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Abstract 
Genome instability is an enabling characteristic of cancerous cells. It has recently 

been discovered that the retinoblastoma protein (pRB), typically known for its role in cell 

cycle regulation, also aids in the maintenance of genome stability. Intriguingly, mutations 

to the pRB gene, RB1, can arise late in tumorigenesis in cancer cells whose cell cycle 

regulation is already compromised by another mutation. This suggests that pRB’s 

functions in genome stability could underlie cancer relevant characteristics that are 

independent of its ability to negatively regulate proliferation. The overall aim of this 

thesis is to characterize the different means through which pRB contributes to the 

preservation of genome integrity. Using CRISPR/Cas9, isogenic RB1 mutant genotypes 

were created in a number of cancer cell lines. Cells with at least one mutant copy of RB1 

have increased basal levels of DNA damage and increased mitotic errors. When the 

underlying origins of these phenotypes were investigated further, I discovered elevated 

levels of reactive oxygen species as well as impaired homologous recombination repair in 

cells with RB1 mutations. When xenografted into immune compromised mice, RB1 

mutation also results in an increased capacity to seed new tumors in the lungs. This thesis 

also investigates the functions of the pRB-condensin II complex in maintaining genome 

stability, specifically in interphase cells. Using a gene-targeted mouse model that disrupts 

the ability of pRB to recruit condensin II, Rb1L, locations of pRB-dependent condensin II 

recruitment were investigated. I found that both condensin II and another architectural 

protein complex, TFIIIC, are recruited to promoters between bidirectional genes by a 

mechanism that is reliant on pRB. Recruitment of these architectural proteins at 

bidirectional promoters is required to establish long-range chromosome interactions and 

transcriptional insulation between gene pairs. In addition, pRB deletion in cancer causes 

similar misregulation at divergent promoters, indicating that loss of insulation impacts the 

transcriptome of cancer cells. Overall, this work demonstrates that beyond altered 

proliferative control, loss of pRB can also contribute to cancer progression through 

enhanced DNA damage and altered chromosome topology.  
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Lay Abstract 
In human cells, maintaining the integrity of DNA is critical to preserve proper 

function and health. If genomic instability does occur, it can lead to cancer. It has recently 

been discovered that the retinoblastoma protein (pRB), typically known for its role in 

regulating cellular growth rates to provide protection against cancer, also aids in the 

maintenance of genome stability. Intriguingly, mutations to pRB can arise in cancer cells 

where cellular growth is already compromised. This suggests that pRB’s functions in 

genome stability could underlie cancer relevant characteristics that are independent of its 

ability to regulate cellular growth rates. The overall aim of this thesis is to characterize 

the different means through which pRB contributes to the preservation of genome 

integrity. To investigate this, pRB mutations were created in a number of cancer cell 

lines. Cells with pRB mutations have increased basal levels of DNA damage and 

increased errors when cells are dividing. When transplanted into immune compromised 

mice, cells with pRB mutation have an increased capacity to form new tumors in the 

lungs. This thesis also uses a mouse model with a targeted mutation to investigate the 

genome stability functions of pRB when it is in a complex with another protein, 

condensin II, which is known to fold DNA to package it tightly. I found that condensin II 

and another protein known to alter DNA packaging, TFIIIC, are both reliant on pRB to be 

recruited to the beginning of genes facing opposite directions. Recruitment of condensin 

II and TFIIIC at these locations is required for proper DNA packaging and gene 

expression. In addition, pRB deletion in cancer causes similar misexpression of genes at 

these locations, indicating that loss of pRB and hence condensin II and TFIIIC 

localization impacts gene expression in cancer cells. Overall, this work demonstrates that 

beyond altered cellular growth rates, loss of pRB can also contribute to cancer 

progression through enhanced DNA damage and altered DNA packaging. In the future, 

these recently discovered characteristics could be used to select the best therapeutic tools 

for patients with pRB loss.  
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Chapter 1  

1 Introduction 

1.1 Retinoblastoma onset and the discovery of the 
retinoblastoma gene 
Retinoblastoma, or childhood cancer of the retina, can be inherited due to 

germline mutation or can occur sporadically due to somatic mutation (Falls and Neel, 

1951; Schappert-Kimmijser et al., 1966; Smith and Sorsby, 1958). Because many of the 

collected pedigrees showed affected sibships, and some of the affected sibs themselves 

transmitted the disease to their offspring, retinoblastoma was originally theorized to be 

caused by a single dominant mutant gene that is not completely penetrant (Neel and Falls, 

1951; Smith and Sorsby, 1958). Retinoblastoma can occur either as a unilateral disease, 

affecting only one eye of the child, or as a bilateral disease, affecting both eyes. In 1971, 

Dr. Alfred Knudson used statistics to analyze clinical data and determined that 

retinoblastomas arise through a minimum of two mutational events, which later became 

known as the “two hit hypothesis” (Knudson, 1971). In his study, Knudson realized that 

bilateral retinoblastoma is generally found in children who have a family history of the 

disease.  It was also noted that children with bilateral cases have an earlier mean age at 

diagnosis than those with unilateral cases. These observations, therefore, could be 

explained by his hypothesis; affected children with familial retinoblastoma inherit one 

mutational event in their genome, making them susceptible to retinoblastoma, but it is not 

until they acquire a second mutation, or “hit”, that they succumb to the disease.  Patients 

who do not inherit the first mutation, however, need to have two independent mutational 

events occur to develop retinoblastoma. This hypothesis, therefore, is built on the 

assumption that there is a gene whose protein product is necessary to suppress 

retinoblastoma incidence.  

Early genetic studies of retinoblastomas revealed that there were occasionally 

tumors with deletions in chromosome 13, more specifically at region 13q14 (Francke and 

Kung, 1976; Lele et al., 1963; Sparkes et al., 1980; Yunis and Ramsay, 1978). It was then 

postulated that the alleles found at this “retinoblastoma locus” were tumor suppressors 
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and loss of function of these alleles is associated with malignancy (Murphree and 

Benedict, 1984). This became the prototype to which other proposed tumor suppressor 

genes were compared. Eventually, in 1986, two independent groups cloned a single gene 

from this q14 segment of chromosome 13 which was shown not only to be deleted in 

retinoblastomas, but osteosarcomas as well (Friend et al., 1986; Lee et al., 1987). This 

gene became known as the retinoblastoma susceptibility gene, abbreviated as RB1.   

1.2 The retinoblastoma protein is a cell cycle regulator 
The first biochemical evidence that the retinoblastoma gene could be important 

for tumor suppression in other tissues outside of retina and bone came from studies of 

viral oncoproteins. Adenovirus E1A, simian virus 40 T antigen, and human papilloma 

virus E7 oncoproteins all require inactivation of the retinoblastoma protein (pRB) to 

transform cells, which suggested a broader tumor suppressive function of pRB (DeCaprio 

et al., 1988; Dyson et al., 1989; Whyte et al., 1988; Whyte et al., 1989). Shortly after 

these discoveries, it was also seen that loss of pRB function leads to loss of cellular 

proliferation control, as demonstrated in various cancer samples (Bookstein et al., 1990a; 

Huang et al., 1988; Takahashi et al., 1991). By utilizing human cancer cells with mutant 

versions of RB1 and subsequently expressing exogenous wild type RB1, cells were shown 

to have reduced proliferation, colony formation in agar, and tumorigenicity in nude mice, 

further demonstrating the proliferative control of pRB (Bookstein et al., 1990b; Huang et 

al., 1988; Takahashi et al., 1991). pRB was also shown to be phosphorylated in late G1 

phase just before cells enter S phase, which further suggested pRB may be acting as a cell 

cycle regulatory element (DeCaprio et al., 1989). Ultimately, pRB was shown to inhibit 

E2F transcription factors in G1 of the cell cycle, but pRB is unable to do so when it 

becomes hyperphosphorylated or when it is deregulated by viral oncoproteins 

(Chellappan et al., 1991; Helin et al., 1992; Hiebert et al., 1992; Nevins, 1992). These 

studies led to the identification of the G1 checkpoint of the cell division cycle which is 

controlled by pRB through binding to and inhibiting E2Fs and their target gene 

transcription (Dyson, 1998).  
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1.3 The pocket domain defines the pRB family  
Two additional proteins were discovered that also have the ability to bind to viral 

oncoproteins and have sequence homology with pRB (Cobrinik et al., 1993; Ewen et al., 

1991; Hannon et al., 1993; Li et al., 1993; Mayol et al., 1993; Zhu et al., 1993). These 

proteins are p107 and p130, encoded by RBL1 (retinoblastoma like 1) and RBL2 

(retinoblastoma like 2), respectively. pRB, p107 and p130 are collectively referred to as 

the “pocket proteins” because of the pocket domain that is found in all three proteins 

(Figure 1.1A). This pocket domain itself contains a small pocket and a large pocket. The 

large pocket consists of an unstructured C-terminal domain along with the small pocket. 

This large pocket is necessary for binding E2F in vivo, inhibiting E2F target gene 

transcription and is also the minimal growth suppressing domain (Figure 1.1B) (Bremner 

et al., 1995; Hiebert et al., 1992; Qin et al., 1992; Yang et al., 2002). The small pocket 

can also be further divided into the A and the B subdomains which are separated by an 

unstructured, flexible linker region (Chow and Dean, 1996). These A and B subdomains 

each form a single cyclin fold which interact with each other to form the globular small 

pocket domain (Gibson et al., 1994; Lee et al., 1998). This small pocket is the minimal 

domain capable of interacting with viral oncoproteins and is sufficient to repress 

transcription (Chow and Dean, 1996; Chow et al., 1996; Hu et al., 1990; Kaelin et al., 

1990; Sellers et al., 1995). Crystal structures revealed that the LXCXE motif found in 

viral oncoproteins is what binds a shallow groove in the B subdomain, which is now 

commonly referred to as the LXCXE binding cleft (Figure 1.1B) (Lee et al., 1998). Since 

then, it has been discovered that a number of cellular proteins bind to the LXCXE binding 

cleft, many of which are able to alter chromatin structure and act as co-repressors of 

transcription. Examples of proteins binding to pRB through the LXCXE binding cleft 

include histone deacetylases (HDAC1 and HDAC2), DNA methyl transferases 

(DNMT1), histone methyl transferases (Suv39h1), histone binding proteins (HP1), and 

condensin II (Brehm et al., 1998; Longworth et al., 2008; Magnaghi-Jaulin et al., 1998; 

Nielsen et al., 2001; Robertson et al., 2000).  

Despite all of the structural similarities between the pocket proteins, there are also 

some key differences. Both p107 and p130 contain an insertion within their B 
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Figure 1.1: Interaction surfaces of pocket proteins and the unique interaction 
between pRB and E2F1. 
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Figure 1.1: Interaction surfaces of pocket proteins and the unique interaction 
between pRB and E2F1. 

(A) The A, B and C-terminal subdomains are shown for all three pocket proteins. The 
large and small pockets are denoted by blue and green lines, respectively. (B) The three 
different interaction sites within the large pocket of pRB are shown. The E2F1 specific 
interaction is formed between the E2F1 marked box domain (MBD) and a minimal 
interaction site in the C-terminus of pRB, while the E2F general interaction is facilitated 
by the transactivation domains (TADs) of E2F1-4 and the large pocket domain of pRB. 
The third interaction site, the LXCXE binding cleft, is located in the B subdomain of the 
pocket. (C) The retinoblastoma protein binds to E2F-DP heterodimeric transcription 
factors to repress transcription of cell cycle genes during the G1 phase of the cell cycle. 
pRB also recruits chromatin remodeling proteins to these sites to assist in the formation 
of repressive heterochromatin. Upon mitogen stimulation during the G1-S phase 
transition, cyclin and cyclin-dependent kinase (CDK) complexes hyperphosphorylate 
pRB causing it to dissociate from E2F transcription factors that were bound through the 
E2F general interaction, leading to the activation of E2F cell cycle genes. However, the 
E2F1 specific interaction with pRB exhibits resistance to CDK phosphorylation and 
allows these proteins to continue to associate. This CDK-resistant complex of E2F1 and 
pRB has been seen to bind at repetitive elements, but other locations in the genome are 
largely unknown.  
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subdomains, have longer spacer regions linking subdomains A and B which allows them 

to interact with cyclin-cyclin dependent kinase (CDK) complexes, and they have a unique 

N-terminal domain that can inhibit CDKs (Classon and Dyson, 2001). pRB, on the other 

hand, has a specific E2F1 binding site within the pRB carboxy-terminal domain (Figure 

1.1B) (Dick and Dyson, 2003; Julian et al., 2008). Also contained within the C-terminal 

domain of pRB are binding sites for cyclin-CDK complexes and protein phosphatase 1 

(PP1) (Adams et al., 1999; Durfee et al., 1993; Tamrakar and Ludlow, 2000; Vietri et al., 

2006). 

1.4 The pRB family is recruited to DNA by E2F transcription 
factors 
The first identification of any E2F transcription factor came from studying cell 

factors that could mediate transcriptional activation of the adenovirus E2 promoter, 

leading to the name E2 promoter binding factor (E2F) (Kovesdi et al., 1987). Further 

studies of transcriptional control showed that there were human genes regulated in not 

only an E2F-dependent manner but also a cell cycle-dependent manner; the first of which 

were MYC, which is involved in cellular proliferation, and the dihydrofolate reductase 

gene (DHFR), which is involved in metabolism of nucleic acids (Blake and Azizkhan, 

1989; Hiebert et al., 1989; Thalmeier et al., 1989). This helped form the basis that the 

growth suppressive role of pRB was mediated through inhibiting E2F target gene 

transcription, which could become deregulated by viral oncoproteins (Nevins, 1992).  

Since the initial discovery, it has become clear that the E2F transcriptions factors 

are a family of proteins essential for eukaryotic cell proliferation (Chen et al., 2009; 

Johnson and Degregori, 2006). The E2Fs can be divided based on their cellular activities; 

E2F1, E2F2 and E2F3 are generally described as “activator E2Fs” due to their ability to 

strongly activate E2F transcriptional targets to promote cell cycle progression, while 

E2Fs 4-8 are classified as “repressor E2Fs” and are believed to be required for cell cycle 

exit and differentiation (Chen et al., 2009).  

All of the E2F members have a highly conserved DNA binding domain, while 

only E2Fs 1-6 have a highly conserved dimerization domain that is required for 
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interaction with DP family members (Girling et al., 1993; Morgunova et al., 2015; Wu et 

al., 1995; Zheng et al., 1999). The DP family of proteins consists of DP1, DP2/3 and 

DP4, each of which has preferred E2F associations. Notably, DP1 forms heterodimers 

with the activator E2Fs and together they bind to promoters of genes involved in DNA 

synthesis and cell cycle progression (DeGregori and Johnson, 2006). E2F7 and E2F8, 

however, have two DNA binding domains and interact with DNA as homodimers or 

heterodimers independently of DP family members (Morgunova et al., 2015). E2F1-5 

each contain a transactivation domain that allows them to activate transcription of their 

gene targets, and also contain a pocket protein binding domain (Dimova and Dyson, 

2005). Since pocket proteins lack intrinsic DNA binding activity, they rely on the E2Fs 

that they are able to interact with to be recruited to DNA. The pocket of pRB binds to 

E2Fs 1-4, while p107 and p130 can both interact with E2F4 and E2F5, and E2F6-8 do not 

have pocket protein binding domains (Dimova and Dyson, 2005; van den Heuvel and 

Dyson, 2008).  

The pocket of pRB creates a docking site which is responsible for binding to the 

C-terminal transactivation domain of E2Fs, physically inhibiting transcriptional activation 

(Figure 1.1B) (Dick and Rubin, 2013). However, because pRB contains distinct binding 

sites for E2Fs and transcriptional repressor complexes, it can also enable the silencing of 

gene expression through recruiting chromatin remodeling factors (Giacinti and Giordano, 

2006). 

1.5 Pocket proteins have overlapping and unique roles 
 In theory, pRB, p107 and p130 are all capable of forming inhibitory complexes 

with E2Fs and recruiting co-repressors through their LXCXE binding clefts. However, 

the pocket proteins work in a concerted effort to assist in maintaining proliferative control 

as certain pocket protein-E2F complexes predominate in different phases of the cell cycle.  

 Not only do the pocket proteins have preferred E2F binding partners, but they also 

have differential expression throughout the cell cycle which also helps to explain their 

differential activity (Classon and Dyson, 2001). p107 is an E2F target gene; expression of 

p107 is low in quiescent cells and is most highly expressed in S phase (Xiao et al., 1996; 
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Zhu et al., 1995). The expression of p130 also fluctuates during the cell cycle, but it is 

expressed at high levels in quiescent and terminally differentiated cells and its expression 

decreases as cells progress through G1 and S phases. pRB, on the other hand, is expressed 

in both proliferating and non-cycling cells and for the most part, expression of pRB is 

relatively stable throughout the cell cycle (Buchkovich et al., 1989; Classon and Dyson, 

2001). This relative stability of pRB expression during the cell cycle indicates that instead 

of its function being controlled by transcription, pRB is largely regulated by post-

translational modifications, chiefly phosphorylation (Dick and Rubin, 2013). Cyclin-CDK 

complexes are largely responsible for the phosphorylation of pRB, as well as the other 

pocket proteins, leading to conformational changes which ultimately disrupt various 

protein interactions by masking binding surfaces (Dick and Rubin, 2013; Giacinti and 

Giordano, 2006). For pRB specifically, cyclin D-CDK4/6, followed by cyclin E-CDK2 

complexes phosphorylate pRB at the G1-S phase transition leading to alleviation of E2F 

transcriptional repression through pRB dissociation (Figure 1.1C) (Burke et al., 2012; 

Calbó et al., 2002).  

1.6 E2F1 and pRB have a unique interaction interface 
 Although phosphorylation by cyclin-CDK complexes produces conformational 

changes in pRB leading to dissociation from most of the activator E2Fs, a unique 

interaction between pRB and E2F1 is still able to form (Figure 1.1B). This second E2F1 

binding site is outside of the A and B subdomains within the large pocket of pRB (Dick 

and Dyson, 2003). Within E2F1, a region termed the “marked box” domain (MBD), 

which excludes the transactivation domain, is required for this interaction (Dick and 

Dyson, 2003). This interaction is unique between pRB and E2F1, as it does not occur 

between pRB and any of the other E2Fs or E2F1 and any of the other pocket proteins 

(Cecchini and Dick, 2011; Dick and Dyson, 2003; Julian et al., 2008).  

This specific interaction actually shows reduced affinity for a probe with the 

“typical” E2F consensus sequence and is also not able to repress transcription from 

luciferase reporters under the control of E2F promoters (Dick and Dyson, 2003; Julian et 

al., 2008). This alternate pRB-E2F1 conformation is also resistant to classic pRB-E2F 

dissociation signals (Figure 1.1C). Using this E2F1-specific binding site in pRB, 
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interactions with E2F1 are resistant to E1A-mediated displacement (Seifried et al., 2008). 

This pRB-E2F1 complex has also been noted to be resistant to CDK phosphorylation 

(Cecchini and Dick, 2011).  

The pRB-E2F1 specific interaction, therefore, has been noted to play important 

regulatory roles outside of cell division. One function of this interaction is to allow pRB 

to regulate E2F1-induced apoptosis (Carnevale et al., 2012; Cecchini and Dick, 2011; 

Dick and Dyson, 2003; Julian et al., 2008; Seifried et al., 2008). This pRB-E2F1 complex 

is also important for recruiting condensin II to the genome to stabilize chromatin structure 

and help facilitate replication of certain repetitive regions of the genome (Coschi et al., 

2014; Ishak et al., 2017). Another recently discovered function of this unique pRB and 

E2F1 interaction is to inhibit repeat element expression in the genome, notably 

endogenous retroviruses (Figure 1.1C) (Ishak et al., 2016). 

1.7 Evidence for a separate role of pRB in tumor 
suppression outside of cell cycle control 

 The central defining feature of cancer is uncontrolled cell division. In 

multicellular organisms like humans, tissue homeostasis requires appropriate control of 

the cell division cycle. Deregulation of proliferative control is one of the major hallmarks 

of cancer therefore (Hanahan and Weinberg, 2011). Not surprisingly then, the activities of 

the pocket proteins are disrupted in many human cancers through alterations of upstream 

regulators (Burkhart and Sage, 2008; Sherr, 1996). While deregulated CDKs and CDK 

inhibitors (CKIs) can inactivate all the pocket proteins, only pRB is also seen to be 

commonly mutated in cancers while the other two pocket proteins, p107 and p130, are 

rarely directly inactivated (Burkhart and Sage, 2008; Dick and Rubin, 2013; McNair et 

al., 2018; Sherr, 1996). In addition, there are also some cancers that tend to be enriched 

for pRB-pathway alterations, while other cancer types appear to have this pathway 

relatively intact. For example, recent analyses using data from The Cancer Genome Atlas 

demonstrates that the majority of lung and breast cancers have alterations within the pRB-

pathway, resulting from loss-of-function alterations in RB1, or gain-of-function 

alterations in genes encoding D-type cyclins and their associated CDKs, or loss-of-

function alterations in the upstream CKI which is encoded by the CDKN2A gene (Dick et 
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al., 2018). Alternatively, there are some cancers like colorectal and prostate carcinomas, 

where alterations within the pRB-pathway are relatively uncommon (Dick et al., 2018).  

 Because of its role in regulating the G1-S transition, it is not surprising that 

deletion of the RB1 gene prevents cell cycle arrest in response to a variety of signals 

(Knudsen and Knudsen, 2008). However, there have also been some interesting 

observations regarding RB1 status and patient outcomes that have not been observed with 

mutations of other components of the pRB-pathway. Studies in patients with high-grade 

serous ovarian carcinoma (HGSOC) and lung adenocarcinoma have demonstrated that 

RB1 loss is predictive of longer patient survival in response to chemotherapy (Cecchini et 

al., 2015; Garsed et al., 2018; Ludovini et al., 2004; Zhao et al., 2012). In these studies 

where proliferation was also investigated, loss of RB1 was not correlated with increased 

proliferation (Cecchini et al., 2015; Garsed et al., 2018). In addition, studies that have 

specifically looked at more advanced cancers, such as those that have metastasized or are 

resistant to certain therapies, have observed that RB1 gene loss may be more prevalent 

than in less advanced forms of the disease (Beltran et al., 2016; McNair et al., 2018; 

Robinson et al., 2017; Thangavel et al., 2017). Along these same lines, mutation in RB1 

has also been linked to transdifferentiation as a response to targeted therapeutics. In a 

study of non-small cell lung cancer (NSCLC) samples with epidermal growth factor 

receptor gene (EGFR) mutations where resistance to tyrosine kinase inhibitors occurred, 

the lung cancers that transformed to small cell lung cancer (SCLC) invariably lost pRB 

expression (Niederst et al., 2015). Similarly, prostate cancers that develop resistance to 

the antiandrogen enzalutamide may do so by switching from an epithelial to a 

neuroendocrine phenotype, which is enabled in part by loss of pRB expression (Ku et al., 

2017; Mu et al., 2017). Overall, these examples all suggest that RB1 mutation facilitates 

more than alterations to proliferative control, and loss of RB1 may confer other cancer 

relevant characteristics that are independent of classical pRB-pathway functions of 

proliferative control in cancer. 
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1.8 Genome instability is an enabling characteristic of 
cancer 

 The failure of a cell to have efficient and error-free duplication of chromosomes 

before appropriately segregating them to daughter cells broadly defines genome 

instability. The genetic alterations that occur range from point mutations to chromosome 

rearrangements, so the types of genomic instability can be separated into categories 

depending on the event that has occurred. Some examples are chromosome instability 

(CIN), micro- and minisatellite instability (MIN), and instability leading to mutations as 

well as that leading to rearrangements.  

Failures in either mitotic chromosome transmission or the spindle mitotic 

checkpoint can lead to CIN, defined by gain and/or loss of whole chromosomes or 

fractions of chromosomes (Draviam et al., 2004; Geigl et al., 2008). MIN results in 

repetitive DNA expansions and contractions and can materialize due to replication 

slippage, homologous recombination (HR), or impairment of mismatch repair (MMR) or 

nuclear excision repair (Aguilera and Gomez-Gonzalez, 2008; Draviam et al., 2004; Yao 

and Dai, 2014). Genome instability can also lead to mutations like base substitutions, 

micro-insertions and micro-deletions and these mutations are generally linked to errors in 

replication, impairment of base excision repair or MMR, or translesion DNA synthesis 

which is inherently error prone. Gross chromosomal rearrangements, such as 

translocations, duplications, inversions and deletions, are all generated by DNA breaks 

which are most commonly the result of replication stress (Aguilera and Gomez-Gonzalez, 

2008).  

Because cancer cells acquire mutations in the genome to evolve progressively to a 

neoplastic state, it should come as no surprise that genome instability is an enabling 

characteristic of cancer (Hanahan and Weinberg, 2000, 2011). In healthy cells, genome 

maintenance systems continuously monitor the genome to detect and resolve defects in 

the DNA, which ensures that the rates of spontaneous mutations are low (Salk et al., 

2010). However, cancer cells usually have an increased rate of mutations, which is 

generally due to defects affecting the “caretakers” of the genome, which are genes whose 

products help to maintain the integrity of the genome (Kinzler and Vogelstein, 1997; Salk 
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et al., 2010). These caretakers are involved in inactivating or diverting mutagenic 

molecules before they lead to DNA damage, detecting DNA damage and stimulating the 

appropriate repair machinery, and directly repairing DNA damage (Ciccia and Elledge, 

2010; Harper and Elledge, 2007; Jackson and Bartek, 2009; Negrini et al., 2010).  

As previously mentioned, genome instability can be initiated by replication stress 

(Hanahan and Weinberg, 2011). Replication stress largely occurs during S phase of the 

cell cycle, which can affect chromosome segregation and lead to unfaithful transmission 

of genetic information to daughter cells. Endogenous or exogenous sources, including 

polymerase inhibition, limiting replicative factors, oxidative damage, DNA secondary 

structures, and RNA/DNA hybrids, can be sources of replication stress (Gelot et al., 

2015). Phenotypes resulting from replication stress can be detected in G1 and include 

p53-binding protein 1 (53BP1) nuclear bodies, micronuclei and aneuploidy. Through use 

of gene targeted mice, it has been discovered that pRB is part of a complex with 

condensin II and E2F1 that aids in the maintenance of genome stability (Coschi et al., 

2014; Ishak et al., 2017).  

1.9 Condensins are central components of mitotic 
chromosome dynamics 
The multisubunit protein condensin II is a member of the structural maintenance 

of chromosomes (SMC) family. The SMC family also consists of the SMC5/6 complex, 

cohesin, and condensin I (Losada and Hirano, 2005). These complexes are formed in 

eukaryotic organisms using six different SMC family members that establish three 

heterodimers. SMC1 and SMC3 are the core members of cohesin complexes, SMC2 and 

SMC4 are the fundamental units of the condensin complexes (Figure 1.2), and SMC5 and 

SMC6 are members of a complex associated with DNA repair and checkpoint responses 

(De Piccoli et al., 2009; Losada and Hirano, 2005). SMC proteins are central components 

needed for mitotic chromosome dynamics, regulation of gene expression and more, and 

as such are evolutionarily conserved in prokaryotes and eukaryotes (Cobbe and Heck, 

2004). These SMC subunits are approximately 100 nm long before folding at a “hinge” 

domain in the middle of the protein, allowing the N- and C-termini to interact and form 

an ATPase “head” domain (Figure 1.2). These two domains in the protein are separated 
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by coiled coil domains that form the “arm” of the protein. For the most part, SMC 

proteins dimerize through their hinge-hinge interactions, although they also interact 

through head-head binding. While these complexes are chiefly defined based on their 

SMC subunits, non-SMC subunits are also unique to each type of SMC complex 

(Skibbens, 2019). 

As previously mentioned, both condensin II and condensin I share the SMC 

subunits SMC2 and SMC4, meaning condensin II is distinguished from the other 

condensin complex by its unique, non-SMC subunits (Figure 1.2). Two of these subunits, 

CAP-D3 and CAP-G2, contain HEAT repeats, which are highly degenerate repeating 

motifs involved in protein-protein interactions and may also form a domain for binding 

double-stranded DNA (Neuwald and Hirano, 2000; Piazza et al., 2014). Condensin 

complexes lacking a single HEAT repeat subunit are unable to associate with 

chromosomes (Piazza et al., 2014). A kleisin family member, CAP-H2, is also found 

exclusively in condensin II. Kleisin proteins interact with SMC proteins at both N- and C-

terminal domains to form a ring-like structure (Schleiffer et al., 2003). Condensin I, like 

condensin II, also has three unique subunits, which are the HEAT repeat containing 

proteins CAP-D2 and CAP-G, and the kleisin protein CAP-H. 

In terms of their mitotic functions, in general, the SMC complex cohesin is 

important for proper resolution of sister chromatids while condensins I and II are 

important for mitotic chromosome condensation. In metazoans, cohesin is found on 

chromosomes from telophase of one cycle until anaphase onset of the next (Gerlich et al., 

2006b). From telophase until replication commencement, cohesin binds DNA more 

dynamically, which is thought to mediate the role of cohesin in transcription. However, 

during DNA replication, a pool of cohesin binds DNA more stably where it establishes 

and maintains sister chromatid cohesion (Gerlich et al., 2006b). During mitosis, cell cycle 

regulated kinases control the removal of cohesin from chromosomes in a stepwise 

process, where only some arm and most pericentric cohesin is initially protected from 

removal (reviewed in (Nasmyth, 2011)). The cohesin that remains primarily at the 

centromeres during pre-metaphase and metaphase is responsible for holding sister 

chromatids together; it is this centromeric cohesion that is able to oppose the pulling  
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Cohesin contains the SMC subunits SMC1 and SMC3, while both condensin proteins 
contain SMC2 and SMC4. Each SMC protein has a head domain which contains the N- 
and C-terminus of the protein, as well as a hinge domain, which is globular and binds to 
the hinge domain of another SMC protein. These two domains are separated by the arms 
of the SMC proteins, which are coiled coils. Non-SMC subunits that comprise cohesin are 
the kleisin RAD21 and stromal antigen (SA). Condensin I contains the kleisin CAP-H 
and HEAT repeat containing proteins CAP-D2 and CAP-G, and the counterparts to these 
proteins in condensin II are CAP-H2, CAP-D3 and CAP-G2, respectively. 
 
 
  

Figure 1.2: Depiction of the structural maintenance of chromosomes (SMC) family 
members cohesin, condensin I and condensin II. 
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forces of the mitotic spindle, which allows for correct chromosome alignment in 

metaphase. Meanwhile, in prophase, condensin II becomes more stably associated with 

chromosomes than it was in interphase and facilitates chromosome condensation (Gerlich 

et al., 2006a). After nuclear envelop breakdown, condensin I gains increased access to 

chromosomes and assists in further chromosome condensation. The different timing of 

condensin complexes binding to DNA is very much due to their different cellular 

locations throughout the cell cycle. Historically, condensin I was thought to be 

cytoplasmic during interphase and is only able to access chromosomes after nuclear 

envelope breakdown in prometaphase (Ono et al., 2004). However, some recent evidence 

has suggested that a small amount of condensin I is present in the nuclei of interphase 

cells, although the majority does remain cytoplasmic (Li et al., 2015; Zhang et al., 2016). 

Condensin II, on the other hand, is mostly nuclear throughout interphase and is loaded, to 

some extent, on DNA throughout the cell cycle (Gerlich et al., 2006a; Ono et al., 2004). 

At anaphase onset, after cohesin has been completely removed from chromatin, mitotic 

chromosomes are pulled to opposite poles of the cell (Gruber et al., 2003; Losada and 

Hirano, 2005). It is only after chromosomes have reached opposite poles that condensin I 

is unloaded from chromatin and condensin II has a weaker chromatin interaction 

(reviewed in (Jeppsson et al., 2014) and (Losada and Hirano, 2005)). 

