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Abstract 

Current evidence has revealed the involvement of epigenetic mechanisms, including histone 

deacetylases (HDACs), in plant stress responses. In Arabidopsis thaliana, HDA19, belonging to 

the RPD3/HDA1 class, interacts with transcription factors to form repressor complexes. HDAC 

research mainly exists for dicotyledons, whereas research on monocotyledons is limited. 

Brachypodium distachyon is used as a model plant to investigate questions unique to monocot 

crops. BdHD1 is the closest homologous gene to HDA19 in B. distachyon. This study 

investigated potential protein-protein interactions between BdHD1 and each of BdMYB22, 

BdWRKY24, BdWRKY41, BdHOS15 and BdPP2C1. Interactions were investigated using yeast 

two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). Y2H assays showed 

that BdHD1 strongly interacts with the WRKY transcription factor BdWRKY24, and this was 

confirmed via BiFC. Also, an interaction between BdHD1 and the SANT domain-containing 

protein BdMYB22 was identified via Y2H and confirmed via BiFC. No interaction was observed 

with BdHOS15. This research provides insights for the further discovery of BdHD1-complexes 

in B. distachyon. 
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1 Introduction 

1.1 Chromatin Structure 

The vast array of genetic information in the nucleus is efficiently packaged into conserved 

condensed structures in eukaryotic cells. These complex structures – chromatin – are composed 

of DNA and histone proteins (Kornberg, 1974). The chromatin complex is made up of subunits 

called nucleosomes (Olins and Olins, 1978). Each nucleosome contains 147 base-pairs of DNA 

tightly wrapped around the histone octet (Luger et al., 1997). The histone octet contains two 

copies of each histone protein: H2A, H2B, H3 and H4 (Olins and Olins, 1978). The octet is 

composed of a tetramer that consists of two copies of histones H3 and H4 bound to two dimers 

of H2A and H2B (Liu et al., 2014). Each histone protein is characterized by a core globular 

protein domain and an amino acid tail protruding from the core (Isenberg, 1979). The compact 

nucleosome forms a 10 nm fiber structure strongly resembling a  “beads on a string” model 

(Kornberg, 1974). The nucleosome, a conserved DNA packaging unit, is responsible for the 

compaction of approximately 90% of the DNA within cells (Luger et al., 1997). Histone proteins 

are subject to several different post-translational modifications which impact the compaction of 

the chromatin structure, resulting in alterations of gene expression (Allfrey et al., 1964; Littau et 

al., 1965). 

1.2 Epigenetic Regulatory Response to Abiotic Stress 

Plants are often subjected to several different abiotic stresses in their environment due to a lack 

of consistent optimal growing conditions. Common abiotic stresses include cold-stress, drought-

stress and heat-stress. Plants are unable to simply relocate away from their stressors and thus 

must acclimate to changes in their environment. The responses to these stressors may take place 

via changes in gene transcriptional regulatory networks. Specifically, gene expression may be 

regulated by chromatin structural changes induced by epigenetic regulation (Fuchs et al., 2006). 

Epigenetic changes may involve the manipulation of the chromatin structure to alter gene 

expression without alterations to the DNA sequence (Loidl, 2004). These alterations to the 

chromatin structure may take many forms, including histone variants, histone post-translational 

modifications, and DNA methylation (Berger, 2007). Epigenetic changes can provide a 
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mechanism of long-term stress response, because the reprogrammed chromatin structure retains 

stress memory via priming (Grunstein, 1997).  Furthermore, epigenetic changes are generally 

defined as being either mitotically or meiotically heritable (Chinnusamy and Zhu, 2009). 

1.3 Post-Translational Histone Modifications 

The components of the nucleosome, including DNA and histones, are both subject to epigenetic 

regulation. Post-translational modifications (PTMs) of histone N-terminal tails are among the 

most common epigenetic changes (Goll and Bestor, 2002). PTMs include the acetylation, 

methylation, phosphorylation, ubiquitination and biotinylation of several target amino acids on 

the protruding histone tail (Allfrey et al., 1964). These changes may either have positive or 

negative effects on gene expression levels. Whether gene expression is up-regulated or down-

regulated by PTMs depends on the specific change which has occurred; specifically, whether the 

structure or charge of the histone tail is changed by the modification (Anderson et al., 2001). 

Generally, acetylation and ubiquitination tend to enhance transcriptional activity (Allfrey et al., 

1964; Sridhar et al., 2007), whereas modifications such as biotinylation repress transcription 

(Camporeale et al., 2007). Histone tail modifications may alter the chromatin packing and thus 

influence the accessibility of the transcriptional machinery to the DNA promoter regions 

(Berger, 2007).  

PTMs do not occur randomly as certain residues are more prone to modifications than others. 

Each amino acid of the histone tail can only facilitate a single PTM, because presence of a PTM 

will inhibit another modification from occurring on the same amino acid (Yang and Seto, 2007). 

However, histone modification cross-talk is often observed, because PTMs can facilitate further 

modifications on nearby amino acids to form an epigenetic state (Wang et al., 2008). For 

example, the methylation of H3K9 leads to the phosphorylation of H3S10, which promotes the 

acetylation of H3K14 (Rea et al., 2000). Together, PTMs combine to form the “histone code, 

acting to encode different epigenetic states influencing gene transcriptional activity (Turner, 

2000).  
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1.4 Histone Acetylation and Deacetylation 

The protruding histone tail is subject to chromatin structure altering PTMs, including histone 

acetylation (Allfrey et al., 1964). Histone acetylation refers to the reversible transfer of acetyl 

groups to the -amino group of lysine (K) residues (Yang and Seto, 2007). The typical 

acetylation targets are located on H3 and H4 histone tails; specifically, H3: K4, K9, K14, K18, 

and K23 and H4: K5, K8, K12, K16 and K20 (Figure 1.1) (Loidl, 2004).  

 

Figure 1.1. Post-translational acetylation targets on H3 and H4 histone tails. 

Lysine residues on the histone H3 and H4 N-terminal tails are subject to reversible post-

translational modifications, including acetylation. The acetylation of positivity charged K 

residues neutralizes the charge to reduce the affinity to the DNA backbone. The Introduction to 

Bioinformatics (Lesk, 2014) amino acid colour scheme was used to represent small nonpolar 

(orange), hydrophobic (green), polar (magenta), negatively charged (red) and positively charged 

(blue) amino acid residues. Figure adapted from Loidl et al. (2004). 

Histone acetylation physically alters the conformation of the chromatin structure. The positively 

charged K residues have a high affinity for the negatively charged DNA phosphate backbone in 
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the unacetylated state (Garcia-Ramirez et al., 1995). Acetylation decreases the affinity of the 

histone for DNA, because it neutralizes the charge of K (Garcia-Ramirez et al., 1995). In the 

hyperacetylated state the chromatin is open and transcriptionally active, because the promoter is 

accessible to the transcriptional machinery (Tian et al., 2005). Alternatively, deacetylation (the 

removal of the acetyl groups) increases the affinity of the K residues for the DNA backbone 

(Garcia-Ramirez et al., 1995). In the hypoacetylated state, the chromatin adopts a compact and 

transcriptionally repressed state (Tian et al., 2005). Generally, histone acetylation and 

deacetylation are associated with gene expression and repression, respectively. Histone 

acetylation is facilitated by a group of enzymes known as histone acetyltransferases (HATs), 

whereas histone deacetylation is conducted by histone deacetylases (HDACs) (Brownell and 

Allis, 1996). HATs and HDACs may act antagonistically to control the acetylation status of the 

histone tail, as observed with HISTONE ACETYLTRANSFERASE GCN5 (GCN5) and 

HISTONE DEACETYLASE 19 (HDA19) in Arabidopsis thaliana (Benhamed et al., 2006). 

1.4.1 Histone Acetyltransferases 

The transfer of acetyl groups from acetyl-CoA to the histone tail is facilitated by enzymes called 

histone acetyltransferases (HATs). HAT activity is associated with an open and transcriptionally 

active chromatin structure (Anderson et al., 2001). The hyperacetylated state of N-terminal 

lysine residues decreases the affinity of the positively charged histone tail for the negatively 

charged DNA phosphate backbone (Allfrey et al., 1964). Acetylation via HATs is not specific to 

histones; for example, tumor suppressor p53 and other general transcription factors are 

acetylated by HATs (Gu and Roeder, 1997; Yang and Seto, 2007). 

HATs are classified into four different families: the GCN5-RELATED N-TERMINAL 

ACETYLTRANSFERASES (GNATs) family, the CREB-BINDING PROTEIN (p300/CBP) 

family, the MOZ, Ybf2/Sas3, Sas2 and Tip60 (MYST) family and the TATA-BINDING 

PROTEIN-ASSOCIATED FACTORS (TAFII250) family (Pandey et al., 2002). The GNAT 

HATs contain a conserved HAT domain, as well as a bromodomain essential for targeted lysine 

binding (Haynes et al., 1992). Within HATs, the most conserved sequence, Q/RxxGxG, is 

important for binding and recognition of acetyl-CoA (Dutnall et al., 1998). Members of the 

MYST family are characterized by their zinc finger motifs, as well as the acetyl-CoA recognition 

sequence (Avvakumov and Cote, 2007). The CBP and TAFII250 families contain fewer HATs. 



5 

 

Arabidopsis encodes twelve HATs; five each belong to the GNAT/MYST and CBP families, and 

two to the TAFII250 family (Pandey et al., 2002). The activity of HATs is linked to several key 

processes, including development (Deng et al., 2007) and stress responses (Tan et al., 2019). 

1.4.2 Histone Deacetylases 

The acetylation of the histone tail is a reversible process facilitated by enzymes called histone 

deacetylases (HDACs). The typical targets of HDACs are histone lysine residues, thus lysine 

deacetylases (KDACs) may be used interchangeably to refer to HDACs (Choudhary et al., 2009). 

Histone deacetylation alters the histone-DNA interaction dynamics, resulting in a compact and 

transcriptionally repressed chromatin state (Garcia-Ramirez et al., 1995). The activity of HDACs 

coincides with gene repression (Kadosh and Struhl, 1998). HDACs act antagonistically to HATs 

by removing acetyl groups from residues of the N-terminal histone tails (Benhamed et al., 2006). 

Despite the name HDAC implying exclusive deacetylation from histones, other non-histone 

targets for deacetylation by HDACs have been identified, including tumor suppressor p53 (Gu 

and Roeder, 1997).  

First discovered in yeast, HDACs are conserved proteins found in all eukaryotes (Vidal and 

Gaber, 1991). HDACs are classified into three distinct families, each classified on the basis of 

sequence similarity and co-factor dependency (Pandey et al., 2002). The three HDAC families 

are REDUCED POTASSIUM DEFICIENCY 3/ HISTONE DEACETYLASE 1 (RPD3/HDA1), 

SILENT INFORMATION REGULATOR 2 (SIR2) and HISTONE DEACETYLASE 2 (HD2) 

(Pandey et al., 2002). Members of the RPD3/HDA1 and SIR2 families are Zn2+ and NAD+ co-

factor dependent, respectively (Imai et al., 2000; Wu et al., 2000). The RPD3/HDA1 and SIR2 

families are conserved across all eukaryotes; meanwhile the HD2 family is a novel HDAC 

family unique to plants (Wu et al., 2000). Arabidopsis thaliana contains eighteen different 

HDAC genes (Hollender and Liu, 2008). Of the eighteen genes present, twelve belong to the 

RPD3/HDA1 family, and there are two SIR2 and four HD2 HDACs (Pandey et al., 2002; 

Hollender and Liu, 2008). 

1.5 Plant Histone Deacetylases 

Histone deacetylases are found within all eukaryotes, including plants, where they provide gene 

regulation in a variety of different processes. Diverse roles have been identified for plant HDACs 
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in several biological processes such as plant growth (Wu et al., 2008), biotic stress-responses 

including pathogen defense (Kim et al., 2008), and abiotic stress-responses such as salt-stress 

(Chen et al., 2010), heat-stress (Buszewicz et al., 2016) and drought-stress (Zheng et al., 2016). 

The subcellular localization of HDACs is typically nuclear, however cytoplasmic expression has 

been reported (Alinsug et al., 2012). 

The most widely studied HDAC family is the RPD3 family, which is homologous to the yeast 

RPD3 (Kadosh and Struhl, 1998). Members of this family are characterized by the presence of 

the highly conserved histone deacetylase domain (Pandey et al., 2002). In both dicots and 

monocots the RPD3 family is the largest, with 12 and 14 members in Arabidopsis and Oryzae 

sativa (rice), respectively (Hollender and Liu, 2008; Hu et al., 2009). The RPD3 family is 

subdivided into three classes based on sequence similarity: class I, class II and class III (Pandey 

et al., 2002).  

The SIR2 and HD2 families are less common than the RPD3 family. The SIR2 family has a 

distinct structure to other HDACs, because it requires the co-factor NAD+. There are two 

members of the SIR2 family each in Arabidopsis and rice (Pandey et al., 2002; Hu et al., 2009). 

