that we did not explore the effect of the number of hits delivered, or the 

timing between hits, which was beyond the scope of the current work.  A third limitation 

is that the mice used in the current study did not undergo cognitive and behavioural 

testing.  A separate cohort of mice was used for this purpose limiting the examination of 

direct associations between imaging and behavioral measures (5-choice reaction time and 

paired discrimination), and will be reported elsewhere with the histology findings 

(GFAP, Iba-1, silver staining, NeuN/APP, and cleaved casp3). Finally, relating to the 

metabolite level measurements, the variance was high for many of the lower amplitude 

metabolites, including glutamine, making interpretations challenging. Lower variability 

may be achieved in the future with a larger sample size, the incorporation of a 

longitudinal study design, and the use of spectral editing techniques to improve 

measurement of glutamine specifically.72,73 

4.4.6 Conclusions 

The purpose of this study was to investigate the changes and potential associations 

between brain metabolite levels measured by MRS and brain microstructure measured by 

DTI in the mouse brain after a repeated mild closed head injury paradigm. In this study, 

we observed changes in hippocampal and white matter FA and RD, as well as NAA, and 

lactate at early time points (e.g 48 hours and 1 week) compared to baseline and later time 

points. Additional changes in creatine, taurine, Glu/Cr and Gln/Cr later following injury 

(e.g. 10 weeks), point towards a subtle shift in the biochemical pathways involving these 

metabolites to re-establish homeostasis.  
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4.6 Supplementary Material 

 

Supplementary Figure 4.1: Correlations between (A) NAA and FA (p = 0.009, r2 = 0.54), 

and (B) Creatine and FA (p = 0.013, r2 = 0.51), in the corpus callosum are plotted with 95% 

confidence band 
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Chapter 5  

5 Summary and Future Work 

5.1 Summary 
Prior to the work contained within this thesis, previous research applying proton MRS to 

study concussion had demonstrated that sex differences exist post-concussion1,2, and the 

most consistent finding was reduced NAA ratios1,3–8, but the vast majority of studies 

focused on male athletes, or chose not to explicitly differentiate between sex. Moreover, 

studies across labs have examined different brain regions using different methods to 

quantify absolute metabolite concentrations, making it difficult to compare MRS results 

across sites. Furthermore, most studies have chosen a short echo time (TE<45ms), and 

have not separately measured glutamate and glutamine, which are difficult to distinguish 

due to signal overlap with each other and with less well-defined macromolecule signals9. 

Therefore, proton MRS studies tend to report the sum of glutamate and glutamine as 

GLX, or do not report these metabolites at all. However, it is important to quantify 

glutamate and glutamine separately due to their involvement in neurotransmission within 

the glutamate-glutamine cycle10. After a concussive injury, there is altered ion flux and 

neurotransmitter release11, which could shift the glutamate-glutamine equilibrium.  

 The overall objective of this thesis was to first examine metabolite changes using 

MRS in the prefrontal white matter of female contact athletes before and after 

concussion, with the added goal of quantifying glutamate and glutamine separately. The 

second objective was to replicate metabolite level changes in an animal model of 

concussion, to position future studies to probe the reasons for these changes, and to 

explore whether these changes represent potential therapeutic targets.  

5.1.1 Reduced brain glutamine in female varsity rugby athletes 
after concussion and in non-concussed athletes after a 
season of play 

Chapter two applied proton MRS to monitor changes in prefrontal white matter 

metabolite levels in female rugby players with and without concussion, following athletes 



 

154 

 

over multiple seasons of play, as well as up to 6 months post-concussion. Reduced 

glutamine and Gln/Cr were found following concussion, and in the Off-Season in non-

concussed athletes. Specifically, a 52% reduction in glutamine was observed immediately 

following concussion and persisted out to 3 months post-concussion, whereas a 21% 

reduction in glutamine was observed at Off-Season in non-concussed athletes. These 

changes could reflect a reduction in oxidative metabolism or a shift in the glutamate-

glutamine cycle of neurotransmission. Although the magnitude of the glutamine 

reduction was larger after concussion, the directionality of the changes was similar in 

both groups. However, the cause of these changes may be different in the concussed and 

non-concussed athletes. A reduction in glutamine in non-concussed athletes may be due 

to an exercise effect. Alternatively, the reduction in glutamine in the concussed athletes 

may be the result of concussion, while the change in non-concussed athletes may be due 

to the cumulative effect of sub-concussive impacts over the course of the season. 

Examining the effect of exercise and metabolite levels in non-contact athletes was the 

main motivation for the thesis Chapter that follows. 

Additionally, within the MRS voxel, increased FA and reduced RD were found, 

which could be interpreted as neuroinflammation or re-myelination. Furthermore, no 

clinical correlations were found with the reduction in glutamine, which demonstrates the 

insensitivity of current clinical measures to these persistent brain changes following 

concussion. 