1.10 Condensin I and condensin II are differentially loaded 
onto mitotic chromosomes 
Condensins have been thought to mediate linkages between chromatin fibers to 

organize them into higher order structures during chromosome segregation in mitosis 

(Cuylen and Haering, 2011). Through the use of global mapping of chromosomal 

interactions within mitotic chromosomes, it has been observed that when condensin is 

inactivated, loop formation and compaction are drastically disrupted (Gibcus et al., 2018; 

Kakui et al., 2017; Schalbetter et al., 2017). In human tissue culture cells, siRNA 

knockdowns of components of condensins I and II demonstrated that these complexes 

have different functions during mitosis (Hirota et al., 2004; Ono et al., 2004; Ono et al., 

2003). Condensin I is primarily involved with lateral compaction of chromatin, whereas 

condensin II is chiefly responsible for its axial shortening (Shintomi and Hirano, 2011). 
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How this is accomplished has been revealed by further study of the individual condensin 

complexes; condensin II facilitates longer loops and lays the foundation for the axis of 

mitotic chromosomes, while condensin I facilitates shorter loops which thickens mitotic 

chromosomes (Green et al., 2012; Walther et al., 2018). Much of their action during 

mitosis can be attributed to their localization, where condensin II is centrally confined at 

the chromatid axis at the bases of chromatin loops and condensin I binds to the central 

chromatid axis but also reaches more peripheral sites (Gibcus et al., 2018; Walther et al., 

2018). Condensin complexes have ATP-dependent DNA supercoiling activity and can 

also assist in the reannealing of complementary DNA strands (Kimura et al., 1998; Sakai 

et al., 2003; St-Pierre et al., 2009). It has been inferred that both these actions of 

condensin promote the assembly of mitotic chromosomes (Akai et al., 2011; Kimura and 

Hirano, 2000; St-Pierre et al., 2009; Sutani et al., 2015).  

Phosphorylation is used to regulate condensin functions, and this mark is 

increased on condensins in mitosis (Abe et al., 2011; Piazza et al., 2013; Takemoto et al., 

2004). Many phosphorylation sites have been identified on all of the condensin subunits 

in human cells through the use of phosphoproteomic studies, and some of these have been 

identified as crucial for proper condensin loading onto mitotic chromosomes (reviewed in 

(Kagami and Yoshida, 2016)). In addition, some studies have identified “recruiter” 

proteins that regulate mitotic chromosomal localization. One of these recruiter proteins 

for condensin II is protein phosphatase 2A (PP2A), which performs this task independent 

of its phosphatase activity (Takemoto et al., 2009). In addition to recruiter proteins, there 

also appear to be “receptor” proteins that may also be needed for condensin loading.  

CAP-G2 and CAP-D3, the HEAT repeat containing subunits of condensin II, for 

example, can interact with H4K20me1, a mark which accumulates during early mitosis 

(Liu et al., 2010). Altogether, these studies suggest that loading of condensin onto mitotic 

chromosomes requires both recruiter and receptor factors, and that phosphorylation of 

various condensin subunits may promote their association with these recruiters and/or the 

receptors. This also hints that condensin II binding to interphase chromosomes similarly 

requires a set of recruiter and receptor factors, some of which have been investigated in 

this thesis.  
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1.11 Condensins can translocate DNA and extrude DNA 
loops 
Unlike cohesin which has open V or ring-like structures, early analysis of 

condensin structure generated images of lumen-less rod-like structures (Anderson et al., 

2002; Melby et al., 1998; Yoshimura et al., 2002). Both yeast and chicken condensins 

have been subjected to chemical crosslinking followed with X-ray crystallography or 

mass spectroscopy, respectively, which have demonstrated a number of intermolecular 

crosslinks along the entire length of SMC2 and SMC4 coiled coil domains and is further 

evidence of a closed rod-like structure (Barysz et al., 2015; Soh et al., 2015). 

Interestingly, crosslinks between SMC ATPase heads have only been detected in ATPase 

mutant versions of the proteins, suggesting that during cycles of ATP binding and 

hydrolysis, SMC heads may adopt different conformations or may separate and re-close 

(Barysz et al., 2015; Diebold-Durand et al., 2017). However, another study examining 

only SMC2/SMC4 dimers using high-speed atomic force microscopy (AFM) in liquid 

never observed rod-like structures (Eeftens et al., 2016). Instead, this analysis showed 

that the SMC2/SMC4 coiled coils are highly flexible and the configuration of the dimers 

is dynamic over time. In fact, not only were these researchers able to see the ATPase 

heads of the dimers engaging and disengaging over time in a dynamic manner, but they 

also saw the heads dynamically interacting with the hinge (Eeftens et al., 2016). It is 

possible that a more rigid structure was not observed because the non-SMC subunits may 

impact coiled coil interactions within the complex.  Resolving the structure and dynamics 

of the fully assembled and functional condensin complex, therefore, is important and will 

help resolve how condensin interacts with DNA.  

 Additional insights into how condensins may compact DNA have come from the 

finding that they are DNA translocases. In yeast, single-molecule imaging of condensin 

revealed that it is an ATP hydrolysis-dependent molecular motor (Terakawa et al., 2017). 

This assay used double-tethered DNA and showed condensin movement is largely 

unidirectional, although there was no initial preference in direction. Further examination 

also demonstrated that translocating condensins were able to bind and transport a separate 

DNA molecule, which confirmed a key expectation of the loop extrusion model, a 
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hypothesis that SMC protein complexes processively increase the size of loops in the 

genome (Terakawa et al., 2017).   

 Through directly visualizing DNA compaction by yeast condensin in real time, 

the loop extrusion model was able to be investigated more directly. In this study by Gangi 

et al., a double stranded DNA molecule had both its ends tethered to a substrate, close 

enough together that the DNA was not taught and initially flexible. This DNA was 

visualized through staining and when fluorescently labelled condensin and ATP were 

introduced, DNA loops formed that stemmed from the site where condensin was bound 

(Ganji et al., 2018). These experiments also demonstrated that loop extrusion is 

asymmetric; it was seen that the distance between the loop region and one side of the 

DNA outside of the loop progressively got smaller as the loop increased in size, while the 

DNA content on the other side of the loop remained fixed. This suggests that one domain 

of condensin remains bound to DNA whereas another domain of condensin is able to 

actively drive DNA migration, which ultimately leads to loop extrusion.   

 To fully amalgamate data from condensin structure and its translocation properties 

into a functional model, step size analysis also needs to be accounted for. One set of 

experiments, where a single end of a DNA molecule was tethered to a glass substrate and 

the other end of DNA was attached to a streptavidin-coated magnetic bead, demonstrated 

that when condensin and ATP were introduced, bead migration, and thus DNA 

compaction, had average step sizes of between 177 and 210 nm (Keenholtz et al., 2017). 

This step size is approximately four times the length of the 50 nm long condensin 

complex. Another study also found that condensin can induce steps of hundreds of 

nanometers in size, and this data also peaks at approximately 200 nm (Eeftens et al., 

2017). One explanation for larger step sizes is that condensin might translocate along 

DNA through a myosin- or kinesin-like “walking” mechanism where condensin would 

use cycles of ATP hydrolysis to yield head-over-head step sizes of up to 100 nm. Another 

possibility is that condensin may oligomerize to produce these larger step sizes, and 

although condensins exist in both monomeric and oligomeric complexes, condensin 

monomers are typically studied for detailed descriptions (examples are (Barysz et al., 

2015; St-Pierre et al., 2009)).  
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However, one study that used size exclusion chromatography (SEC) to purify 

condensin studied both the monomeric form of the protein, which is approximately 600 

kDa, as well as an earlier elution peak of approximately 2 MDa, which corresponds in 

mass to multimeric forms of condensin (Keenholtz et al., 2017). After validating all 

subunits of yeast condensin were present in both SEC peaks, further studies were 

conducted to compare and contrast the two states of condensin. Of note, condensins 

purified from the multimeric position were added to the flow cells described above, 

where a single end of a DNA molecule was tethered so extension could be tracked in real 

time from the other DNA end. When multimeric condensin was added to flow cells with 

ATP the fraction of the DNA compacted was approximately 70%, whereas this was 

reduced to 40-50% when monomeric condensin was used. This demonstrated, therefore, 

that the multimeric fraction of condensin leads to more robust DNA compaction. These 

differences could not be explained by differential abilities to bind ATP, different kinetics 

of the reactions, or different dwell times between addition of protein and ATP and the 

onset of compaction (Keenholtz et al., 2017). 

Further evidence that condensins may oligomerize comes from the bidirectional 

translocation of Bacillus subtilis. In B. subtilis, the SMC-condensin complex is necessary 

to resolve and segregate newly replicated sister origins (Gruber et al., 2014; Wang et al., 

2014). To do so, condensin is recruited to the origin by ParB, the widely conserved 

partitioning protein, which itself binds at centromeric parS sites adjacent to the 

replication origin (Breier and Grossman, 2007; Gruber and Errington, 2009; Sullivan et 

al., 2009). After showing that condensin stimulates DNA juxtaposition, or “zip-up”, that 

initiates at parS and progressively accumulates down the flanking DNA, the rate of DNA 

incorporated into the zip-up from ectopic parS sites was measured on either side of the 

chromosome (Wang et al., 2017). At one of these parS sites, one side of the DNA 

contained many highly transcribed genes, including an operon encoding for abundant 

ribosomal proteins and translation factors, while the sequence flanking the other side of 

the parS site was largely devoid of active transcription. Movement of condensin rings 

through the operon was impaired compared to movement in the direction that was free of 

active transcription, leading to asymmetric migration of condensin from the parS site. In 

other words, convergent transcription on one DNA duplex impedes condensin movement 
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along that DNA track, but on the partner DNA duplex, the rate of condensin movement is 

not affected. Along with the observation of asymmetric enrichment of SMC on either side 

of the ectopic parS sites, this is evidence for a model in which two condensin rings each 

encircle a single DNA duplex on either side of parS sites such that these partner DNA 

duplexes are tethered together by condensin “handcuffing”, or oligomerization.   

 Together, these studies have greatly advanced our knowledge of how condensin 

complexes are interacting with DNA. However, it is still not clear how condensins 

translocate DNA and extrude DNA loops within a dynamic DNA landscape. This makes 

it exceptionally difficult to determine exactly how condensin II interacts with its binding 

sites within the genome; is the same condensin II molecule able to interact simultaneously 

with two distant sites in the genome, or do condensin II molecules interact as oligomers 

between these sites, or do both scenarios occur, for instance.  

1.12 Cohesins are important for organizing the interphase 
genome 

 Cohesins used to be chiefly thought of in terms of their role in the trans-tethering 

needed for sister chromatid segregation during mitosis (reviewed in (Jeppsson et al., 

2014; Marston, 2014; Morales and Losada, 2018; Rudra and Skibbens, 2013)), however, 

two additional roles for cohesin were recognized based on research originally performed 

in yeast and Drosophila. First, mutations in cohesin not only result in defects in sister 

chromatid cohesion but also in drastic chromosome condensation defects, indicating that 

cohesins are important for cis-based DNA looping (Guacci et al., 1997). The second 

added role for cohesins is in transcriptional regulation; through DNA looping, cohesins 

facilitate communication between distal DNA regulatory elements, like enhancers and 

promoters (Rollins et al., 1999). Together, these studies have prepared the groundwork 

for current models of how cohesins generate higher-order chromatin structures which are 

indispensable for accurate transcription regulation. Because of the important role cohesins 

play in chromatin structure, cohesin pathways are essential for human development and 

mutations can have detrimental outcomes. Two cohesin based developmental disorders, 

for example, Robert syndrome (RBS) and Cornelia de Lange syndrome (CdLS), have 

common developmental defects including cleft palate, microcephaly, limb reduction 
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abnormalities, syndactyly and acute cognitive impairment (Skibbens, 2019). It is 

anticipated that the number of cohesin-related disorders, or “cohesinopathies”, which are 

more recently and generally classified with other “transcriptomopathies”, will increase 

considerably over time due to the range of tissues impacted by cohesin mutation as well 

as the genome-wide effect of cohesins on transcription (Banerji et al., 2017b; Yuan et al., 

2015). 

 To impart transcriptional effects, cohesins organize the interphase genome 

through balancing the dynamic formation of two states: topologically associating domains 

(TADs) and compartments (Figure 1.3). For the most part, TADs are described as DNA 

loops of up to one megabase of DNA which usually have CCCTC-binding factor (CTCF) 

and cohesin binding at the loop base (Figure 1.3C&D). One general theory is that TADs 

insulate looped and non-looped DNA from transcriptional and chromatin-remodeling 

machinery as these factors migrate along DNA. Compartments, on the other hand, range 

in size from approximately 5 to 50 megabases of DNA and are untethered but self-

interacting domains of transcriptionally active (open or “A” domains) or repressed 

(closed or “B” domains) chromatin states (Figure. 1.3B) (Haarhuis et al., 2017; 

Lieberman-Aiden et al., 2009; Rao et al., 2017; Schwarzer et al., 2017). At the moment, 

one theory of how genomic DNA is assimilated into compartments is that DNA-binding 

proteins like transcription factors and coactivators condense into high-concentration 

clusters in the nucleus. The condensation of these factors, mediated by low-complexity 

disordered regions in these proteins, sometimes leads to condensates forming droplets, 

producing a transient liquid phase separated from the rest of the nucleus (Plys and 

Kingston, 2018). Another model is that clustering may also emerge due to the interaction 

of histone modifications and transcription factors that possess similar characteristics 

(Haarhuis et al., 2017; Rao et al., 2017; Schwarzer et al., 2017). Compartments are 

normally dynamic and mobile, although they can become anchored. For example, 

repressed B compartments tend to be localized more to the periphery of the nucleus and 

may interact with the nuclear lamina (Hansen et al., 2018). 

Although mice with mutations in cohesin and its regulators show some similarities 

to human cohesinopathies, the phenotypes can be mild as a result of extensive 
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Figure 1.3: Chromatin is arranged in the nucleus using hierarchical architecture. 

(A) The largest domain of chromatin architecture within the nucleus is chromosome 
territories, in which each chromosome occupies a distinct nuclear space. (B) 
Chromosome territories can be split into A and B compartments, which are 
transcriptionally more active or inactive, respectively. A compartments make more 
contacts than B compartments, and interchromosomal contacts between domains from the 
same compartments (A/A and B/B) are more frequent than those between different 
compartments (A/B). (C) Within compartments, there are topologically associated 
domains (TADs) which are largely defined by their interaction frequencies; two regions 
within a TAD associate on average more frequently with each other than regions outside 
of the TAD. (D) Inside TADs, loop formation occurs, particularly between enhancers and 
promoters. The most well-defined boundary factor and loop extrusion factor, respectively, 
are CTCF and cohesin, although other proteins have been and continue to be investigated.  
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upregulation of the wild type copy in heterozygotes; an example is the mutant mouse of 

one of cohesin’s interacting partners, Nipbl (Kawauchi et al., 2009). One model organism 

that has been useful in studying cohesin’s effects on transcription and development is 

zebrafish, largely through the use of antisense morpholino oligonucleotides (MOs), which 

allow not only for a greater range of gene knockdown but also the ability to delete 

multiple cohesin associated proteins simultaneously (Muto and Schilling, 2017). For 

example, the effects of cohesin on an important developmental process, the transition 

from maternal to zygotic control of transcription, or zygotic genome activation (ZGA), 

was successfully investigated in zebrafish. It was discovered that cohesins may be 

important for maternal mRNA turnover and ensuing expression of zygotic mRNAs, as 

embryos that have reduced levels of cohesin’s kleisin protein, Rad21, have higher levels 

of maternal mRNAs (Meier et al., 2018). At post-ZGA stages, chromatin 

immunoprecipitation followed by sequencing (ChIP-Seq) revealed thousands of new 

genomic locations that recruit Rad21, many of which are promoters and transcriptional 

start sites (TSSs) also occupied by H3K4me1, H3K4me3 and/or H3K27ac histone 

modifications, indicative of active promoters and enhancers. However, transcripts from 

many genes in post-ZGA are differentially expressed upon Rad21 depletion, many more 

than those that are directly bound by Rad21 (Meier et al., 2018). Although it is likely that 

some of the bound genes may be regulated directly, as seen in other studies (Banerji et al., 

2017a; Tsai et al., 2018; Yan et al., 2013), a larger fraction of genes in post-ZGA appears 

to be regulated indirectly (Meier et al., 2018). Therefore, this observation indicates that 

cohesin influences transcription through multiple mechanisms, including gene-specific 

regulation through local chromatin structures as well as more global effects, likely 

established by TADs and compartments.  

 Early ChIP studies in yeast showed that the density and distribution of cohesin 

along DNA correlate with the size of DNA loops (Blat and Kleckner, 1999; Glynn et al., 

2004; Guacci et al., 1997). Since then, many studies in a variety of model organisms have 

shown cohesin plays an active role in TAD formation. In mouse zygotes, TADs are 

prevalent even at the one-cell stage, and when the gene that encodes Rad21 is knocked-

out, TADs are largely absent (Gassler et al., 2017). TADs were also greatly reduced in 

both HeLa cells as well as in HCT-116 human colorectal carcinoma cells when RAD21 
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was degraded (Rao et al., 2017; Wutz et al., 2017). Re-expression of RAD21 lead to rapid 

reassembly of TADs, in particular near super enhancers, which are regions of the genome 

that contain a very high density of enhancer elements and elevated levels of H3K27ac 

(Rao et al., 2017). 

  Like with condensins, ATP is also important for cohesin-based looping and it is 

generally thought that cohesins also use loop extrusion to compact DNA (Ganji et al., 

2018; Vian et al., 2018). The length of DNA loops seems to be defined based on cohesin 

binding and colocalizing with CTCF at the base of TADs (Dixon et al., 2012; Rao et al., 

2014; Rao et al., 2017; Wutz et al., 2017). It is thought that when cohesin encounters 

CTCF, cohesin pauses or stops loop extrusion and this is what defines loop lengths. 

Further evidence of this is the fact that cohesin cannot translocate in vitro past DNA-

bound CTCF (Davidson et al., 2016). In addition, degradation of CTCF does not abolish 

TADs but instead alters the length of TAD loops, further supporting the model that CTCF 

acts as a boundary for cohesin and in doing so defines DNA loop length (Wutz et al., 

2017).  

 While cohesins are critical for the formation of TADs, they antagonize the 

formation of compartments. Depletion of the cohesin component Rad21 in both mouse 

zygotes and human colorectal carcinoma cells led to increased compartmentalization of 

active and inactive chromatin (Gassler et al., 2017; Rao et al., 2017). The opposite 

experiment can also be performed, where effects on compartmentalization can been 

assayed after depleting Wapl, a protein required for the release of cohesin from interphase 

chromatin (Kueng et al., 2006).  Indeed, through increasing cohesin residency on 

chromatin through Wapl depletion, genomic compartmentalization was diminished 

(Gassler et al., 2017; Haarhuis et al., 2017; Wutz et al., 2017).  

Altogether, these experiments demonstrate that cohesin is a key determinant of 

chromatin structure in interphase cells. At regions bound by cohesins, DNA loops are 

formed; the sizes of which seem to be regulated largely by CTCF. In regions devoid of 

cohesin and CTCF, however, DNA melds into untethered, epigenetically defined 

compartments of either transcriptionally active or repressed chromatin states.  
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1.13 Condensin II binding has been associated with 
increased boundary strength 

 Unlike compartments, whose interactions can have noticeable variability from 

cell-to-cell, TAD structure is largely consistent between various cell types and are also 

highly conserved across species (Dekker and Mirny, 2013; Dixon et al., 2012). This 

suggests the sub-megabase scale organization of chromosomes into TADs may be a 

conserved, bottom-up arrangement of chromatin organization and subsequently genome 

function. As a result, identifying the complete mechanism of how TADs are established 

and maintained has become an important area of investigation.  

Despite the fact that most TAD boundaries have an enrichment of CTCF, only 

15% of CTCF binding sites are located within boundary regions, suggesting that most 

CTCF binding sites are unrelated to the formation of TAD borders (Dixon et al., 2012). 

This also indicates that additional architectural proteins may complement CTCF binding 

to help with the formation of TAD borders, and this may help differentiate border-

associated from non-border-associated CTCF binding sites.  

A study performed in D. melanogaster discovered that the number of architectural 

proteins present at a TAD border directly correlates with the strength of the topological 

domain structure (Van Bortle et al., 2014). One of these architectural proteins 

investigated was the multisubunit RNA polymerase (Pol) III transcription factor TFIIIC, 

consisting of TFIIIC220, 110, 102, 90 63 and 35, and was previously shown to also bind 

at Pol III-independent regions, called extra TFIIIC (ETC) loci (Teichmann et al., 2010; 

Van Bortle et al., 2014). In mice, ETC sites were seen to be close in proximity to CTCF 

and also have an enrichment of cohesin binding (Carriere et al., 2012), and in budding 

yeast, ETCs were observed to underlie condensin binding to chromosomes (D'Ambrosio 

et al., 2008). Therefore, the binding of cohesin, condensin, TFIIIC and CTCF and their 

relation to TADs were investigated further (Van Bortle et al., 2014). Cohesin and 

condensin II complexes were seen to be enriched at the borders of TADs, along with 

TFIIIC and CTCF (Van Bortle et al., 2014). In mouse embryonic stem cells (mESCs), a 

strong overlap in CTCF, cohesin, TFIIIC and condensin II binding was observed, as well 

as a strong correlation between clustering of these architectural proteins and chromatin 
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organization. From this work, it was proposed that the range of TAD border strengths, 

which is associated with differences in protein occupancy, indicate the role of 

architectural proteins in long-range interactions. For example, combined binding of the 

architectural proteins TFIIIC and CTCF, along with SMC family proteins cohesin and 

condensin II, may increase the propensity of all of these proteins to interact with one 

another and also increase the strength of interactions with other regulatory elements, 

supported by synergistic protein-protein and protein-DNA interactions. Fewer or less 

stable interactions of these architectural proteins at TAD boundaries, therefore, can lead 

to inter-TAD interactions resulting in weaker TAD boundaries (Van Bortle et al., 2014).   

As previously mentioned, without cohesin, topological domains largely dissolve 

(Gassler et al., 2017), suggesting that cohesin is one of the main protein complexes 

responsible for this degree of chromosome organization. What role, then, is condensin II 

playing at these boundary sites? It was recently suggested that TFIIIC serves as a binding 

factor for condensin II within the mammalian genome, and that the more abundant 

condensin II-TFIIIC binding sites are within a boundary region, the stronger the 

insulation at this TAD boundary tends to be (Yuen et al., 2017). However, binding of 

condensin II at these boundaries does not appear to affect the architecture of individual 

TADs, but rather, the interaction between TAD boundaries to form compartments (Yuen 

and Gerton, 2018; Yuen et al., 2017). This idea is further strengthened by the fact that 

compartments are not lost upon cohesin loss, suggesting that additional proteins, like 

condensin II, could regulate this higher level of chromosome organization (Rao et al., 

2017; Wutz et al., 2017).   

 Another recent study used Oligopaint FISH technology, which uses oligo libraries 

as a renewable source of FISH probes, to investigate compartment, or chromosome 

territory, organization in Drosophila cells (Beliveau et al., 2012; Rosin et al., 2018). 

Depletion of individual condensin II components in these cells greatly increased the 

amount of contact and intermixing between every tested pair of chromosome territories 

(Rosin et al., 2018). Conversely, increasing condensin II levels increased interphase 

compartment partitioning and chromosome compaction, leading to smaller “super 

territories” that are further separated in three-dimensional space. Overall, this study found 
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condensin II is essential for long-range chromatin interactions and offered a model in 

which these contacts are established by condensin II early in interphase to act as an 

“organizational bookmark” by giving precedence to intra-chromosomal folding directly 

after mitotic exit (Rosin et al., 2018). 

 Overall, although a defined role for cohesins in the establishment and 

maintenance of TADs in interphase cells has been recognized, further investigation into 

how condensin II affects topology is necessary. The molecular basis of compartment 

formation is not currently well-defined, but research is indicating that condensin II may 

play a role. To better understand how SMC complexes shape and preserve genomes, it is 

important to continue investigating how SMC complexes influence the three-dimensional 

topology of the genome, gene expression, and chromosome transmission in various 

situations. Because functions within the nucleus are spatially organized, altered chromatin 

dynamics can lead to modified transcription and genome instability (Figure 1.4). In this 

thesis, I investigate the role of condensin II at bidirectional promoters and its effects on 

chromosome contacts and gene expression.  

1.14 Condensin II has functional roles outside of mitosis 
 Beyond the more recent studies linking condensin II to global chromatin topology, 

research in various model organisms have proposed condensin II mediates a variety of 

processes within the cell, again not related to mitosis. For example, polytene 

chromosomes, or maternal and paternal chromatids all aligned in register, are 

disassembled in Drosophila ovarian nurse cells during mid-oogenesis (Dej and Spradling, 

1999). Condensin II is required for this disassembly, and was also found to be a negative 

regulator of transvection, a process in which certain mutant alleles are transcriptionally 

influenced through association with their allelic counterparts (Hartl et al., 2008). A newer 

study examined homologous chromosome pairing at high resolution using HiC, a 

technique which uses high throughout sequencing after chromosome conformation 

capture (3C) (Rowley et al., 2019). After examining homologous chromosome pairing 

after CAP-H2 knockdown, a general increase in pairing signal was detected, in particular 

within A compartment, or open chromatin, domains. Overall, this study verified that 
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condensin II either inhibits pairing of homologous chromosomes, or may be actively 

unpairing chromatin within A domains, at bound genomic regions (Rowley et al., 2019).  

Another study in Arabidopsis thaliana investigated increased boron toxicity in 

plants with mutations in either the CAP-G2 and or the CAP-H2 subunit of condensin II 

(Sakamoto et al., 2011). The major cause of B toxicity in Arabidopsis is DNA damage, 

and condensin II is required for tolerance to the induction of DSBs, as well as to 

replication blocks induced by zeocin and aphidicolin. This implies that condensin II 

maintains genomic stability through reducing DNA damage and two possible 

mechanisms for how this occurs were suggested. The first was that condensin II might 

physically protect chromatin from genotoxic stresses, inferred from studies of the sole 

yeast condensin, which responds to nutrient starvation by compacting the genome in the 

nucleolus to stabilize it (Tsang et al., 2007a; Tsang et al., 2007b). The other possibility 

raised was that condensin II might be involved in the repair of DSBs and damaged 

replication forks, pointing towards a role of condensin II in homologous recombination 

repair (Sakamoto et al., 2011). Another piece of evidence that condensin II is important 

for homologous recombination came from a study in human cells, where a complex of 

condensin II and microcephalin/MCPH1 was proposed to mediate homologous 

recombination repair (Wood et al., 2008).  

Prior to its canonical role in mitosis, condensin II has also been implicated in the 

resolution of sister chromatids in S phase, as seen in HeLa and a lymphoblastoid cell line 

(Ono et al., 2013). When condensin II is depleted from cells treated with low doses of 

aphidicolin to induce mild replication stress, chromatid axes have a very fragile 

appearance and sister chromatids are not distinct from each other. This ultimately leads to 

failure of the chromosomes to segregate. It is thought that under conditions of replication 

stress, the activation of dormant origins leads to the need to organize and resolve smaller 

chromatin loops, which could be a more challenging task for condensin II during S phase 

and ultimately manifests as structurally distorted axes in metaphase (Ono et al., 2013).  

Recent research has also shown both condensin I and condensin II are 

simultaneously loaded at estrogen-responsive, enhancer RNA-positive (eRNA+) 

enhancers to promote eRNA transcription, enhancer-promoter looping, and full activation 
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(A) Schematic diagram of the locations of replication and transcription domains. Looped 
poised and active loci tend to be close in three-dimensional space so transcriptional 
machinery can be shared. Similarly, early replicating regions also tend to cluster together 
and more inactive loci tend to be found near the nuclear lamina. (B) Altered chromatin 
dynamics can lead to altered transcription and genome instability. The nucleus on the 
right has many more looped poised and active loci, which can lead to an increase in 
transcription. Also, less DNA found within the early replicating domain can lead to 
delayed replication of certain parts of the genome, which can result in replication stress.    

Figure 1.4: Chromatin dynamics affect cellular processes within a nucleus. 
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of the enhancers themselves (Li et al., 2015). Condensins are able to control the activation 

of ER-α-bound enhancers through maintaining a fine balance of co-activators and co-

repressors, which in turn license RNA Pol II binding, eRNA transcription and ultimately 

complete activation of coding target genes. When condensin subunits are knocked down, 

the intensity/stability of enhancer-promoter loopings are reduced. This could be 

completely or partially due to reduced eRNA levels, as there is also the possibility that 

condensins could directly control higher-order chromatin architecture as well (Li et al., 

2015). 

Altogether, these studies highlight that condensin II has functional roles outside of 

its well-known role in mitosis. Many times, however, it is difficult to determine exactly 

how condensin II contributes to each process because of the complex inner-workings of 

the nucleus; it can be challenging to parse out exactly which alterations are leading to 

changes in phenotype, and if they are acting independently, synergistically, or additively, 

for example. In addition, some of the paradigms that condensin II is important for in one 

species may not translate to other organisms.  This lack of clarity regarding more 

universal condensin II functions from model organisms with specialized processes is a 

strong motivator to study the roles of condensin II in mammalian organisms further. 

1.15 Mutations in condensin components have been linked 
to human disease 

 Condensins have also recently been linked to some human diseases. One study 

performed in patients with extreme microcephaly discovered biallelic mutations in 

NCAPD2 and NCAPG, genes for the CAP-D2 and CAP-G components of condensin I, 

respectively, as well as NCAPD3, the condensin II CAP-D3 subunit (Martin et al., 2016). 

All of these discovered mutations, however, are functionally hypomorphic, consistent 

with the essentiality of condensins in cell division (Hagstrom et al., 2002; Hudson et al., 

2003; Oliveira et al., 2005; Ono et al., 2003; Siddiqui et al., 2006; Strunnikov et al., 

1995). Parallel studies performed in a mutant mouse with hypomorphic loss-of-function 

Ncaph2, the gene encoding the CAP-H2 subunit of condensin II, confirmed that mutation 

of condensin components also causes microcephaly in mice. In both the mouse model and 

affected patient fibroblasts, anaphase bridges were observed which led to the formation of 
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micronuclei and aneuploidy in these cells. Interestingly, one patient which had 

heterozygous variants of NCAPD3 died of malignant anaplastic medulloblastoma at 11 

years. 

 This was not the first time that a link between condensins and cancer was 

established, however. A study from a year prior used an algorithm they developed in a 

pan-cancer analysis to investigate mutated networks in 12 different cancer types from The 

Cancer Genome Atlas (TCGA) (Leiserson et al., 2015). From this analysis, a subnetwork 

of condensin I members, NCAPD2, SMC2, and SMC4, was found to be significantly 

mutated in bladder cancer. Additionally, a subnetwork of condensin II members, 

NCAPD3, NCAPG2, and NCAPH2, was significantly mutated in both lung 

adenocarcinoma and lung squamous cell carcinoma (Leiserson et al., 2015). Although 

these mutations were rare, this does suggest that condensins have a tumor suppressive 

role. Further evidence of this comes from a gene expression characterization study in 

prostate tumors, where NCAPD3 expression was associated with decreased tumor 

recurrence after surgery (Lapointe et al., 2008). In addition, in the same hypomorphic 

loss-of-function Ncaph2 mouse model utilized in the previously mentioned microcephaly 

study, defects in T cell development and subsequent thymic hypoplasia occur (Gosling et 

al., 2007). When this phenotype was investigated further, it was determined that 

thymocytes from these mice have a cell cycle block impairing progression into successful 

anaphase, which itself has an elevated frequency of abnormalities, such as anaphase 

bridges and lagging chromosomes (Woodward et al., 2016). The abnormal mitoses seen 

in these Ncaph2 mutant cells subsequently leads to an accumulation of cells containing 

4N DNA content or greater. Interestingly, this phenomenon is also seen in T cells of 

neonatal mutant mice, indicating these mitotic abnormalities precede malignant 

transformation.  