The last HDAC family, HD2, was first discovered in Zea mays (maize) (Lusser et al., 1997). 

This plant-specific HDAC family is represent by four and two members in Arabidopsis and rice 

(Pandey et al., 2002; Hu et al., 2009). HD2 HDACs are identified by a conserved amino acid 

terminal EFWG region required for repression activity (Wu et al., 2003).  

1.6 HDAC Protein-Protein Interactions 

Because many HDACs do not act individually, it is possible they function within protein to 

regulate gene expression. The common interacting partners for HDACs typically include proteins 

associated with the transcriptional machinery. For example, in yeast cells the transcriptional 

regulatory protein Ume6 – a DNA binding protein – recruits a complex containing SIN3, a co-

repressor, and HDAC RPD3 to repress gene expression (Kadosh and Struhl, 1997). In 

Arabidopsis, LEUNIG (LUG) is a transcriptional co-repressor able to interact with an adaptor 

protein SUESS and HDA19 to repress transcription (Gonzalez et al., 2007). Protein interactions 

are important for functional activity; for example, LUG activity was significantly reduced 

following HDAC inhibition via trichostatin A (TSA)(Gonzalez et al., 2007). An interaction 
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between COI1 and HDA6 in Arabidopsis was reported; COI1 regulates the expression of 

jasmonate responsive genes via ubiquitination, targeting HDA6 for ubiquitination (Devoto et al., 

2002).  

Because HDAC activity is associated with transcriptional repression, the interacting partners of 

HDACs are generally transcriptional repressors. However, researchers have demonstrated the 

ability of HDACs to bind to activators and co-activators. The transcriptional activator 

SCARECROW (SCR) interacts with HDA19 under high auxin concentrations to reverse the 

repression by HDA19 on auxin responsive genes (Gao et al., 2004). HDA19 also can interact 

with the activator bnKCP1in Brassica napus (Gao et al., 2003). Protein-protein interactions 

involving HDACs are required to target specific downstream genes for expressional changes. 

1.6.1 Interactions with MYB Transcription Factors 

Protein interactions are formed between HDACs and members of the MYB family and MYB-

like transcription factors. The MYB family is a large conserved transcription factor family 

present across eukaryotes (Katiyar et al., 2012). The conserved MYB DNA-binding domain 

forms three -helices arranged via a helix-turn-helix motif, which interacts with the major 

groove of the DNA backbone (Ogata et al., 1996). Members of the MYB family are grouped into 

four subfamilies based on the number of MYB repeats: 1R-, R2R3-, 3R- and 4R- (Dubos et al., 

2010). The majority of MYB genes in rice and Arabidopsis belong to the plant specific MYB-

R2R3 subfamily (Wilkins et al., 2008). The MYB family is a major transcription factor family 

with 155 and 197 members identified in rice and Arabidopsis, respectively (Katiyar et al., 2012). 

The general role of MYB genes include biologically important processes such as plant 

development (Dai et al., 2012), signal transduction (Abe et al., 1997), and responses to biotic 

(Cominelli et al., 2005) and abiotic stresses (Cominelli et al., 2005). MYB transcription factor 

functions overlap with HDAC gene regulation, however few interactions have been identified 

between them. 

Limited research is available on interactions between HDACs and MYB proteins in plant 

systems. In mice, HDAC3 interacts in a protein complex involving the SMRT (silencing 

mediator of retinoid and thyroid hormone receptor) and NCoR (nuclear receptor corepressor) 

protein complexes to regulate gene expression in development and metabolism (Codina et al., 
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2005). SMRT has a deacetylase activation domain (DAD), as well as a SANT-like domain 

(Codina et al., 2005). The SANT domain plays a role in chromatin remodeling as well as 

transcriptional regulation (Boyer et al., 2002). The SANT domain is similar in protein 

architecture to the MYB domain, however it cannot interact with DNA, because it does not 

possess the conserved basic residues on its surface required for DNA binding (Grüne et al., 

2003). The identified DAD domain can bind directly to HDAC3, however the C-terminal SANT 

domain is required to mediate the interaction with the histone tails (Yu et al., 2003). In 

Arabidopsis, POWERDRESS (PWR) interacts with HDA9 (Chen et al., 2016). PWR contains 

the MYB-like SANT domain essential for HDA9 repression (Mayer et al., 2019). Interactions 

between MYB-like transcription factors such as the SANT domain-containing proteins with 

HDACs are highly likely, because the SANT domain is found in chromatin remodeling 

complexes. 

1.6.2 Interactions with WRKY Transcription Factors 

Among the largest transcription factor families is the plant-specific WRKY family (Rushton et 

al., 2010). The WRKY transcription factor family is characterized by the conserved WRKY 

domain, an amino acid sequence WRKYGQK found at the N-terminal end and the zinc-finger-

like motif (Eulgem et al., 2000). The 60 amino acid conserved domain contains DNA-binding 

activity specific to the promoter W-box sequence, (T)TTGACC/T (Rushton et al., 1996). 

Members of the WRKY family have been studied within Arabidopsis and Oryza sativa (rice), 

identifying 72 and 105 members, respectively (Eulgem and Somssich, 2007; Zhang and Wang, 

2005). Members are classified into either group I, II or III based on the number of WRKY 

domains and the structure of the zinc-finger-like motif (Eulgem et al., 2000). Proteins with two 

WRKY domains are classified as group I, whereas group II members have a single WRKY 

domain (Eulgem et al., 2000). The zinc-finger-like motif found in members of group I and II is 

C2H2, whereas group III members have a C2-HC structure (Eulgem et al., 2000). 

Interactions between plant HDACs and WRKYs have been identified previously. In Arabidopsis, 

WRKY38 and WRKY62 interact with HDA19 in response to pathogens (Kim et al., 2008). The 

WRKYs are transcriptional activators for downstream genes involved in suppression of the 

pathogen response; HDA19 interacts with WRKY38 and WRKY62 to abolish their activity, thus 

acting to positively regulate pathogen response (Kim et al., 2008). Furthermore a complex 
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between HDA9, WRKY53 and POWERDRESS (PWR) has been identified to regulate leaf 

senescence in Arabidopsis (Chen et al., 2016). A W-box motif was identified in HDA9 (Chen et 

al., 2016). HDA9 interacts with PWR, which is recruited by WRKY53 to W-box containing 

promoters. This suppresses negative regulation of leaf senescence, leading to the promotion of 

leaf senescence (Chen et al., 2016), although limited interactions between WRKYs and HDACs 

are clearly possible within Arabidopsis. 

1.6.3 Interactions with Protein Phosphatases 

The phosphorylation and dephosphorylation of HDACs are important in the regulation of HDAC 

activity. Serine/threonine protein phosphatases have been identified as interacting partners of 

several RPD3/HDA1 class HDACs via the dephosphorylation of serine and threonine residues 

(Wera and Hemmingst, 1995). In human HeLa cells, HDAC3 activity is down-regulated by an 

interaction with PROTEIN PHOSPHATASE 4 CATALYTIC SUBUNIT (PP4C) to 

dephosphorylate S424 (Zhang et al., 2005). An interaction between the catalytic domain of 

PROTEIN PHOSPHATASE 2 CATALYTIC SUBUNIT (PPP2CA) and HDAC2 in H9c2 cells 

was identified via immunoprecipitation (Yoon et al., 2018). The phosphorylation of S394 is 

required for HDAC2 activity (Eom et al., 2011); therefore, PPP2CA dephosphorylation plays an 

inhibitory role on HDAC2 activity (Yoon et al., 2018). In a similar fashion, PP2A can 

dephosphorylate HDAC7 to regulate its activity (Martin et al., 2008). The association of 

phosphatases and HDACs is observed in plants, as HDA14 interacts with PP2A in Arabidopsis 

(Martin et al., 2008). Generally, RPD3/HDA1 histone deacetylases interact with protein 

phosphatase to regulate HDAC activity. 

In addition to the regulation of HDACs, protein phosphatases may interact with HDACs to co-

repress downstream gene expression. For example, both HDA1 and PROTEIN PHOSPHATASE 

1 (PP1) interact to dephosphorylate Ser133 of cAMP RESPONSIVE ELEMENT BINDING 

PROTEIN (CREB) in HEK293 cells (Canettieri et al., 2003). The HDAC-PP1 complex 

attenuates CREB activity via dephosphorylation of CREB, combined with the histone 

deacetylation of the promoter (Canettieri et al., 2003). This HDAC-PP1 complex illustrates the 

co-repression effects of both dephosphorylation and deacetylation working together in unison to 

regulate gene expression (Canettieri et al., 2003).  
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1.6.4 Interactions with HOS15 

In Arabidopsis, interactions between HDACs with the protein HIGH EXPRESSSION OF 

OSMOTICALLY RESPONSIVE GENE15 (HOS15) have been investigated. HOS15 is a 

negative regulator of stress-responsive genes (Zhu et al., 2008). HOS15 shares sequence 

similarity with the human histone interacting protein TRANSDUCIN-BETA LIKE (TBL); 

similar to TBL, HOS15 is able to interact with the H4 histone tail to mediate acetylation status 

(Zhu et al., 2008). In hos15 transgenic lines, the acetylation status and expression of stress-

related genes such as RD29A and ADH1 increases, implying reduced HDAC activity (Zhu et al., 

2008). A complex involving an interaction between HOS15 and HDA9 to repress cold-response 

genes was identified; the complex binds to the promoter of GIGANTEA (GI) (Park et al., 2019). 

In hda9-1 transgenic plants, the binding of HOS15 to the GI promoter was reduced, displaying 

the importance of the interaction with HDA9 (Park et al., 2019). Furthermore, a co-repression 

complex involving HOS15 and HD2C has been observed in Arabidopsis in response to cold 

stress (Park et al., 2018a). Interaction studies also have identified an interaction between HOS15 

and HDA19 in Arabidopsis (Park et al., 2018b). Despite limited research, complexes involving 

HDAC and HOS15 interactions have been observed in plant systems. 

1.7 Brachypodium distachyon as a Monocot Model Plant 

Arabidopsis is traditionally used as a model organism for plant species. Arabidopsis is a 

dicotyledonous model system with many ideal characteristics for plant molecular research 

including a short life-cycle, physically small size and an annotated genome (Rhee et al., 2003). 

However, with an increasing number of sequenced genomes, more specific plant models are able 

to represent particular species of interest. For example, there is limited HDAC research in 

monocotyledon species, because most research has been conducted within dicotyledons such as 

Arabidopsis. Monocotyledons are of special interest, because they encompass several 

economically important cereal crops, including wheat, rice, corn, and barley. Arabidopsis is 

developmentally and physiologically different from cereal crops, requiring an alternative model 

for molecular research (Kellogg, 2015). Arabidopsis is distantly related to the family of grasses – 

Poaceae – which has not allowed for the successfully identification of many genes of agronomic 

interest (Draper et al., 2001). The dependence of cereal crops for fuel and food production has 

presented the need for a closely related monocot model plant. 
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The members of Poaceae represent several agronomically important temperature cereals that 

tend to be physically large with long life-cycles, which is not ideal for molecular research 

purposes (Opanowicz et al., 2008). In order to perform molecular research and high-throughput 

genetic analysis an adequate model system was required (Draper et al., 2001). O. sativa has been 

used as a monocot model system for the Poaceae grass family, however its usage is questionable 

due to its long life-cycle and generally demanding growth conditions (Draper et al., 2001). Thus, 

Brachypodium distachyon has emerged a model species to study temperate cereals and related 

grasses.  

B. distachyon is a monocot belonging to the grass subfamily Pooideae (Vogel et al., 2010). The 

subfamily Pooideae includes temperature cereals and forage grasses such as wheat, barley and 

oat, making B. distachyon an ideal model system relative to the more distantly related rice 

(Opanowicz et al., 2008).  B. distachyon is an annual temperate grass native to the Middle East 

(Opanowicz et al., 2008). B. distachyon is among the simplest of grass genomes with a genomic 

size of 272 Mb, and five chromosomes are comparable to Arabidopsis (Opanowicz et al., 2008). 

With a short life-span of approximately three months, small stature (15-20 cm) and undemanding 

growth requirements, B. distachyon usage as a monocot model systems has increased over other 

plants such as rice and corn (Draper et al., 2001). Synteny between B. distachyon and other 

members of Poaceae has resulted in the identification of several conserved genomic regions, 

highlighting the effectiveness of this model system (Opanowicz et al., 2008). Combined, these 

factors have strengthened the status of B. distachyon as an effective model monocot system for 

investigating molecular biology research questions. 

