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Abstract 

The rise of the Anthropocene has seen more global pollution than before in history. With 

the explosion of consumer electronics in the last half century, the rise of metal pollution 

from their extraction and disposal results in the unnatural introduction of heavy and rare 

metals into the ecosystem. Organisms have a metal defense protein, metallothionein, 

which has multiple roles in essential metal regulation and protection against toxic metal 

exposure. However, these modern heavy metals prominent in electronics are not found 

biologically and their interactions in the body are generally unknown. Some of these 

metals are employed as therapeutic agents in the treatment of cancers, and as such this 

Thesis describes an investigation of therapeutic agents as models for heavy metal 

pollution to provide insight into the mechanisms of metal metabolism. Using electrospray 

ionization mass spectrometry and spectroscopic techniques, the binding of human 

metallothionein with the exotic metals platinum and rhodium is explored. Platinum and 

rhodium bind readily to human metallothionein, raising concerns for toxicity. 
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Summary for Lay Audience 

Metals are everywhere. Some metals are required by humans and organisms as nutrients, 

while some can be extremely toxic. These toxic metals can be deadly depending on 

amount of exposure, often causing heavy damage to cells and tissues. Life has adapted to 

light levels of toxic metal exposure with proteins that are involved in metal binding - a 

group of proteins known as Metallothioneins. When exposed to toxic metals, cells will 

increase the production of this protein, metallothionein, to counteract the increased 

exposure. These metallothionein proteins capture the toxic metal and isolate it from 

performing its toxic activity. This response also can occur in some cancer cells, in 

response to metal-based therapy (cisplatin, a platinum-based drug), where the metal in the 

drug triggers the cancer cell to have an aggressively defensive response. At the chemical 

level, metallothionein acts to break apart the drug molecule and isolate the toxic metal for 

safe excretion from the body. Recent research in constructing robust molecular 

frameworks for these drugs to improve cancer treatment efficacy may be able to bypass 

Metallothionein’s defensive nature in these aggressive cancers. Using an extremely 

precise analytical methods known as mass spectrometry that show the changes in the 

exact mass as the protein breaks down the metal from the drug. While metal-based drugs 

are a specific type of toxic metal exposure, there is a fear of the increased impact of 

human activity on ecosystems, climate, and the environment will result in toxic metal 

exposure to all life in ways that has not been done before. These involve toxic metals that 

have never had a biological role and are found in major electronics and consumer goods 

that are now a standard of living. The implications of these cancer drug analyses with 

metallothioneins are extended to address this issue of toxic metal pollution and its effects.  
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*A version of this chapter has been submitted for publication: 

In Comprehensive Coordination Chemistry III, Volume 8: Bio-coordination Chemistry, Elsevier. 

Reproduced with permission from: D. L. Wong and M. J. Stillman.  

Chapter 1  

1 Introduction to Metallothioneins* 

1.1 Metals are Ubiquitous 

Living organisms are exposed to metals everywhere on Earth: from its crust and from its 

bodies of water, and through particulates in the air. Essential, non-essential, and toxic 

metals are consumed from fruits, vegetables and meats, and drinking water. Some of 

these metals are necessary for life and play a critical role in biological processes, while 

others can be extremely harmful. Where one resides geographically is a factor in the 

dietary source of metals. For instance, living near an active volcano may make one more 

exposed to airborne metals that settle in surrounding lands, which then become 

incorporated in the surrounding vegetation. This is also the case of those living downwind 

from coal power electric stations and living adjacent to landfill sites. In contrast, other 

regions of the earth are so metal deficient in the soil that they cannot sustain agriculture. 

Heavily urbanized cities with an abundance of vehicular traffic and industries introduce 

metals through exhaust and waste products. Alarmingly, for example the effects of this 

pollution can also be traced in the correlation of heavy metal content in honey in bee 

farms in close proximity to urban development.1 Human exposure to heavy metals is also 

related to the occupational environment, for instance industrial workers involved in raw 

material processing are more likely to have higher exposure to toxic xenobiotic metals. 

Metal bound proteins isolated from fish2 such as rainbow trout (Salmo gairdneri),3 show 

that polluting aquatic bodies with mineral waste can result in bioaccumulation in the 

tissue. Yet despite the ubiquity of heavy toxic metals, there is clearly a defense 

mechanism in play that protects organisms against such constant, chronic exposures. 

Even in the environmentally conscious minds of the 21st century, the trash from the past 

haunts us.4 Widespread global metal poisoning events from industrial malpractices still 

leave scars (for more information, google search terms like “Itai-itai Disease,” or 

“Ontario Minamata Disease”). While as a whole, the human population is moving 

towards “green” technology, waste generation from infrastructure materials and consumer 

goods is still a major issue. In the current technological age, our love for super computers 
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that fit in our hands demands greater quantities of rare metals. The mining, refining, and 

production of materials containing these metals can be devastating on the environment.4-6 

The end of product life cycles also leaves much metal behind in landfill sites. Some of 

these metals being discarded have never been biologically present or played any role in 

physiological chemistry yet is now well known that this pollution is being distributed 

globally. As a result, all life across the globe will eventually be exposed to a host of 

xenobiotic metals that are unknown to human and organismal physiology. To understand 

the effects of this non-traditional metal exposure, we first must understand the metal 

regulation mechanisms that Life has in play. 

 

Figure 1-1 Dose-Response Curve (Bertrand Diagram) 

Dose-response curve that shows the physiological effect (positive or negative) from 

exposure to metals under essential, (green line), therapeutic (blue line), and toxic 

conditions (red line).  

Figure 1-1 shows a dose-response curve (more antiquatedly known as a Bertrand 

Diagram, named by Bert L. Vallee).7 Its schematic description illustrates the 

physiological effects as the exposure to a metal increases from zero. For all organisms, 

there is a minimum requirement for the intake of essential metals (green line, examples of 

which include Fe(II), Mg(II), and Zn(II)) that keep the biological machinery functioning 

optimally. Not achieving that minimum results in a state is described as “Deficient” with 

negative physiological effects. Like much in Life, moderation is key – saturating a system 
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with metals will damage the delicate physiological chemistry when there is no mechanism 

with which it can respond. There are some metals that are always toxic and play no 

known physiological role, where any amount is detrimental (red line). Small exposures to 

these metals may be tolerated due to inherent resistance mechanisms, but if the exposure 

exceeds these levels, death results (for instance, arsenic was used as a classic 

Shakespearean poison). In rare cases, a metal ion or a metal complex can act 

therapeutically (blue line) but only in a narrow dosage window can the benefits outweigh 

the detrimental effects. Often, these metals used for such specific applications will cause 

negative side effects with long term use. This is the case with cisplatin, a platinum based 

anti-cancer agent that can cause severe renal damage with long term use.8 

1.1.1 Zn(II) is Essential, Cd(II) is Toxic 

Zn(II) is an abundant d-block metal that is essential in humans in its Zn(II) cationic 

oxidation state for physiological chemistry. It differs from most d-block metals as it 

remains in a fixed 2+ oxidation state, but its role is no less exciting. Based on its 

remarkable Lewis acidity and almost rigid tetrahedral geometry in structural roles, it has 

been reported that Zn(II) is a required cofactor in thousands of essential metal-dependent 

enzymes.9  

Isomorphous to Zn(II) but deadly, Cd(II) is a poisonous metal with toxic effects that 

result from its similarity to Zn(II) and Ca(II). Cd(II) exists naturally alongside Zn(II) and 

it is absorbed biotically via the same mechanisms as biological Zn(II). However, any 

amount of Cd(II) is toxic, with a long biological half-life of several decades in humans.10 

Cd(II) can replace native Zn(II) in enzymes, can cause brittleness in bones, and causes 

renal damage during excretion.11 

Human cellular physiology can tolerate small amounts of Cd(II), which is good 

considering many plants and the animals that feed on them can draw minute amounts 

from the soil. This raises the question: how do our cells manage to sort essential metals 

from those that are toxic?  

The focus of this thesis is the metal-binding protein, metallothionein (MT), whose major 

role has been identified as the metal chaperone for Zn(II) and Cu(I), and a source of 
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cellular Zn(II) for metal-dependent enzymes. Metallothioneins (MTs) are a large family 

of small cysteine rich proteins that are found in all Life. It is through the multitude of its 

cysteine residues (30% of the residue content) that it can sequester metals. MTs have 

been found to be involved in a large variety of biochemical mechanisms and response 

pathways. MT has an unusual structure due to its small size and flexibility. With the 

general mantra that protein structure begets function, this makes MT’s function difficult 

to define. The structural details of holo- and apo-MT are described further below. 

What is the role of MTs in Life? Since its discovery in 1957,12 many original research 

papers have had trouble strictly defining MT’s role in Life; that is, its designed purpose. 

In the Proceedings of the second international meeting on metallothionein and other low 

molecular weight metal-binding proteins, Vallee, one of the original discoverers of 

equine MT, describes metallothionein as a “sphinx’s riddle”.13 That enigma is multiplied 

by the broad genetic diversity of metallothioneins across all of Life, and questions its 

evolutionary development. The multiple possible roles of MT presented a two-sided coin 

in terms of how to approach its study. In vivo observation of MT activity in wildlife lets 

us see the native structure in its natural role, and its response to differing environments. In 

vitro observation lets us see what chemistry MT is capable of, depending on the external 

factor, like metal poisoning or drug resistance. 

1.1.1.1 Homeostasis and Regulation of Physiological Zn(II) 

MTs are believed to be key players in d-block metal regulation through trafficking and 

storage, primarily of Zn(II) and Cu(I), and cellular levels are controlled through MT 

induction.14-16 However, there is basal level of MT expression, even in Zn(II) deficient 

situations.17-19 MT’s ability to chelate multiple intermediate and soft metals and to donate 

these ions individually to enzymes is strong evidence of this role in vivo. The stepwise 

binding coefficient of each preceding metallation event selects the first metal for 

donation, as the last bound.20 Factors that control stepwise metallation include the solvent 

accessibility of the bound metal, which MT domain the metal is bound to, and whether 

the metal ion binding site involves terminal or bridged cysteine coordination.  
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Udom et al. showed that Zn(II) MT could reconstitute apo-enzymes that had lost their 

essential metal cofactor and reactivate them to full activity.21 Maret and Vallee showed 

that MT interacts via Zn(II) mediation between itself and the DNA binding domain of the 

transcription factor Gal4.22 This Zn(II) transfer likely occurs via protein-protein 

interactions between MT and the receiving peptide, as MT has been shown to transfer  

metals between other MT molecules in this fashion.23, 24 When we consider that Zn(II) 

makes up cofactors in every chemical class of enzymes, and is essential for gene 

expression, the regulation of this metal in the cell is vital.25  

The concepts of the magnitude of the binding constant strength in relation to the chelate 

effect theory apply here. Metallothioneins are essentially multiligand chelators that 

metallate in stepwise fashion. The rate kn with which the first metal binds is statistically 

greater than the next kn+1 such that the last metal bound (7th for M(II)) is the slowest to 

bind. When describing this in terms of binding constants, the stepwise reaction with the 

greatest KF is most favourable and most stable, from which we can identify the 

cooperative cluster formation, from its greater KF. The last metals to bind are, therefore, 

the weakest bound, and most likely to dissociate first (lowest KF, highest KD).20 It is clear 

that these most labile metals are those that are involved in metal donation to enzymes and 

biological targets. Corresponding NMR studies show that the most labile metals are 

bound to the more solvent accessible cysteines, which may explain their lability.26  

Figure 1-2 illustrates how the 7 stepwise binding constants for Zn1-7MT overlap the 

binding constant of apo carbonic anhydrase (CA), with the last two Zn(II) ions bound to 

MT shared or donated to apo-CA. Competition studies showed that the MT does not 

donate a Zn(II) ion to the apo-CA until after the fifth metal has bound to the MT. This 

indicates that the last two metals to bind for fully metallated Zn7MT are the most labile 

and available for donation.27 

The most effective technique for analyzing the binding constants of the individual 

metallation steps is by using the resolving power of native electrospray ionisation mass 

spectrometry (ESI-MS), discussed further in this Chapter.  
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Figure 1-2 Donation of Zn(II) in Zn-MT to apo carbonic anhydrase 

Zn(II)5-7MT, the most labile ions in terms of the stepwise binding constants, are the first 

metals donated to carbonic anhydrase. This figure is adapted from T. B. J. Pinter and M. 

J. Stillman (2015). 28 

1.1.1.2 Cadmium and Heavy Metal Toxicity 

Without a doubt, the initial discovery of MT as a Cd-binding protein presented a bias 

towards its perceived role in heavy metal detoxification. MTs are excellent at 

accumulating toxic heavy metals. Soft heavy metals like Hg(II) and Cd(II) bind to MT in 

vivo, which induces the synthesis of new MT protein. Accumulation of MT in response to 

elevated metal ion concentrations, combined with its association with these ions, indicates 

a role in the sequestration of any excess metal ion.29 Importantly, heavy, toxic metal ions 

including, but not limited to, Hg(II), Cd(II), Pb(II), As(III), Pt(II), Pd(II), Rh (I,II), only 

are present in the body as a result of external intake. These soft heavy metals have no 
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known biological role. Man-made industrial practices as described above have literally 

dug up these metals and through consumerism, introduced these metals into the 

ecosystem of the Earth’s surface, with the nightmare scenario being a catastrophic 

pollution event (for example, Aznalcóllar Disaster, Donana Park, Spain30). These 

electron-rich d-block metals displace natively bound essential metals (e.g. Zn(II), Cu(I)), 

destroying enzymatic activity, or disrupting biological structures, often irreversibly. The 

presence of these metal ions can also establish a pro-oxidant environment, where redox 

reactions and resulting reactive oxygen species can affect cellular and genetic structures.31 

The induction of MT synthesis has been correlated to external Cd(II) and Cu(I) tolerance 

in both a variety of cultured cells and animal studies.32 Heavy metals like Hg(II) and 

Mn(II) are known to accumulate in thiol rich fractions of cells in marine fish.3 Use of 

trace metal analysis of fish to understand the extent of pollution in a marine source is 

based on the idea of bioaccumulation. During the life of a fish, metals accumulate within 

their body and are neither metabolized nor excreted. Biomagnification is a related 

principle that extends bioaccumulation through the predators of the food chain; those at 

the top of the food chain consume not only the metals of those within the fish of the rung 

below, but also the fish that was consumed by that fish, and the fish below that, etc.  

Animal studies show that after exposure, Cd(II) binds to albumin in the blood plasma, and 

is transported to the liver.11 Initially, Cd(II) levels rise in the liver as a result. The arrival 

of Cd(II) in the liver signals MT synthesis, which chelates the Cd(II) to form Cd-bound 

MT (Cd-MT), which in turn, circulates the body via blood plasma towards the kidneys.10 

In mammals, the small molecular weight (MW) of Cd-MT allows it to be filtered by the 

proximal tube of the glomerulus, excreted though the renal system and exits the body in 

urine. Unfortunately, this process is not rapid. Cd-MT can be reabsorbed by the tubular 

cells, and subsequently release relatively large concentrations of Cd(II) upon Cd-MT 

degradation, leading to renal damage. Friberg et al. reported that the half-life of Cd(II) in 

the blood on the order of hundreds of days, and several years to decades in the kidneys.11 

High levels of Cd-MT in the urine are markers for toxicity, as was established in Japan 

following the mass “Itai-Itai Disease” outbreak from Cd(II) poisoning  caused by 

malpractices of Mitsui Mining & Smelting Co.  Itai-Itai disease is one of the Four Major 
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Pollution Diseases of Japan.33 Industrial waste from the smelting plant entered the Jinzu 

River Basin, where downstream citizens relied on the river ecosystem to provide fish, 

fresh water, and irrigation for rice crops. Over time, crippling physiological effects 

related to the poisoned ecosystem became evident in the affected population. Side effects 

included brittle bones, and severe renal damage with Cd-MT prevalent as a urinary 

marker for the affliction.34 

More recently, similar damage to other ecosystems occurred both in Japan23 and Canada 

24 from industrial mercury waste,35, 36  which became incorporated in the marine 

ecosystem including fish that were essential to the local diet. This caused the severe 

neurological effects of Minamata disease in the affected population. 

1.2 Metallothioneins are Ubiquitous 

The metallothionein family is remarkable in that it appears that every phylum in Life has 

an MT or MT-like protein involved in metal regulation. About one-third of its short, ~61 

amino acid sequence comes from phylogenetically conserved cysteine regions. These 

cysteines, often in the sequence as –C-C-, -C-X-C- or -C-X-X-C- repeat regions, have 

soft, reactive thiolates involved in metal binding, but do not form disulfide bonds 

natively. MTs are present in all mammalian tissues, with more pronounced expression in 

the liver, kidney, brain, and during fetal development.37 These proteins exist in the 

cytosol and in the nucleus, as well as in extracellular fluids like bile, plasma, and urine.38 

MTs are unorthodox in their high metal loading capabilities, and their promiscuous 

nature: one protein molecule is capable of multiple and variable stoichiometric metal 

binding.13 Class 1 MTs do not form a single, specific metal –loaded species, unless 

through strictly controlled metal exposure. We see this heterogeneous binding property in 

the simultaneous binding of Zn(II), Cu(I), and Cd(II) in a single protein molecule. 

Because of these wildly adaptive behaviors, the biological role of MT was a subject of 

great debate in the years following its discovery.39 Was it involved in detoxification? 

Could MT reactivate apo-enzymes? Why could MT be induced by such a variety of 

external agents? 
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The discovery of other low MW, cysteine rich proteins demonstrated their evolutionary 

necessity, but through natural divergence, the purpose and functions have become 

optimized by their amino acid structure. These sulfur rich metal binding proteins are 

given the family name of, “metallothioneins,” and are divided among 3 class types, based 

on their similarities of their cysteine homologies.  

Class 1 MT: polypeptide with a highly conserved sequence: cysteine residues are 

congruent with those in the equine renal cortex sequence (e.g. mammalian, vertebrate) 

Class 2 MT: polypeptide that is also rich in cysteine residues, though not entirely in the 

same location as equine renal cortex. (e.g. fungi, plant, invertebrate) 

Class 3 MT atypical, non-translationally synthesized metal thiolate polypeptides e.g. 

cadystins, phytochelatins 

  

Figure 1-3 Mammalian MT isoforms  

Representative single amino acid code sequences of mammalian MTs. Conserved cysteine 

motifs highlighted with black. Sequences obtained from the UniProt Database, with the 

respective protein ID in parenthesis. 

Within each class, there are 4 major isoforms characterized by their cysteine topology 

(e.g. MT1, MT2, MT3, MT4, Figure 1-3, Figure 1-4), that represents a protein category 

within a species’ MT gene expression. A representative sequence of mammalian MTs 

representing each isoform is shown in Figure 1-4. These isoforms themselves may have 

sub-isoforms (e.g. MT1A,-1B, -1C etc.). These sub-isoforms exhibit single residue 

variation in their amino acid sequence that affects the charge of the overall protein. This 

leads to the question of whether sequence-specific MT in higher level eukaryotes 

expressing these multiple MT genes have their own have specific metal binding 

properties. The majority of the studies described in this Thesis concern Class 1 MTs, with 

the experiments performed utilizing recombinant human metallothionein 1a. 
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1.2.1 Human Metallothioneins 

Human metallothioneins are understandably the most relatable of the vertebrate MTs. 

Humans MTs are divided into four main subtypes, and each display slightly varied 

characteristics. 

 

Figure 1-4 Human MT1 and MT2 protein sequence 

Single amino acid code sequences of human MT isoforms 1-4 displaying MT1 with its 

multiple sub-isoforms. Cysteine residues are highlighted in black. Sequences obtained 

from the UniProt Database, with the respective protein ID preceding the isoform. 

MT1 and MT2 are the major isoforms present in all species but are highly expressed in 

the liver and kidneys. These isoforms are generally found in vivo bound to Zn(II) and 

some Cd(II). While MT2 is expressed homogenously, MT1 can exist in several 

subisoforms as shown in Figure 1-4. MT 3 is expressed in the brain and is known to 

favour Cu(I)/Zn(II) binding. This particular isoform has been linked to mitigation of 

protein misfolding and aggregation in neural cells, leading to neurodegenerative diseases. 

MT 4 is expressed in squamous epithelial cells, which line the outside of organs to afford 

external protection. 

Along with their metal binding properties, MTs are associated with oxidative stress 

remediation. Compared to glutathione, another prominent cellular antioxidant, MT is 

shown to have a twenty times greater protective power against peroxide radical 

damage.40, 41 This makes MT an indirect player in many roles of cellular regulation, and 

protection against generic cellular damage, sparking interest especially in MTs role in 

diseases, aging, and drug resistance. 
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1.3 Structural Elements of Metallothioneins 

Protein structure defines its function. This is a dogma that is difficult to apply to the 

flexible nature of MT. The structural properties of MTs are enigmatically elusive; the 

most easily observable form being the fully metallated MTs. Complete metallation forms 

the two characteristic metal-thiolate clusters; an observable feature that can be readily 

identified using a number of instrumental techniques, once it has completely formed. 

Even with full metallation, crystallization of MT has proven hard. In many proteins, their 

secondary structural features provide stability such that crystals can be isolated and 

structurally analyzed, but with MT this is not the case. To our knowledge, just one X-ray 

diffraction study is reported for mammalian MT, that is, for Cd,Zn-MT1 from rat liver.42 

The structural parameters were greatly extended by 1H NMR studies subsequent to this 

report.43 The presence of a two domain structure in mammalian MT was established from 

111/113Cd NMR studies pioneered by the Armitage group, starting in 1980. The 1H NMR 

and X-ray diffraction results were discussed together in a single paper giving great detail 

to the protein structure and linker region.43 

MT is a cytoplasmic protein and relies heavily on the solution environment for the native 

structure it adopts. MT in vivo is not fully metallated. Cd7MT and Zn7MT are not easily 

found, unless under extreme Cd(II) or Zn(II) exposure. Conversely, the metal-free apo-

protein, or partially metallated protein long eluded isolation, until Maret and workers 

reported the use of Förster Resonance Energy Transfer (FRET) imaging to establish the 

presence of free thiols in MT.44-46 This new discovery led to a significant paradigm shift: 

what was originally believed to be fully holo (fully metallated) was now known to exist in 

a partially metallated state. Therefore, metallation of MT is a post-translational 

modification.47 The MT structure is significantly more dynamic and variegated than 

traditional elucidation techniques could determine.  

1.3.1 Metal-Induced Structure 

The formation of the many metal-thiolate bonds in MT is the driving force for its 

subsequent folding and structural order. MT has few hydrophobic residues, implying that 

the major intramolecular forces at play are electrostatics, hydrogen bonding, and the key 



12 

 

element: formation of the metal-thiolate bond in tetrahedral beads,48 as we continue in our 

discussion below. The stepwise metallation sequence itself, has revealed most unusual 

binding site properties for a protein, in that the metal induced folding depends on the 

metal loading status. Early spectroscopic studies involving MT metal binding focused on 

finding the stoichiometry at which the observed signal for metallation became saturated. 

This provided in essence, a “frozen” state that could be examined for its properties. Thus 

the idea of “magic numbers” based on the stoichiometry of signal saturation was 

popularized for defining the metal binding properties of MT.49 These golden numbers 

were identified with the metals that had been found in MTs of living organisms, including 

Zn(II), Cd(II), Cu(I), and Hg(II). These metals were studied extensively for their possible 

role in MT’s function. For the purpose of this Chapter we will refer to these as the 

classical metals. As we will see further in the Chapter, metals that do not belong in this 

category or are encased in coordination complexes do not follow these magic numbers. 

These metals are never found physiologically. Their metal binding chemistries are 

governed by the flexibility of the MT protein, and the geometry of the incoming metal 

complex. We will describe these metals as non-traditional, when we discuss their 

metallation of MTs further below. 

1.3.2 Non-Traditional Metallation of Metallothioneins 

All cells have a basal level of MT expression. Increased protein production can be 

induced by external pressures, such as oxidation, or the presence of heavy metals as 

described above. In certain cancer types, MT expression has been correlated to developed 

resistance against therapeutic action. MT can break down metal complexes to their metal 

ion. Platinum based drugs and other cytotoxic agents face this drug resistance, which has 

been associated with an increase in gene expression or protein production of MT, 

particularly in cancerous cells. The combination of the abhorrent and uncontrolled growth 

of cancerous cells plus the ability to increase production of this multi-protective peptide 

provides a formidable defense against chemotherapeutic agents. As we will discuss 

further, the acidic conditions of a cancerous cell50 promotes the protective effect of MT, 

particularly against the electron rich transition metals being used in these medicines.  
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Because of their propensity to bind soft d10 metals (e.g. the aforementioned Cu(I), Zn(II), 

Cd(II), Pt(II) etc.), MTs are suspected of playing a role in the developed resistance to 

cisplatin and as such, the protein’s ability to possibly bind any metal has been of interest 

when considering therapeutic agents that can withstand this resistance.  

As we will see in Chapter 2, the general metallation mechanism in vivo involves 

tetrahedral cysteine M(II) coordination, with the onset of clusters at high metal loading or 

a lower pH environment. We can see a variety of different coordination behaviors with 

M(I), e.g. Cu(I) can bind MT with a variety of metal stoichiometries (6, 12, 20), and each 

of these may involve different coordination modes. With 6 mol. eq. of Cu(I), a Cu6S9 

cluster forms. With 12-13 mol. eq., a combination of a Cu6 and Cu7 cluster forms. In both 

cases, trigonal coordination was assigned. However, at 20 eq.of Cu(I), the metal 

conformation requires digonal cysteine thiolate coordination. The reaction with Cu(I) 

shows the great degree of flexibility that MT binding can take on, and that in vitro, we 

can push the envelope of possible binding modes to explore what could happen. The 

flexible nature of hydrogen bonding in MT allows for a variety of unexpected interactions 

to occur. For example, N and O donors are known to be involved in binding some metals 

and may tune the soft/hard nature of the chelating MT. 

In the following section we describe the mechanism of this metal sequestration, how the 

structures adopted from the metallation relates to MT function, and how the resulting 

protein depends on the conditions involved.  

1.4 Techniques Used in this Thesis 

1.4.1 Expression and Purification of Recombinant Human 
Metallothionein 1a 

Model species are “models” because they have rapid production times and can be 

observed easily. What grows faster than bacteria? Recombinant expression involves 

employing bacterial machinery to over express translation of a desired protein, in our case 

MT. This technique is ideal for plant and human MTs, as Escherichia coli can grow in 

large quantities with short life cycles and faster growth periods, without the need for 
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animal decapitation. The technique used in this Thesis was developed by Peter Kille and 

Ian Watt at Cardiff university.51 The general procedure is summarized as:  

Complementary DNA (cDNA) of the metallothionein mRNA is cloned into a plasmid. 

Typical plasmids will also include coding for proteins “tags” or short amino acid 

sequences that can assist in protein purification that are later removed. Other important 

elements of the plasmid include a transcriptase, a resistance marker to aid in cell 

selection, and an inducible repressor (such as the Lac I repressor) to induce expression. 

Once these plasmids are prepared, they are transformed, or transferred into the host E. 

coli cells.  

These cells now carry a resistance to the antibiotic defined in its plasmid sequence, and 

we can take advantage of antibiotics to ensure the growth of only the transformed cells. A 

small preparation is made on LB Agar plates with the antibiotic kanamycin, according to 

the protocol in Figure 1-5(Left). These cells are inoculated in a liquid LB Broth culture 

(prepared according to the protocol in Figure 1-5(Right) and grown until they reach a “lag 

phase” (the bacterial growth plateau), at which point the maximum number of viable cells 

is present. In the case of the Lac I repressor, Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) turns on this repressor and is added externally to initiate MT expression. 

A difficulty with metalloprotein overexpression is the maintenance of structure upon 

synthesis, as once formed, proteins are vulnerable to protease and other regulatory 

actions. To properly isolate large quantities of the induced protein, extra metal is added to 

the medium to prevent protein degradation by the bacterial proteases. The cells are then 

harvested usually by centrifugation and can be kept frozen in a glycerol solution prior to 

purification.  

To purify the protein from the bacteria, the cells must be lysed with high pressure. 

Generally, with the addition of that protein tag, described earlier, the desired protein can 

be isolated using a chromatographic column that complements the protein tag properties. 

The extra residues are then removed with a protease reaction. In the case of the MT 

produced in the Stillman Group, the 15 amino acid S-tag is attached to the N-terminus.52 
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The recombinant human MT1A used in the experiments described in this Thesis were all 

prepared using the following method: 

Preparation of Recombinant Human Metallothionein I: Recombinant human 

metallothionein I (rh-MT1) was expressed in BL21(DE3) E. coli cells that were 

transformed using a pET-29a plasmid containing an S-tag for protein stability during the 

purification. The cells were grown in LB broth with 0.5 mL 50 mg/mL kanamycin. MT 

expression was induced with IPTG and metallated with CdSO4 (Figure 1-5). Cells were 

lysed using a cell disruption system (Constant Systems, UK), and then centrifuged to 

separate the MT- containing supernatant from unwanted cellular components. Further 

purification was performed using High Performance Liquid Chromatography (HPLC, 

Dionex UltiMate 3000, Thermo Fischer Scientific). Elution through a 5 mL HiTrap SP 

HP ion exchange column was achieved using 10 mM tris(hydroxymethyl)aminomethane 

(Tris-HCl) at pH 7.4 (Fisher) was monitored by UV-visible absorption (Cary UV 50 Bio, 

Varian, Toronto) at the characteristic Cd-MT wavelengths of 300-200 nm. Fractions that 

contained metallated MT were collected, and the S-tag removed using a Thrombin 

CleanCleave™ Kit (Sigma Aldrich). The thrombin resin beads were recovered, 

regenerated, and stored for later use. The purified MT protein was evacuated and purged 

with Argon prior to storage in -80°C, with individual experimental preparations as further 

described in each Chapter.  
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Figure 1-5 LB agar and LB broth preparation 

LB agar (Left) and LB broth (Right) preparation instructions for the preparation of 

kanamycin-resistant, human MT expressing E. coli cells. 

1.4.2 Spectroscopic Methods 

Spectroscopic analysis of metallothioneins has been generally restricted to UV-visible 

absorption, Circular Dichroism (CD), and proton and metal Nuclear Magnetic Resonance 

(NMR) techniques. This is because the nd10 metals that traditionally are used in vitro and 

are recovered from MTs in vivo, exhibit only ligand-to-metal-charge-transfer (LMCT) in 

the absorption spectrum and the peptide, with its absence of aromatic amino acids, 

exhibits a very restricted band envelope below 220 nm. In addition, the lack of native 

secondary or tertiary structure for the apo-MT means that the CD spectrum in the absence 

of metals, is also uninformative. In a sense, this absence of spectroscopic signatures for 

the apo-protein has allowed the metallation reaction to be followed readily from changes 

in the absorption spectrum centred on the LMCT band of the specific metal, for example, 

at 250 nm for Cd-MT. In parallel with the increase in absorption, and red shifted from the 

apo-MT edge at 220 nm, is the development of CD spectral properties related to the 

metal-induced folding of the peptide backbone. This technique is used especially in 

Chapters 4 and 5. 

1.4.2.1  Absorption Spectroscopy  

Bioinorganic complexes can exhibit spectral properties arising from charge transfer 

absorption bands that are characteristic of certain bonds, such as the one for S→ Cd 

described above.53 Comparing isosbestic changes in absorption patterns during metal 

titrations provides important information on metal binding stoichiometries of MT.54 Care 

must be taken to avoid the interference of buffers and metals to exclude side reactions; 

and significantly, to avoid oxidative conditions due to the sulfur rich nature of MTs.  

1.4.2.2 Circular Dichroism Spectroscopy 

The absorption of circularly polarized light of the CD experiment is modified by the 

presence of chiral environments. The structural properties of α helices and β pleated 
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sheets commonly found in proteins exhibit specific CD spectral signatures. These spectral 

features can be used to analyze the consequences of structural modifications in proteins. 