Although these analyses demonstrate that mutations in condensin II can contribute 

to disease, the overall causal role of these mutations to diseases is unknown. With this 

data, it is difficult, if not impossible, to determine if all of these effects are due solely to 

mitotic abnormalities, or if other contributions of condensin II to processes outside of 

mitosis also contribute to disease progression. One way in which I have been able to 



 

 

32 

investigate the role of condensin II further within interphase cells is through the use of the 

Rb1L/L mouse model.  

1.16 The Rb1L/L mouse model reveals importance of 
condensin II interactions with the LXCXE binding cleft 

 As previously described, the LXCXE binding cleft of the pocket proteins is 

located in a shallow groove in the B subdomain of the small pocket and this is the binding 

site used by many proteins that alter chromatin structure to bind pRB and act as co-

repressors of transcription (Dick, 2007; Lee et al., 1998). Consequently, binding of these 

proteins to pRB assists in inhibiting cell cycle progression through inhibition of E2F 

target gene transcription. Viral oncoproteins, on the other hand, also use this LXCXE 

binding cleft to bind to and inactivate the pocket proteins (Dyson et al., 1992; Ewen et al., 

1989; Lee et al., 1998; Munger et al., 1989; Whyte et al., 1989). Despite the fact that the 

LXCXE binding cleft on the pocket proteins leaves these proteins vulnerable to viral 

oncoproteins, this region is the most highly conserved among the pocket proteins and 

across several species of pRB (Lee et al., 1998). Therefore, interactions between cellular 

proteins and the LXCXE binding cleft of pRB must perform central tasks for this site to 

have remained so conserved over evolutionary time, and this may not be entirely 

explained by contributions to cell cycle regulation.  

 To begin examining what the cellular interactions with the LXCXE binding cleft 

are important for, point mutants that specifically disrupt this binding surface within pRB 

were generated. These initial studies demonstrated that when LXCXE interactions are 

disturbed, transcription from E2F-containing promoters can still be repressed and cell 

cycle arrest can still be induced but cannot be permanently maintained (Chan et al., 2001; 

Chen and Wang, 2000; Dahiya et al., 2000; Dick et al., 2000). To investigate the role of 

interactions with the LXCXE binding cleft of pRB in vivo, our lab generated a targeted 

mouse model where general E2F binding to the large pocket and specific E2F1 binding 

within the pRB C-terminal domain is not disrupted, but binding to the LXCXE binding 

cleft is abrogated. The Rb1LXCXE allele (Rb1L for short) encodes three alanine substitutions 

at amino acids within the LXCXE binding cleft (I746A, N750A and M754A), which 

disrupt protein interactions at this binding interface (Isaac et al., 2006).  
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The Rb1L/L mouse model is viable, fertile, born at nearly the expected Mendelian 

ratios and does not succumb to spontaneous tumors (Isaac et al., 2006). Rb1-/- mice, in 

contrast, die embryonically due to defects in proliferation and differentiation of placental 

cells (Wu et al., 2003). This implies LXCXE binding cleft interactions are not necessary 

for early embryonic development. One overt phenotype that has been seen with these 

mice, though, is a nursing defect in Rb1L/L females which is linked to hyperplasia of the 

mammary ductal epithelium (Francis et al., 2009). 

Studies in mouse embryonic fibroblasts (MEFs) from the Rb1L/L genetic 

background revealed the level of mutant pRBL protein is equivalent to that in wild type 

MEFs, and the levels of the other two pocket proteins are also not changed between 

genotypes implying compensatory effects are unlikely. Importantly, interactions mediated 

by the LXCXE binding cleft are defective in the pRBL mutant, while those with E2F 

transcription factors are not altered.  When these Rb1L/L MEFs are cultured, similar 

growth rates to wild type are obtained, and these cells are also able to exit from the cell 

cycle in response to confluence arrest as well as serum starvation. Transcriptional 

repression of E2F target genes also remains largely intact in proliferating Rb1L/L MEFs 

(Isaac et al., 2006).  

 However, there are also some apparent defects in Rb1L/L MEFs. Failure to create a 

repressive chromatin environment at E2F target genes in senescent Rb1L/L MEFs leads to 

defective inhibition of DNA replication so these cells fail to remain permanently arrested 

in senescence (Isaac et al., 2006; Talluri et al., 2010). In proliferating Rb1L/L MEFs, there 

is an increase in >4N DNA compared to wild type, which is indicative of aneuploidy. 

This could be due to the fact that Rb1L/L cells have abnormal pericentromeric 

heterochromatin that can lead to fusions of centromeres and ultimately errors in mitosis 

(Isaac et al., 2006). There is also a general hypocondensation of chromatin within Rb1L/L 

cells; they take longer to progress from chromosome condensation to a fully aligned 

metaphase plate, which itself is also less compact than in wild type cells (Coschi et al., 

2010). When these phenotypes were investigated further, it was discovered that this 

hypocondensation occurs prior to metaphase and this function of pRB is distinct from its 

G1-S phase cell cycle regulatory abilities. It was also seen that pRB interacts with 
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condensin II to maintain appropriate chromosomal structure, which led to the conclusion 

that many of the mitotic defects in Rb1L/L cells could be caused by loss of this interaction 

(Coschi et al., 2014; Coschi et al., 2010). 

1.17 pRB interacts with condensin II to mediate genome 
stability 

 Studies performed in Drosophila were the first to discover that pRB (named 

RBF1 in Drosophila) is important for chromatin structure, largely due to its interaction 

with the dCAP-D3 subunit of condensin II (Longworth et al., 2008). This study noted that 

RBF1 promotes the chromatin association of dCAP-D3, a finding which was further 

extended to human cells (Longworth et al., 2008). Longworth et al. also established the 

dependency of pRB on its LXCXE binding cleft for binding to CAP-D3 (Longworth et 

al., 2008).  

Further investigation in Rb1L/L MEFs revealed that only condensin II levels are 

reduced on chromatin, while the overall levels of chromatin bound condensin I and 

cohesin remain unchanged, indicating that the LXCXE binding cleft of pRB likely only 

affects the levels of condensin II binding (Coschi et al., 2010). However, in human RPE-1 

cells depleted for pRB there is a reduction in both centromeric cohesin and condensin II, 

leading to an increase in intercentromeric distance and deformed centromere structure 

(Manning et al., 2010). These defects ultimately lead to merotelic attachments to 

chromosomes, which is when one or both sister kinetochores are attached to microtubules 

emanating from both spindle poles, and subsequently an increase in mitotic delay and in 

lagging chromosomes, similar to what has been seen in cells from the Rb1L/L mouse 

(Coschi et al., 2010; Manning et al., 2010).  

Further investigation of pRB and condensin II has revealed that these proteins 

form a complex along with E2F1 which localizes extensively to major satellite sequences 

within pericentromeric heterochromatin to facilitate replication (Coschi et al., 2014). It 

was also found that loss of even one wild type copy of RB1 reduces recruitment of 

condensin II to pericentromeres and this also leads to aberrant replication and the ensuing 

defects in mitotic chromosome segregation (Coschi et al., 2014). Additionally, this study 
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demonstrated that the specific interaction between pRB and E2F1 is required for CAP-D3 

to localization at pericentromeric heterochromatin (Coschi et al., 2014).  In line with this, 

in cells with an Rb1 mutant allele that disrupts the specific interaction between pRB and 

E2F1, condensin II localization is decreased at genomic locations where DNA damage 

accumulates and these cells also have replication abnormalities and aneuploidy (Ishak et 

al., 2017). However, a thorough investigation of pRB-dependent condensin II binding 

outside of repetitive regions of the genome has not been performed to investigate other 

consequences due to loss of this interaction.  

1.18 Objectives of the present study 
 Altogether, there have been some interesting studies associating pRB with 

genome stability. First of all, there have been the paradoxical observations that the pRB 

pathway is misregulated in the vast majority of cancers, yet pRB loss specifically has 

been associated with better treatment outcome (Cecchini et al., 2015; Garsed et al., 2018; 

Ludovini et al., 2004; Zhao et al., 2012). These findings suggest that pRB is not solely a 

growth regulator and that loss of RB1 may lead to other cancer relevant characteristics 

that are independent of classical pRB-pathway functions. Secondly, studies where 

binding at the LXCXE binding cleft of pRB is abrogated has revealed defects in 

chromosome structure, particularly at the centromeres of mitotic chromosomes (Coschi et 

al., 2014; Coschi et al., 2010; Manning et al., 2010). Many mitotic defects in Rb1L/L cells 

have been attributed to loss of interaction with condensin II. However, contributions of 

this pRB-condensin II complex to interphase chromosome dynamics and cellular 

processes outside of the pericentromere have not been investigated. Therefore, the overall 

aim of this study is to characterize the different ways in which pRB contributes to the 

maintenance of genome stability.  

 In chapter 2, CRISPR/Cas9 was used to create non-functional RB1 alleles in 

cancer cells that already have mutations affecting the pRB-pathway to investigate the 

specific role of RB1 deficiency. I hypothesized that RB1 mutations in pRB-pathway 

disrupted cells would lead to a decrease in genome stability. To test this hypothesis, I 

examined the levels of DNA damage in cells using γH2AX foci. To investigate sources of 

DNA damage, I assessed their susceptibility to a number of chemical agents and explored 
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these vulnerabilities further. Locations of DNA damage were determined using γH2AX 

ChIP-Seq to investigate if damage occurred at specific locations within the genome. 

Mouse xenograft experiments were also performed to assess if new cancer relevant 

phenotypes arise in RB1 mutant cells.  

In chapter 3, I investigate pRB-dependent condensin II localization genome-wide. 

I hypothesized that condensin II localizes extensively throughout the genome in an pRB-

dependent manner within interphase nuclei and this has implications on transcriptional 

regulation and chromatin dynamics. In order to test this hypothesis, condensin II 

localization was resolved using ChIP-Seq in both wild type and Rb1L/L MEFs and data 

were compared. To determine whether occupancy was functional, I performed RNA-Seq 

analysis in Rb1+/+ and Rb1L/L MEF pairs. The influence of condensin II on local 

chromatin contacts was investigated using 3C at locations of interest. Chromatin 

interactions at these same locations were interrogated further using circularized 

chromosome conformation capture (4C)-Seq. Finally, we examined whether functional 

paradigms observed in Rb1L/L MEFs could be extended to humans by comparing 

expression data from RB1 deleted to RB1 diploid lung adenocarcinoma samples. 
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Chapter 2  

2 RB1 deletion in pRB-pathway disrupted cells results in 
DNA damage and cancer progression. 

2.1 Abstract 
Proliferative control in cancer cells is frequently disrupted by mutations in the 

pRB-pathway. Intriguingly, RB1 mutations can arise late in tumorigenesis in cancer cells 

whose pRB-pathway is already compromised by another mutation. In this study, we 

present evidence for increased DNA damage and instability in cancer cells with pRB-

pathway defects when RB1 mutations are induced. We generated isogenic RB1 mutant 

genotypes with CRISPR/Cas9 in a number of cell lines. Cells with even one mutant copy 

of RB1 have increased basal levels of DNA damage and increased mitotic errors. 

Elevated levels of reactive oxygen species as well as impaired homologous recombination 

repair underlie this DNA damage. When xenografted into immune compromised mice 

RB1 mutant cells exhibit an elevated propensity to seed new tumors in recipient lungs. 

This study offers evidence that late arising RB1 mutations can facilitate genome 

instability and cancer progression that are beyond the pre-existing proliferative control 

deficit.  

2.2 Introduction 
 Loss of proliferative control is a defining feature of human cancer. Most cancer 

cells develop cell intrinsic mechanisms of supplying growth stimulatory signals as well as 

disrupting the response to cell cycle arrest cues (Hanahan and Weinberg, 2011). To this 

end, mutations in the retinoblastoma protein (pRB)-pathway are central to disrupting 

proliferative control in tumorigenesis (Burkhart and Sage, 2008; Knudsen and Knudsen, 

2008; Sherr and McCormick, 2002). Deletion of the pRB gene, RB1, prevents cell cycle 

arrest in response to a broad range of signals (Knudsen and Knudsen, 2008). Similarly, 

overexpression or hyperactivation of D-type cyclins and their associated cyclin-dependent 

kinases (CDKs) can lead to constitutive pRB phosphorylation and cell cycle entry. Lastly, 

deletion or promoter methylation of CDKN2A that encodes the CDK inhibitor p16 serves 

to deregulate kinase activity, causing constitutive phosphorylation of pRB. Cancer cell 
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genomes that sustain a single mutation in this pathway are considered to have disrupted 

pRB-pathway function and are deficient for cell cycle control (Dyson, 2016; Knudsen and 

Knudsen, 2008; Sherr, 1996). Historically, this concept of pRB-pathway inactivation 

suggested that mutations in different components of the pathway are relatively equivalent 

and additional mutations provide no subsequent advantage to cancer progression (Dick et 

al., 2018; Knudsen and Knudsen, 2008; Sherr, 1996; Sherr and McCormick, 2002). 

 A number of recent clinical observations challenge the logic of single pRB-

pathway mutations in cancer. First, multiple studies have shown that RB1 loss is 

specifically predictive of a favourable response to chemotherapy (Cecchini et al., 2015; 

Garsed et al., 2018; Ludovini et al., 2004; Zhao et al., 2012), whereas p16 expression or 

overall proliferative rates are not (Cecchini et al., 2015; Garsed et al., 2018; Zhao et al., 

2012). This suggests that pRB-pathway mutations are not necessarily equivalent. Second, 

a number of studies have suggested that RB1 gene loss is more prevalent in advanced 

cancers, or mechanistically contribute to progression or dissemination (Beltran et al., 

2016; McNair et al., 2017; Robinson et al., 2017; Thangavel et al., 2017), a stage where 

cell autonomous proliferative control is presumably already deregulated. Collectively, 

these examples suggest that RB1 mutation contributes more to tumor progression than 

just alterations to proliferative control and that RB1 loss may confer other cancer relevant 

characteristics. Remarkably, some studies even highlight that single copy loss of RB1 

may be functionally significant (Coschi et al., 2014; Gonzalez-Vasconcellos et al., 2013; 

McNair et al., 2017; Zheng et al., 2002). 

 Beyond pRB’s role in cell cycle control through E2F transcriptional regulation, it 

has been reported to participate in a host of functions that contribute to genome stability 

(Velez-Cruz and Johnson, 2017). These include chromosome condensation through pRB-

dependent recruitment of condensin II and cohesin (Longworth et al., 2008; Manning et 

al., 2014). The pRB protein also influences repair of DNA breaks through both non-

homologous end joining (NHEJ) (Cook et al., 2015), and homologous recombination 

(HR) (Velez-Cruz et al., 2016), and induction of mitochondrial biogenesis that impacts 

cell metabolism (Benevolenskaya and Frolov, 2015; Jones et al., 2016; Nicolay et al., 

2015). Some of these functions, such as repair of DNA breaks by HR, are obligatorily 
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outside of pRB’s role in G1-S phase regulation. In addition, other roles, such as effects on 

mitochondrial biogenesis and metabolism take place in proliferating populations of cells 

further suggesting that this is independent of G1-S regulation and the pRB-pathway. It is 

noteworthy that some atypical pRB functions in genome stability, or late stage cancer 

progression, may be sensitive to single copy loss (Coschi et al., 2014; Gonzalez-

Vasconcellos et al., 2013; Sharma et al., 2010; Zheng et al., 2002). Thus, the existence of 

shallow RB1 deletions may indicate that pRB’s less well appreciated functions in genome 

stability could underlie cancer relevant characteristics that are independent of classical 

pRB-pathway function in cancer (Dick et al., 2018).  

 In order to test if RB1 loss is relevant to cancer cells that already possess pRB-

pathway disruption, we induced mutations in RB1 using CRISPR/Cas9 in U2OS and 

NCI-H460 cell lines, that are reported to be defective for p16, as well as in the NCI-

H1792 cell line, which possesses a gain-of-function alteration affecting CDK4. These 

cells displayed spontaneous DNA damage as evidenced by gH2AX foci and elevated 

levels of reactive oxygen species. We also determined that RB1 mutations decreased the 

ability to repair DNA breaks by homologous recombination, and this is supported by 

elevated levels of anaphase bridges in mitosis. RB1 mutant cells were xenografted into 

immune compromised mice and this revealed similar growth kinetics in subcutaneous 

implantation, with RB1 null showing greater propensity to colonize lungs. These 

experiments underscore the discovery that RB1 mutation in cells that already possess 

pRB-pathway disruption creates DNA damage and fuels cancer progression.  

2.3 Materials and Methods 

2.3.1 Cell culture 

U2OS cells and the resulting clones were grown in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 

50 U/mL penicillin and 50 µg/mL streptomycin. H460 and H1792 cells and the resulting 

clones were grown in Roswell Park Memorial Institute (RPMI) 1640 medium 

supplemented with 10% FBS, 2 mM L-glutamine, 50 U/mL penicillin and 50 µg/mL 

streptomycin. Cells were grown at 37°C in humidified air containing 5% CO2. 
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2.3.2 Generation of RB1 deletions using CRISPR 

For creation of RB1 deletions, single guide RNAs (sgRNAs) targeting exon 22 of 

RB1 were selected by using the CRISPR Design tool at http://crispr.mit.edu/ (Cong et al., 

2013). The sgRNA sequences were as follows: 5’-

CACCGTATTATAGTATTCTATAACT-3’ (X22B-top), 5’-

AAACAGTTATAGAATACTATAATAC-3’ (X22B-bottom), 5’-

CACCGAGGATACTTTTGACCTACCC-3’ (X22C-top), 5’-

AAACGGGTAGGTCAAAAGTATCCTC (X22C-bottom). The X22B and X22C guides 

were each cloned into the pX459 plasmid (with wild type Cas9; Addgene #48139) and 

the pX462 plasmid (with the D10A mutant version of Cas9; Addgene #48141) Both 

plasmids contain a puromycin resistance cassette. Cells were seeded at a density of 105 

cells per well in a 6-well dish, and the next day a total of 1 µg per well of a 1:1 mix of 

X22B and X22C CRISPR plasmids (either pX459 or pX462) was transfected by use of 

X-tremeGENE HP DNA transfection reagent (Roche). The next day, each well was 

replated onto a 15 cm dish, and the day after that cells were cultured in selection medium 

with 2 µg/mL of puromycin for 2 days. Following that, cells were grown in normal cell 

culture media for approximately 12 days, following which single colonies were picked 

from the 15 cm plates using mechanical detachment with a pipette tip and placed into 

wells of a 48-well dish and allowed to grow. Cells were further passaged onto larger 

plates, and were genotyped using the following primers: X22F primer, 5’-

TTACTGTTCTTCCTCAGACATTCAA-3’; and X22R primer, 5’-

GGATCAAAATAATCCCCCTCTCAT-3’. PCR products (445 bp for the wild type 

band) were run in an agarose gel, individual bands were gel purified using a Sigma 

GenElute Gel Extraction kit and sent for Sanger sequencing using the X22F and X22R 

primers shown above. For clones with multiple PCR products, bands were purified and 

sent for sequencing separately to determine individual RB1 alleles in each clone. For 

alleles that could not easily be resolved by gel electrophoresis, PCR products were cloned 

into vectors using either the TOPO TA Cloning Kit for Sequencing (Invitrogen) or the 

CloneJET PCR Cloning Kit (Thermo Scientific).  



 

 

59 

The top scoring off-target intragenic locations determined for each sgRNA using 

the CRISPR Design tool were also sequenced to probe for mutations. sgRNA X22B had a 

potential off-target site in ZNF699 (X22B_OT_ZNF699_F, 5’-

GTGCCCTAAAACACTGAGGGA-3’; and X22B_OT_ZNF699_R, 5’-

TTTATGATCAACAAGGACCAGAGC-3’) while X22C has a potential off-target site 

ALDH1L1 (X22C_OT_ALDH1L1_F, 5’-GCCACGCTATGCTTGTGATG-3’; and 

X22C_OT_ALDH1L1_R, 5’-CACCCCAGAGAAGGGAACAC -3’). PCR products were 

gel purified as above and sent for Sanger sequencing using their respective primers. 

Nuclear extracts were prepared from U2OS CRISPR clones of interest and 

western blotting was carried out using previously described protocols (Cecchini and Dick, 

2011). Antibodies raised against pRB (clone G3-245, BD Pharmingen; C-15, Santa Cruz) 

and Sp1 (H-225, Santa Cruz) were used for western blotting. Samples were western 

blotted using standard techniques. 

To generate additional RB1 knockout and control cell lines, sgRNAs targeting 

either exon 2 of RB1 (5’-GGAGAAAGTTTCATCTG-3’) or a gene desert region of the 

genome (5’-TGAGCCTATATTAATTGG-3’) were utilized. The sgRNAs were cloned 

into the lentiCRISPR v2 vector (Addgene #52961), which also encodes Cas9. To generate 

lentivirus, 293T cells were transfected with the sgRNA vector and a 1:1:1 mixture of 

lentiviral packaging constructs (Addgene #12251, #12253, #8454) using 

polyethylenimine transfection reagent. Twenty-four hours after transfection, the 293T 

media was replaced, and recipient cells (U2OS, NCI-H1792, NCI-H460) were seeded for 

infection. The following day, media on the recipient cells was replaced with lentiviral 

media, and polybrene was added at a final concentration of 8 µg/mL. A second infection 

was performed the next day. Infected cells were then selected with 2 µg/mL puromycin 

for 3 days. To generate isogenic clones, populations of knockout (or control) cells were 

FACS sorted as single cells in 96-well plates (BD FACSAria II) and allowed to grow for 

approximately 2 weeks. Colonies were then expanded and screened for loss of pRB by 

immunoassay using the Simple WesternTM system according to the manufacturer’s 

instructions. Successful knockout clones were also genotyped to confirm clonogenic 

origin. Genomic DNA was extracted using the PureLink Genomic DNA Mini Kit 



 

 

60 

(Invitrogen), and the region surrounding the cut site was amplified by PCR using the 

following primers: X2F, 5'-TCACAGAAGTGTTTTGCTGCTT-3'; X2R, 5’-

TTTGGTGGGAGGCATTTATGGA-3’. PCR products were purified using the DNA 

Clean and Concentrator Kit (Zymo Research) and sent for Sanger sequencing.  

2.3.3 Fluorescence microscopy 

Cells grown either on glass coverslips or in glass bottom plates were fixed in 

phosphate-buffered saline (PBS) containing 4% paraformaldehyde for 10 min and then 

permeabilized with PBS-0.3% Triton X-100 for 10 min at room temperature. The fixed 

cells were blocked in blocking buffer (PBS-0.3% Triton X-100 with either 5% donkey or 

goat serum depending on the species in which the secondary antibodies were raised) for 

at least 1 hr at room temperature. Cells were then incubated with primary antibody in 

blocking buffer at room temperature for 1 hr or at 4°C overnight. Antibodies raised 

against pRB (clone G3-245, BD Pharmingen), gH2AX (clone JBW301, EMD Millipore), 

53BP1 (H-300, Santa Cruz) and BLM (C-18, Santa Cruz) were used for IF. After 3 

washes with PBS-0.3% Triton X-100, cells were incubated with secondary antibody 

diluted in blocking buffer for 1 hr at room temperature. Cells were washed twice with 

PBS-0.3% Triton X-100, incubated with 100 ng/mL 4’,6-diamidino-2-phenylindole 

(DAPI) in PBS-0.3% Triton X-100 for 5 min, washed twice more with PBS-0.3% Triton 

X-100 and then washed once with PBS before mounting with Slowfade Gold Antifade 

mountant (S36936, ThermoFisher Scientific). 

For 8-oxoguanine (8-oxoG) staining, cells were fixed and blocked as above, then 

washed with PBS-0.3% Triton X-100 and incubated in RNase solution (0.2 mg/mL 

RNase A, 10 mM Tris-HCl (pH 7.5), 15 mM NaCl, 0.1% Triton X-100 in 1X PBS) for 1 

hr at room temperature. Cells were washed with PBS-0.3% Triton X-100 and then 

incubated in 2 M HCl for 10 min at room temperature, followed by a rinse with 50 mM 

Tris-HCl (pH 8.0). Cells were washed with PBS-0.3% Triton X-100, and then primary 

antibody incubation, using α-DNA/RNA Damage antibody raised against 8-oxoG (clone 

15A3, ab62623, Abcam) and all subsequent steps were completed as above.  
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For confocal microscopy of pRB, gH2AX and BLM, cells were examined on an 

Olympus Fluoview FV1000 confocal microscope system. For confocal microscopy of 

53BP1, a Nikon A1R confocal microscope was used. For non-confocal microscopy, 

images were acquired using a Zeiss Axioskop 40 microscope and Spot flex camera. Foci 

were quantified using the Focinator (Oeck et al., 2015), while overall staining intensity in 

cells was quantified by ImageJ (Schneider et al., 2012).  

2.3.4 Gamma irradiation of cells 

Cells subjected to gIR were plated at 100,000 cells per well in 6 well dishes with 

glass coverslips on the bottom. The next day, cells were exposed to a cobalt 60 source 

until a dose of either 2 Gy or 1 Gy was received. Cells were placed back in the cell 

culture incubator until the appropriate time point after treatment to fix cells for IF.  

2.3.5 NHEJ and HR repair assays 

For the HR repair assay, pDRGFP was used which was a gift from Maria Jasin 

(Addgene plasmid #26475; http://n2t.net/addgene:26475; RRID:Addgene_26475) and for 

the NHEJ assay, pimEJ5GFP was used which was a gift from Jeremy Stark (Addgene 

plasmid #44026; http://n2t.net/addgene:44026; RRID:Addgene_44026). pDRGFP was 

linearized using EcoRV and pimEJ5GFP was linearized using XhoI. These linearized 

fragments were then individually used for transfection using Lipofectamine 3000 

transfection reagent (Invitrogen) into U2OS cells. The next day, each well was replated 

onto a 10 cm dish, and a day later, cells were cultured in selection medium with 2 µg/mL 

of puromycin for 3 days. To isolate single cell colonies, limiting dilutions were then used 

to seed cells into 96 well plates. After approximately 3 weeks, wells with growth from 

single cell isolates were transferred to single wells of 12 well plates and after a few days 

were treated with puromycin again to ensure the selected clones did still contain either the 

NHEJ or HR constructs.  

To determine the reporter efficiency in the isolated clones, 2 sets of transfections 

were performed per clone, again using Lipofectamine 3000 transfection reagent 

(Invitrogen). For the first set of transfections, each clone was transfected with a plasmid 

expressing the I-SceI endonuclease, pCBASceI, which was a gift from Maria Jasin 
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(Addgene plasmid #26477; http://n2t.net/addgene:26477; RRID:Addgene 26477), and a 

blasticidin marker, pMSCV-Blasticidin, which was a gift from David Mu (Addgene 

plasmid #75085 ; http://n2t.net/addgene:75085; RRID:Addgene_75085). The second set 

of transfections was with an empty backbone plasmid, pCAG-FALSE, which was a gift 

from Wilson Wong (Addgene plasmid #89689; http://n2t.net/addgene:89689; 

RRID:Addgene_89689) and pMSCV-Blasticidin. For both of these transfections, the 

blasticidin resistance plasmid was used in a 1:3 ratio with the complementary plasmid. 

The next day, each well was replated onto a 10 cm dish, and the day after that cells were 

cultured in selection medium with 10 µg/mL of blasticidin for 1 week. GFP positive cells 

were then quantified by flow cytometric analysis (FACS). To prepare cells for FACS, 

they were washed with PBS, trypsinized, resuspended in culture media, and washed twice 

with PBS. Cell pellets were then resuspended in 0.5 mL of flow cytometry staining buffer 

with propidium iodide (0.05% sodium azide and 0.5% BSA in 1X PBS with 0.01 mg/mL 

propidium iodide). For each reporter construct, the clone with the highest ratio of GFP 

signal when transfected with pCBASceI to GFP signal when transfected with pCAG-

FALSE was selected for future studies.  

To introduce CRISPR constructs into selected clones for each repair reporter, 

lentivirus particles were generated in HEK293T cells. Lentivirus was created for both 

lentiCRISPR v2 with no guide RNA inserted, and for lentiCRISPR v2 with the X22B 

sgRNA sequences for RB1 (from above) inserted. lentiCRISPR v2 was a gift from Feng 

Zhang (Addgene plasmid #52961; http://n2t.net/addgene:52961; RRID:Addgene_52961). 

The X22B RB1 guide sequences were inserted into the lentiCRISPR v2 plasmid as 

previously described (Sanjana et al., 2014; Shalem et al., 2014). Culture media containing 

lentiviral particles were transferred to appropriate U2OS HR and NHEJ reporter clones 

for 48 hours, followed by selection with 4 µg/mL puromycin for at least 5 days.  

The population of U2OS HR and NHEJ reporter clones that were infected with 

lentiCRISPR v2 plasmids, either with or without the RB1 guide, were then transfected 

with both pCBASceI and pMSCV-Blasticidin or pCAG-FALSE and pMSCV-Blasticidin 

and selected, as above, and analyzed by FACS to determine repair efficiency. These 

transfections were performed in the same transduced population of cells, but for 
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experimental replicates, the cells were seeded at different times and then subsequently 

transfected with plasmids. Cells grown in parallel to the transfected cells were used to 

prepare nuclear extracts for western blotting.  

2.3.6 Expression of HR factors 

Total RNA from cells was isolated using TRIzol reagent according to the standard 

protocol (Invitrogen). First-strand cDNA synthesis was performed using iScript cDNA 

Synthesis Kit (Bio-Rad). Isolated cDNA was used in qRT-PCR reactions with iQ SYBR 

Green Supermix (Bio-Rad) using the following primers: RPA2_F, 5’-

CGAAAGCTATGGCAGCTCCT-3’; RPA2_R, 5’-GGCTCGGGCTCTTGATTTCT-3’; 

RAD54B_ F, 5’-GCGAGGGGATAGCTGGTTAC-3’; RAD54B_R, 5’-

AGTCGTGACCGGCGAAAAT-3’; BLM_F, 5’-GAGTCTGCGTGCGAGGATTA-3’; 

BLM_R, 5’-AGTGTTCTGGCTGAGTGACG-3’; RAD51_F, 5’-

AGCTGGGAACTGCAACTCAT-3’; RAD51_R, 5’-CCACACTGCTCTAACCGTGA-

3’; RECQL_F, 5’-AGAGAAAGCCTATGAAGCAAGGA-3’; RECQL_R, 5’-

GGCTTCTGCCGAACCTCATA-3’; BRCA1_F, 5’-

CTGAAGACTGCTCAGGGCTATC-3’; BRCA1_R, 5’-

AGGGTAGCTGTTAGAAGGCTGG-3’; XRCC2_F, 5’-

GCGATGTGTAGTGCCTTCCA-3’; XRCC2_R, 5’-

TTCAAGAATATCACCATGCACAGG-3’; BRCA2_F, 5’-

AAGCACTCCAGATGGCACAAT-3’; BRCA2_R, 5’-

GGGTACACAGGTAATCGGCT-3’; RAD52_F, 5’-ATGCTTTGGACAGTGCCAGT-

3’; RAD52_R, 5’-ACATTCTGCTGCGTGATGGA-3’; GAPDH_F, 5’-

ATGACCACAGTCCATGCCAT-3’; and GAPDH_R, 5’-

TTGAAGTCAGAGGAGACCAC-3’. Resulting target Cq values were normalized to 

GAPDH, then expressed as fold change relative to the global wild type mean.  

Nuclear extracts were prepared from clones for western blots, and the following 

antibodies were used: RPA32 (A300-244A, Bethyl), RAD54B (ab83311, Abcam), BLM 

(C-18, Santa Cruz), and RAD51 (ab63801, Abcam). 
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2.3.7 Determination of IC50 concentrations 

For IC50 assays, U2OS cells were seeded at a density of 1,200 cells per well and 

H460 and H1792 cells were seeded at a density of 1,500 cells per well in 96 well dishes. 