1.8 BdHD1: Positive Regulator of Drought Tolerance in B. 
distachyon 

Through analysis of the Brachypodium distachyon genome, eight HATs and twelve HDACs 

were identified (Tan et al., 2019; Song et al., 2019). The twelve HDACs present in B. distachyon 

can be classified into two HDAC families, with eleven belonging to the RPD3/HDA1 family and 

one belonging to the HD2 family (Song et al., 2019). The histone deacetylase BdH1 

(Bradi2g08060) is 78.2% similar at the protein level to HDA19 from Arabidopsis (Song et al., 

2019). Both BdHD1 and HDA19 are classified as RPD3/HDA1 histone deacetylases based on 

sequence homology (Song et al., 2019). In Arabidopsis, HDA19, along with HDA6 and HDA9, 
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is responsive to drought (Chen and Wu, 2010). BdHD1 expression was sensitive to drought 

stress treatments in B. distachyon plants as expression levels increased (Song et al., 2019). In the 

BdHD1 overexpression lines OE22 and OE30, the survival of B. distachyon plants significantly 

increased under drought-stress conditions relative to wildtype Bd21-3 plants; decreased survival 

was observed in drought treatments for bdhd1-30 plants (Song et al., 2019). BdHD1 plays a role 

in drought stress by positively regulating ABA sensitivity and drought tolerance (Song et al., 

2019). 

1.9 Research Objectives 

HDACs do not function individually - they form protein complexes to properly regulate gene 

expression. In B. distachyon, BdHD1 shows high protein sequence similarity to HDA19 from 

Arabidopsis (Song et al., 2019). As previously demonstrated, HDA19 possesses the ability to 

form protein-protein interactions (Kim et al., 2008). For this study, I investigated protein-protein 

interactions between BdHD1 (Bradi2g08060) and candidate B. distachyon proteins, specifically 

BdMYB22 (Bradi2g01960), BdWRKY24 (Bradi2g49020), BdWRKY41 (Bradi2g53510), 

BdHOS15 (Bradi1g52640) and BdPP2C1 (Bradi2g45470). I hypothesized that BdHD1 would 

interact with the candidate B. distachyon proteins. The objective of this study was to identify 

candidate B. distachyon proteins that form protein-protein interactions with histone deacetylase 

BdHD1. The objective was accomplished by using in silico analysis to identify viable candidate 

interacting proteins. Once identified, interactions between BdHD1 and the candidate proteins 

were identified using the yeast two hybrid (Y2H) assay and confirmed via bimolecular 

fluorescence complementation (BiFC). 
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2 Materials and Methods 

2.1 Identification of candidate Brachypodium distachyon 
interacting proteins 

Brachypodium distachyon candidate interacting proteins were selected based on previous 

research and literary analysis. BdMYB22 (Bradi2g01960) and BdWRKY24 (Bradi2g49020) 

were selected based on unpublished research conducted in the Tian Lab at Agriculture and Agri-

Food Canada’s London Research and Development Centre by Jingpu Song; both proteins 

exhibited negative regulation in response to BdHD1 (Bradi3g08060) expression. BdWRKY41 

(Bradi2g53510) was selected as a candidate interacting protein, because it belongs to the WRKY 

family of transcription factors, along with BdWRKY24. Previously, WRKY transcription factors 

have been reported to interact with HDACs in Arabidopsis (Kim et al., 2008). BdHOS15 

(Bradi1g52640) a WD-40 protein, has recently been identified as a component of a gene 

regulating complex involving HDA9 (Park et al., 2019). Lastly, BdPP2C1 (Bradi2g45470) was 

selected as HDACs and serine/threonine protein phosphatases are known interacting partners that 

work together to repress gene expression (Wera and Hemmingst, 1995). 

2.2 In silico analysis of candidate proteins 

The key protein domains were identified within the candidate interacting B. distachyon proteins - 

BdMYB22, BdWRKY24, BdWRKY41, BdHOS15 and BdPP2C1 - using online resources. The 

amino acid sequence of each protein was obtained from Phytozome.net and input into Protein 

BLAST® (NCBI- National Center for Biotechnology Information, U.S. National Library of 

Medicine) to identify protein homologs present in Arabidopsis thaliana. The amino acid 

sequence alignment between each Brachypodium protein and its respective homolog was 

conducted using Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/). 

Further analysis and annotation of the key domains within each protein were conducted using the 

SMART (Simple Modular Architecture Research Tool) tool (http://smart.embl-heidelberg.de/). 

The functions of motifs present in each protein were provided by the SMART Tool. The Phyre2 

tool (http://www.sbg.bio.ic.ac.uk/phyre2) was utilized to visualize the tertiary structures for each 

of the proteins investigated. 
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2.3 Brachypodium distachyon growth conditions 

Wild-type Brachypodium distachyon Bd21-3 seeds were germinated for gene cloning purposes. 

The lemma was removed from the seeds, and the seeds were then soaked in ddH2O for 2 hours at 

room temperature. The seeds were cold treated under dark conditions at 4 C for 48 hours on 

damp filter paper to synchronize germination. After 2 days, germinated seedlings were 

subsequently transferred to a growth chamber with a 16-hour photoperiod, a light intensity of 75 

mol/m2/s, and a temperature of 25 C, for 7 days. 

Germinated seedlings were transferred to sterilized MagentaTM GA-7 Plant Tissue Culture Boxes 

(Sigma-Aldrich) containing 100 ml of modified Hoagland’s hydroponic growth medium (49 

mg/L H3PO4, 250 mg/L CaCl2, 185 mg/L MgSO4·7H2O, 179 mg/L KCl, 58 mg/L NaCl, 241 

mg/L NH4Cl, 454 mg/L KNO3, 2.86 g/L H3BO3, 1.81 g/L MnCl2·4H2O, 220 mg/L ZnSO4·7H2O, 

51 mg/L CUSO4, and 120 mg/L NaMoO4·2H2O in ddH2O, pH=5.8). The seedlings were placed 

onto foam rafts with three plants per raft. Seedlings were placed through the raft holes ensuring 

the roots were fully submerged in the Hoagland’s medium. Six B. distachyon plants were grown 

in each MagentaTM box. Plants were grown for three weeks in the MagentaTM boxes in a growth 

chamber with a 16-hour photoperiod with the parameters as previously stated. The hydroponic 

growth medium was changed every 7 days during the growth period. 

2.4 RNA extraction and cDNA synthesis 

The entirety of B. distachyon plant material was used for RNA extraction. Samples were 

collected after three weeks of growth in Hoagland’s solution once they were approximately 7 cm 

in size.  The samples were placed into 2 mL RNase-free microcentrifuge tubes with one 

Copperhead 6000 copper coated bead. The samples were frozen in liquid nitrogen and stored at -

80 C until RNA extraction was conducted.  

RNA extraction was conducted using a Plant/Fungi Total RNA Purification Kit (Norgen Biotek 

Corp.), as per the product instructions. TissueLyser II (Qiagen) was used to homogenize the 

plant tissue to a fine powder. To lyse cells and inactivate RNases and proteases, 600 L of Lysis 

Buffer C was added to the plant tissue and vortexed. After an incubation of 5 minutes at 55 C, 

the lysate was spun through a Mini Filter Column to remove debris at 2 minutes at 14,000g. A 
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volume of 96-100% ethanol equal to the clear lysate was added, and subsequently loaded into the 

Spin Column provided by the kit. The spin column contains a resin with binding specificity for 

RNA, meanwhile DNA and proteins are removed in the flowthrough. The solution was 

centrifuged for 1 minute at 3,500g and the flowthrough was discarded. The RNA was washed 

using 400 L of Wash Solution A. Remaining impurities were removed from the RNA by 

centrifuging for 1 minute at 14,000g and the supernatant was discarded. Degradation of any 

DNA remaining in the samples was performed using 100L of RNase-free DNase I (15 L 

DNase I and 100L Enzyme Incubation Buffer) and centrifuged as mentioned in the previous 

step. An additional wash with Wash Solution A and a subsequent centrifugation was conducted.  

Finally, the purified total RNA was eluted by adding 30 L of Elution Solution A to the column. 

The column was placed into a fresh elution tube and the sample was spun for 2 minutes at 200g, 

followed by 2 minutes at 14,000g. 

RNA concentration was measured using the NanodropTM 1000 Spectrophotometer. The 

concentration of the RNA samples ranged from 180-600 ng/L. Complementary DNA (cDNA) 

synthesis from the extracted RNA was conducted using iScriptTM reverse transcription supermix 

(Bio-Rad, cat. 170-8841). The solution for reverse transcription was prepared (4 L iScriptTM 

reverse transcription supermix, 1000 ng total RNA, up to 20 L ddH2O). The reverse 

transcription protocol was run on the EppendorfTM MastercyclerTM pro PCR system with the 

following parameters: 50 C for 30 minutes to activate the reverse transcriptase, followed by 85 

C for 5 minutes to deactivate the enzyme. The cDNA was stored at -20 C for short-term 

storage and -80 C for long-term storage. The cDNA was used as the template for gene cloning 

in section 2.6. 

2.5 Gateway® Primer Design 

The primers for the Brachypodium distachyon genes were designed using online resources 

(Phytozome.net, Primer3Plus, Primer-BLAST). The identity of each gene was input into 

Phytozome.net in order to obtain the transcript sequence for each gene - BdHD1 (Bradi3g08060), 

BdMYB22 (Bradi2g01960), BdWRKY24 (Bradi2g49020), BdWRK41 (Bradi2g53510), 

BdHOS15 (Bradi1g52640) and BdPP2C1 (Bradi2g45470). The forward primers were designed 

to partially cover the 5’ UTR and the transcription start site for the desired gene. The reverse 
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primers were located at the 3’ end of the gene coding sequence with the omission of the 

termination sequence. Primers were designed using Primer3Plus 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) and appropriately adjusting 

the parameters. The primer length was 18-20 base pairs, not inclusive of the Gateway® 

attachment sequences. In accordance with the Gateway® cloning manual the attB1 sequence (5’ 

ACAAGTTTGTACAAAAAAGCAG GCTNN 3’) and the attB2 sequence (5’ 

ACCACTTTGTACAAAGCTGGGTN 3’) were fused to the forward and reverse gene-specific 

primers, respectively (Hartley et al., 2000). The melting temperature and GC content were 60 C 

and 40-60%, respectively. Suggested primer sequences obtained from Primer3Plus were input 

into Primer-BLAST (NCBI-National Center for Biotechnology Information, U.S. National 

Library of Medicine) to assess the specificity of the primers across the B. distachyon genome.  
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Table 2.1 Primers used in the Gateway gene cloning experiments 

Primer Name Primer Sequence (5’ → 3’) 

BdHD1attF GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGACC

TCTCCTCGGCC 

BdHD1attR GGGGACCACTTTGTACAAGAAAGCTGGGTATGGCTTCTG

ATAAACAGCCGATG 

BdMYB22attF GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGCTAG

TGCCATATCTGTCTATCT 

BdMYB22attR GGGGACCACTTTGTACAAGAAAGCTGGGTAGATTCCTCC

TGATCCCCACTC 

BdWRKY24attF GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGATA

ACCTCCACGGAGAGG 

BdWRKY24attR GGGGACCACTTTGTACAAGAAAGCTGGGTAGAACCGGG

AGAGAAACTGAAGC 

BdWRKY41attF GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGCAGG

CGCAGTCCC 

BdWRKY41attR GGGGACCACTTTGTACAAGAAAGCTGGGTAAAGCAGCA

TGTCGTCGTCA 

BdHOS15attF GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGGAG

GGATTACATCGGC 

BdHOS15attR GGGGACCACTTTGTACAAGAAAGCTGGGTACATCCTGAA

ATCCATGACACAGAC 

BdPP2C1attF GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGAGCA

CCGAGACGACG 

BdPP2C1attR GGGGACCACTTTGTACAAGAAAGCTGGGTACCTGCGGTT

CTCTTTGATCAC 
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2.6 Preparation of Media for Bacterial Cultures 

Luria-Bertani (LB) medium was used to culture Escherichia coli (E. coli) and Agrobacterium 

tumefaciens (A. tumefaciens). Liquid LB medium was prepared using 5g/L BD Biosciences 

BactoTM Yeast Extract (Ref. 212750), 10g/L BD Biosciences BactoTM Tryptone (Ref. 211705), 

and 10g/L NaCl in ddH2O. Solid LB medium was prepared as described above with the addition 

of 10g/L BD Biosciences BactoTM Agar (Ref. 214010). LB plates used with pDONR221TM, 

pEarleygate201-YN, pEarleygate202-YC, and pGBKT7 constructs were supplemented with 

50g/mL kanamycin (Sigma-Aldrich). Bacterial cultures containing pGADT7 were 

supplemented with 50g/mL ampicillin (Sigma-Aldrich). LB medium used for A. tumefaciens 

was additionally supplemented with 50g/mL rifamycin (Sigma-Aldrich). 