5.1.2 Brain Metabolite Levels in Female Rugby Athletes are 
different from Non-Contact athletes and Sedentary Women 

Chapter three used proton MRS to determine whether metabolite levels were altered in 

female varsity rugby players (contact athletes) compared to female varsity rowers and 

swimmers (non-contact athletes) as well as sedentary females.  The inclusion of these 

groups allowed us to examine the effect of exercise on metabolite levels, as well as the 

effect of repetitive sub-concussive hits over the course of a season. In this study we 

showed that metabolite levels in non-contact athletes do not differ from age matched 

sedentary women, except for a small difference in myo-inositol.  We also demonstrated 

that myo-inositol, glutamate, and glutamine levels differed between contact and non-
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contact athletes. Specifically, glutamine levels were significantly elevated in contact 

athletes compared to sedentary and non-contact groups. Most importantly, these data 

show that having a sedentary or non-contact control group, instead of baseline scans, can 

change the interpretation of the directionality of a metabolite change, specifically 

glutamine, after concussion. 

  We speculated that the changes in glutamine levels in contact athletes and 

after concussion, are driven by glutamine synthetase (GS) activity and expression, the 

enzyme that converts glutamate to glutamine12. During neurotransmission, glutamate is 

released into the synaptic cleft and is then taken up by astrocytes to be converted to 

glutamine by GS, as part of the glutamate-glutamine cycle. If we assume that glutamate 

release also occurs in association with sub-concussive hits11,13, but to a lesser extent than 

when associated with concussion, it is conceivable that over time GS expression and 

activity would increase in order to compensate for the elevated glutamate release, 

manifesting as elevated glutamine levels as observed in our contact athletes. In more 

severe head injuries, one of the most significant pathophysiological processes is the 

creation of free radicals as a consequence of glutamate efflux and calcium influx13. 

Furthermore, studies have shown GS activity to be sensitive to oxidative stress, and that 

this inhibition in GS leads to reduced glutamine12,14. Therefore, it is feasible that 

following a concussive injury, if there is significant production of free radicals, GS 

inhibition would manifest as reduced glutamine levels, as we observed post-concussion in 

Chapter two. 

5.1.3 1H MRS Metabolite changes in a mouse model of repetitive 
closed head injury 

The purpose of Chapter four was to investigate metabolite level changes in the male 

mouse brain in a model of multiple sub-concussive hits. The main goal with this 5-hit 

paradigm was to replicate the elevated glutamine levels observed in the female rugby 

athletes compared to non-contact and sedentary women as we observed in Chapter three. 

Understanding the metabolic changes that occur following multiple light impacts in 

animal models is the first step towards understanding the effects of sub-concussive 

impacts in contact sports. In this study we observed changes in NAA early on (48 hours 
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and 1 week), that resolved by 4 weeks, indicating a mild injury that was able to recover. 

However, small changes at 10-weeks in creatine, lactate, taurine, Glu/Cr and Gln/Cr, 

suggested a subtle shift in the biochemical pathways involving these metabolites to re-

establish homeostasis. 

  Although the elevation in Gln/Cr was successfully replicated 10 weeks after mild 

repetitive injury, quantification of glutamine levels in this mouse study was challenging 

due to the complexity of the spectrum at a short echo time (TE = 18.9 ms). Lower 

variability may be achieved in the future with a larger sample size, the incorporation of a 

longitudinal study design, and the use of spectral editing techniques to improve 

measurement of glutamine15,16.  

5.1.4 1H MRS and Imaging Concussion: Clinical Translation 

Using MRS in the clinic as a diagnostic or prognostic tool for concussion is currently not 

feasible. However, there are several ways to further advance MRS, that can bridge this 

gap between concussion research and clinical translation, as discussed next, under future 

work. As outlined earlier, along with MRS research, studies have also investigated 

changes in blood flow (PET, ASL), neuroinflammation (PET), water diffusion and 

tractography (DTI), and connectivity (rs-fMRI) after concussion, and changes have been 

identified in all of these metrics, but clinical translation is still limited.  

  We are now at a point in concussion research where it is imperative that 

we start using results from these different imaging metrics, together, to interpret and 

understand what is happening after concussion, and why. With a better understanding of 

these mechanisms, therapies can be optimized. For example, MRI provides many 

different types of contrast fundamentally based on the density or diffusion of water 

throughout the brain. However, these metrics are insensitive to the biochemical 

mechanisms underlying pathophysiological changes, such as those present after 

concussion. This is where MRS fits in, by providing a way to measure the chemical 

content of MR-visible nuclei, allowing for evaluation of brain metabolism and the 

biochemical pathways involved. Therefore, MRS can aid in the interpretation of changes 

found with other MRI techniques. Moreover, as the medical field shifts towards 
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personalized medicine, there should be a parallel shift towards real-time patient specific 

data analysis. In regards to MRI, it is feasible that this real time analysis could allow the 

identification of abnormal brain regions, such as with DTI or rs-fMRI, to which the MRS 

voxel could be localized for signal acquisition. 