Twenty-four hours after plating cells, media was replaced with media containing the 

drugs of interest at the appropriate concentrations. Technical triplicates were analyzed for 

each biological replicate. Serial dilutions of stock solutions of aphidicolin (APH), 

hydrogen peroxide (H2O2), etoposide, hydroxyurea (HU) and cisplatin were created so 

that a constant amount of drug was added to the media for each drug concentration used. 

After 72 hr, alamarBlue was added to an amount equal to 10% of the volume in the well 

(i.e. 10 µL per well with 100 µL of media and drug). After 4 hr of incubation, 

cytotoxicity was measured using a Synergy H4 Hybrid Reader (BioTek, USA) using 

excitation/emission wavelengths of 560 nm/590 nm. Values were corrected using a blank 

of media and alamarBlue only. The amount of fluorescence of alamarBlue for each well 

of drug treated cells was then normalized to the fluorescence value obtained for the 

untreated cells of the same technical replicate. These normalized fluorescence values 

relative to untreated cells were then analyzed using Prism. The drug concentrations were 

log transformed and the data were subsequently fit to a curve using nonlinear regression 

(log(inhibitor) vs. response (three parameters)). IC50 values were obtained from the best 

fit values, and IC50 values from three biological replicates were compared using 

Ordinary one-way ANOVA and Tukey’s multiple comparisons test or paired t-test.  

2.3.8 ChIP-Sequencing 

ChIP was conducted according to protocols adapted from Cecchini et al. 

(Cecchini et al., 2014). Briefly, cross-linked chromatin was sonicated so most chromatin 

was ≤400 bp. Sheared chromatin was then normalized between experimental groups and 

pre-cleared with protein G Dynabeads and IgG. Pre-cleared chromatin was then incubated 

with protein G Dynabeads and ChIP antibodies to immunoprecipitate proteins. Antibodies 

raised against gH2AX (clone JBW301, EMD Millipore) and H4 (clone 62-141-13, EMD 

Millipore) were used for ChIP. Cross-links were reversed at 65°C, and samples were 

treated with RNase and proteinase K. DNA was isolated for library preparation, and 20 

replicates per genotype for gH2AX ChIP-Seq were pooled to achieve DNA yield required 
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for library preparation (NEBNext Ultra II DNA Library Prep Kit). ChIP libraries were 

sequenced using an Illumina NextSeq (High output 75 cycle kit), and processed reads are 

deposited in GEO (GSE125379).  

Resulting FASTQ reads were aligned to the human genome build hg19 using 

Bowtie2 version 2.3.0 (Langmead and Salzberg, 2012). The following command was 

used: bowtie2 -t -p 4 -D 15 -R 2 -L 32 -i S,1,0.75 -x hg19 -U <reads>.fastq -S 

<output>.sam. Peaks were identified using MACS2 version macs2 2.1.1.20160309 

according to parameters stated below and the options to detect broad peak distributions 

for histone marks (Zhang et al., 2008). For H4 ChIP-Seq, the corresponding inputs were 

used as the control and for gH2AX ChIP-Seq, the first input replicate was used as the 

control. The following command was used: macs2 callpeak -t <ChIP>.bam -c 

<input>.bam -n <output> --outdir ./macs2/ -g hs --broad --broad-cutoff 0.1.  

To find abundance of ChIP-Seq reads in common fragile sites (CFS), the 

cytogenetically determined locations of CFS, as determined previously by Lukusa and 

Fryns (2008), were converted to human genomic coordinates (hg19) using the UCSC 

Genome Browser (Lukusa and Fryns, 2008; Tyner et al., 2017). Bedtools coverage was 

then used to find the number of alignments for each ChIP-Seq sample within the 

individual CFS (Quinlan, 2014). The abundance of reads that mapped to CFS were then 

converted to proportions by dividing by the total number of mapped reads. The 

proportion data were further normalized against input control and then ratios were made 

comparing the mutant proportions to the wild type proportions. A two-tailed one-sample 

t-test was performed to test if the normalized mean read count proportions of the RB1+/- 

and the RB1-/- ChIP-Seq assays at each of the CFS is equal to the normalized read count 

proportion of the corresponding CFS from the wild type control. A multi-test correction 

was applied to the calculated P-values (using "fdr" method from "p.adjust" function in R). 

Statistical analysis of sequence data was performed using R (version 3.4.2) and the 

plotting function used was lattice (v0.20-35). 

For repeat analysis, another set of alignments were performed. For this analysis, 

reads were mapped using Bowtie version 1.2.1.1 with high stringency to the hg19 
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genome (Langmead et al., 2009). The following command was used: bowtie -S --best -m 

1 --chunkmbs 500 -p 4 -t --un <not_aligned_unique> --max <multiple_reads_unique> 

hg19 <reads>.fastq <output>.sam. All remaining reads were mapped to repeat containing 

indexes using previously reported methods (Day et al., 2010), with indices also being 

derived from Repbase and Tandem Repeats Databases (Bao et al., 2015; Gelfand et al., 

2007). For these remaining repeat alignments, the –m 1 parameter of the Bowtie mapping 

was changed to –k 1. Finally, all remaining reads were re-mapped to hg19 at low 

stringency to exhaustively match sequence tags to the mouse genome. The abundance of 

sequence tags that mapped to non-unique regions of the genome were compared by using 

log2 ratios of γH2AX precipitable tags per million mapped reads in mutant versus wild 

type and converted into heat maps using matrix2png (Pavlidis and Noble, 2003). To test 

for significance of enrichment of reads mapped to various repeat categories, the same 

analysis to test for significance within CFS was used (see above).  

2.3.9 Flow cytometry 

Cells were plated on 6 cm plates at a density of 100,000 cells per plate. 

Approximately 24 hr after, cells were pulsed with BrdU for a duration of 30 min. Cell 

cycle analysis was then carried out as previously described (Cecchini et al., 2012).  

2.3.10 Nucleoside supplementation 

For nucleoside complementation, cells were seeded at a density of 50,000 cells 

per 6 cm plate for flow cytometry and at 25,000 cells per 6 well plate with glass 

coverslips for immunofluorescence. Approximately 24 hr after seeding cells, media was 

replaced, either with or without the addition of nucleosides. To prepare nucleosides, 

uridine (Sigma) and cytidine (Sigma) were dissolved in autoclaved Milli-Q water to make 

10 mM stocks, while adenosine (Sigma) and guanosine (Sigma) were dissolved to make 2 

mM stocks. The suspensions were briefly boiled, filter sterilized, and added to complete 

medium at a final concentration of either 50 μM or 10 μM. 48 hr after nucleoside 

addition, cells were either fixed for gH2AX IF using non-confocal microscopy and the 

Focinator (as above), or for flow cytometry. For analysis of DNA content by flow 

cytometry, propidium iodide stained DNA content was analyzed. 
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2.3.11 Measurement of reactive oxygen species 

Cells were plated in 96 well plates at a density of 1,200 cells per well in DMEM 

without phenol red (31053-028, ThermoFisher Scientific). H2O2 was added 24 hr after 

seeding cells. Seventy-two hours later, 5(6)-carboxy-2',7'-dichlorodihydrofluorescein 

diacetate (carboxy-H2DCFDA; CA-DCF-DA; (C400, ThermoFisher Scientific)) at a 

stock concentration of 20 mM in DMSO was diluted in DMEM without phenol red to a 

concentration of 40 µM. This master mix of media and CA-DCF-DA was added directly 

to the wells already containing media and the drug of interest, to obtain a final 

concentration of 20 µM CA-DCF-DA. The cells were then put in the incubator for 45 min 

and readings were obtained using a Synergy H4 Hybrid Reader (BioTek, USA) using 

excitation/emission wavelengths of 492 nm/525 nm. Technical triplicates were analyzed 

for each biological replicate and the average background readings (cells treated with the 

highest concentration of the drug of interest for 72 hr and DMSO in place of CA-DCF-

DA) from each cell line were subtracted from the average of each treatment reading for 

analysis of fluorescence.  

2.3.12 Mouse xenografts 

U2OS clones were grown in cell culture to approximately 80% confluence. Cells 

were washed with PBS, trypsinized, centrifuged and washed 3 times with Hanks’ 

Balanced Salt Solution (HBSS, 1X). Cells were then resuspended in HBSS at a 

concentration of 5x106 cells/mL so that 200 µL contained the 1x106 cells required for 

each injection.  

For subcutaneous injections, mice were approximately 8 weeks old and for the tail 

vein injections mice were approximately 13 weeks old when injected. All mice were 

given at least 3 days to acclimatize. All mice were female NOD.Cg-Prkdcscid 

Il2rgtm1Wjl/SzJ (stock number 005557, The Jackson Laboratory) and were housed and 

handled as approved by the Canadian Council on Animal Care, under an approved 

protocol (2016-068).  

For subcutaneous injections, 1x106 RB1+/+ cells were injected into the left flank of 

all mice, and 1x106 RB1+/- or RB1-/- cells were injected into the right flank. The mice used 
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for the subcutaneous injections were euthanized approximately 8 weeks after injection. 

Necropsies were performed and tumor mass was determined. Tumors were then fixed in 

formalin for 48 hr and processed for histological assessment.  

For tail vein injections, 1 x 106 cells were injected into the lateral tail vein. Mice 

were euthanized 8 weeks after tail vein injection. All animals were subjected to a 

thorough necropsy and all lungs as well as any abnormal tissues or organs were fixed in 

formalin for 48 hr and processed for histological assessment.  

All tissues of interest from both studies were embedded, sectioned and stained 

with hematoxylin and eosin according to standard methods. Slides were imaged using an 

Aperio ScanScope slide scanner (Leica Biosystems).  

For quantitative pathology of lungs from tail vein injected mice, images were 

analyzed using QuPath (Bankhead et al., 2017). Briefly, annotations were drawn around 

each individual lung. Within these annotated lungs, cells were detected using the cell 

detection command. The features within these cells were then smoothed by using the add 

smoothed features command (using 25 µm as the radius). Within the lungs, regions 

containing different cell types were annotated and these annotations were used to train a 

cell classifier. All possible 67 cell features were used to the build the random trees 

classifier, using default parameters. A script was then made to determine the total cell 

area of all cell types called by the classifier within each lung, and the percentages of 

tumor cell area was calculated from these values. Tumor cell nodules were manually 

counted using the cell types determined by the classifier; anything thought to have 

derived from a single cell seeding event was considered a tumor cell nodule.  

To determine the RB1 genotype of seeded U2OS cells of interest, embedded 

mouse lung tissue was deparaffinized, lysed, formalin crosslinks were reversed, and DNA 

was isolated according to manufacturer’s instructions (QIAamp DNA FFPE Tissue Kit, 

Qiagen). DNA was genotyped as above using PCR using genotyping primers (X22F and 

X22R). 
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2.3.13 Data extraction from cBioPortal 

Only TCGA studies used for the Pan-Cancer Atlas with 150 samples or more on 

cBioPortal were selected to query (Cerami et al., 2012; Gao et al., 2013). Data from 

cBioPortal was obtained in January 2019. Mutation and CNA data was analyzed, with the 

gene set user-defined list being entered as “RB1: AMP HOMDEL HETLOSS mut”. 

2.4 Results 

2.4.1 Spontaneous DNA damage in RB1 deficient cancer cells 

To investigate RB1 deficiency in pRB-pathway disrupted cells, we utilized a 

number of cell lines that are reported to be defective for p16, the product of CDKN2A 

gene, or that possess activation of cyclin D/CDK4. Initially we used p16 deficient U2OS 

cells (Forbes et al., 2017), and Cas9 with single guide RNA (sgRNA) pairs that target 

exon 22 of RB1 because loss of this exon creates null alleles in cancer (Horowitz et al., 

1990). Cells were transfected with plasmids to deliver pairs of sgRNAs and Cas9 (wild 

type or the D10A mutant). Following transient drug selection, colonies were isolated, 

expanded, and genotyped by PCR to search for RB1 deletions (Figure 2.1A). Candidates 

were rigorously selected by checking pRB protein expression by western blotting (Figure 

2.1B), ensuring heterozygous clones were not mixtures of wild type and knockout cells 

using fluorescent pRB staining (Figure 2.1C), and confirming that the most likely off 

targets were not mutated (Table 2.1). Using this approach, we selected four clones each 

for wild type and knockout RB1 genotypes, and three clones for the RB1+/- genotype that 

were used in subsequent experiments.  

To determine if RB1 mutation status affects genome stability in these engineered 

cell lines, DNA damage was assessed in untreated, proliferating cells by staining for 

γH2AX. Foci were visualized by immunofluorescence microscopy and images were 

captured using confocal microscopy (Figure 2.1D). The quantity of foci per nucleus was 

determined and this revealed a significant increase in gH2AX in the knockout and 

heterozygous lines compared to those that are wild type for RB1 (Figure 2.1E).  
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Figure 2.1: CRISPR/Cas9 induced mutations in RB1 cause DNA damage. 
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Figure 2.1: CRISPR/Cas9 induced mutations in RB1 cause DNA damage.  

(A) An ethidium bromide stained, agarose gel shows examples of wild type, 
heterozygous, and homozygous mutant RB1 genotypes that are detected by PCR 
amplification of exon 22 sequences. (B) A representative western blot showing pRB 
expression in control, heterozygous, and homozygous mutant cells is shown on top. Sp1 
loading control is shown on the bottom. (C) Immunofluorescence microscopy was used to 
detect pRB expression (green) in cultures of control, heterozygous, or homozygous 
mutants. Cells were counterstained with DAPI to visualize nuclei (blue). (D) 
Representative confocal microscopy images of gH2AX foci (red) in control, 
heterozygous, and homozygous RB1 mutant cells. Cells were counterstained with DAPI 
to visualize nuclei (blue). (E) gH2AX foci counts for each of the U2OS RB1 genotypes. 
The average proportion of cells with discrete numbers of foci are shown as histograms, 
while the cumulative frequency of foci for each genotype is shown as an inset. The 
average distribution of foci for RB1 wild type (4 different clones), heterozygous (3 
different clones) and knockouts (4 different clones) were compared using the 
Kolmogorov-Smirnov test. (F) U2OS cells were transfected with CRISPR/Cas9 
constructs targeting either a safe harbor site in the genome or exon 2 of the RB1 gene. 
Three clones were selected for both control and knockout conditions and gH2AX foci 
were quantified by fluorescence microscopy. The average proportion of γH2AX foci for 
both RB1 wild type and knockout genotypes are shown as histograms, while the 
cumulative relative frequency of foci is shown as an inset. Foci distributions were again 
compared by Kolmogorov-Smirnov test. (G) H460 lung cancer cells were stained for 
gH2AX foci and analyzed as in F. (H) H1792 non-small cell lung cancer cells were 
analyzed as in F. All error bars are +1 SEM. *P < 0.05.  
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Table 2.1: Characterization of the U2OS RB1 mutant clones generated by targeting 
exon 22. 
 

 

A Genotypes were determined by PCR and sequencing. 
B Amino acid coding changes were predicted based on nucleotide sequences. 
C The top scoring off-target intragenic locations determined for each sgRNA, ZNF699 for 
sgRNA X22B and ALDH1L1 for sgRNA X22C, were also sequenced to probe for 
unwanted mutations. ND=not determined. 
  

Clone Cas9 RB1 GenotypeA Predicted 
proteinB 

Off-Target 
GenotypesC 

ALDH1L1 ZNF699 
U2OS N/A wild type WT 

N/A N/A 
WT 

21B2 D10A wild type WT 
ND ND 

WT 
21B4 D10A wild type WT 

WT WT 
WT 

11B5 D10A wild type WT 
ND ND 

WT 
4C1 D10A heterozygous WT 

WT WT 
p.Y771fsX8 

21D5 D10A heterozygous WT 
WT WT 

p.Q770HdelX10 
21A1 D10A heterozygous WT 

WT WT 
p.I753delX12 

12C3 D10A null p.I752IfsX9 
WT WT 

p.E748CdelX11 
5A5 WT null p.N757TX31 

WT WT 
p.P776VdelX6 

6B1 WT null p.Y756YfsX14 
WT WT 

p.S751SfsX10 
5C4 WT null p.S773FfsX14 

WT WT 
p.Y756delX 
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We quantified gH2AX foci abundance in additional pRB-pathway mutant cell 

lines to determine if increased DNA damage is a common consequence of pRB loss. We 

used cells that were modified with control non-targeting sgRNAs or that were produced 

by targeting exon 2 of RB1. pRB deficiency in these cells was confirmed by western 

blotting (data not shown). Using RB1 null U2OS cells produced in this manner we again 

observed increased quantities of gH2AX foci in pRB deficient cells compared to their 

controls (Figure 2.1F). In addition, clones of control and RB1 knockout NCI-H460 

(H460; CDKN2A deleted) and NCI-H1792 (H1792; CDK4 amplified) lung cancer cells 

also displayed differences in spontaneous DNA damage (Figure 2.1G&H). This analysis 

demonstrated an elevation in the number of gH2AX foci in each of the RB1 deleted lines. 

To further investigate the source of DNA damage in RB1 mutant cells, we 

assessed their sensitivity to a number of chemical agents to determine if specific stresses 

could amplify defects that cause increased DNA damage. We tested aphidicolin, a DNA 

polymerase inhibitor that causes replication stress and etoposide, a topoisomerase 

inhibitor that creates DNA double stranded breaks. Hydrogen peroxide (H2O2) was used 

to induce oxidative damage, and cisplatin was used to create interstrand cross links, 

among other damaging effects. Representative U2OS clones of each genotype were 

treated for 72 hr with a range of chemical concentrations, after which alamarBlue was 

used to quantitate the cytotoxicity of each agent. These assays revealed that both 

heterozygous and homozygous RB1 mutations sensitize cells to hydrogen peroxide and 

cisplatin, but not aphidicolin or etoposide (Figure 2.2A-D). Because platinum 

therapeutics preferentially benefit patients with pRB deficient cancers (Cecchini et al., 

2015; Garsed et al., 2018), we also tested control and RB1-/- H460 and H1792 cells for 

their sensitivity to cisplatin. This revealed increased sensitivity to cisplatin in H460 and 

H1792 cells upon RB1 deletion (Figure 2.2E&F).  

Overall, these drug sensitivities suggest that oxidative damage may underlie some 

aspects of the DNA damage phenotype in RB1 mutant cells. We compared reactive 

oxygen species (ROS) levels in wild type and RB1 mutant U2OS cells with and without 

H2O2 using a ROS indicator, 5(6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate 

(CA-DCF-DA). For both untreated and H2O2 treated cells, there was more fluorescence 
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Figure 2.2: Cancer cells with RB1 mutations have elevated reactive oxygen species 
and sensitivity to cisplatin. 
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Figure 2.2: Cancer cells with RB1 mutations have elevated reactive oxygen species 
and sensitivity to cisplatin. 

(A) Aphidicolin, (B) etoposide, (C) cisplatin and (D) hydrogen peroxide were added to 
cultures of the indicated genotypes of U2OS cells. Viability was assessed after 72 hr 
using alamarBlue and dose response curves were used to calculate half maximal 
inhibitory concentration (IC50) values for each genotype. Both RB1 mutant genotypes 
have significantly lower IC50 values in response to cisplatin and hydrogen peroxide than 
control U2OS cells (as determined by one-way ANOVA). (E and F) H460 and H1792 
cancer cells with RB1 mutations were treated with cisplatin as in C. Differences in IC50 
values were determined using a paired t-test. (G) To detect reactive oxygen species 
(ROS), CA-DCF-DA was added to culture media at the end of 72 hr of mock or hydrogen 
peroxide treatment. Normalized fluorescence was averaged for four clones of RB1 wild 
type and knockout genotypes, and three clones for the heterozygous genotype. Mean 
values were compared by two-way ANOVA. (H) Cells were fixed and stained for 8-oxoG 
and DAPI and visualized by fluorescence microscopy. The average 8-oxoG signal per 
nucleus was determined using ImageJ with DAPI staining defining nuclear area. Three 
clones per genotype were used and data were normalized to the mean signal from RB1 
wild type in duplicate experiments. Statistical significance in staining intensity was 
determined by Kruskal-Wallis one-way analysis of variance and Dunn’s multiple 
comparisons test. (I) 53BP1 foci were quantitated for each RB1 genotype using the 
Focinator as with γH2AX. No significant differences were observed as determined by the 
Kolmogorov-Smirnov test. All error bars are ±1 SEM. *P < 0.05. 

 

  



 

 

76 

of the ROS indicator in RB1 mutant cells, and RB1-/- and RB1+/- were equivalent (Figure 

2.2G). We also fixed and stained cells for 8-oxoguanine (8-oxoG), one of the most 

abundant lesions resulting from oxidative modification of DNA (Furtado et al., 2012), 

and quantified the staining in DAPI-defined nuclear area using ImageJ (Schneider et al., 

2012). Control U2OS values were used to normalize the 8-oxoG signal from RB1 

mutants. Again, both RB1+/- and RB1-/- U2OS cells had more 8-oxoG staining than the 

RB1+/+ cells (Figure 2.2H).  

These experiments indicate that loss of RB1 in cells with pre-existing pRB-

pathway defects increases basal levels of DNA damage. Reactive oxygen species appear 

to be one source of this damage. A chemical agent that directly induces breaks 

(etoposide) did not selectively affect RB1 mutant cells, however, sensitivity to a DNA 

cross linking agent (cisplatin) suggests a potential inability to repair DNA damage by 

homologous recombination. Both observations are consistent with a lack of 53BP1 foci, a 

marker of non-homologous end joining (NHEJ), in RB1 mutant U2OS cells compared to 

controls (Figure 2.2I). This suggests the nature of DNA damage marked by gH2AX in 

these RB1 mutant cells is not necessarily double stranded DNA breaks, and that NHEJ is 

not the dominant pathway to repair damage in these cells. Overall, these experiments 

indicate that RB1 loss contributes to an unstable genome, regardless of the proliferative 

control status of the cell. 

2.4.2 RB1 mutant cells have randomly distributed DNA damage 

To further understand spontaneous DNA damage in RB1 mutant U2OS cells, we 

sought to determine if damage occurred at specific locations within the genome. We 

performed ChIP-sequencing to identify DNA sequences associated with gH2AX, as well 

as histone H4 as a control. Because spontaneous damage in untreated cell cultures is 

relatively rare, we pooled chromatin from 20 separate gH2AX ChIP experiments per 

genotype to create each sequencing library (Figure 2.3A-E). We determined peak 

locations and number using Model-based Analysis for ChIP-Seq (MACS) (Zhang et al., 

2008), and the quantity of gH2AX and H4 peaks were similar between genotypes (Figure 

2.3A). Looking at a large region of chromosome 4 as a representative view of the 
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Figure 2.3: gH2AX is randomly distributed in the genomes of RB1 mutant cells. 
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Figure 2.3: gH2AX is randomly distributed in the genomes of RB1 mutant cells.  

(A) Total number of MACS peaks found for H4 control and gH2AX ChIP-Seq reads for 
the indicated genotypes. (B) A 20 Mb region of chromosome 4 is shown with ChIP-Seq 
read alignments for gH2AX and H4. Tracks were normalized by subtracting input reads. 
Blue indicates more reads in the ChIP versus input, red indicates fewer reads. (C) The 
number of ChIP-Seq reads mapping to repetitive sequences, as well as unique genome 
regions, was determined. The heatmap shows the log2 ratios of the abundance of gH2AX 
precipitable reads per million mapped reads versus input for each of the respective 
genotypes at each element analyzed. (D) Aligned gH2AX ChIP-Seq read proportions 
within common fragile sites (CFS) were first normalized to their respective inputs, and 
then RB1+/- and RB1-/- were normalized to wild type and log2 transformed. A two-tailed 
one-sample t-test was performed to determine if the normalized mean read count 
proportions of the RB1 mutants at the various CFS is equal to the normalized read count 
proportion of the corresponding CFS in the wild type. CFS where the false discovery rate 
was less than 0.1 were grouped according to whether there were significantly more 
alignments in the RB1 mutants, or significantly more alignments in the RB1+/+ sample. 
There is no significant difference between these two categories (determined by unpaired 
t-test). FRA2E had the most reads in RB1+/- and RB1-/- compared to control while FRA6G 
had the most reads in the wild type compared to the mutants. Error bars are ±1 SEM. (E) 
ChIP-Seq tracks for gH2AX and H4 at representative CFS are displayed. FRA2E and 
FRA6G from D are shown, while FRA6D had no change in the proportion of gH2AX 
reads that aligned between the genotypes. Regions of significant enrichment (MACS 
peaks) are denoted by yellow bars.  
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genome, we did not observe consequential differences between genotypes for gH2AX or 

H4 peaks (Figure 2.3B). Since peak-finding at a genome scale failed to indicate obvious 

locations of DNA damage enrichment, we investigated individual genome sequence 

categories in search of elevated gH2AX deposition. The proportion of aligned gH2AX 

ChIP-Seq reads per million mapped reads versus input reads for each of the genotypes 

were compared within each repetitive element category and log2 transformed for display 

as a heat map (Figure 2.3C). Some categories, such as short interspersed nuclear elements 

(SINEs) and multicopy genes appear to have slight enrichment of gH2AX localization in 

RB1+/- and RB1-/- compared to RB1+/+ based on color, but a two-tailed one-sample t-test 

with FDR multi-test correction did not score these as significant. Therefore, even within 

repetitive sequences in the genome, there does not seem to be an enrichment of gH2AX 

within RB1 mutant cells compared to control. 

Previous studies suggest that gH2AX levels can be elevated at common fragile 

sites (CFS) of cancer cells under standard cell culture conditions because of replication 

stress (Harrigan et al., 2011). To investigate these locations, we quantified the number of 

gH2AX ChIP-Seq reads and scaled them to the proportions of total aligned reads and 

normalized them to input levels. RB1+/- and RB1-/- were compared to wild type using a 

two-tailed one-sample t-test. This analysis revealed 23 CFS that had more gH2AX 

alignments than the wild type and 24 CFS that had significantly less in RB1 mutant cells 

compared to controls (Figure 2.3D). Figure 2.3E shows examples of CFS locations with 

the greatest increase in gH2AX in RB1 mutants (FRA2E), the greatest reduction in 

gH2AX in RB1 mutants (FRA6G), and unchanged gH2AX levels (FRA6D). These 

examples appear highly similar between genotypes. Overall, it is possible that the 

distribution of gH2AX within each CFS may be shifting slightly between the mutants and 

the wild type. However, there does not appear to be more of a bias in general for gH2AX 

elevation at CFS in RB1 mutant cells. 

Collectively, our analysis of gH2AX distribution across the genome suggests there 

is no particular chromosome location or sequence category that is preferentially enriched 

for this mark of DNA damage. These data suggest that the increase in gH2AX foci 
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observed in RB1+/- and RB1-/- cells is likely due to an overall increase in DNA damage, 

and not newly arising locations, or “hotspots” of damage. This is in contrast to primary 

cells with a normal pRB-pathway that experience pRB loss and preferentially damage 

centromeric repeats (Coschi et al., 2014). The elevated sensitivity to peroxide and 

cisplatin, and increased ROS and 8-oxoG are consistent with DNA damage being 

randomly located in RB1 mutant U2OS cells.  

2.4.3 Homologous recombination repair defects in RB1 deficient 
cancer cells 

Another potential source of intrinsic DNA damage is defective repair. For this 

reason, we investigated the efficiency of HR and NHEJ repair using fluorescent reporters 

(Bennardo et al., 2008; Pierce et al., 1999). In this assay a promoterless, but functional, 

GFP is used to repair an adjacent break induced in a mutant, expressed, form of the GFP 

gene (Figure 2.4A). We generated clonal U2OS lines bearing this reporter and created a 

population of cells deleted for RB1 with lentiviral delivery of Cas9 and an RB1 specific 

sgRNA (Figure 2.4B). Introduction of the restriction enzyme I-SceI into these cells 

induced breaks, and RB1 deficient cells were defective for their repair (Figure 2.4C). 

Similarly, we generated U2OS clones that stably maintain an NHEJ reporter for repair of 

induced breaks that links a constitutive promoter with a GFP gene. Loss of pRB 

expression was again confirmed by western blotting (Figure 2.4E), and induction of 

breaks was used to test repair in an RB1 deficient background (Figure 2.4F). This failed to 

reveal a defect in repair, suggesting that RB1 loss in U2OS cells specifically reduces HR 

repair.  

To investigate if this reduction in HR repair is related to changes in expression of 

HR factors due to RB1 loss, we examined DNA damage repair genes that are known to be 

regulated by E2Fs (Ren et al., 2002; Xu et al., 2007). Of these candidates, only one gene, 

RPA2, was seen to have significantly lower transcript levels in RB1-/- U2OS cells (Figure 

2.4G). However, when protein levels of a subset of these factors, including RPA2, were 

investigated, no changes in expression between genotypes were evident (Figure 2.4H). 

This suggests that the expression levels of key HR factors are not changed in these cells 

as a result of RB1 loss. 
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Figure 2.4: Defective homology directed repair of DNA breaks in RB1 mutant cells. 
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Figure 2.4: Defective homology directed repair of DNA breaks in RB1 mutant cells.  

(A) Schematic of the DR homology directed repair construct used. Cleavage of an I-SceI 
site integrated into an expressed, but mutant, GFP gene (SceGFP), can be repaired from a 
downstream internal GFP fragment (iGFP). (B) U2OS cells with clonal integration of the 
HR reporter construct were ablated for RB1 expression with lentiviral delivery of Cas9 
and an RB1 specific sgRNA. Relative expression of pRB in the population of cells was 
determined by western blotting and Sp1 serves as a loading control. (C) HR repair 
efficiency of RB1 mutant U2OS cells was determined by transfecting an expression 
vector for I-SceI endonuclease (I-SceI +), or relevant negative control expression vector, 
and quantitating PI- and GFP+ cells by flow cytometry (n=5). All error bars are ±1 SEM. 
*P < 0.05. (D) Schematic of the EJ5 NHEJ reporter system. DNA breaks at tandem I-SceI 
sites release the puromycin resistance gene, allowing NHEJ repair to join a promoter to 
GFP expressing sequence. (E) After generation of a stable U2OS clone containing the 
NHEJ reporter construct, RB1 was deleted as above and confirmed by western blotting. 
(F) NHEJ repair efficiency was determined by transfecting an I-SceI endonuclease 
expression vector (I-SceI +), or negative control, and PI- and GFP+ cells were quantitated 
by flow cytometry (n=3). (G) RT-qPCR was performed to assess the transcript levels of 
various HR factors in RB1 wild type (4 different clones), heterozygous (3 different 
clones) and knockout cells (4 different clones). Statistical differences in means were 
determined by one-way ANOVA. All error bars are ±1 SEM. *P < 0.05. (H) Western 
blots showing expression of various HR factors in wild type, heterozygous, and 
homozygous RB1 mutant clones are shown. Sp1 loading control is shown on the bottom. 
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To assess how RB1 mutant U2OS cells respond to DNA breaks, each genotype 

was exposed to 2 Gy of gamma radiation (gIR). Cells were fixed and stained for gH2AX 

and DAPI to measure the amount of DNA damage. One hour after gIR, despite 

pronounced gH2AX foci in all genotypes, the amount of DNA damage was significantly 

greater in RB1-/- clones compared to heterozygous or wild type cells (Figure 2.5A). After 

24 hr, most of the DNA damage was repaired, and the RB1-/- cells retained more gH2AX 

foci than the other two genotypes (Figure 2.5B). This same increase in DNA damage in 

the RB1 null background was seen in H460 cells (Figure 2.5C&D) and in H1792 cells 

(Figure 2.5E&F), both 1 hr and 24 hr after exposure to 1 Gy of gIR. Overall, this indicates 

that cells completely lacking pRB are more sensitive to gIR, likely because they are not 

able to repair DNA breaks as efficiently by HR repair.  