2.7 Gateway® Gene Cloning 

Gateway® cloning was used for gene cloning as per the product’s instructions (Invitrogen). The 

BdMYB22 coding sequence was cloned using the BdMYB22attF and BdMYB22attR primers, 

(Table 2.1). The attB recombination sites fused to the primers acted as attachment sites for 

recombination of the cloned genes into the entry vector (Landy, 1989). BdMYB22 was cloned 

from the B. distachyon Bd21-3 cDNA template obtained in section 2.4. The PCR mix was 

prepared (13.3 L ddH2O, 5 L 5X Green Buffer, 3 L 25 mM MgCl2, 0.5 L DNTPs mix, 0.2 

L Taq DNA Polymerase, 1L cDNA template and 1L of each BdMYB22attF and 

BdMYB22attR primers). PCR experiments were carried out using the EppendorfTM 

MastercyclerTM pro PCR system. The parameters for the PCR protocol included initialization at 

94 C for 2 minutes, followed by 30 cycles of denaturing at 94 C for 15 seconds, annealing at 

60 C for 30 seconds and elongation for at 72 C for 30 seconds, and a final elongation for 5 

minutes at 72 C. PCR products were loaded and visualized on 1% agarose gels. The gel was 

loaded with 10 L of PCR product per lane and was run for 20 minutes at 140V using the 

ENDUROTM Gel XL Electrophoresis System. 

The BdMYB22 coding sequence flanked by the attB recombination sites was transferred into the 

entry vector pDONRTM221 using the Gateway® BP Clonase ® (Thermo Fisher Scientific cat. 

11789-020) reaction mix. The BP reaction was incubated overnight at 25 C. Electroporation 
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was used to transfer the pDONRTM221-BdMYB22 vector into electrocompetent E. coli strain 

DH5 cells on LB medium. Transformed E. coli cells were incubated overnight at 37 C. After 

incubation, the pDONRTM221-BdMYB22 plasmids were then isolated and analyzed.  

Single colony PCR was run using the M13-F vector specific forward primer and the gene 

specific BdMYB22 reverse primer. The parameters for the single colony PCR were as described 

above with the exception of an elongated initialization step at 94 C for 10 mins. The 

pDONRTM221-BdMYB22 was sequenced once the correct fragment size was identified via 

colony PCR. Sequencing analysis was done at AAFC (Agriculture and Agri-Food Canada, 

London Research and Development Centre). The pDONRTM221-BdWRKY24 and -BdHOS15 

entry vectors were constructed using the methods mentioned above. 

2.8 Vector Construction 

The destination vectors used in the yeast two-hybrid (Y2H) and bimolecular fluorescence 

complementation (BiFC) were generated using Gateway® technologies (Earley et al., 2006) (Lu 

et al., 2010). For Y2H, the pGADT7-Gateway® and pGBKT7-Gateway® destination vectors 

were used, while pEarleygate201-YN and pEarleygate202-YC were used for BiFC. The 

BdMYB22 coding sequence was recombined into the destination vector pGADT7-Gateway® 

from the entry vector pDONRTM221-BdMYB22 using the Gateway® LR Clonase ® (Thermo 

Fisher Scientific cat. 11791-020) reaction mix. The LR reaction was incubated overnight at 4 C. 

Electroporation was used to transfer the pGADT7-BdMYB22 vector into E. coli strain DH5 

cells. E. coli cells were incubated overnight at 37 C after transformation. The pGADT7-

BdMYB22 plasmids were isolated and confirmed via restriction enzyme digests and single colony 

PCR. Using the above methods pDONRTM221-BdMYB22 was additionally recombined into each 

of pGBKT7-Gateway®, pEarleygate201-YN and pEarleygate202-YC. The destination vectors 

were generated as described above for BdHD1, BdWRKY24, and BdHOS15 sequences. For 

BdHD1the pDONRTM221-BdHD1 entry vector was constructed in the Tian Lab by Jingpu Song.  
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Figure 2.1. Schematic diagram of Gateway® gene cloning. 

A, the gene coding sequence is flanked by the attB1 and attB2 Gateway® coding sequences. BP 

Clonase allows attB and attP sites to recombine, inserting the gene coding sequence into 

pDONR221 replacing the lethal ccdB gene. B, the entry vector, pENTR, contains the gene 

coding sequence flanked by the attL1 and attL2 sites. LR Clonase allows the attL sites to 

recombine with attR to insert the PCR product into the pDEST vector to produce the expression 

clone. Figure adapted from Karimi et al. (2007). 
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2.9 Confirmation of Vectors 

To confirm the correct gene coding sequence was transferred into each destination vector, single 

colony PCR and RE digests were conducted. To isolate the pGADT7-BdMYB22 plasmids, 

single colonies of transformed E. coli strain DH5 were selected. Single colony PCR was run 

using the T7-F vector specific forward primer and the gene specific BdMYB22 reverse primer. 

The parameters for the single colony PCR were as described in section 2.6. The T7-F primer was 

used for pGADT7 and pGBKT7 vector constructs, whereas the 35S-F primer was used for 

pEarleygate201-YN and pEarleygate202-YC constructs. The gene specific primers used for 

colony PCR did not contain the flanked attB sequence (Table 2). 

Further confirmation was conducted using a double restriction digest using BamHI and EcoRV. 

The restriction digest mix was set up (2.5 µL pGADT7-BdMYB22, 1 µL 3.1 Buffer, 1 µL 

BamHI, 1 µL EcoRV, 5.5 µL ddH2O) and incubated at 37 C for 2 hours. The incubation was 

followed by adding 2 µL of Loading Dye. A volume of 10 L of each sample was run on a 1% 

agarose gel for 20 mins at 140 V. The same method was conducted for confirmation of all 

destination vectors – pGADT7, pGBKT7, pEarleygate201-YN, and pEarleygate202-YC, for 

each of BdHD1, BdMYB22, BdWRKY24, and BdHOS15. 

Table 2. Primers used in single colony PCR experiments 

Primer Name Primer Sequence (5’ → 3’) 

M13-F GTAAAACGACGGCCAGT 

T7-F TAATACGACTCACTATAGGGC 

35S-F CAATCCCACTATCCTTCGCAAGACCC 

BdHD1-R TGGCTTCTGATAAACAGCCGATG 

BdMYB22-R GATTCCTCCTGATCCCCACTC 

BdWRKY24-R GAACCGGGAGAGAAACTGAAGC 

BdHOS15-R CATCCTGAAATCCATGACACAGAC 
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2.10 Yeast Two Hybrid Assay 

2.10.1 Preparation of Y2H Growth Media 

The Double Dropout medium: SD/-Leu/-Trp (DDO) plates for Y2H were prepared using 46.7 

g/L Minimal synthetic defined (SD) Agar Base (Takara Bio #630411) and 0.64g/L -Leu/-Trp DO 

(Takara Bio #630417) supplement in ddH2O. The medium was autoclaved prior, and then poured 

into plates. For Quadruple Dropout medium: SD/-Leu/-Trp/-His/-Ade (QDO) media, SD agar 

base was supplemented with 0.60 g/L -Ade/-His/-Leu/-Trp DO supplement (Takara Bio 

#630428) in ddH2O. QDO medium supplemented with X--Gal and Aureobasidin A 

(QDO/X/A) was prepared similarly to QDO with the addition of 200 L Aureobasidin A stock 

solution and 1 ml X--Gal Stock solution (Takara Bio #630463) after autoclaving. 

2.10.2 Y2HGold Competent Cell Preparation 

Yeast two hybrid (Y2H) experiments were carried out according to the YeastmakerTM Yeast 

Transformation System 2 User Manual (Takara Bio) to identify protein-protein interactions 

(Fields and Song, 1989) (Chien et al., 1991). The coding regions of BdHD1, BdMYB22, 

BdWRKY24 and BdHOS15 were cloned into both pGADT7-Gateway® and pGBKT7-

Gateway®, according to section 2.7. The vectors for Y2H were transferred into Saccharomyces 

cerevisiae strain Y2HGold (Takara Bio). The competent yeast cells were prepared via overnight 

incubation at 30 C in 3 mL of YPDA medium. After the incubation, 5 L of the yeast culture 

was added to 50 mL fresh YPDA and incubated until OD600 reached 0.15-0.3. The cells were 

pelleted at 700g for 5 mins at room temperature and the supernatant was discarded. The culture 

was resuspended in 100 mL fresh YPDA and incubation was resumed until OD600 reached 0.4-

0.5. The cells were pelleted under the same parameters as the previous step and were 

resuspended in 30 mL sterile ddH2O. The cells were pelleted a third time with the cells being 

resuspended in 1.5 mL of 1.1xTE/LiAc (1.1 mL 10x TE buffer, 1.1 mL 1M LiAc, 7.8 mL 

ddH2O). This was followed by a final centrifugation with the competent cells resuspended in 600 

L of 1.1xTE/LiAc. 
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2.10.3 Transformation of Y2HGold Cells 

The transformation of the Y2H constructs was conducted once the competent cells were 

prepared. A concentration of 200 ng of each pGBKT7-DEST (bait) and pGADT7-DEST (prey) 

combination was added to 5 L of denatured YeastmakerTM Carrier DNA (Takara Bio). A 

mixture of pGBKT7-BdHD1 with each of pGADT7-BdMYB22, -WRKY24, and -HOS15 was 

transformed; additionally, pGADT7-BdHD1 with each of pGBKT7-BdMYB22, -WRKY24, and -

HOS15 was transformed. A volume of 50 L of Y2H Gold (Takara Bio) competent cells were 

added to the mixture, followed by 500 L of PEG/LiAc (8 mL 50% PEG 3350, 1 mL 10x TE 

buffer, and 1 mL 1M LiAc (10x)). After an incubation period of 30 min at 30 C 20 L of 

DMSO was added to the mixture. The cells were heat-shocked for 15 min in a 42 C water bath. 

The cells were pelleted at 13,000g for 30 seconds and supernatant was discarded. A volume of 1 

mL of 0.9% (w/v) NaCl solution (0.9g NaCl in 100 mL ddH2O) was added to the cells. 

For plating of the cells, a volume of 30 L of the transformed yeast cells were plated and spread 

onto Double Dropout medium: SD/-Leu/-Trp (DDO). The cells were incubated at 30 C for 3-5 

days. Colonies were randomly picked from DDO plates after the incubation period and were 

resuspended in 0.9% (w/v) NaCl solution. The yeast colonies were plated at the default 

concentration as well as at a 1/10 dilution onto Quadruple Dropout medium: SD/-Leu/-Trp/-His/-

Ade (QDO). The formation of colonies was observed after a 3-5 day incubation period at 30 C. 

Colonies from the QDO media were then selected and diluted as mentioned above and 

subsequently plated onto QDO medium supplemented with X--Gal and Aureobasidin A 

(QDO/X/A). After incubation for 3-5 days at 30 C yeast colony growth was observed. Three 

technical replications were conducted for each combination of Y2H constructs. 

2.10.4 Y2H Experimental Controls 

A mixture of the pGADT7-DEST (prey) and the empty pGBKT7 vectors were used for the 

negative controls for each of the proteins: BdHD1, BdMYB22, BdWRKY24 and BdHOS15. 

Additionally, pGBKT7-Lam and pGADT7-7 provided in the Y2H kit was used as the negative 

control, these vectors encode lamin and SV40 large T-antigen. The positive control from the kit 

was used: pGBKT7-53 and pGADT7-T which encode murine p53 and SV40 large T-antigen. 
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2.11 Bimolecular Fluorescence Complementation Assay 

Bimolecular fluorescence complementation (BiFC) experiments were carried out to confirm 

protein-protein interactions (Tian et al., 2011). The coding regions of BdHD1, BdMYB22, 

BdWRKY24 and BdHOS15 were cloned into both pEarleygate201-YN and pEarleygate202-YC, 

according to section 2.7. Each of these vectors was separately transferred into Agrobacterium 

tumefaciens (GV3101). Agrobacterium was incubated for 2-3 days at 28 C until colony growth 

was present on LB medium supplemented with kanamycin and rifamycin. 

Fresh colonies for BiFC were prepared by picking single colonies to inoculate 3 mL of LB, 

containing 50 g/mL kanamycin (Sigma-Aldrich) and 50 g/mL rifamycin (Sigma-Aldrich), and 

grown overnight at 28 C. Cells were pelleted at 10,000g for 1 min and supernatant was 

discarded. A volume of 1 mL of infiltration media (5 g/L glucose, 50 mM MES hydrate, 2 mM 

Na3PO4 and 0.1 mM acetosyringone) was added to the pelleted cells and then centrifuged again 

under the same conditions. Washing of the pellet with the infiltration medium was repeated a 

total of three times, each time resuspending the pellet in the medium. Cells were finally 

resuspended in 500 L infiltration medium. Infiltration medium was added to the cells until the 

desired OD between 1.0-1.2 was reached.  A mixture of BdHD1-YN and each of the 

BdWRKY24, BdMYB22 and BdHOS15 pEarleygate202-YC combinations was created at a 1:1 

ratio. Additionally, the mixtures between BdHD1-YC and each of the BdWRKY24, BdMYB22 

and BdHOS15 pEarleygate201-YN combinations were created as well. 

