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Abstract 

The arms race between plants and herbivores has resulted in a great diversity of plant 

compounds to act as defences against attackers. It has concurrently resulted in herbivorous pest 

adaptations to host defences, including plant-host defence suppression through the action of 

secreted effectors, and detoxification of phytochemicals ingested during feeding. While these 

two mechanisms of herbivore adaptation are relatively well studied, they have not been tested 

for use at the same time. This study uses the model plant species Solanum lycopersicum 

(tomato), and the model arthropod species Tetranychus urticae (two-spotted spider mite), to 

characterize the utilization of the above-mentioned mechanisms in an experimental adaptation 

set-up. Two spider mite strains, non-adapted (ancestral) and tomato-adapted, were used to 

infest tomato under different experimental conditions to interrogate the adaptation process. 

Tomato adaptation was validated through plant damage and mite performance assays. 

Transcriptional analysis of differentially expressed genes demonstrated an attenuation of the 

response to non-adapted mites by adapted ones, indicating the defence response to be deficient 

in induced defence programs, such as jasmonic acid biosynthesis and protease inhibitor 

biosynthesis. This was supported with marker gene and hormone quantification. However, 

inhibition activity was found to be differentially induced in different tomato cultivars, being 

highly induced in Moneymaker and attenuated in Heinz samples fed on by adapted mites, 

suggesting mites still encounter protease inhibitors as a plant defence in certain tomato 

cultivars despite being adapted to tomato in general. A mite co-infestation experiment was 

used to demonstrate that any benefit to host-plant modulation occurs only at the feeding site. 

Characterization of mite protease activity and fecundity post-inhibition by a synthetic inhibitor, 

E-64, suggest that mites increase their protease activity to overcome tomato protease inhibitors. 

Detoxification was also found to be involved in tomato adaptation, whereby inhibiting different 

classes of enzymes (cytochrome P450s, esterases, or glutathione-S-transferases) resulted in 

decreased fecundity on tomato.  

Keywords: Plant-herbivore interaction, Tetranychus urticae, Solanum lycopersicum,  

plant-host adaptation, detoxification, defence suppression   
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Summary for lay audience  

Insight into the molecular mechanisms of plant host adaptation by herbivores can inform future 

agricultural practices and technologies to ensure continued food production in a sustainable, 

ecologically friendly way. This research investigates two such adaptation mechanisms. First, 

suppression of plant defences. Using this mechanism, a herbivore can utilize a host plant by 

suppressing the plant response to herbivory, decreasing the amount of defences a plant 

produces in response to attack, and making the plant a more hospitable host. Detoxification of 

plant compounds is the second mechanism of adaptation studied here. Detoxification of toxic 

plant compounds can also make a host plant suitable for development and reproduction. 

Detoxification does not decrease the amount of plant defences produced, but it renders toxic 

metabolites that are ingested during feeding to be non- or less-functional against the herbivore. 

I use the two-spotted spider mite as a model herbivore that has been documented to use these 

two mechanisms of suppression to feed on tomato plants, and investigate whether these two 

mechanisms can be used simultaneously. Previous research has only studied these two 

mechanisms independently, but I hypothesize they can be used concurrently. I used a variety 

of techniques to characterize the adaptation status of a tomato adapted mite population by 

comparing it to a non-adapted mite population sharing genetic ancestry. Quantification of gene 

expression and plant hormone accumulation indicated that the adapted mite population can 

attenuate the tomato response to mite feeding, compared to the non-adapted strain. A co-

infestation experiment revealed that any physiological benefit to adapted mites must occur at 

the feeding site and is not transmitted systemically throughout the plant. I also characterized 

tomato protease inhibitor activity and mite protease activity to ascertain how mites were 

overcoming tomato protease inhibitors (an anti-digestive plant defence). Results suggests that 

mites have high protease activity to overcome tomato protease inhibitors and may not be 

relying on suppression of this plant defence class. Finally, I characterized the involvement of 

three prominent detoxification enzyme classes, namely carboxyl/choline esterases, 

glutathione-S-transferase, and cytochrome P450, using synthetic inhibitors of these classes. 

Results from detoxification inhibitor experiments support adapted mites also using 

detoxification as a mechanism to overcome tomato toxin metabolites. Overall, this research 

supports the conclusion that spider mites, and probably herbivores generally, can use multiple 

mechanisms of adaptation concurrently.  
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Preface 

The investigation into plant-herbivore interaction is valuable across disciplines. It is valuable 

in the study of ecological systems as both plants and arthropod herbivores play an enormous 

role in almost every ecosystem found on this planet. The interaction between plants and their 

pests has shaped both of them extensively over hundreds of millions of years of evolution, and 

the enormous variation, from the species, to the molecular and genetic levels can provide us 

with valuable tools as we face problems in agriculture regarding the loss of crops to herbivores. 

Ultimately, knowledge gained from basic research in this field can be applied in industry and 

biotechnology developed using this knowledge could improve agricultural systems and have 

enormous economic benefits. This study is one contribution I make in the hopes of improving 

our knowledge of natural systems and human endeavours to live within and alongside them.  
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1 An introduction to plant-herbivore interaction 

1.1 The agricultural perspective 

The dawn of civilization has largely been attributed to approximately 20 agricultural 

revolutions that occurred around the world between 10 000 – 5 000 years ago, leading to 

the domestication of plant species as widely used and distributed crops (Smith, 2002; Fuller 

et al., 2014). It was the ability to grow more than enough food for a population and store it 

for future use that allowed humans to grow to far greater numbers than ever before. 

Unfortunately, a lack of collective forethought has since led humanity to a point where we 

must face the negative consequences our development has had on the natural world we 

continuously use to sustain our numbers  (Larsen, 2006; Campbell et al., 2017). Indeed, 

resource shortages, including declining crop yields, have been characterized as an 

underlying problem during the fall of previous civilizations (Taylor, 2008).  