Next, we investigated the fidelity of mitosis to determine if the elevated levels of 

DNA damage and impaired HR repair impacted chromosome segregation and aneuploidy 

(Gelot et al., 2015). Flow cytometry was performed on RB1 deficient cells that were 

labeled and stained with BrdU and propidium iodide (Cecchini et al., 2012). This analysis 

failed to show statistically different changes in cell cycle phases between the different 

genotypes (Figure 2.6A). However, when DNA content greater than 4N was analyzed, 

there was a significant difference between wild type and RB1 knockout cells, with RB1+/- 

cells showing an intermediate value (Figure 2.6B). This suggests that mitotic errors in 

these cells may lead to aneuploidy. 

To further investigate mitotic defects and their relationship with DNA damage and 

replication stress, cells were stained with DAPI and antibodies to BLM to visualize 

chromosome bridges, and mitotic figures were imaged using confocal microscopy (Figure 

2.6C). We observed abundant chromosome bridges in RB1-/- and RB1+/- mutant cells 

(Figure 2.6D). In the RB1 mutants there were some ultra-fine bridges (UFBs), which are 

“thread-like” DNA structures that stain only with BLM (Chan and Hickson, 2011). In 

RB1+/- anaphase cells, 5% (2/43) were seen to have UFBs and in RB1-/- cells, this was 

increased to 8% (3/39), whereas in wild type cells, UFBs were not observed (0/30). 

However, the majority of BLM bridges stained with DAPI, indicating that anaphase 
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Figure 2.5: Defective repair of gIR induced DNA damage in RB1 knockout cells. 
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Figure 2.5: Defective repair of gIR induced DNA damage in RB1 knockout cells.  

(A) U2OS cells were treated with 2 Gy gIR and fixed 1 hr or (B) 24 hr after treatment and 
stained for gH2AX. Three clones per genotype were used and gH2AX foci were 
quantified. The proportion of cells with discrete numbers of foci are shown as histograms, 
while the cumulative frequency of foci is shown as an inset. Differences in foci 
distribution were determined using the Kolmogorov-Smirnov test. A green asterisk 
indicates RB1-/- is statistically different than the other genotypes, while a black asterisk 
indicates all genotypes are statistically significantly different from each other. (C) H460 
cells were treated with 1 Gy gIR and fixed 1 hr or (D) 24 hr after treatment and stained 
for gH2AX. (E) H1792 cells were treated with 1 Gy gIR and fixed 1 hr or (F) 24 hr after 
treatment and stained for gH2AX. All error bars are +1 SEM. *P < 0.05. 
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Figure 2.6: Increased mitotic errors in RB1 mutant cells. 
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Figure 2.6: Increased mitotic errors in RB1 mutant cells.  

(A) BrdU and propidium iodide staining followed by flow cytometry were used to 
determine cell cycle phase distribution of asynchronous cultures of U2OS cells. Four 
clones for the wild type and knockout genotypes and three clones for the heterozygous 
genotype were analyzed. (B) Flow cytometry analysis shows the proportion of cells with 
greater than 4N DNA content. Means were compared using a one-way ANOVA. (C) 
Cells in anaphase were imaged by fluorescence microscopy using DAPI (blue) and BLM 
(red) in cells from each RB1 genotype. Arrows indicate anaphase bridges that are stained 
by both DAPI and BLM. (D) The number of anaphase cells with DAPI stained 
chromosome bridges were quantitated. The proportion of cells with bridges is 
significantly higher in the knockout and heterozygous clone compared to the wild type 
clone as determined by the χ2-test. (E) Representative clones from each RB1 genotype 
were either left untreated or treated with 10 µM or 50 µM nucleosides for 48 hr. Flow 
cytometry analysis of propidium iodide stained cells shows the proportion of cells with 
greater than 4N DNA content. Mean differences were compared by one-way ANOVA 
(n=3). (F) Nucleoside treated cells were fixed and stained for gH2AX after 48 hr of 
culture. DNA damage is summarized in frequency plots. The blue dotted line in the 
RB1+/- and RB1-/- cumulative frequency plots represents the wild type untreated cells. 
Statistical significance between genotypes was determined by the Kolmogorov-Smirnov 
test. All error bars are ±1 SEM. *P < 0.05. 
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bridges were most common. Anaphase bridges are known to occur in HR-defective cells, 

while UFBs can be induced by replication stress (Gelot et al., 2015).  

Lastly, to investigate the link between UFBs in the RB1 mutant cells and a 

possible increase in replication stress, we performed a nucleoside supplementation assay 

and investigated changes in DNA content and DNA damage as surrogate markers for 

nucleoside suppression of replication stress. Flow cytometry of cells stained with 

propidium iodide was performed 48 hr after media replacement, either with or without the 

addition of nucleosides. This analysis failed to show statistically different changes in 

greater than 4N DNA content within genotypes when comparing the different nucleoside 

treatment groups, although there was a trend towards decreased aneuploidy after 

nucleoside supplementation in all genotypes (Figure 2.6E). However, when we looked at 

DNA damage of cells grown in parallel, RB1-/- cells treated with 50 µM nucleosides did 

have a significant reduction in gH2AX foci compared to untreated knockout cells (Figure 

2.6F). Nevertheless, this reduction in DNA damage after nucleoside supplementation is 

modest and did not restore the levels of gH2AX foci to those seen in the RB1+/+ controls.  

Taken together with experiments earlier in this report, defects in mitosis are best 

characterized as anaphase bridges that cause aneuploidy. These types of errors are 

consistent with HR repair deficiency and sensitivity to a DNA cross linking agent such as 

cisplatin. It appears that gH2AX foci can be suppressed slightly in RB1-/- cells with 

nucleosides and RB1-/- cells exhibit some UFBs, implying that they experience modest 

DNA replication stress. However, the lack of sensitivity to aphidicolin and the lack of 

increased gH2AX deposition at repetitive regions of the genome argues that replication 

stress in these cells is quite modest. Overall, our analysis of mitotic errors is consistent 

with a defect in HR repair being the main source of chromosome bridges in anaphase of 

these RB1 mutant cells.  

2.4.4 Increased lung metastases in RB1 mutant xenografts 

To further characterize the effects of induced RB1 mutations in cells that already 

possess pRB-pathway defects, we performed xenograft experiments to determine if new 

cancer relevant properties arise upon loss of pRB. We injected cells subcutaneously into 
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immune compromised mice and allowed tumors to form for an eight-week period before 

analyzing growth by mass and histology (Figure 2.7A). This analysis revealed highly 

cellular tumors with abundant mitotic activity and foci of necrosis. Cells appeared 

epithelioid with no definite features of osteoid differentiation and they had small areas 

suggesting glandular differentiation. This phenotype was consistent among all genotypes 

(Figure 2.7B). Tumor masses were determined at end point and were not statistically 

different between genotypes, with RB1-/- even trending towards a smaller size (Figure 

2.7C). Mice were also tail vein injected and cell dissemination and proliferation were 

allowed to proceed for eight weeks at which time lungs were harvested, fixed, and 

sectioned. Hematoxylin and eosin-stained sections were digitally analyzed to quantitate 

cellular infiltration of U2OS cells (Figure 2.7D). This revealed a striking increase in RB1-

/- U2OS cells in the lungs of these mice compared to control and RB1+/- cells as 

determined by the percent of lung section area that is occupied by malignant cells (Figure 

2.7E). There were significantly more individual nodules of RB1-/- cells per lung than the 

other genotypes (Figure 2.7F), further suggesting that RB1 loss increased the efficiency of 

dissemination or establishment in the lung. Lastly, the area occupied by tumor cells per 

nodule is lower in both RB1 mutant genotypes indicating that control cells form rarer, 

larger clusters of cells, whereas RB1 mutants tend to seed more efficiently and perhaps 

proliferate more slowly (Figure 2.7G). We note that one mouse injected with RB1+/- cells 

showed extensive dissemination and tumor burden that was highly reminiscent of mice 

injected with RB1-/- cells (Figure 2.8A&B). To investigate this further we extracted DNA 

from paraffin embedded tumor material from this mouse. PCR analysis was used to 

genotype RB1 exon 22 in these cells (Figure 2.8C). It confirmed that these cells 

maintained their wild type RB1 allele, suggesting they had not undergone loss of 

heterozygosity as a means to acquire an RB1-/- phenotype.  

These xenograft experiments indicate that RB1 mutations in U2OS cells have little 

effect on growth rate of primary tumors. Interestingly, RB1-/- cells are much more 

efficient in colonizing recipient mouse lungs, suggesting that in addition to the DNA 

damage and genome instability phenotypes described earlier, RB1 loss in pRB-pathway 

deficient cells imparts characteristics that enable cancer progression. 
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Figure 2.7: Increased lung metastases with RB1 mutant cells in xenograft 
experiments. 
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Figure 2.7: Increased lung metastases with RB1 mutant cells in xenograft 
experiments.  

(A) Illustration of analysis of subcutaneous injections of RB1 mutant U2OS cells. Tumors 
were allowed to form for eight weeks before analyzing tumor mass and histology. (B) 
Representative H&E stained tissue sections from each genotype of tumor. (C) Tumor 
masses from subcutaneous injected cells are shown. The means are not statistically 
different. (D) Schematic of tail vein injections to study dissemination to the lungs. Mice 
were injected and cell dissemination and proliferation were allowed to proceed for eight 
weeks. Lungs were then isolated, sectioned and stained with H&E, and analyzed using 
QuPath. (E) The percentage of lung area occupied by cancer cells was calculated from 
tissue sections and averaged between mice. (F) Tumor cell nodules were counted using 
the assistance of QuPath and averaged among recipient mice. (G) Percent tumor cell 
burden was divided by the number of tumor nodules to determine the average tumor cell 
area per nodule. Statistical significance between genotypes was determined with a t-test. 
All error bars are +1 SEM. *P < 0.05. 
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Figure 2.8: Single copy loss of RB1 can create cancer enabling phenotypes. 

(A) H&E staining of lung tissue with the highest number of RB1+/- seeding events. (B) 
QuPath coloring to denote tumor tissue within these lungs (red). (C) DNA was extracted 
from nodules of tumor cells in paraffin embedded tissue containing these RB1+/- cells, or 
a RB1+/+ control. PCR was performed to amplify exon 22 from recovered DNA and 
controls isolated from cell culture to verify the final genotype of cells in this sample. (D) 
The 10 most prevalent cancers were analyzed for RB1 gene alterations using TCGA and 
Pan-Cancer Atlas data using cBioPortal. A deep deletion is consistent with biallelic loss 
of RB1, whereas a shallow deletion is suggestive of heterozygous RB1 deletion. 
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2.5 Discussion 
To test if RB1 loss impacts cancer cells that already possess mutations disrupting 

the pRB-pathway, we used CRISPR/Cas9 to create non-functional RB1 alleles. Using 

gH2AX staining of cells, we found that even within cells deficient for one copy of RB1, 

there is an increase in spontaneous DNA damage. Experiments that probe drug sensitivity 

of RB1 mutant cells, along with ChIP-Seq analysis of gH2AX foci and analysis of DNA 

damage repair pathways, suggest a complex picture of cellular defects. We did not detect 

specific hotspots of DNA damage, but sensitivity to peroxide and cisplatin suggest that 

oxidative damage may cause sporadic DNA damage as reactive oxygen species are 

elevated in RB1 deficient cells. Mutant RB1 cells also have more abnormal mitoses 

characterized by anaphase bridges, reporter assays detect defects in HR repair, and 

nucleoside supplementation in culture media suppresses gH2AX foci, suggesting 

additional endogenous sources of damage. Overall, this study reveals that RB1 mutations 

lead to increased DNA damage that may enhance cancer progression.  

The DNA damage phenotype caused by either single copy or homozygous 

mutation to RB1 is unlikely to be attributable to a single root cause, and we expect that 

RB1 deficiency may affect DNA damage in different cancer cells in varied ways. We 

report that RB1 deletion compromises HR repair but not NHEJ and this is consistent with 

one previous report (Velez-Cruz et al., 2016), but contradicts another (Cook et al., 2015). 

Given that we observe more than 70% of U2OS cells incorporating BrdU in a brief pulse, 

they are likely biased towards HR repair pathways because of their cell cycle position. 

This is consistent with gH2AX foci not being accompanied by 53BP1, and the activity 

levels of NHEJ reporters being almost an order of magnitude less than HR values, 

suggesting that U2OS cells are primed to use the HR repair pathway and thus phenotypes 

in these cells reflect this reality. We expect that DNA damage and defective repair 

described in this report are relevant to cancer progression phenotypes because graded 

differences between RB1 wild type, heterozygous, and homozygous genotypes are 

reflected in 8-oxoguanine abundance, aneuploidy, and anaphase bridges. This stepwise 

trend in severity of phenotype in the molecular alterations resulting from RB1 loss is 

similarly evident in the behaviour of RB1+/+, RB1+/-, and RB1-/- mutant tail vein xenograft 
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experiments, suggesting that this increase in metastatic burden is related to a stepwise 

increase in DNA damage experienced by these different genotypes.  

Single copy loss of RB1 may contribute to cancer in a number of ways. Primary 

RB1+/- cells from a number of sources are prone to mitotic errors (Coschi et al., 2014; 

Gonzalez-Vasconcellos et al., 2013; Zheng et al., 2002), and precursor lesions to 

retinoblastoma are characterized by aneuploidy (Dimaras et al., 2008), suggesting this is 

an early step in this disease. Therefore, partially defective RB1 can contribute to the early 

stages of cancer through a distinct set of effects. However, a number of studies have 

highlighted that RB1 loss is statistically enriched in advanced stages of cancer 

progression (Beltran et al., 2016; McNair et al., 2017; Robinson et al., 2017). In addition, 

analysis of the landscape of cancer alterations in TCGA consortia reveals so called 

“shallow deletions” of RB1 as relatively commonplace (Figure 2.8D), and these events 

are unlikely to be explained by random, unselected events (Beroukhim et al., 2010). From 

this perspective, our study offers critical proof of concept that late stage loss of one copy 

of RB1 can create cancer enabling phenotypes in the host cell, even if it already possesses 

pRB-pathway mutations. Complete elimination of RB1 has a stronger effect on DNA 

damage phenotypes and dissemination to the lungs, as demonstrated in this study, 

however, highly abundant single copy RB1 loss may represent a mutational compromise 

in which advantageous phenotypes are acquired with an economy of mutational changes 

(Davoli et al., 2013).   

A number of studies correlate absence of pRB expression with improved patient 

survival following treatment that includes platinum-based chemotherapy (Cecchini et al., 

2015; Garsed et al., 2018). Loss of pRB correlated with improved survival of lung 

adenocarcinomas treated by resection and adjuvant cisplatin or carboplatin, and a vinca 

alkaloid (Cecchini et al., 2015). More recently patients with high-grade serous ovarian 

carcinoma (HGSOC) that experienced exceptionally good clinical outcomes were studied 

(Garsed et al., 2018). These patients were treated with platinum-based agents, and loss of 

pRB was associated with long-term survival. From this perspective, U2OS cells 

engineered to be deficient for RB1 demonstrate that pRB loss increases sensitivity to 

cisplatin. Given that RB1 mutant cells were not more sensitive to another agent that 
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induces DNA breaks, etoposide, we interpret RB1 deficiency to create a unique sensitivity 

to cisplatin that may relate to defective HR and higher endogenous ROS levels that create 

a highly specific sensitivity to this class of chemotherapy.  

In conclusion, although there are many cancers that have mutations in the pRB-

pathway that spare the RB1 gene itself, further mutations to RB1 surprisingly create 

cancer relevant characteristics that may influence disease progression. The frequency of 

shallow deletions of RB1 across many cancers suggests that disease progression may 

select for these characteristics.  
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Chapter 3  

3 An pRB-condensin II complex mediates long-range 
chromosome interactions and regulates expression at 
divergently paired genes  

3.1 Abstract  
Interphase chromosomes are organized into topologically associated domains by 

cohesins. Condensin II is analogous to cohesin, but its requirement in higher order 

chromatin organization in interphase mammalian nuclei is unknown because of limited 

loss of function approaches. Here we show that condensin II is recruited to divergently 

transcribed promoters by a mechanism that is dependent on the retinoblastoma protein 

(pRB). Long-range chromosome contacts are disrupted by loss of condensin II loading 

which leads to misexpression at these gene pairs. This study demonstrates that 

mammalian condensin II functions to organize long-range chromosome contacts and 

regulate transcription at specific genes. In addition, pRB dependence of condensin II 

suggests that widespread misregulation of chromosome contacts and transcriptional 

alterations are a consequence of pRB loss in cancer. 

3.2 Introduction 
Genomes are more complex than their one-dimensional, linear DNA sequences. 

Three-dimensional organization of interphase chromosomes imparts regulatory 

information that contributes to development and disease. In particular, functions are 

arranged spatially in the nucleus such that transcription, replication, and other processes 

are compartmentalized in discrete locations (Misteli, 2007). Understanding the 

organizational principles of interphase chromosomes has been aided by chromosome 

conformation based analyses (Rowley and Corces, 2018). In addition, investigation into 

the genetic requirement for specific architectural proteins is now revealing chromatin 

folding and compartmentalization on a whole genome scale with their underlying 

molecular mechanisms (Rowley and Corces, 2018). We are also beginning to appreciate 

that cell-fate decisions are driven by changes in environmental cues, triggering signal 
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transduction into the nucleus, which ultimately converge on altered activity of 

transcription factors and affect the recruitment of transcriptional and chromatin 

remodeling machinery (Stadhouders et al., 2019). Therefore, cell identity can be regarded 

as an emergent property resulting from the crosstalk between transcription factors, 

epigenetic modifications, chromatin-associated proteins, and the three-dimensional 

organization of the genome. Thus, it is not surprising that cell type specific chromosome 

territories have been observed, and that chromosomal rearrangements disrupting 

topologically associating domains (TADs) have been linked to developmental defects and 

cancer, further suggesting functional relevance of genome conformation (Fraser et al., 

2015; Stadhouders et al., 2019).  

Higher order chromosome organization is extensively supported by the structural 

maintenance of chromosomes (SMC) family of multisubunit protein complexes (van 

Ruiten and Rowland, 2018). In mammals, SMC family complexes include cohesin and 

condensins I and II (Hirano, 2016). All contain two SMC subunits as well as unique non-

SMC proteins. Specifically, cohesin contains SMC1 and 3, and condensins utilize SMC2 

and 4. Condensins are further differentiated by their non-SMC subunits, with CAP-D3, 

CAP-G2, and CAP-H2 being unique to condensin II (Hirano, 2016). All SMC containing 

protein complexes form ring like shapes that can entrap chromatin fibers to organize them 

into higher order structures (van Ruiten and Rowland, 2018). In S phase, cohesins ensure 

sister chromatid alignment following replication (Morales and Losada, 2018), and 

condensin II ensures chromatid separation (Ono et al., 2013). In mitosis condensins 

orchestrate compaction of chromatin during prophase (Gibcus et al., 2018). Condensin I 

is largely cytoplasmic during interphase and its access to chromosomes increases after 

nuclear envelope breakdown in prometaphase (Ono et al., 2003). Cohesins and condensin 

II, on the other hand, are nuclear during interphase. It is in this context that cohesins have 

been determined to play an essential role in organizing the three-dimensional architecture 

of chromosomes (Haarhuis et al., 2017; Nora et al., 2017; Rao et al., 2017; Schwarzer et 

al., 2017; Wutz et al., 2017). Interestingly, these studies show that some long-range 

chromosome contacts are preserved in the absence of cohesins, and condensin II co-

occurs at TAD boundaries (Van Bortle et al., 2014; Yuen et al., 2017), suggesting it may 

also contribute to chromosome organization in interphase. However, the effect of 
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condensin II loss of function in mammalian cells is relatively unexplored compared to 

cohesin.  

Condensins have been proposed to mediate chromosome structure and 

transcriptional control in model organisms. For example, condensin molecules participate 

in dosage compensation of hermaphroditic worms to silence one X chromosome (Crane 

et al., 2015). Furthermore, condensin II in Drosophila influences gene transvection 

effects caused by interphase chromosome pairing (Rowley et al., 2019). However, these 

are species specific paradigms that may not be conserved in mammalian biology. 

Condensin mutations have effects on transcription that in fission yeast are largely the 

consequences of aberrant mitosis and aneuploidy (Hocquet et al., 2018). Consequently, 

separation of indirect cell cycle effects from direct roles for mammalian condensin II on 

chromosome structure during interphase are rare. In response to estrogen stimulation, 

both condensin I and II are loaded at hormone-responsive, RNA-positive (eRNA+) 

enhancers to promote eRNA transcription, enhancer-promoter looping, and full activation 

(Li et al., 2015b). However, investigation of basal transcriptional effects of condensin II 

loss through deletion of CAP-H2 in post-mitotic hepatocytes failed to reveal effects on 

transcription (Abdennur et al., 2018). From this perspective, our knowledge of condensin 

II function in interphase nuclei and its effects on transcriptional control remains limited.  

The retinoblastoma protein (pRB) is typically known for its role in cell cycle entry 

regulation, however, pRB deficient primary fibroblasts are known to possess relaxed 

chromatin (Herrera et al., 1996). In addition, pRB functions to recruit condensin II to 

mitotic chromosomes in Drosophila and mammalian cells (Longworth et al., 2008). 

Defective recruitment leads to mitotic abnormalities characterized by decondensed 

chromosomes, misshapen centromeres, and aberrant spindle microtubule attachments 

(Coschi et al., 2010; Manning et al., 2010). Two different partial loss of function murine 

Rb1 gene mutations have been shown to compromise the recruitment of condensin II to 

pericentromeric heterochromatin (Coschi et al., 2014; Ishak et al., 2017). One is a point 

mutant allele that disrupts a CDK insensitive pRB-E2F1 interaction that allows pRB to 

associate with chromatin in S phase (Ishak et al., 2016). The other is a three amino acid 

substitution that disrupts the LXCXE binding site used by viral oncogenes called Rb1L 
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(Isaac et al., 2006). Prior studies have shown that when pRB-LXCXE interactions are 

disturbed, transcription from E2F-containing promoters can still be regulated during 

proliferation and in differentiation (Isaac et al., 2006; Talluri et al., 2010). However, 

defective condensin II recruitment in Rb1L/L cells leads to DNA replication dependent 

damage at pericentromeric sequences (Coschi et al., 2014), suggesting that pRB may play 

a role in recruiting condensin II to interphase chromosomes for non-mitotic functions.  

To investigate condensin II regulation of chromosome structure in interphase 

cells, we utilized primary Rb1L/L fibroblasts to disrupt condensin II recruitment. Using a 

combination of ChIP-Seq, RNA-Seq and chromosome conformation capture approaches 

we demonstrate that pRB recruits chromosome architectural protein complexes TFIIIC 

and condensin II to bidirectional promoters. In the absence of their recruitment, reciprocal 

misexpression was observed at these gene pairs, suggesting condensin II recruitment has 

direct effects on local transcription through an insulator type mechanism. Defective 

recruitment of condensin II diminished long-range chromosome contacts between 

bidirectional promoters and distant loci. Loss of human RB1 in lung adenocarcinoma 

reveals misexpression of genes at these bidirectional promoters. These experiments 

highlight transcriptional and architectural functions of an pRB-TFIIIC-condensin II 

complex that may represent a transcriptional insulator function that is inactivated upon 

pRB loss in cancer. 

3.3 Materials and Methods 

3.3.1 Cell culture 

MEFs were prepared and cultured from E13.5 embryos according to standard 

methods (Thwaites et al., 2016). Rb1+/+, Rb1-/-, Rb1L/L, E2f1+/+, E2f1-/- MEFs were 

genotyped as previously described and used by passage 4 (Isaac et al., 2006).  

3.3.2 ChIP 

ChIP was conducted according to protocols adapted from Cecchini et al. 

(Cecchini et al., 2014). Briefly, asynchronously cycling cells were fixed in either 1% 

formaldehyde in 1X PBS or in 2mM ethylene glycol bis(succinimidyl succinate (EGS) in 
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1X PBS followed by 1% formaldehyde. Both fixing reactions were neutralized with 

0.125M glycine. Cross-linked chromatin was sonicated so most chromatin was ≤400 bp. 

Sheared chromatin was then normalized between experimental groups and pre-cleared 

with protein G Dynabeads and IgG. Pre-cleared chromatin was then incubated with 

protein G Dynabeads and ChIP antibodies to immunoprecipitate proteins. The following 

antibodies were used to precipitate proteins: anti-CAP-D3 (Coschi et al., 2010), anti-

CAP-H2 (A302-275A, Bethyl), anti-H3K27me3 (07-449, EMD Millipore), anti-pRb (C-

15, Santa Cruz), anti-pRb (M-153, Santa Cruz), anti-pRb (M-136, (Cecchini et al., 

2014)), anti-pRb (s855, (Cecchini et al., 2014)), anti-pRb (Hyb4.1, Developmental 

Studies Hybridoma Bank), and anti-TFIIIC-220 (A301-291A, Bethyl). Cross-links were 

reversed at 65°C, and samples were treated with RNase and proteinase K. DNA was 

isolated for qPCR and/or library preparation.  

For ChIP-qPCR the following primer pairs were used: Lmnb2-F, 5’-

TCGGAGGCTCTATGGGAAAC-3’; Lmnb2-R, 5’-AAGGACAGTGCTTAGGGACG-

3’, Cdca3-F, 5’-TCTCTCGCATCCAATGAGCG-3’; Cdca3-R, 5’- 

TACCCGCGGCGCTTTTTATT-3’; Pole-F, 5’-TCATTGGCCGAAGCCGTAG-3’; Pole-

R, 5’-TTCCTCAGGACCATTGCGAC-3’, Mcm3-F, 5’-

ATCCAGGAAGTCCAAGTAGTCTCTC-3’; Mcm3-R, 5’-

TTGAAGTGGTTAGCCAATCATAACG-3’; Mcm3_-2kb-F, 5’- 

GCCAAGGCAAAACAACAATTTCTAC-3’; Mcm3_-2kb-R, 5’-

CTATCTCTTTGATTTTGGGTGGCTG-3’; Hist1h3b_F, 5’- 

GTCTGTTTGAGGACACCAACCT-3’; Hist1h3b_R, 5’-

TTTGGGTTCCAGTTTGCACTTTG-3’; Hoxa10_F, 5’-

ACTGGGGATCTCGGTCCTAC-3’; Hoxa10_R, 5’-CAGATACTGGGCGGTGGTC-3’.  

3.3.3 ChIP-Seq libraries and alignment 

For ChIP-Seq, some previously published data were used for analysis. FASTQ 

reads were downloaded from the following datasets: CAP-D3 (GSE55040: 

GSM1328449, GSM1328450 and GSM1328448) Pol2 (GSE36027: GSM918740 and 

GSM918761), H3K4me1 (GSE31039: GSM769028 and GSM769030), H3K4me3 

(GSE31039: GSM769029 and GSM769030), H3K27ac (GSE29218: GSM851277 and 
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GSM723008), H3K27me3 (GSE77993: GSM2064311 and GSM2064301), H3K36me3 

(GSE53939: GSM1303764 and GSM1303761), and H3K9me3 (GSE53939: 

GSM1303762 and GSM1303761) (Coschi et al., 2014; Ishak et al., 2016; Pedersen et al., 

2014; Shen et al., 2012). ChIP-Seq libraries created for this study occasionally used DNA 

from multiple ChIP replicates per genotype. To obtain enough DNA for library 

preparation, for CAP-H2 and CAP-D3 ChIPs, 5 IPs were combined and for H3K27me3 

ChIPs, 2 IPs per library were used. ChIP libraries were sequenced using an Illumina 

NextSeq (High output 75 cycle kit).  

All FASTQ reads (both from ChIP-Seq data published for other studies and from 

ChIP-Seq data obtained for this study) were aligned to mouse genome build mm9 using 

Bowtie2 version 2.3.0 (Langmead and Salzberg, 2012). Reads aligning to multiple 

locations of a particular element were distributed randomly to these positions, while 

multiple reads mapping to the same location were retained as previously described 

(Bulut-Karslioglu et al., 2014). The following command was used: bowtie2 -t -p 4 -D 15 -

R 2 -L 32 -i S,1,0.75 -x mm9 –U <reads>.fastq -S <output>.sam.  

3.3.4 Peak calling and annotation 

Peaks were identified using MACS version 1.4.0rc2 according to the parameters 

stated below (Zhang et al., 2008). The following command was used: macs14 –t 

<ChIP>.sam -c <input>.sam -n <output> -g mm -B -S. For analysis of CAP-D3 

localization, only peak locations that had 10 or more tags, a P-value of at most 10-5, and a 

fold enrichment of at least 4 were used for subsequent analyses. Reads and peak locations 

were visualized using Integrative Genomics Viewer (IGV) (Robinson et al., 2011; 

Thorvaldsdottir et al., 2013). 

Peak enrichment per genomic region was determined using CEAS and the mm9 

RefSeq table supplied with the program (Shin et al., 2009). To determine the number and 

significance of peaks overlapping with other peaks or genomic elements, BEDTools was 

used (Quinlan, 2014; Quinlan and Hall, 2010). 

To create heatmaps of reads, deepTools bamCompare was first used to generate 

bigWig files of ChIP reads normalized to input (Ramirez et al., 2014; Ramirez et al., 
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2016). computeMatrix was then used to calculate read enrichment scores at promoters 

with wild type CAP-D3 peaks and plotHeatmap was used to plot those scores. To perform 

Pearson correlation analysis and create clustered heatmaps, mutliBigwigSummary 

computed the average scores for each of the files in every genomic region, and 

plotCorrelation was used to plot the data. 

Functional annotation of genes of interest was performed using the Database for 

Annotation, Visualization and Integrated Discovery (DAVID) (Dennis et al., 2003). 

Genes were submitted to DAVID and analyzed using the functional annotation tool with 

the following categories selected: GOTERM_BP_DIRECT, GOTERM_CC_DIRECT, 

GOTERM_MF_DIRECT, UP_KEYWORDS, UP_SEQ_FEATURE, 

KEGG_PATHWAY, BIOCARTA, INTERPRO, PIR_SUPERFAMILY, and SMART. 

Functional annotation clustering was then used to cluster all of the gene enrichment 

results, with default parameters. The enrichment score for the annotation clusters 

represents the geometric mean, in –log scale, of the members’ p-values in each 

corresponding annotation cluster. Functional annotation clusters were manually described 

based on their over-arching theme.  

3.3.5 RNA-Seq 

Total RNA from proliferating MEFs was isolated using TRIzol reagent according 

to the standard protocol (Invitrogen). Three Rb1+/+ and Rb1L/L MEF pairs were used for 

this analysis. All samples were further processed and sequenced at the London Regional 

Genomics Centre (Robarts Research Institute, London, Ontario, Canada; 

http://www.lrgc.ca). Total RNA samples were quantified using the Qubit 2.0 Fluorometer 

(Thermo Fisher Scientific) and quality was assessed using the Agilent 2100 Bioanalyzer 

(Agilent Technologies Inc.) and the RNA 6000 Nano kit (Caliper Life Sciences). They 

were then processed using the ScriptSeq Complete Gold Kit (H/M/R) (Illumina Inc.) 

which includes Ribo-Zero rRNA removal. Samples were fragmented, cDNA was 

synthesized, tagged, cleaned-up and subjected to PCR with indexed reverse primers 

(ScriptSeq Index PCR Primers) to permit equimolar pooling of samples into one library. 