The MT peptide, however, does not adopt well-formed secondary or tertiary structural 

elements, and as a result, the CD spectrum for apo-MT is devoid of these spectral 

signatures. However, metal binding to apo-MT imparts metal-induced structural 

properties, which results in strong CD spectral envelopes in the LMCT region. These CD 

envelopes arise from metal-induced chiral environments, and are stoichiometrically 

dependent, allowing the quantitation of the metal-induced structural properties of the 

metallated MT.48 These spectroscopic properties are useful for monitoring structural 

changes during metal titrations. Good examples have been reported for titrations of MT 

with Ag(I), Au(I), Cu(I), Pt(II), Cd(II), and Co(II).55 

Prior to the common use of native ESI-MS, the changes in the CD spectral envelopes 

provided by far the greatest detail about the structural properties of the MT peptide. This 

is because for there to be significant changes in the CD spectrum there had only to be an 

absorption band related to the metal that was sensitive to a major influence of the 

coordination geometry on the structure of the metallated MT.53, 56 The focus on the use of 

CD spectroscopy was specifically important for the metallation of MT because of the 

number of metals that bind in almost identical environments, meaning that the absorption 

chromophore does not distinguish between each metal. It is not possible to resolve 

changes that takes place as a function of the metal bound. This issue became most 

apparent when the use of native ESI-MS was common and metallation titrations became 

available, showing a wide distribution of species during titration for each mol. eq. added 

except for saturation.27 

1.4.3 Electrospray Ionization Mass Spectrometry (ESI-MS) 

Mass spectrometers ionize species in a solution and separate those ions based on their 

mass. All mass spectrometers Figure 1-6A) have the following components: (a) sample 

inlet ionization source, (b) ion optics, (c) mass analyzer and ion detector, (d) data 

analyzer, and (e) vacuum pump system.57 There are many methods of ionization possible, 

but the method most useful for metalloprotein studies uses direct sample solution infusion 

into an electrospray ionization atmospheric interface. The sample solution is passed 



18 

 

through a fine, highly charged capillary, which results in charged molecules in solution 

either from the ionization of the solvent or from a redox reaction directly with the 

molecule. The central feature of the ESI-MS approach is that the wet droplets of protein 

must rapidly dry to form the ionized protein efficiently Figure 1-6(B). High temperature 

N2 gas evaporates the solvent until nothing remains but the charged molecular ion. There 

are two common mass analyzers: (i) quadrupole and (ii) time-of-flight (TOF).58 Recently, 

a third mass analyzer based on the quantized ion trap has become an emerging player 

(Orbitrap ™).59 For a wider range of mass speciation in metalloproteins and with greater 

resolution, the TOF is most useful, because it has a wider and almost linear range of 

detection allowing a greater variety of metallated species to be analyzed. The charged 

particles are accelerated through a time-of-flight mass analyzer; all ions are given the 

same kinetic energy but are then separated by their different distributions of mass. The 

charge distribution of the protein species leaving the atmospheric interface is not singular; 

rather a multiplet of charged species exists. The range of the multiplet can be from two or 

three charges to up to 25 components. It is now generally accepted that the charge 

distribution depends on the surface area that will contain the charged ions, which, for 

positive, protonated, species will be diagnostic for the extent of the instantaneous folding 

or unfolding of the protein under the solution conditions.60, 61 This multiplet consists 

therefore, of several m/z species where m is the mass of the protein plus the number of 

protons and z is the total charge introduced by the number of protons bound. The 

deconvolution of the series of multiplet masses, knowing their charge, can be determined 

mathematically to give the parent protein mass. This is illustrated in Figure 1-7. The 

structural power of this requirement is that as the surface area increases (for e.g. with a 

denaturant or by unfolding) the multiplet number increases. This provides a fine measure 

of the degree of folding under any solution conditions that exceeds the typical 

quantitation of folding provided by the CD experiment described earlier. The specific 

structures involved though, have not been associated to date, with the different multiplets 

observed. I will describe the value of this experimental technique below when I discuss 
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the structural properties of apo-MT. 

 

Figure 1-6 An ESI-TOF-MS and its ionization mechanism 

A) Schematic of a basic ESI-MS instrument. B) As the analyte solution droplets move 

through the charged capillary, the surface tension of the solution becomes overcome by 

the repulsive force of the charged particles, known as a “Coulombic explosion.”62 

An analytical method like this can precisely describe the composition of a protein 

mixture, showing the masses of all the individual components. Data from native ESI-MS 

experiments can be used to account for the species in an averaged spectroscopic signal by 

defining the individual contributions. ESI-MS methods have been used widely in drug-

protein interaction studies, enzymatic reactions, and elucidative applications.  



20 

 

 

Figure 1-7 Charge state and deconvoluted mass spectra 

Apo α-MT fragment at pH 2. Screenshot of the acquired spectrum window in the Bruker 

DataAnalysis 4.2 software with the m/z spectra shown top with major charge states +5, 

+4, +3, +2, labelled, with the bottom showing the deconvoluted spectrum showing the 

mass in Da of the species resolved from the m/z spectra. 

1.4.3.1 Electrospray Ionization Mass Spectrometry (ESI-MS) in MT 
studies 

Fenselau’s group was a leader in the realm of ESI-MS analysis of metallothioneins. At 

the time in the early 1990’s, mass spectrometry was being recognized as a high resolution 

technique for analysing protein complexes.63 Fenselau and coworkers used ESI-MS to 

identify the many partially metallated species of MT that accompany metal titration, 

while showing the ease of use especially in the case of direct solution infusion. Their 

work highlighted the delicacies of the pH environment in metallation, suggesting the pH 

dependence of cooperativity that is now widely understood,64 while also demonstrating 

the power of ESI-MS in drug—protein complex analysis.65 They pioneered work in 

cysteine alkylation studies using therapeutic alkylating agents to probe the structure of 

MT, which we will expand on further in this section. With Fenselau and others now 
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illustrating the ease with which ESI-MS can be used to analyze solution samples, 

Lobinski introduced the idea of coupling techniques for high resolution metal binding 

analysis.66 Since ESI-MS allows for direction infusion of the sample, attaching a high 

performance liquid chromatography (HPLC) system with an acidification column prior to 

ESI analysis allowed for the absolute identification of rabbit liver MT isoforms and 

subisoforms, that could previously only be postulated through chromatographic 

separation. ESI-MS then took off as the best way to quantify metallation of MTs, and was 

used to compare different MT species,67 compare polymorphisms in plant MTs,68 and to 

further question the cluster formation properties of MTs.69 

Structural studies with MS using Cysteine Modification by Alkylation 

Because of its cysteine rich structure, MT is prone to react with alkylating agents. This 

was postulated as a method of drug induced resistance by Fenselau, who used alkylating 

therapeutic agents like chlorambucil, melphalan, and dexamethasone to probe the cysteine 

structure.64, 65, 70-72 These alkylating methods were also used to demonstrate the effects of 

alkylation on metal ion flux between enzymes, as these therapeutic agents reacted in 

small stoichiometric ratios without dissociating seven divalent metals, but that 

modification did increase rates of Zn(II) donation to apo CA, suggesting that the 

modification had distorted the native structure.65 Depending on the size and charge 

density of the alkylating agent, differential binding patterns could be resolved, and used 

to infer structural information.65 For instance, the smaller alkylating agents penetrate and 

bind free cysteines differentially based on their solvent exposed surface area. This is 

combined with ESI-MS to show that the structure of the protein may define the 

metallation mechanism (cluster vs. bead, described in Chapter 2) that dominates 

metallation. These alkylating reactions show that not only are the cysteine residues buried 

within the protein structure, but also that they are differentially accessible by solvent. It 

supported the idea that not all 7 binding sites can be considered equal, emphasising that 

the pseudo first order generalizations of these early MT studies were not adequate 

assumptions.  
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Figure 1-8 Various cysteine alkylating agents 

Reactions of various small alkylating agents with free thiols. (A) the reaction of para-

benzoquinone. (B) the reaction of n-ethyl maleimide. (C) the reaction of iodoacetamide. 

(D) the reaction with 5,5'-Disulfanediylbis(2-nitrobenzoic acid). 

As we have seen in the variety of metallation reactions that MT can partake in, the 

richness of its cysteine thiols imparts great reactivity. These thiolates can act as 

nucleophiles in substitution reactions. For instance Ellman’s Reagent (5,5'-

disulfanediylbis(2-nitrobenzoic acid), DTNB, Figure 1-8(D)), has been historically used 

to quantify thiols in solution, with stoichiometric reaction depicted in the Figure 1-8 

above.73 Iodoacetamide (IAM, Figure 1-8(C)) is used as well, but it benefits from a small 

spatial size, allowing it to fully penetrate most protein structures. Para-benzoquinone 

(pBQ, Figure 1-8(A)) is a useful agent that is easy to prepare but is photo-reactive and 

works best below neutral pH. This is a difficulty when trying to analyze proteins at 

neutral, physiological pH. N-ethyl maleimide (NEM, Figure 1-8(B)) can work under 

those conditions, albeit it is not as small and penetrating as IAM. Depending on the 

conditions used, the alkylation is so favourable that it can displace native bound metals. 

Regardless, both pBQ and NEM (Figure 1-8A, B) differentially bind MT and provide 

information about the solution structure under controlled conditions. Their differential 

mass spectrometric profiles of species distribution can give clues about the shape of the 

protein solvent surface. This technique and its related principles are used to analyze the 

native structure of apo-MT in Chapter 2, and to probe Rh-bound MT in Chapter 5. 

1.4.3.2 ESI-MS for Quantitative Analysis of Stepwise Metallation 

The binding constants of each metallation event depict the metal donation properties of 

MT. With the advent of ESI-MS, quantitative studies involving metal titrations into MT 
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could be equilibrated and measured with ESI-MS to find the resulting equilibrium 

constants K, from the relative intensities of the products.  

Kinetic rate constant determination 

Another advantage with ESI-MS is the ability to monitor reactions in real time up to 

hours (or however long the sample solution lasts at a particular flow rate). With MT 

however, the metallation is generally rapid and complete before the dead time of the 

instrument. As such, the kinetic analysis of metallation to MTs was mostly constrained to 

inferring results from competition reactions.  

Ngu et al. took advantage of the differential rates of metallation depending on metal type, 

using arsenic metallation of MT.74 As(III) is known to bind in vitro to MT with a 

maximum stoichiometry of As6MT. This binding is slow enough that it can be monitored 

using ESI-MS and was used as a model for the metallation by more naturally found Zn(II) 

and Cd(II). The highly detailed time-dependent, temperature-resolved results show that 

the each metallation event is faster than its subsequent metallation event (k1> k2 and so 

on). This is true for both the whole protein and the metallation of the individual domains, 

shown in Figure 1-9. 
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Figure 1-9 Decreasing rate constants shown in the stepwise metallation of βαMT and its 

individual domains. 

Comparison of the rate constants calculated from the time-resolved ESI-MS 

measurements for As3+-metallation of βhMT, αhMT, and βαhMT, the trend in rate 

constant values for six equivalent sites where k1 = 28.8 M-1s-1 and the rate constants 

reported for βhMT-S-tag and αhMTS-tag.1 The red dashed line represents rate constant 

data for the βhΜΤ redrawn with the value of n shifted by three to illustrate the similarity 

to the rate constant trend for the final three As3+ binding to βαhMT. Reproduced from 

Ngu et al.74 Copyright 2008 American Chemical Society.  

Equilibrium Constant determination 

The early studies of MT were focused on observed optical signals, but now the focus 

resides on numerically assigning properties to MTs to distinguish isoforms and their 

specific functions. Historically, the metallation reaction of MT can be described as a 

bimolecular reaction with metals binding at a single rate with a single binding constant.  
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Mn + MT = Mn+1MT 

MT + 7M = M7MT 

This simplification of the metallation mechanism was to compensate for the lack of detail 

in the instrumental method. Often the metallation reaction was complete within the dead 

time of the instrument, resulting in an apparent cooperative reaction. Because metals like 

Cd(II), Zn(II), and Cu(I) bind so rapidly, the individual steps cannot be visualized. 

However, the lability of Zn(II) and Cu(I) bound to MT is linked to the thermodynamic 

stability of the bond and this defines MT’s metal donation properties. As the metallation 

reaction progresses, the last metals to bind have the weakest binding affinity. If the 

binding affinity of the last metallation reaction of MT is close to the binding constant for 

a protein’s Zn(II) binding site, metal donation to the apoenzyme occurs. Otherwise, the 

MT harvests Zn(II) from sites with lower KF than it. As such, these numerical values are 

requisite for understanding MT’s metallation and metal donation processes.20, 28  

Kenzyme > K(Zn7MT) = MT donates Zn to enzyme 

Knon-specific Zn site < KZn(0-7)MT = MT harvests Zn 

1.4.4 Computational Studies of Metallothionein  

Because protein structures are not limited to the rigid dimensions defined by their crystal 

structure, the dynamic nature of proteins is hard to visualize. Computer simulations and 

molecular dynamics (MD) can predict what might happen to a truly dynamic protein 

system on small timescales (fs to ps). In the case of MT, studies on the fluxional apo 

structure showed the position of the cysteines in the native structure prior to metallation, 

as a model for the de novo synthesized protein. By doing so with MD, we can also watch 

the energy of the system until it reaches a minimum, resting state. A combination of 

molecular mechanics (MM) and MD were used by Rigby et al. to watch the effect on 

protein folding that each M(II) metallation event imparted on the structure. This showed 

the metal dependent folding mechanism emphasized the importance of the native apo 

structure. The study showed that initially, cysteines were partially solvent exposed, and as 

metallation progressed, the metal cysteine bonds coalesced into the protein center. When 
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the reverse (demetallation) was performed, the cysteines moved to the exterior of the 

protein chain.75 This structural rearrangement is evident in the models of Rh2MT in 

Chapter 5. The early ESI-MS work by Fenselau identified alkylating agents that reacted 

readily and selectively with MT. To determine the position of the cysteine residues 

involved in the selective alkylation, the eight most solvent accessible cysteines were 

simulated bound to drug molecules and the energies and distances were compared, 

identifying Cys 33 and Cys 48 as the most favourable for complexation,70 giving 

information on metal binding sites. 

The challenge with applying computational chemistry to metallothioneins actually begins 

when metallating the protein. The complexity of transition metals is still computationally 

expensive compared to simple MM, MD, or Newtonian based calculations. In order to 

consider the electronic effects of orbitals, Time Dependent Density Functional theory is 

used to apply models for forces that are present with the diffuse electronic orbitals of d-

block metals. This is because the inclusion of the d and higher orbitals introduces electron 

movements that are not included in the MM theory and creates complications when 

calculating structures. A way to deal with this is by both defining a fixed geometry and 

assuming it, or separating the sections involved in the calculations. However this greatly 

limits the affordable calculations that can be performed. Returning to the concept of 

models and modelling reactions, the binding of glutathione, a small peptide with a 

cysteine thiolate, is used to mimic a single thiolate binding event in the metallation of 

MT, as is discussed in Chapter 6. 

1.5 Scope  

To understand the possible binding mechanisms of xenobiotic metals in vivo, it is 

necessary to first understand what we have now defined as traditional metal binding to 

MT. 

In Chapter 2, I provide an overview of the metallation of M(II) to MTs by exploring 

millisecond timescale reactions of Cd(II) binding to apo-MT. Particularly, the partially 

metallated forms are of interest as they are the most probabilistic form of the protein in 
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vivo, and as they are known to exist in multiple conformations, either terminally bound or 

in complex metal thiolate networks involving bridging cysteines between the metals. 

With the onset of xenobiotic metal pollution and metal-based therapy (e.g., platinum 

group metals), it is necessary to consider how these foreign metals bind to MT in vivo. It 

is often the clustering pattern of metals in MTs that give structural features, but in the 

case of these non-physiologically relevant metals, binding is anything but characteristic. 

It is through these reactions with xenobiotic metals that the flexible nature of MT metal 

chelation can be tested, as the world is approaching exposure to heavy metal pollution 

unimaginable before.  

Currently, the best model of the physiological effects of non-natural metals comes from 

metal-therapeutics testing. These tests involve strictly controlled exposure and well 

documented effects. By testing the metal defense protein MT with these xenobiotic 

complexes, we understand our own physiological metal defense and the mechanism 

behind developed drug resistance.  

In Chapter 3, using cisplatin, I unravel the rapid initial reaction pathway for MT with 

cisplatin, that is believed to be involved in developing cisplatin resistance. The results 

show the step by step destruction of cisplatin, and ligand displacement by the MT’s 

cysteine thiolates. 

Following the studies with cisplatin, in Chapters 4 and 5, we explore a platinum 

alternative, dirhodium(II) tetraacetate, in a model study with the β domain fragment of 

MT followed by a study with the whole protein. Through this reaction we see the 

sequential destructive chemistry clearly with the loss of all 4 acetate ligands, but in this 

complexation geometry, the metal-metal bond remains intact. This bond strength is 

analyzed with molecular modelling studies employing GSH and Rh2(OAc)4, using TD-

DFT methods in Chapter 6, to observe the electronic interactions and to investigate the 

origin of the spectroscopic signal. 
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Finally, in Chapter 7, we summarise the findings of this Thesis exploring non-traditional 

metallation of metallothioneins, by introducing some examples of xenobiotic metals in 

therapeutic use, and reviewing their reactions with metallothioneins.  
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Chapter 2  

2 Understanding Cd2+ Binding Mechanisms and its 
Relation to the Intrinsically Disordered Structure of 
Metallothioneins* 

The 20-cysteine mammalian metallothioneins are considered to be central to the 

homeostatic control of the essential metals Zn(II) and Cu(I) and, as part of their partially 

metal-loaded status, play a role in reversing oxidative stress.1 Native apo-MT does not 

adopt a well-known structural motif, being described as a random-coil or intrinsically-

disordered. Conclusions reached from a combination of ESI-mass spectral charge states, 

As(III) metallation of apo-MT at low pH, from molecular dynamic calculations and from 

metallation of the α-domain fragment, suggest that in fact the native apo-MT adopts a 

structure that is highly efficient towards metallation at physiological pH. The results in 

this Chapter show that the initial (M<5) Cd(II) metallation at physiological pH takes 

place to rapidly form structures based on isolated Cd(SCYS)4 units, beads. At pH 5, 

cysteine bridged Cd4(SCYS)11 clusters form. The ESI-mass spectral profile of cysteine 

modified apo-MT at physiological pH shows that it is folded, whereas in the presence of 3 

M guanidinium hydrochloride, the apo-MT is unfolded. Stopped-flow kinetic studies of 

the Cd(II) metallation show that the reaction is much slower for the denatured vs. the 

native apo-MT for formation of either beads or clusters. Metallation is slower for the 

formation of clusters than the formation of beads. These results are the first to quantify 

the presence of structure in native apo-MT in terms of the critical metallation properties. 

The implications of this study suggest that disruption of apo-MT structure due to ageing 

or other agents will negatively impact the metallation process for essential metals. 

2.1 The Native Structure of Metallothionein 

Essential metals are critical to Life’s processes. Metals that disrupt these processes are 

considered toxic. Therefore, Life requires control of metal ions for necessary function, 

employing regulatory control agents like metallothioneins (MT). MTs are a family of 

cysteine-rich, low molecular weight proteins that coordinate, and, therefore, isolate a 



35 

 

variety of free metal ions. Despite the critical involvement of MTs in Zn(II) and Cu(I) 

homeostasis, their stepwise metallation mechanisms are poorly understood. Since MT’s 

discovery in 1957, as a Cd-containing protein,2 much research has focused on the metal 

saturated, two-domain structure of Cd7MT and Zn7MT. When it was reported that MT 

natively exists predominantly in either the reduced apo (metal free, no S-S) state, or the 

partially metallated states,3-5 interest was spurred about the metallation mechanism and 

the true structure of native MT in vivo.4, 6-14 

Information about the apo-MT structure has remained mysteriously vague. Labelled as 

“random coil,” “globular,” or “intrinsically disordered,” the structure of partially 

metallated MTs have been historically difficult to elucidate due to the lack of secondary 

structures, little to no aromatic residues, extreme sensitivity to oxidation, and dependence 

on solution phase interactions. MT is unique in that progressive metallation imparts a 

major increase in the ordered structure.15 Initially, at physiological pH, the divalent metal 

ions bind tetrahedrally to terminal cysteinyl thiolates as isolated beads, which with further 

metallation, progress to the formation of metal-thiolate clusters, involving metal-bridging 

cysteine thiols.16 The traditional, two-domain, dumbbell-like structure is formed only 

upon full metallation with 7 divalent metals at physiological pH.  

Extensive advances have been made in studying partially metallated and metal-free MTs, 

including in vivo fluorescence detection,5, 17 molecular dynamic simulations,18, 19 collision 

induced denaturation,20 and mass spectrometric methods.14, 21 The work in this Chapter 

builds on recent investigations involving denaturation,22 cysteine modification12 and mass 

spectrometry,6, 23-25 in conjunction with stopped-flow kinetic analysis to provide new 

detail about the first metallation steps that take place as a function of the structural status 

of the apo-MT. The structures adopted initially by de novo apo-MT are critical to the 

subsequent metallation steps and define the complete metallation pathway. These early 

metallation steps are vital to the function of MTs in vivo.  
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Figure 2-1 The many structures of metallothionein. 

(A) Conceptual structures for (i) the Cd4 cluster in the α domain, (ii) the fully metallated 

structure, and (iii) 5 terminally-bound (beaded) Cd(II) displaying no domain structure 

based on MM3 molecular models and (B) sequence and connectivity diagrams of fully 

metallated βαMT and the two partially metallated pathways. Calculations and image 

from N. C. Korkola, reproduced with permission from the Royal Society of Chemistry. 26 

The confirmation of the presence of apo-MT in vivo has cemented the fact that 

metallation is a post-translational modification. The connectivities of bridging cysteines 

take place across the domain, Figure 2-1B (i) and (ii), and, as a result, these metal-bonds 

can only be formed once the protein is fully synthesized. Therefore, the initial states of 
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metallation are of great interest for the purpose of determining the properties and 

influence of the structure adopted by metal free MTs. 

From studies reported specifically over the last two years by Irvine et al.,8, 16 two distinct, 

pH dependent, metal binding pathways or mechanisms are at play. Initially, and 

especially for M≤3, the formation of “beads” involving terminally bound cysteines is 

dominant, especially for Zn(II) above pH 6 and Cd(II) above pH 7. The native MT 

protein structure under the beaded pathway can accommodate a maximum of 5 M(II), 

with the 20 cysteines tetrahedrally coordinating each metal, Figure 2-1(iii). MT adopts a 

“single domain” type globular structure, where the lack of bridging cysteines results in no 

true binding domain as described previously.16, 27, 28 Figure 2-1shows these two major 

conformations that MTs flexibly adopt at specific points during metallation. The ball-and-

stick models are displayed Figure 2-1A and the peptide sequence inFigure 2-1B, and 

Figure 2-1(i) show the structure of the Cd4S11 cluster that forms favourably in the α-

domain.  

At metallation levels of M = “magic number 4” 1, 11, 12, 20, 29, 30 and higher, the pathway 

adopted involves cooperative coalescence to a metal-thiolate cluster. This is now a 

thermodynamically stable, M4Scys11 cluster formed in the C-terminal α domain,31 and 

increases the stability of the MT peptide against protease digestion. The conditions for 

selecting the dominant pathway are pH, temperature, and metal concentration and the 

selection is element dependent. The effects of the dominating pathway can be seen in the 

speciation of the metallated products using ESI-MS methods. 

The rapid stepwise metallation of MTs has been difficult to observe. Due to the 

spectroscopically silent nature of native Zn(II)MT, Cd(II) is used as a spectroscopic probe 

because of its S → Cd(II) ligand to metal charge transfer (LMCT) that is at 250 nm; this 

is well clear of protein-based absorbance because of the absence of aromatic residues. 

Initial kinetic reports of MT metallation focused on rates of demetallation, or rates of 

metallation of the C-terminal α-domain of this protein.14, 31 The α-domain is an 11-

cysteine fragment that contains the M4S11, thermodynamically stable, adamantine-like, 

metal-thiolate cluster. The β-domain (“β-MT”) is a smaller, 9 cysteine peptide fragment 

that forms a cluster when saturated (M3S9) but is more labile than the α-fragment. The α 
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domain has been studied previously by our group, with results that show that the 

metallation kinetics are influenced by the apo-MT structure, and is flexible enough to 

accommodate 5 M(II) in forced conditions.7 While studying the isolated domains gives 

valuable information regarding individual cysteine coordination,31 it is now understood 

that the isolated domains behave differently than the intact protein.17, 27, 32, 33  

In this Chapter, the rates of the metallation by Cd(II) of the native βαMT protein in 

solution are reported and discussed to understand how changes in the apo structure 

influence the metal-binding pathways. The rate of the early steps in the Cd(II) metallation 

of apo-βαMT depends on the folded state of the MT, and the metallation structure that 

results. By using denaturing agents at physiological pH, and at pH values that favour 

either beaded (pH ~8) or cluster formation (pH ~5), stopped-flow kinetic methods provide 

the binding rate for the Cd(II) metallation. The extent of folding under these conditions is 

obtained from the ESI-mass spectral data using cysteine modification methods. The 

results show that the metallation rate at physiological pH is 10 times faster than at pH 5 

for both the folded and the denatured protein. Metallation involving cluster formation is 

slower than bead formation. These results indicate that at physiological pH, MT is a 

highly efficient scavenger of Cd(II) and can employ its 20 cysteines with flexible binding. 

The metallation properties for partially metallated Cd-MTs at both pH extremes, which 

would mimic the pathways adopted specifically for zinc binding, are described below. By 

selecting conditions that are known to favour either of the two pathways, and confirmed 

using ESI-MS, the rates of metallation of the beaded pathway vs. the cluster pathway can 

be compared. The outcomes of these experiments provide evidence that at physiological 

pH, apo-MT adopts a specific native structure that is optimized for metallation. 

2.2 Experimental Methods 

2.2.1 Solution Preparation 

Ammonium formate (J.T. Baker) and tris(hydroxymethyl)aminomethane-HCl (Tris-HCl) 

(Sigma-Aldrich) buffers were prepared by dissolving solid crystals into DI water to make 

a final concentration of 10 mM. The solution was then pH adjusted to 2.80, 5, 6, 7, 7.4, 

7.5, or 8 using HCl and NH4OH. KCl (Fisher) was added to the ammonium formate 
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buffer used in stopped flow studies to final concentration of 200 mM to maintain a 

constant ionic strength. 

50 mg/mL Kanamycin (Teknova), 1 M isopropyl β-D-1-thiogalactopyranoside (IPTG) 

(Fisher), and 1 M CdSO4 (J.T. Baker) for cell growth were prepared by dissolving the 

appropriate amount of solid reagent in DI water. 10 mM solutions of N-ethylmaleimide 

(NEM) (Eastman) and Cd(OAc)2 (Acros) were made by mixing solid crystals into the 

ammonium formate buffer of the desired pH for the experiment. KCl was added to the 

Cd(OAc)2 solution used in stopped flow studies to a concentration of 200 mM. 8 M 

guanidinium chloride (GdmCl) was prepared by mixing solid GdmCl crystals (Omnipur) 

and KCl to make 200 mM in the case of stopped flow experiments with ammonium 

formate buffer. The mixture was gently heated until all the solid crystals had dissolved. 

The solution was allowed to cool and was then pH adjusted to the desired pH of 5, 6, 7, 

7.4, 7.5, and 8 using HCl and NH4OH. CdOAc2 solutions at concentrations of 5, 10, 12.5, 

15, 20, and 25 μM for use in stopped flow reactions were prepared by diluting the stock 

10 mM Cd(OAc)2 solution with the appropriate amount of ammonium formate buffer and 

GdmCl at the desired pH of 5, 6, 7, 7.4, 7.5, or 8 for a final denaturant concentration of 4 

M.  

Preparation of apo-MT with pH adjustment 

A 1-2 mL solution of Cd7MT was thawed under a vacuum and demetallated by buffer 

exchange using a pH 2.80 ammonium formate buffer, and then raised using ammonium 

formate buffer of the desired sample pH of 5, 6, 7, 7.4, 7.5, or 8. 

Mass spectrometric (MS) studies of the apo-MT structure were carried out using samples 

prepared with a Millipore centrifuge filter tube with a cut-off of 3kDa. The MT and low 

pH buffer were centrifuged at 4000 rpm for 30 minutes twice. The 10 mM ammonium 

formate buffer at pH 7.4 was then added along with a drop of concentrated ammonium 

hydroxide. The buffer exchange was performed under the same conditions as the 

demetallation 3-4 times. The pH of the flow-through was tested after each spin. For MS 

studies of the partial metallation of MT, the protein was demetallated using a PD-10 (GE 

Healthcare) size exclusion column with pH 2.80 ammonium formate buffer. The protein 
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was centrifuged once at 4000 rpm for 30 minutes and then run down another column at 

pH 5 or 8 to raise the pH. The MT was then centrifuged again for 30 minutes at the same 

speed as before. For stopped-flow studies, the MT was demetallated using the PD-10 

column with the pH 2.80 ammonium formate buffer. It was then put down another PD-10 

column with the buffer of pH 5, 6, 7, 7.5, or 8. The pH of the resulting protein solution 

was tested. 

The concentration of the apo-MT was determined by metallating a small portion of the 

sample with excess Cd(OAc)2 and measuring the absorbance of the S → Cd(II) LMCT 

band at 250 nm. Beer’s law was used to calculate the concentration using the molar 

extinction coefficient of fully metallated βαMT of ε = 89000 cm-1. 

For MS studies of the apo protein, the apo-MT sample was split into 2 vials. One of the 

vials was denatured by adding 8 M GdmCl to make a final concentration of 3 M. The 

other was left in its native state. The appropriate amount of 10 mM NEM solution was 

added to both samples to equal 10 molar equivalents compared to the MT concentration. 

The denatured solution was buffer exchanged by dialysis in 10 mM ammonium formate 

buffer at pH 7.4 for 2 hours to remove the GdmCl, as its signal would dominate the mass 

spectrum. Since the NEM was now covalently bound to the cysteine residues, the buffer 

exchange does not affect the distribution of the modifications. 

For the MS studies of the stepwise metallation of MT, the protein samples at pH 5 and pH 

8 were metallated with the appropriate amount of Cd(OAc)2 to give approximately 0.5, 

1.5, 4, 5, and 6 molar equivalents of Cd(II) per protein for the solutions at pH 5, and 1, 

2.5, and 5 molar equivalents for the pH 8 samples. The exact equivalents of Cd(II) added 

were calculated using the average of all the species present in the spectra. 

For stopped-flow kinetics studies, the protein samples were diluted with 10 mM 

ammonium formate buffer adjusted to pH 5, 6, 7, 7.5, or 8 and 8 M GdmCl to result in a 

final solution of 5 μM MT with either 0, 1, 2, or 4 M of GdmCl. KCl was added to give a 

final concentration of 200 mM KCl to keep the ionic strength of the solution constant. It 

is important to note that the rate of metallation of native apo-MT was compared to the 

rate in the presence of 5 M chloride ions and in the presence of sucrose matching the 
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viscosity of 5 M GdmCl. This was to confirm that the presence of the chloride ions in 

GdmCl did not interfere with the cadmium and the viscosity of the GdmCl did not affect 

the rate of metallation. 

2.2.2 Mass Spectral Studies 

Mass spectra were collected on a MicroTOF ESI mass spectrometer (Bruker, Toronto). 

The parameters were as follows: Capillary: 4200 V, end plate offset: 500 V, dry gas: 8.0 

L/min, dry temperature: 100˚C, capillary exit: 180.0 V, Skimmer 1: 22.0 V, hexapole 1: 

22.5 V, hexapole RF: 600.0 V, skimmer 2: 22.0 V, lens 1 transfer: 88.0 μs, lens 1 pre-

pulse storage: 23.0 μs, mass range: 500-4000 m/z, flow rate: 10 μL/min. The spectra were 

averaged over 2 minutes. 