Nevertheless, since the dawn of agriculture, a good life has included food security. Whether 

at the level of the individual, family, community or empire, the knowledge that food would 

always be on the table allowed humanity to dwell on other things besides hunting, gathering 

or scavenging enough food to make it through the day. It was then that a standard of living 

was born that even today is strived for across cultures. As we attempt to provide that 

standard of living to a human global population expected to reach almost 11 billion by the 

end of this century (UN, 2019), we need to consider the agricultural requirements of 

sustaining such a population. The problem is exacerbated by climate change (Arbuckle et 

al., 2015; Burton and Lim, 2005). Parry and Hawkesford (2010) predict that a doubling in 

food production is required by 2050 to attain global food security. Sustainable food 

production, food distribution and economics are all major challenges to achieving this goal 

(Parry and Hawkesford, 2010). One inescapable conclusion from an objective view of the 

current and not too distant future is that we will need to increase food production and do 

so in a sustainable way that does not compromise the ability of future generations to combat 

current and future problems.  

Obstacles that food producers face are varied as different crop plants experience a variety 

of biotic and abiotic stresses, including pests and drought, respectively. Biotic stressors 
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such as invasive weeds and herbivorous pests in addition to pathogens represent challenges 

that affect crop yield and are costly to producers. Yield loss due to arthropod infestation of 

annual crops is estimated to be 18-26% globally (Culliney, 2014). However, plants have 

evolved an extensive array of defensive strategies to combat the myriad of predators and 

parasitoids that inevitably come to the plant for the purpose of taking nutrients that plants 

have absorbed and/or synthesized. While previous endeavours to domesticate crops 

through breeding have focused on the development of traits such as high yield and higher 

nutritional content, this has been at the cost (or lack of interest) of defensive traits we now 

recognize as important (Moreira et al., 2018).  

Pest control in the past several decades has largely relied on the use of synthetic pesticides. 

However, this is accompanied by a variety of undesired outcomes that include negative 

effects on non-target and beneficial arthropods, the development of resistance in target 

pests, and secondary pest emergence. This is in addition to the cost associated with 

purchasing pesticides, equipment and fuel (Ekstrӧm & Ekbom, 2011). Additionally, an 

increasing number of products have become unusable and unavailable due to target 

resistance and/or regulatory changes (Van Leeuwen et al., 2010a; Marcic, 2012). Given 

this outlook, it seems obvious that more environmentally sound pest control methods are 

required for the sustainable production of food. New methods should both prolong the 

effectiveness of current and new pesticides as well as ameliorate any associated negative 

impacts. Providing novel and varied modes of action against pests can slow the 

development of resistance to any individual method.   

1.2 The biological perspective 

The conflicting interests of plants and the herbivores that feed on them has resulted in an 

immensely complex relationship between them accompanied by genotypic and phenotypic 

variation that is remarkably impressive. The plant has the goal of acquiring enough 

resources to defend and/or tolerate attack and stress to ensure reproductive success. The 

details of plant life-history strategies beyond that of defence against herbivores is not 

addressed here. Likewise, the strategies herbivores utilize outside of overcoming plant 

defences are not covered in this work; however, a brief summary of the interaction is 

included to give context. The interaction between arthropod herbivores and plants begins 
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when the herbivore locates a potential host plant through visual or olfactory cues, for 

example by the flower colour or volatile compounds released, respectively. Using contact 

chemoreceptors on mouthparts, antennae, and tarsi, the suitability of a host plant for 

feeding and oviposition can then be physiologically and chemically assessed by the 

arthropod (Howe and Jander, 2007). Through various modes of probing or initial feeding, 

the herbivore either accepts or rejects the plant as a suitable host (Stout, 2013). The final 

phase can be considered host utilization, characterized by the ability of the herbivore to 

survive, develop and reproduce on the host plant. Success of the herbivore is greatly 

influenced by the nutritional quality and types of plant defences in the host plant (Duffey 

and Stout, 1996). Regarding these defenses, plant allelochemicals can act to either excite 

or inhibit herbivore feeding, which in turn affects the rate and duration of feeding, and 

eventually influences the fecundity of the herbivore (Miller & Strickler, 1984). 

Allelochemicals are defined as chemical emitted by an organism of one species that 

influences the physiology or behavior of an organism of a different species. 

To add even more complexity to the scenario, herbivores must also interact with other 

organisms (directly or indirectly), in addition to its host plant. These other organisms can 

be of the same trophic level, and represent competing herbivores, or they can be those of 

different trophic levels and represent predators or parasitoids of the herbivore. There are 

also pathogens the herbivore may have to overcome, although some microbes are beneficial 

and act as symbionts of the herbivore. These herbivore-associated organisms can affect 

how the plant responds to herbivory (Chung et al., 2013; Zhu et al., 2014). Additionally, it 

must be acknowledged, that these interactions are dynamic in time, where the defensive 

phenotype of the host plant will change depending on previous, current and future biotic 

and abiotic stressors.  

1.3 The plant-herbivore “arms race” 

Arthropod herbivory came in two phases. The first phase occurring 417 to 403 million 

years ago, shortly after the colonization of land by plants and is supported by evidence for 

consumption of sporangia and stems. The second occurred 327 to 309 million years ago 

following the origination and expansion of roots, leaves, wood and seeds tissues of plants 

(Labandeira, 2007). This long-term competition has been coined an “arms race” between 
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plants and herbivores where the former produce defences to guard against the latter which 

in turn develops mechanisms to adapt to the defenses (Ehrlich and Raven, 1964). In this 

way, plants have become an incredible source of diverse defence compounds, ranging in 

effectiveness across pest species and mode of action against the target attacker (Futuyma 

and Agrawal, 2009). In fact, plants are one of the best, largely un-tapped, resources for 

development of bio-pesticides and this has become an area of high interest and 

development (Walia et al., 2017). Additionally, the prospects for generating herbivore 

resistant crops using the genetic diversity of traits found in wild varieties is very promising 