Samples were sequenced on an Illumina NextSeq 500 (Mid output 150 cycle kit). FASTQ 

data files were then downloaded from BaseSpace. 
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For alignment of reads, a STAR v2.5.0a was used (Dobin et al., 2013). To 

generate a genome index, the mm9 chromFa.tar.gz file was downloaded from UCSC to 

create mm9_full_genome.fa, and the following command was used: STAR --runThreadN 

4 --runMode genomeGenerate --genomeDir <STAR_genome_indices_directory> --

genomeFastaFiles mm9_full_genome.fa --genomeSAsparseD 2 --

limitGenomeGenerateRAM 20000000000 (Mouse Genome Sequencing et al., 2002). For 

the alignments, the following STAR command was used: STAR --runMode alignReads --

runThreadN 8 --genomeDir <STAR_genome_indices_directory> --readFilesIn 

<reads>.fastq --sjdbGTFfile mm9_UCSC_knownGene.gtf --sjdbOverhang 149 --

sjdbInsertSave All --outSAMtype BAM Unsorted SortedByCoordinate --

outFileNamePrefix <output> --outReadsUnmapped Fastx --outMultimapperOrder 

Random --outSAMattributes NH HI AS NM XS --outWigType wiggle. StringTie v1.3.2 

was then used to assemble RNA-Seq alignments into potential transcripts with the 

following command: stringtie <STAR_aligned_sample>.sortedByCoord.out.bam -o 

<output>.gtf -p 4 -G mm9_UCSC_knownGene.gtf -A <output>_gene_abund.tab -B -e 

(Pertea et al., 2015). The prepDE.py script provided with StringTie was then utilized to 

extract read count information from the generated files and DESeq2 was used to 

determine differential transcript abundance between Rb1+/+ and Rb1L/L genotypes. When 

analyzing overall gene expression, all normalized transcript read counts from DESeq2 

were summed for each gene and each of the three Rb1L/L MEF preparations were 

compared to the average of three wild type MEFs. Heatmaps of data were created using 

matrix2png (Pavlidis and Noble, 2003). 

3.3.6 Comparison of transcriptome analysis and ChIP-Seq data 

To compare CAP-D3 ChIP-Seq binding sites to changes in transcription, BETA 

was used (Wang et al., 2013). First, RNA-Seq data were converted to BETA specific 

format (BSF) with the fold-change values being reported as wild type versus Rb1L/L so 

expression changes when CAP-D3 could bind were being highlighted. The expression 

data were then compared to the filtered list of high confidence CAP-D3 peaks (see above) 

using BETA, taking into account CTCF binding sites using the following command: 
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BETA plus –p <CAP-D3_peaks>.bed –e <expression_changes>.txt –k BSF --bl –g mm9 

--gs mm9.fa –n <output>. 

3.3.7 qRT-PCR analysis of expression 

Total RNA from proliferating MEFs was isolated using TRIzol reagent according 

to the standard protocol (Invitrogen). First-strand cDNA synthesis was performed using 

random primers, RNaseOUT and SuperScript III Reverse Transcriptase according to 

manufacturer’s instructions (Invitrogen). Isolated cDNA was used in qRT-PCR reactions 

with iQ SYBR Green Supermix (Bio-Rad) using the following primers: Cdca3_exp_F, 

5’-GTAGCAGACCCTCGTTCACC-3’; Cdca3_exp_R, 5’- 

ATTCCGACGCTTCTGTCTCC-3’; Usp5_exp_F, 5’-ATGGCGGAGCTGAGTGAAGA-

3’; Usp5_exp_R, 5’-ATAGAGGCCACCCTCAGACT-3’; Pole_exp_F, 5’- 

GAGAAGGTGCCTGTGGAACA-3’; Pole_exp_R, 5’- 

GCTGTAGGCGGTTGGTAAGA-3’; Pxmp2_exp_F, 5’-

GACTGCCTAGCTGTTGGGTG-3’; Pxmp2_exp_R, 5’- 

CCAAGGGCTGACAAAATGCC-3’; GAPDH_exp_F, 5’-

GCACAGTCAAGGCCGAGAAT-3’; and GAPDH_exp_R, 5’-

GCCTTCTCCATGGTGGTGAA-3’. Resulting target Cq values were normalized to 

GAPDH, then expressed as fold change relative to the global wild type mean.  

3.3.8 Flow Cytometry 

Cells were plated on 10 cm plates at a density of 900,000 cells per plate. 

Approximately 24 hours after, cells were pulsed with BrdU for a duration of 2 hours. Cell 

cycle analysis was then carried out as previously described (Cecchini et al., 2012).  

3.3.9 Nocodazole treatment  

Cells were plated on 10 cm plates at a density of 900,000 cells per plate or on 6 

cm plates at a density of 300,000 cells per plate. Approximately 24 hours after seeding, 

cell media was replaced with standard culture media containing either DMSO only 

(control) or 20 ng/mL nocodazole. One day after treatment with nocodazole, cells were 

processed for flow cytometry and qRT-PCR expression analysis (see above).  



 

 

110 

3.3.10 Chromosome conformation capture (3C) analysis 

3C was conducted according to protocols adapted from Hagège et al. (Hagege et 

al., 2007). Briefly, cells were trypsinized, centrifuged and resuspended to make a single-

cell suspension followed with crosslinking in 1% formaldehyde/10% FCS/PBS. The 

reactions were quenched with glycine and cells were then pelleted and lysed in 5 mL cold 

lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM EDTA, 0.5% NP-40, 1% 

Triton X-100 and protease inhibitors). Samples were digested with HindIII, ligated using 

T4 DNA ligase, samples were treated with proteinase K and cross-links were reversed at 

65°C. Samples were then treated with RNase A followed by phenol-chloroform 

purification. 3C samples were digested with a second restriction enzyme, EcoRI, to help 

minimize potential PCR biases resulting from limited template accessibility. The resulting 

final 3C products were quantified in triplicates by quantitative TaqMan real-time PCR 

after 3C DNA was normalized to a final concentration of 50 ng/µL. Bacterial artificial 

chromosomes (BACs), clones RP23-333M22 and RP23-55K5, containing the 

Pxmp2/Pole and Cdca3/Usp5 bidirectional promoters of interest, respectively, were used 

as control templates. To generate random ligation products of HindIII fragments at the 

regions of interest, BACs were individually digested with HindIII, ligated, and digested 

again with EcoRI. This ligated BAC DNA was serially diluted and used to generate 

standard curves in each qPCR runs for each primer pair to which all 3C products were 

normalized. The 3C signals at each locus were further normalized to those from a control 

locus, ERCC3, with primers and a probe described previously (Splinter et al., 2006). 

Probe and primer sequences are as follows (primer names correspond to approximate 

position (in kb) relative to bidirectional promoters): Cdca3_const, 5’-

TAGAGCAAAGCTACACCGGG-3’; Cdca3_Probe, 5’-FAM- 

AGAGAGATCTATCCAGGTCTCACAGGCCC-TAMRA-3’; Cdca3_-93, 5’-

GACCACTGCGAGACGGAAG-3’; Cdca3_-73, 5’-

CCCCAGATACACTCAATCCCTG-3’; Cdca3_-57, 5’-CCTCTCCCCTCCTTTCTTCC-

3’; Cdca3_-45, 5’-TACAGATGGTTGCGAGGCAC-3’; Cdca3_-33, 5’-

GCTGGGAGGATGAGAAAAATGAC-3’; Cdca3_-13, 5’-

ATCCAGAGATTCACGCTTGCT-3’; Cdca3_+1, 5’-CCTGGAGGAGGCCATTCAAG-

3’; Cdca3_+8, 5’-CCAAGTCTACCATCTCGGGG-3’; Cdca3_+9, 5’-
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TTGGGTGACTGAGATAGCCC-3’; Cdca3_+37, 5’-CCTGGCACACAGCAAGC-3’; 

Cdca3_+48, 5’-ACCAGAACAGACATCTCAAGTAACA-3’; Cdca3_+57, 5’-

TGCATAGCGATGGGTTTCACA-3’; Cdca3_+59, 5’-

TGGCCAGAATGACTGCAAAGAA-3’; Cdca3_+63, 5’-

CCCTCTCCCAGGGTAAAGC-3’; Cdca3_+64, 5’-

GTTCCAGAACTTTCCTCTCTTTGC-3’; Cdca3_+69, 5’-

GAGGCATGCCACGTAAGC-3’; Cdca3_+70, 5’-CCCGCAGGAGAGGGACTAAA-3’; 

Cdca3_+71, 5’-TCGGAATTTGCTCCCAGAGTC-3’; Cdca3_+79, 5’-

GTGGGGACAGTAGAGGAAGC-3’; Cdca3_+80, 5’-GCTGAGCCCAGTGGAAAG-3’; 

Cdca3_+88, 5’-GGCTCTGTTTACCACAACTGTC-3’; Cdca3_+96, 5’-

AGAAGCTGACTTGGGCTACAT-3’; Cdca3_+123, 5’-

GTCTAACGGGTTGGTAGAGTGG-3’; Cdca3_+127, 5’-

ACATAATAACACCAGGGGCCG-3’; Cdca3_+129, 5’-

CACTGACTGACGCACAGAAGAA-3’; Pole_const, 5’-GGTGTCCTGCTGCCAAGG-

3’; Pole_Probe, 5’-FAM-TGCTCCGGCCGCGGCTAC-TAMRA-3’; Pole_-30, 5’-

ACAGCCAGAACTACACAGAGG-3’; Pole_-25, 5’-

ACTGTTGTGGACTGATGCTTAGAA-3’; Pole_-24, 5’-

TGCCCTTGTCTGAAGTCTGC-3’; Pole_-23, 5’-CTCAGGAGACAGGCAAGCTAA-

3’; Pole_-6, 5’-ATGGCAATCACAGGCACAAG-3’; Pole_-5, 5’-

CTGTCCTCATCTGTGCCCTC-3’; Pole_-4, 5’-TGCCAAAGTATGGGGGATGTG-3’; 

Pole_+3, 5’-TTCCTCGGTGGGCATTCTTC-3’; Pole_+5, 5’-

AGAAGATTGTGATCAGTGTTTCTGA-3’; Pole_+11, 5’-

CTTGTTGAACTCCTGCTCTTGC-3’; Pole_+18, 5’-CTAATGGAACCGAGGAGCCG-

3’; Pole_+28, 5’-GCAATACACAAACGCTCTTGGTC-3’; Pole_+32, 5’-

AGCCAGACCAACCACTCTTC-3’; Pole_+36, 5’-

TGAGAGTTGTCCTGTATGGAACG-3’; Pole_+50, 5’-

AAAATGCCCACCTTGCTGTG-3’; Pole_+62, 5’-

TTCAGGGTTCTCTCTTTGGGAGTG-3’; Pole_+66, 5’-

GTGTTCTTCCTGTGTATATACTTGC-3’; Pole_+77, 5’-

CTCCCTTAAGTTTGTCGGGCT-3’; Pole_+82, 5’-TGGAGGAATGTGACTGGGGA-

3’; Pole_+84, 5’-CTGGGCGCTTGGAGGTTTTAC-3’; Pole_+101, 5’-
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TTGAAGCCTAGGTGGGAGTCTT-3’; Pole_+104, 5’-

ACAGGAGAGAGGCAGGTATGTC-3’; ERCC3_1, 5’-

GCCCTCCCTGAAAATAAGGA-3’; ERCC3_2, 5’-GACTTCTCACCTGGGCCTACA-

3’; ERCC3_Probe, 5’-FAM-AAAGCTTGCACCCTGCTTTAGTGGCC-TAMRA-3’. 

3.3.11 Circularized chromosome conformation capture (4C)-Seq 

Samples were fixed, digested with HindIII, ligated and crosslinks were reversed as 

detailed in the 3C protocol above. To generate a 4C products, 3C products were 

processed according to protocols adapted from Splinter et al. (Splinter et al., 2012). 

Briefly, 3C products were digested with NlaIII, ligated with T4 DNA ligase, and purified. 

Primers were designed for the bidirectional promoters of interest for inverse PCR 

reactions. For Illumina sequencing, all reading primers started with an Illumina read 

adapter sequence, 5’-

AATGATACGGCGACCACCGAGATCTACACACACTCTTTCCCTACACGACGCTC

TTCCGATCT-3’; followed by a unique tag 0-3 nucleotides in length. These tags were 

unique to each sample and were used both to ensure that nucleotide content for every 

cycle of sequencing is not the same (despite using the same primer sequence for all 

samples at the same viewpoint) and to pool multiple samples together. After the tag, the 

reading primers contained sequence unique to the viewpoint of interest, as close as 

possible to the HindIII digestion site. For the Pole/Pxmp2 bidirectional promoter, this 

sequence was 5’-GATTCACTCCAAACTCCACAAAA-3’, and for the Cdca3/Usp5 

bidirectional promoter, it was 5’-AGCAAGAGAGTGTAGCTAAG-3’. For the reverse 

sequencing primers for these viewpoints, the primers again started with an Illumina 

adapter sequence, 5’-CAAGCAGAAGACGGCATACGAGAT-3’; followed by sequence 

unique to the viewpoint of interest, close to the NlaIII restriction sites. For the 

Pole/Pxmp2 bidirectional promoter, this sequence was 5’-

TCCAAAGGATATATGAGGTTCG-3’, and for the Cdca3/Usp5 bidirectional promoter, 

it was 5’-GTCTGACTTGCAGTTTTCAG-3’. 4C product for sequencing was then 

prepared using Expand Long Template Polymerase (Roche) and 3.2 µg of 4C template 

split between 16 PCR reactions. PCR reactions were pooled after completion and 
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purified. 4C PCR products were then pooled equimolarly into one library and sequenced 

on an Illumina NextSeq (Mid Output 150 cycle kit).  

Sequence reads were first trimmed to 20 bp total after the primer and bait 

sequence (excluding the HindIII site) using the FASTQ trimmer from the FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/). w4CSeq was then used to identify 4C sites, 

statistically significant regions, and look at intra- and inter-chromosomal interactions (Cai 

et al., 2016). For this analysis, the mm9 genome was used, 500 enzyme sites was selected 

as the bin size for trans chromosomes (size_inter), 100 enzyme sites was selected as the 

bin size for cis chromosomes (size_intra), 3000 enzyme sites was selected as the 

background window size for the cis chromosome (window_intra), and 0.05 was used as 

the FDR threshold. To compare the similarity of significant interacting regions, 

BEDTools Jaccard was used (Quinlan, 2014; Quinlan and Hall, 2010). BEDTools merge 

was used to combine the significant interacting regions together from each replicate for 

each viewpoint, and BEDTools intersect to determine the merged regions that were the 

same between genotypes. 

3.3.12 Gene expression in lung adenocarcinoma 

To determine the expression of genes in lung adenocarcinoma samples, the TCGA 

PanCancer Atlas dataset on cBioPortal was used. Only the “complete tumors” were 

analyzed, with the gene set user-defined list being entered as “RB1: AMP HOMDEL 

HETLOSS mut” as well as only the gene names for the other genes we were interested in. 

The plot function was then used to obtain data comparing RB1 copy number to the 

mRNA expression Z-scores of genes of interest. All genes that contained an Rb1+/+ CAP-

D3 peak within their bidirectional promoter region that is ≤5000 bp and was the higher 

expressing of the two genes from each bidirectional promoter in Rb1L/L compared to 

Rb1+/+ MEFs were attempted to be analyzed in these tumor samples. However, not all 

mouse genes were able to be analyzed in human, and this was particularly true for the 

RIKEN genes. Z-scores from RB1 “deep deletion” and “shallow deletion” samples were 

then manually grouped to obtain the deletion category, and were compared to Z-scores 

from the RB1 diploid population for each gene of interest using t-tests. Data from genes 

that had significantly increased Z-scores in RB1 deleted tumors (deep and shallow 
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deletion combined) compared to RB1 diploid tumors were then submitted to matrix2png 

to create a heatmap where the data were normalized such that each row had a mean of 

zero and a variance of 1(Pavlidis and Noble, 2003). 

3.3.13 EZH2 inhibitor treatment 

To inhibit EZH2 in MEFs, asynchronously growing P4 MEFs were seeded at a 

density of 4x105 cells per 10 cm plate. The next day, when cells were at approximately 

50% confluency, treatment with GSK343 or vehicle (DMSO) with treatment volumes of 

0.1% of total media volume were started. Treatments of 2.5 μM or 5 μM GSK343 were 

administered once every 24 hr for 48 hr. GSK343 was stored at a stock concentration of 

1000x treatment dose in DMSO at -20°C protected from light. After 48 hr of drug 

treatment, total RNA from proliferating MEFs was isolated, converted to cDNA and 

expression was analyzed as above. Whole cell extracts were also collected after 48 hr of 

drug treatment and H3K27me3 (07-449, EMD Millipore) blots were performed. 

3.4 Results 

3.4.1 Condensin II and TFIIIC occupy promoters in an pRB-
dependent manner 

To investigate genome wide localization of condensin II during interphase, we 

performed chromatin immunoprecipitation followed by high throughput sequencing 

(ChIP-Seq). We precipitated CAP-D3, a subunit that is unique to condensin II, from 

chromatin isolated from primary mouse embryonic fibroblasts (MEFs). Regions of local 

enrichment were determined using Model-based Analysis for ChIP-Seq (MACS) (Zhang 

et al., 2008). Using Cis-regulatory Element Annotation System (CEAS) (Shin et al., 

2009), the distribution of CAP-D3 ChIP-Seq peaks within genomic features was 

determined. This data demonstrated that 40% of 1547 total CAP-D3 peaks were within 1 

kb of a transcriptional start site (TSS), which we refer to as proximal promoters (Figure 

3.1A). We carried out ChIP-Seq for both CAP-D3 and CAP-H2 and used a combination 

of ethylene glycol bis(succinimidyl succinate) (EGS) and formaldehyde fixation, to 

preserve protein-protein interactions that may recruit condensin II to chromatin and 

capture these longer distance interactions (Figure 3.1B). These ChIP-Seq experiments  
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Figure 3.1: CAP-D3 is enriched at proximal promoters. 
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Figure 3.1: CAP-D3 is enriched at proximal promoters.  

(A) Average distribution of Rb1+/+ CAP-D3 ChIP-Seq reads 1000 bp upstream and 
downstream of genes, as well as average ChIP signals on a meta-gene, where every gene 
is normalized to a length of 3000 bp. (B) Schematic of captured ChIP fragments with 
formaldehyde versus formaldehyde and ethylene glycol bis(succinimidyl succinate) 
(EGS) fixation. Formaldehyde uses methylene bridges to crosslink and is primarily a 
protein-DNA crosslinker, whereas EGS is a protein-protein crosslinker, using N-
hydroxysuccinimide (NHS) esters to yield stable amide bonds (Hoffman et al., 2015; Tian 
et al., 2012). Since condensin II may not be directly binding to DNA at many locations it 
interacts with, EGS+formaldehyde dual crosslinking was used to have a more in-depth 
look at chromatin contacts. (C) Average distribution of EGS and formaldehyde fixed 
CAP-D3 ChIP-Seq reads 1000 bp upstream and downstream of genes, as well as average 
ChIP signals on a meta-gene, where every gene is normalized to a length of 3000 bp. (D) 
Average distribution of EGS and formaldehyde fixed CAP-H2 ChIP-Seq reads 1000 bp 
upstream and downstream of genes, as well as average ChIP signals on a meta-gene. 
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revealed an order of magnitude more peaks, as there were now 17576 total CAP-D3 

peaks for example, but peaks still showed similar promoter occupancy (Figure 3.1C&D), 

suggesting promoters are the principal condensin II binding site. Since CAP-H2 peaks 

intersect with CAP-D3 peaks at proximal promoters with 72% frequency, we conclude 

these represent condensin II complexes and not free subunits. 

Since pRB recruits condensin II to pericentromeric heterochromatin (Coschi et al., 

2014), we compared CAP-D3 occupancy locations from ChIP-Seq data between wild 

type and Rb1L/L murine fibroblasts to learn where pRB-condensin II localizes in 

interphase nuclei. This Rb1 mutant encodes a three amino acid substitution (I746A, 

N750A, M754A) in the pRB pocket domain designed to disrupt interactions with viral 

oncogenes such as HPV E7, while preserving interactions with E2F transcription factors 

(Isaac et al., 2006). Condensin II recruitment to pericentromeric heterochromatin is 

reduced in Rb1L/L cells (Coschi et al., 2014), but chromatin loading of cohesin and 

condensin I is normal (Coschi et al., 2010). Using MACS, 66% of all CAP-D3 peaks 

found in wild type MEFs are lost in the Rb1L/L mutant. Figure 3.2A shows CAP-D3 ChIP-

Seq read enrichment at 52 well-known E2F regulated cell cycle promoters for both 

genotypes. CAP-D3 peaks were found in 9 of these promoters in wild type and 7 of these 

promoters lost peaks in Rb1L/L cells. This suggests that the large quantity of promoters 

occupied by pRB and condensin II are unrelated to pRB’s canonical function in G1-S 

regulation of E2F transcription. An example of one of these locations is the Timm13 

promoter, which is best known as the Lmnb2 origin of replication (Figure 3.2B&C). 

Previous studies have identified pRB and E2F1 at this location by ChIP, despite its lack 

of an E2F DNA sequence element (Avni et al., 2003; Mendoza-Maldonado et al., 2010). 

Furthermore, MACS determined CAP-D3 reads contributing to the peak at this location 

was significant in both Rb1+/+ and Rb1L/L ChIP-Seq experiments (Figure 3.2B), although 

read build ups are clearly reduced in Rb1L/L. ChIP-qPCR was used to quantitatively 

compare CAP-D3 binding at Timm13/Lmnb2 and it showed that CAP-D3 binding was 

only significantly enriched over the IgG background control in Rb1+/+ MEFs (Figure 

3.2D). This indicates that condensin II recruitment is pRB-dependent, but the Rb1L 

mutation does not completely eliminate it in ChIP-Seq experiments. To examine pRB-

dependency of CAP-D3 localization at promoters, CAP-D3 ChIP-Seq reads from Rb1+/+  
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Figure 3.2: CAP-D3 binds at some promoters in an pRB-dependent manner. 
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Figure 3.2: CAP-D3 binds at some promoters in an pRB-dependent manner.  

(A) Heatmaps of CAP-D3 ChIP-Seq read abundance relative to input controls in Rb1+/+ 

and Rb1L/L MEFs at 1 kb proximal promoter regions of 52 pRB regulated E2F cell cycle 
target genes. Heatmaps are divided into those promoters on the forward strand (top) and 
those on the reverse strand (bottom). (B) ChIP-Seq tracks for CAP-D3 from Rb1+/+ and 
Rb1L/L MEFs at the Timm13 promoter/Lmnb2 origin of replication where there is a CAP-
D3 peak in both genotypes. Scales of read build-ups are set to 25. (C) ChIP-Seq tracks for 
CAP-D3 and CAP-H2 from Rb1+/+ MEFs at the Lmnb2 origin of replication. Cells were 
fixed either with formaldehyde alone or formaldehyde in combination with EGS (+EGS) 
prior to ChIP. All scales of read build-ups are set to 50 to show the relative differences. 
(D) ChIP-qPCR for CAP-D3 and IgG controls at the Lmnb2 origin of replication, seen in 
B&C. (n=7), error bars are ±1 SEM, *P < 0.05; determined by t-test. (E) Heatmaps of 
CAP-D3 ChIP-Seq read abundance at 1271 promoters that contain an Rb1+/+ CAP-D3 
peak within 1 kb of their transcriptional start sites. The heatmap shows the location of the 
Rb1+/+ CAP-D3 peaks in the center, as well as 1 kb upstream and downstream of these 
regions. (F) Heatmaps of TFIIIC ChIP-Seq read abundances in Rb1+/+ and Rb1L/L MEFs 
at the 1271 1 kb promoter regions that contain an Rb1+/+ CAP-D3 peak. Heatmaps are 
divided into promoters on the forward strand (top) and reverse strand (bottom) and are 
centered on the promoter regions.  
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and Rb1L/L MEFs were compared at 1271 promoters that were most enriched for CAP-D3 

(Figure 3.2E). At these promoter locations in Rb1L/L cells, CAP-D3 peaks are lost 30% of 

the time, or are shifted or diminished similar to Timm13/Lmnb2, further indicating that 

condensin II binding is extensively reduced in the Rb1L/L genotype at these locations. 

Therefore, we sought to use comparisons between wild type and Rb1L/L MEFs to study 

the effects of condensin II loss on interphase chromosomes. 

Condensin II recruitment to promoters has also been shown to co-occur with the 

RNA polymerase III transcription factor and chromosome architectural protein complex 

TFIIIC (Yuen et al., 2017). To reconcile roles for pRB and TFIIIC in condensin II 

recruitment, we carried out ChIP-Seq for subunit 1 of TFIIIC in Rb1+/+ and Rb1L/L MEFs. 

This data revealed that TFIIIC is abundant just 3’ of the promoter regions containing 

CAP-D3 peaks (Figure 3.2F), and TFIIIC read build-ups in this 3 kb window are reduced 

in Rb1L/L MEFs. Using MACS, duplicate ChIP-Seq experiments revealed 67% of these 

promoter views contain TFIIIC peaks in Rb1+/+ cells, and this is decreased modestly to 

53% in Rb1L/L cells as locations adjacent to the TSS are unaffected by the Rb1L mutation. 

This indicates that recruitment of TFIIIC and condensin II, two known components of 

topological boundaries, is pRB dependent specifically at these promoter locations.  

To gain insight into condensin II’s role at mammalian promoters, we investigated 

their chromatin state from publicly available ChIP-Seq datasets generated with murine 

fibroblasts. Extensive simultaneous occupancy of these promoters with both Pol2 and 

H3K4me3 is a strong indication of active transcription (Barski et al., 2007) (Figure 3.3A), 

and there was 98% peak overlap between these modifications and CAP-D3 containing 

promoters. H3K4me1, a mark of inactive/poised enhancers, was de-enriched at the TSS 

of these promoters (Figure 3.3A), and overlaps infrequently with these promoters 

(<20%). H3K27ac, a mark of active enhancers and promoters, is also highly abundant at 

these promoters with 85% overlap (Barski et al., 2007; Creyghton et al., 2010; Wang et 

al., 2008). Conversely, repressive chromatin marks such as H3K27me3 and H3K9me3 

were almost completely excluded from these promoters (Figure 3.3A), with 2% and 1% 

occupancy respectively. Lastly, H3K36me3, which preferentially marks exons in gene 

bodies, was largely devoid from these promoter regions of interest (<6%, Figure 3.3A)  
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Figure 3.3: CAP-D3 is localized to active promoters and changes in binding are 
correlated with activation and repression of genes. 
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Figure 3.3: CAP-D3 is localized to active promoters and changes in binding are 
correlated with activation and repression of genes.  

(A) Heatmaps of ChIP-Seq read abundances for histone tail modifications and RNA Pol2 
in wild type MEFs at the 1271 1 kb promoter regions that contain a CAP-D3 peak. 
Heatmaps are divided into promoters on the forward strand (top) and reverse strand 
(bottom). (B) Top 10 most enriched annotation clusters from the genes that contain an 
Rb1+/+ CAP-D3 peak within 1 kb of their TSS. Analysis was performed using DAVID 
and the enrichment score for each annotation cluster represents the geometric mean, in –
log scale, of the members’ P-values in each cluster. (C) Expression from three Rb1L/L 
MEF preparations relative to the average of three wild type MEFs, as determined by 
RNA-sequencing (RNA-Seq). The heatmap is of transcripts with significantly different 
expression that also had an Rb1+/+ CAP-D3 peak within their 1 kb proximal promoter. 
(D) Heatmap of the overall change in gene expression for pRB regulated E2F cell cycle 
target genes determined by RNA-Seq as in C.  
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(Barski et al., 2007; Kolasinska-Zwierz et al., 2009). The most obvious conclusion from 

this work is that pRB-condensin II complexes are localized to active promoters. 

Importantly, this pattern of histone modifications is highly divergent from known 

regulatory roles for pRB in gene silencing that are characterized by establishment of 

H3K9me3 in senescence (Narita et al., 2003), H3K27me3 in terminal differentiation 

during development (Blais et al., 2007), and deacetylation of histones in quiescence 

(Narita et al., 2003). This further emphasizes that pRB recruitment of condensin II to 

these promoters represents a different functional paradigm. 

The genes bound by condensin II within their proximal promoters were subject to 

functional annotation clustering using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID) to determine the biological paradigms that could be 

regulated by the pRB-condensin II complex (Dennis et al., 2003). This analysis 

demonstrates that this complex could be responsible for regulating several important 

processes within a cell, such as DNA damage repair, cell division, transcription and 

translation (Figure 3.3B). RNA-Seq was then used to investigate if changes in condensin 

II localization in Rb1+/+ compared to Rb1L/L MEFs are linked to changes in expression of 

these genes. This shows that 54 genes that have condensin II binding within their 

proximal promoters have significantly differentially expressed transcripts in Rb1L/L 

compared to Rb1+/+ MEFs, 25 of which are downregulated and 29 of which are 

upregulated (Figure 3.3C). This is in contrast to E2F regulated cell cycle genes, from 

Figure 3.2A, in which 6 genes were significantly upregulated in Rb1L/L MEFs (Figure 

3.3D). 

The presence of H3K27ac at condensin II occupied promoters (Figure 3.3A), may 

be indicative of enhancer interactions, or may demonstrate that these occupied locations 

can function as enhancers themselves. For this reason, it is not surprising that some genes 

exhibited reduced expression in Rb1L/L cells at locations where condensin II recruitment 

was reduced. The Tubb2a locus illustrates this effect with CAP-D3 and TFIIIC loss near 

the TSS in Rb1L/L cells and approximately 40% reduction in transcript abundance for this 

gene (Figure 3.4A-C). A more intriguing result is the apparent upregulation of gene 

expression at condensin II occupied promoters when it is diminished from these locations 
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Figure 3.4: Changes in condensin II and TFIIIC binding are correlated with 
downregulation of Tubb2a. 

(A) Genome browser view of the Tubb2a gene is shown. ChIP-Seq for CAP-D3 and 
CAP-H2 from wild type MEFs fixed with formaldehyde in combination with EGS 
(+EGS) are displayed at the top. (B) CAP-D3 and TFIIIC ChIP-Seq tracks for both 
Rb1+/+ and Rb1L/L formaldehyde fixed MEFs are shown at the bottom. All scales of read 
build-ups in A and B are set to 35 to show the relative differences. (C) Relative 
expression of the Tubb2a gene in Rb1L/L MEFs, as determined by RNA-Seq. Error bar is 
±1 SEM, *P < 0.05. 
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in Rb1L/L cells. One possible explanation may be that condensin II functions as an 

insulator between closely spaced promoters and reduction of occupancy enhances 

transcription of an already active promoter.  

Further investigation of pRB-condensin II occupied promoter locations 

demonstrates that it is enriched at bidirectional promoters in Rb1+/+ MEFs compared to 

their expected frequency in the genome (Figure 3.5A). Furthermore, condensin II 

presence at bidirectional promoters is more than expected by chance, given the relative 

abundance of bidirectional promoters (Figure 3.5B). Analysis of expression of genes on 

either side of bidirectional promoters bound by CAP-D3 in Rb1+/+ MEFs demonstrates 

that upregulation and/or downregulation occurs at many of these locations in Rb1L/L cells 

(Figure 3.5C). The contribution of condensin II to the differential gene expression in 

Rb1L/L cells was further investigated using Binding and Expression Target Analysis 

(BETA), which was able to relate CAP-D3 peak locations with expression of nearby 

genes (Figure 3.5D) (Wang et al., 2013). This further suggested that condensin II may 

have repressive and activating influences at neighboring genes. To validate this 

correlation, the locations of CAP-D3 peaks were computationally redistributed 

throughout the genome, while maintaining the same number and length of peaks. These 

“shuffled peaks” are not correlated with transcript changes in Rb1L/L compared to Rb1+/+ 

MEFs, further suggesting a functional connection between condensin II occupancy and 

nearby gene expression. Consequently, we focused our investigation on condensin II’s 

role at bidirectional promoters.  

3.4.2 Differential regulation of gene expression by condensin II at 
bidirectional promoters 

We used data from our BETA analysis to determine locations of altered gene 

expression between Rb1L/L and Rb1+/+ MEFs and found bidirectional promoters where 

expression of one of the two genes was correlated to CAP-D3 binding. We focused on 

two bidirectional promoter locations, Usp5/Cdca3 and the Pxmp2/Pole to determine 

condensin II’s role in gene regulation at these locations. In both cases, CAP-D3 peaks 

were found in the intergenic region between the two divergently transcribed genes in wild 

type MEFs (Figure 3.6A). This peak was lost in Rb1L/L MEFs at the Pxmp2/Pole location, 
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Figure 3.5: Condensin II binding is enriched at bidirectional promoters and is 
correlated with changes in expression. 
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Figure 3.5: Condensin II binding is enriched at bidirectional promoters and is 
correlated with changes in expression. 