2.2.3 Stopped Flow Studies 

An SFM-300 instrument (BioLogic, France), Figure 2-2, was used to rapidly mix and 

transfer the reagents to a cuvette with a 10 mm path length and 1 mm aperture. The 

reaction was observed with a MOS 250 spectrophotometer and the resulting kinetic traces 

were recorded using BioKine software. This reaction was performed at 10 ˚C. 

Apo-MT, ammonium formate buffer of the desired pH, and Cd(OAc)2 were loaded into 

syringes 1, 2, and 3, respectively. First, 500 μL of buffer was shot at a flow rate of 5 mL/s 

to clean the cuvette and to confirm the baseline level. Then, 160 μL each of apo-MT and 

Cd(OAc)2 were shot at a flow rate of 8 mL/s. These were mixed and reached the cuvette 

with a dead time of 1.9 ms. After 20 ms mixing time, the hard stop was closed and the 

reagents were allowed to react in the cuvette. The reaction was monitored through the 

LMCT band at 250 nm and recorded every 500 μs for a total of 2 s. This process was 

repeated at least three times to give an average of multiple traces. The standard deviation 

over multiple kinetic traces for each set of experimental conditions was 10 %. 
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Figure 2-2 A schematic of the SFM apparatus.  

The three syringes are shown with their respective reagents along with their path to the 

mixing chamber and then the cuvette. The lowest achievable dead time from the mixer to 

the cuvette is approximately 2 ms. Image from N. C. Korkola, reproduced with permission 

from the Royal Society of Chemistry. 26 

2.2.4 Fitting of the Kinetic Traces  

The data were not transformed from absorbance to concentration units due to the multi-

product nature of the final solution. The partially metallated MT form a distribution of 

species, each of which would have its own specific molar extinction coefficient. These 

coefficient values have not been determined for the individual species, and is further 

clouded by the averaging of the absorption signal. Therefore, Beer’s Law could not be 

used to determine the concentration of the product. It should be noted that the rate 

constants reported by this method are only relative, as the concentration must be known 

to find the absolute values.  

The fitting program GEPASI version 3.3034 was used to fit the experimental kinetic traces 

and find the relative rate constants. The metallation reaction was treated as a single 

bimolecular step as shown below. Although the acquired traces in reality consisted of 

multiple overlapping bimolecular reactions, it was not possible to resolve these as the 

overall reaction was close to the dead time of the instrument. The simplified single 
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bimolecular reaction that encompasses all the metallation steps resulted in an appropriate 

fit for this complicated kinetic mechanism. 

Apo-MT + (1-5) Cd2+ → Cd1-5MT 

Two different methods were used in combination to fit the traces. The Nelder and Mead 

(Simplex) method was used until the sum of squares reached a constant value and then 

the Levenberg-Marquardt was used until the final solution was found. 

2.2.5 Molecular Modelling 

The clustered, beaded, and fully metallated MT structures were modelled using Scigress 

6.0 (Fujitsu, Poland).35 The sequence shown in Figure 2-1 (B) was input into the software. 

The geometry of the MT was optimized to the lowest energy level using the MM3 

procedure. The lowest energy conformation was then found by running the MD (MM3) 

procedure to create multiple random conformations over a time of 5000 ps. The procedure 

was run under low temperature conditions of 5 K to simulate the hydrogen-bonded native 

protein and high temperature conditions of 1000 K to mimic the denatured conformation. 

The dielectric was set at 78, the van der Waals cut-off distance at 9 Å, and the van der 

Waals interaction update rate at 50. The output frequency was 200 steps and the refresh 

rate was 100 steps. 

2.3 Results 

2.3.1 Denaturation of MT with Guanidinium Hydrochloride 

The extent of unfolding of the apo-MT in the presence of the 3 M reversible denaturant 

GdmCl was probed by adding N-ethyl maleimide (NEM) to covalently and irreversibly 

modify solvent exposed cysteine residues. The denaturant was then removed, and the 

resulting modified protein was examined using ESI-MS at pH 7.4. Figure 2-3, A shows 

that the speciation profile of NEM binding to the apo-MT displays preferred modification 

under physiological pH in the absence of denaturant. This spectral profile drastically 

changes in the presence of 3 M GdmCl, Figure 2-3, B, where the alkylated species has a 

Normal distribution profile. 
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Figure 2-3 Native and denatured MT modified by NEM 

Deconvoluted ESI mass spectra of (A) native apo-MT at pH 7.4 and (B) apo-MT 

denatured with 3 M GdmCl at pH 7.4, both modified with 10 molar equivalents of NEM. 

MT in the native environment (A) shows a cooperative modification pattern, while the 

denatured protein (B) shows a modification distribution resembling a Normal curve. Data 

and image from N. C. Korkola, reproduced with permission from the Royal Society of 

Chemistry. 26 

The series of stopped flow kinetic absorbance traces number Figure S1-5 are used to 

create the plots of Figure 2-4. 
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Figure S1. The kinetics traces of the binding of 2.5 eq. of Cd to apo-MT at pH 5 in the 

presence of increasing amounts of GdmCl at concentrations of A) 0 M, B) 1 M, C) 2 M, 

and D) 4 M. Data and image from N. C. Korkola, reproduced with permission from the 

Royal Society of Chemistry. 26 

 

Figure S2. The kinetics traces of the binding of 2.5 eq. of Cd to apo-MT in the presence of 

4 M GdmCl at pH A) 5, B) 6, C) 7, D) 7.5, and E) 8. Data and image from N. C. Korkola, 

reproduced with permission from the Royal Society of Chemistry. 26 
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Figure S3. The kinetics traces of the binding of apo-MT to A) 1, B) 2.5, and C) 5 

equivalents of cadmium at pH 5 and in the presence of (i) 0 M and (ii) 4 M of GdmCl. 

Data and image from N. C. Korkola, reproduced with permission from the Royal Society 

of Chemistry. 26 
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Figure S4. The kinetics traces of the binding of apo-MT to A) 1, B) 2, C) 2.5, D) 3, E) 4, 

and F) 5 equivalents of cadmium at pH 8 and in the presence of (i) 0 M and (ii) 4 M of 

GdmCl. Data and image from N. C. Korkola in reference, 26 reproduced with permission 

from the Royal Society of Chemistry. 
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Figure S5. The kinetics traces of the binding of 2.5 eq. of Cd to apo-MT at pH 5 and with 

no denaturant at temperatures of A) 10.1 ˚C, B) 15.3 ˚C, and C) 18.1 ˚C. Data and image 

from N. C. Korkola, reproduced with permission from the Royal Society of Chemistry. 26 

2.3.2 Relative kobs Decreases with Increasing Denaturant at pH 5 
and Fixed Metal Status 

Figure S1 shows the change in absorbance at 250 nm for the reaction of apo-MT with a 

fixed 2.5 mol. eq. of Cd(OAc)2 and increasing concentrations of GdmCl, at pH 5. The 

relative kobs values are shown in Figure 2-4. The rate of metallation decreases as a 

function of increasing denaturant concentration. 
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Figure 2-4 Plot of the observed rate constant as a function of GdmCl concentration. 

Apo-MT was reacted with 2.5 mol. eq. of Cd(OAc)2with increasing concentration of 

denaturant, at pH 5. At this pH, the resulting product would be the [Cd4S11]
3- cluster. The 

rate of metallation slows down as MT unfolds. Data and image from N. C. Korkola, 

reproduced with permission from the Royal Society of Chemistry. 26 

2.3.3 The Cd(II) Metallation Rate is pH Dependent 

The pH dependence of metallation was determined using stopped flow kinetic methods 

for the reaction of the apo-MT with 2.5 mol. eq. of Cd(OAc)2, with no denaturant present. 

The choice of 2.5 mol. eq. was because the dominating metallation pathway (beads or 

clusters) is readily apparent in the mass spectral data with this level of partial metallation. 

The metallation of apo-MT by Cd(II) is rapid at physiological pH (3633 x106 mol-1 s-1), 

but the rate decreases sharply as the pH is lowered (354 x106 mol-1 s-1), as seen in Figure 

2-5. 
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Figure 2-5 Relationship between observed rate constant k of the reaction of native apo-

MT 

Apo-MT was reacted with 2.5 mol. eq. Cd(II) at pH 5, 6, 7, 7.5, and 8, in the presence of 

4 M GdmCl. The product at each pH can be determined from Figure 2-6 and Figure 2-7. 

At pH 5 the resulting product would be the [Cd4S11]
3- cluster. At pH 8 the resulting 

product would be a series of [Cd1S4]
2- beads. Data and image from N. C. Korkola, 

reproduced with permission from the Royal Society of Chemistry. 26 

The mass spectral data shown in Figure 2-6 and Figure 2-7detail the speciation profiles at 

the extremes of the pH range used in Figure 2-5 above. The two metallation pathways 

manifest in different patterns of species abundance. The spectra taken at both pH 5 and 8, 

with 1, 2.5, and 5 mol. eq. of Cd(II) added show differing speciation at the 2.5 and 5 mol. 
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Figure 2-6 ESI mass spectra for the Cd(II) titration of apo-MT at pH 5 

Deconvoluted ESI mass spectra at pH 5 of the partially metallated MT species using (A) 

0, (B) 0.74, (C) 1.77, (D) 4.11, (E) 5.10, and (F) 5.84 mol. eq. of cadmium. The Cd4 

cluster is favoured at low equivalence and the fully metallated Cd7 species is favoured 

upon adding higher amounts of cadmium. Data and image from N. C. Korkola, 

reproduced with permission from the Royal Society of Chemistry. 26. 
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Figure 2-7 ESI mass spectra for the Cd(II) titration of apo-MT at pH 8 

Deconvoluted ESI mass spectra at pH 8 of the partially metallated MT species using (A) 

0, (B) 0.89, (C) 2.42, and (D) 4.86 mol. eq. of cadmium. The species display a Normal 

distribution pattern centered around the molar equivalents of cadmium added. Data and 

image from N. C. Korkola, reproduced with permission from the Royal Society of 

Chemistry. 26. 
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eq. point, where at pH 5, a strong preference for the clustered Cd4MT species is observed, 

Figure 2-6. In the case of the pH 8 (Figure 2-7) metallation pathway, a Normal 

distribution is observed, indicating the statistical formation of beaded products.  

To test if the presence of denaturant affected either the cluster pathway (pH 5) or the 

beaded pathway (pH 8), or both, the metallation rates were measured for apo-MT binding 

to 2.5 mol. eq. Cd(OAc)2 under 0 M (no denaturant) and 4 M GdmCl conditions. Figure 

2-8 shows the results for four unique conditions: A) pH 5 and no denaturant, B) pH 5 with 

4 M GdmCl, C) pH 8 with no denaturant, and D) pH 8 with 4 M GdmCl. The rate 

constants kobs for A-D are: 354, 325, 3633, and 2150 (106 M-1 s-1) respectively, which are 

shown comparatively in Figure 2-9. 

 

Figure 2-8 Kinetic absorption traces of MT metallation 

Kinetic traces of the metallation of 2.5 mol. eq. of cadmium to apo-MT under conditions 

of (A) pH 5 and no denaturant, (B) pH 5 and 4 M of GdmCl, (C) pH 8 and no denaturant, 

and (D) pH 8 and 4 M of GdmCl. The traces show that the beaded pathway at pH 8 

proceeds much faster than the clustered pathway at pH 5 and that denaturant slows down 

both pathways Data and image from N. C. Korkola, reproduced with permission from the 

Royal Society of Chemistry. 26 
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Figure 2-9 Comparison of rate constants  

Bar graph representation showing the observed rate constants of the metallation with 

2.5mol. equivalents of cadmium (A) pH 5 and no denaturant, (B) pH 5 and 4 M of 

GdmCl, (C) pH 8 and no denaturant, and (D) pH 8 and 4 M of GdmCl. The effect of the 

denaturant is much less pronounced than that of the pH environment. Data and image 

from N. C. Korkola, reproduced with permission from the Royal Society of Chemistry. 26 

2.3.4 Relative kobs Decreases with Increasing Metallation  

Figure 2-10 shows the relative kobs values of the reaction of a fixed concentration of apo-

MT with increasing Cd(II) mol. eq. at pH 5 (Figure 2-10A) and pH 8 (Figure 2-10B). In 

both cases, in the absence of denaturant (black dashed line), the relative kobs rate 

decreases as a function of the increase in the number of Cd(II) bound. In the presence of 

denaturant (4 M GdmCl, red dotted line), the overall rates at both pHs are reduced. At pH 

5, there is an approximately 50% reduction in the rate, but continues to follow a 

decreasing trend with metallation. At pH 8 on the other hand, the denaturant dramatically 

reduces the metallation rate.  
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Figure 2-10 Cadmium equivalence vs. observed metallation rate k 

Plots showing the relationship between the observed rate constant and mol. equiv. of 

cadmium added at (A) pH 5 and (B) pH 8, both with denaturant (red dotted line) and 

without denaturant (black dashed line). The observed rate slows down as MT binds 

increasing numbers of cadmium ions. Data and image from N. C. Korkola, reproduced 

with permission from the Royal Society of Chemistry. 26 
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Figure 2-11 Arrhenius plot for Cd(II) metallation of MT 

Arrhenius plot displaying the dependence of the observed rate constant on temperature. 

The natural logarithm of the observed rate constant has a linear relationship to the 

inverse temperature: y=-2791.4x+15.71, R2=0.9375. Data and image from N. C. 

Korkola, reproduced with permission from the Royal Society of Chemistry. 26 

2.3.5 Metallation is Temperature Dependent 

The relative kobs for the metallation of apo-MT with 2.5 mol. eq. of Cd(OAc)2 at pH 5 

were determined at 10.1, 15.3, and 18.1 °C, with the resulting Arrhenius plot shown in 

Figure 2-11. The reaction rate slows as the temperature decreases, with a calculated 

activation energy EA of 232 kJ/mol with an Arrhenius constant of 16. The rate of reaction 

at 25 ˚C and above was too fast for the instrumentation. 
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2.4 Discussion 

2.4.1 Does Native Apo-MT have a Folded Structure? 

Defining the structure of apo-MT is difficult. It is clear that metallation results in metal-

induced folding, such that the metal-saturated product (M(II)) exists with two, well-

defined binding domains.36 However, these domains do not exist in the absence of the 

metal, unlike most metalloproteins. Circular dichroism spectroscopy can typically be used 

to assess the degree or extent of 2° structure in a protein, from the characteristic CD 

spectral profiles between 190 and 230 nm. However, no such spectral properties exist in 

apo-MTs because of the absence of any defined folding. Mass spectrometry offers an 

alternative and to some extent, a more precise measure of the degree of denaturation 

associated with unfolding from the charge state manifold. Generally, when employing 

mass spectrometry to probe changes in the protein structure as a function of an external 

event, one examines the charge state envelope, its central number, and its spread to assess 

the change in protein-solvent accessibility. With metallothioneins, their limited size 

reduces the magnitude of changes in the charge state distribution, making this a less 

precise method of tracking protein structure, compared to, for example, myoglobin 

(~17000 Da). For greater sensitivity, cysteine alkylating agents, for example NEM or 

pBQ as described in Chapter 1, provide detailed evidence of solvent accessible cysteines 

as a function of increasing denaturant concentrations.6, 23 The use of GdmCl as a 

denaturant allows protein denaturation without affecting the pH of the solution. 

The data in Figure 2-3 showed that the apo-MT structure is dramatically and significantly 

affected by the presence of denaturant. The two profiles have been described previously 

in terms of the structural origins that would result in cysteine modification profiles with 

such differences. The explanation that fits the experimental environment was described 

first by Irvine et al. in 2014 for the structures of apo-α-MT fragment.7 Considering the 

reaction as having simply run out of the NEM, the spectrum obtained is a snapshot of the 

reaction, frozen by the lack of sufficient modifier. NEM covalently alkylates with the free 

cysteinyl thiols in the MT protein to form a mass change readily discernible in the mass 

spectrum. Irvine et al. have demonstrated that the more unfolded or solvent accessible the 

protein is, the more Normal the distribution of the resulting modified species.24, 37 If the 
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protein were folded with only a certain set of cysteines being solvent accessible, this 

would be visualized in the ESI mass spectrum as a strong preference for a certain number 

of alkylations. For the experimental conditions required in the rest of this Chapter, the 

data show that 3 M GdmCl effectively unfolds apo-MT without altering the pH of the 

solution, allowing elucidation of pH dependent metallation pathways, as is described 

below.  

2.4.2 Metallation Slows in the Presence of Denaturant 

Both heat and acidity have been shown to be effective denaturants of MT.7, 8, 22, 23  

 

Scheme 2-1 Guanidinium chloride CH6ClN3 

However, due to the pH dependence of MT’s chelation properties, GdmCl (Scheme 2-1) 

was chosen so that the pH would not be affected by addition of denaturant. GdmCl is a 

chaotropic agent that denatures by disrupting hydrogen bonding.38 The MT sequence 

contains few hydrophobic residues, suggesting that hydrogen bonds and electrostatic 

interactions are solely responsible for the overall stabilization of the protein in the metal 

free state.18 Previously reported molecular dynamics results showed that the hydrogen 

bond network in metal-saturated MT is largely retained upon complete demetallation, but 

increases upon stepwise, sequential, demetallation because the structure becomes more 

folded. 15, 18 

Figure 2-4 shows that even with the cluster structure, that the unfolded peptide metallates 

more slowly. This result is coincident with previous results reported for just the apo α-MT 

metallated with excess Cd(II) in 2015 by Irvine et al.7 pH 5 was chosen specifically for 

the series of experiments described in Figure 2-4 as it ensures the dominance of the 

Cd4S11 cluster. 
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2.4.3 pH Changes the Dominant Metal Binding Pathway: Cluster 
Formation at pH 5 is Slower than Bead Formation at pH 8 

Irvine et al. have demonstrated the pH dependence for Zn(II) and Cd(II) metallation, and 

that the pathway adopted at different pHs can be confirmed by observing the metallated 

species in the ESI-mass spectrum.16 Acidic conditions promote the cluster pathway for 

both metals, as shown in the low pH MS data for Cd(II), Figure 2-6. At physiological pH, 

both Cd(II)and Zn(II) bind in a beaded fashion up to 5 M(II) ions bound, as shown in the 

MS data for Cd(II) metallation, Figure 2-7. Figure 2-7 clearly shows the expected 

stepwise progression of the speciation as a function of Cd(II) mol. eq. There is no 

preference at this pH for the Cd4S11 clusters. The rate of metallation was obtained as 

function of pH. However, Cd(II) switches to the cluster pathway at a much higher pH 

compared to Zn(II). Zn(II) generally follows the tetrahedral terminal bead pathway over 

this pH range, with the cluster pathway only playing a role at a pH <5.1.16 In the case of 

Cd(II), cluster pathways can begin to dominate at a pH <7, which indicates the major 

influence a small change in pH can have on metal binding structures. This is pertinent to 

the discussion of metal anticancer therapeutics in the acidic condition of the tumor cell, 

which would promote MT to form stable metal-thiolate clusters, impeding drug delivery 

and efficacy.39  

In Figure 2-5, the pH range 5-8 encompasses a change in metallation product for the 2.5 

mol. eq. of Cd(II) of clusters at pH 5 and beads at pH 8. Because the trend in rate constant 

follows almost exactly the trend in % terminal binding as a function of pH reported by 

Irvine et al.,16 cluster formation (pH 5) is dramatically slower than bead formation (pH 8). 

The mass spectral data shown in Figure 2-6 and Figure 2-7, indicate that for the solutions 

used in the stopped-flow in Figure 2-8A and B, the metallation products are dominated by 

Cd4S11 cluster formation in the α domain. For Figure 2-8C and D The increase from pH 5 

to pH 8 increased the observed metallation rate tenfold in both cases, with the pH 8, 

native apo-MT, beaded metallation pathway, remaining the most rapid of the four 

conditions, Figure 2-9. It should be noted that in Figure 2-8, the plateaus of the kinetic 

traces do not all end at the same y-value. This is due to instrument variability, caused by 

measuring at 250 nm which is close to the detection limit. Normalizing the curves to end 
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at the appropriate y-values according to Beer’s Law results in the same trends presented 

here. 

2.4.4 Why is Terminal Cysteine Coordination Faster than Cluster 
Formation? 

The formation of terminally bound metal beads is shown to be fast in Figure 2-5. This 

could be because although there is no defined structure for the cysteines: (i) the ESI mass 

spectral modification data, Figure 2-3, (ii) the modification data provided by Irvine et 

al.,6, 23 and (iii) the previous molecular dynamics results, together support a structure for 

the apo-MT that involves non-specific folding optimized for metallation. Beaded 

metallation requires the concerted binding of 4 cysteine thiols at a time to M(II). The 

folded apo-MT structure orients the cysteines in close proximity such that the beads are 

formed rapidly. The cysteines that are most solvent exposed and have the most reduced 

energy upon metallation may well be metallated first.12, 18, 19, 40, 41 

In the case of cluster formation, this is a highly organized process with very specific 

cysteines involved in bridging arrangements resulting in the most energy minimized 

structure. The kinetic data show that this large-scale organization occurs at a slower rate 

than that of the beaded pathway, presumably due to the requirement of such precise 

cysteine coordination.  

2.4.5 Rate as a Function of Metal Loading 

kobs decreases with sequential metallation, with the initial metals having the highest 

values. The last binding sites to be occupied are the slowest, as a reflection of a decrease 

in available sites. This is reflected widely across all metal species, as previously shown 

with time-dependent ESI-mass spectral data with Cd(II),16 As(III),42 and Cu(I).43 A 

sequential increase in Kf is generally associated with the formation of a stable cluster, if 

M>1, as has been shown in the titration of Cu(I)1-20MT,43 As1-6MT,11, 12, 36 and notably 

with Cd4S11 and Co4S11 clusters in the α domain. 
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2.4.6 Temperature Dependence of Metallation 

Petering et al.41 and Stillman et al.30 have reported the temperature dependence of the 

metal lability in metallothioneins. The interprotein exchange of Zn(II) between carbonic 

anhydrase is much more rapid at 37 ° C than at 25 °C.41 The intraprotein exchange of 

Cd(II)and Zn(II) between domains can be followed readily with circular dichroism 

spectroscopy at temperature extremes.30 The initial metallation reactions studied in this 

paper are also temperature dependent, as shown in Figure 2-11. There is an upper limit, as 

shown by Irvine et al, who used heat assisted denaturation at 94°C to demonstrate 

temperature dependent denaturation.22 

2.4.7 Metallation of Unfolded Apo-MT is Slower than Native Folded 
MT 

The results of Figure 2-4, Figure 2-5, Figure 2-8, and Figure 2-9 show that the disruption 

of the apo-MT structure affects the rate of both the bead and cluster formation. pH 

influences the dominant pathway, but each pathway does have an optimal structure 

required for efficient metallation. Other structure impeding agents present in the cellular 

environment may cause similar disruption to the metallation process. Being particularly 

sensitive to sulphur oxidation, oxidized MT manifests in the formation of disulphide 

bridges, which will greatly disrupt the delicate and highly specific metal-thiolate 

organization of the native MT.  

Does the apparent lack of formal structure for the native apo-MT have an impact on 

metallation rates? The use of a well-studied denaturant together with well understood 

structural metal-thiolate products (beads up to 5 Cd(II) at neutral pH and up, cluster 

formation below pH 6) meant that the single variable being tested was the extent of 

folding of the apo-MT. The data in Figure 2-8 and Figure 2-9 clearly answer this 

question. The metallation rate for Cd(II) is always faster in the absence of a denaturant. 

At physiological pH (choosing pH 8 to eliminate cluster formation) the folded apo-MT 

(absent denaturant), metallated over 50% faster than the unfolded (with denaturant). This 

same trend is the case at pH 5. 
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On a similar vein, these results demonstrate the effect of misfolding on the efficient 

function of a native protein. A common source of protein damage occurs as a result of 

oxidation. MT plays a role in both the protection and repair of oxidative damage.44-46 

Oxidation and protein misfolding are thought to be one of the causes of cellular ageing, 

with a build-up of misfolded proteins and metal ions aggregating in the lysosome.47 There 

is increasing evidence that MT plays a protective role in metal aggregation limitation, 

such as in the reduction of amyloid plaques in neurodegenerative diseases.48-50 With its 

multitude of reduced cysteine residues, MT can repair oxidative damage through the 

formation of disulphide bonds. This oxidation would greatly reduce MTs metal binding 

efficacy and place the cell at risk for dysfunctional regulation. A build-up of these 

misfolded products could result in differentiating cell conditions, such as decrease in pH, 

thus altering the activity of MT metallation to promote stable cluster formation.  

MTs are well known for their stable metal-thiolate clusters, that protect the MT from 

oxidation and protease digestion.51, 52 From an evolutionary standpoint, MTs adaptive role 

in metallation and oxidative protection makes it a key player against ageing. Its ubiquity 

across all phyla cements this idea. Species specific amino acids may also impart fine-

tuned structural influences to optimize efficiency in particular organisms, for which the 

reader is courteously directed to selected references comparing plant and mammalian 

MTs.53-55 

2.5 Conclusions 

The metallation of MT is a post-translational modification that is dependent on the 

cellular environment, particularly pH and metal loading status. In lower pH environments, 

such as hypoxic or tumorous cells, clustering pathways would predominate, especially in 

the presence of toxic Cd(II). This is relevant towards developed metallodrug resistance 

that some cancer types exhibit: MT of these cancerous cells is capable under these 

conditions of binding soft metals in a stable metal-thiolate cluster, minimizing cellular 

damage. At physiological pH, the evidence from the experiments reported in this Chapter, 

suggest that apo-MT adopts a compact folded structure, with cysteines oriented for facile 

metallation, indicated by the higher metallation rate. Folded apo-MT forms these very 

specific structures during the stepwise metallation process. Further studies are needed to 
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investigate how these structures change when the protein has been damaged as a result of 

misfolding or binding to a foreign or xenobiotic metal. 
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Chapter 3 

3 Capturing Platinum in Cisplatin: Kinetic Reactions with 
Recombinant Human apo-Metallothionein 1a* 

3.1 Introduction 

The prolonged use of cis-diamminedichloroplatinum(II) (cisplatin), a powerful 

chemotherapeutic, can incur chemoresistance in cancers during treatment, reducing the 

chance of therapeutic success. Metallothioneins (MTs) are suspected of metallodrug 

interference via ligand removal and metal sequestration. The mechanistic details and 

reactions rates kobs for the systematic deconstruction of cisplatin by apo-human MT are 

reported and analyzed from mass spectral data. 

In order to understand pre-target resistance in metallo-chemotherapeutics it is necessary 

to investigate the mechanisms responsible for metal-protein binding reactions. Cisplatin, a 

popular and extremely effective anti-cancer drug, is the focus of worldwide 

interdisciplinary investigations into emerging chemoresistance and metabolic toxicology 

in cancers. This present paper focuses on monitoring the abrupt and disruptive reaction 

involving a major cellular thiol source, metallothionein, with cisplatin. MT is implicated 

as a metal sink that may be also involved in nephrotoxicity. Time–dependent, solution-

phase, ESI-MS was used to monitor the destruction of the cisplatin molecule. Kinetic 

analysis provided the reaction rates for the individual steps from the initial binding of the 

complete molecule, through extrusion of the ligands, and final accumulation of isolated 

Pt(II) bound to metallothionein. 

3.1.1 Cisplatin: A Standard Treatment for Cancer 

Since its discovery by Rosenberg in 1978, cis-diamminedichloroplatinum(II) (more 

commonly known as cisplatin) has been used as a potent anti-cancer agent for the 

treatment of testicular, ovarian, head and neck, bladder, colorectal, and lung cancers.1-4 

As a metallodrug, cisplatin can act upon several biochemical pathways to trigger cell 

death. For instance, with its soft, transition metal core, cisplatin is capable of readily 

binding the free thiols of glutathione and metallothioneins, reducing the cell’s facility to 
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respond to oxidative stress.1, 2, 5-9 Binding to glutathione (GSH) can instigate efflux from 

the cell via MRP1 and MRP2, removing this thiol source from the cell.10-12 Similarly, by 

binding to free thiols near the active site of enzymes, cisplatin can disrupt cell function.13, 

14 However, its most well-known method of action is through the creation of DNA 

adducts triggering mitochondrial apoptosis and cell death.  

 

Scheme 3-1 Cisplatin and the aquation reaction involved in its initial entrance to the 

body. Reproduced from D. L. Wong and M. J. Stillman with permission from the Royal 

Society of Chemistry. 15 

Upon administration in the body, cisplatin becomes an active form through aquation 

reactions where the chloride ligands are spontaneously exchanged with water, as 

described in Scheme 3-1, above.16, 17 This results in a complex that reacts readily with 

endogenous nucleophilic groups, like the free thiols mentioned above, or, in particular, 

the guanine N7 site on purines in DNA.2, 18 Multiple reactions can occur for each Pt(II) 

core of the cisplatin, resulting in inter- and intra- strand crosslinking of DNA, disrupting 

transcription and translation. It should be noted that in fact, very little (1%) of the 

intracellular cisplatin binds to nuclear DNA.19 Clearly, DNA damage is not the only 

cytotoxic pathway at play, as cisplatin also exerts toxic effects on enucleated cells.20 
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3.1.2 Metallothionein and Drug Resistance  

While initially effective in many cancer types, chemoresistance to cisplatin can develop 

with prolonged treatment.21, 22 Increased expression of cellular thiols GSH and MT have 

both been implicated in these resistance mechanisms but they are believed to be 

independently induced.23 Kelley et al. remarked that there was a noticeable increase in 

cellular MT levels in several cancer lines treated with cisplatin and antineoplastic agents 

melphalan, and chlorambucil.24 It has also been suggested that MT is an obstacle in the 

treatment of the ovarian cancer A2780CR cell lines that are cisplatin resistant. Work from 

Surowiak et al. suggests that nuclear MT expression levels increase with cisplatin 

treatment, which may be correlated with the diminished overall clinical response.22 The 

direct correlation between cellular MT and chemoresistance is not clear cut for all cancer 

types, as shown by Woo et al, nuclear and cellular MT levels vary greatly across cancer 

types, and this subcellular compartmentalization of MT plays a role in its metal 

response.23 While the relationship between MT expression and developed cisplatin 

resistance is unclear, the correlation between the two has been suggested as a possible 

biomarker for resistance. As such, the connection between the two has been the focus of 

gene expression and metallomics studies.25 

As described extensively in Chapters 1 and 2, MTs are a family of ubiquitous, low 

molecular weight (6-8 kDa), cysteine-rich, metal binding proteins that most notably play 

a role in Zn(II) and Cu(I) homeostasis, heavy metal detoxification, and response to 

oxidative stress.7, 26-30 MTs are capable of creating a variety of metal-thiolate cluster 

structures using 20 cysteine thiolates.29-33 The involvement of MTs in cisplatin resistance 

is suggested to be due to their property of binding a wide array of soft, d-block, 

xenobiotic metals, such as Cd(II), Hg(II), As(III), and Pb(II), as well as those of 

therapeutic interest, like Bi(III), Au(I), Ag(I), and Pt(II), among others.27, 28, 34-37, MTs act 

to sequester toxic metals for excretion, which in the case of cisplatin, can lead to renal 

side effects associated with treatment.38  

MT binding with cisplatin has been studied intensely due to its association with 

developed cisplatin resistance. Reactions showing remetallation of Zn-MT and Cd-MT by 

Pt(II) demonstrate the strong affinity of the cysteine thiol for the Pt(II).6, 39-47 MT 1 and 
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MT 2 are capable of binding up to 7 Pt(II), mimicking the stoichiometry of the two-

domain binding structure of native Zn7-MT and Cd7-MT.48 The Stillman group has 

previously demonstrated low temperature (77 K) emissive properties of Pt-bound MT,35 a 

property of metal-thiolate cluster formation. 

Extensive kinetic analysis of the metallation of metallothionein by cisplatin has been 

performed by Hagrman et al. involving spectroscopic methods.6 Mimicking chemical 

conditions of the cell, their study involved monitoring in vitro the loss of cisplatin over 

the course of full metallation of metallothionein. As expected, the Pt-MT product has 

none of the ancillary ligands of the original cisplatin molecule. Hagrman et al. note that 

there is a delay in the observed signal, indicating that initial reactions may be occurring 

that are not detectable under the conditions used.6 A limitation of optical techniques is the 

averaging of all the signals, which masks the individual mechanistic details in these early 

stages of the reaction.  