(Mitchell et al., 2016). For herbivores to successfully utilize host plant species, they must 

evolve methods of overcoming those defences. This successful utilization of a host plant 

is considered to be a compatible interaction (Rioja et al., 2017), a term adopted from plant-

pathogen studies, occurring when the herbivore is either not detected by the plant, or is 

detected but has evolved the ability to avoid or overcome the defences. Incompatible 

interactions, conversely, occur when the plant is resistant and can successfully defend itself 

against the herbivore upon recognizing it and leads to that plant being defined as a non-

host. The classifications of herbivores based on the range of host plants are: generalists 

(feeding on many hosts from different families, also termed polyphagous); oligophagous 

herbivores (feeding on several plant species, usually from the same family); and specialists 

that feed on one or a few species within the same genus (Barrett and Heil, 2012; Bernays 

and Graham, 1988; Futuyma and Gould, 1979). 

One evolutionary consequence of the arms race is hypothesized to be the observed 

specialization of insect species on certain plant hosts, where they adapt to the defence 

compounds specific to a plant species/family. In fact, the majority of herbivorous 

arthropods are restricted to feeding on a single or very few plant species and are considered 

specialists for that reason (Wheat et al., 2007). It is in this way that the evolution of new 

defensive traits by plants and the counteradaptations to them by herbivores accounts for 

the patterns of variation in plant defence and has played a role in the specialization and 

diversification of both plants and herbivores concurrently (Stout, 2013). 

Both plant defense and herbivore adaptation involve metabolic costs, so most plant-insect 

interactions reach a stand-off, where both host and herbivore survive although their 
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development is suboptimal (Fürstenberg-Hägg et al., 2013). This is consistent with the 

balance of biological forces throughout the biosphere.  

1.4 Plant defence response 

Due to the motile nature of herbivores, plant defence strategies generally come down to a 

go-away-or-die strategy or a slow-them-down strategy. Toxic and repellent plant 

compounds can be employed in the go-away-or-die strategy, whereas anti-digestive 

compounds or plant re-allocation of resources can lead to delayed development of the 

herbivore (Kant et al., 2015). Millions of years of the arms race has led to a wide range of 

plant defences, and these can be characterized generally as either direct or indirect. Direct 

defences are those that act directly against the attacker, and include physical barriers, such 

as trichomes or cuticle wax, and compounds that have a direct toxic effect, or antifeedant 

property that deters herbivory (Howe and Jander, 2008; Santamaria et al., 2013). 

Alternatively, indirect defences are those which protect the plant through the attraction of 

predators/parasitoids of the herbivore feeding on the plant in the form of released volatile 

compounds (Mithöfer and Boland, 2012). The cost of producing secondary metabolites 

serving as direct or indirect defences applies a selection pressure on the plant, as they cost 

energy to produce and deplete stores of valuable amino acids, like nitrogen. To decrease 

the metabolic cost to the plant and allow it to focus on growth or reproduction when no 

threat is present, many of these defense responses are induced only upon perception of 

herbivore feeding (Baldwin and Preston, 1999; Tian et al., 2003; Zavala et al., 2004). 

Constitutive defences, such as a basal level of defence compound or thorns, on the other 

hand, are always present in the plant and serve to ward off potential attackers, giving the 

plant a baseline defence (Howe and Jander, 2008). Trade-offs exist between constitutive 

and induced defences (Kempel et al., 2011),  resulting in extensive variability among plant 

species defensive compounds and strategies, and contributing to the generation and 

maintenance of species diversity (Agrawal et al., 2010). For induced defences to be 

beneficial to plants they have to be rapid, reversible and informed as to which attacker is 

present. Induced defences that do not affect the attacking herbivore are a cost without 

benefit to the plant (Karban et al., 1999). It is therefore not surprising that there has been 
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selection pressure on plants during the arms race, to correctly identify when a specific 

attacker is present.  

Another characteristic of induced defences that plants have evolved is the systemic 

response. Where, in an effort to decrease the chance that a herbivore will move to an 

undefended part of the plant, upon perception of attack, plant hormones orchestrate a 

defence response and prime distal tissues for synthesis of defence compounds not yet 

attacked by the herbivore (Pearce and Ryan, 2003).  

1.4.1 Plant perception of attack 

Plants do not possess the adaptive immune system found in vertebrate animals. The 

adaptive immune system is a relatively recent evolutionary development. Adaptive 

immunity involves the mobile cells that use immunoglobulin and T-cell receptors. Genes 

encoding these receptors are re-arranged throughout an individual’s lifetime, allowing for 

the ‘real time’ development of resistance through perception of attackers (Boller and Felix, 

2009). Conversely, plants only have the evolutionarily ancient innate immunity, where 

receptors present in the germ line are used in perceiving an attacking organism (Howe and 

Jander, 2007; Boller and Felix, 2009), though these receptors are still subject to change 

through novel mutations, selection of favorable genotypes, or horizonal gene transfer 

events that act in large time-scales.  