Nicotiana benthamiana plants were grown at 16 h light at 22 C/8 h dark at 20 C with 50% 

humidity. The leaves of five-week-old plants were used for infiltration. The abaxial side of the 

leaf was infiltrated with 200 L of the Agrobacterium mixture. Each agrobacterium mixture was 

infiltrated into a minimum of two N. benthamiana leaves. Infiltrated plants were returned to the 

same plant growth conditions. After 24-48 hours, the YFP signal was observed using a FV3000 

Olympus Confocal Laser Scanning Microscope. The argon excitation laser wavelength was set at 

514 nm to visualize the YFP signal. Three technical replicates were conducted for each 

combination of BiFC constructs. 
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3 Results 

3.1 Identification of Homologous Proteins in Brachypodium 
distachyon 

The protein sequence for each candidate interacting B. distachyon protein – BdMYB22 

(Bradi2g01960), BdWRKY24 (Bradi2g49020), BdWRKY41 (Bradi2g53510), BdHOS15 

(Bradi1g52640) and BdPP2C1 (Bradi2g45470) - was acquired from Phytozome.net. Using 

Protein BLAST® (NCBI-National Center for Biotechnology Information, U.S. National Library 

of Medicine) the corresponding A. thaliana proteins homologs were identified for each B. 

distachyon protein. The amino acid sequence alignment between each B. distachyon protein and 

its respective Arabidopsis homolog was conducted via Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/).  

BdMYB22 shares 79.55% similarity with AtMYB62 (At1g68320) at the protein level (Figure 

3.1A). The SANT domain was present in both BdMYB22 and AtMYB62. The SANT domain is 

a motif related to the MYB DNA-binding domain (Grüne et al., 2003). SANT domain-containing 

proteins are present in chromatin remodeling enzymes and are known interactors of chromatin 

modifying complexes involving HDACs (You et al., 2001); therefore BdMYB22 was selected as 

a candidate interacting protein.  

BdWRKY24 is homologous to AtWRKY24 (At5g41570) in Arabidopsis; the two proteins share 

69.72% similarity (Figure 3.1B). BdWRKY41 shares 30.81% similarity at the protein level with 

AtWRKY70 (At3g56400) (Figure 3.1C). The WRKY DNA-binding domains were conserved for 

both BdWRKY24 and BdWRKY41, along with each of their homologous proteins. Additionally, 

negative regulation of BdWRKY24 by BdHD1 expression in B. distachyon was previously 

identified (Song et al., 2019). Involvement of WRKY transcription factors in gene repression 

complexes in association with HDACs led to the inclusion of BdWRKY41 to determine potential 

interactions (Kim et al., 2008).  

BdPP2C1 is 53.47% similar to the highly ABA-induced PP2C protein 3 (At2g29380) in 

Arabidopsis (Figure 3.1D). The PP2C domains are involved in dephosphorylation. 

Dephosphorylation and deacetylation function in unison to mediate gene repression, as observed 
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in complexes involving phosphatase and HDAC proteins (Canettieri et al., 2003). Analysis of 

BdHOS15 determined 58.56% sequence similarity with AtHOS15 (At5g67320) (Figure 3.1E). 

AtHOS15 is a WD-40 repeat family protein involved in stabilization of protein-protein 

interactions (Smith et al., 1999). Recent experiments have identified interactions between HDA9 

and AtHOS15 in Arabidopsis to repress gene expression (Park et al., 2019), therefore an 

interaction was predicted in B. distachyon. 
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Figure 3.1. Protein sequence alignment of B. distachyon proteins to Arabidopsis homologs.  

Amino acid sequence alignment for (A) BdMYB22, (B) BdWRKY24, (C) BdWRKY41, (D) 

BdPP2C1 and (E) BdHOS15 with their respective protein homolog in Arabidopsis. An asterisk 

(*) indicates amino acids that are fully conserved. A colon (:) represents conservation between 

groups with strongly similar properties. A period (.) represents conservation between groups with 

weakly similar chemical properties. Alignments conducted courtesy of Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/). 
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3.2 Structural Analysis of B. distachyon proteins 

The protein domains and tertiary structures for each of BdMYB22 (Bradi2g01960), BdWRKY24 

(Bradi2g49020), BdWRKY41 (Bradi2g53510), BdHOS15 (Bradi1g52640) and BdPP2C1 

(Bradi2g45470) were analyzed using the SMART tool (http://smart.embl-heidelberg.de/) and 

Phyre2 tool (http://www.sbg.bio.ic.ac.uk/phyre2), respectively. Protein analysis of BdMYB22 

identified two SANT domains (Figure 3.2). This domain is similar to the DNA-binding domain 

commonly found in members of the MYB superfamily (Boyer et al., 2002). The SANT domain 

is composed of tandem repeats of three -helices arranged into helix-turn-helix motifs (Figure 

3.3A) (Grüne et al., 2003). Despite the structural similarity between the SANT and MYB 

domains, the SANT motif is functionally divergent and often found in the chromatin modifying 

complex (Boyer et al., 2004). Both BdWRKY24 and BdWRKY41 contain the WRKY domain. 

The WRKY domain forms a four stranded -sheet containing the WRKYGQK consensus 

sequence (Eulgem et al., 2000; Yamasaki et al., 2005). WRKY transcription factors bind to DNA 

to regulate gene expression and are negatively regulated by direct interactions with HDACs 

(Kim et al., 2008). Analysis of BdHOS15 identified the LisH domain along with 8 WD40 

repeats. The LisH (lissencephaly type-1 like homology motif) domain, an -helix is followed by 

an uncharacterized coiled-coil region involved in protein dimerization (Gerlitz et al., 2005). The 

WD40 structural repeats are approximately 40 residues and each form individual blades of the -

propeller domain (Smith et al., 1999). The -propeller domain provides a surface for the 

facilitation of protein-protein interactions (Smith et al., 1999). Lastly, BdPP2C1 is characterized 

by the PP2Cc domain, a serine/threonine phosphatase family 2C catalytic domain. The complex 

PP2C domain consists of 10 -strands and 5 -helices (Smith et al., 1999) and interacts in 

complexes with HDACs (Canettieri et al., 2003). 
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Figure 3.2. Key domains identified in candidate B. distachyon proteins. 

Key protein domains were predicted for each candidate interacting protein using SMART 

software (http://smart.embl-heidelberg.de/). 
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Figure 3.3. Tertiary structures of Brachypodium distachyon proteins. 

Tertiary structures for the candidate interacting B. distachyon proteins were predicted using the 

Phyre2 tool (http://www.sbg.bio.ic.ac.uk/phyre2). Protein structures are shown for (A) 

BdMYB22, (B) BdWRKY24, (C) BdWRKY41, (D) BdHOS15 and (E) BdPP2C1. 
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3.3 Gene Cloning of BdMYB22, BdWRKY24 and BdHOS15 

Gateway gene cloning was used to amplify the gene coding sequence for each of the candidate 

genes – BdMYB22, BdWRKY24, BdWRKY41, BdHOS15 and BdPP2C1 – chosen for 

interaction analysis with BdHD1. Gateway gene cloning utilizes attB attachment sequences 

flanked to the gene coding sequence. Using the gene specific primers, the gene coding regions 

were amplified and isolated from the wild-type Brachypodium distachyon Bd21-3 cDNA. The 

PCR products were loaded and identified on 1% agarose gels. The correct gene size fragment 

was obtained for BdMYB22, BdWRKY24 and BdHOS15.  Expected band sizes for each of 

BdMYB22, BdWRKY24 and BdHOS15 were 1074 bp, 669 bp and 1668 bp, respectively 

(Appendix 1, 2, 4).  

Once amplified, the gene coding sequences of BdMYB22, BdWRKY24 and BdHOS15 were 

inserted into the pDONRTM221 entry vector. The entry vector encodes an antibiotic resistance 

gene nptII which confers resistance to kanamycin; this allows for the selection of transformed 

Escherichia coli cells on the growth medium. The successful recombination of each of these 

genes was confirmed by single colony PCR using the M13 forward primer and the gene specific 

reverse primer. The M13 primer sequence is located upstream of the attP1 site in pDONRTM221 

(Figure 3.4A). The correct amplified fragments from the entry vectors with each of BdWRKY24, 

BdMYB22 and BdHOS15 were identified (Figure 3.4B-D). Once isolated, the identity of the 

genes BdWRKY24, BdMYB22 and BdHOS15 were confirmed by sequencing analysis. 
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Figure 3.4. Single colony PCR for pDONRTM221 constructs. 

A, the pDONRTM221 entry vector map with primer sites used for single colony PCR. The M13F 

primer is annotated by a→ and the sequence specific primer is located at the 3’ end annotated by 

b. The recombined target sequence is flanked by the attP1 and attP2 sites. The nptII gene 

confers resistance to kanamycin. B, the fragment corresponding to pDONRTM221-BdWRKY24 

was amplified by using the M13F primer and the BdWRKY24-R primer. C, the fragment 
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corresponding to pDONRTM221-BdMYB22 was amplified by using the M13F primer and the 

BdMYB22-R primer. D, the fragment corresponding to pDONRTM221-BdHOS15 was amplified 

by using the M13F primer and the BdHOS15-R primer. The correct band size was observed for 

each gene as each gene was successfully recombined into pDONRTM221. 

3.4 Cloning of BdWRKY41 and BdPP2C1 

The cDNA sequence for BdWRKY41 and BdPP2C1 were not successfully cloned. Gene specific 

primers with the attB attachment sequences were used to isolate the gene coding sequence for 

each gene. No DNA bands were amplified for neither BdWRKY41 nor BdPP2C1. Gene specific 

primers without the attB attachment sequence were unable to isolate the DNA fragment from the 

cDNA. Gradient PCR was conducted from 55-65 C to identify an optimal temperature for 

amplification, however the correct band size was not identified. The expected sizes of 

BdWRKY41 and BdPP2C1 were 969 bp and 1179 bp, respectively (Appendix 3 and 5). 

3.5 Generation of pGADT7 and pGBKT7 Constructs 

The destination vectors, pGADT7 and pGBKT7, were required to perform Yeast Two Hybrid 

(Y2H) experiments. The pGADT7 vector contains the GAL4 activation domain, whereas the 

GBKT7 encodes the DNA-binding domain of GAL4. The coding sequence for each of BdHD1, 

BdMYB22, BdWRKY24 and BdHOS15 were recombined into the pGADT7 (prey) and 

pGBKT7 (bait) vectors using Gateway® LR Clonase ® (Thermo Fisher Scientific cat. 11791-

020) reaction mix. The pGADT7 and pGBKT7 constructs used in this experiment contained the 

attR1 and attR2 Gateway® sites for recombination. The pGADT7 and pGBKT7 constructs for 

each of the proteins in this experiment were electroporated into E. coli and grown on selective 

LB medium. The vectors were isolated and assayed for each gene to confirm the integration of 

the coding sequence into the Y2H constructs. 

The constructs were isolated via single colony PCR. The T7-F vector primer and the gene 

specific reverse primers were used for each vector (Table 2). The T7-F vector primer sequence is 

located within the T7 promoter upstream of the attR1 sequence (Figure 3.5A). The correct band 

size was identified for pGADT7 constructs for each of BdHD1, BdMYB22, BdWRKY24 and 

BdHOS15 (Figure 3.5B-E). The fragment sizes were 1634bp, 746bp, 1156bp and 1745bp for 
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pGADT7-BdHD1, pGADT7-BdWRKY24, pGADT7-MYB22 and pGADT7-HOS15, respectively. 

For all pGBKT7 constructs the correct fragment sizes were identified via single colony PCR 

(Figure 3.6B-E). The fragment sizes for pGBKT7-BdHD1, pGBKT7-BdWRKY24, pGBKT7-

BdMYB22 and pGBKT7-HOS15 were 1638bp,750 bp,1160 bp and 1749 bp, respectively. 

 

 

Figure 3.5. Analysis of amplified pGADT7 destination vector fragments. 

A, the pGADT7 vector map with primer sites used to amplify the recombined genes. The T7-F 

sequencing primer is annotated by a→ and the sequence specific primer is located at the 3’ end 

annotated by b. The recombined target sequence is flanked by the attR1 and attR2 sites. Other 

notable features of the vector include: PADH1 (ADH1 promoter), GAL4 activation domain, PT7 

(T7 RNA polymerase promoter), HA tag and TADH1 (ADH1 terminator). B, the fragment 

corresponding to pGADT7-BdHD1 was amplified by using the T7-F sequencing primer and the 

BdHD1-R primer. C, the fragment corresponding to pGADT7-BdWRKY24 was amplified by 
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using the T7-F sequencing primer and the BdWRKY24-R primer. D, the fragment corresponding 

to pGADT7-BdMYB22 was amplified by using the T7-F sequencing primer and the BdMYB22-F 

primer. E, the fragment corresponding to pGADT7-BdHOS15 was amplified by using the T7-F 

sequencing primer and the BdHOS15-R primer. The expected fragment size was observed for all 

constructs as each gene was successfully recombined into the vector pGADT7. 

 

 

Figure 3.6. Confirmation of pGBKT7 destination vectors. 