 

(A) Peaks that are within 3 kb upstream from the TSS of genes were grouped according 
to whether they are found at bidirectional promoters or not. Compared with simulated 
data, where peaks are shuffled to promoters at random, there are more CAP-D3 peaks at 
bidirectional promoters as determined by χ2-test. (B) Peaks that are within 3 kb upstream 
from the TSS of genes were grouped according to whether they are found at bidirectional 
promoters or not. Compared with the proportion of promoters genome wide (“All 
promoters”) that reside within a bidirectional promoter region, there are more promoters 
containing CAP-D3 peaks that are part of bidirectional promoters, as determined by χ2-
test. (C) Expression changes from RNA-Seq of genes that contain an Rb1+/+ CAP-D3 
peak within their bidirectional promoter region that is ≤5000 bp. Each row represents a 
bidirectional promoter, with the higher expressing of the two genes in Rb1L/L compared to 
Rb1+/+ MEFs on the left (labelled Gene A). (D) Binding and Expressing Target Analysis 
(BETA) was used to establish if condensin II localization in asynchronous Rb1+/+ MEFs, 
as determined by CAP-D3 ChIP-Seq, was correlated with changes of expression between 
Rb1L/L and Rb1+/+ MEFs, as determined by RNA-Seq. Genes that had either an increase or 
a decrease in expression in the Rb1L/L background (when CAP-D3 cannot bind to pRB) 
also tended to have an enrichment of CAP-D3 binding sites in wild type MEFs. When 
peak locations were redistributed randomly throughout the genome, these “shuffled 
peaks” are not correlated with transcriptional changes in Rb1L/L compared to Rb1+/+ 
MEFs. *P < 0.05. 
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Figure 3.6: Bidirectional promoters with differential expression changes upon loss of 
CAP-D3 binding in Rb1L/L MEFs. 
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Figure 3.6: Bidirectional promoters with differential expression changes upon loss of 
CAP-D3 binding in Rb1L/L MEFs.  

(A) Cdca3/Usp5 and Pole/Pxmp2 bidirectional promoter locations and their respective 
CAP-D3 and TFIIIC ChIP-Seq reads and peaks in both Rb1+/+ and Rb1L/L MEFs. All 
scales of read build-ups are set to 35. (B) RT-qPCR of the two sets of bidirectional genes 
in Rb1+/+ and Rb1L/L, Rb1+/+ and Rb1-/-, and wild type and E2f1-/ - MEF littermate pairs. 
(n=5). (C) pRB ChIP-qPCR results from asynchronously growing Rb1+/+, Rb1L/L and 
Rb1-/- MEFs at the bidirectional promoter locations indicated in A. The Mcm3 promoter 
and -2 kb upstream location are used as positive and negative controls for pRB ChIPs, 
respectively (n=5). (D) TFIIIC ChIP-qPCR results from Rb1+/+ and Rb1L/L MEFs at the 
same bidirectional promoter locations as above (n=6). (E) CAP-D3 ChIP-qPCR results 
from asynchronously growing Rb1+/+ and Rb1L/L MEFs (n=5). All error bars are ±1 SEM. 
*P < 0.05; determined by t-test.  
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and diminished at the Usp5/Cdca3 in Rb1L/L. TFIIIC binding at these locations also 

appeared to require wild type pRB (Figure 3.6A).  

We used qPCR to quantitate mRNA levels for each of these four transcripts. 

Consistent with condensin II regulating expression at both of these bidirectional 

promoters, expression of one of the genes was increased in the Rb1L/L MEFs; Cdca3 at the 

Usp5/Cdca3 bidirectional promoter and Pole at the Pxmp2/Pole promoter (Figure 3.6B). 

This change was also seen at both locations in Rb1-/- cells compared to wild type, as well 

as in E2f1-/- MEFs at the Usp5/Cdca3 bidirectional promoter (Figure 3.6B). This indicates 

that loss of an pRB-condensin II complex may play a role in the differential expression of 

these divergently paired genes.  

To understand the architecture of protein complexes at these locations, ChIP-

qPCR was used to quantitate the binding of pRB, TFIIIC, and condensin II components. 

First, pRB localization is not changed in Rb1L/L MEFs compared to Rb1+/+ MEFs at these 

promoters (Figure 3.6C). Only Rb1-/- cells are devoid of pRB at these locations and this 

pattern matches occupancy at Mcm3, a classical pRB-E2F transcriptional target (Figure 

3.6C). In addition, TFIIIC localization is significantly reduced between Rb1+/+ and Rb1L/L 

MEFs at both bidirectional promoters (Figure 3.6D). Lastly, CAP-D3 is present at these 

locations in Rb1+/+ cells, but reduced to background levels in Rb1L/L MEFs (Figure 3.6E). 

Collectively, these experiments demonstrate pRB dependent recruitment of both TFIIIC 

and condensin II to these locations. When the Rb1L encoded protein is present, but unable 

to assemble this complex, expression of one gene in each pair is elevated, implicating 

TFIIIC and condensin II in this regulatory event.  

Loss of condensin II function affects progression through mitosis (Nishide and 

Hirano, 2014), and Rb1L/L MEFs similarly display misshapen chromosomes, mitotic 

delay, and aneuploidy in daughter cells (Coschi et al., 2010; Isaac et al., 2006). Studies of 

condensin mutants in fission yeast suggest that gene misexpression may be a consequence 

of mitotic errors and aneuploidy (Hocquet et al., 2018). Therefore, to increase the 

quantity of Rb1+/+ MEF cells with >4N DNA and to increase G2/M phase levels to a 

similar quantity as in Rb1L/L fibroblasts, nocodazole was used to inhibit mitotic 

progression (Figure 3.7A&B). This induced mitotic errors and delayed progression, but 
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(A) Differences in >4N DNA content between Rb1+/+ and Rb1L/L MEFs and the percent 
of cells in G2/M as determined by PI staining and flow cytometry (n=6). (B) Rb1+/+ 
MEFs were nocodazole (noc) treated for 24 hours to increase the >4N DNA and the 
G2/M content in wild type MEFs similarly to the Rb1L/L MEFs and the percent of cells in 
G2/M as determined by PI staining and flow cytometry (n=4). (C) RT-qPCR was used to 
quantitate expression of genes at the bidirectional promoters in untreated and nocodazole 
treated Rb1+/+ cultures. All error bars are ±1 SEM. 
 

Figure 3.7: Gene expression at bidirectional promoters is not altered by microtubule 
inhibitor induced aneuploidy. 
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did not cause expression changes at the Usp5/Cdca3 and Pxmp2/Pole bidirectional 

promoters (Figure 3.7C). This suggests that indirect effects on transcription from 

defective condensin II function in mitosis in Rb1L/L cells is unlikely to explain 

misregulation at these bidirectional promoters. Additionally, depletion of condensin II 

components restricts progression through mitosis in mammalian cells and potentially 

causes indirect transcriptional effects through synchronization. For example, transcription 

of histone gene clusters is tightly linked to S phase to ensure chromatinization is 

coordinated with DNA replication, and accumulation of cells in mitosis may lower 

transcript levels for these genes simply because the number of cells in S phase is reduced. 

Asynchronously proliferating Rb1L/L cell cultures have similar quantities of S phase as 

Rb1+/+ (Isaac et al., 2006). Our analysis shows that the histone cluster on chromosome 13 

displays pRB dependent occupancy of TFIIIC and condensin II (Figure 3.8A-C) and 

when this is reduced in Rb1L/L cells, expression of this gene cluster is actually elevated 

(Figure 3.8D). Overall, these analyses argue against potential cell cycle and mitotic 

fidelity effects on transcription in Rb1L/L fibroblasts and further emphasize that loss of 

condensin II occupation likely has direct effects on gene expression at bidirectional 

promoters.   

3.4.3 pRB-condensin II complexes mediate long-range 
chromosome interactions  

Because of the transcriptional changes seen at bidirectional promoters and the 

ability of condensin II to affect chromatin architecture and looping, conformation 

dependent interactions were investigated. Genome views of regions surrounding 

Usp5/Cdca3 and Pxmp2/Pole revealed regular peak locations for condensin II (Figure 

3.9A&D). One possibility is that condensin II organizes loops between these locations to 

influence gene expression within these territories. For this reason, local chromatin folding 

was interrogated using chromosome conformation capture (3C) analysis. We performed 

3C-qPCR on cross-linked, HindIII cut, and ligated chromatin from four wild type and 

Rb1L/L MEF pairs using Usp5/Cdca3 and Pxmp2/Pole bidirectional promoters as the 

reference points (Figure 3.9B&E). This revealed sites of local interaction within these 

chromosomal regions. Most notably, some loops appeared in locations that are unrelated 

to condensin II peaks (Figure 3.9C, ~60 kb from the Cdca3 bait). Furthermore, there do 
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Figure 3.8: Reduced condensin II and TFIIIC localization at the Hist1 gene cluster 
in Rb1L/L MEFs are correlated with upregulation of some histone genes. 
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Figure 3.8: Reduced condensin II and TFIIIC localization at the Hist1 gene cluster 
in Rb1L/L MEFs are correlated with upregulation of some histone genes. 

(A) Genome browser view of the Hist1 gene cluster on chromosome 13. ChIP-Seq for 
CAP-D3 and CAP-H2 from wild type MEFs fixed with formaldehyde in combination 
with EGS (+EGS) prior to ChIP are displayed at the top. (B) CAP-D3 and TFIIIC ChIP-
Seq tracks for both Rb1+/+ and Rb1L/L formaldehyde fixed MEFs are shown. All scales of 
read build-ups in A and B are set to 50 to show the relative differences. (C) TFIIIC ChIP-
qPCR results from Rb1+/+ and Rb1L/L MEFs at the Hist1h3b gene location indicated in B. 
(n=6), error bars are ±1 SEM. *P < 0.05; determined by t-test. (D) Expression changes of 
individual genes within the Hist1 cluster as determined by RNA-Seq. The expression 
from three Rb1L/L MEF preparations is displayed relative to the average of three wild type 
MEFs. Differentially expressed genes between genotypes with an adjusted P-value of 
<0.1 are indicated with an asterisk. 
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Figure 3.9: Preservation of 3C-detected chromatin loops in Rb1L/L cells. 

(A&D) CAP-D3 and CAP-H2 ChIP-Seq read tracks (EGS and formaldehyde fixed), 
surrounding the Cdca3/Usp5 bidirectional promoter in A and the Pole/Pxmp2 locus in D. 
Read build-up scale is 50. (B&E) HindIII restriction enzyme fragments are shown as 
tracks in relation to the gene structure of these genomic locations. (C&F) 3C interaction 
frequencies for selected HindIII fragments (indicated as dots) in the Cdca3/Usp5 and 
Pole/Pxmp2 regions of interest are displayed in graphical format. The grey dotted vertical 
lines relate restriction enzyme fragments to specific data points. The bait fragments are 
indicated by red arrows. 3C crosslinking frequencies were normalized to the ERCC3 
locus (n=4). All error bars are ±1 SEM. 
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not appear to be any interactions that are gained or lost between genotypes (Figure 

3.9C&F). Since local chromatin conformation does not appear to be different between 

genotypes, despite loss of condensin II at these locations, short-range loops seem unlikely 

to be responsible for the changes in gene expression of Cdca3 and Pole in Rb1L/L MEFs.  

To broaden our search for condensin II dependent chromosome interactions, we 

used Usp5/Cdca3 and Pxmp2/Pole promoter viewpoints as the bait regions for 

circularized chromosome conformation capture (4C)-Seq. Chromatin were processed 

from four wild type and Rb1L/L littermate pairs and alignment and analysis of data was 

performed using w4CSeq (Cai et al., 2016). From this data, significant interacting regions 

were produced for each individual experiment (Figure 3.10A) and these were merged 

together such that each region shown was found in two or more replicates for each 

genotype (Figure 3.10B).  

Initially we focused on one region that was common to Rb1+/+ and Rb1L/L 4C-Seq 

data, but that showed different boundaries. The Hoxa10 locus, approximately 70 Mb 

away from Cdca3 on chromosome 6, contains ChIP-Seq peaks for CAP-D3 and extensive 

contacts with CAP-H2 suggesting condensin II occupies this location (Figure 3.11A). 

Based on 4C-Seq data, Hoxa10 interactions were detected in all four Rb1+/+ 4C-Seq 

replicates using Usp5/Cdca3 as the bait, but only one in Rb1L/L cells (Figure 3.11A). 

Consistent with previous experiments, ChIP-qPCR reveals that pRB localization is not 

changed between Rb1+/+ and Rb1L/L MEFs at Hoxa10 (Figure 3.11B), but CAP-D3 

localization at Hoxa10 is lost in the Rb1L/L genetic background (Figure 3.11C). This 

suggests defective condensin II recruitment by pRB can impact long-range chromosome 

interactions. Furthermore, a previous 4C-Seq report demonstrated that Hoxa10, used as a 

bait, interacted with a region of DNA that contains the Usp5/Cdca3 bidirectional 

promoter in MEFs (Sridharan et al., 2009), and this supports the validity of this 

chromosome contact (Figure 3.11D). 

The genome wide representation of locations that interact with each respective 

bait in each genotype reveals that most long-range contacts are retained in Rb1L/L cells 

and that some contacts were lost and new contacts appeared in Rb1L/L mutant cells 

compared to wild type (Figure 3.10B). However, when interactions that were lost in  
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Figure 3.10: Genome wide significant interacting regions determined for 
Cdca3/Usp5 and Pole/Pxmp2 bidirectional promoters. 

(A) 4C-Seq was used to determine chromosomal regions that interact with the 
Cdca3/Usp5 and Pole/Pxmp2 promoters. Circos plots showing all significant interacting 
regions for one of the four MEF pairs analyzed from both 4C-Seq viewpoints. Red 
indicates intrachromosomal interactions while blue shows all interchromosomal 
interactions. (B) Statistically significant interacting regions were determined using 
w4CSeq for each of four different wild type and Rb1L/L replicates. Regions that were 
identified in more than one replicate are shown as vertical red or blue bars and 
chromosome position is shown across the top. The complete set of regions identified in 
Rb1+/+ and in Rb1L/L cells are labeled as ‘all’, while ‘lost’ regions represent contacts 
identified in wild type MEFs but absent in Rb1L/L cells and ‘gained’ regions represent 
novel contacts found only in Rb1L/L cells from that viewpoint. 
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Figure 3.11: Changes in pRB-condensin II complex binding correlated with altered 
interaction between the Cdca3/Usp5 bidirectional promoter and the Hoxa locus. 

(A) Genome browser view of the Hoxa locus on chromosome 6 showing CAP-D3 and 
CAP-H2 ChIP-Seq reads and peaks from EGS and formaldehyde fixed wild type MEFs 
displayed at the top (with read build-ups scale set to 20). 4C-Seq significant interacting 
regions from individual replicates of each genotype from the Cdca3 4C-Seq experiments 
are shown. Numbers above the bars indicate the number of replicates that had significant 
interaction with each region of the Hoxa locus. (B) pRB ChIP-qPCR results from 
asynchronously growing Rb1+/+, Rb1L/L and Rb1-/- MEFs at the indicated location in 
Hoxa10 (n=4). (C) CAP-D3 ChIP-qPCR results from Rb1+/+ and Rb1L/L MEFs at Hoxa10 
(n=4). All error bars are ±1 SEM. *P < 0.05; determined by t-test. (D) 4C-Seq data from a 
study by Denholtz et al. indicating that the Hoxa10 region on chromosome 6 interacts 
with a region on chromosome 6 containing the Cdca3/Usp5 bidirectional promoter in 
MEFs (Denholtz et al., 2013). Contact frequency is the normalized count of sequencing 
reads from each region seen to interact with the Hoxa10 locus. Data were obtained from 
4DGenome (Teng et al., 2016).  
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Rb1L/L cells were compared with the interactions that were gained, we discovered that the 

new regions that interact with the Cdca3/Usp5 viewpoint in Rb1L/L cells were more 

variable in size, while new interactions with Pole/Pxmp2 promoter were larger in Rb1L/L 

cells (Figure 3.12A). From the Cdca3/Usp5 viewpoint, 15 interactions were found in the 

wild type but not Rb1L/L cells, and this was increased to 22 interactions at the Pole/Pxmp2 

viewpoint, averaging to approximately 18 interactions that are lost at each region in 

Rb1L/L compared to Rb1+/+ cells (Figure 3.12B). One of these locations, which is shared 

between the two different viewpoints, is on chromosome 12 (Figure 3.12C). Further 

downstream of this location, though, chromosome contacts with each of the viewpoints 

between genotypes are consistent. Despite loss of wild type chromosome contacts, there 

were approximately 30 interactions that are gained with each region in Rb1L/L compared 

to Rb1+/+ cells (25 from the Cdca3/Usp5 viewpoint and 36 from the Pole/Pxmp2 

viewpoint; Figure 3.12D). One interesting location where we see novel interactions in 

Rb1L/L MEFs, from both viewpoints, is on chromosome 4, which again is close in 

proximity to undisturbed chromosome contacts between genotypes (Figure 3.12E). Taken 

together, this data suggests subtle alterations in chromosome conformation and contacts 

in Rb1L/L MEFs.  

Overall, the chromosome interactions are similar between the two genotypes at 

both bidirectional promoter viewpoints in wild type and Rb1L/L cells. However, chromatin 

conformations in Rb1L/L MEFs appear more dynamic, as seen by more variable and larger 

unique interacting regions, and with more interactions gained than lost. Furthermore, our 

analysis recapitulates a previously observed long-range interaction between Hoxa10 and 

the Usp5/Cdca3 promoter region and demonstrates that it is dependent on pRB-condensin 

II recruitment to these locations. This confirms a role for pRB and condensin II in 

connecting insulated bidirectional promoters with distant genomic contacts. 

3.4.4 Misregulated gene expression at bidirectional promoters in 
RB1-deleted lung adenocarcinoma 

To determine if bidirectional promoters could also be regulated by the pRB-

condensin II complex in human cells and if this could be related to disease, we utilized 

the lung adenocarcinoma TCGA PanCancer Atlas dataset on cBioPortal. At the 
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Figure 3.12: Altered long-range chromosome contacts in Rb1L/L MEFs. 
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Figure 3.12: Altered long-range chromosome contacts in Rb1L/L MEFs.  

(A) The overall size of the significantly interacting regions that were either lost or gained 
in Rb1L/L MEFs compared to wild type with the Cdca3/Usp5 and Pole/Pxmp2 viewpoints, 
from Figure 3.10B. Each data point represents an interacting region and mean sizes and 
the variance in sizes of these regions were compared between the indicated genotypes 
using a t-test and an F test, respectively. (B) The number of 4C-Seq significant interacting 
regions, from A, found in wild type MEFs and lost in Rb1L/L MEFs at the Cdca3 or the 
Pole viewpoints were averaged. (C) Genome browser view of an area of chromosome 12 
containing a 4C-Seq significant interacting region with both the Cdca3/Usp5 and the 
Pole/Pxmp2 viewpoints in Rb1+/+ MEFs, but not in Rb1L/L MEFs, highlighted in grey. 
Also shown is a region where only the Cdca3/Usp5 viewpoint makes significant contact, 
and another region where both viewpoints significantly interact, regardless of genotype. 
The height of the 4C-Seq bars indicates the number of replicates that had significant 
interaction, and the red box on the ideogram illustrates the region shown. (D) The number 
of 4C-Seq significant interacting regions, from A, found in Rb1L/L MEFs, but not in 
Rb1+/+ MEFs, at the Cdca3 or the Pole viewpoints were averaged. (E) Two different 4C-
Seq significant interacting regions found on chromosome 4 in Rb1L/L MEFs, but not wild 
type MEFs, from both the Cdca3/Usp5 and the Pole/Pxmp2 viewpoints, as highlighted in 
grey. Same data display as in C. All error bars are ±1 SEM.  
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POLE/PXMP2 bidirectional promoter, there is a much more significant increase in the 

expression of POLE than PXMP2 in tumors that have RB1 deletion compared to those 

that are diploid for RB1 (Figure 3.13A). Likewise, at the CDCA3/USP5 bidirectional 

promoter, there is only a significant increase in USP5 expression in tumors that have RB1 

deletion (Figure 3.13A). These results parallel the increase in expression of Pole and 

Cdca3 that was seen in and Rb1L/L and Rb1-/- cells compared to wild type (Figure 3.6B). 

To determine if this change in expression between RB1 deleted and diploid tumors occurs 

at other bidirectional promoters where condensin II binding was observed in MEFs, genes 

that contained an Rb1+/+ CAP-D3 peak within their bidirectional promoter region and 

were the higher expressing of the two genes from each bidirectional promoter in mouse 

Rb1L/L compared to Rb1+/+ cells (“Gene A” from Figure 3.5C) were analyzed within the 

same lung adenocarcinoma dataset. In total, approximately one quarter of these genes (39 

of the 159 genes with expression data in these tumors) had increased expression when 

RB1 is deleted compared to when both copies are retained (Figure 3.13B), indicating loss 

of pRB-condensin II insulating effects are evident in cancer cell gene expression patterns.  

3.4.5 Bidirectional promoters insulate epigenetic effects on gene 
regulation  

We sought to test pRB-condensin II complexes as insulators through functional 

experiments that explored whether pRB-condensin II could maintain divergent 

transcriptional regulation in the presence of perturbed local heterochromatin. We carried 

out H3K27me3 ChIP-Seq on Rb1+/+ and Rb1L/L MEFs and noted that at both bidirectional 

promoters, there are regions of high H3K27me3 that are found on the 3’ side of the CAP-

D3 peak in these genome views (Figure 3.14A). Interestingly, this is also the side of each 

bidirectional promoter where there is increased expression (Cdca3 and Pole) in Rb1L/L 

MEFs. However, we did not see changes in localization of this mark surrounding 

bidirectional promoters as a result of altered condensin II binding (Figure 3.14A&B). To 

confirm that localization of H3K27me3 was not changing genome wide, H3K27me3 

ChIP-Seq alignments were compared using the Pearson correlation method, which 

showed extremely high similarity between alignments, regardless of genotype (Figure 

3.14C). We treated wild type MEFs with modest concentrations of an EZH2 inhibitor 

(EZH2i; GSK343) that were insufficient to diminish global H3K27me3 levels and instead 
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Figure 3.13: RB1 deletion in lung adenocarcinoma is associated with increased 
expression of genes at bidirectional promoters. 
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Figure 3.13: RB1 deletion in lung adenocarcinoma is associated with increased 
expression of genes at bidirectional promoters. 

(A) Comparison of mRNA expression Z-scores from cBioPortal’s TCGA PanCancer 
Atlas lung adenocarcinoma samples based on RB1 copy number. Z-scores from samples 
with RB1 “deep deletion” and “shallow deletion” were combined for the RB1 deletion 
category, and were compared to Z-scores from the RB1 diploid population for each gene 
of interest using t-tests. *P < 0.05, **P < 0.005, ****P < 0.0001. (B) Genes that 
contained an Rb1+/+ CAP-D3 peak within their bidirectional promoter region that is 
≤5000 bp and was the higher expressing of the two genes from each bidirectional 
promoter in Rb1L/L compared to Rb1+/+ MEFs (“Gene A” from Figure 3.5C) were 
analyzed in cBioPortal’s TCGA PanCancer Atlas lung adenocarcinoma samples. mRNA 
expression Z-scores were compared as in A. Only those genes that had significantly 
higher gene expression in RB1 deleted tumors (the left half of the heatmap) compared to 
RB1 diploid tumors (on the right half of the heatmap) are displayed. Each row was 
normalized to have a mean of 0 and a variance of 1.  
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Figure 3.14: H3K27me3 localization is not altered as a result of changes in 
condensin II binding but pRB-condensin II complexes do insulate transcriptional 
environments at bidirectional promoters. 
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Figure 3.14: H3K27me3 localization is not altered as a result of changes in 
condensin II binding but pRB-condensin II complexes do insulate transcriptional 
environments at bidirectional promoters.  

(A) Genome browser view of 500 kb regions surrounding the Cdca3/Usp5 and 
Pole/Pxmp2 bidirectional promoter locations with ChIP-Seq tracks for CAP-D3 and 
H3K27me3 in these regions. (B) Heatmaps of H3K27me3 ChIP-Seq read abundance 
surrounding the ≤5000 bp bidirectional promoters that contain an Rb1+/+ CAP-D3 peak. 
The heatmaps are centered on the bidirectional promoters and are showing 100 kb 
upstream and downstream of these regions. (C) Clustered heatmap of Pearson 
correlations for H3K27me3 ChIP-Seq alignments for every genomic region. The two 
different ChIP-Seq replicates (denoted as “rep.” in the figure) for each of the genotypes 
were all compared with each other. (D) Wild type MEFs were treated every 24 hours with 
the indicated concentrations of GSK343, an EZH2 inhibitor (EZH2i), or DMSO vehicle, 
for 48 hours total. Extracts were blotted for H3K27me3 and actin. Extract from Ezh2-/- 
MEFs serve as a control for antibody specificity. (E) MEFs treated as in D had RNA 
isolated to determine the relative expression at Cdca3/Usp5 and Pole/Pxmp2 bidirectional 
promoters. All error bars are ±1 SEM. *P < 0.05; determined by t-test. 
  



 

 

147 

perturb the epigenetic environment (Figure 3.14D). Analysis of gene expression levels by 

RT-qPCR of Cdca3/Usp5 and Pole/Pxmp2 demonstrates that Cdca3 and Pole are 

repressed, but their bidirectional promoter mate is unchanged (Figure 3.14E). This 

demonstrates that pRB-condensin II complexes contribute to insulation of transcriptional 

effects on opposing sides of occupied bidirectional promoters.  

3.5 Discussion 
In order to study loss of function effects caused by defective condensin II 

chromatin loading in interphase, we utilized a targeted murine mutant Rb1L where pRB-

condensin II interactions are impaired (Coschi et al., 2014). Using ChIP-Seq and 

chromosome conformation capture approaches we demonstrated that pRB organizes 

chromosome architectural protein complexes TFIIIC and condensin II in proximal 

promoter regions of genes. In particular, bidirectional promoters are occupied by these 

proteins and they may mediate long-range chromosome interactions. These data suggest 

that pRB-TFIIIC-condensin II occupancy at these genome locations can act as 

architectural organizers and insulators that partition expression potential for closely 

spaced genes (Figure 3.15A).  Reduction of TFIIIC and condensin II recruitment caused 

by the Rb1L allele alters long-range contacts mediated from these locations and 

misregulates one of the gene pairs (Figure 3.15B). Our data also indicates that loss of 

condensin II recruitment does not alter the boundaries or abundance of repressive 

chromatin surrounding these regions. This insight into mammalian genome organization 

and transcriptional control raises new questions. 

Studies from mammals and model organisms indicate that condensins localize to 

TAD boundaries along with TFIIIC, CTCF, and cohesin complexes (Crane et al., 2015; 

Li et al., 2015a; Van Bortle et al., 2014; Yuen et al., 2017). Data from Drosophila 

suggests that TAD boundaries containing condensin II are the strongest insulators 

between domains (Van Bortle et al., 2014). While this suggests a role in chromosome 

organization, it also suggests redundancy of function between different components at 

these locations, or that RNA polymerase movement may simply direct condensin II to 

these locations without a functional purpose. Our study looks at condensin II function in 

chromosome topology in isolation, as cohesin and condensin I chromatin loading are  
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Figure 3.15: pRB-TFIIIC-condensin II complexes organize transcriptional 
environments at bidirectional promoters. 

(A) In wild type cells pRB-TFIIIC-condensin II is responsible for making long-range 
chromosome interactions at bidirectional promoters where one of the two genes (Gene A) 
is sequestered in an environment that reduces its expression. (B) In Rb1L/L cells pRB is 
present, but is defective for recruiting TFIIIC and condensin II to bidirectional promoters. 
Loss of this complex reduces contact with certain genomic locations, allowing novel and 
potentially more transcriptionally active regions to influence the environment around 
Gene A facilitating higher level expression.  
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normal in Rb1L/L cells (Coschi et al., 2010; Manning et al., 2010). One conclusion from 

this work is that most distant chromosome contacts involving Cdca3 and Pole are 

retained in Rb1L/L cells compared to Rb1+/+ in our interaction maps. This supports the 

concept of redundancy of three-dimensional architecture in genome organization. Our 

data also reveal that Rb1L causes the consistent loss of chromosome contacts with specific 

regions seen in wild type cells when TFIIIC and condensin II recruitment are diminished. 

In addition, the overall effect of the Rb1L mutant on Pole/Pxmp2 promoter contacts 

creates broader unique interacting chromosome territories, and more variable sizes of 

unique interacting chromosome territories for Cdca3/Usp5 promoter contacts. Thus, 

mammalian condensin II-dependent contributions to three-dimensional chromosome 

architecture are measurable and their loss has consequences in isolation from cohesin and 

its regulators. 

Our data indicates that loss of pRB recruitment of condensin II and TFIIIC has 

local effects on transcription. The viewpoints we investigated in detail demonstrate that 

condensin II has little role in organizing short-range loops. For this reason, local effects 

on transcript levels are best explained by the altered long-range chromosome interactions. 

We note that our model of condensin II mediated chromosome contacts (Figure 3.15) is 

consistent with gene transcription territories in nuclear organization that have been 

proposed in other studies (Denholtz et al., 2013; Imakaev et al., 2012). It is possible that 

our work reveals subtle reorganization, or loss of these territories. Furthermore, recent 

studies of chromosome topology changes induced by degradation of CTCF or cohesin 

components indicate that functional compartments created by some long-range contacts 

are maintained (Haarhuis et al., 2017; Nora et al., 2017; Rao et al., 2017; Schwarzer et al., 

2017; Wutz et al., 2017). Our data suggests that condensin II may be an unidentified 

factor that mediates these contacts, although this will need to await further investigation 

using Hi-C approaches. 

The involvement of pRB in TFIIIC and condensin II recruitment to gene 

promoters in interphase may seem surprising. We note that some prior studies of 

mammalian condensin II have utilized cell lines that are transformed by viral oncogenes 

that target pRB (Liu et al., 2010; Yuen et al., 2017). pRB’s role in organizing long-range 
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contacts would likely be disrupted in these cells, or would rely on compensatory 

mechanisms to load condensin II in pRB’s absence. A number of previous studies have 

demonstrated that pRB interacts with condensin II and this interaction is conserved in 

Drosophila (Coschi et al., 2010; Longworth et al., 2008). Furthermore, TFIIIC has also 

previously been shown to bind to pRB (Chu et al., 1997), indicating that these protein 

complexes have be known to function together, but their role in long-range chromosome 

interactions and transcriptional control at divergent promoters was unknown. 

 Cancer genomic studies have revealed that RB1 deletions often occur late in 

cancer progression and are preferentially enriched in metastatic disease (Robinson et al., 

2017), or in acquired resistance to targeted therapeutic agents (Dick et al., 2018). These 

are scenarios where deregulated proliferation has already been established, and suggest 

pRB loss has additional contributions to cancer biology. Therefore, alterations to 

interphase chromosome structure and gene expression, mediated by pRB disruption in 

cancer, may be linked to misregulation of condensin II. Consistent with this, when we 

analyzed genes from bidirectional promoters where condensin II was seen to bind in our 

mouse model, we found that compared to RB1+/+ cancers, those with RB1 deletion 

frequently upregulate these genes. This study demonstrates that organization of long-

range chromosome interactions and divergent promoter insulation by condensin II is an 

unexpected, but obligatorily common target for disruption during cancer progression 

because of its dependence on pRB. 
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Chapter 4  

4 Discussion 

4.1 Summary of findings 
My thesis investigates different contributions of pRB to the maintenance of 

genome stability. The work here suggests RB1 mutation affects the level of DNA damage 

through various mechanisms as well as the organization of long-range chromosome 

contacts through pRB’s interaction with condensin II. Overall, this demonstrates that pRB 

has other previously unappreciated roles within the nucleus which assist in tumor 

suppression through preserving genome integrity.  