Innate immunity in plants can be separated into two forms of immunity that represent 

different stages of herbivore-plant interaction within the arms race. The terminology used 

to characterize how the plant perceives attack has been adopted from studies of plant-

microbe interaction (Howe and Jander, 2008). First, there is the basal level of immunity, 

where molecular patterns associated with plant damage (DAMPs) or the attacking 

herbivore (HAMPs) are recognized by plant pattern recognition receptors (PRRs) within 

the plasma membranes of plant cells. HAMPs and DAMPs represent evolutionarily 

conserved molecular moieties that are recognized by the plant, triggering a cascade of 

signalling events leading to a defence program (Figure 1.1). DAMPs are generated from 

feeding site damage; however, the signals generated following their recognition can be 

delivered to undamaged parts of the plant in a systemic manner (Tör et al., 2009). 
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The most extensively researched HAMPs are fatty acid conjugates, found in Lepidopteran, 

Dipteran and Orthopteran species (Yoshinaga et al., 2007), and inceptins, which are 

proteolytic products of plant-derived chloroplastic ATP synthase present in Spodoptera 

frugiperda larvae oral secretions following plant feeding and then used by the plant to 

perceive attack (Schmelz et al., 2006).  The plant- and herbivore-derived molecules that 

induce a response in plants are often referred to as elicitors. To avoid this basal level of 

innate immunity, some herbivores have evolved a mechanism to suppress plant defences 

induced during basal immunity via the secretion of different molecules termed effectors, 

found in saliva, feces or oviposition fluids. These compounds may mimic plant hormones 

and/or mask the perception of HAMPs (Felton and Tumlinson, 2008). One example of a 

herbivore derived effector is glucose oxidase, identified in saliva of several noctuid species 

(Bede et al., 2006). In this way the plant becomes susceptible to the herbivore and cannot 

adequately defend itself against it. More recently it has been determined that certain plants 

can also detect a herbivore through what is called effector-triggered immunity. The plant 

recognizes specific molecular patterns of the attacking herbivore via intracellular pattern 

recognition receptors or the manipulations of plant cell targets by effectors, and initiates a 

defence cascade regardless of the presence of effectors that may be present (Böhm et al., 

2014).  

As the defence cascade starts upon perception of attack, it triggers early local responses 

including ion fluxes across the plasma membrane, collapse of membrane integrity at the 

feeding site, initiation of kinase cascades, and generation of reactive oxygen species 

(Maffei et al., 2007; Wu et al., 2007). Downstream of early responses are hormone 

cascades, that orchestrate the ensuing defence response. Studies of plant-pathogen 

interactions show that, despite recognition of pathogens being highly specific in many 

cases, plants have a common downstream signalling mechanism (Katagiri and Tsuda, 

2010) leading to the initiation of the specific defences for each attacker. It has been 

hypothesized that this paradigm holds true for plant-insect interactions as well (Erb et al., 

2012). Through the action of hormone signalling and cross-talk therein, the transcriptional 

profile of the plant changes from one of growth to defence through the activation or de-

repression of defence-associated genes (Sanabria, et al., 2010). These genes can take part 

in the further regulation of defences by acting as transcription factors or in biosynthetic 
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pathways as enzymes required for the production of defence compounds, or act as defence 

proteins themselves by inhibiting herbivore digestion.  

 

 

Figure 1.1 Schematic of plant perception of attack and induced defence. The defence 

responses are initiated by the recognition of conserved microbe/pathogen, herbivore, 

and/or damage associated molecular patterns (M/H/DAMPs) by pattern recognition 

receptors (PRRs) within the plasma membrane. This induces P/HAMP-triggered immunity 

(P/HTI) and/or wound induced response (WIR) that restricts the propagation of attacking 

pathogens or increases the defences against herbivores. Some strains of pathogens and 

herbivores have evolved effectors, that lead to the suppression of P/HTI, leading to plant 

susceptibility. Recognition of effectors (or their activity) by plant resistance proteins (R 

proteins) leads to effector-triggered immunity (ETI) and plant resistance. Figure modified 

from Erb et al. (2012). 

Hormone signalling/synthesis (SA, JA, ABA etc.) 
Transcriptional activation of defence metabolite biosynthetic pathways 

Accumulation of defence compounds locally  
Priming of defence response systemically  
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1.4.2 Hormone Signalling in plants 

Plant hormones orchestrate plant defence responses downstream of perception of elicitors 

or effectors and other early molecular recognition events of microbes and herbivores, such 

as Mitogen Activated Protein Kinase (MAPK) cascades (Pieterse et al., 2012). The main 

hormones required for the regulation of defences against herbivores incurring various types 

of tissue damage, in addition to those of wounding, are represented by the jasmonate  

family of signalling compounds (Howe and Jander, 2008). This is evident from results of 

studies using mutants compromised in one or more elements of the jasmonate pathway, 

where they are more susceptible to a wide range of arthropod herbivory including that 

from: caterpillars (Lepidoptera); beetles (Coleoptera); thrips (Thysanoptera); leafhoppers 

(Homoptera); spider mites (Acari); fungal gnats (Diptera); and mired bugs (Heteroptera) 

(Bostock, 2005; Howe, 2004; Kessler and Baldwin, 2002).  Jasmonates play a pivotal role 

in switching the plant from a growth to defence program, allowing the plant to reallocate 

energy and metabolic resources (Pauwels et al., 2009). In general, jasmonates promote 

defensive and reproductive processes while inhibiting those of growth and photosynthesis 

(Turner et al., 2002). Jasmonic acid (JA) is synthesized upon perception of attack and 

induces expression of defence genes through JA-mediated transcription factors as 

discussed in detail in Fürstenberg-Hägg et al. (2013). Salicylic acid (SA) is also a very 

important hormone involved in the response to herbivory, and generally acts in an 

antagonistic way to JA responses and is itself important in induction of defences against 

biotrophic pathogens and has been hypothesized to be used by aphids and other phloem 

feeders to supress JA responses (Howe and Jander, 2008; Smith et al., 2009). However, 

there are many other hormones that play roles in modulating the defence response driven 

by JA and its most active form JA-Ile. Notable hormones include ethylene, abscisic acid 

(ABA) and gibberellins (van Loon et al., 2006; Ton et al., 2009; Daviere and Achard, 2013 

respectively). The complexity added to the response to herbivory by hormone cross-talk 

allows the plant to modulate its immune response in a way that can be tailored to the 

attacking arthropod, promoting efficient utilization of resources (Wu and Baldwin, 2010).  
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1.4.3 Plant defence secondary metabolites 

Jasmonates and modulating hormones direct defence gene activation followed by the 

synthesis of induced defence compounds (both direct and indirect). Focusing on direct 

defences, both constitutive and induced, there are a plethora of mostly low molecular 

weight molecules that exert repellent, antinutritive or toxic effects on herbivores. These 

defenses target key biological processes specific to herbivores, including the nervous, 

digestive and endocrine systems (Rosenthal and Berenbaum, 1992). Bioactive specialized 

defence compounds can repel or intoxicate insects, whereas defence proteins are usually 

deployed to interferer with digestion (Fürstenberg-Hägg et al., 2013). Under the continuing 

selection pressure of the arms race the same compound can act both as a repellant to a 

generalist herbivore and an attractant or oviposition cue for a specialist herbivore, 

depending on the interacting species (Remco and Van Poecke, 2007). Some of the most 

studied defence compounds are listed below, but do not represent a comprehensive list.  