3.1.3 Biological Significance 

Many of the in vitro methods described above utilize widely available rabbit liver or rat 

liver metallothioneins, which often come in mixtures of isoforms, metallated with Zn(II) 

or Cd(II), or as a mixed metal species. Using recombinant human metallothionein 

expressed in Escherichia coli provides isoform-pure recombinant human MT 1a. MT 

regulation is influenced by the presence of xenobiotic metals, like Bi(III), Au(I) and 

Pt(II), and as such, apo-MT will be synthesized by the cell in response to the presence of 

these metals.33, 36, 49 Indeed, several reports now confirm the presence of apo-MT in vivo 

in large quantities.50-53 This perspective indicates that the metallation of MTs is a post-

translational modification. Therefore, the properties of the reaction between apo-MT1a 

and cisplatin are investigated using the high species resolution of ESI-MS. The time-

dependence of this early reaction involving the deconstruction of the cisplatin complex 

can be monitored at this resolution. This provides insight on the interactions between MT 

and complex chemotherapeutic complexes, as opposed to the free ion metallation studies 

of MT performed previously. The benefit of applying ESI-MS is the availability of high-

resolution snapshots of solution-phase intermediates throughout the course of the 
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reaction. With this, the initial reaction that Hagrman et al. and Pattanaik et al. suggest 

exist but have not yet characterized the speciation involved can be identified.6, 46  

The following Chapters involving the aggressive reaction of human MT with 

dirhodium(II) tetraacetate raised the question whether MTs might react similarly with the 

most important and effective metal-based anticancer drug, cisplatin. In the reaction with 

the dirhodium(II) tetraacetate, the MT bound the complete molecule and in a stepwise 

fashion competed for the possible binding sites with its numerous cysteinyl thiols until 

only the [Rh-Rh]4+ core remained encapsulated by the protein. The high resolution 

capabilities of ESI-mass spectral data displayed each of the stepwise species formed 

during the reaction, showing the systematic destruction of the dirhodium(II) 

tetraacetate.54A similar destructive effect was demonstrated by MT upon antimetastatic 

Ru(II)-arene complexes.55  

The experiments reported in this Chapter leverage the exquisite power of the ESI-MS 

technique to interrogate the products formed initially between MT and cisplatin. In this 

manner, the early mechanistic details will become clear, allowing the determination of the 

structural aspects of cisplatin that lead to MT deactivation. The goal of this work is to 

determine the identity of the initial Pt-based species that bind to the MT, and then to 

elucidate the subsequent reaction pathways of the Pt-based species while debilitatingly 

immobilized in the MT. Unlike previous reports, the mechanism explored in this work 

involves the metallation by each individual cisplatin molecule to form the Pt-MT product. 

To avoid the complexity of a distribution of metallated species in partially-metallated 

MTs, 31, 56, 57 The apo-MT with its 20 uncoordinated cysteines was chosen as a model for 

the uncoordinated cysteines in partially metallated MT. The results may be used to guide 

design of metallodrug structures that are resistant to this MT-thiolate destructive 

chemistry.  

3.2 Experimental Methods 

Recombinant human metallothionein 1a were produced and purified according to 

previously described methods with the sequence 

GSMGKAAAACSCATGGSCTCTGSCKCKECKCNSCKKSCCSCCPMSCAKCAQGC
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VCKGASEKCSCCKKAAAA.56, 58, 59 This recombinant sequence has mutations (T27N 

and I51V) compared with the native human MT1a for purposes of overexpression in E. 

coli. The metallation properties of this recombinant isoform (MT1a) has been shown in 

spectroscopic studies from the Stillman Group to behave similarly to mammalian MTs, 

for example, rabbit liver MT2A.60, 61 The purified Cd-bound MT1a was demetallated by 

acidification (pH<2) and the resulting free Cd(II) in solution were removed by centrifugal 

filtration (Amicon Ultra-4 3000 Da MWCO). Protein concentration was calculated by 

remetallating a measured aliquot with CdSO4 and determining the Amax at the 250 nm 

shoulder characteristic of the LMCT of Cd-S bonds (ε = 89,000 L mol-1 cm-1).  

Solutions of cisplatin (Sigma) were prepared in DI water well ahead of time to allow for 

aquation. Aliquots containing cisplatin equivalent to ~ 3 mol. eq. of the apo-MT were 

added to the apo-MT solution (20 mM ammonium formate buffer, Fluka, pH 7.0) 

immediately prior to mass spectral data acquisition using a MicroTOF II (Bruker 

Daltonics, Toronto). All solutions were at room temperature and thoroughly deaerated 

using vacuum evacuation followed by Ar saturation. NaI was used as the calibrant. 

Spectra were collected in positive ion mode, as a function of time following mixing. The 

settings used are described in Chapter 1. 

The averaged spectra and data analysis were carried out using the Bruker Data Analysis 

4.2 program. The resulting spectral data were normalized, and the dominant species 

identified by mass. The identified species and their abundance data were grouped and 

input into GEPASI,62, 63 a biochemical kinetics simulator, as the reactions defined in 

Scheme 2 in the Results and Discussion section. The four reaction rate constants, k1-4, 

were defined as irreversible mass action, and the k’s and concentrations were limited by 

user-defined parameters.  

3.3 Results and Discussion 

The time-dependent deconvoluted mass spectral data recorded during the reaction of 

cisplatin with apo-metallothionein 1a experimental data are shown in Figure 3-1, and in 

block form Figure 3-2. In the Apo panel of Figure 3-2, the black bar represents the Apo-

MT abundance at the beginning of the reaction. By one minute (A) each of the species 
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found at the end of the reaction can be discerned. The speciation is grouped in terms of 

MT involved in Pt1 complexes (red, “Pt1 Group”), Pt2 complexes (blue, “Pt2 Group”), Pt3 

complex (green), and Pt4 complex (pink). The mass spectral data are rich in detail about 

the many species involved in the initial binding of cisplatin to the MT. There are two 

ways of describing the data shown in Figure 3-2: (i) Either by the time-dependence of the 

individual groups, based on the number of Pt(II) bound to the protein (x = 1-4), (ii) or 

based on the appearance of species at each time point (A – F). The kinetic analysis, to be 

described below, is based on the 4 groups, but not the individual speciation within the 

groups. At this point, the focus is directed to describing the change in speciation for each 

individual platinum bound (Figure 3-1 A-F). 

 

Figure 3-1 ESI mass spectra following the reaction of cisplatin with apo-MT1a. 

The apo-MT peak is highlighted by the red dashed line. Platinated species are coloured 

according to the number of Pt(II) atoms contained, with its associated partially ligated 

(PtxL-MT) or fully ligated ((CDDP)x-MT) species sharing the same colour. MT bound to 

Pt1 represented with green dashed lines. MT bound to Pt2 represented with blue dashed 
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lines. MT bound to Pt3 represented with yellow dashed lines. MT bound to Pt4 

represented with pink dashed lines. Reproduced from D. L. Wong and M. J. Stillman with 

permission from the Royal Society of Chemistry. 15 

 

Figure 3-2 ESI mass spectra following the reaction of cisplatin with apo-MT1a in bar 

graph representation. 

The apo-MT peak is highlighted by the black bar. Platinated species are coloured 

according to the number of Pt(II) atoms contained, with its associated partially ligated 

(L-Pt-MT) or fully ligated (CDDP-MT) species sharing the same colour. MT bound to Pt1 
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represented with red. MT bound to Pt2 represented with blue. MT bound to Pt3 

represented with green. MT bound to Pt4 represented with pink. Reproduced from D. L. 

Wong and M. J. Stillman with permission from the Royal Society of Chemistry. 15 

 

Figure 3-3 Detailed ESI mass spectral data of CDDP1MT and CDDP2MT 

Detailed comparison of mass spectral data for the “Pt1 Group” (Red, left) and “Pt2 

Group” (Blue, Right). The selected panels are from the frames shown in Figure 3-1A-F. 
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The overall cisplatin molecule deconstruction is observed from the overall decrease of the 

“CDDP” species and the overall increase of the “Pt” species. Reproduced from D. L. 

Wong and M. J. Stillman with permission from the Royal Society of Chemistry. 15. 

In Figure 3-2A, within the red Pt1 group, the whole CDDP is bound to the MT, and over 

time to F, it loses its ligands, forming Pt1, which is seen in greater detail in Figure 3-3A. 

The intermediate in this pathway reaction can be seen as the peak labelled LPt1-MT, 

where the ligand (L) can be either (2 NH3) or Cl1-, but this cannot be distinguished 

because of the overlap in the masses of these species. However, due to the nature of the 

ESI-MS experiment, L is most likely to be NH3 from the ammonium formate buffer, and 

due to the favourable loss of the Cl1- as shown in Scheme 3-1. Returning to Figure 3-2A, 

the Pt2 species (blue) can be formed from both CDDP1Pt1-MT and CDDP2 species. 

However, by F, the Pt2MT dominates, again illustrated more clearly in Figure 3-3. 

Returning once more to Figure 3-2A, under the concentration conditions at this stage of 

the initial reaction, only the Pt3Mt and Pt4MT species are observed, but these species 

grow in abundance as the reaction proceeds, to F. To summarize the time-dependence of 

the data, there is clear evidence that two complete CDDP molecules bind to MT, and that 

these two molecules degrade to the sequestered metal core. In F, the dominant species are 

Pt1MT, Pt2MT, Pt3MT, and Pt4MT. The Ptx-MT species without any ligands are the final 

products of each metallation event. The coexistence of Pt1-4MT is not an unusual 

observation for mechanisms that are not cooperatively driven. 31, 57, 58, 64, 65  

Each of the individual species can be seen at the 3-4 minute point, Figure 3-2D. i) β, 

Pt1MT, appearing as expected at 7062.7 Da, α, Apo-MT at 6868.8 Da. This mass 

difference corresponds to the mass of cisplatin molecule. ii) γ, L-Pt1MT at 7096.8 Da, iii) 

δ, CDDP1-MT 7167.8 Da, iv) ε, Pt2MT at 7258.7 Da, v) ζ, L-Pt(Pt)MT 7290.8 vi) η, 

CDDP1Pt1MT at 7363.7, vii) θ, Pt3MT 7453.7, viii) ι, CDDP2MT at 7470.7, and ix) κ, 

Pt4MT 7648.5 Da. MT species of Pt > 4 could not be distinguished from noise. The M4S11 

stoichiometry is a well-known structure involving metal-thiolate cluster formation that 

occurs in other divalent metals.27, 57, 66-68 

Figure 3-3 show the time-dependent change in the Pt1 group (A, red) and Pt2 group (B, 

blue) taken from panels A-F in Figure 3-2. In Figure 3-3A, the initially bound CDDP 
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degrades to L-Pt1MT and then to Pt1MT. In the Pt2 group there are two reactants that can 

form the Pt2MT species: CDDP1Pt1MT and CDDP2MT. Both of these are seen at 7363.7 

and 7470.7 Da, respectively. The time-dependence data again show that the encapsulated 

core, Pt2MT, is the product.  

 

Figure 3-4 Experimental speciation abundance over time 

Abundance speciation data over time taken from the experimental mass spectral data. 

Apo-MT species are represented with black. The holoMT species (red) represents the sum 

of PtxMT species (blue), ligated Pt species LPtxMT (green), and MT species with a whole 

cisplatin molecule bound, CDDPxMT (cyan). Reproduced from D. L. Wong and M. J. 

Stillman with permission from the Royal Society of Chemistry. 15 

The time-dependence of the mass-spectral data is used to quantify the reaction 

mechanism shown in Equation 3-1. The resolving power of ESI-mass spectrometer allows 

monitoring this reaction in higher detail than has been possible previously. In particular, 

the time-resolved spectra shows the emergence and subsequent loss of the intermediate 
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species, as well as the composition of the intermediates that reach a steady state. 

However, the 9 species present make the kinetic analysis extremely challenging. In Figure 

3-4, the metal-free species, Apo-MT (Black), decreases over the course of the reaction, as 

it begins to sequester the cisplatin in solution. All the resulting metallated species are 

summed and reported in Figure 3-4 as Holo-MT (Red). Holo-MT represents the sum of 

all the many sub-species that form as cisplatin is deconstructed while bound within the 

MT. The specific components are i) the majority final products Ptx-MT where x=1-4, 

contains the sequestered and deactivated platinum core that is no longer a functional 

chemotherapeutic (Figure 3-4: Blue); and ii) the ligated species, LPtxMT (Figure 3-4: 

Green) and CDDPxMT (Figure 3-4: Cyan) are intermediate species in much lower 

abundance than those of Ptx-MT, and achieve a steady state over the course of the 

reaction. 

 

Equation 3-1 Bimolecular reaction equations for the metallation of MT by CDDP 

Simplified reaction pathway. Products grouped according to its Pt stoichiometry, with the 

reaction rates k representing the summation of the overall observed rate of the individual 

species. Reproduced from D. L. Wong and M. J. Stillman with permission from the Royal 

Society of Chemistry. 15 

An unusual observation during the metallation reaction of MT with cisplatin (Figure 3-2) 

was that the observed mass corresponds to the dichlorinated cisplatin. This was 

unexpected given the time allowed for aquation to occur. However, the observation of the 

chloride ion in the cisplatin molecule that is bound within the MT clearly delineates the 

starting point of the subsequent deconstruction of the cisplatin. For instance, 

distinguishing between the amine groups and water ligands in the aquated cisplatin would 

be difficult by MS due to protein band broadening, but the loss of the chloride ligands is 

clearly observed with the resulting significant mass difference. While this chlorinated 
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speciation is not likely the physiologically observed form of cisplatin, its appearance in 

these mass spectra provides information that can be used in the development of the 

deconstruction reaction pathway.  

 

Figure 3-5 Experimental and simulated relative speciation abundance  

Experimental data (markers, labelled (E) in legend) and the fitted time dependent 

reaction (smooth lines, labelled (S) in the legend) of speciation abundance. The top 

spectra show the Apo-MT and HoloMT speciation, where HoloMT represents the sum of 

the respective metallated species shown in the bottom spectra. Reproduced from D. L. 

Wong and M. J. Stillman with permission from the Royal Society of Chemistry. 15
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The presence of so many individual intermediate species can make kinetic analysis 

difficult by standard fitting methods. Using GEPASI, a biochemical pathway simulator, 

the observed kinetic rates can be simulated by fitting each of the metallation rate laws for 

cisplatin binding to MT to the experimental data.62, 63 For the experimental data, we use 

the time dependence of the abundance of each species in the ESI mass spectral data. To 

simplify the overall process, reactions involving the CDDP-MT, CDDP-Pt-MT, and L-Pt-

MT intermediate species were grouped based on their total Pt:MT stoichiometry (eg: 

Pt1MT, Pt2MT, Pt3MT, Pt4MT) (Equation 3-1), as described for Figure 3-2. The observed 

rate constants were then derived from the experimental data for each group (Table 3-1). 

The four consecutive rate law equations modelled the experimental data using the initial 

concentrations. Taking into account the errors in experimental MS abundancies, the fitted 

k values are quite reasonable, with % standard deviations below 22%. The errors for the 

formation for Pt4MT are large because the abundancies are low as it is the final step in the 

mechanism. The analysis also shows that the reaction is still in progress at the 600 s time 

point. 

Figure 3-5, top, summarizes the fitting results. Apo-MT reacts rapidly with cisplatin to 

form HoloMT, with more than 50% of the metallation occurring in the first 100 s. Figure 

3-5, bottom, shows the individual components of the HoloMT that were fitted with the k 

values shown in Table 3-1. These four k values are the rate constants for the steps by 

which individual PtxMT (x = 1-4) form. They encompass ligand substitution by the MT 

cysteine thiolates until only the Pt(II) core is left. 

Table 3-1 Fitted reaction rate k values from experimental mass spectral data. Reproduced 

from D. L. Wong and M. J. Stillman with permission from the Royal Society of Chemistry. 

15 

Parameter Value (/10-6) Std. Deviation 

k1 34 6% 

k2 23 6% 

k3 14 11% 

k4 28 21% 
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The kinetic analysis provides details of the initial pathways by which metallothionein 

interacts with the incoming cisplatin. The complexity of the reaction, indicated by the 

similarity in the rate constants, arises from multiple overlapping consecutive pathways, as 

noted in previous studies.6, 46 However, the ESI-MS data provides the time-dependent 

concentration of each of these initial species. The kinetic analysis provides the 

quantitative data to support the speciation sequence in the binding of cisplatin to MT to 

form eventually the PtMT product. The first example of a complete analysis of the 

metallation mechanism of MT was reported for As(III) binding using time- and 

temperature-dependent MS data.34 The results of presented in this Thesis allows the 

concentration of any of the 10 cisplatin-MT intermediate species to be calculated at any 

time following mixing, starting with only the initial concentrations of Apo-MT and 

cisplatin. It is interesting to note that Hagrman et al. reported a similar magnitude k value 

for their overall reaction of apo-metallothionein with cisplatin.6  

These ESI-mass spectral methods can be employed in the investigation of 

pharmacodynamics of drug metabolism in other biological or clinical applications. With 

respect to the interaction of MT with cisplatin as discussed above, it is important to 

comment on the toxic effects of the metabolism and excretion of cisplatin through the 

proximal renal tubules. It is now commonplace to induce metallothionein in the kidneys 

using Bi(III) to reduce the tubular damage from the excretion of cisplatin metabolites.69 

For instance, with relevance to Pt-based chemotherapeutics, platinum analogues including 

carboplatin and oxaliplatin, employ alternative ligand structures to deter chemoresistance 

mechanisms and toxic metabolite formation to reduce these symptoms.  

3.4 Conclusion 

This destructive property of MT towards transition metal complexes reported here with 

cisplatin emphasize the role of MT as a major player in pre-target resistance. The role of 

MT in metal metabolism and excretion coupled with the strength of binding to Pt(II), 

demonstrates the route in which renal damage occurs is likely similar to that of Cd-MT 

described in Chapter 1. Evidence of long term platinum persistence in individuals treated 

with platinum anticancer treatments,70 indicates that the metabolism of Pt(II) is a long 

process and chronic exposure would exacerbate this effect. When considering that the 
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heightened reactivity of MT and related thiols with trans-diamminedichloroplatinate(II) 

(transplatin) makes it unable to exact cytotoxic effects, it is clear that the character of the 

ligand on the metal greatly influences treatment success. The importance of the design of 

a thiol-resistant drug necessary to negate this resistance pathway. High resolution ESI-MS 

is a means to quantify metabolic products following metallodrug administration, and 

provides a sophisticated approach for identifying specific metabolic pathways. 
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Chapter 4 

4 Destructive Interactions of Dirhodium(II) Tetraacetate 

with  Metallothionein rh1a* 

4.1 Introduction  

Metallodrugs have a long and successful history in curing many different classes of 

disease; for example, cisplatin for testicular cancer, sodium aurothiomalate for 

rheumatoid arthritis, Li salts for psychological disorders, and Bi salts for gastrointestinal 

distress.1, 2 Challenges in the development of new metallopharmaceuticals include 

overcoming the cellular metal defences protecting the target. Metal-chelating gate-keeper 

proteins can result in dramatically decreased drug efficacy. The experiments in this 

Chapter report that one such gate-keeping protein, metallothionein, both binds dirhodium 

acetate, a potential anticancer metallodrug, and sequentially strips off the acetate ligands 

reducing the complex to just a thiolate-coordinated dirhodium core. This reaction may 

indicate a possible mechanism for a cellular metallodrug resistance pathway.  

Metallothioneins (MTs) are sulfur rich proteins that bind a variety of metals including 

toxic metals and those of medicinal interest. Current metallodrug designs aim to 

overcome these defences, for example using non-platinum compounds, like the robust 

series of half-sandwich arene Ru(II) anti-cancer compounds.3-5 While the over-expression 

of the cysteine-rich MT has been correlated to drug resistance,6, 7 there is very little direct, 

quantitative evidence of the mechanism that may be involved in the proposed 

interactions. In addition, there have been no reports of the subsequent fate of the 

metallodrug following its interaction with MT. Studies with cisplatin have provided some 

insight into the rates of metal ion isolation as seen in the previous Chapter,8, 9 but much 

more detailed information on the mechanism of destruction of the metal complex by the 

MT through ligand exchange is needed. Using dirhodium(II) tetraacetate as a model 

complex this ligand exchange can be observed with four identical ligands, while featuring 

a central metal-metal bond. 



90 

 

4.1.1 Dirhodium(II) Tetraacetate as a Model Chemotherapeutic 
Complex 

Metal-metal bonded dirhodium carboxylate complexes have gained interest as an 

alternative to classical platinum anti-cancer compounds.10 Dirhodium complexes are 18 

electron systems when the two axial positions are capped by solvent, with octahedral 

coordination of the rhodium metals. Ground work studies have shown high in vivo 

antitumor activity of Rh2(O2CR)4 (R = Me, Et, Pr) against L1210 tumors, Ehrlich ascites, 

and the sarcoma 180 and P388 tumor lines,11 as well as the ability to bind DNA and 

inhibit protein synthesis in a manner akin to cisplatin.12 Current research has extended the 

applications of rhodium compounds to medical imaging and protein labelling, but the 

significant antitumor characteristics of these rhodium complexes remain of great 

interest.13-16 However, the dirhodium carboxylates are particularly sensitive to sulfur 

coordination from cysteines in biomolecular targets.17, 18 This is significant because MT 

may stand in the way as a formidable defence for cancerous cells due to the tendency of 

cysteine coordination of any incoming metal. Herein, preliminary studies involving the 

remarkable and systematic deconstruction of dirhodium(II) tetraacetate (Rh2(OAc)4), a 

compound with anti-tumor activity, by the β-domain fragment of human metallothionein 

1a, are reported and discussed. 

4.1.2 Electrospray Ionization Mass Spectrometry (ESI-MS)  

ESI-MS is a powerful technique that allows for the quantitative visualization of a reaction 

as it progresses. In particular, mass spectrometry is especially effective in monitoring 

drug-protein binding reactions, as it is able to provide information regarding intermediate 

species as they develop in real time. 19, 20 ESI mass spectral data can be used in the 

characterization of species formed in a reaction by providing kinetic and stoichiometric 

details. When combined with UV-visible absorption and circular dichroism spectroscopic 

information, binding sites and changes of protein structure as a result of metal binding 

can be determined. These techniques provide a simple, yet information-rich method for 

assessing the viability of a preliminary study. While in vivo studies may be suited for 

determining mobility and target binding site information in a cell, the high detail of the in 

vitro studies shown here provide the mechanistic insight required to understand the 
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protective function that MT may perform in such drug resistant cancer forms. In this 

study, ESI-MS, UV-visible absorption and circular dichroism spectroscopy, together with 

molecular dynamics calculations were employed to monitor the binding reaction of 

Rh2(OAc)4 with apo-β-MT.  

4.2 Experimental Methods  

Preparation of recombinant human Metallothionein1a 

Preparation of isolated MT domain fragments followed previously reported methods. 21 

The amino acid sequence for the isolated domain used in this study was based on the 

recombinant human MT1a 38-residue β-MT domain fragment sequence 

(MGKAAAACSC ATGGSCTCTG SCKCKECKCN SCKKAAAA). Each of the 

corresponding DNA sequences was inserted as an N-terminal S-tag fusion protein into 

pET29a plasmids and individually expressed in E. coli BL21(DE3) with cadmium-

supplemented growth medium, as described in Chapter 1. The protein was expressed and 

purified as the cadmium saturated form for stability. All purified protein solutions were 

evacuated and saturated with argon to impede cysteine oxidation. 

Preparation of apo-β-Metallothionein 

Cadmium was removed from the purified, isolated MT domains by acidifying the protein 

solutions to pH 2.7. The protein was desalted and buffer exchanged with argon-saturated 

deionized water, returned to neutral pH, and concentrated using Millipore Amicon Ultra-4 

centrifuge filter units (3 kDa MWCO). Protein concentrations of the final, pH-adjusted 

apo-β-MT solutions were determined by cadmium remetallation of small fractions of each 

protein monitored using UV-visible absorption (Cary 50, Varian Canada): ε250 values of 

Cd3-β-MT is 36000 M-1 cm-1.22 Protein solutions were diluted to a final concentration of 

10 µM.  

Preparation of Rh2(OAc)4 solutions 

Stock solutions of 500 µM dirhodium(II) tetraacetate (Sigma-Aldrich) were freshly 

prepared in deionized water, evacuated and argon saturated. The MT cysteine 

concentration was determined and two-fold excess of Rh2(OAc)4 was added to the MT 

solution and mixed immediately prior to MS acquisition. The room-temperature UV-
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visible and circular dichroism (CD) spectra of the solutions were also measured following 

Rh2(OAc)4 saturation.  

Electrospray Ionization Mass Spectrometry, UV- Visible and Circular Dichroism 

Absorption 

A Bruker Micro-TOF II instrument (Bruker Daltonics, Toronto, ON) operated in positive 

ion mode was used to collect the data. NaI was used as an external calibrant. The settings 

are the same as those described in Chapter 1. The spectra were collected continuously 

over 1 hr and time slices were deconvoluted using the Maximum Entropy algorithm of the 

Bruker Compass DataAnalysis software package.  

A Cary 50 (Varian, Canada) was used to collect UV-visible absorption data from the 

visible region. A Jasco J810 spectropolarimeter was used to collect CD spectral data. The 

following scan parameters were used: step scan; range, 800-200 nm; data pitch, 1 nm; 

bandwidth, 0.5 nm; response, 1 s.  

Molecular Dynamics Calculations  

A minimized structure of the 38-residue Cd3-β-MT1a domain fragment was used 

(Scigress 6.0.0 MM3/MD method with augmented force field; Fujitsu Poland) to test if 

the Rh2
4+ core could be reasonably coordinated by 8 of the 9 cys of the β-MT1a. The 

three Cd2+ ions were deleted from the original structure and the Rh2
4+ core inserted using 

cysteine thiolate connections that were in close proximity to the 8 x/y ligand positions on 

the Rh2
4+ core. The alignment of the core was locked to stop rotation about the Rh-Rh 

bond. The molecular dynamics calculation was carried out for 200 ps at an average 

temperature of 355 K with 2 fs steps using a dielectric of 78.5. The initial structure 

relaxed immediately then was stable. 

4.3 Results 

ESI mass spectra were recorded continuously over 60 min following the mixing of 

(Rh2(OAc)4) with apo-β-MT in water. Six representative mass spectra extracted at 

different times from the 60 minute collection are shown in Figure 4-1. The spectral data 

were averaged over 15 seconds meaning that the average data point time is 7.5 s from the 
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start of the averaging in each spectrum resulting in data at 7.5, 37.5, 52.5, 67.5, 95.0 and 

127.5 s.  

Apo-β-MT is recognizable at a mass of ~3751 Da (track A), with the metallated species 

resulting in a series of higher mass species (tracks D-H). The metallated Rh2-β-MT has a 

mass of ~3952 Da (track D), with each Rh replacing four of the cysteine thiol protons, 

which, we propose, results in an octahedral geometry for each Rh(II) in the dirhodium 

core, retaining its Rh-Rh bond. The remarkable feature of this binding reaction is that the 

data show, in sequence, the systematic removal of each of the four acetate groups, whose 

mass initially starts at ~4193 Da (track H) and with each acetate removal being noted at 

peaks M = ~4136 (track G), 4081 (track F), and 4016 Da (track E), respectively. The 

released acetates in solution likely form surface adducts to positively charged amino acids 

(such as lysine) in the remaining MT, with these adducted species identified by a mass 

difference of 59 Da, and in proportional amount to the formation of Rh2-β-MT. There was 

no other source of acetate in the solution. The time-dependent data indicate that loss of 

the acetates is faster than the initial interaction because the partially-ligated Rh-MT 

complexes with 2, 3 or 4 acetates are in very low proportional concentration (tracks F-H) 

compared with the mono-acetate and Rh2
4+ core (track D). The overall binding rate can be 

seen from the decline in apo-β-MT abundance. As the Rh2
4+ core binds to the MT, the 

remaining apo-β-MT diminishes so that by 127.5 s almost none remains (tracks A-C). 
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Figure 4-1 Deconvoluted time-dependent ESI-mass spectra recorded following the 

mixing of apo-β-MT with excess Rh2(OAc)4 at pH 7.3. 

The vertical axis shows the normalized intensity; the horizontal axis shows the mass in 

Da. Data were averaged for 15 seconds starting at 0, 30, 45, 60, 90 and 120 s from a 

data set collected over 60 minutes. The apo-β-MT is marked in track A, the final product 

with the Rh2
4+ bound is marked by track D. Track identifiers: A) Apo-β-MT; mass 3751. 

B) Apo(OAc)1-β-MT; 3811. C) Apo(OAc)2-β-MT; 3875. D) Rh2-β-MT; 3951. E) 

Rh2(OAc)1-β-MT; 4013. F) Rh2(OAc)2-β-MT; 4075. G) Rh2(OAc)3-β-MT; 4136. H) 

Rh2(OAc)4-β-MT; 4192. Reproduced from D. L. Wong and M. J. Stillman, with 

permission from the Royal Society of Chemistry. 23 
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Figure 4-2 Absorption and CD spectra of the reaction of Rh2(OAc)4 and β-MT 

UV-visible absorption spectra (A) and circular dichroism spectra (B) of a 55 µM 

Rh2(OAc)4 solution in water with 0.5 and 1.0 mol. eq. of apo-β-MT added. Figure 4-2A. 

Spectral assignments: λA = 350 nm; σ (H2O) → σ*(Rh2). λB = 455 nm; π* (Rh2) → σ*(Rh-

O). λC = 580 nm; π* (Rh2) → σ*(Rh2). λD = 350 nm; σ (S) → σ*(Rh2). Figure 4-2B. 

Spectral assignments: λ1 = 255 nm, a new band appearing upon Rh2(OAc)4 binding. 
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Reproduced from D. L. Wong and M. J. Stillman, with permission from the Royal Society 

of Chemistry.23 

The UV-visible absorption spectra recorded with 0.5 and 1 mol. eq. of Rh2(OAc)4 added 

to the apo-β-MT showed appearance of bands near 3250 nm associated with a change in 

color from blue to yellow (Figure 4-2A). The Rh-Rh metal-metal bond was indicated by 

the band near 580 nm that only slightly blue shifted, as reported by others regarding 

rhodium axial coordination by solvents.18 

The circular dichroism spectra show a new band forming near 255 nm that only appears 

as a result of the protein binding to the Rh2(OAc)4 (Figure 4-2B). 

The ESI-mass spectral data together with the absorption spectral data, support our 

proposal that the Rh2(OAc)4 complex is bound as the Rh2
4+ core after each of the acetate 

bridging ligands is released and replaced by pairs of cysteinyl thiolates from the MT. In 

this mechanism, the thiolates displace the acetates stepwise, allowing the Rh-Rh bond to 

survive. However, the proposal does require a test of whether the Rh2
4+ core could exist 

within the peptide using a reasonable folding motif achievable from the 9 cysteines of the 

apo-β-MT fragment. To test this, an energy minimized structure of Cd3β-MT1a was used 

to establish a typical host volume.24 Using the Rh2(OAc)4 complex structure as a starting 

point, the deleted 3 Cd2+ ions in the protein binding site and inserted the Rh2
4+ core 

aligned by the acetates. The alignment was locked as the MM3 system has no information 

about the electronic structure of the Rh2
4+ metal-metal bond requirement. The 8 

coordination points for the 8 x/y aligned thiolate ligands are defined in the electronic 

structure as being eclipsed. There are two further z-axis coordination points frequently 

used by solvents.18 The cysteinyl thiolate alignments following deletion of the three Cd2+ 

ions were used to guide bond formation to the Rh2
4+ core. The MD calculation trajectory 

showed that the peptide backbone realigned within 10 ps, indicating that the Rh2
4+ core 

required very little rearrangement to use the volume previously occupied by the 3 Cd2+ 

ions. Figure 4-3 shows the space filling representation and the ribbon alignment of the 

orientation at 200 ps. No significant change in the energy was observed for over 170 ps. 