My work in chapter 2 identifies increased genome instability in cancer cell lines 

when RB1 mutations are induced, despite an already compromised pRB-pathway. Even 

cells with single copy loss of RB1 have increased levels of basal DNA damage as well as 

mitotic errors. Increased quantities of reactive oxygen species as well as defects in 

homologous recombination appear to be the main contributors to the increase in 

spontaneous DNA damage. RB1 mutation also results in a heightened capacity to seed 

new tumors in the lungs of xenografted immune compromised mice.  

In chapter 3, the dependency of condensin II on pRB for its localization 

throughout the genome is investigated. This study demonstrates that pRB is a recruitment 

factor for both condensin II and TFIIIC at many promoters throughout the genome. The 

complex of pRB-condensin II-TFIIIC is further enriched at bidirectional promoters, 

where diminished localization of these proteins leads to reciprocal misexpression of these 

divergently paired genes. Chromosome contacts were investigated demonstrating that loss 

of condensin II binding leads to altered long-range chromatin interactions with between 

bidirectional promoters and distant loci. Data from lung adenocarcinoma patients 

demonstrates that a similar mechanism may occur in humans, as some genes at 

bidirectional promoters have significantly higher expression in patients with RB1 deletion 

compared to those that have retained both copies of RB1.  
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Collectively, my work has added to our current model of pRB-mediated tumor 

suppression, highlighting the fact that its contributions to tumor suppression encapsulate 

more than simply maintenance of proliferative control through binding to and repressing 

E2F transcription factors (Dyson, 1998). This initial finding has caused cell cycle 

independent functions of pRB to be largely overlooked when assessing its contributions 

to tumor suppression. However, my work demonstrates that loss of RB1 can also 

contribute to cancer progression through enhanced DNA damage and altered 

chromosome topology. My investigation into the various measures pRB employs to 

support genome stability may elucidate answers to questions regarding pRB status in 

relation to patient outcome, disease progression, and genome reorganization. 

4.2 Impact on cancer therapy selection 
My work in cancer cell lines with RB1 loss in chapter 2 confirms increased 

vulnerability to cisplatin, agreeing with studies where loss of pRB correlated with 

improved survival in response to chemotherapy incorporating a platinum-based agent like 

cisplatin or carboplatin (Cecchini et al., 2015; Garsed et al., 2018; Ludovini et al., 2004). 

Thus, it appears as though these platinum-based chemotherapies are exploiting the 

genomic instability in these RB1-deficient tumors, which could be what is responsible for 

the improved outcomes in these patients. Since I have shown that cells with RB1 loss 

have impaired homologous recombination, PARP inhibitors (PARPis) might be useful to 

potentially increase treatment success in patients with low levels of pRB. This is because 

PARPis exhibit synthetic lethal effects when applied to cells with defective HR 

(Konstantinopoulos et al., 2015). In some clinical trials of PARPis, in fact, platinum 

sensitivity has been used as a clinical surrogate of HR deficiency, and thus has been used 

as an eligibility criterion when selecting patients (examples are (Ledermann et al., 2012; 

Liu et al., 2014)).   

Only recently have PARPis been used in combination with carboplatin, and 

because of the common BRCA1 and BRCA2 mutations in epithelial ovarian cancer (EOC) 

and breast cancer, this combination therapy has been tested chiefly in these settings and 

the results seem favourable. For example, in a recent phase 2 trial, the efficacy and 

tolerability of PARPi olaparib in combination with paclitaxel and carboplatin 
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chemotherapy, followed by olaparib maintenance monotherapy was assessed versus 

chemotherapy alone in patients with platinum-sensitive, recurrent, high-grade serous 

ovarian carcinoma (HGSOC) (Oza et al., 2015). This study found that olaparib plus 

chemotherapy followed by maintenance monotherapy significantly improved 

progression-free survival versus chemotherapy alone (Oza et al., 2015). However, despite 

the fact that an extension in progression free survival was observed in the cohort of all 

patients, the difference between treatment groups was larger in the subset of patients with 

BRCA mutations, so subsequent phase 3 trials have focused solely on patients with these 

mutations (Moore et al., 2018; Pujade-Lauraine et al., 2017). Therefore, it would be 

interesting to determine if some of the other patients that respond well to PARPis in 

combination with chemotherapy are those that have pRB loss.  

4.3 RB1 hemizygozity in cancer   
As previously discussed in the introduction, Dr. Alfred Knudson proposed what 

became known as the “two hit hypothesis” when studying retinoblastoma (Knudson, 

1971). As part of this study, Knudson proposed that loss of one RB1 allele did not 

accelerate loss of the second RB1 allele; in other words, it was thought that hemizygosity 

of RB1 did not create haploinsufficiency, but rather that the wild type condition was 

recapitulated. However, some recent studies, including data from chapter 2 of this thesis, 

has demonstrated that single copy loss of RB1 may contribute to cancer progression 

through multiple mechanisms.   

Genomic instability used to be thought of as a by-product of tumorigenesis, 

however, through our increased knowledge of cancer progression, it is now thought of as 

an enabling characteristic (Hanahan and Weinberg, 2000, 2011). Data from chapter 2, 

therefore, demonstrating that single copy loss of RB1 leads to increased DNA damage 

compared to otherwise isogenic cancer cells that are diploid for RB1 suggests that pRB is 

haploinsufficient in terms of the maintenance of genome stability, and thus, tumor 

suppression. In line with this, there is evidence of genome instability through an increase 

in mitotic errors in primary RB1+/= cells (Coschi et al., 2014; Gonzalez-Vasconcellos et 

al., 2013; Zheng et al., 2002), and patients with inherited retinoblastoma are more likely 
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to acquire second primary neoplasms than the general population (Abramson et al., 1976; 

Marees et al., 2008).  

The most common non-ocular cancers patients with hereditary retinoblastoma 

develop are bone and soft tissue sarcomas, melanoma and brain tumors (Kleinerman et 

al., 2012). Of the bone sarcomas reported in retinoblastoma survivors, many are 

diagnosed between 10 and 20 years of age, and osteosarcoma is the most common type 

(Kleinerman et al., 2012).  

The cancer cell line we used to investigate RB1 heterozygosity, U2OS, was 

cultivated from an osteosarcoma patient. Because many of the second primary neoplasms 

arising in retinoblastoma patients are of mesenchymal cell origin, and I demonstrated 

increased genomic instability in osteosarcoma cells with single copy loss of RB1, it is 

tempting to consider that mesenchymal cells may have a special requirement for two 

functional copies of RB1. However, we also demonstrated in chapter 2 through 

investigation of cBioPortal data that a variety of already established cancers have 

“shallow deletion” of RB1. Although it may be true that RB1 hemizygosity might 

contribute uniquely to initial cancer onset in mesenchymal cells, it appears as though RB1 

single copy loss is more ubiquitous than that and thus its contributions to genome stability 

are likely more universal, although this remains to be investigated. 

4.4 Rb1L and haploinsufficiency 
Not only does complete loss of a single RB1 allele lead to haploinsufficiency, 

previous work has also demonstrated a genome instability phenotype in Rb1L/+ cells 

(Coschi et al., 2014). It has been shown that pRB and condensin II localize and contribute 

to the integrity of pericentromeric heterochromatin, and even in Rb1L/+ cells, localization 

of condensin II to these regions is decreased (Coschi et al., 2014). Ultimately, this 

resulted in a similar frequency of mitotic errors as seen in the homozygous mutants, 

demonstrating haploinsufficiency. Given that a single Rb1L allele leads to reduced 

recruitment of condensin II at pericentromeric heterochromatin compared to wild type, a 

remaining question from chapter 3 is if this same genotype can also lead to reduced 

recruitment of condensin II at promoter regions as well. Comparing the amount of 
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condensin II recruitment at bidirectional promoters to the long-range chromatin 

interactions at these sites in Rb1+/+, Rb1L/+ and Rb1L/L cells could help reveal the amount 

of condensin II localization required to maintain appropriate chromosome topology. 

Interestingly, when expression data from lung adenocarcinoma patients was analyzed at 

bidirectional promoters in chapter 3, due to the small number of patients with “deep 

deletion”, consistent with biallelic loss, the RB1 deleted category also included patients 

with “shallow deletion”, which is suggestive of heterozygous deletion of this allele. 

Therefore, since the significantly higher expression of bidirectional promoter genes 

occurred in patients with both deep and shallow deletion of RB1 combined compared to 

patients that were diploid for RB1, this suggests that localization of condensin II at 

bidirectional promoters is gene-dosage dependent as well. 

4.5 Chromosome topology and cancer 
With the advent of chromosome capture technology, we are beginning to 

appreciate that cell-fate decisions are driven by changes in environmental cues, activating 

signal transduction into the nucleus, which ultimately converge in the activation or 

silencing of DNA sequence-specific regulators, commonly transcription factors, and 

affect the recruitment of transcriptional and chromatin remodeling machinery 

(Stadhouders et al., 2019). The formation and continuation of cell-type-specific gene 

expression programs are therefore a consequence of the interaction between transcription 

factors and the chromatin landscape that they interact with. This means that cell identity 

can be regarded as an “emergent property”, meaning it results from the interaction 

between components at various levels of organization, namely between transcription 

factors, chromatin-associated proteins, epigenetic modifications, and the three-

dimensional organization of the genome. Accordingly, genome conformation is partly 

cell-type specific; the position of chromosome territories and regions of intermingling 

between them has been seen to vary between cell types and evidence is suggesting that 

10-40% of TAD boundaries are cell-type-specific and that the strength of boundary 

insulation is dynamic (Stadhouders et al., 2019).  

One way in which chromosome conformation has been seen to be disrupted in 

cancer is through chromosomal rearrangements and mutations that disrupt TAD 
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boundaries, which can lead to incorrect insulated “neighborhoods”, or DNA loops, and 

ultimately incorrect promoter-enhancer connections. Recently, insulated neighborhoods 

in T-cell acute lymphoblastic leukemia (T-ALL) were mapped and frequent 

microdeletions were discovered that abolish boundary sites of insulated neighborhoods 

containing well known T-ALL proto-oncogenes (Hnisz et al., 2016). Through database 

mining, an enrichment of mutations at CTCF boundaries of constitutive neighborhoods in 

the cancer genomes of 31 different tumor types were also found, showing that somatic 

mutations of insulated neighborhood boundaries occur in the genomes of a variety of 

cancers (Hnisz et al., 2016). Another study found that the promoter for a long non-coding 

RNA gene, PVT1, competes with the MYC promoter for contact with a nearby enhancer 

element in cis and that mutations encompassing the PVT1 promoter region are recurrent 

in human cancers (Cho et al., 2018). The promoter of the PVT1 gene was termed a 

“tumor-suppressive DNA element” since it limits MYC oncogene expression by acting as 

a DNA boundary element between MYC and downstream enhancers (Cho et al., 2018). 

Additionally, cancer cells can also activate novel enhancers to influence the transcription 

profile. For example, the activation of super enhancers in breast cancer, T-ALL, and 

diffuse large B-cell lymphoma have been seen to increase the amount of CD47, a cell 

surface molecule that inhibits phagocytosis of cells that express it (Betancur et al., 2017). 

Finally, a subset of gliomas have gain-of-function IDH mutations as initiating events, 

which leads to hypermethylation throughout the tumor genome. This hypermethylation 

overlaps some CTCF sites and was seen to disrupt its binding, leading to changes in 

chromosome structure and altered oncogene expression (Flavahan et al., 2016).  

Altogether, the previous examples demonstrate that changes in conformation have 

been associated with cancer cell types. However, changes in chromosome topology in all 

of these examples are linked to mutations or changes in DNA elements, and not from 

alterations in the actual architectural proteins responsible for maintaining proper 

chromosome topology in cells. Although there are some examples of mutations 

specifically affecting proteins previously implicated in interphase chromosome topology 

like CTCF and components of cohesin, overall, these are not mutations that are 

commonly associated with cancer (Hnisz et al., 2018).  
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My work in chapter 3 has revealed that loss of pRB can systemically alter 

chromosome topology through loss of the architectural functions of the pRB-condensin II 

complex, and this is likely happening on a routine basis in cancers when RB1 mutations 

occur. When pRB is inactivated in cancer, reorganization or loss of chromosome 

territories at closely spaced bidirectional promoters is expected to occur, as evidenced by 

increased expression of particular bidirectional promoter genes in lung adenocarcinomas 

with RB1 deletion. As previously mentioned, cancer genomic studies reveal that RB1 

deletions often appear late in cancer progression and are enriched in metastatic disease 

(Robinson et al., 2017), or in acquired resistance to targeted therapeutic agents (Dick et 

al., 2018). From my work, it can be inferred that one reason this may be happening is to 

create a state of epigenetic plasticity, where more plastic chromatin may sample 

alternative transcriptional programs or gene pathways, some of which may confer a 

growth advantage (Flavahan et al., 2017). To confirm loss of pRB in cancer cells leads to 

a more dynamic chromatin state with novel chromatin conformations, techniques like Hi-

C, an “all-versus-all” chromosome conformation method, will be useful. Comparisons 

could be made with cell types of origin to gain insight into the extent of topology changes 

from non-cancerous to cancerous cells, and additional comparisons can then be made to 

cancers that have similar mutational spectrums but have different RB1 status to determine 

how much loss of the pRB-condensin II complex is able to further contribute to altered 

chromosome conformations that will likely be observed in many cancers.   

4.6 Lack of cancer progression in Rb1L/L mice 
Despite altered chromosome topology and an altered transcriptional profile in 

interphase cells from Rb1L/L mice described in chapter 3, and the fact that these cells have 

hypocondensation of chromatin in mitotic cells and lagging chromosomes that lead to 

aneuploidy (Coschi et al., 2010; Isaac et al., 2006), these mice do not develop 

spontaneous tumors (Isaac et al., 2006). This may suggest that the maintenance of proper 

chromosome structure is not one of the more important aspects of tumor suppression by 

pRB. Conversely, altered chromosome topology in interphase and mitotic cells does 

create the opportunity for genetic change that can contribute to cancer pathogenesis, but 

the lack of an inappropriate growth-promoting signal is likely what is keeping these cells 
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from becoming cancerous. Evidence for this comes from Rb1L/L mice that were crossed 

into the cancer-prone Trp53-/- background. Rb1L/L; Trp53-/- mice succumb to cancer more 

rapidly than Trp53-/- controls and Rb1L/L; Trp53-/- mice also have a trend toward more 

aggressive tumors, increased numbers of animals with multiple tumors, and more 

frequent metastases, indicating that the Rb1L/L allele increases cancer susceptibility 

(Coschi et al., 2010).  

Interestingly, Rb1G/G mutant mice, which have a targeted mutation in the pRB 

pocket that disrupts the ability of pRB from associating with E2Fs through the pocket 

domain, and thus have increased expression of E2F target genes, are also viable and do 

not succumb to spontaneous tumors (Cecchini et al., 2014). Except for an accelerated 

entry into S phase in response to serum restimulation following serum starvation, cell 

cycle regulation in Rb1G/G MEFs largely parallels what is seen in wild type cells 

(Cecchini et al., 2014). Overall, studies using this mouse model suggest that loss of E2F 

transcriptional repression is insufficient to cause tumor formation. Similar to what was 

seen with Rb1L/L mice though, when Rb1G/G were crossed with Trp53-/- mice, Rb1G/G; 

Trp53-/- mutant mice had significantly shorter disease-free survival compared to Trp53-/- 

controls. Therefore, it would be interesting to create an Rb1G,L/G,L mouse line and assess 

phenotypes. Clearly both E2F transcriptional control and genome stability are facets of 

pRB tumor suppression, and if both of these are rendered non-functional in a compound 

mutant, tumor formation may occur. Additionally, similarly to what is seen in Rb1-/- mice, 

there is always the possibility that Rb1G,L/G,L mice may die embryonically (Wu et al., 

2003).  

Intriguingly, when thymocytes from the Rb1L/L mouse were previously examined, 

no aneuploid or tetraploid cells were found (Isaac et al., 2006). This implies that 

endogenous proliferation rates may not be high enough to generate aneuploid cells faster 

than they can be eliminated, and thus, the mitotic defects observed in Rb1L/L MEFs were 

not able to be detected in vivo. This eradication of cells may be due the cyclic GMP-AMP 

synthase (cGAS) protein, which is a cytosolic DNA sensor that activates innate immune 

responses, including the induction of interferons (Chen et al., 2016). Delivery of DNA to 

the host cytoplasm by microbial infection is pathogen-associated, while self-DNA is 
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danger-associated when it enters the cytoplasm from the nucleus, as it can be the result of 

DNA damage or the reverse transcription of retroelements, for example. Therefore, in 

Rb1L/L mice, it is highly likely that cells with more severely altered chromosome topology 

are being cleared by the innate immune system through the cGAS pathway. This could be 

investigated further through a Rb1L/L; Mb21d1-/- compound mutant mouse, where Mb21d1 

is the gene that codes for cGAS. Without activation of immune defenses against cells that 

may be premalignant, the Rb1L mutation might lead to a cancerous phenotype in this 

Rb1L/L; Mb21d1-/- background. It would also be interesting to probe if the cGAS pathway 

is only killing cells with mitotic problems leading to aneuploidy, or if it is able to 

somehow target cells that have non-mitotic phenotypes, like those with more plastic 

chromatin in interphase. It is possible that mitotic problems and dynamic interphase 

chromatin will go hand-in-hand in cells from these mice.  

4.7 Further investigation of chromosome topology in Rb1L/L 
cells 
Although my work has thoroughly investigated chromosome conformation at 

specific loci in the genome using 3C and 4C-Seq techniques, differences in TADs as well 

as chromatin compartments, or regions of active or repressed chromatin states, remain to 

be investigated between wild type and Rb1L/L cells. Changes in these types of 

chromosome conformations in Rb1L/L cells could be studied further using an all-versus-all 

approach like Hi-C. Based on my 4C-Seq data, I predict that Hi-C data would display 

changes predominantly in compartments between the wild type and mutant cells, as I saw 

no difference in short-range loops at the bidirectional promoters I investigated but did 

find differences in long-range chromosome contacts. This agrees with previous 

predictions that condensin II is important for facilitating compartment formation based on 

the localization of condensin II at boundary-boundary interaction sites (Yuen and Gerton, 

2018). Because of the partial loss of function mutation, use of Rb1L/L cells would be one 

of the best ways to study the effects of diminished condensin II binding on chromosome 

conformation genome-wide in interphase cells. However, one obvious barrier to carry out 

this experiment is the amount of sequencing depth required. Generally speaking, there is a 

direct relationship between mapping resolution and sequencing depth for a Hi-C assay, 
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and the rule of thumb is to increase resolution by a factor of n, the number of reads needs 

to be increased by a factor of n2 (Lieberman-Aiden et al., 2009). In genomes as large as 

those from human and mouse, generating contact profiles with resolution from 40 kb to 1 

kb requires hundreds of millions to billions of paired-end reads (Han et al., 2018). 

Because many of the effects we saw in Rb1L/L MEFs using 4C-Seq data were relatively 

subtle, higher resolution Hi-C contact maps might be required to observe global 

consequences of diminished condensin II binding in Rb1L/L cells. Therefore, the amount 

of sequencing as well as the computational resources required makes Hi-C an expensive 

technique to pursue, meaning the decision to carry out this experiment merits a cost-

benefits analysis. There are also alternative “many-to-all” methods of chromosome 

conformation capture, which enable the generation of high-resolution maps at a 

subfraction of the genome through enrichment of specific regions of interest out of the 

Hi-C library prior to sequencing (reviewed in (Sati and Cavalli, 2017)). Regions that 

could be enriched for based on my data, therefore, are bidirectional promoters where 

condensin II is seen to bind. This could reduce the cost of sequencing and the amount of 

computational resources required, but could still result in more global data, and thus, 

more global conclusions could be drawn.  

4.8 Multiple possibilities for long-range chromosome 
interactions facilitated by condensin II 
Although our initial model of how the pRB-TFIIIC-condensin II complex could 

be organizing chromosome conformation at bidirectional promoters in chapter 3 showed a 

single condensin II molecule entrapping a single piece of duplex DNA (Figure 3.15A), 

there are several possible ways in which condensin II could be mediating this interaction. 

For example, since there has been evidence of condensin oligomerization (Keenholtz et 

al., 2017; Wang et al., 2017), it remains feasible that multiple condensin II complexes 

interact to bring chromatin close in three-dimensional space. How this oligomerization 

between condensin II complexes occurs is also largely unknown. One likely possibility is 

that the ATPase heads of different SMC dimers could interact and form a double ring 

structure, for example (Hirano, 2006). It has also been proposed that homotypic HEAT-

HEAT interactions (e.g. between CAP-D2 and CAP-D2) might be important for 
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intercomplex crosstalk between condensins (Kinoshita et al., 2015). Therefore, some of 

the other ways in which the pRB-condensin II complex could be mediating long-range 

chromosome contacts at bidirectional promoters are depicted in Figure 4.1. The given 

scenarios are certainly not exhaustive however; how condensin complexes interact with 

DNA and form loops is still a mystery. One recent review actually listed some rather 

important outstanding questions in the SMC field, which include how do SMC complexes 

entrap DNA to form initial chromatin loops, how do these complexes processively 

expand chromatin loops, and do all SMC complexes form chromatin loops as monomers 

(van Ruiten and Rowland, 2018)?  

4.9 Formation and recruitment of the pRB-condensin II 
complex 
While the association of condensin II with pRB has been characterized as 

dependent on the LXCXE binding cleft, there are questions that still exist about the 

biochemical properties of this complex. For example, we do not know if there are post-

translational modifications on either pRB or condensin II that are required for this 

complex to form, or whether certain modifications may prevent complex formation. Since 

pRB interacts with E2F1 using its specific interaction surface in the C-terminal domain 

when forming a complex with condensin II (Coschi et al., 2014; Ishak et al., 2017), we do 

know that hyperphosphorylation of pRB would not inhibit its interaction with E2F1 

(Cecchini and Dick, 2011). Also, since binding of E2F1 to phosphorylated pRB has been 

suggested to alter the binding specificity of E2F1 such that it can bind at non-canonical 

E2F consensus sequences on DNA (Dick and Dyson, 2003; Tao et al., 1997), 

phosphorylated pRB in complex with condensin II remains an intriguing possibility. 

Further evidence of this possibility comes from chapter 3, where I demonstrate that 

condensin II binds at many promoters in an pRB-dependent manner, largely outside of 

those that are related to pRB’s canonical function in G1-S regulation of E2F transcription. 

In addition, phosphorylation is also a common post translational modification that 

regulates the functions of condensin II (reviewed in (Kagami and Yoshida, 2016)), 

suggesting that it, too, could have specific modifications that may facilitate its interaction 

with pRB.  
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Figure 4.1: Additional models of long-range chromosome contacts mediated by 
condensin II at bidirectional promoters. 

(A) Condensin II dimerization through the SMC ATPase heads could result in the 
formation of a double ring structure that is able to bring two pieces of chromatin close in 
proximity. In this diagram, the hinge domain of condensin II is binding to pRB and 
TFIIIC, and only one condensin II complex is physically encircling DNA. (B) Homotypic 
HEAT-HEAT interactions could also be important for condensin II intercomplex 
crosstalk. In this diagram, the head domains of condensin II are interacting with pRB and 
TFIIIC, and both condensin II subunits are physically encircling a DNA strand. 
Interactions in A and B between proteins and DNA can be mixed-and-matched, and these 
possibilities of how condensin II could be mediating chromosome contacts at 
bidirectional promoters are not exhaustive. 
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Moreover, we still do not know whether interactions between pRB and certain 

condensin II subunits are direct or indirect, and which subunits are essential for this 

interaction. Work in chapter 3 has shown that TFIIIC is likely a part of the same complex, 

as reduced recruitment of TFIIIC at promoters in Rb1L/L cells also occurs. Further support 

of this comes from previous work demonstrating interactions between pRB and TFIIIC 

(Chu et al., 1997), and TFIIIC and condensin II (Yuen et al., 2017). Therefore, one 

possibility is that pRB binds to TFIIIC, which in turn is able to recruit condensin II. 

However, further biochemical experiments are needed to determine how these proteins 

may all interact and whether additional co-factors are required for formation of this pRB-

TFIIIC-condensin II complex.  

As previously mentioned, condensin II binds at many non-E2F target gene 

promoters in an pRB-dependent manner, begging the question of how these proteins are 

recruited to these sites. Again, it is possible that E2F1 is responsible for localization of 

this complex and is binding at non-canonical E2F consensus sequences on DNA (Dick 

and Dyson, 2003; Tao et al., 1997). Alternatively, the recruitment of pRB and E2F1 to 

sites of DNA damage suggests that these proteins may be recruited through sequence-

independent means within the genome (Cook et al., 2015; Velez-Cruz et al., 2016). One 

possibility is that histone marks may mediate binding of the pRB and condensin II 

containing complex. Condensin II might be responsible for interactions with histones, as 

interactions with specific histone modifications have been previously demonstrated. For 

example, the CAP-G2 and CAP-D3 HEAT-repeat containing subunits can associate with 

H4K20me1 histone tails (Liu et al., 2010), and CAP-D3 can interact with H3K4me3 

(Yuen et al., 2017). Another option is that TFIIIC could be responsible for some degree 

of sequence-specific binding of these proteins, as sites of TFIIIC-condensin II binding 

were previously demonstrated to be enriched for a motif similar to the consensus B box 

motif TFIIIC is known to bind (Yuen et al., 2017). Overall, although my thesis has 

increased our knowledge of where the pRB-condensin II complex binds and its roles at 

target locations, there are still several questions about the properties of this complex that 

remain to be answered.  
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4.10 Summary of pRB functions in genome stability 
In summary, my thesis establishes previously unappreciated roles for pRB which 

aid in tumor suppression by maintaining genome integrity. Through the use of cancer cell 

lines with already compromised pRB-pathways, I observed increased levels of basal 

DNA damage as well as mitotic errors when RB1 was mutated. I also demonstrated 

increased genome instability even when cells have single copy loss of RB1. The main 

source of the increased spontaneous DNA damage in pRB mutant cells appears to be 

increased quantities of reactive oxygen species as well as defects in homologous 

recombination. There was also an enhanced capacity to seed new tumors in the lungs of 

xenografted immune compromised mice when RB1 was mutated. Furthermore, this thesis 

also reveals that pRB is a recruitment factor for both condensin II and TFIIIC at many 

promoters throughout the genome, particularly at bidirectional promoters, where 

diminished localization of these proteins leads to misexpression of many divergently 

paired genes. Loss of condensin II binding is also associated with altered long-range 

chromatin interactions with between bidirectional promoters and distant loci. A similar 

mechanism may occur in humans, as some genes at bidirectional promoters have 

significantly higher expression in lung adenocarcinoma patients with RB1 deletion 

compared to those that are diploid for RB1.  

Overall, my work has added to our current model of pRB-mediated tumor 

suppression, emphasising that its involvement in tumor suppression expands beyond 

solely maintaining proliferative control through repressing E2F transcription factors 

(Dyson, 1998). My thesis reveals that loss of RB1 can also contribute to cancer 

progression through increased DNA damage and altered chromosome topology and these 

findings may shed light on associations between pRB status and patient outcome, disease 

progression, and genome reorganization. 
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Appendix B: List of antibodies used 

Antibody Target Species Source ChIP 
(Ab:Chromatin) WB IF 

C-15 pRB Rabbit Santa Cruz 5 ug : 80 ug 1:1000  

M-153 pRB Rabbit Santa Cruz 5 ug : 80 ug   

M-136 pRB Sheep (Cecchini et al., 
2014) 5 ug : 80 ug   

S855 pRB Rabbit (Cecchini et al., 
2014) 5 ug : 80 ug   

Hyb4.1 pRB Mouse 
Developmental 

Studies 
Hybridoma Bank 

500 uL : 80 ug   

G3-245 pRB Mouse BD Pharmingen  1:250 1:400 
H-225 Sp1 Rabbit Santa Cruz  1:1000  

05-636 H2A.X 
pSer139 Mouse EMD Millipore 4 ug: 200 ug  1:400 

sc-7790 BLM Goat Santa Cruz  1:200 1:150 
sc-22760 53BP1 Rabbit Santa Cruz   1:400 

ab62623 
DNA/RNA 

damage 
(8-oxoG) 

Mouse Abcam   1:200 

A300-
244A RPA32 Rabbit Bethyl  1:2000  

ab83311 RAD54B Rabbit Abcam  1:500  

ab63801 RAD51 Rabbit Abcam  1:2000  

05-858 Histone H4 Rabbit EMD Millipore 10 ug : 200 ug   

CAP-D3 CAP-D3 Rabbit (Coschi et al., 
2010) 10 ug : 200 ug   

A302-
275A CAP-H2 Rabbit Bethyl 10 ug : 200 ug   

07-449 H3K27me3 Rabbit EMD Millipore 10 ug : 200 ug   

A301-
291A TFIIIC-220 Rabbit Bethyl 6 ug : 120 ug   
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  Appendix C: List of plasmids used 

Name Description Obtained/ 
constructed 

Bacterial 
Resistance 

Selectable 
markers 

Stock 
Number 

pX459 Plasmid expressing WT 
Cas9 

Addgene 
#48139 Ampicillin Puromycin 0681 

pX459+ 
X22B 

Plasmid expressing WT 
Cas9 and sgRNA for exon 

22 of RB1 (X22B 
sequence) 

Addgene 
#48139 and 
Fred Dick 

Ampicillin Puromycin 0689 

pX459+ 
X22C 

Plasmid expressing WT 
Cas9 and sgRNA for exon 

22 of RB1 (X22C 
sequence) 

Addgene 
#48139 and 
Fred Dick 

Ampicillin Puromycin 0690 

pX462 Plasmid expressing D10A 
mutant of Cas9 

Addgene 
#48141 Ampicillin Puromycin 0682 

pX462+ 
X22B 

Plasmid expressing D10A 
mutant of Cas9 and 

sgRNA for exon 22 of RB1 
(X22B sequence) 

Addgene 
#48141 and 
Fred Dick 

Ampicillin Puromycin 0693 

pX462+ 
X22C 

Plasmid expressing D10A 
mutant of Cas9 and 

sgRNA for exon 22 of RB1 
(X22C sequence) 

Addgene 
#48141 and 
Fred Dick 

Ampicillin Puromycin 0694 

pDRGFP In vivo homologous 
recombination substrate N. Bérubé Ampicillin Puromycin 0784 

pimEJ5GFP In vivo non-homologous 
end joining substrate 

Addgene 
#44026 Ampicillin Puromycin 0815 

pCBASceI 
I-SceI endonuclease 

expression vector 
(pCAGGS backbone) 

N. Bérubé Ampicillin N/A 0785 

pMSCV-
Blasticidin 

Empty backbone with 
blasticidin resistance 

Addgene 
#75085 Ampicillin Blasticidin 0816 
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pCAG-
FALSE 

pCAG promoter driving no 
CDS (pCAGGS backbone) 

Addgene 
#89689 Ampicillin N/A 0817 

lentiCRISPR 
v2 

Lentiviral backbone 
expressing WT Cas9 

Addgene 
#52961 Ampicillin Puromycin 0818 

lentiCRISPR 
v2+X22B 

Lentiviral backbone 
expressing WT Cas9 and 

sgRNA for exon 22 of RB1 
(X22B sequence) 

Addgene 
#52961 and 

Michael 
Roes 

Ampicillin Puromycin 0819 

pMD2.G VSV-G envelope 
expressing plasmid 

Greg 
Fonseca/ 
Mymryk 

Ampicillin N/A 0656 

psPAX2 Lentiviral packaging 
plasmid 

Greg 
Fonseca/ 
Mymryk 

Ampicillin N/A 0655 
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