1.4.3.1 Defence chemicals 

Alkaloids are widely distributed, found in 20% of all vascular plants consisting of  more 

than 15,000 different compounds (Fürstenberg-Hägg et al., 2013). They are prevalent in 

the Leguminosae spp. (legumes), Liliaceae spp. (lilies), Solanaceae spp. (nightshade 

plants) and Amaryllidaceae sp. (Amaryllis), mostly in aboveground plant tissues. Alkaloids 

are well recognized for their effects on mammals, though they are thought to have evolved 

as defences against insect herbivores and include caffeine, nicotine, morphine, and cocaine 

(Ziegler and Facchini, 2008). 

Another example of small molecule defence chemical are glucosinolates. These sulphur- 

and nitrogen-containing defence compounds are found only in Brassicaceae and 

Capparales plant families. There are at least 120 different structures known and they can 

be divided into different groups based on the amino acid precursor of the side chain 

(Hopkins et al., 2009). Depending on the type, they can be most dominant in the roots or 

the shoots of plants. The toxic effect of glucosinolates is attributed to their breakdown 

products that are usually derived through the reaction carried out by myrosinases 

(Fürstenberg-Hägg et al., 2013). Glucosinolates are a good example of defence compounds 
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that are effective against generalists, but function as feeding and/or oviposition attractants 

for specialists feeding on Brassicaceae (Bradburne and Mithen, 2019). 

1.4.3.2 Defence proteins  

In addition to toxic chemicals, plants also produce anti-digestive proteins that interfere with 

the ability of herbivores to digest plant material by limiting the rate of enzymatic 

conversion of ingested plant tissue. Anti-nutritive proteins on the other hand, limit food 

utilization by physically altering its availability and/or chemical identity (Duffey and Stout, 

1996). There are five major classes of defence proteins: protease inhibitors (PIs), α-amylase 

inhibitors, lectins, chitinases and polyphenol oxidases (Fürstenberg-Hägg et al., 2013).  

First characterised in solanaceous plants, PIs are now one of the best studied direct defences 

(Kessler and Baldwin, 2002). They are expressed in seeds, tubers and in vegetative tissues 

and can be induced following wounding and/or herbivore attack. There are 13 different PI 

families, known to target all main protease families (Rawlings et al., 2006). The 

effectiveness of PIs in a defensive role relies on: 1) their enzymatic affinity (specificity) 

for protease found within the attacking herbivore’s midgut; and 2)  the ability of the 

attacker to alter its protease profile and increase expression of proteases insensitive to the 

PIs within plant material ingested (Koiwa et al., 1997). PIs not only delay the digestion of 

nutritious plant material, they also prevent the degradation of other antinutritional or toxic 

proteins ingested during feeding, giving the toxins time to exert their effect on the attacker 

(Amirhusin et al., 2004).  

Plants can also regulate the activity of the papain C1A family of proteases through 

inhibition of the activation step involving cleavage of the N-terminal pro-peptide. C1A N-

terminal pro-peptides, 130-160 amino acids long, are involved in the inhibition of their 

cognate enzymes and participate in subcellular localization and proper folding of the 

mature protease (Demidyuk et al., 2010). These cysteine protease pro-peptides have also 

been shown to confer resistance of Arabidopsis to spider mites when expressing pro-

peptide fragments of the HvPap-1 gene from barley (Santamaria et al., 2015a). This study, 

among others, demonstrated the ability of C1A pro-peptides from different species to 
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inhibit exogenous C1A peptidases and suggests a role in plants as defenses against 

herbivores through interference with peptidases within the gut.  

The activity of α-amylase inhibitors are directed against α-amylase enzymes of animals 

and microorganisms involved in starch breakdown, seldom affecting plant amylases 

(Fürstenberg-Hägg et al., 2013). For example, α-amylase inhibitors derived from wheat 

can inhibit Tenebrio obscurus (mealworm), Tribolium spp. (flour beetles), Sitophilus spp. 

(wheat weevils) and Oryzaephilus spp. (grain beetles) in addition to providing protection 

against Bruchus pisorum (pea weevil) in transgenic peas (Morton et al., 2000).  

Lectins are very diverse, with an evolving classification system. Thus far, there are six 

families of lectins, divided based on carbohydrate recognition domain comparisons. 

Legume lectins and cereal lectins are the only two family members found in plants. Lectins 

are sugar-binding proteins enriched in storage organs and are though to interact with 

glycoproteins lining the gut of insects herbivores where they are assumed to inhibit nutrient 

absorption (Chrispeels and Raikhel, 1991); however, the mechanisms of lectin resistance 

in herbivores remain poorly understood (Fürstenberg-Hägg et al., 2013). 

Chitin is present in abundance in the exoskeleton and peritrophic membrane of insects, 

mites and fungi. Plants possess chitinases, which are hydrolytic enzymes that break down 

glycosidic bonds in chitin, and are therefore proposed as defences against organisms 

containing chitin. This is supported in studies where transgenic plants overexpressing 

chitinases are resistant against insect herbivores (Fürstenberg-Hägg et al., 2013). 