A, the pGBKT7 vector map with primer sites used to amplify the recombined genes. The T7-F 

sequencing primer is annotated by a→ and the sequence specific primer is located at the 3’ end 

annotated by b. The recombined target sequence is flanked by the attR1 and attR2 sites. Other 

notable features of the vector include: PADH1 (ADH1 promoter), GAL4 DNA-binding domain, 

PT7 (T7 RNA polymerase promoter), c-Myc epitope tag, TT7 (T7 terminator) and TADH1 (ADH1 

terminator). B, the fragment corresponding to pGBKT7-BdHD1 was amplified by using the T7-F 

sequencing primer and the BdHD1-R primer. C, the fragment corresponding to pGBKT7-

BdWRKY24 was amplified by using the T7-F sequencing primer and the BdWRKY24-R primer. 
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D, the fragment corresponding to pGBKT7-BdMYB22 was amplified by using the T7-F 

sequencing primer and the BdMYB22-F primer. E, the fragment corresponding to pGBKT7-

BdHOS15 was amplified by using the T7-F sequencing primer and the BdHOS15-R primer. The 

expected fragment size was observed for all constructs as each gene was successfully 

recombined into the vector pGBKT7. 

3.6 Yeast Two Hybrid (Y2H) Identifies BdHD1 Protein-Protein 
Interactions 

Yeast Two Hybrid (Y2H) was used to identify protein-protein interactions formed between 

BdHD1 and candidate interacting B. distachyon proteins. Y2H is a technology used to screen for 

protein-protein interactions by screening for physical interactions. The GAL4 protein is cleaved 

into the GAL4 activation domain and the GAL4 DNA-binding domains. The two vectors used 

were pGADT7 (prey) and pGBKT7 (bait), which encode the activation and DNA binding 

domains of GAL4, respectively. The coding sequence of BdHD1 was fused to the GAL4 DNA-

binding domain, whereas the coding sequences of each BdMYB22, BdWRKY24, and BdHOS15 

were fused to the GAL4 activation domain. Reversibly, BdHD1 also was fused to the activation 

domain. Meanwhile, BdMYB22, BdWRKY24 and BdHOS15 were fused to the DNA binding 

domain of GAL4. 

S. cerevisiae strain Y2H Gold was transformed with pGBKT7-BdHD1 and each of pGADT7-

BdMYB22, pGADT7-WRKY24, and pGADT7-HOS15. Yeast cells were also co-transformed with 

the reverse constructs: pGADT7-BdHD1 with one of pGADT7- BdMYB22, pGADT7-WRKY24, 

and pGADT7-HOS15. Each of the co-transformed yeast cells were plated on the Double Dropout 

(DDO) (-Trp/-Leu) medium. Yeast colonies formed on the DDO medium for all of the bait and 

prey co-transformations: pGBKT7-BdHD1 + pGADT7-BdMYB22, pGBKT7-BdHD1 + pGADT7-

BdWRKY24, pGBKT7-BdHD1 + pGADT7-BdHOS15, pGBKT7-BdMYB22 + pGADT7-BdHD1, 

pGBKT7-BdWRKY24 + pGADT7-BdHD1 and pGBKT7-BdHOS15 + pGADT7-BdHD1. For the 

both the positive and negative controls, pGBKT7-53 + pGADT7-T and pGBKT7-Lam + 

pGADT7-7, respectively, and yeast colony growth was observed on the DDO medium. Growth 

on the DDO medium indicated successful co-transformation of pGADT7 (bait) and pGBKT7 

(prey) constructs into yeast Y2H Gold cells (Figure 3.7a, d, g, j, m, o). The growth on the DDO 

medium did not indicate whether protein-protein interactions were able to form. Growth on the 
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DDO medium was consistent across all three experimental repetitions for each co-

transformation. 

Yeast colonies were picked from the DDO medium and plated onto the Quadruple Dropout 

(QDO) (-Trp/-Leu/-His/-Ade) medium. Yeast cells co-transformed with pGBKT7-BdHD1+ 

pGADT7-BdMYB22 successfully grew on the QDO medium, indicating that BdHD1 and 

BdMYB22 are able to interact with each other (Figure 3.7h). Growth on the QDO medium 

indicates protein-protein interactions via expression of reporter genes HIS3 and ADE2 for 

histidine and adenine, respectively. Colony formation was observed for both the default 

concentration and the 1/10 dilution. Likewise, the reverse experiment with the pGADT7-BdHD1 

+ pGBKT7-BdMYB22 constructs resulted in yeast growth on QDO medium (Figure 3.7k). The 

interaction between BdHD1 and BdMYB22 constructs was consistent for all repetitions on the 

QDO medium.  

The transfer onto the more selective Quadruple Dropout supplemented with X--Gal and 

Aureobasidin A (QDO/X/A) did not yield high quantities of yeast colonies. Growth on 

QDO/X/A medium confirms the interactions via the expression of additional reporter genes, 

AUR1-C and MEL1, which encode inositol phosphoryl ceramide synthase and a-galactosidase, 

respectively. Only colonies containing the pGADT7-BdHD1 + pGBKT7-BdMYB22 constructs 

were able to grow; growth was limited to eight colonies at the default concentration (Figure 

3.7l). No colonies were able to grow at the 1/10 dilution or for the reverse experiment with the 

pGADT7-BdMYB22 + pGBKT7-BdHD1 constructs, indicating the interaction is not strong 

enough to grow on more selective medium (Figure 3.7i).  

When cells were co-transformed with pGBKT7-BdWRKY24 + pGADT7-BdHD1 and plated onto 

the QDO medium yeast colony growth was observed at both dilutions, implying that BdHD1 and 

BdWRKY24 interact with each other (Figure 3.7e). However, no colony growth with the 

exception of one colony was observed on the QDO medium for the reverse experiments utilizing 

the pGBKT7-BdHD1 + pGADT7-BdWRKY24 constructs (Figure 3.7b). This indicates that the 

interaction between BdHD1 and BdWRKY24 in the bait and prey constructs is not uniform and 

may be affected by steric hinderance. The lack of growth on the QDO medium was observed in 

all experimental repeats, as no colonies were observed in other trials. 
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The pGBKT7-BdWRKY24 + pGADT7-BdHD1 co-transformed cells grown on QDO medium 

were transferred to the QDO/X/A medium. Colony growth was abundant on the QDO/X/A 

medium at both dilutions, indicating that this interaction between BdHD1 and BdWRKY24 

exists (Figure 3.7f). Colony growth on the QDO/X/A medium was observed for all repetitions of 

the pGBKT7-BdWRKY24 + pGADT7-BdHD1 co-transformations. 

For the experiments involving BdHOS15 and BdHD1 no interaction was observed via the Y2H 

assays. When transferred to the QDO medium cells with the pGADT7-BdHD1 + pGBKT7-

BdHOS15 or pGBKT7-BdHD1 + pGADT7-BdHOS15, no colonies were present (Figure 3.7n, p). 

In subsequent co-transformations, no colony growth was observed as well. This indicates that 

BdHD1 and BdHOS15 do not form protein-protein interactions with each other. No cell growth 

was observed on the QDO/X/A medium as well.  

When transferred to the QDO medium, the positive control pGBKT7-53 + pGADT7-T grew 

abundantly at both concentrations. The growth of the positive control also was observed on the 

QDO/X/A. This indicates that as expected the positive control constructs were able to interact 

with each other. The negative control provided by the kit, pGBKT7-Lam + pGADT7-7, did not 

grow on either the QDO or QDO/X/A medium. Lastly, the negative controls for each gene used, 

pGADT7-BdHD1 + pGBKT7-Empty, pGADT7-BdMYB22 + pGBKT7-Empty, pGADT7-

BdWRKY24 + pGBKT7-Empty, and pGADT7-BdHOS15 + pGBKT7-Empty, were all able to 

grow on the DDO medium. However, for each of these negative controls no colony growth was 

observed when transferred to the QDO medium, indicating that the fusion of these proteins to the 

GAL4 activation domain did not auto-activate reporter gene expression. 
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Figure 3.7. BdHD1 in B. distachyon interacts with BdMYB22 and BdWRKY24. 

Y2HGold yeast strains were plated on either Double Dropout (DDO) (-Trp/-Leu), Quadruple 

Dropout (QDO) (-Trp/-Leu/-His/-Ade) or Quadruple Dropout supplemented with X--Gal and 

Aureobasidin A (QDO/X/A) medium to determine the ability to grow and identify positive 

interactions. BK and AD: proteins fused with Gal4 DNA binding and activation domains, 

respectively. Growth on the DDO medium was observed for each co-transformation of pGBKT7 

(bait) and pGADT7 (prey) constructs (a, d, g, j, m, o). Yeast colony growth on the QDO medium 

identified protein-protein interactions between BdHD1 and each of BdMYB22 and BdWRKY24 

(e, h, k). Negligible growth was observed when pGBKT7-BdHD1 and pGADT7-BdWRKY24 

were co-transformed (b).  No growth was observed on QDO medium for co-transformations of 

BdHD1 with BdHOS1 (n, p). Lastly, confirmation of the protein-protein interaction was 

conducted using the more selective QDO/X/A medium. Growth on was most abundant on 

between pGADT7-BdHD1 and pGBKT7-BdWRKY24 (f). Little to no growth was observed 

between BdHD1 and BdMYB22 on the QDO/X/A medium as well as for pGBKT7-BdHD1 and 

pGADT7-BdWRKY24 (c, i, l). These results indicate that BdHD1 interacts strongly with 

BdWRKY24 and interacts with BdMYB22 as well. 

3.7 Construction of pEarleygate201-YN and pEarleygate202-YC 
Constructs 

To conduct bimolecular fluorescence complementation (BiFC), the coding sequence of each 

protein in this study was inserted into pEarleygate201-YN and pEarleygate202-YC. The vectors 

encode either the N- or C-terminal fragment of yellow fluorescent protein (YFP). The coding 

sequence of each of BdHD1, BdMYB22, BdWRKY24 and BdHOS15 were recombined into the 

pEarleygate vectors. Vectors were isolated and analyzed from transformed electrocompetent E. 

coli colonies to confirm the transformation. 

The pEarleygate vectors were isolated via single colony PCR. The 35SF vector primer and gene 

specific reverse primers were used to isolate a fragment from the destination vectors (Table 2). 

The sequence for the 35F vector primer is located within the cauliflower mosaic virus (CaMV) 

35S promoter. The promoter is upstream of the 5’ end of the transcription initiation site of the 

inserted gene (Figure 3.8A).  The expected band size was identified for pEarleygate201 
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constructs for each of BdHD1, BdMYB22, BdWRKY24 and BdHOS15 (Figure 3.8B-E). The 

fragment sizes were 1866 bp, 978 bp, 1383 bp and 1977 bp for pEarleygate201-BdHD1, 

pEarleygate201-BdWRKY24, pEarleygate201-BdMYB22 and pEarleygate201-BdHOS15, 

respectively. The correct fragment size was identified within pEarleygate202-YC destination 

vectors (Figure 3.9B-E). The expected fragment size corresponding to each vector were 1863 bp, 

975 bp, 1380 bp and 1974 bp for pEarleygate202-BdHD1, pEarleygate202-BdWRKY24, 

pEarleygate202-BdMYB22 and pEarleygate202-BdHOS15, respectively. 

 

 

Figure 3.8. Confirmation of pEarleygate201-YN destination vectors. 

A, the pEarleygate201-YN vector map with primer sites used to amplify the recombined genes. 

The 35S-F primer is annotated by a→ and the sequence specific primer is located at the 3’ end 

annotated by b. The recombined target sequence is flanked by the attR1 and attR2 sites. Other 
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notable features of the vector include: BAR (Basta herbicide resistance gene), 35S (cauliflower 

mosaic virus 35S promoter), HA tag, YFP-N (yellow fluorescent protein N-terminus) and OCS 

(3’ sequence of octopine synthase gene). B, the proper fragment of pEarleygate201-BdHD1 was 

amplified by using the 35S-F primer and the BdHD1-R primer. C, the proper fragment of 

pEarleygate201-BdWRKY24 was amplified by using the 35S-F primer and the BdWRKY24-R 

primer. D, the proper fragment of pEarleygate201-BdMYB22 was amplified by using the 35S-F 

primer and the BdMYB22-F primer. E, the proper fragment of pEarleygate201-BdHOS15 was 

amplified by using the 35S-F sequencing primer and the BdHOS15-R primer. The expected 

fragment size was observed for all constructs as each gene was successfully recombined into the 

vector pEarleygate201-YN. 

 

 

Figure 3.9. Confirmation of pEarleygate202-YC destination vectors. 
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A, the pEarleygate202-YC vector map with primer sites used to amplify the recombined genes. 

The 35S-F primer is annotated by a→ and the sequence specific primer is located at the 3’ end 

annotated by b. The recombined target sequence is flanked by the attR1 and attR2 sites. Other 

notable features of the vector include: BAR (Basta herbicide resistance gene), 35S (cauliflower 

mosaic virus 35S promoter), FLAG tag, YFP-C (yellow fluorescent protein C-terminus) and 

OCS (3’ sequence of octopine synthase gene). B, the proper fragment of pEarleygate202-BdHD1 

was amplified by using the 35S-F primer and the BdHD1-R primer. C, the proper fragment of 

pEarleygate202-BdWRKY24 was amplified by using the 35S-F primer and the BdWRKY24-R 

primer. D, the proper fragment of pEarleygate202-BdMYB22 was amplified by using the 35S-F 

primer and the BdMYB22-F primer. E, the proper fragment of pEarleygate202-BdHOS15 was 

amplified by using the 35S-F sequencing primer and the BdHOS15-R primer. The expected 

fragment size was observed for all constructs as each gene was successfully recombined into the 

vector pEarleygate202-YC. 