5.1.5 Conclusions 

The first aim of this thesis was to use proton (1H) MRS to explore metabolite changes in 

the prefrontal white matter of female contact athletes before and after concussion. In the 

first 1H MRS study done at 3 Tesla (Chapter 2), reductions in glutamine were observed 

after concussion at 24-72 hours and 3 months post-injury in female varsity rugby players. 

In a second 1H MRS study at 3 Tesla (Chapter 3), it was realized that glutamine levels 

were significantly elevated in the same rugby players (contact athletes) compared to non-

contact varsity athletes and sedentary women. These studies taken together demonstrate 

the importance of investigating metabolites that are implicated in neurotransmission 

(glutamate and glutamine). Moreover, these data show that having a sedentary or non-

contact control group, instead of baseline scans, can change the interpretation of the 

directionality of a metabolite change, specifically glutamine, after concussion. To begin 

to understand why these changes occur in contact athletes, we must develop an animal 

model that can be used for intervention studies. 

  The second aim of this thesis was to replicate the human findings in an 

animal model of repetitive mild head injury, to position future studies to probe the 

reasons for these changes, and to investigate the effects of potential therapeutic targets. In 

the final study, we used 1H MRS 9.4 Tesla in a mouse model of repeated head injury to 

investigate metabolite level changes post-injury, with the hypothesis that similar changes 

to the contact athletes (elevated glutamine) would be observed. Elevated Gln/Cr was 

observed 10-weeks post-injury, suggesting that the model may be an appropriate model 

of sub-concussive injury. 
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5.2 Future Work 

5.2.1 Human 1H MRS studies in Athletes and Sport Concussion 

 This thesis used single voxel 1H MRS in the prefrontal white matter of female 

varsity athletes, and sedentary women. However, other brain regions are also of interest 

and have been studied including the hippocampus17,18, motor cortex6,19, prefrontal 

cortex20, corpus callosum8,21, and posterior cingulate22,23, to name a few. It would be 

interesting to investigate a collection of these brain regions within the same cohort of 

athletes, to see how metabolites, such as glutamine, may vary across the brain. This is 

especially intriguing, considering that concussion is a diffuse injury, but how sub-

concussive impacts change brain metabolite levels in different brain regions is less clear. 

Furthering the work from Chapter 3, it would also be useful to follow non-contact 

athletes and sedentary women over multiple years, as was done with the contact athlete 

group (female varsity rugby team), to observe how these metabolite differences between 

groups evolve over time. 

  Another important aspect to consider when designing future 1H MRS 

human studies, is the choice of acquisition parameters, TE (echo time) in particular. The 

majority of sport concussion 1H MRS studies to date, use a TE < 45 ms, which increases 

the overlap of glutamate and glutamine with macromolecule signals potentially 

decreasing quantification precision9. In this thesis a long-echo time of TE = 135 ms was 

chosen to minimize macromolecule contributions to the spectrum in an effort to increase 

quantification precision of glutamate and glutamine. This change in acquisition 

parameters speaks to the need for standardization of 1H MRS methodology across sites. 

More importantly, reporting absolute quantification methods and constants, to enable the 

reproducibility of results across MRI centres, is lacking in the 1H MRS literature. Public 

databases with metabolite T1 and T2 relaxation constants, for example, would allow for 

easy use in the quantification process and easy referencing for future studies. Moreover, a 

step towards improved inter-site data quality standards, such as choosing to use CRLBs 

to eliminate data, is needed to prevent data bias.  
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5.2.2 Using 1H MRS in Animal Models of Concussion and Sub-
Concussion 

With the replication of elevated glutamine in a mouse model of repetitive sub-concussive 

injury (Chapter four), the next questions to investigate include (1) why is glutamine 

changing after repeated hits to the head, and (2) is this change protective or detrimental? 

As eluded to in Chapters 3 and 4, the changes in glutamine may be manifesting from 

changes in the activity level and expression of glutamine synthetase. Therefore, studies 

examining the activity of this enzyme and expression levels in conjunction with 1H MRS 

would aid in the interpretation of these data.  

  In parallel with the animal studies outlined above, it is also pertinent that 

the acquisition of lower-level metabolites continues to be improved. Although the 

elevation in Gln/Cr was successfully replicated, quantification of glutamine levels in this 

study was challenging due to the complexity of the spectrum at a short echo time (TE = 

18.9 ms). This includes not just glutamate and glutamine, but also glutathione and 

GABA, which are all tightly regulated together in the GABA-glutamate-glutamine 

cycle10. Spectral editing techniques with subtraction have become a popular choice, 

especially for quantification of GABA, however even with editing, separating glutamate 

and glutamine, as well as removal of macromolecules, remains challenging. Newer 

spectral editing techniques that do not require subtraction16 should be considered in future 

studies. Another possibility for future studies, includes 13C MRS, to explore glutamine 

changes through glutamine labeling. In fact, studies using this technique have found 

reductions in glutamine labeling after a fluid percussion injury24.  
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