Polyphenol oxidases (PPOs) are ubiquitous copper-containing enzymes that catalyze the 

oxidation of phenolics to quinones and are induced by biotic and abiotic stresses 

(Thipyapong et al., 2007). The PPO-generated quinones are highly reactive and may cross-

link or alkylate proteins, leading to the brown pigmentation observed in damaged plant 

tissue (Constabel and Barbehenn, 2008). PPOs also generate reactive oxygen species 

(Fürstenberg-Hägg et al., 2013). PPO activity has been associated with herbivore and 

pathogen resistance in plants among many other biological processes.  
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1.5 Herbivore adaptation  

For phytophagous arthropods to utilize plants for food, they must deal with the plant 

defences they encounter. Ultimately, this comes down to one of three overarching 

strategies: avoid, overcome, or suppress. These adaptations can be genetic, morphological, 

physiological or behavioural in nature and will depend on life style and host range of the 

herbivore. Avoidance is an example of behavioural adaptation, where herbivores will feed 

on tissues that are not as heavily protected by the plant (Paschold et al., 2007; Shroff et al., 

2008). An example of herbivore physiological adaptations can be seen in the diverse array 

of mouth-part structures used to uptake plant nutrients. Mouthparts evolved for chewing, 

tearing and snipping, like those observed in leaf-eating beetles (Coleoptera) or caterpillars 

(Lepidoptera), comprising about two-thirds of all known insect herbivores (Schoonhoven 

et al., 1998), physically disrupt plant tissue allowing for ingestion and digestion. Another 

strategy is observed in thrips and spider mites that use tube-like stylets to pierce cells and 

suck up the liquid content, whereas leafminers develop in and feed on the soft tissue 

between epidermal cell layers (Howe and Jander, 2007). Aphids, whiteflies and other 

Hemiptera are phloem feeders and insert their stylet between cells to establish a feeding 

site in the phloem (Howe and Jander, 2007).  

Other mechanisms in response to plant defensive metabolite profiles observed in 

herbivores include: increasing feeding intensity to compensate for any decreased efficiency 

of nutrient utilization due to plant defences (Gomez et al., 2012);  sequestering plant 

defence compounds for use against predators by storing them in specialized tissues or in 

the integument (Kant et al., 2015);  target-site insensitivity to phytotoxins (Dobler et al., 

2012); and  rapidly excreting phytotoxins before they can act on their target  (Heidel-

Fischer and Vogel, 2015). 

1.5.1 Detoxification of xenobiotics 

One of the most important mechanisms of overcoming plant defence compounds is 

detoxification. Current literature suggests that it results from a common set of 

detoxification-related enzyme families representing three distinct phases of detoxification. 

In phase I, the xenobiotic is enzymatically modified with the incorporation of a 
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nucleophilic functional group (a hydroxyl, carboxyl, or amine group), changing its 

chemical properties to become more polar/water soluble. The metabolite enters phase II, 

where it is conjugated to endogenous molecules, like glutathione or a sugar, which further 

increases its hydrophilicity. The third phase consists of excretion of the modified 

metabolite by cellular transporters. Sometimes, phase III occurs in the absence of phases I 

and II, where the plant metabolite is excreted before it can enter cells (sometimes referred 

to as phase 0; Kant et al., 2015). 

Phase I is often carried out by cytochrome P450 monooxygenases (P450s) and 

carboxyl/choline esterases (CCE). Cytochrome P450s (CYPs) are encoded by the CYP 

gene superfamily and are membrane-bound enzymes involved in the metabolism of a wide 

array of compounds including vitamins and hormones in addition to their role in modifying 

xenobiotics (Heidel-Fischer and Vogel, 2015). Acetylcholinesterase (AChE) and 

carboxylesterases (CarE) are also enzymes involved in phase I detoxification reactions, and 

have mostly been studied for their role in resistance to insecticides as well as plant host 

preference (Rane et al., 2016; Xue et al., 2010).  

Phase II conjugation of xenobiotics are carried out by transferases like glutathione-S-

transferases (GSTs) and UDP-glycosyltransferases (UGTs). As their names suggest, GSTs 

operate by conjugating reduced glutathione to the electrophilic centers of xenobiotics (Li 

et al., 2007). Lipophilic xenobiotics are conjugated with sugars by UGTs, rendering them 

more water-soluble. Currently, there are more than 310 putative UGTs identified and 

classified in insects (Ahn et al., 2012).  

Phase III mechanisms have not been characterized to the same extent as those involved in 

phases I and II. However, there have been several reports of transporters providing 

herbivores with resistance to plant allelochemicals. One example is seen in leaf beetles 

where the selective transport of plant glycosides has been suggested to be important in the 

evolution of life history strategies and hosts ranges (Kuhn et al., 2004). 

Detoxification, is also a major factor in the metabolism and excretion of synthetic 

pesticides as the mechanisms mentioned above have been observed for these chemicals as 

well (Li et al., 2007). 
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1.5.2 Suppression of plant defences  

Another major strategy of herbivore adaptation to plant defences is to suppress them. By 

secreting small molecules, peptides or proteins as effectors into the plant during feeding 

and/or oviposition, a herbivore can limit the plant’s ability to respond to the attack and 

decrease the amount of defences it has to encounter, eliminating/decreasing the need to 

avoid or overcome them (Musser et al., 2002; Zarate et al., 2007; Alba et al., 2011). 

Alternatively, some herbivores can manipulate the allocation of resources within a host 

plant, and limit its response to attack that way (Clark and Harvell, 1992). Plant defence 

suppression is characterized by a lowered rate of defence compound production which can 

affect any level of the defence pathway (up- or down-stream), blocking it or attenuating it 

(Kant et al., 2015). As with all life history strategies, there are trade-offs in using 

suppression as a means of adaptation. For example, suppressing plant defences can cost 

herbivores through creating a beneficial host to competitors (Blaazer et al., 2018). 