The ribbon (Figure 4-3, right) shows that the peptide encapsulates the Rh2
4+ core. 

Emission data from Cu+ binding studies to metallothioneins support the proposal that 
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when the MT peptide binds using all the cysteines in a cluster that there is little access to 

the solvent,25 so water was not included in the binding region. The ribbon depiction of the 

peptide orientation in Cd3-β-MT was virtually the same as shown in Figure 4-3, 

confirming that replacement of the three Cd2+ ions by the Rh2
4+ core did not require major 

reorientation of the cysteines. The structure in Figure 4-3 is a hypothetical model 

designed to indicate the possible conformational changes necessary for the 38-amino acid, 

9 cysteine apo-β-MT to bind the Rh2
4+ core.  

 

Figure 4-3 Molecular Dynamics structure for Rh2-bound β-MT. 

Results of a molecular dynamics calculation where the Rh2
4+ core was inserted into the 

apo-β-MT1a binding site. The calculation was carried out for 200 ps at an average 

temperature of 355 K with a dielectric constant set to the 78.5 of water. The yellow 

spheres are cysteinyl thiolates while the white spheres (right) are the two Rh2+ ions. The 

intention of this calculation was to examine if the Rh2
4+ core could bind using 8 cys S 

without major change to the normal conformation. Reproduced from D. L. Wong and M. 

J. Stillman, with permission from the Royal Society of Chemistry. 23 

4.4 Conclusion 

This Chapter introduces investigations of the simplest dirhodium carboxylate, 

dirhodium(II) tetraacetate (Rh2(OAc)4), and its deconstruction in vitro by the human 

MT1a β-domain fragment of the metal-defence protein, MT. Metallothioneins have a 

well-documented chemistry of scavenging toxic metals that enter the cell. Our group and 

others have suggested that this property can contribute to greatly reduced efficacies for 

metal-based drugs. In the reaction described in this Chapter, the four metal-coordinated 

acetates are replaced stepwise by the more aggressive cysteinyl thiolates of the 

metallothionein. The protein wraps around the rhodium complex, maintaining the Rh-Rh 
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bond, bringing the cysteinyl thiolates closer to the interior core. To further investigate this 

metallation mechanism, studies continue with the full length, two-domain MT, in the 

following Chapter. 
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Chapter 5 

5 Metallothionein: an Aggressive Scavenger– The 
Metabolism of Rhodium(II) Tetraacetate (Rh2(OAc)4)* 

5.1 Heavy Metal Pollution from Anthropogenic Sources 

With the turn of the millennium, sales of consumer products produced with xenobiotic 

metallic elements have increased globally. Examples of these metals are: Ti, Pb, Ni, and 

Sn in cosmetics,1-6 Sn, Ni, and rare earth elements in electronic cigarettes,7-9 Cd in 

batteries, Hg in lamps, As in older microchips, and Platinum Group Metals (PGM’s, Pd, 

Pt, Rh, Ru, Os, Ir) in jewelry , and widely in the automotive industry.10-13 In addition, 

occupational exposure and environmental pollution can occur as a direct result of metal 

mining and refining.14, 15 These metals have no known physiological role, and with 

multiple routes of exposure, pose an unknown and largely unavoidable risk to human 

health. In the case of metallotherapeutics incorporating a range of rare metals (e.g. Au, 

Ag, Pt, Pd, Rh, and others), humans are directly exposed to acute concentrations. This 

increase in mobilization of these rare metals results in widespread human exposure, 

spreading from concentrated points and diffusing across the globe.  

The physiological response to these rare metals relies on the body’s own protective 

response mechanisms to metals. Because of their nucleophilicity and metal scavenging 

ability, biological thiols like metallothioneins (MTs) and glutathione are involved in toxic 

metal resistance, whether directly or due to a downstream response triggered by metal 

exposure. Reports of these platinum group metals in urban environments and prevalence 

and accumulation in marine life near industrial runoff indicates the impending 

omnipresence and perturbance to daily life.16, 17 This may be reflected in the increased 

expression of MTs and the documented accumulation of PGMs initiated in a wide variety 

of marine, shellfish, seaweed and plant MTs, to changes in mineral environment. This 

metal accumulation in organisms can be used as a natural marker for environmental 

toxicity.18-22 Regardless, while the introduction of such foreign metals trigger an apparent 

defensive response, renal toxicity can still occur (e.g. Cd in MT, Itai-Itai disease). The 

long-term storage of Cd by MT in the kidneys raises the question about whether these 
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xenobiotic metals will follow this pathway and bioaccumulate. For instance, platinum 

levels persist in the blood of women many years after their anticancer treatment.23  

As a consequence of this growing threat, it is important to understand the reaction of MTs 

with metals that humans and the natural world are now becoming increasingly exposed to. 

5.2 Exposure to Xenobiotic Metals from Therapeutics 

Since the discovery of platinum based anti-cancer drugs, developed chemoresistance in 

certain cancer types has been associated with increased expression of MT.24-27 MTs can 

interfere with a chemotherapeutic agent before it can reach its desired target, or act in 

converse to its desired cytotoxic effect. Cellular thiols like glutathione and MT are 

correlated to expression in resistant cancers, although their direct causation to resistance 

is unclear. MT expression levels are affected by a variety of stress inducers18, 25, 27-37 

including metal therapeutics, e.g. Au and Ag nanoparticles,38-40 and Pd, Pt, and Rh 

particles airborne through mining and industrial exposure.15 Cisplatin resistance and its 

relationship with MT’s aggressive metal binding behavior is the focus of much 

research.41-46 MTs are rich in highly reactive cysteine thiolates, which are suspected of 

being involved in the interference of platinum drugs. The many stress inducers of MT 

may easily cause upregulation of the protein following a dosage of platinum drugs. This 

trend has been identified by looking at MT mRNA expression and cellular MT levels in a 

variety of cisplatin resistant cell lines compared to their parent lines.24, 38, 45, 46 In 

medicine, new metallocomplexes show promising results in clinical trials, many of them 

consisting of PGMs and related metals.47 This present study focuses on this new realm of 

“non-traditional metallation” to draw attention to the mechanism behind the metallation 

of xenobiotic metals to mammalian metallothioneins. 

In this study, the global issue is the specific exposure of humans to a xenobiotic metal 

complex, where the clearest examples come from well-defined cytotoxic agents. The anti-

tumor agent and common chemical catalyst dirhodium(II) tetraacetate (Rh2(OAc)4) and 

its binding reactions to MT is the focus of the study described here. 
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5.3 Cytotoxic Dirhodium(II) Tetraacetate as a Model 
Metal Complex  

The discovery of cisplatin in 1978 opened exploration of the cytotoxicity of metal-based 

complexes for cancer treatment.48-50As described in Chapter 4, dirhodium(II) carboxylates 

are one of the classes of complexes of interest for their therapeutic and cytotoxic 

activity.51-53 Similar to cisplatin, these dimeric compounds also cause disruption of DNA 

replication and transcription, as well as creating DNA adducts and crosslinking.54-58 Most 

notably, these anti-tumor dirhodium complexes irreversibly bind free cysteinyl thiols, 

inhibiting thiol-dependent enzymes.51, 53, 59 Unlike other amino acids, the reaction of 

cysteines with these rhodium complexes results in a breakdown of the carboxylate cage 

structure by thiolate replacement of the O donor ligands.52, 58 Their sensitivity to sulfur 

coordination from cysteines in biomolecular targets means rhodium(II) carboxylates can 

also act as radiosensitizers by depleting cellular thiol sources, lowering the cell’s ability 

to respond to oxidative stress.59, 60 Current research has extended the applications of 

rhodium compounds to medical imaging, radioactive isotope therapy, photodynamic 

therapy, and protein labelling, but the significant antitumor characteristics of these 

rhodium complexes remain of great interest. 59, 60 

 

Figure 5-1 Ball-and-stick representation of (Rh2(OAc)4). 

Teal represents Rh, red represents O, grey represents C, white represents H. Reproduced 

from D. L. Wong and M. J. Stillman. Copyright 2018 American Chemical Society.61  
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Dirhodium(II) tetraacetate (Rh2(OAc)4), Figure 5-1, is the simplest of the dirhodium(II) 

carboxylates. Rh2(OAc)4 is used widely as a synthetic catalyst in many organic reactions, 

a unique form of occupational exposure. It is used in many chemical synthesis reactions, 

such as catalysis of C-H, X-H insertion, and aromatic cycloaddition, with a relatively high 

solubility in aqueous solutions compared to Cu(II) acetate. Rh2(OAc)4 and related 

dirhodium complexes have demonstrated significant anti-tumor activity; Rh2(OAc)4 

administered to mice dramatically decreased the size of tumors.51-53 Tumor growth was 

inhibited by the interruption of DNA replication and protein transcription. Exhaled 14CO2 

from 14C labelled Rh2(OAc)4 indicated that the complex was decomposed within the 

organism. Urine analysis showed ~1% of the Rh was excreted, indicating that the 

remaining rhodium irreversibly bound to its target and accumulated. However, the exact 

target of Rh2(OAc)4 activity is unknown, and toxic renal side effects were high.51-53  

Because these dirhodium(II) carboxylates are uniquely sensitive to cysteine binding, MT 

is a likely binding target. Another major cellular thiol, glutathione, was found to rapidly 

form adducts with Rh2(OAc)4 both aerobically and anaearobically.62, 63 If cytotoxicity by 

Rh2(OAc)4 involves DNA adduct formation, or inhibition of specific enzymes, then MT 

would be acting as a pre-target interference source. Alternatively, if the cytotoxicity 

involves the depletion of cellular thiols, then MT would be the desired target. This can 

provide beneficial information for the design of future chemotherapeutics.  

5.4 Scope and Application of Results 

To prepare for the inevitable increased exposure of humans to xenobiotic metal 

complexes from many sources, it is of vital importance to understand their physiological 

chemistry. For the success of metal-based chemotherapeutics, it is imperative to 

understand drug metabolism and resistance mechanisms. The strong correlation between 

cellular thiol induction and chemoresistance requires the study of the metal binding 

pathways to the key thiol molecules, especially ubiquitous metallothioneins. In this 

Chapter, the work from Chapter 4 is extended. The systematic and rapid deconstruction of 

the tetraacetate ligands in Rh2(OAc)4, and the robust Rh2 binding by the 20 cysteines in 

apo-βαMT is reported. The metallation speciation was modelled using semi-quantitative 

electrospray ionization mass spectrometry (ESI-MS) data to obtain relative Kf values. The 
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results and their impact on the cytotoxic and environmental effects of the bioconjugation 

of MT and dirhodium complexes are discussed. 

5.5 Experimental Methods 

Preparation of Apo-MT 

Recombinant human metallothionein 1a (rh-βαMT 1a, referred when used in this study as 

“MT” unless specified otherwise) was overexpressed with an S-tag in Escherichia coli. 

The S-tag was removed and the MT purified according to previously described 

methods.64, 65 The cleaved construct has the sequence GSMGKAAAACSCATGGSCT 

CTGSCKCKECKCNSCKKSCCSCCPMSCAKCAQGCVCKGASEKCSCCAKKAAAA. 

This construct contains two mutations when compared with the human MT 1A sequence 

archived on UniProt protein database, T27N and I51V. These mutations are commonly 

found in other mammalian MTs including other human isoforms (as seen in Chapter 1, 

Figure 1-5), and are not involved in metallation reactions of the cysteinyl thiolates.66 The 

purified Cd-bound MT1a was demetallated by acidification (pH<2) and the resulting free 

Cd(II) in solution were removed by centrifugal filtration (Amicon Ultra-4 3000 Da 

MWCO). Protein concentration was calculated by remetallating a measured aliquot with 

CdSO4 and determining the Amax at the 250 nm shoulder characteristic of the LMCT band 

of Cd-S bonds (ε = 89,000 L mol-1 cm-1).67 

UV-visible absorption and circular dichroism spectroscopy 

UV-visible absorption and circular dichroism (CD) spectral data were acquired on a Cary 

UV Bio50 and JASCO J-810 Spectropolarimeter, respectively. Solutions were evacuated 

and backfilled with Ar gas prior to data collection, and measured in a sealed, 1 cm x 1 cm 

quartz cuvette.  

ESI-MS Studies  

Solutions of Rh2(OAc)4 (Sigma Aldrich) were prepared in deoxygenated, argon aerated, 

DI water. Aliquots containing known molar equivalents were added to the apo-MT 

solution immediately prior to mass spectral data acquisition using a MicroTOF II (Bruker 
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Daltonics, Toronto). All solutions were at room temperature and thoroughly deaerated 

using vacuum evacuation followed by Ar saturation. NaI was used as the calibrant. 

Spectra were collected in positive ion mode, as a function of time following mixing. The 

settings used are described in Chapter 1. The averaged spectra and data analysis were 

carried out using the Maximum Entropy application in Bruker Data Analysis 4.2 program. 

The resulting spectral data were normalized and the dominant species identified by mass.  

Cysteine Modification by p-benzoquinone and n-ethyl maleimide 

10 mM stock solutions of p-benzoquinone (pBQ) and N-ethyl maleimide (NEM) were 

dissolved in 10% v/v methanol in water and the solution vials wrapped in aluminum foil 

to protect from photochemical degradation. Aliquots of the modifiers were added to 

protein samples containing Rh2, Rh4, and Rh6MT, and mass spectral data of the resulting 

products were obtained to identify the species present. The modifier was titrated to 

excess, until the mass spectra no longer changed between additions. 

Molecular Dynamics Models of Rh2MT, Rh4MT, and Rh6MT Structures 

Molecular modelling calculations were carried out using Scigress Version 6.0.0 (Fujitsu 

Poland Ltd.). Structures, modelling parameters and sequence information were adapted 

from previously reported Cd7MT and As6MT models to build the Rh2MT models.64, 68, 69 

In brief, the Cd(II) ions were deleted and replaced with Rh(II) prior to Molecular 

Mechanics calculations (MM3). Molecular Dynamics calculations were carried out at 300 

K for 500 ps using the dielectric constant for water of 78.5. Metal thiolate structures in 

the alpha domain were based on bridging thiol arrangements in Cd7MT. 

Methodology 

Spectroscopic and mass spectral studies provide the identity of the binding moiety and 

detailed speciation data. The mass spectral data were simulated computationally to 

determine the stepwise equilibrium constants. Cysteine modification was used initially to 

determine the metallation stoichiometry by quantifying the number of cysteines not 

involved in binding the Rh2(OAc)4. However, these results directed the research focus 

towards understanding the protein structural changes in metallation, using molecular 
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dynamics modelling and mass spectral titrations under unfolded conditions. Altogether, 

these experiments fully document the metallation process by which xenobiotic 

dirhodium(II) tetraacetate is accumulated by MT. 

5.6 Results  

5.6.1 Metallation Reactions of MT with Rh2(OAc)4: Optical 
Spectroscopic Properties 

Figure 5-2, top, shows the UV-visible absorption spectral data for the titration of apo-MT 

with increasing mole equivalents of Rh2(OAc)4 added. Significantly, the UV-visible 

absorption data show an increased absorption at ~ 300 nm, corresponding to the well-

known cysteine S→Rh LMCT band. Similar absorption is also observed with glutathione, 

cysteine, methionine, and other biological thiols.62, 63, 70-74 This LMCT band is very strong 

and the transition from the blue of the metal solution to the yellow of the protein-bound 

product can be followed readily with the naked eye.  

The CD spectra in Figure 5-2, bottom, shows the titration of increasing mol. eq. of 

Rh2(OAc)4. The apo-MT spectra is shown in blue. Unlike the UV-visible absorption 

spectra, there is no significant change in the spectra with increasing Rh2(OAc)4. 
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Figure 5-2 Spectroscopic results of the Rh2(OAc)4 into MT titration 

UV-visible absorption (top) and circular dichroism (bottom) spectra for a titration with 

increasing molar equivalents of Rh2(OAc)4. The arrow indicates the direction of 

increased [Rh2(OAc)4]. The S→Rh LMCT band increases in absorbance at ca. 300 nm. 

Reproduced from D. L. Wong and M. J. Stillman. Copyright 2018 American Chemical 

Society.61 
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Figure 5-3 Initial deconstruction of Rh2(OAc)4 by apo-MT observed with ESI – MS. 

Stepwise addition of 0.0 to 1.0 mol. eq. of Rh2(OAc)4 to apo-MT. Major species are 

indicated by dashed lines: black for apo-MT, red for Rh2MT, blue for Rh4MT and green 

for species bound to at least one complete Rh2(OAc)4 molecule. Carboxymethylated MT 

species are mass shifted by ~ 60Da and are represented with a triangle. Reproduced from 

D. L. Wong and M. J. Stillman. Copyright 2018 American Chemical Society.61 

5.6.2 Initial Deconstruction of Rh2(OAc)4 by Apo-MT: Rapid 
Displacement of the Tetraacetate Ligands 

Figure 5-3 shows a series of ESI-mass spectra as a function of increasing molar ratio of 

Rh2(OAc)4:MT (from 0 to 1 mol. eq.). The data shown in Figure 5-3 provide a snapshot 

of speciation at very low molar ratios during the early stages of apo-MT (6875 Da) 
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metallation. As previously demonstrated with cisplatin,75 the apo-MT rapidly (within the 

dead time of the instrument) engulfs the incoming Rh2(OAc)4 molecule (441.99 Da), then 

systematically shreds the ligands from the metal complex until only the Rh-Rh core is 

sequestered within its thiolate binding site. The mass spectral data show the presence of 

the incoming complete complex, and the final isolated Rh2 core bound to the MT. The 

protein species with masses of 7316, 7517, and 7758 Da are representative of Rh2(OAc)4-

MT, Rh2(Rh2(OAc)4)-MT, and (Rh2(OAc)4)2-MT, respectively. These dominant masses 

gradually diminish as the reaction inside the MT proceeds, until the masses of the final 

products of Rh2MT and Rh4MT, at 7074 and 7273 Da, respectively, dominate. The 

change in mass coincides with the mass differences between the lost acetate moieties 

from the Rh2(OAc)4 bound protein species, where each acetate group has a mass of 59.04 

Da. 

5.6.3 Accumulation of Rh2: Formation of Rh2MT, Rh4MT, and 
Rh6MT  

The formation of Rh2-metallated MT products can be described by three stepwise 

bimolecular reactions, as shown in Scheme 5-1. Each metallation event begins with 

encapsulation of the whole molecule, followed by rapid deconstruction of the ligand 

structure to the dirhodium core. The metallation continues with formation of the ligand-

stripped Rh4MT (7273 Da) and Rh6MT (7473 Da). Figure 5-4 shows a series of stepwise 

metallation reactions as from 0.0 - 2.0 mol. eq. of Rh2(OAc)4 were added to apo-MT 

under equilibrium binding conditions. The major product of the reaction is Rh4MT, which 

forms rapidly, with a small amount of Rh6MT. 

 

Scheme 5-1 Proposed bimolecular, stepwise metallation reactions for Rh2(OAc)4 binding 

to apo-MT.  
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Figure 5-4 ESI mass spectral data recorded during the titration of apo-MT with aliquots 

0.0 to 2.0 mol. eq. Rh2(OAc)4. 

The major species are indicated by dashed lines: black for apo-MT; red for Rh2MT; blue 

for Rh4MT; and green for Rh6MT. The inset bar graphs on the right of each spectra 

shows simulated mass spectral data based on the model described in Figure 5-5, using Kf 

values in Table 5-1. Carboxymethylated MT species are mass shifted by ~ 60 Da and are 

represented with a triangle and are not included in the simulation. Reproduced from D. 

L. Wong and M. J. Stillman. Copyright 2018 American Chemical Society.61 
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Figure 5-5 Experimental and simulated speciation abundance 

Experimental mass spectral speciation abundance data (A, left) and simulated data (B, 

right) calculated from the fitted relative Kf values (Table 1). Reproduced from D. L. Wong 

and M. J. Stillman. Copyright 2018 American Chemical Society.61 

5.6.4 Modeling the Reaction: Determination of Relative Binding 
Constants (Kf) 

Using the Hyperquad Simulation Speciation (HYSS)75 software, the mass spectral 

abundances associated with these reactions were modelled based on the concentrations 

and mole equivalences of the Rh2(OAc)4 added, using the equations in Scheme 5-1. The 

three relative K values (shown in Table 5-1) were calculated so that the simulated model 

matched the experimental data, Figure 5-4. The calculated abundances were used to 

simulate the mass spectra as seen in the red bar graph Figure 5-4 insets. The simulated 

mass spectra closely match the experimental MS data over the course of the titration. 

Figure 5-5A shows the experimental speciation data extracted from Figure 5-4. The 

sequence of speciation clearly follows a typical non-cooperative metallation mechanism76 

in which Rh2MT forms, followed by Rh4MT, followed by Rh6MT. The fitted results, in 

Figure 5-5B, match the experimental data closely, and provide the relative binding 

constants as shown in Table 5-1.  
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Table 5-1 Relative equilibrium binding constants for the reaction of Rh2(OAc)4 with Apo-

MT 

MT(Rh2)n Log β Log Kf 

1 4.22 4.22 

2 7.22 3.00 

3 8.89 1.67 

 

Figure 5-6 ESI -mass spectral data of modified and unmodified mixed Rh2 metallated 

species 

(A): non-modified Rh2-, Rh4-, and Rh6-MT, represented by a triangle. (B): solution in (A) 

following addition of p-BQ. (C): non-modified Rh2-, Rh4-, and Rh6-MT, represented by a 

triangle. (D): solution in C following addition of NEM. The experimental data are shown 

in bar graph representation Persistent titrations to excess and long incubation times did 

not affect the resulting spectra indicating completed reaction. Rh2MT species shown in 

red, Rh4MT species in blue, and Rh6MT species in green. Reproduced from D. L. Wong 

and M. J. Stillman. Copyright 2018 American Chemical Society.61 
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The data in Figure 5-6 show modification of MT containing Rh2MT, Rh4MT, and Rh6MT 

by both pBQ (Figure 5-6, A, B, left half) and NEM (Figure 5-6, right half). The Rh2MT, 

Rh4MT, and Rh6MT spectra measured prior to modification are shown in Figure 5-6, top 

(A and C). In B and D, these same species are present (identified by triangles) even 

though excess modifier was added. Both sets of modified species (Figure 5-6, lower) 

display a variety of Normal distributed species, as shown in Figure 5-6 in bar graph 

format. The experimental mass spectral data is shown below in Figure 5-7, but is 

represented in bar graph format in Figure 5-6 for clarity. 

 

Figure 5-7 Mass spectral data of the alkylation of Rh2-bound MT 

ESI Mass spectral data collected for a mixture containing Rh2MT, Rh4MT, and Rh6MT 

(top left and top right) and their subsequence modification by pBQ (bottom left) and NEM 

(bottom right). Reproduced from D. L. Wong and M. J. Stillman. Copyright 2018 

American Chemical Society.61 

As described by Irvine et al, cysteine accessibility can be understood by the distribution 

of cysteine modified species.77 A Normal distribution represents statistically equal 

accessibility of the modifier to all available free cysteines. This means that the unbound 

cysteines are exposed. Therefore, the breadth or spread of the distribution tells us the 

number of available cysteines, and the shape of the distribution tells us if there is 

conformation specificity or equal accessibility of the free thiols. Figure 5-6B shows the 

distribution of the modified Rh2(BQ)xMT species (red bars). The data indicate the 

presence of two species, one with x = 0-8 free cysteines, and another with x = 10-15 free 

cysteines. This means that there are two distinct Rh2MT products: one coordinating the 

Rh2 with 12 cysteines, and the other coordinating the Rh2 with 5 cysteines. This is harder 
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to distinguish at increased concentrations as the abundancies of the two distributions 

overlap each other, Figure 5-6D. The steep rise of the modified Rh4(BQ)yMT (blue) also 

displays a Normal distribution with y = 0-7 free cysteines. The formation of a modified 

Rh6(BQ)zMT species with z = 0-4 free cysteines also can be observed (green). 

There is a small discrepancy between the number of modified cysteines observed using 

pBQ and NEM. This is likely due to the reaction occurring at physiological pH, at which 

pBQ is not as effective as NEM.78 Therefore, our conclusions about the number of free 

cysteines for the metallated MT is based on the greatest number of NEM-modified 

cysteines for each Rh-bound complex. 

5.6.5 Accumulation of Rh2(OAc)4 in αMT: Evidence for Structure-
Dependent Metallation 

Figure 5-8 shows the time-dependent metallation of the single domain apo-αMT fragment 

at low pH (<2) with Rh2(OAc)4. Over the time course of the reaction (44 minutes), 

species ranging from [Rh2(OAc)4]1-MT to [Rh2(OAc)4]6-MT are observed. This is 

completely different when compared with the results from the titration carried out at pH 

7.4 with the two-domain protein (Figure 5-4). 

These data show that the unfolded, loose structure caused by the high [H+] greatly 

increases cysteine accessibility to the incoming Rh2(OAc)4 in this single domain 

fragment. In the presence of excess Rh2(OAc)4, this manifests as two distinct reaction 

pathways: i) ligand replacement by thiolates following Rh2(OAc)4 binding, as described 

for the whole protein above, and ii) proposed axial coordination of Rh2(OAc)4 by 

cysteine. These two reaction pathways are outlined in Figure 5-8, right. The acidic 

conditions minimize the nucleophilicity of the cysteinyl thiols, and allow for the lower 

Cys:metal ratios to bind with metal ratios of up to 6 x Rh2(OAc)4. Despite the observation 

of this “supermetallation,” the cysteine replacement of the tetraacetates still occurs albeit 

slower than at physiological pH. 

In Figure 5-8, the key species identified are: apo-αMT, [Rh2(OAc)4]1-αMT, 

[Rh2(OAc)4]2-αMT, [Rh2(OAc)4]3-αMT, [Rh2(OAc)4]4-αMT, [Rh2(OAc)4]5-αMT, 
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[Rh2(OAc)4]6-αMT, Rh2[Rh2(OAc)4]1-αMT, Rh2[Rh2(OAc)4]2-αMT, Rh2[Rh2(OAc)4]3-

αMT, Rh2[Rh2(OAc4]4-αMT, Rh2[Rh2(OAc)4]5-αMT, Rh2MT, and Rh4MT. 

 

Figure 5-8 ESI mass spectral data of the low pH titration of Rh2(OAc)4 into αMT 

(Left) Time-dependent mass spectral data of apo-αMT at low pH (<2), recorded over 44 

minutes following addition excess Rh2(OAc) 4. Red arrows indicate mass shift resulting 

from the loss of (OAc)4. (Right) Labels for identifiable species in the mass spectral data 

and proposed formation pathways Reproduced from D. L. Wong and M. J. Stillman. 

Copyright 2018 American Chemical Society.61 
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5.6.6 3D Models: Cysteine Accessibility throughout Metallation 

Representative structures of apo-MT, Rh2MT, Rh4MT, and Rh6MT are shown in Figure 

5-9. Energy minimized geometries using MD for apo-MT, Rh2MT, Rh4MT, and Rh6MT 

were constructed in Scigress 6.0.0 and geometry optimized using Molecular Mechanics 

(MM3) prior to Molecular Dynamics (MD) calculations at 300 K for 500 ps. These 

structures are shown in ball and stick format in Figure 5-9 and in full page format along 

with H-bond mapping in Appendix C.  

The apo-MT model, Figure 5-9A, shows the structure of the non-metallated cysteines, 

and how MT orients itself with respect to metallation. The energy minimization of apo-

MT results in a compact globular structure, in accordance with mass spectral studies at 

physiological pH.79 The cysteine residues (-SH shown with yellow spheres in Figure 5-9) 

are oriented to the exterior when metal-free, but coalesce toward the interior of the 

protein when metal-bound. In the apo-MT structure, the backbone and cysteines arrange 

themselves in a similar fashion to a helix, with cysteines facing outward. This agrees with 

results from Irvine et al. and Rigby et al. that the cysteine solvent accessibility in the apo 

form facilitates metal binding.80-82 The driving force for organized structural formation in 

mammalian metallothioneins is the metal-induced folding with each sequential M-SCYS 

chelation event.80 Once bound to a metal, these cysteines become buried within the 

protein interior, shielding them from the cellular environment. The fully bound Rh6MT 

(Figure 5-9H, “Rh2β4αMT”) shows this clearly. The configuration of the peptide back 

bone shows that MT wraps around the metal core upon binding. This effect is observed in 

the partially metallated Rh2MT and Rh4MT structures as well, in Figure 5-9. When the 

Rh2 is bound to cysteines that nominally form a single domain (Figure 5-9, Rh2βMT, 

Rh2αMTI, Rh2αMTII, Rh4αMT), the metal-bound cysteines are buried, while the remaining 

metal-free cysteine maintain their external orientation. This reflects the globular protein 

structure seen in the apo-MT model, Figure 5-9A. However, these one-domain-bound 

MTs are fluxional and capable of further subsequent metallation. In contrast, for two-

domain metal binding, like in the Rh2β2αMTI, Rh2β2αMTII, and Rh6MT, a dumb-bell-like 

structure typical of M(II) ion metallation is obtained.83 When both domains are bound, the 
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cysteine accessibility is greatly diminished. This accounts for the lower abundance of the 

Rh6MT species in the mass spectral data.  

 

Figure 5-9 Energy minimized molecular dynamics models of apo-MT, Rh2MT, Rh4MT, 

and Rh6MT. 

Rh shown enlarged in teal, cysteines shown enlarged in yellow, C in gray, O in red, N in 

blue, H in white. Structures were constructed based on Cd7MT structures from previously 

reports,10, 64, 68 using Scigress 6.0.0.84 Details of the minimization are given in the text. 

Reproduced from D. L. Wong and M. J. Stillman. Copyright 2018 American Chemical 

Society.61 
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5.7 Discussion 

5.7.1 Chronic Presence of Anthropogenic Pt, Pd, Rh (PGM’s)  

Platinum group metals have no biological role, and little is known about their long-term 

toxicity. Pd and Rh are naturally found alongside metallic Pt, therefore, their 

contamination is often mobilized by the same routes. With the use of these metals in -

catalytic converters in automobiles (to reduce volatile organic components), airborne 

PGM particulate is becoming a widespread route of exposure. Higher concentrations of 

these PGM’s are related to higher traffic density.10, 13, 23, 85 Spreading from urban areas 

and carried by the winds, fine metal particulate (< 10 nm) enter the soil, water, and food 

chain, often being converted into inorganic complexes through ingestion, inhalation, or 

absorption through damaged skin.11, 13, 16, 86-90 Bacterial, organismal, and environmental 

transformations can convert inert metal species into reactive ones. With the number of 

automotive vehicles ever increasing, the biofixation of these metals makes them more 

bioavailable than ever before. The accumulation and biological effects of subclinical 

levels of these PGM’s (in public areas like playgrounds, tramways, narrow streets) 

particularly in cities with dense populations and heavy traffic are of a concern for the 

future.10, 12, 13 

There are already several examples of anthropogenic PGMs affecting waterways and 

corresponding ecosystems near urban regions, detectable in Arctic ice cores, with 

documented metal levels increasing over several decades.88-92 Varying soil and water 

conditions, such as pH, N and S availability, and temperature and precipitation levels can 

affect metal solubility, thereby accelerating permeation through the food chain.93 

Bacterial resistance and introduction of metals into the food chain results by 

biomethylation.94 The Hg cycle, for example, causes bioaccumulation in fish and shellfish 

species, which magnifies through larger predators.95 

The cytotoxicity of these metals has been demonstrated in current and potential cancer 

metallodrugs, showing the danger of exposure in the form of their side effects. Although 

the long-term effects of sub-clinical levels of exposure are relatively unknown, it is 

concerning especially for vulnerable populations, like children.96 These soft, heavy metals 
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are more likely to be accumulated by coordination with biological thiols and exhibit long 

biological half times, increasing the risk of nephrotoxicity. While other lighter or 

physiologically essential metals are recycled or excreted through the urine rapidly, heavy 

metals like Pt, and Cd can remain in the body for decades.  