3.8 BiFC confirms interactions between BdHD1 and the 
transcription factors BdMYB22 and BdWRKY24 

The purpose of bimolecular fluorescence complementation (BiFC) was to test and validate the 

protein-protein interactions identified by the Yeast Two Hybrid Assay. BiFC is a technology 

used to identify protein-protein interactions in vivo. Yellow fluorescent protein (YFP) is used to 

visualize protein-protein interactions identified via BiFC. YFP is cleaved into two non-

overlapping fragments contained within the two vectors used for BiFC, pEarleygate201-YN and 

pEarleygate202-YC. BiFC was used to confirm the protein-protein interactions between BdHD1 

with each BdMYB22, BdWRKY24 and BdHOS15. The coding sequence of BdHD1 was fused 

to the N-terminus of YFP, meanwhile the coding sequence of BdMYB22, BdWRKY24, and 

BdHOS15 was fused to the C-terminus of YFP. Reversibly, BdHD1 was fused to the C-terminus 

and BdMYB22, BdWRKY24, and BdHOS15 were fused to the N-terminus. 

The leaves of five-week-old Nicotiana benthamiana plants were infiltrated with BdHD1-YN and 

either one of BdMYB22-YC, BdWRKY24-YC, or BdHOS15-YC. Additionally, the leaves were 

infiltrated with the reverse constructs, using BdHD1-YC and one of BdMYB22-YN, BdWRKY24-

YN, or BdHOS15-YN. Fluorescence of YFP was observed using the confocal microscope at 526 

nm – the excitation wavelength for YFP. 
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Leaves of N. benthamiana co-infiltrated with BdHD1-YN and BdMYB22-YC expressed the 

yellow fluorescent signal, indicating protein-protein interactions between these proteins (Figure 

3.10d-f). Additionally, the YFP signal was observed when BdHD1-YC was co-infiltrated with 

BdMYB22-YN (Figure 3.11d-f). The YFP signal was consistently observed for all repetitions in 

both construct orientations. The expression of the YFP signal was evident within the nucleus for 

this interaction. Weaker YFP signals were also present within the cytoplasm and endoplasmic 

reticulum. The negative controls used were BdMYB22 -YN + Empty-YC or Empty-YN + 

BdMYB22-YC. For the negative controls, the fluorescent signal was not observed, indicating that 

the BdMYB22 BiFC constructs were not auto-fluorescent (Figure 3.10a-c, Figure 3.11a-c). 

The co-infiltration of BdHD1-YN with BdWRKY24-YC in N. benthamiana leaves resulted in the 

expression of YFP, confirming the protein-protein interaction observed via the Y2H assay 

(Figure 3.10g-i). In reverse experiments with BdWRKY24-YN and BdHD1-YC constructs, the 

YFP signal was observable as well (Figure 3.11g-i). The expression of YFP was present within 

the nucleus for both combinations of constructs. The signal for BdHD1 with each of 

BdWRKY24 was also observable within the cytoplasm and the endoplasmic reticulum. The YFP 

signal was consistently observable for all experimental repeats of BdHD1 and BdWRKY24 co-

infiltrations. The negative controls, BdWRKY24-YN + Empty-YC and Empty-YN + BdWRKY24-

YC did not express the YFP signal, indicating no auto-fluorescence. 

The co-infiltration between BdHD1-YN and BdHOS15-YC did not express the YFP signal within 

N. benthamiana leaves, implying that these proteins do not interact with each other (Figure 

3.10j-l). No interaction was observed in any experimental repeats with these two constructs. 

Reverse experiments with BdHOS15-YN and BdHD1-YC did not yield the YFP signal as well 

(Figure 3.11j-l). Thus, the lack of signal indicates that there is no interaction, confirming the 

Y2H assay results. The negative controls for BdHOS15, BdHOS15-YN + Empty-YC and Empty-

YN + BdHOS15-YC did not emit the YFP signal. Based on the results of BiFC and Y2H, an 

interaction between BdHD1 and BdHOS15 does not appear to exist. 
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Figure 3.10. BiFC confirms interactions between BdHD1 with each BdMYB22 and 

BdWRKY24. 

BdHD1 fused with the N-terminus of YFP (BdHD1-YN), while BdMYB22, BdWRKY24 and 

BdHOS15 were fused to the C-terminus of YFP (YC). BdHD1-YN along with each-YC 

construct were co-infiltrated into leaves of N. benthamiana. The leaves were infiltrated using 
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Agrobacterium tumefaciens and were imaged 48-72 hours after infiltration, using an Olympus 

confocal microscope. Images are shown as confocal YFP, bright-field or merged confocal YFP + 

bright-field. Fluorescence was observed between BdHD1 and each of BdMYB22 (d-f) and 

BdWRKY24 (g-i). No YFP signal was observed in the negative control (a-c) or co-infiltrations 

between BdHD1 and BdHOS15 (j-l). The interaction between BdHD1 and each of BdMYB22 

and BdWRKY24 was confirmed. 
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Figure 3.11. BdHD1 interacts with BdMYB22 and BdWRKY24.  

BdHD1 fused with the C-terminus of YFP (BdHD1-YC), while BdMYB22, BdWRKY24 and 

BdHOS15 were fused to the N-terminus of YFP (YN). BdHD1-YC along with each-YN 

construct were co-infiltrated into leaves of N. benthamiana. The leaves were infiltrated using 

Agrobacterium tumefaciens and were imaged 48-72 hours after infiltration, using an Olympus 
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confocal microscope. Images are shown as confocal YFP, bright-field or merged confocal YFP + 

bright-field. Fluorescence was observed between BdHD1 and each of BdMYB22 (d-f) and 

BdWRKY24 (g-i). No YFP signal was observed in the negative control (a-c) or co-infiltrations 

between BdHD1 and BdHOS15 (j-l). The interaction between BdHD1 and each of BdMYB22 

and BdWRKY24 was confirmed. 
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4 Discussion 

4.1 BdHD1 forms protein-protein interactions  

The aim of this study was to investigate whether the histone deacetylase BdHD1 found in 

Brachypodium distachyon forms protein-protein interactions. BdHD1 is one of twelve histone 

deacetylases (HDACs) found within B. distachyon (Song et al., 2019). HDACs depress gene 

regulation by changing the chromatin conformation via histone deacetylation. As previously 

demonstrated in Arabidopsis thaliana, many HDACs do not function individually to alter gene 

expression (Liu et al., 2014). HDAC protein complexes have been identified in several species, 

such as Zea mays (corn), where a complex involving HDA101 was identified (Yang et al., 2016). 

The proteins commonly associated with HDACs are typically transcription factors, and they may 

act to facilitate the specific binding to genes targeted for down-regulation via deacetylation. For 

example, in Oryza sativa (rice), HDA705 interaction assays identified several proteins, including 

the stress and hormone related transcription factors RSS3, RHSF10 and GAMYB-binding 

protein (Zhao et al., 2016). 

Interactions involving HDACs have been demonstrated in Arabidopsis, a model system for dicot 

plants. Many agriculturally and economically important crops, including wheat, rice, barley and 

corn, are monocots. In the case of monocot crops, Arabidopsis has become an increasingly inapt 

model, because Arabidopsis is both developmentally and physically different. Therefore, B. 

distachyon was selected due to its close ancestry with agriculturally important cereal crops 

(Opanowicz et al., 2008; Kellogg, 2015). To investigate these interactions, BdHD1, a B. 

distachyon HDAC, was chosen for interaction assays. BdHD1 shares the highest similarity with 

HDA19 at the protein level. In Arabidopsis, HDA19 interactions have been identified (Kim et 

al., 2008), suggesting that BdHD1 may form interactions in B. distachyon. 

The current study identified protein-protein interactions between BdHD1 and BdMYB22. The 

interactions were observed in a yeast system and subsequently confirmed in vivo in Nicotiana 

benthamiana by using bimolecular fluorescence complementation (BiFC) assays. The 

interactions between BdHD1 and BdMYB22 were present in either orientation whether 

BdMYB22 was fused to the bait or the prey construct. Colony growth was present on QDO 

plates; however, colony formation was hindered on the more selective QDO/X/A medium. The 
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interactions appear to not be strong enough to facilitate growth on QDO/X/A, because limited 

colonies were present on the plates with pGBKT7-BdMYB and pGADT7-BdHD1 constructs. No 

colonies were present on the plates with pGBKT7-BdHD1 and pGADT7-BdMYB22 constructs. 

Confirmation with BiFC further established the interaction between BdHD1 and BdMYB22. The 

interactions between these two proteins were localized to the nucleus. The subcellular 

localization of SANT domain-containing MYB-like transcription factors such as BdMYB22 is 

generally nuclear (Mott et al., 2003; Zhang et al., 2011). HDACs, including BdHD1, are 

typically localized to the nucleus (Song et al., 2019), however cytosolic HDAC localization has 

been observed (De Ruijter et al., 2003). Thus, subcellular localization of this interaction was 

expected within the nucleus. 

The second interaction identified in this study was between BdHD1 and BdWRKY24. This 

interaction was established with both in vitro and in vivo systems. The interaction identified 

between BdHD1 and BdWRKY24 in the Y2H experiments was permutation-dependent. The 

combination of pGBKT7-BdWRKY24 (bait) and pGADT7-BdHD1 (prey) constructs yielded Y2H 

Gold colonies growing on the QDO and QDO/X/A medium. In experiments using the reciprocal 

constructs, pGBKT7-BdHD1 (bait) and pGADT7-BdWRKY24 (prey), no interaction was detected 

on either the QDO or the QDO/X/A media. Initially, these results appeared to be contradictory; 

however, symmetry between interactions is not uniform, because the interactions may be 

permutation-independent (Brückner et al., 2009). The interactions assayed using the Y2H system 

may be influenced by the presence of the bait or prey construct, because it may play a role in the 

ability of the protein to form protein-protein interactions (Brückner et al., 2009). 

Mechanistically, steric hinderance may cause these experiments to yield false negatives 

(Brückner et al., 2009; Gallettta and Rusan, 2015). Furthermore, this interaction was observed in 

BiFC experiments using N. benthamiana for both combinations of constructs. The YFP signal 

was observed when both BdHD1-YN and BdWRKY24-YC were co-infiltrated into N. 

benthamiana. This result was also observed for the reciprocal experiment with the BdWRKY24-

YN and BdHD1-YC constructs. The interaction between BdHD1 and BdWRKY24 was not 

permutation dependent in BiFC experiments. The members of the WRKY transcription factor 

family are localized within the nucleus (Eulgem et al., 2000; Han et al., 2018), hence the 

interaction with BdHD1 was anticipated within the nucleus. Generally, these results demonstrate 

that the B. distachyon HDAC BdHD1 can interact with each of BdWRKY24 and BdMYB22. 
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4.2 Interactions between HDACs and MYB-like transcription 
factors in Brachypodium distachyon 

An interaction between BdHD1 and MYB-like transcription factor, BdMYB22, was identified in 

this research. In silico analysis of BdMYB22 identified two SANT domains; this domain is 

related to the MYB DNA binding domain (Codina et al., 2005). The SANT domain is 

structurally similar to the MYB domain, but alas is functionally divergent, because it does not 

possess DNA binding capabilities (Boyer et al., 2002). Unlike the MYB domain, the surface of 

the SANT domain is negatively charged, thus rendering any interaction with the negatively 

charged DNA backbone highly unlikely (Grüne et al., 2003). This domain interestingly is 

typically found within multiple chromatin modifying complexes in association with HDAC 

proteins (Boyer et al., 2002).  

In B. distachyon, BdHD1 is involved in the deacetylation of H3K9 (Song et al., 2019). The 

chromatin structure is linked to post-translational modifications, including histone deacetylation 

(Garcia-Ramirez et al., 1995). The SANT domain is present in several chromatin modifying 

enzymes, including SWI/SNF COMPLEX SUBUNIT SWI3 (SWI3), TRANSCRIPTIONAL 

ADAPTOR 3 (ADA3), NUCLEAR RECEPTOR COREPRESSOR (N-CoR), and 

TRANSCRIPTION FACTOR IIIB (TFIIIB) (Boyer et al., 2002). The SANT domain facilitates 

HDAC activity via recognition and binding of the histone tail (Boyer et al., 2002). Thus, an 

interaction between BdHD1 and BdMYB22 was anticipated due to the SANT domains present in 

BdMYB22. This role in chromatin modifying complexes is observed across eukaryotic systems 

(Boyer et al., 2004). 