Nevertheless, defence suppression has been shown to coincide with increased herbivore 

fitness (Kant et al., 2008; Sarmento et al., 2011; Alba et al., 2014), demonstrating it as a 

viable adaptation mechanism to host plant defences.  

1.6 Selecting a plant-herbivore interaction model   

1.6.1 Solanum lycopersicum 

The cultivated tomato, Solanum lycopersicum L, (Solanaceae), has been a model organism 

for the study of plant-herbivore and plant-pathogen interactions for decades. It is a 

representative of the Solanaceae family, which also includes other food crops like potato, 

eggplant, peppers, as well as several medicinal plants including Solanum nigrum Linn., 

known for hepatoprotective and antioxidant properties (Sarethy et al., 2014), and some 

ornamental plants such as Petunia. It was in tomato that herbivore-induced systemic 

defences were first identified (Green and Ryan, 1972). Tomato is an excellent model for 

interaction studies based on knowledge of signalling pathways involved in the activation 

of defence genes in response to herbivore attack  (Pearce et al., 1991) and  direct defences 

that are constitutive or induced including alkaloids, chitinases, peroxidases, lipoxygenases, 

PPOs, and PIs (Kant et al., 2004). Additionally, there are a wide range of tools and 
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resources available for the identification and cloning of genes associated with agriculturally 

important traits (Gupta et al., 2009) and the genome was sequenced in 2012 by the Tomato 

Genome Consortium. Additionally, tomato production in Canadian greenhouses accounted 

for a farm gate value of $565M CAD in 2018, which was more than any other greenhouse 

vegetable, including cucumbers, lettuce, or peppers (Statistics Canada).  

1.6.2 Tetranychus urticae 

Tetranychus urticae Koch. (Acari: Tetranychidae), also known as the two-spotted spider 

mite, or red spider mite (depending on phenotype), is a very small herbivore that has 

become a model organism in the study of plant-herbivore interaction and a representative 

of the Chelicerate subphylum of Arthropoda ( Grbić et al., 2007; Grbić et al., 2011; Van 

Leeuwen et al., 2010b; Rioja et al., 2017). It is characterized as two-spotted because of the 

visible dark spots in its near-transparent abdomen, produced by the accumulation of 

digestive cells within the mite midgut caeca (Bensoussan et al., 2018; Figure 1.1). It is 

referred to as a spider mite due to the copious amounts of silk it produces for a variety of 

reasons including: mobility throughout the colony, a safe place to lay eggs/avoid predators 

as well as a dispersal mechanism when the population gets too dense (Clotuche et al., 2013; 

Iwasa and Osakabe, 2015; Figure 1.2a and b).  It is one of the most polyphagous herbivores 

known to exist, with over 1151 plant species recorded as hosts at the time of writing, 

including 150 crops (Migeon and Dorkeld, 2006-2019). Its extreme generalist nature makes 

it a great model for studying how generalists adapt to or overcome the diverse plant 

defences they encounter. It is also important to note however, that while T. urticae has the 

ability to feed on an extreme range of host plants, individual mite populations do not 

perform equally well on all potential hosts (Fellous et al., 2014; Gotoh et al., 1993; Navajas, 

1999). Variation exists between mite populations as to which plants species may be 

considered favorable to them and different mite populations may adapt to new host plants 

when there is selection pressure to do so. In order to study the adaptation process, situations 

can be engineered such that spider mite populations can be adapted to novel hosts and their 

performance compared to an ancestral strain (Agrawal, 2000; Agrawal et al., 2002; Fry, 

1989; Wybouw et al., 2015). In such cases, mites initially show low preference for, and 

low performance on the new host, suggesting mites were susceptible to the constitutive 
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and/or induced plant defences. Over time (5-25 generations), mites have a tendency to 

remain on the new host and their performance increased. Experimentally derived adapted 

mite populations allow for the determination of the physiological/genetic basis of host 

adaptation without the confounding effects of host-searching, and predator avoidance 

behaviour, etc., found in field conditions, by restricting the number of interacting species 

to two. 

Tetranychus urticae has mouthparts adapted for a sucking mode of feeding, using a stylet 

to pierce through the plant epidermis to feed on individual mesophyll cells (Park and Lee, 

2002; Bensoussan et al., 2016). During feeding, stylets transverse the leaf epidermis 

without damaging it, either in between epidermal pavement cells or through stomatal 

openings (Bensoussan et al. 2016). Plants experiencing mite herbivory display symptoms 

of chlorotic spots. As no macroscopic damage can be seen immediately following a feeding 

event, the chlorotic spots are not likely caused directly by mite feeding; however, chlorotic 

spot area can be used as a proxy for the amount of mite feeding on a leaf, as it is the 

cumulative result of both mite feeding and the plant’s response to mite herbivory 

(Bensoussan et al., 2016). 

 

 

Figure 1.2 Spider mite life cycle. The various life history stages of T. urticae are displayed 

going from left to right: egg, larvae, protonymph, deutonymph, adult male, and adult 

female. Photo credit: Zoran Culo. 
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Figure 1.3 Spider mite colony on bean. A, mites using silk to move between plant 

surfaces and deposit eggs. B, over-populated bean leaf with silk string of mostly adult 

female mites trying to disperse to a new plant.  