 

5.7.2 Binding Reactions of MT with Rh2(OAc)4: Explaining the 
Spectroscopic Results 

As expected, the replacement of the acetate groups with cysteine thiols resulted in a 

strong absorbance at ~ 300 nm (Figure 5-2, top). This agrees with other spectroscopic 

studies involving biological thiols (cys, GSH for e.g.62, 63, 72-74, 97, 98) and confirms the 

cysteine thiol as the binding moiety involved in the Rh2 complexation. 

In the case of the CD spectral data (Figure 5-2, bottom), it is surprising that no significant 

spectral intensities are observed during the titration of the full apo-MT. However, the lack 

of a distinct CD spectral intensity is likely due to the overlap from the presence of several 

structurally different species because the mass spectral and structural cysteine 

modification data indicate that the Rh2(OAc)4 has bound to the apo-MT. This contrast the 

results previously reported for Rh2(OAc)4 binding to the β-domain fragment, in which a 

single product is formed in a 1:1 fashion, producing a strong CD signal, as seen in 

Chapter 4.70 

5.7.3 Metallothionein: Non-Traditional Metallation and Metal 
Complex Deconstruction is Evident from the Mass Spectra 

Mass spectrometry is especially helpful in identifying biological targets.99 ESI-MS is a 

soft ionizing, high resolution, solution-phase technique that is ideally suited for tracking 

the metallation status of MT. The advantage of using ESI-MS is that it allows for 

confirmation of the presence of intermediate states in real time. These versatile properties 

have been widely exploited in Native ESI-MS,100 allowing detailed kinetic and 

equilibrium studies of the metallation of MTs.65, 70, 76, 83, 100-109 The stoichiometric and 

structural information provided by the ESI method is particularly important for MT 

because the lack of typical protein features and its high sensitivity to oxidation makes 
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MT’s protein structure difficult to observe with crystallography, NMR, or other structure 

elucidating methods. 

The conditions for cooperative and non-cooperative bimolecular metallation of Zn(II), 

Cd(II), and Cu(I) to MT have been studied with consistent stoichiometric ratios identified 

primarily using ESI-MS, including traditional metallation to form stable cluster states 

M(I)6S9, M(II)3S9 M(II)4S11.
65, 76, 83, 102-104, 110, 111 Binding coefficients can be accurately 

extracted from these data. The observed kinetic binding of Pt(II)1-7 from cisplatin was 

first determined by chromatographic methods,112 which were then enhanced by our ESI-

MS modelling methods,41 a similar methodology to that applied to this current dirhodium 

study.  

The metallation of Rh2(OAc)4 to apo-MT can be categorized as non-traditional 

metallation, because the binding of MT involves chelating Rh2(OAc)4 followed by 

disassembly of the initial metal complex by displacement of the original coordinated 

ligands. ESI-MS has been used to observe this destructive effect MT has with cisplatin, 

and Ru-based arene complexes41 This step-wise, sequential deconstruction of Rh2(OAc)4 

has been reported previously with the single apo-β-domain fragment of MT1a. Under 

those conditions, one discernible product (Rh2MT) is formed in a linear fashion.70 In this 

present ESI-MS study, the full, two-domain protein has a higher sulfur availability (20 

cysteines), which greatly increases the rate of reaction and the number of possible 

conformers (Rh2MT, Rh4MT, Rh6MT) that can form. The ligand loss of the coordinating 

acetates and accumulation of the sequestered metal species shows that Rh2(OAc)4 does 

not survive intact when bound to MT. This emphasizes the destructive effect MTs can 

have on both chemotherapeutically related complexes and xenobiotic metals from 

environmental sources.  

The presence of metal-thiolate (Zn(II), Cd(II), Cu(I)) clusters that form in higher ratios of 

these metals make MTs resistant to trypsin digestion.105 However, it should be noted that 

As(III) binding is not considered to involve cluster formation. The As(III) bound to the 

isolated MT fragments form M(III)3S9 (α-domain), and M(III)3S9 (β-domain), and to the 

full protein forms M(III)6S18,
111 which means that the MT peptide flexibly accommodates 

a completely different style of binding than reported for the Group 12 M(II) ions. The 
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results of this Chapter show Rh2 binding also does not follow traditional cluster formation 

of Zn(II), Cd(II), and Cu(I), instead binding to MT in a rigid manner. MT is unable to 

perform its usual metal relocation, as described in Chart 5-1. Therefore, a novel MT 

binding mode is now reported for Rh2 in this study, which enforces the difference 

between the metallation of complexes and metal ions by the protein.  

 

Chart 5-1 Proposed pathway for metallation of βαMT 1a by Rh2(OAc)4 at physiological 

pH. 
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The two pathways shown apply to different configurations. Pathway A: Rh2MT binds an 

additional Rh2(OAc)4 which is deconstructed, forming Rh4MT of configuration I. No 

further metallation occurs at this point. Pathway B: Rh2MT binds an additional 

Rh2(OAc)4 which is deconstructed, forming Rh4MT involving a proposed alternate 

configuration II. This form can proceed to bind a further Rh2(OAc)4, producing Rh6MT. 

Reproduced from D. L. Wong and M. J. Stillman. Copyright 2018 American Chemical 

Society.61 

5.7.4 Structure-Dependent Metallation of Metallothioneins: Rigid 
Rh2 Binding and Comparison of Binding Constants 

The 2° and 3° structure of MT is only defined by metallation,80 as it exhibits no 2° 

structural elements or aromatic residues. A broad distribution of metallated and metal-free 

MT species exist in the cell.65, 83, 103, 104, 113-115 Despite the sensitivity of the free cysteines 

to oxidation, fluorescence labelling has demonstrated the presence of metal free apo-MT 

in roughly equal quantities to holo-Zn-MT, both in the oxidized and reduced form.116 This 

confirms that metallation of MT is a post-translational modification that can only occur 

once the protein is fully synthesized, due to the cross-linking nature of metal-cysteine 

coordination that forms the metal-thiolate clusters. To better understand the metallation 

reaction, the fully demetallated apo-MT is used as the model for the partially metallated 

MTs expected in vivo.  

Metal binding to MT is generally fluxional such that the metal ions can move from site to 

site in search of the lowest thermodynamic product (for example, the well-known change 

in Cu(I)-MT emission signal when Cu(I) is titrated into Zn-MT 1A or Zn-MT 2A).117 In 

the case of the dimeric rhodium binding, the bound cysteines form multiple metallated 

species (Chart 1). The orientation of the initial metal binding in relation to the MT 

cysteines defines how the metallation proceeds. Due to the decreased abundance of 

Rh4MT and Rh6MT, the domain location and formation of Rh2MT determines whether 

the metallation continue to Rh6MT. The two distributions for the Rh2(BQ)xMT modified 

speciation data reflect these products. The decrease in relative log Kf’s demonstrates its 

rigidity as metallation progresses (Table 5-1). Previous work with the single β domain 

fragment shows that the β-domain accommodates 1 Rh2 moeity.70 The 11 cysteines of the 



124 

 

alpha domain can accommodate the remaining 2Rh2 if metallated efficiently (Chart 5-1, 

right pathway B). If not, the cysteines become too tangled to accommodate further metals 

(Chart 5-1, left pathway A). 

It is evident that the magnitude of log Kf’s cannot be directly compared between 

chemically different metals because of both different binding geometries, and the 

presence of competitive coordinating ligands. A comparison can only be made 

meaningfully between isomorphous metals. Due to the fluxional nature of the 20 cysteine 

thiols in MTs, metals with different oxidation states can form vastly different binding 

geometries. Just as Zn metallation of MT differs from Cd metallation, free metal ion 

accumulation in MT cannot be compared to the deconstructive process that MTs exert on 

ligated metal complexes. Complex deconstruction cannot be included in these values, as 

these are the final, observed, relative binding constants. This is important in comparing 

values, because this emphasizes the versatile nature of MT, in that there is no consistent 

metal binding site across metal families. 

5.7.5 Solvent-Cysteine Accessibility and Protein Flexibility 
throughout Metallation 

Typically, protein structural information can be obtained by analyzing the charge state 

distribution patterns in the mass spectral data. Due to the small size of MTs, this method 

is not as effective, especially to probe the apo-protein or partially metallated states. More 

recently, however, structural information about MT has been obtained through the 

reaction profiles of cysteine modifiers that take advantage of MT’s cysteine rich structure. 

p-Benzoquinone (pBQ) and N-ethyl maleimide (NEM) are organic agents capable of 

binding covalently with free thiols, as shown in Scheme 5-2. Similarly to Ellman’s 

Reagent (5,5′-dithiobis(2-nitrobenzoic acid), DTNB), this irreversible binding permits 

quantification of free thiols.77, 78, 103, 111, 118 This is observed as a predictable mass change, 

but in addition with respect to MT and its 20 cysteines, the modified speciation 

distribution can also provide information about the solvent accessibility of the cysteines.78 

This technique has been used to understand metallation of apo-MT through partially 

metallated and fully metallated Cu6MT, Cu13MT, Cu20MT, and As6MT.65, 103 
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Scheme 5-2 Structure and reaction mechanism involved in the formation of covalent 

bonds between cysteine and modifiers pBQ (A, top) and NEM (B, bottom). Reproduced 

from D. L. Wong and M. J. Stillman. Copyright 2018 American Chemical Society.61 

In this present study, both pBQ and NEM are used in conjunction with mass spectrometry 

to quantify the number of free cysteines and to probe the surface structure and the solvent 

accessibility of the partially metallated states of Rh2MT, Rh4MT, and Rh6MT. Structural 

characteristics can be inferred from the reaction profile of modification observed in the 

mass spectral data.77 As expected, the higher metallated Rh4 and Rh6 bound MT shows 

less solvent accessibility because of the lower spread of the p(BQ)-modified species. The 

most solvent accessible species, Rh2MT, shows two distinct distributions, indicating that 

two metallated states are created. From the change in intensity for the higher metallated 

states, we can infer that only one of the observed Rh2MT species is capable of further 

metallation, as described pictorially in Chart 5-1. This rigidity is reflected again with the 

lowered abundance of Rh4MT and Rh6MT, and in the decrease of the relative log Kf 

values showing that progressive metallation is less favorable.  
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3D structures constructed using MM/MD modelling techniques from previously reported 

AsMT119, 120 and Cd-MT64, 68 metallated forms were adapted to examine the possible 

metal thiolate constructs MT may adopt when bound to dirhodium cores. The absence of 

aromatic and hydrophobic residues, and the absence of mean that the driving force for 

protein folding is the cross-linking that results from the metallation of the cysteines, 

stabilized by hydrogen bond formation. As the cysteine modification results and the MD 

structures indicate, metal-free cysteine thiolates are found to be solvent accessible,79 

while holo cysteines are buried within the protein structure. MD calculations on the holo-

Rh6MT shows no change in the conformational geometry, demonstrating the holo-MT’s 

rigid status. 

The low pH experiment shows that while the unfolded, 9 cysteine apo-αMT can bind to 

the Rh2(OAc)4, it is unable to effectively displace the coordinating ligands of the 

complex. Instead, the unfolded peptide quickly binds to 1-6 Rh2(OAc)4 species Figure 

5-8), which occupies and locks the cysteine thiolates from other reactivity. Significantly, 

the MS data recorded at pH<2 demonstrates that Rh2(OAc)4 has a strong binding affinity, 

surpassing that of Cd, which is completely demetallated from MT at this pH. These low 

physiological pH, in which the more folded MT structure can orient its cysteines to 

displace the coordinated ligands more effectively than the unfolded protein. 

The unusual malleability of MT, first reported for As(III) binding,111 is clearly an 

additional characteristic property of MT. The many species seen in the Rh2-binding mass 

spectral data imply multiple coordination possibilities for metal binding. This suggests 

that the “magic numbers” concept83 prevalent in the literature does not apply to transition 

metal complexes.  

The data reported here support the findings in Chapter 2 that the initial, intrinsically 

disordered, native MT structure at physiological pH can flexibly entrap metal complexes 

and is a necessary conformation to further react, deconstruct, and isolate the metal for 

storage. 
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5.8 Conclusions 

This Chapter reports the reaction of a xenobiotic complex with MT as a test of the 

possible chelation properties of MTs with transition metal complexes. Rh2(OAc)4, a 

robust synthetic catalyst, binds intact to the metal-free apo-MT. The tetraacetate ligands 

are rapidly removed upon binding by the folded MT at physiological pH, in a manner 

reported previously for cisplatin. The initial reaction of the apo-MT involves the 

displacement of tetraacetate groups by the cysteinyl thiolates. Where the first Rh2 binds in 

the protein, which domain, governs the remaining space in which metallation can 

continue. This intermediate state can then proceed towards two structures, one of which 

allows the metallation of a third dirhodium moiety, forming Rh6MT, the other pathway 

stops at Rh4MT. These branching pathways were determined using complementary 

techniques of cysteine modification and mass spectrometry, together providing speciation 

data for equilibrium reaction modelling.  

The increase in global exposure to anthropogenic xenobiotic metals demands updated 

understanding of the metabolic effects caused. Rh and PGMs are known to exert 

cytotoxic and nephrotoxic activity, through metabolic process that can increase the 

bioavailability. The experiments in this Thesis demonstrate the ease with which biological 

structures can greatly change the chemical activity of rhodium. A metal’s persistence in 

ever changing chemical forms emphasizes the need for long-term study and caution for 

the continued utilization of these elements for human health. 

Finally, of concern, the long term accumulation and storage of PGM’s can provoke 

chronic toxic effects. Cd-bound MT has a reported half-life in the kidneys exceeding 

twenty years.121 Due to the firm and rigid binding of Rh2(OAc)4 to MT, Rh would be 

expected to accumulate in a similarly dangerous manner. The heavy and widespread use 

of PGM’s pose a risk that cannot be ignored, as history would remind us with the use of 

lead in gasoline and paints causing widespread toxic effects. This long-term storage is 

also applicable for these xenobiotic metals. The bioaccumulation of these metals can pose 

a significant health risk in the future. 
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Chapter 6 

6 Glutathione Binding to Dirhodium(II) Tetraacetate: a 
Spectroscopic, Mass Spectral and Computational Study 
of an Anti-Tumor Compound Bound to a Model Thiol* 

6.1 Introduction 

Intracellular thiols play an important role in metabolism.1 Non-protein, sulfhydryl 

compounds aid in protection against oxidation, as well as in the safe detoxification of 

harmful or foreign agents through thioether formation.1-4 This latter property may 

substantially reduce the efficacy of drug delivery pathways and, subsequently, the success 

of a drug, which can lead to drug resistance.5-11 In particular, thiol-based resistance can be 

deleterious for metal-based chemotherapeutics, as the electron-rich thiolate favours 

binding to the soft, d-block metals commonly used in such pharmaceuticals, for example, 

Pt(II), and Au(I).10-12 

Glutathione (GSH) is a tripeptide that is required in many metabolic cycles and is vital in 

cellular defence because of its cysteine thiol (Figure 6-1A).1, 2, 6, 9, 13 Intracellular 

concentrations of GSH can reach up to 10 mM, with its regulation and synthesis tightly 

controlled.2, 3 This cysteinyl thiol provides the main ordnance through which glutathione-

based protective chemistry acts in guarding the cell against oxidative damage and 

conjugating metabolites for efflux.2, 3, 14 GSH is a common coenzyme and is also heavily 

involved in metabolic pathways such as glutathione peroxidases, reductases, and 

glutathione S-transferases.2, 6, 7, 15 

 GSH S-transferases catalyse the combination of GSH with xenobiotic compounds for 

metabolism and excretion using the highly nucleophilic cysteinyl thiolate (GS-).2 The 

predominance of GSH in the cell, coupled with its conjugation abilities, means that GSH 

is a major player in the destructive metabolism of therapeutic compounds, acting through 

conjugation as a means of drug resistance. 3, 9, 11 Metal-based therapeutic compounds that 

are vulnerable to thiol chemistry can be structurally altered, and even deactivated, 

following reaction with intracellular GSH.8, 16, 17 
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Figure 6-1 Structures described in Chapter 6 

Structures of (A) glutathione (GSH), (B) Rh2(OAc)4, (C) [Rh2(OAc)4(GS)], (D) 

methionine (Met), (E) [Rh2(OAc)4(GS)2], (F) Rh2(OAc)4(H2O), (G) Rh2(OAc)4(H2O)2, (H) 

[Rh2(OAc)5], (I) [Rh2(OAc)6], (J) Rh2(OAc)4(Met), (K) Rh2(OAc)4(Met)2, (L) 

[Rh2(OAc)4(GS)(Met)]. Colour coding: rhodium-turquoise, oxygen-red, sulfur-yellow, 

nitrogen-blue, carbon-grey, hydrogen-white. Calculations and image from A. Zhang in D. 

L. Wong et al., reproduced with permission from the Royal Society of Chemistry. 18 

Glutathione reacts with large, soft, metals such as the toxic metals Cd(II), Hg(II), Pb(II), 

and As(III).19-23 This tendency to bind soft metals also extends to the wide range of metals 

used in therapeutic complexes, for example, Ag(I), Bi(III), Pt(II) in cisplatin, and Au(I) in 

Auranofin.10, 12, 24-27 A marked increase in glutathione synthesis is often correlated with 

cisplatin resistance, such as the case in human ovarian cancers.10, 28, 29 This type of 
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protective chemistry is the basis for the co-administration of glutathione as a defence 

against renal toxicity in platinum-based chemotherapies.4, 14 There is evidence that the 

inhibition of glutathione synthesis reverses cisplatin resistance in some cancer types.30-32 

With an increase in the use of d-block metals as the key components of 

metallotherapeutic agents, it is critical to understand how this prominent defensive 

thiolate will interact with biologically-targeted metal complexes. Such interactions would 

likely reduce the efficacy of these metallodrugs. 

Dirhodium(II) carboxylates and their derivatives are an emerging class of anti-tumor 

compounds that are described as exhibiting greater potency than cisplatin in vitro,33-39 as 

described in Chapter 4 and 5. However, significantly, with respect to possible cellular 

chemistry, rhodium(II) carboxylates bind strongly to sulfur containing compounds.33, 34, 36, 

38, 40-42 Indeed, the propensity for these rhodium complexes to deplete intracellular thiols 

makes them especially useful as radiosensitizers 43, 44. Other classes of dirhodium 

carboxylates, such as the Rh2(O2CR)4 (R = Me, Et, Pr), display potent anti-tumor activity 

that stems from their ability to inhibit enzymes with sulfylhydryl groups in their active 

sites 34, 35, 45. Dirhodium(II) tetraacetate (tetrakis(μ-acetato)dirhodium(II), hereby referred 

to as Rh2(OAc)4, Figure 6-1B) is a bimetallic complex with four bridging acetate ligands 

bound in an octahedral geometry, with two empty axial sites usually coordinated by 

solvent molecules. This complex is capable of inhibiting DNA polymerase I and RNA 

polymerase, showing cytotoxic behaviour in vivo against L1210 tumors, Ehrlich ascites, 

and the sarcoma 180 and P388 tumor lines, as well as exhibiting DNA-binding in a 

manner similar to that of cisplatin 35, 36, 46, 47 and is a suitable model complex for these 

therapeutic dirhodium carboxylates. However, because of the strong affinity for thiolate 

binding to the dirhodium(II) carboxylates’ axial coordination sites, intracellular thiols like 

glutathione may prevent these rhodium-based therapeutics from reaching their intended 

target unchanged, especially with the Rh axial bioactive site remaining available. Axial 

coordination by the strongly binding thiolates will then block the intended activity. 

Spectroscopic studies of glutathione binding to dirhodium tetraacetate and related 

compounds have been reported previously by Jakimowicz et al.48 In the case of 

Jackimowicz et al., following the addition of molar equivalents of GSH to Rh2(OAc)4, the 
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authors surmised that the stoichiometric ratio, GSH:Rh2(OAc)4, for the final conjugate 

was 2:1. Unfortunately, optical spectra provide limited information, as the spectral data 

results from an averaged signal of all the chromophores present. The determination of the 

stoichiometric ratio as a function of GSH is of critical importance in the assessment of 

dirhodium complexes with therapeutic properties, because chemistry that involves 

coordination to both axial sites would effectively block the therapeutic drug. With the 

resolving power of electrospray ionization mass spectrometry (ESI-MS), one is able to 

accurately describe the products formed in reactions of Rh2(OAc)4 with thiolates and 

determine whether this potentially therapeutic agent would likely survive attack by 

biological thiols.  

This Chapter reports on the products formed following reaction of GSH with Rh2(OAc)4, 

as well as its competition with methionine-bound Rh2(OAc)4,to probe the fate of the 

rhodium complex after attack by the thiol and thioether groups, respectively. The 

reactions were studied in vitro using UV-visible and circular dichroism (CD) absorption 

spectroscopy, and electrospray-ionization mass spectrometry (ESI-MS). ESI-MS, which 

is now in this Thesis well established as an especially powerful as a technique for 

monitoring all possible intermediates formed in a reaction. Computational analysis by 

time-dependent density functional theory (TD-DFT) shows the extent of the overlap of 

both the linking acetates with the dirhodium d orbitals, and the major influence of the 

presence of water and thiolate axial ligands on all orbitals of the complex. The TD-DFT 

results explained the unexpected stoichiometric ratio of the glutathione products. These 

calculations show that the lowest energy absorption band blue-shifts with the addition of 

strong electron donors. The results described below show that GSH does attack the 

Rh2(OAc)4, but the stoichiometric ratio is 1:1 (Figure 6-1) unless there is large excess. If 

the drug complex was protected with the thioether of methionine (Figure 6-1D), the ESI-

mass spectra show that GSH would eventually displace that group. However, unlike 

previously reported reactions with the cysteine-rich, human protein, metallothionein,49 

GSH did not disassemble the complex, leaving it intact, but with one of its axial reaction 

sites blocked. These results give detailed guidance for predicting the pharmacokinetics of 

potential metallodrugs and provide a mechanism by which the strongly binding GSH may 

be inhibited. 
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6.2 Experimental Methods 

Solutions of 500 μM Rh2(OAc)4 (Sigma Aldrich) and 10 mM glutathione (Fluka) in 

deionized water were deoxygenated under vacuum and backfilled with argon gas. For the 

UV-visible (Varian Cary 50 UV-visible Spectrophotometer) and circular dichroism (CD) 

(Jasco 810 Spectropolarimeter (Jasco, New Jersey, USA)) spectroscopic measurements, 

aliquots of 0, 0.5, 1.0, 1.5, 2.0, and 2.5, mol. eq. (and additionally, 3.0, and 4.0 mol. eq. 

for the UV-visible absorption spectra) of GSH were added to an argon-backfilled quartz 

cuvette sealed with a septum cap containing the dirhodium solution, with the data 

recorded after each addition. For the first ESI-MS data collection (Figure 6-4), excess 

reduced glutathione was added to a 500 µM Rh2(OAc)4 solution in water at pH 3.0, and 

the mass spectral data were collected in positive ion mode; in the second series (Figure 

6-4), solutions with 500 μM Rh2(OAc)4 were titrated with 1.0, 1.5, and 2.5 mol. eq. 500 

μM GSH in 1 mM NH4OAc buffer at pH 7.4, recorded in both positive and negative ion 

mode. A Bruker Micro-TOF II instrument (Bruker Daltonics, Toronto, ON) operated in 

both positive and negative ion mode was used to collect the data. NaI was used as an 

external calibrant. The following settings were used: scan, m/z 50−3000; rolling average, 

2; nebulizer, 2 bar; dry gas, 80°C at a rate of 8.0 L/min; capillary, 4000 V; end plate 

offset, −500 V; capillary exit, 175 V; skimmer 1, 30.0 V; skimmer 2, 23.5 V; hexapole 

RF, 800 V.  

For the reactions with methionine followed by competition with GSH, solutions of 500 

μM Rh2(OAc)4, 10 mM DL-methionine (Sigma), and 10 mM glutathione in deionized 

water were deoxygenated under vacuum and backfilled with argon gas. The changes in 

the Rh2(OAc)4 solution were monitored following the addition of 2 mol. eq. of 

methionine using UV-visible absorption spectroscopy, followed by a subsequent addition 

of 2 mol. eq. of GSH. ESI-mass spectra were taken after each addition using the negative 

ion mode. The settings were similar to those described previously. 

Rh2(OAc)4, Rh2(OAc)4(H2O)2, [Rh2(OAc)4(GS)(H2O)]-, and [Rh2(OAc)4(GS)2]
2-, models 

were drawn using the Scigress Modelling Software.50 GS represents the deprotonated 

glutathione moiety. Ground-state geometry optimization and TD-DFT calculations were 

performed using the Gaussian G09 program,51 using the CAM-B3LYP functional. The 6-
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31G(d,p) basis set was used for all atoms except for Rh, and the LANL2DZ basis set was 

used for Rh atoms. The TD-DFT calculations were carried out on the minimized 

geometry in single point mode, with 100 excited states calculated using the CAM-B3LYP 

functional, the 6-31G(d,p) basis set for all atoms except for Rh, and the LANL2DZ basis 

set for the Rh atoms. 

6.3 Results and Discussion 

6.3.1 UV-Visible and Circular Dichroism Spectroscopy Following 
the Colourful Reaction of Glutathione with Rh2(OAc)4 

The reaction of GSH with Rh2(OAc)4 was followed with UV-visible absorption 

spectroscopy (Figure 6-2) and CD spectroscopy (Figure 6-3). With the introduction of 

glutathione, a new absorption shoulder appears at approximately 353 nm (Figure 6-2) 

which has been assigned to a S(σ) →Rh(σ*) LMCT characteristic of sulfur coordination 

to dirhodium carboxylates.45, 48 A similar band has been previously reported for the 

spectrum of Rh2(OAc)4 coordinated to the cysteine-rich protein, metallothionein.49 

discussed below, the assignment is better described as resulting from a mixture of 

molecular orbitals (MO) involving both the Rh-Rh MOs and the thiolate orbitals. The 

rapid change in spectral properties was observable with the naked eye, as the solution 

changed from sky blue to golden yellow as the titration progressed. This was expected as 

a result of the development of absorbance below 400 nm, which was much more intense 

than the weaker 589 nm absorption characteristic of the metal-metal-bond. The band at 

448 nm has been assigned to Rh2(π*) → Rh–O(σ*) transitions of the tetraacetate 

ligands,45, 48 which will be expanded on in the computational results below. The band at 

589 nm represents the Rh2(π*) → Rh2(σ*) transition of the metal-metal single bond, 

which persists throughout the addition of the GSH and, therefore, shows that the Rh-Rh 

single bond is still intact following thiolate coordination. Only water was used as the 

solvent for these spectroscopic studies as others, like acetonitrile, involve coordinating 

moieties that can drastically alter spectroscopic results.  
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Figure 6-2 UV-visible absorption spectra of 500 μM Rh2(OAc)4 with aliquots of reduced 

GSH added at pH 3.0 in deionized water. 

λA: S(σ) →Rh(σ*) LMCT at 353 nm. λB: Rh2(π*) → Rh–O(σ*) at 448 nm. λC: Rh2(π*) → 

Rh2(σ*) at 589 nm. The arrows show the direction of change in absorbance with an 

increasing amount of GSH present. Reproduced from D. L. Wong et al., reproduced with 

permission from the Royal Society of Chemistry. 18 
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Figure 6-3 CD spectral results of glutathione reacting with Rh2(OAc)4 

Circular dichroism spectra of 500 μM Rh2(OAc)4 following addition of 0, 0.5, 1.0, 1.5, 

2.0, and 2.5 mol. eq. aliquots of 10 mM reduced GSH added. The arrows show the 

direction of change in absorbance with increasing amount of GSH present. GSH does not 

absorb in the region shown. Reproduced from D. L. Wong et al., reproduced with 

permission from the Royal Society of Chemistry. 18. 

The CD spectra shows that Rh2(OAc)4 is achiral, as expected (black line, Figure 6-3). 

However, with the introduction of GSH, two new bands appear, a maximum at 298 nm 

(marked as λ1) and a minimum at 339 nm (marked as λ2), with a crossover point between 

325 and 330 nm. The development of the strong CD spectrum with the coordination of 

GSH indicates that a chiral structure is formed upon binding GSH to the dirhodium 

complex. The arrows show the change in chiral signal over the course of the titration. 

Similar CD spectral changes have been reported previously for reactions of GSH with 

Cu(I) and Cd(II).52 There was little to no CD intensity under the metal-metal-bond band 
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at 589 nm. This was not unexpected, as the transition dipoles obtained from the 

computational results below are located away from the chirality introduced by the GSH. 

6.3.2 Analysis by Electrospray Ionization Mass Spectrometry 

An inherent property of mass spectrometry is the creation of charged species for their 

detection. All the masses in the spectra correspond to the charged species. 

Spectra taken at pH 3.0 of Rh2(OAc)4 with excess reduced glutathione show the presence 

of mono- and di-glutathione adducts (Figure 6-4). The ESI-mass spectral data shows that 

the reaction creates a mixture of species: (i) glutathione polymers (at 615.1, 922.2 (A), 

and 1229.3 (C) m/z, Figure 6-4); and (ii) deprotonated glutathione coordination of the 

Rh2(OAc)4 forming [(GS)Rh2(OAc)4], [(GS)2Rh2(OAc)4], and [GS)3Rh2(OAc)4] at below 

1% relative intensity (at 749.9 (star, Figure 6-4), 1056.0 (star, Figure 6-4), and 1364.1 

m/z (D, Figure 6-4)). The two most prominent conjugates are those of a single 

deprotonated glutathione-bound complex, [GS-Rh2(OAc)4] (Figure 6-1C), and that of a 

double deprotonated di-glutathione-bound complex, [(GS)2-Rh2(OAc)4] (Figure 6-1E). 

With the accuracy of the ESI-MS experiment, it is observed that the masses of these two 

new complexes differ from the sum of the individual components by one and two protons, 

respectively, indicating that a proton is lost to form the binding moiety. Coupled with the 

optical spectroscopic data, we identify the cysteine sulfur as being the donor atom from 

the GSH that is involved. The GS- binds to the vacant axial position of Rh2(OAc)4 that is 

generally coordinated by solvent, as is confirmed by similar studies concerning dirhodium 

complexes.38, 40  
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Figure 6-4 Low pH reaction of Rh2(OAc)4 with GSH 

ESI – mass spectra of 500 μM. Rh2(OAc)4 with excess reduced glutathione added, at pH 

3.0 in deionized water. Taken in the positive ion mode. The circles identify GSH-related 

complexes, where A = (GSH)3 at 922.2 m/z , C = (GSH)4 at 1229.3 m/z and the stars 

indicate Rh2(OAc)4,-related complexes, where B = (GS)[Rh2(OAc)4]2 at 1191.8 m/z, D = 

(GS)3Rh2(OAc)4 at 1364.1 m/z and E = (GS)2-[Rh2(OAc)4]2 at 1498.9 m/z. (Note that in 

the positive ion mode the complexes will be oxidized in the ionization process so the 

masses correspond to the complexes with correct charges, but are observed as the 

monocation). Reproduced from D. L. Wong et al., reproduced with permission from the 

Royal Society of Chemistry. 18. 
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Figure 6-5 Reaction of Rh2(OAc)4 with GSH at physiological pH 

ESI-Mass spectra of 500 μM Rh2(OAc)4 with 2.5 mol. eq. 500 μM GSH added, in 1 mM 

NH4OAc buffer at pH 7.4, recorded in both positive (left) and negative (right) ion mode. 