Several key enzymes involved in chromatin modifying complexes contain the SANT domain and 

form protein-protein interactions with HDACs. In human HeLa cells, the co-purification of 

HDAC1 and HDAC2 complexes identified CoREST and MTA-1 as interacting members 

(Humphrey et al., 2001). The SANT domain was identified within these key proteins through 

structural analysis (Humphrey et al., 2001). The SANT domain is essential for the activity of 

these enzymes, because the removal of the SANT domain in CoREST not only eliminated the 

CoREST-HDAC1 interaction, but HDAC activity as well (You et al., 2001). Additionally, the 

co-repressors SMRT and NCoR are both SANT domain-containing proteins identified within 

HDAC interacting complexes (Andres et al., 1999; Yu et al., 2003). In Drosophila, ISWI is a 
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nucleosome remodeling ATPase encoding a C-terminal SANT domain and N-terminal ATPase 

region (Grüne et al., 2003). The SANT domain is critical for binding to the histone, enabling the 

ATPase region to alter the histone-DNA interaction (Grüne et al., 2003). Overall, a well-

established link exists between SANT domain-containing enzymes and proper substrate 

recognition for chromatin modifying proteins. 

The SANT domain and interactions between HDAC and SANT domain-containing proteins has 

been reported in plant systems including Arabidopsis. A complex involving POWERDRESS 

(PWR) and HDA9 that regulates gene expression in aging has been identified in Arabidopsis 

(Chen et al., 2016). PWR is a SANT domain-containing protein that directly binds with HDA9 to 

repress the expression of targeted genes (Mayer et al., 2019). Histone deacetylation depends on 

the presence and interaction of PWR with HDA9, because in pwr mutant lines, histone 

acetylation was increased at target genes (Chen et al., 2016). This illustrates the involvement of 

SANT domain-containing proteins and HDACs as regulators of gene expression via chromatin 

remodeling. 

Based on the observations of this study in combination with previous research, interactions 

between SANT domain-containing proteins and HDACs are conserved across different 

organisms. The interaction between the B. distachyon proteins BdHD1 and BdMYB22 suggests 

these proteins are involved in chromatin modifying complexes of monocot cereal crops. It seems 

plausible that BdMYB22 may be key to targeting the deacetylase activity of BdHD1 to 

appropriate genes. However, the binding of SANT domain-containing proteins to HDACs does 

not imply its role in activation of the HDACs’ function. For example, SMRT, a SANT domain-

containing protein, is able to bind with each of HDAC3 and HDAC4 (Guenther et al., 2002). 

However, upon further analysis, only the interaction between HDAC3 and SMRT was able to 

activate the deacetylase activity of HDAC3 (Guenther et al., 2002). Thus, additional experiments 

are necessary to fully understand the role of BdMYB22 and other potential SANT domain-

containing proteins on HDAC activity in B. distachyon. 
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4.3 Interactions between HDACs and WRKY transcription 
factors in B. distachyon 

BdWRKY24 and BdWRKY41 are both members of the WRKY transcription factor family. The 

WRKY family is plant-specific and among the largest transcription factor families (Rushton et 

al., 2010). A total of 72 and 86 WRKY transcription factors have been identified in Arabidopsis 

and B. distachyon, respectively (Eulgem and Somssich, 2007; Tripathi et al., 2012). Members of 

this family were primarily identified in pathogen defense signaling pathways. The involvement 

of WRKY in plant abiotic stress-responses has been demonstrated. WRKY proteins regulate 

gene expression in response to abiotic stresses including heat, cold and drought-stress (Qiu and 

Yu, 2009).  

The WRKY domain was identified in the B. distachyon proteins BdWRKY24 and BdWRKY41. 

Further analysis identified BdWRKY24 as a homologous partner of AtWRKY24 in Arabidopsis. 

Additionally, BdWRKY41 shared the highest similarity at the protein level with AtWRKY70. 

AtWRKY24 belongs to group IIc, because it possess a single WRKY domain and the C2H2 zinc 

finger motif (Eulgem et al., 2000). Similarly, BdWRKY24 was classified as a member of group 

IIc. Conversely, AtWRKY70 contains one WRKY domain, but is classified as group III on the 

basis of the C2-HC zinc-finger-like motif; as expected BdWRKY41 is a member of group III. 

The interaction between BdHD1 and BdWRKY24 is remarkable, because the expression of 

BdWRKY24 is sensitive to BdHD1 under drought stress conditions (Song et al., 2019). In wild-

type B. distachyon plants, BdWRKY24 expression is up-regulated under drought stress, however 

the expression of BdWRKY24 was repressed in the BdHD1-overexpression lines (Song et al., 

2019). In Arabidopsis, no current experiments have investigated any interactions between 

AtWRKY24 specifically with HDAC proteins. This interaction demonstrates the ability of 

BdHD1 and BdWRKY24 to form protein-protein interactions with each other. 

Both WRKY transcription factors and HDACs are known to form protein-protein interactions, 

therefore it is important to map out interactions between these protein families to gain insight to 

the HDAC-complex in plants. Interactions between WRKY and HDACs have been observed 

within the dicot model system Arabidopsis. In Arabidopsis, HDA19 interacts with each of 

AtWRKY38 and AtWRKY62 to negatively regulate downstream transcriptional activity of the 
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WRKY proteins (Kim et al., 2008). More recently, a complex involving interactions between 

HDA9, AtWRKY53 and POWERDRESS was identified in Arabidopsis (Chen et al., 2016). This 

research has observed an interaction between BdHD1 and BdWRKY24, suggesting BdHD1 may 

act with BdWRKY24 to regulate gene expression. Interactions between WRKY and HDAC 

proteins may provide a mechanism by which plants facilitate gene regulation in response to 

abiotic stress. Further research and identification of other interacting WRKY proteins in B. 

distachyon may lead to further insight into stress response in monocot crops. 

Because BdWRKY41 was not successfully cloned, interaction studies between BdHD1 and 

BdWRKY41 were not assayed. Based on research conducted on AtWRKY70 in Arabidopsis, it 

is possible that an interaction is present, because both are involved in regulating gene expression 

in drought stress-response. Initially, AtWRKY70 had been identified to regulate plant defense 

response to biotic stress, in addition to osmotic stress, in Arabidopsis (Li et al., 2004, 2013). In 

wrky70 and wrky54wrky70, mutant line tolerance to osmotic stress was increased relative to 

wild-type plants; the tolerance was stronger in the double mutant (Li et al., 2013). Thus, 

AtWRKY70 and AtWRKY54 act together to negatively co-regulate ABA-dependent stomatal 

closure in response to osmotic stress (Li et al., 2013). Additional roles in brassinosteroid (BR)-

regulated plant growth along with drought stress have been identified for AtWRKY70 (Chen et 

al., 2017). AtWRKY70 interacts with BRASSINOSTERIOD INSENSITIVE1-EMS-

SUPPRESSOR1 (BES1) to induce the expression of BR-regulated plant growth genes, while 

repressing drought-responsive gene expression under normal conditions (Chen et al., 2017).  

Under drought stress, BR-INSENSITIVE2 (BIN2) phosphorylation of AtWRKY70 decreased 

the protein stability of AtWRKY70, increasing the expression of drought responsive genes (Chen 

et al., 2017). Given that the closest homolog of BdWRKY41 plays a role in drought response in 

Arabidopsis, an interaction with the drought responsive BdHD1 is a possibility, especially with 

knowledge of a previous interaction with BdWRKY24. 

4.4 No interaction between BdHD1 and BdHOS15 observed 

This study did not identify a protein-protein interaction between BdHD1 and BdHOS15 via the 

Y2H and BiFC assays. In Arabidopsis, HIGH EXPRESION OF OSMOTICALLY 

RESPONSIVE GENE15 (HOS15) is a transcriptional co-repressor involved in flowering and 

cold stress response (Zhu et al., 2008). The protein assayed in this study, BdHOS15, shares 
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58.56% sequence similarity with AtHOS15 at the protein level. AtHOS15 is able to form 

physical interactions with histone H4, as well as with histone deacetylase HDA9 (Zhu et al., 

2008; Park et al., 2019). 

AtHOS15 associates with HDAC complexes to repress the expression of downstream stress-

related genes (Park et al., 2019). AtHOS15 is a negative regulator of stress response, as exhibited 

by the increased expression of the stress responsive genes COR15A and ADH1 in  hos15 mutant 

lines (Zhu et al., 2008). The interaction between HDAC9 and AtHOS15 is required for 

appropriate gene expression (Park et al., 2019). In hda9-1 transgenic plants, HDA9 and 

AtHOS15 are unable to form the HDAC complex, resulting in reduced binding of the 

GIGANTEA (GI) promoter (Park et al., 2019). This ultimately results in the increased expression 

of downstream cold-induced genes (Park et al., 2019). Recent research involving the HOS15 and 

HDA9 complex has identified the SANT domain-containing protein POWERDRESS (PWR) as a 

component of the complex (Mayer et al., 2019). Additional HDAC complexes involving 

AtHOS15 have been reported in Arabidopsis, including HD2C (Park et al., 2018a) and HDA19 

(Mayer et al., 2019).  

The interaction between AtHOS15 with HDA19 was identified and confirmed using both Co-

immunoprecipitation (Co-IP) experiments and luciferase complementation imaging (LCI) assays 

(Park et al., 2018b). As previously stated, AtHOS15 is highly similar at the protein level to 

BdHOS15 found in B. distachyon. BdHD1 was reported to share 78.2% similarity at the protein 

level with HDA19 (Song et al., 2019), therefore an interaction between BdHD1 and BdHOS15 

was expected. However, these proteins did not interact in either the Y2H or BiFC assays. 

Although BdHD1 and BdHOS15 did not interact, it is still possible that an interaction exists 

between HDACs and BdHOS15 in B. distachyon. The LisH domain and WD-40 repeats were 

identified within BdHOS15. The lissencephaly type-1 like homology motif (LisH) is an -helical 

domain involved in the dimerization of AtHOS15 (Gerlitz et al., 2005). The identified WD40 

repeats are structural repeats forming a stable -propeller to facilitate the formation of protein 

complexes (Smith et al., 1999; Mascheretti et al., 2013). Therefore, due to the presence of these 

essential motifs in BdHOS15, it is still likely to be involved in HDAC complex formation in B. 

distachyon. Bradi5g09190 encodes BdHD9, which shares 88.3% similarity at the protein level 
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with HDA9, thus perhaps providing a stronger potential interacting partner with BdHOS15 

(Phytozome.net). 
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5 Future Perspectives 

This study reported protein-protein interactions between the Brachypodium distachyon histone 

deacetylase BdHD1, and each of BdMYB22 and BdWRKY24. In B. distachyon, BdHD1 is the 

closest homologous gene to HDA19 from Arabidopsis thaliana (Song et al., 2019). Previous 

research identified AtHDA19 protein-protein interactions to form functional repressor complexes 

(Gonzalez et al., 2007; Kim et al., 2008; Park et al., 2018b). Based on this knowledge, it is 

possible that interactions between BdHD1 and each of BdMYB22 and BdWRKY24 may be 

involved in regulating gene expression.  

In B. distachyon, BdHD1 plays a role in the positive regulation of drought response (Song et al., 

2019). Previous studies identified BdWRKY24 as responsive to drought stress and sensitive to 

changes in BdHD1 expression (Song et al., 2019). The gene expression of BdMYB22 under 

drought stress conditions has not been quantified. Future research may assess the drought 

responsiveness of BdMYB22. The SANT domain present within BdMYB22 is associated with 

histone chromatin modifying complexes to couple HDAC activity to the histone tail (Boyer et 

al., 2002). Assessment of the BdMYB22’s sensitivity to drought stress may provide a mechanism 

for the observed interaction in this study. To be able to fully establish the roles of BdWRKY24 

and BdMYB22 in B. distachyon, it is necessary to perform functional gene analysis of each 

protein.  

Two of the five candidate interacting proteins, BdWRKY41 and BdPP2C1, were not cloned in 

this study and therefore no interaction studies were conducted. To successfully clone these 

proteins and determine whether BdHD1 can interact with either of these proteins would be an 

interesting objective for future studies. In Arabidopsis, AtWRKY70 interacts with AtHDA19 

under drought stress (Chen et al., 2017), and both are homologous genes of BdWRKY41 and 

BdHD1. An interaction in B. distachyon would suggest some HDAC protein-protein interactions 

may be conserved between monocots and dicots to regulate abiotic stress. PP2C1 is a 

serine/threonine protein phosphatase in B. distachyon. The activity and interaction of protein 

phosphatases with HDACs to regulate expression is evident within Arabidopsis (Wera and 

Hemmingst, 1995). The identification of this interaction would suggest that dephosphorylation 
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and histone deacetylation by BdPP2C1 and BdHD1, respectively, may act in unison to repress 

gene expression in B. distachyon (Canettieri et al., 2003). Regardless of this limitation of the 

study, the identified interactions with BdHD1 provide a gateway for the continued identification 

of interacting partners in BdHD1-complexes in B. distachyon.  
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