The insets show detail of the mono-adduct glutathione-rhodium complex region at near 

750 m/z for both polarities. The individual peaks are assigned in the tables. (Note that in 

the positive ion mode the complexes will be oxidized in the ionisation process so the 

masses correspond to the complexes with correct charges, but are observed as the 

monocation.) Reproduced from D. L. Wong et al., reproduced with permission from the 

Royal Society of Chemistry. 18
 

To test the possibility of conjugation under a more physiologically relevant environment, 

the reaction was carried out using 500 μM Rh2(OAc)4 with 2.5 mol. eq. GSH added in 1 

mM NH4OAc at pH 7.4, Figure 6-5. Under these conditions, glutathione remains largely 

unbound at 308.1 m/z in the positive ion mode (further denoted as “+ mode”), and 306.1 

m/z in the negative ion mode (further denoted as “- mode”). The main Rh2(OAc)4 species 

observed are the mono-aquated products (Figure 6-1F) at 459.8 m/z (+ mode), or 458.8 

m/z in the negative ion mode, where the bis-aquated (Figure 6-1G), mono-acetate (Figure 
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6-1H) and bis-acetate coordinated species (Figure 6-1I) are also observed at 476.8, 500.8, 

and 559.5 m/z. At a relative intensity of under 10%, the glutathione mono-adduct product 

is observable at 749.9 m/z (+ mode), and 747.9 m/z (- mode), corresponding to a complex 

involving a deprotonated glutathione and the Rh2(OAc)4. Very little di-glutathione adduct 

product was observed, at 1056.4 m/z (+ mode) and 1053.0 m/z (- mode), both at less than 

1% relative abundance, with virtually none of the possible tri-adduct detected. 

These quantitative results provide evidence for the exact products made in solution, and 

their relative abundancies viewed in both positive and negative ion mode. It is clear that 

the strong absorption band reported by Jakimowicz et al. should not be assigned to a 2:1 

GSH: Rh2(OAc)4 stoichiometry, rather the product formed in that study was likely 1:1. 

The computational results below provide an interpretation of the appearance of the strong 

absorption below 400 nm following coordination with thiolates. 

At this point, it has been established that GSH binds as a deprotonated peptide to the 

Rh2(OAc)4 axial positions, forming the mono-adduct at 749.9 m/z (+ mode). The 

combination of mass spectral data and the absorption and CD spectra suggest that the 

tetraacetate linkers are intact and that the Rh-Rh single bond persists. To address the 

structures of the proposed products, the structure of the singly-bound, and doubly-bound 

glutathione-Rh2(OAc)4 complexes were constructed in the Scigress Modelling Software 

and their geometries optimized prior to molecular orbital (MO) calculations using TD-

DFT methods, described below. 

6.3.3 Competition by Glutathione for the Axially-Coordinated 
Methionine in Rh2(OAc)4(Met) 

In Chapter 4 and 5, the studies with metallothionein suggested axial coordination of the 

dirhodium core by the cysteinyl thiolates was the initiating reaction prior to complex 

deconstruction, because the additional cysteines in the protein bound in the place of the 

O-donors of the tetraacetate ligands.49 As discussed above, cellular resistance can be 

associated with thiol coordination of the active sites of metallodrugs. Blocking these axial 

positions of the metallodrug with weak nucleophiles should introduce a defense against 

cellular resistance due to steric effects impeding the attack by strong nucleophiles. The 
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question arises how best to protect the complex against fast attack by such agents as 

metallothionein and GSH. The use of a weaker binding ligand, such as the thioether of 

methionine, may provide this protection. The reaction of methionine and related thioether 

complexes with Rh2(OAc)4 has been reported by Pneumatikakis et al. and others 38, 42, 53. 

This Chapter explores the reaction when glutathione is added after methionine is bound to 

the Rh2(OAc)4. Scheme 6-1 summarizes the series of possible reactions that were used to 

investigate the potential protection offered by methionine (Met) against competition by 

GSH. First, when Met is added to the dirhodium complex. Using absorption spectra and 

ESI-mass spectral data, the products formed can be determined: either a single Met binds 

(Scheme 6-1, Equation 1, also Figure 6-1J) or two Met bind (Scheme 6-1, Equation 2a, 

also Figure 6-1K). Next, GSH is added, and again, Scheme 6-1 shows the possible 

outcomes: either displacement of one Met bound (Scheme 6-1, Equation 2b, also Figure 

6-1L), addition to the 2nd axial position (Scheme 6-1, Equation 3), or complete 

occupation of both axial positions (Scheme 6-1, Equation 4). The question then is, does 

Met offer any protection against axial ligation and therefore deactivation by strongly 

nucleophilic biological thiols, such as GSH and metallothionein, before the drug can 

reach its eventual target?  

 

Scheme 6-1 Reaction equations depicting possible outcomes of glutathione added to 

methionine-bound Rh2(OAc)4.  

The structures of each species described here in Scheme 6-1 Reaction equations depicting 

possible outcomes of glutathione added to methionine-bound Rh2(OAc)4.are shown in 

Figure 6-1. The reactions all depict axial ligation of the dirhodium core. The GSH 

coordinated cores will be monoanions or dianions in solution but following the 

ioniosation process the mass spectral data show only monocations and monoanions 
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representing the redox nature of the ionisation process. Reproduced from reference 18 

with permission from the Royal Society of Chemistry. 

 

Figure 6-6 UV-visible absorption spectral changes following the reaction of an aqueous 

solution of 500 μM Rh2(OAc)4 with 2 mol. eq. of methionine (Met) following 20 minutes 

of mixing. 2 mol. eq. of glutathione was then added and the spectrum monitored. 

The absorption spectra (left) can be separated into three sections: A) black line, the 

initial blue solution; B) with 2 mol. eq. Met followed for 20 minutes, red, green, and blue 

lines; the red and green lines are obscured by the 20 minute blue line as the reaction was 

fast. C) after addition of 2 mol. eq. GSH, followed for 180 min, cyan, pink, yellow, green, 

brown lines. ESI-mass spectra of the initial methionine bound solution (right, top) and 

following glutathione addition (right, bottom) were recorded at 20 minutes and 60 

minutes after mixing, respectively, in negative ion mode. Notable peaks: Met1(Rh2(OAc)4) 

589.9 m/z; (Met)2(Rh2(OAc)4 738.9 m/z (GS)(Rh2(OAc)4) 747.8 m/z; (GS)2(Rh2(OAc)4) 

1054.9 m/z. There was no evidence for (Met)(GSH)Rh2(OAc)4 in the expected region of 

890-895 m/z. Reproduced from D. L. Wong et al., reproduced with permission from the 

Royal Society of Chemistry. 18
 

Figure 6-6 shows the absorption and ESI-mass spectra recorded for the reactions outlined 

in Scheme 6-1. The absorption spectrum follows the same trends as described above. The 
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starting spectrum of the Rh2(OAc)4 in Figure 6-4(A) is the same as in Figure 6-1. The 

addition of 2 mol. eq. of Met results in a slight, but distinct blue-shift in the wavelength 

maximum of the Rh2(π*) → Rh2(σ*) metal-metal bond band from 589 to 570 nm, 

indicating as before, that while Met has bound to the complex, the Rh-Rh bond is still 

intact. The most significant change is the intensification of the band at 350 nm associated 

with the thioether coordination 40 (Figure 6-6B). The reaction is fast and there is no 

change after 20 minutes following mixing (B). Now the Met coordination is challenged 

by addition of 2 mol. eq. of GSH, which results in a slow change in the optical spectrum, 

with a significant increase in absorbance in the 353 nm region representing the 

competition of glutathione for the axial position occupied by the methionine (Figure 

6-6C). There is a slight red shift in the 580 nm region that confirms the Rh-Rh bond is 

still present.  

Negative ion mode ESI-mass spectra are very important in providing identification of the 

species present at each step (Figure 6-6, inset, top). Following the addition of the Met, the 

solution measured in the absorption as “B”, is primarily (Met)1(Rh2(OAc)4) at 589.9 m/z 

as shown in Scheme 6-1, equation 1, with a very small fraction of (Met)2(Rh2(OAc)4 at 

738.9 m/z formed in equation 2a. Following GSH addition (lines “C” in the absorption 

spectra), the negative ion ESI-mass spectrum (Figure 6-6, inset, bottom) shows the 

presence of [(GS)1(Rh2(OAc)4)] at 747.8 m/z formed in Scheme 6-1, equation 2b, and 

also [(GS)2(Rh2(OAc)4)] at 1054.9 m/z formed in Scheme 6-1, equation 4. The reactions 

with GSH were slow, as indicated in the absorption spectra measured over 3 hours, and 

still possibly not at completion when the mass spectra were measured.  

These results conclude that indeed Met does offer some protection because the 

displacement reaction is slow, and the binding by the strongly nucleophilic GS- is 

impeded. However, from a pharmacokinetic point-of-view, the exact rates in vivo would 

need to be determined. 
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6.3.4 DFT Calculations Provide Insight into the Stability of the 
GSH Complexes 

An accurate X-ray structure of the Rh2(OAc)4(H2O)2 was reported by Cotton et al. in 

1971, showing specifically, for this paper, the location of the two water molecules on the 

z-axis defined by the Rh-Rh bond.54 The Rh-Rh bond length calculated here for 

Rh2(OAc)4(H2O)2 is 2.390 Å, which compares well with the reported value of 2.386 Å.54 

For the results described above, we wanted to examine the electronic structure of the 

complex in solution and when axially coordinated by GSH. There were three specific 

question: (i) how extensive is the stabilizing role of the acetate linkers (ii) what is the 

extent of the disturbance to the Rh-Rh 4d-based MO structure of the core caused by 

coordination of the glutathione thiolate ligand, and (iii) can the dramatic colour change 

from blue to yellow immediately after addition of the thiolates be explained from the 

calculated absorption spectrum using time dependent-DFT (TD-DFT) methods? A charge 

of -1 and -2 was entered in the Gaussian input file for [Rh(OAc)4(GS)(H2O)]- and 

[Rh(OAc)4(GS)2]
2-, respectively, because the GS thiolate brings in a negative charge 

when it coordinates to the neutral dirhodium core. 

i) The electronic structure of Rh2(OAc)4 and Rh2(OAc)4(H2O)2 to determine the 

effect of axial coordination by the water solvent 

Axial coordination of the Rh2 core has been the subject of much study38, 40, 42, 44, 45, 48, 53, 55-

58 since the electronic structure for the metal-metal bonded species suggested a single 

bond, that would leave 5pz or the 4dz
2 as available, empty orbitals. The electronic 

structure leading to the Rh-Rh bond and its bond order, are reflected in the absorption 

spectrum. Polarized crystal spectra of Martin et al.59 (1979, revised slightly by Miskowski 

et al. in 1984)60 provided key information in the assignment; first of the lowest energy, 

visible region band to the π* to σ* transition, followed at higher energies to mixtures of 

Rh-based MOs to the σ* orbital and also ligand to Rh-Rh core transitions. A more recent 

report by Futera et al. in 2011,61 reported the electron occupancies based on DFT 

calculations. For completeness in our discussion of the GSH to the axial Rh(II) bond 

formation, we have included DFT results for the axial ligand-free core Figure 6-7, and the 

H2O ligated core in Figure 6-8.  
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Figure 6-7 MO energies and isoelectric density surfaces for the MOs that contribute to 

the visible-near UV absorption spectra for [Rh2(OAc)4], from DFT geometry optimization 

calculations.  

Yellow and red surfaces represent unoccupied MOs, blue and green surfaces represent 

occupied MOs. The Rh-Rh core MOs are identified where clear. The isoelectric surfaces 

are displayed in two orientations: (left) looking down the Rh-Rh bond so exposing the x/y 

plane and (right) looking down the x/y plane at the horizontally aligned Rh-Rh bond. 

Both orientations are easiest to see starting with the σ* orbital at the top of the stack of 

orbitals. An expanded version is available in Appendix D. Calculations and image from 

A. Zhang in D. L. Wong et al., reproduced with permission from the Royal Society of 

Chemistry. 18 
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Figure 6-7 shows the DFT results for the dirhodium core with just the acetate linkages. 

The MO order follows the expected sequence with the exception of the increased energy 

of the δ* MO (79). The gas phase calculation shows that δ* lies just above the π* MOs 

(77 and 78). We have labelled the well-known MOs with 4d origin (the occupied: σ (70), 

π (74, 75), δ (76), π* (77, 78), and δ* (79) and the lowest unoccupied MO, σ* (80)). The 

isoelectric surface images provide the spatial distribution of these orbitals, showing two 

orientations. On the left, the view is looking down the Rh-Rh bond, so this is the x/y 

direction. On the right, the viewing direction is perpendicular to the Rh-Rh bond, which is 

aligned horizontally to show the axial ligands and acetate linker MOs. Expanded views of 

all the MO surfaces are presented in Appendix D. 

In aqueous solution the axial positions are coordinated by water (as in the X-ray 

structures of Cotton et al. (1971)54) and this represents the species expected for optical 

and ESI-MS measurements. The MO energies and surfaces are shown in Figure 6-8. The 

coordination of the two water molecules increases the electron density of the two rhodium 

atoms, raising the energy of all the MOs in this region. Particularly, the σ MO (86) now 

lies above the δ (85) and π (83 & 84). In addition, the energy of the σ* MO (90) is raised 

roughly 1 eV with respect to that orbital without the ligands (Figure 6-7, MO 80). As seen 

below (Figure 6-12), the lowest energy absorption band is blue-shifted from the 800 nm 

of the anhydrous Rh2(OAc)4 to 600 nm for the dihydrate, because the π* to σ* energy gap 

increases. Except for the rise in σ (86), the ordering does not change, with the occupied δ 

(85) and δ* (89) being located above the respective π and π* MOs (83, 84, and 87, 88). 

The surfaces again provide interesting contrasts in the electron distribution for the linking 

acetates, the two waters, and the two Rh atoms. Symmetry rules mean that the water MOs 

are only involved in significant overlap with the z-axis σ and σ* MOs (86 & 90).  
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Figure 6-8 MO energies and isoelectric density surfaces for the MOs that contribute to 

the visible-near UV absorption spectra for [Rh2(OAc)4(H2O)2] from DFT geometry 

optimization calculations.  

Yellow and red surfaces represent unoccupied MOs, blue and green surfaces represent 

occupied MOs. The Rh-Rh core MOs are identified where clear. The isoelectric surfaces 

are displayed in two orientations: (left) looking down the Rh-Rh bond so exposing the x/y 

plane and (right) looking down the x/y plane at the horizontally aligned Rh-Rh bond. 

Both orientations are easiest to see starting with the σ* orbital at the top of the stack of 

orbitals. An expanded version is available in Appendix D. Calculations and image from 

A. Zhang in D. L. Wong et al., reproduced with permission from the Royal Society of 

Chemistry. 18 
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ii) The electronic structure when thiol is coordinated: [Rh2(OAc)4(GS)(H2O)]- 

and [Rh2(OAc)4(GS)2]2- 

The ESI-MS data in Figure 6-5 show the presence of both the mono- and di-GS2- 

complexes, although the di-GS2- product is in extremely low abundance. Figure 6-9 and 

Figure 6-10 show the interaction between the GS- MOs and the dirhodium MOs. Figure 

6-11 shows the expanded view of the σ*, σ, and π* MOs for [Rh2(OAc)4(GS)(H2O)]- and 

[Rh2(OAc)4(GS)2]
2-. The MO structure for the mono-adduct (Figure 6-9) shows a 

significant rise in the energy of all the MOs compared to the bisaquated structure (Figure 

6-10). This is due to the increased density on the Rh atoms from the axial coordination of 

the thiolate ligand. This time, because of the lack of axial symmetry, the σ (164) and one 

of the π* (165) MOs rise in energy, now above the π* (163) and δ* (162). The surfaces 

show that the three residues of the tripeptide, GS-, interact strongly with many of the Rh-

Rh MOs, and not with the tetraacetate MOs. For example, of the highest lying occupied 

MOs, only π* (163), δ* (162), and δ (155) do not have significant contribution from the 

GS- MOs. MOs 159, 160, and 156 are located mainly on the GS-. The extensive overlap 

of the GS- density with the Rh-Rh core MOs (Figure 6-11) accounts for the retention of 

the GS- coordination of the Rh2(OAc)4 complex in the ESI-mass spectrometer under the 

dehydrating conditions of the MS vacuum (Figure 6-5). Figure 6-10 shows the results of 

the calculations for [Rh2(OAc)4(GS)2]
2-. The large donation of density from the two 

anionic glutathiones in [Rh2(OAc)4(GS)2]
2- raises the energy of the Rh-Rh σ MO (241) 

above π (240). With two GS- there is significant overlap of the MOs of the tripeptide with 

all the Rh-Rh core MOs (Figure 6-11), shuffling the energy stack considerably. MOs 242-

232 are located on the two GS- ligands. Despite searching down to MO 220, an MO with 

symmetry characteristics of the δ (like MO 155 in Figure 6-10) were not found. The 

surfaces provide much more detail concerning the overlap of electron density than text 

can do justice to, so we direct the reader to Appendix D. The H2O in 

[Rh2(OAc)4(GS)(H2O)]- does not coordinate to the dirhodium, instead it hydrogen bonds 

to the acetate linkers, seen in Figure 6-9. 
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Figure 6-9 MO energies and isoelectric density surfaces for the MOs that contribute to 

the visible-near UV absorption spectra for [Rh2(OAc)4(GS)(H2O)]- from DFT geometry 

optimization calculations. 

Yellow and red surfaces represent unoccupied MOs, blue and green surfaces represent 

occupied MOs. The Rh-Rh core MOs are identified where clear. The isoelectric surfaces 

are displayed in two orientations: (left) looking down the Rh-Rh bond so exposing the x/y 

plane and (right) looking down the x/y plane at the horizontally aligned Rh-Rh bond. 

Both orientations are easiest to see starting with the σ* orbital at the top of the stack of 

orbitals. An expanded version is available in Appendix D. Calculations and image from 

A. Zhang in D. L. Wong et al., reproduced with permission from the Royal Society of 

Chemistry. 18 
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Figure 6-10 MO energies and isoelectric density surfaces for the MOs that contribute to 

the visible-near UV absorption spectra for [Rh2(OAc)4(GS)2]
2- from DFT geometry 

optimization calculations. 

Yellow and red surfaces represent unoccupied MOs, blue and green surfaces represent 

occupied MOs. The Rh-Rh core MOs are identified where clear. The isoelectric surfaces 

are displayed in two orientations: (left) looking down the Rh-Rh bond so exposing the x/y 

plane and (right) looking down the x/y plane at the horizontally aligned Rh-Rh bond. 

Both orientations are easiest to see starting with the σ* orbital at the top of the stack of 

orbitals. An expanded version is available in Appendix D Calculations and image from A. 

Zhang in D. L. Wong et al., reproduced with permission from the Royal Society of 

Chemistry. 18 
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Figure 6-11 Electron density surface representation of the highest occupied and lowest 

unoccupied orbitals for [Rh2(OAc)4(GS)(H2O)]- and [Rh2(OAc)4(GS)2]
2-.  

These surfaces show the extensive overlap of the axially coordinated GS- with the σ and π 

MOs of the Rh-Rh bond. An expanded version is available in Appendix D. Calculations 

and image from A. Zhang in D. L. Wong et al., reproduced with permission from the 

Royal Society of Chemistry. 18 

iii) Calculated absorption spectra for [Rh2(OAc)4], [Rh2(OAc)4(H2O)2], 

[Rh2(OAc)4(GS)(H2O)]- , and [Rh2(OAc)4(GS)2]2-  

Figure 6-12A shows the calculated absorption spectra, labelled with the Excited States 

(ES) that show significant oscillator strength (a list of the excited states are available in 

Appendix D). Figure 6-12B shows the molecular orbital contributions to each excited 

state for [Rh2(OAc)4(H2O)2], [Rh2(OAc)4(GS)(H2O)]-. 
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Figure 6-12 Calculated absorption and orbital contributions to the excited states from 

TD-DFT calculations for Rh2(OAc)4 and the complex coordinated by water and GS1- 

A) Calculated absorption spectra for [Rh2(OAc)4], [Rh2(OAc)4(H2O)2], 

[Rh2(OAc)4(H2O)(GS)]-, and [Rh2(OAc)4(GS)2]
2-. The labels “ES1,” etc. identify the 

Excited States for which the oscillator strength for the transition from ES0 is greater than 

0.001. The excited states calculated from TD-DFT are tabulated in Appendix D. (B) 

Orbital participation in the excited states above 230nm with oscillator strengths >0.001 

for [Rh2(OAc)4(H2O)2] and [Rh2(OAc)4(H2O)(GS)]-. The red arrow represents the 

transition with the highest contribution. The detailed contributions are shown in Table S1 

in Appendix D. The MOs of the Rh2 core are shown in the two boxes. Calculations and 

image from A. Zhang in D. L. Wong et al., reproduced with permission from the Royal 

Society of Chemistry. 18
 

TD-DFT calculations were carried out for the four complexes described above, however, 

as the only two that are described in the experimental optical data for are the bisaquated 

and the mono-adducted GS-, only those results are described here. The full results for the 

calculations between 900 and 200 nm are shown in Appendix D, with the resulting 
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spectral data shown in Figure 6-12. The data in Figure 6-2 identify two visible region 

bands for the bisaquated complex, at 589 and 448 nm before intense absorbance below 

300 nm giving these solutions a sky blue colour. The calculations for the bisaquated 

predict bands at 549 and 537 nm, and 397 and 389 nm, with a much more energetic and 

intense band at 238 nm. The relative intensities and band energies are reproduced very 

closely by the calculations. The calculation for the bisaquated complex (Figure 6-8) 

shows that the visible region bands arise from pairs of transitions that add contributions 

from each of the Rh 4d orbital set. Symmetry labels are added to allow the mixing to be 

seen clearly. The δ*MO does not contribute significantly to any absorption. The predicted 

absorption is essentially purely the Rh core offset by the electron density from the two 

waters. 

6.3.5 Origins of the Electronic Absorption Spectrum  

[Rh2(OAc)4(H2O)2]  

The bisaquated dirhodium tetraacetate is a sky blue colour in solution with the lowest 

energy band at 589 nm, Figure 6-2. The TD-DFT results (Figure 6-12) assign this band to 

a mixture of transitions from the π* and σ (86, 87, & 88) to the σ* (90) and MO 91, but 

not from the δ* (89) because of application of selection rules. However, the major 

contribution to the oscillator strength is from π* (88) to σ* (90). The theoretical 

absorption spectrum (Figure 6-12A) shows the presence of three distinct absorption bands 

(labelled ES1/2, ES3/4, ES5) that arise from pairs of transitions involving all the 

dirhodium MOs as shown in Figure 6-12B. The predominant transition remain π* to σ* 

for the visible region bands. The lack of strong absorption between 500 and 300 nm 

accounts for the blue colour. The ES3/4 can be seen in the absorption spectrum at 448 nm 

(Figure 6-2). These four transitions all involve a significant contribution from the acetate-

Rh MOs. However, ES5 is strongly connected with a σ (86) to σ* (90) transition, which 

involves the two coordinated waters and not the acetates.  

[Rh2(OAc)4(GS-)(H2O)]-  

Addition of thiols results in a yellow colouration (Figure 6-2) arising from the increase in 

absorption at 353 nm. The calculated results for the mono-thiolate (Figure 6-12A and B) 
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show the presence of new transitions in the visible and near-UV regions. The calculations 

again place the lowest energy transition near 600 nm, as seen in the experimental 

spectrum, but now introduce a series of bands, mostly very weak, but with the most 

intense new band being at 326 nm (ES5). These bands result from charge transfer from 

GS--dominated MOs to the σ* (166) Rh2 core MO. By plotting the theoretical spectrum 

with realistic band widths, the origins of the shoulder in Figure 6-2 as the GSH is added 

are seen. The CD spectrum Figure 6-3, indicates the asymmetry introduced by the chiral 

GS- binding to the Rh2 core between 250 and 370 nm, a region associated in the 

calculations with bands at 321 and 326 nm. 

The theoretical electronic absorption spectrum of [Rh2(OAc)4(GS)2]2-  

The calculation for the di-GS- shows an increase in the charge-transfer transition below 

400 nm (Figure 6-12, ES3-8) and the blue-shift of the lowest energy transition near 530 

nm (ES1) is associated with stronger contributions from both coordinated glutathiones.  

Table 6-1 summarizes the computational results for the Rh-Rh bond length, the energies 

of the σ, σ*, and π* MOs for the four complexes. As more electron donating groups are 

added, these MOs increase in energy, and the Rh-Rh bond length increases. With the 

increase of electron density on the rhodium, the Rh-Rh single bond is weakened. In 

addition, the data show that as a result of the interaction between the axial ligands and the 

Rh-Rh MOs, the axial ligands become more involved in the structure of the complex. 

Table 6-1 Computational parameters derived from TD-DFT calculations. Calculations 

from A. Zhang in D. L. Wong et al., reproduced with permission from the Royal Society of 

Chemistry. 18 

Complex 
Rh-Rh bond 

length /Å 
E(σ) /eV E(σ*) /eV E(π*) /eV 

  Rh2(OAc)4 2.370 -10.104 -1.902 -8.126 

[Rh2(OAc)4(H2O)2] 2.390 -8.349 -0.291 -7.411 

[Rh2(OAc)4(GS)(H2O)]-
 2.464 -4.006 2.013 -3.637 

[Rh2(OAc)4(GS)2]2- 2.471 -0.895 4.691 -1.447 



164 

 

6.4 Conclusions 

Glutathione is well known as a strongly coordinating thiol that exists in high cellular 

concentration. It is upregulated in homeostatic response to soft and potentially toxic 

metals. In the results described above, glutathione binds to Rh2(OAc)4, forming primarily 

the mono-adduct with retention of the single Rh-Rh bond. This means that glutathione 

binds axially and does not disrupt the intended, therapeutically-important, structure, but 

does block one of the axial sites. In the cellular milieu, this may mean that dirhodium 

carboxylates can survive and retain their anti-cancer activity. The computational results 

provide insight into the extensive overlap of the glutathione molecular orbitals with the 

Rh2(OAc)4 core orbitals, leading to interpretation of the strength of the glutathione 

cysteine thiolate-rhodium bond. The calculations also allow an understanding of the 

optical spectral properties, showing how the introduction of axial ligands introduce new, 

strong absorption in the 300-400 nm region, and blue-shifting the lowest energy band at 

500-600 nm. The presence of the axial ligand results in significant charge transfer in each 

of the optical transitions. The calculated MO energies for the four species studied show 

that the presence of the axial ligand is to destabilize all orbitals as a result of the 

introduction of electron density onto the rhodium core. Significantly, the relative energy 

of the Rh σ is raised with respect to δ and π. Despite the extensive overlap of the 

glutathione orbitals with the Rh MO, the acetate linker MOs remain largely unaffected, 

which accounts for the observation that the acetates are retained following axial 

coordination with GSH.  

The results from the previous Chapters show that the cysteine-rich metallothionein 

protein not only binds Rh2(OAc)4, but sequentially deconstructs the complex by replacing 

the four carboxylate ligands with the metallothionein cysteine thiolates.49 In this case, the 

Rh2(OAc)4 would be deactivated. Metallothionein has long been associated with a 

detoxification role, and this reaction with Rh2(OAc)4 is just one example of this property. 

However, glutathione is present in at least 100 times greater concentration in the 

cytoplasm than metallothionein. This suggests, based on the results presented here, that a 

major feature in the design for these therapeutic rhodium carboxylates should be the 

incorporation of weakly coordinated sulfur at the axial position of the dirhodium core. If 
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such groups were included in the overall design, the results presented above suggest that 

the complex could remain intact longer in the cell and be somewhat protected against 

rapid metabolic deconstruction.  

Metallodrugs offer a future of tunable therapeutic complexes that will be applicable to a 

large number of diseased states; well-known examples include Platinol (Pt), Ridaura 

(Au), and Trisenox (As).62 For the drug to be effective, the delivered form of the metal 

complex must be as designed. Pro-drugs are designed to change, following metabolism, 

into the active therapeutic agent, in which case the metabolic pathways must be well 

known. In other cases, it is assumed that the metallocomplex will be unchanged following 

passage into the cell. The plasma and cellular cytoplasm contain coordinating 

biomolecules that will bind tightly to these xenobiotic metals that form the therapeutic 

complex, changing the complex's properties. If this change significantly alters their 

therapeutic activity, then this drug has no value, and may result in higher toxicity. 

Understanding the potential coordination chemistry that can take place in either the 

plasma or the cytoplasm is important in the design and subsequent application of these 

drugs. The data confirm the view that the dirhodium(II) tetraacetate could easily be 

targeted by the intracellular thiols like glutathione, but could be protected by weak axial 

ligands commonly present in the cellular milieu, and still be able to bind to their intended 

biological targets. 
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Chapter 7 

7  Conclusions: Xenobiotic Metals in Therapeutic 
Agents as Models for Toxicity* 

As a result of the Internet and the technological age, decades worth of electronic metal 

waste have been produced at a rate higher than can be sustainably dealt with. From this 

waste, xenobiotic metals are being introduced into the ecosystem. Already, metallic 

particulates of Pt, Pd, Os, Rh, and Ir are evident in the environment from their use in 

catalytic converters in the automotive industry.1-4 With the new age of smart devices, a 

host of exotic xenobiotic consumer waste will become a global concern. 

Metallotherapeutics leverage the properties of xenobiotic metals in the treatment of 

cancers and tumors, and, in addition, anti-inflammatory, or anti-microbial agents in other 

medical treatments. However, metallotherapeutics directly expose humans to these 

xenobiotic metals, and this risk must be considered when determining the 

pharmacokinetics of these drugs. Often these treatments are intravenously administered, 

and this means that the metallo-drug will encounter a host of adduct-forming proteins in 

the blood plasma (e.g. albumin).  

With its 20 cysteine thiols, metallothionein (MT) is a small protein with a powerful Lewis 

basicity that makes it highly reactive towards metal ions. Additionally, isoforms with 

single amino acid mutations may assist in the binding of metals using modes other than 

homoleptic cysteine coordination. This type of flexible bonding could also be considered 

as an example of non-traditional binding when discussing the metallation of MTs.  

In the research described in this Thesis, I have postulated that these potentially toxic 

metal complexes could be intercepted by MT. Because of its flexible structure, it is well 

known that MT does not have specific, well-defined metal binding sites, unlike typical 

metalloproteins. Thus, MT is able to accommodate the specific coordination demands of 

many different metals, but the protein itself is not innocent in its coordination when these 

metals bind as complexes. This is because the thiolate ligands are such strong sigma 

donors, that they displace the original metal-bound ligands. In this way, one might say 
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that MT “digests” the complex. The experimental data reported in this Thesis provide a 

number of major novel findings. Clearly, the first is that metallocomplexes are not 

immune to coordination by this ubiquitous protein, and their bound form may be 

subsequently modified. Secondly, MT does not (as noted above) exert its coordination 

through the traditional binding site model of metalloproteins, rather the structures formed 

depend entirely on the conformation of the 20 cysteines and the incoming complex. 

Thirdly, the apoprotein is a folded structure that is highly fluxional and dependent on the 

surrounding solution environment. The flexibility of the backbone allows MT to 

effectively ensnare incoming metal complexes, encapsulating them within the protein 

core. 

7.1 Exotic Metals as Medicines 

This Thesis has introduced the reader to the double-edged sword that xenobiotic metals 

represent to humans. Some of this class of metals can be used therapeutically and, in that 

sense, they are beneficial. On the other hand, exposure from metal waste pollution is 

toxic, and, therefore, detrimental. However, if metallothionein becomes involved in the 

pharmacokinetic pathways of any of these routes of exposure, new metabolic pathways 

may result that may be more or less beneficial or detrimental. This mechanistic dilemma 

leaves many unanswered questions concerning the relative value of the beneficial use of 

xenobiotic metals in consumer goods, which must be reflected in the challenge of safe 

and sustainable heavy metal recovery. Before revisiting the conclusions drawn from the 

specific experiments reported in this Thesis, I will first introduce brief examples of d-

block metals currently in therapeutic and diagnostic use, to put into context the specific 

studies I have reported on cisplatin and dirhodium(II) tetraacetate. The examples of the 

exotic metals described below are: Technetium, Rhenium, Platinum, Ruthenium, 

Rhodium, and Gold. 

Technetium  

99mTc, with its emission of 140.5 keV γ-rays and biological half-life of 6 hours,5 makes 

this synthetic metal a versatile imaging agent.6 The groundbreaking research by Morelock 

and Tolman on utilizing MT as a radiolabel drug delivery mechanism showed that the 



173 

 

 

stable decay product, 99TcO3+ bound readily to MT. Significantly, coordination 

determined using extended X-ray absorption fine structure (EXAFS) showed the Tc was 

bound to both N/O ligand donors as well as the cysteine thiols.7 99mTc has been used to 

effectively image many organs, the first being the liver.8 These types of diagnostic agents 

used in medicine are likely encapsulated by MT for up take in all tissues.  

Rhenium 

With similar properties to 99Tc, 186Re and 188Re have also been utilized for the 

radiopharmaceutical imaging of cancerous liver tissue.9 

The binding reaction of Re to MT has been investigated by Palacios et al. in the form of 

[facRe(CO)3] and these Re moiety-containing complexes were observed to bind 

significantly slower compared to the analogous reaction with [facTc(CO)3].
10 The same 

study showed that of the four human isoforms of MT, the most Cu-philic, MT3, reacted 

most readily with the Re complex. This was likely due to the presence of a histidine 

residue in MT3, that is not present in the other isoforms. 

Platinum 

Platinum and its anti-cancerous effects introduced the world to metal based cancer 

therapeutics. Its original anticancer activity was discovered by Rosenberg et al.,11 and it is 

now a flourishing billion dollar industry with a variety of analogs of refined activity, 

examples are shown in Figure 7-1.12 Since its discovery and subsequent use, it has been 

found that many cancer types have developed resistance following prolonged treatment.13, 

14 A number of these platinum resistant cancer types display an increased expression in 

nuclear MT, correlated to platinum treatment.15-17 
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Figure 7-1 Cisplatin and its subsequently developed analogs. 

MT reacts readily with cisplatin,18-20 more so than its transplatin analog.21 With cisplatin, 

the ammine ligands are removed by the cysteine thiolates of MT,22 but transplatin retains 

its ammines.21 There are a variety of newly developed analogs of cisplatin designed to 

increase selectivity by adopting ligand structures that are more stable at biological levels. 

These are currently in use as effective treatments of a variety of cancer types.12 An 

example of a novel therapeutic, is platinum(II) 9-aminoacridine, a structure resistant to 

MT1a reactivity.23 The downside of these platinum based anti-cancer treatments are their 

side effects (nephrotoxicity, neurotoxicity, nausea) and their limited selectivity. As a 



175 

 

 

result, researchers are currently surveying non-platinum metal complexes for similar 

anticancer therapeutic activity. 

Ruthenium 

Ruthenium complexes are studied for their low toxicity and antimetastatic behavior, with 

many displaying strong anti-tumor activity. The most promising examples of these Ru 

complexes are shown in Figure 7-2. Imidazolium trans-

imidazoledimethylsulfoxidetetrachloro-ruthenate (NAMI-A) is a stable Ru(III) prodrug 

that is converted to its active Ru(II) state upon entering the reducing environment of the 

cancerous cell. Trans-tetrachlorobis(indazole)ruthenate(III) (KP1019) imparts its activity 

by binding with the iron transport protein transferrin,24 interfering with iron uptake of the 

nutritionally-starved cancer cells. RAPTA agents are Ru(II) arene piano stool compounds 

that carry a 1,3,5-triaza-7-phosphaadamantane (PTA) ligand. They are a family of potent 

cytotoxics that significantly reduce metastatic activity.25 The organometallic, arene 

structure proves to be a robust chemical architecture withstanding thiolate attack, and 

continues to show promise with Rh and Os analogs in selective anti-tumor activity.26 
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Figure 7-2 Structures of Ru(II) complexes NAMI-A (Left), KP1019 (Right), and 

RAPTA-C (bottom). 

Rhodium 

Rhodium was considered as an alternative to Ruthenium because it is more inert 

biologically. It is also promising as a radiosensitizer, for direct enzyme inhibition, and 

photodynamic therapy. Rh3+ complexes exhibit therapeutic effects by inhibiting beta 

amyloid aggregation, kinase inhibition, and DNA intercalation.27 

Dirhodium carboxylate anti-tumor activity has been known since the 1970’s,28-31 but due 

to the serious nephrotoxic side effects, they are not currently used. However, the 

construction of these bimetallics can be finely tuned with their ligand decoration, and 

these complexes has been the subject of much research.27, 32-40 
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Gold 

Au(I) salts have been used for decades to relieve the chronic side effects of rheumatoid 

arthritis, in a multi-action approach known as chrysotherapy.41 Chrysotherapeutic effects 

include anti-inflammatory and antimicrobial response, inhibition of T-cell proliferation 

and enzyme inhibition.42 The Au(I) complexes are known to interact with MTs, and are 

deactivated upon binding. This includes the well-known therapeutic agent, 

aurothiomalate.43 

Some Au(III) complexes show activity against cisplatin-resistant cells,44 demonstrating 

promising alternatives for non-platinum therapeutics. These include the tetrapyrrole 

Au(III) porphyrin,42 Au(III) corrole complexes,45 and multi-dentate N donor ligands,46 

and as such, these new structural designs are focused on improving their durability as 

cytotoxic agents.  

7.2 MT Metabolism of Metal-based Drugs 

After introducing examples of metal-based drugs above, and the known interactions of 

these metals with MT, I now return to the conclusions drawn from the experiments 

performed in this Thesis. 

Chapter 3: Human MT Metallation with Cisplatin 
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Figure 7-3 Graphical abstract for the breakdown of cisplatin by MT using ESI-MS. 

Reproduced from D. L. Wong and M. J. Stillman, with permission from the Royal Society 

of Chemistry. 22 

In vitro reactions involving cisplatin and transplatin binding to mammalian MTs were 

studied previously using HPLC and NMR spectroscopy. ESI-MS was used to provide 

quantitative detail of the effects of transmetallation of Zn-MT by Pt(II), but there were no 

details concerning the initial metal displacement reaction.21, 47 Chapter 3 describes the 

initial binding and dissection of cisplatin when bound to MT1A utilizing ESI-MS to 

quantify the mechanism for these primary ligand substitution reactions, Figure 7-3. 

Hagrman et al. showed that there were multiple phases to the cisplatin-MT reaction, but 

the first phase occurred far too rapidly to be observed using LC methods.48 With the high 

resolution and time resolving power of the ESI TOF MS, it was possible to measure the 

rates of the first 4 metallation reactions, k1-4, and to propose a detailed mechanism for the 

interaction between cisplatin and MT.22 

Chapters 4 and 5: Human MT Metallation with Dirhodium(II) Tetraacetate 

 

Figure 7-4 Graphical abstract depicting the encapsulation of a Rh-Rh core by the β-MT 

domain. 

Reproduced from D. L. Wong and M. J. Stillman, with permission from the Royal Society 

of Chemistry. 49 

The biological uptake of Rh and its related platinum group metals has gained interest with 

the reports of metal particles in soil and freshwater species near routes of heavy traffic.1, 

50-52 This increase in the presence of such biologically exotic metals has been linked to the 

advent of platinum-based catalytic converters in automobiles to reduce noxious 
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emissions. However, these metal-based catalysts are not completely stable; thermal 

decomposition and mechanical sintering results in these metal particulates being released 

into the environment.  

A way to study the possible physiological effects of toxic rhodium exposure from this 

pollution is to examine the use of rhodium-based platinum alternatives in chemotherapy. 

The work described in Chapter 4, and 5 proves that MT can play an active role in the 

metabolic destruction of dirhodium metallocomplexes; a result that had not been reported 

in the literature previously.49, 53 The sequestration of a dirhodium(II) tetraacetate by MT 

results in the removal of the acetate ligands, leaving the Rh-Rh core intact. Chapter 4 

described the reaction with the 9 cysteine, β-domain fragment, which easily 

accommodates one and only one Rh2 core. In Chapter 5, the reaction with the full, 20 

cysteine, two domain protein is more complex, with multiple metal binding 

conformations possible due to the elegant flexibility of MT. Rh uptake by MT is fixed at 

a Rhn:MT ratio, where n = multiples of 2. MT-to-MT metal-transfer equilibration would 

result in odd-numbered stoichiometries, which were not observed. The resulting 

encapsulated Rh-Rh core was visualized as being embedded in the MT structure using 

molecular dynamics. Rh2(OAc)4 is easily taken up by MT and the resulting product in 

vivo may exhibit nephrotoxic effects similar to Cd-MT54, 55 due to its comparable size. 

Chapter 6: Strength of the Cysteine Thiolate Metal Coordination- Studies with 

Glutathione 

 

Figure 7-5 Graphical abstract emphasizing the harmony of the methods used to explain 

the properties of the metal-thiolate bond. 
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Calculations and image from A. Zhang in Wong et al., reproduced with permission from 

the Royal Society of Chemistry. 56 

Reactions with glutathione provide a model system from which we can understand the 

reaction of the dirhodium complex with MT. Glutathione on its own does not dismantle 

the tetraacetate cage under our anaerobic conditions. However, the GSH clearly did bind 

to the dirhodium complex, based on the changes in the optical spectrum, and this 

prompted a computational investigation into the strength of the resulting metal-thiolate 

bond.  

Strong electron donation from the thiolates of the cysteines raises the energy of the Rh-Rh 

bond MO, weakening the Rh-Rh single bond. This was observed from the increase in the 

calculated bond lengths with the coordination of the glutathione. The effect of acetate 

replacement with multiple glutathione molecules would be of interest in order to 

understand the hyperchelative effect of MT, and the change in energy that results from 

the stepwise replacement of the acetate ligands. 

7.3 A New Biological Role for MT  

Active Disassembly and Binding Metals of Complexes 

In the work described in Chapters 3, 4, 5, and 6, I have introduced the dilemma of 

beneficial and detrimental pathways for which metallothionein may be implicated. In the 

six decades of research since its discovery, the reactions of metallothioneins with metal 

ions have been well documented and, in this Thesis, we have defined these as traditional 

reactions (for e.g. Zn(II) and Cd(II),57 see Scheller et al. for a comprehensive list).58 

However, in the context of these xenobiotic metals, I have described the metallation as 

non-traditional. Reactions of coordination complexes with MT are far more complicated. 

Metallothionein is a multidentate hyperchelator, which in its action, envelopes and 

systematically exchanges its ligands in an irreversible fashion, deconstructing the 

incoming metal complexes using its 20 electrophilic cysteine thiolates.  

Historically, MT was considered to bind Zn(II) and Cd(II) into well-defined clustered 

structures. The reactions reported at the time were analyzed based on the assumption that 
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metallation always involved complete cluster formation and metal saturation, even with 

mixed-metal products. However, Yang, Maret and Vallee, through the analysis of cellular 

content, identified and confirmed the in vivo presence of partially-metallated 

metallothionein (5 Zn(II) instead of 7) and postulated that there would be free thiols based 

on the assumption that incomplete clusters formed.59 With recent data, particularly with 

the advent of ESI-MS studies, including those shown in this Thesis, it is now clear that 

the partially-metallated metallothioneins may not require cluster formation, instead the 5 

Zn(II) referred to above have been shown to bind with terminal thiolates. We now 

understand the metallation mechanism and chelating behavior of MT and its isoforms 

better than before. This new recognition that partially metallated metallothioneins do not 

require cluster formation leads to the description of the non-traditional binding of 

xenobiotic metals that have been described here. 

As we approach the future with computers and electronics becoming deeply integrated 

into daily life, the possibility of chronic exposure to xenobiotic metal waste increases. 

The issue is that the combined controlled and uncontrolled (legal and illegal) extraction, 

purification, recycling and reclamation results in the incorporation of these metals into the 

food chain. At this point, the studies described in this Thesis suggests that non-traditional 

binding to metallothionein will occur. Metallothioneins in all Life will be required to 

adapt as a result. 

In cancer, the abhorrent growth and replication of diseased cells causes an overdrive in 

protein expression, of which cellular thiols like MT are heavily implicated. The studies 

described in this Thesis suggest that the exacerbation of this metal scavenging by the 

increased amount of cellular MT will greatly hinder the efficacy of metal-based 

anticancer drugs.  

We have now completed the description of the aggressive attack of therapeutic 

metallocomplexes by this cellular metal gatekeeper, metallothionein (MT). The 

metallation of de novo MT would be the first response in the inherent cellular defense 

against xenobiotic metals. Therefore, in closing, and as a final comment on the 

chemistries described in this Thesis, I conclude that the epic method by which MT 
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eviscerates metal complexes uniquely allows MT to adopt novel, and unprecedented 

structural properties to defend the cell against these intruding xenobiotic complexes. 
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Appendix A: Observed Rate Constants for Experiments 
Performed in Chapter 2 

 

Figure Constant Conditions Variable 

Conditions 

Kobs (106s-1) Standard 

Deviation 

pH Titration 4 M GdmCl 

2.5 eq. Cd (II) 

10 ˚C 

pH 5 215.48 3.127 (1.45%) 

pH 6 317.95 2.842 (0.89%) 

pH 7 422.40 5.084 (1.20%) 

pH 7.5 918.93 8.412 (0.92%) 

pH 8 2150.00 41.75 (1.94%) 
 

Cd Titration pH 5 

0 M GdmCl 

10 ˚C 

1 eq 830.89 21.57 (2.60%) 

2.5 eq 353.97 3.797 (1.07%) 

5 eq 182.60 1.252 (0.69%) 

 

pH 5 

4 M GdmCl 

10 ˚C 

1 eq 404.28 7.262 (1.80%) 

2.5 eq 215.48 3.127 (1.45%) 

5 eq 147.17 1.313 (0.89%) 

 

pH 8 

0 M GdmCl 

10 ˚C 

1 eq 7198.20 265.4 (3.69%) 

2 eq 4690.10 72.29 (1.54%) 

2.5 eq 3633.30 78.59 (2.16%) 

3 eq 1953.90 19.02 (0.97%) 

4 eq 1459.70 10.27 (0.70%) 

5 eq 2318.80 11.29 (0.49%) 

 

pH 8 

4 M GdmCl 

1 eq 1238.10 9.705 (0.78%) 

2.5 eq 2150.00 41.75 (1.94%) 
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10 ˚C 5 eq 878.86 14.15 (1.61%) 
 

GdmCl Titration pH 5 

2.5 eq. Cd (II) 

10 ˚C 

0 M 353.97 3.797 (1.07%) 

1 M 265.67 1.827 (0.69%) 

2 M 252.91 1.58 (0.62%) 

4 M 215.48 3.127 (1.45%) 
 

Temperature 

Dependence  

pH 5 

0 M GdmCl 

2.5 eq. Cd (II) 

10.1 ˚C 353.97 3.797 (1.07%) 

15.3 ˚C 407.14 4.142 (1.02%) 

18.1 ˚C 468.10 7.597 (1.62%) 
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Appendix B: Known Kinetic and Equilibrium Binding 
Constants for MTs 

Table 2. Reports of kinetic data for the metallation of individual metallothioneins 

Metal Organism

** 

Isoform Fragment/

Protein 

Stoichiometry Technique Rate constants  

k [M-1 s-1] 

Reference 

As human20 MT1a α As3MT ESI-MS k1 5.5 

k2 6.3 

k3 3.9 

1 

human20 MT1a β As3MT ESI-MS k1 3.6 

k2 2.0 

k3 0.6 

1 

human20 MT1a βα As6MT ESI-MS k1 25 

k2 24 

k3 19 

k4 14 

k5 8.7 

k6 3.7  

2 

Bi rabbit MT2 βα Bi7MT UV-visible 

absorption, 1H 

NMR 

k1 5.8 × 10-3 

(Cd 

displacement) 

k2 1.0 × 10−4 

(Cd 

displacement) 

k1 7.2 × 10−3 

(Zn 

displacement) 

k2 5.9 × 10−5 

(Zn 

displacement) 

3 

Cd human20 MT1a α Cd4MT Stopped flow 

spectrophotometry 

k1-4 60.4 

(native) 

k1-4 3.32 

(denatured) 

4 

horse 

kidney20 

MT βα Cd7MT Absorption 

spectroscopy 

2.7 x 10-6  

(Demetallatio

n by EDTA) 

5 

rabbit20  MT2 βα Cd7MT Stopped flow 

spectrophotometry 

pH 4.1     

60±10 

pH 4.6     

140±30 

pH 5.1     

280±50 

pH 5.4     

350±100 

6 

rabbit20  MT2 α Cd4MT Stopped flow 

spectrophotometry 

pH 4.6     

170±60 

pH 5.1     

350±100 

pH 5.4     

460±200 

6 

Zn rabbit20 MT2 βα Zn7MT Stopped flow 

spectrophotometry 

pH 4.6     

10±1  

pH 5.2     

15±1 

6 
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pH 5.8     

28±2 

pH 6.3     

43±7 

pH 6.6     

100±15 

pH 7.2     

300±100  

rabbit20  MT2 α Zn4MT Stopped flow 

spectrophotometry 

pH 6.6     

90±10  

pH 7.2     

230±100 

pH 7.5     

690±300 

6 

Pt rabbit20 MT βα Pt7MT Atomic absorption 

spectroscopy, UV 

absorption, HPLC  

0.14 (to apo-

MT) 

0.75 to 

Cd/Zn-MT 

0.53 to 

Cd7MT 

0.65 to 

Zn7MT 

7 

Zn horse 

kidney20 

MT βα Zn7MT Absorption Demetallation 

by EDTA 

k1 fast 

k2 14.2x10-4 

k3 2.0x10-4 

5 

** superscript shows the number of cysteines in the peptide  
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Table 3. Reports of binding constant data for the metallation of individual human metallothioneins 

Metal Isoform Fragment/P

rotein 

Stoichiometry Technique*** Binding constant 

value (logK) 

Reference 

Cu MT2 βα Cu10MT ESI-MS, pH 7.5 K       14.6 8 

MT1a βα Cu20MT ESI-MS1 

pH 7.4 

K1      15.5 

K2      15.0 

K3      14.6 

K4      19.3 

K5      14.6 

K6      18.9 

K7      12.9 

K8      13.1 

K9      13.7 

K10     15.5 

K11     10.7 

K12     11.2 

K13     12.9 

K14     9.5 

K15     9.5 

K16     8.6 

K17     8.1 

K18     7.0 

K19     6.1 

K20     5.0 

9 

Pb MT3 βα Pb7MT ITC, pH 6.0 K1-2   11.7 

K3-4   10.2 

K4-7     8.7 

10 

Zn MT2 βα Zn7MT Fluoresence 
spectroscopy2 
pH 7.4 

K1-4    11.8  

K5      10.45  

K6      9.95 

K7      7.7 

11 

 

MT3 βα Zn7MT ITC, pH 6.0 K1-4    10.8 

K5     10.5 

K6      9.9 

K7      7.7 

10 

MT1a βα Zn7MT ESI-MS3 K1      12.35 
K2      12.47 
K3      12.52 
K4      12.37 
K5      12.21 
K6      12.05 
K7      11.80 

12 

**superscript shows the number of cysteines in the peptide 
 
***Explanations: 
1 determined by analysis of the pH dependent titration data 
2 binding strength was determined using competitors and fluorogenic dye 
3 binding constant values were determined through competition of zinc binding to carbonic anhydrase 
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Chem. Soc., 2006, 128, 12473-12483. 

2. T. T. Ngu, A. Easton and M. J. Stillman, Kinetic analysis of arsenic− metalation 

of human metallothionein: significance of the two-domain structure, J. Am. Chem. 

Soc., 2008, 130, 17016-17028. 
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Appendix C: Supplementary Structures and Energies for Rh2 
bound MT 

 

Fig S. 4. Top: Apo-MT MD result. Cysteine S shown in yellow. Bottom: Potential Energy 

trajectory over time. Reproduced from reference.1 Copyright 2018 American Chemical 

Society. 
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Fig S. 5. Apo-MT MD result. Cysteine S shown in yellow. H bond interactions are 

indicated in blue. Reproduced from reference.1 Copyright 2018 American Chemical 

Society. 
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Fig S. 6. Top: Rh2MT MD result. Cysteine S shown in yellow. Rh shown in teal. Bottom: 

Potential Energy trajectory over time Reproduced from reference.1 Copyright 2018 

American Chemical Society. 
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Fig S. 7. Rh2MT MD result with Rh2 in the β-domain. Cysteine S shown in yellow. Rh 

shown in teal. H bond interactions are indicated in blue. Reproduced from reference.1 

Copyright 2018 American Chemical Society. 
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Fig S. 8. Top: Rh2MT MD result with Rh2 in a conformation in the α-domain. Cysteine S 

shown in yellow. Rh shown in teal. Reproduced from reference.1 Copyright 2018 

American Chemical Society. 
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Fig S. 9. Rh2MT MD result with Rh2 in a conformation in the α-domain Cysteine S 

shown in yellow. Rh shown in teal. H bond interactions are indicated in blue. Reproduced 

from reference.1 Copyright 2018 American Chemical Society. 
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Fig S. 10. Top: Rh2MT MD result with Rh2 in an alternate conformation in the α-domain. 

Cysteine S shown in yellow. Rh shown in teal. Bottom: Potential Energy trajectory over 

time. Reproduced from reference.1 Copyright 2018 American Chemical Society. 
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Fig S. 11. Rh2MT MD result with Rh2 in an alternate conformation in the α-domain. 

Cysteine S shown in yellow. Rh shown in teal. H bond interactions are indicated in blue. 

Reproduced from reference.1 Copyright 2018 American Chemical Society. 
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Fig S. 12. Top: Rh4MT MD result with Rh2 in the β-domain and Rh2 in a conformation in 

the α-domain. Cysteine S shown in yellow. Rh shown in teal. Bottom: Potential Energy 

trajectory over time. Reproduced from reference.1 Copyright 2018 American Chemical 

Society. 
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Fig S. 13. Rh4MT MD result with Rh2 in the β-domain and Rh2 in a conformation in the 

α-domain. Cysteine S shown in yellow. Rh shown in teal. H bond interactions are 

indicated in blue. Reproduced from reference.1 Copyright 2018 American Chemical 

Society. 
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Fig S. 14. Top: Rh4MT MD result with Rh2 in the β-domain and Rh2 in an alternate 

conformation in the α-domain. Cysteine S shown in yellow. Rh shown in teal. Bottom: 

Potential Energy trajectory over time. Reproduced from reference.1 Copyright 2018 

American Chemical Society. 
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Fig S. 15. Rh4MT MD result with Rh2 in the β-domain and Rh2 in an alternate 

conformation in the α-domain. Cysteine S shown in yellow. Rh shown in teal. H bond 

interactions are indicated in blue. Reproduced from reference.1 Copyright 2018 American 

Chemical Society. 
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Fig S. 16. Top: Rh4MT MD result with Rh4 in the α-domain. Cysteine S shown in yellow. 

Rh shown in teal. Bottom: Potential Energy trajectory over time. Reproduced from 

reference.1 Copyright 2018 American Chemical Society. 
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Fig S. 17. Rh4MT MD result with Rh4 in the α-domain. Cysteine S shown in yellow. Rh 

shown in teal. H bond interactions are indicated in blue. Reproduced from reference.1 

Copyright 2018 American Chemical Society. 
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Fig S. 18. Top: Rh6MT MD result with Rh2 in the β-domain and Rh4 in the α-domain. 

Cysteine S shown in yellow. Rh shown in teal. Bottom: Potential Energy trajectory over 

time. Reproduced from reference.1 Copyright 2018 American Chemical Society. 
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Fig S. 19. Rh6MT MD result with Rh2 in the β-domain and Rh4 in the α-domain. Cysteine 

S shown in yellow. Rh shown in teal. H bond interactions are indicated in blue. 

Reproduced from reference.1 Copyright 2018 American Chemical Society. 

1. D. L. Wong and M. J. Stillman, Metallothionein: An Aggressive Scavenger—The 

Metabolism of Rhodium (II) Tetraacetate (Rh2 (CH3CO2) 4), ACS Omega, 2018, 3, 

16314-16327. 
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Appendix D: Surfaces and Orbital Energies for GSH bound 
to Rh2(OAc)4 

  

Fig S1. Expanded views of Rh2(OAc)4 molecular orbital surfaces, part 1/2. Calculations 

and image from A. Zhang in reference, 1 reproduced with permission from the Royal 

Society of Chemistry. 
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Fig S2. Expanded views of Rh2(OAc)4 molecular orbital surfaces, part 2/2. Calculations 

and image from A. Zhang in reference, 1 reproduced with permission from the Royal 

Society of Chemistry. 
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Fig S3. Expanded views of Rh2(OAc)4(H2O)2 molecular orbital surfaces, part 1/2. 

Calculations and image from A. Zhang in reference, 1 reproduced with permission from 

the Royal Society of Chemistry. 
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Fig S4. Expanded views of Rh2(OAc)4(H2O)2 molecular orbital surfaces, part 2/2. 

Calculations and image from A. Zhang in reference, 1 reproduced with permission from 

the Royal Society of Chemistry. 
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Fig S5. Expanded views of [Rh2(OAc)4(GS)(H2O)]- molecular orbital surfaces, part 1/2. 

Calculations and image from A. Zhang in reference, 1 reproduced with permission from 

the Royal Society of Chemistry. 
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Fig S6. Expanded views of [Rh2(OAc)4(GS)(H2O)]- molecular orbital surfaces, part 2/2. 

Calculations and image from A. Zhang in reference, 1 reproduced with permission from 

the Royal Society of Chemistry. 
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Fig S7. Expanded views of [Rh2(OAc)4(GS)2]
2- molecular orbital surfaces, part 1/2. 

Calculations and image from A. Zhang in reference, 1 reproduced with permission from 

the Royal Society of Chemistry. 
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Fig S8. Expanded views of [Rh2(OAc)4(GS)2]
2- molecular orbital surfaces, part 2/2. 

Calculations and image from A. Zhang in reference, 1 reproduced with permission from 

the Royal Society of Chemistry. 
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Table S1. Transition contributions for excited states (ES) with oscillator strength (f) 

greater than 0.001. Calculations from A. Zhang in reference, 1 reproduced with 

permission from the Royal Society of Chemistry 

Rh2(OAc)4 

ES Transition Contribution Energy [eV 

(nm)] 

f 

1 72 → 80 

78 → 80 

0.12995 

0.67953 

1.5418 (804.16) 0.0037 

2 71 → 80 

77 → 80 

0.13086 

0.67956 

1.5426 (803.75) 

 

0.0037 

14 72 → 80 

78 → 80 

0.68665 

-0.12489 

4.7555 (260.72) 

 

0.0229 

15 71 → 80 

77 → 80 

0.68635 

-0.12557 

4.7676 (260.06) 0.232 

16 69 → 80 0.69654 5.1009 (243.06) 0.0140 

17 68 → 80 0.69633 5.1094 (242.66) 0.0142 

20 62 → 81 

63 → 80 

66 → 82 

70 → 80 

79 → 87 

79 → 88 

0.14182 

-0.14773 

-0.12428 

0.61243 

-0.11805 

0.14491 

5.3426 (232.07) 0.0643 

Rh2(OAc)42H2O 

ES Transition Contribution Energy [eV 

(nm)] 

f 

1 86 → 90 

87 → 91 

88 → 90 

0.10876 

0.17148 

0.65326 

2.2561 (549.55) 0.0034 

2 80 → 90 

87 → 90 

0.10439 

0.65256 

2.3078 (537.23) 0.0027 
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88 → 91 0.19584 

6 76 → 92 

84 → 92 

87 → 90 

88 → 91 

-0.11427 

-0.20679 

-0.22219 

0.61712 

3.1246 (396.80) 0.0018 

7 74 → 92 

83 → 92 

87 → 91 

88 → 90 

-0.12927 

0.20788 

0.62609 

-0.19353 

3.1860 (389.15) 0.0019 

15 72 → 91 

75 → 92 

86 → 90 

88 → 90 

89 → 99 

0.13910 

-0.11732 

0.61760 

-0.10257 

0.20974 

5.2099 (237.98) 0.1489 

[Rh2(OAc)41GS]- 

ES Transition Contribution Energy [eV 

(nm)] 

f 

1 153 →166 

161 →166 

165 →166 

165 →167 

-0.12239 

-0.30150 

0.57168 

-0.11791 

2.0002 (619.85) 0.0013 

2 153 →167 

161 →167 

161 →169 

163 →166 

163 →167 

165 →167 

-0.12419 

-0.20202 

0.10319 

0.44851 

0.12743 

0.35148 

2.3540 (526.69) 0.0029 

4 153 →167 

161 →167             

162 →169 

-0.13409 

-0.15160 

0.14879 

2.5712 (482.20) 0.0013 
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163 →166 

163 →167 

163 →169 

165 →166 

165 →167 

-0.37276 

-0.12279 

0.14540 

0.13916 

0.43725 

6 161 →166 

161 →169 

162 →169 

163 →166 

163 →167 

163 →169 

165 →166 

165 →169 

0.23994 

0.32872 

-0.10429 

0.10738 

-0.24660 

0.34638 

0.20374 

-0.13194 

2.7976 (443.18) 0.0016 

13 153 →167 

154 →166 

156 →166 

161 →167 

163 →166 

164 →166 

165 →167 

0.19539 

-0.10185 

-0.16372 

0.42275 

0.12060 

0.26718 

0.31264 

3.8002 (326.26) 0.0704 

14 153 →167 

161 →167 

164 →166 

165 →167 

-0.10584 

-0.24010 

0.58547 

-0.15724 

3.8639 (320.88) 0.3938 

15 138 →166 

152 →166 

154 →166 

156 →166 

157 →166 

160 →166 

161 →167 

0.13137        

0.22820 

0.23745 

0.46218 

0.12203 

-0.10821 

0.15066 

4.0651 (305.00) 0.0569 
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163 →166 

164 →166 

-0.10670 

0.19565 

[Rh2(OAc)42GS]2- 

ES Transition Contribution Energy [eV 

(nm)] 

f 

1 232 → 245 

235 → 242 

235 → 244 

236 → 242 

236 → 244 

239 → 242 

239 → 244 

240 → 242 

240 → 244 

-0.12926 

0.13289 

-0.14224 

0.42475 

-0.21641 

-0.21184 

0.15268 

0.29186 

-0.11257 

2.3396 (529.93) 0.0029 

2 234 → 245 

235 → 242 

235 → 244 

236 → 244 

238 → 242 

238 → 244 

239 → 242 

240 → 242 

240 → 244 

-0.12280 

0.31121 

0.16534 

-0.17550 

0.28945 

0.22085 

-0.23043 

-0.19450 

-0.20986 

2.3866 (519.50) 0.0021 

9 232 → 245 

233 → 244 

234 → 244 

235 → 244 

235 → 245 

236 → 242 

236 → 244 

0.12454 

0.14644 

-0.14958 

0.17043 

0.22699 

0.15648 

0.33913 

2.9522 (419.98) 0.0035 
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1. D. L. Wong, A. Zhang, A. S. Faponle, S. P. de Visser and M. J. Stillman, 

Glutathione binding to dirhodium tetraacetate: a spectroscopic, mass spectral and 

computational study of an anti-tumour compound, Metallomics, 2017, 9, 501-516. 

 

236 → 245 

238 → 245 

239 → 242 

239 → 244 

240 → 245 

241 → 244 

-0.15082 

0.25701 

-0.11774 

-0.13665 

-0.10547 

-0.11128 

12 241 → 242 0.67072 3.4198 (362.55) 0.7178 
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Appendix E: Copyright Permissions 

In Chapter 1 and 7, all figures were made by Ms. Daisy Wong and are unpublished 

elsewhere, except for Figure 1-10 which was used with permission from the American 

Chemical Society from the article “Kinetic Analysis of Arsenic-Metalation of Human 

Metallothionein: Significance of the Two-Domain Structure” by Ngu et al. and their 

permission requirements have been followed as described below. 
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The figures used in Chapters 2, 3, 4, and 6 were created by Ms. Daisy Wong and 

published in Royal Society Journals, and their permission requirements have been 

followed as described below. 

 

The images used in Chapter 6 are open for public use under the American Chemical 

Society AuthorChoice License: 
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