Since the publication of the mite genome in 2011 by Grbić et al., it has been used in the 

analysis of reciprocal transcriptional responses between plant and mite simultaneously 

(Wybouw et al., 2015; Zhurov et al., 2014). Characterization of the both plant and mite 

responses allows us to dissect the complex response of plants to mites during attack as well 

as the molecular mechanisms that allow mites to adapt to new plant hosts, providing a real-

time view of the state of the arms race during their interaction. The T. urticae genome also 

revealed information regarding its protease profile. C1A cysteine protease genes (29 

cathepsins L, 27 cathepsins B) and C13 legumain genes were well represented in addition 

to two aspartyl protease genes (Grbić et al., 2011). Studies into the active proteases within 

the mite digestive system, through the analysis of whole mite extracts and feces, have 

revealed the presence and support the role of cathepsin L, cathepsin B, legumain and 

aspartyl proteases in the mite digestive system (Carrillo et al., 2011; Nisbet and Billingsley, 

2000; Santamaría et al., 2015b), with cathepsin L dominating the protease profile. 

Additionally, several classes of detoxification enzymes were found to be well represented 

or expanded in the genome, including CYPs, CCEs, GSTs and ABC transporters (Grbić et 

A B 
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al., 2011). Specifically, 81 CYP genes, 71 genes in the CCE superfamily, and 31 cytosolic 

GSTs were revealed in the T. urticae genome (Grbić et al., 2011). 

There are several examples of constitutive defences, both physical and chemical, that act 

as potent deterrents of mite herbivory. A thick cuticle or wax on the leaf surface of some 

plant hosts represent physical barriers impeding the penetration of the mite stylet. Toxic or 

repellent allelochemicals affective against mites include acylsugars (Resende et al., 2002; 

Salinas et al., 2013), methyl ketones (Antonious et al., 2014; Chatzivasileiadis and Sabelis, 

1997), and terpenoids (Bleeker et al., 2012) that accumulate in the trichomes of wild tomato 

cultivars. Unfortunately, in cultivated tomato varieties, these compounds have been lost 

(Bleeker et al., 2012), have decreased concentrations (Williams et al., 1980), or have a 

narrower range of target herbivores (Ghosh et al., 2014). These constitutive defences may 

be enough to render the plants non-hosts. In such cases, mites would disperse in search of 

more favorable hosts without incurring damage on the resistant plant (Díaz-Riquelme et 

al., 2016). Should constitutive defences fail, induced defences may negatively impact mite 

performance to a point where the plant remains resistant. If both constitutive and induced 

defences fail, the plant will be susceptible to mite feeding, and will incur damage. Previous 

studies have determined that T. urticae feeding on tomato induces the expression of 

phenylpropanoid, and terpenoid biosynthetic genes, as well as a wide range of antinutritive 

enzymes and enzyme inhibitors, including PIs, amino acid catabolizing enzymes, and PPOs 

(Kant et al., 2004; Martel et al., 2015).  

Potential mite elicitors include components from preoral digestion and liquefaction of plant 

cell contents (Rioja et al., 2017), as well as cellular content leakage into the apoplast due 

to membrane fragmentation (Tanigoshi and Davis, 1978), during feeding events. These 

could be recognised as DAMPs by intact plant cells and trigger a defence response. Further 

from the feeding site, elicitors may also be present in enzymatically active feces or silk 

depositions (Santamaría et al., 2015b). Spider mite salivary secretions may be a source of 

elicitors and/or effectors of plant response (Jonckheere et al., 2016; Villarroel et al., 2016). 

The extreme polyphagy of T. urticae and their ability to develop resistance to pesticides 

within a short period of time make mites pests in many fields and greenhouses. 
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Additionally, large populations can develop when mites find themselves in favorable 

conditions, making them very difficult to control. With warm temperatures, they can 

develop in less than 7 days from egg to adult on a suitable plant host (Rao et al., 1996), and 

also have a very high reproductive output (Grbić et al., 2007).  

1.7 Research goal 

There are many studies into tomato plant-mite interaction reported in the literature. None, 

however, have simultaneously examined this interaction with respect to T. urticae gaining 

the ability to suppress and/or detoxify tomato defence compounds following adaptation 

from a previously susceptible state. 

There are reports on the ability of various mite species to suppress plant responses. 

Suppression has been observed indirectly in the case of T. urticae, (Alba et al., 2014; Kant 

et al., 2008) and there is evidence to suggest that effectors targeting SA responses benefit 

mites (Villarroel et al., 2016); however, the role of detoxification was not assessed in those 

studies. Elsewhere, several studies into mite response during host feeding have revealed 

up-regulation of detoxification genes in response to host shift (Wybouw et al., 2015; 

Zhurov et al., 2014); however, metabolic resistance to plant toxins has not been 

conclusively demonstrated, with one exception. Wybouw et al. (2014) demonstrated that a 

gene obtained from bacteria through horizontal gene transfer confers resistance of T. 

urticae to cyanide and subsequently gained the ability to feed on cyanide containing plant 

species. Importantly, none of the studies examining detoxification of phytochemicals by 

mites assessed the contribution of potential plant defence suppression. Research on T. 

urticae detoxification capabilities has largely focused on their use in the development of 

resistance to pesticides. In this way the literature, unintentionally, represents a biased view 

of plant-mite interaction, as the importance of each of these mechanisms of host utilization 

are only assessed individually. I hypothesize here that both suppression of plant defence 

responses and detoxification of allelochemicals can be employed concurrently.  

The objective of this study was to assess the difference in plant defence response 

suppression and allelochemical detoxification between tomato-adapted and non-adapted 

mites. The performance of an experimentally derived tomato-adapted T. urticae strain and 



21 

 

the non-adapted, ancestral reference strain were compared. Additionally, aspects of tomato 

responses to the differentially adapted mite strains are characterized. 

Novel findings from this research will determine if both defence response suppression and 

allelochemical detoxification can act simultaneously or if they may be mutually exclusive. 

Lack of evidence of either mechanism will not invalidate the hypothesis that they could be 

used together, as this is only a study of one adaptation event. Should one mechanism 

dominate the adaptation profile, this could suggest that there are genetic, or physiological 

constraints to using both mechanisms at once and this would need to be studied in greater 

detail on an ecological level. However, should both mechanisms be represented, then it 

will conclusively demonstrate their ability to work simultaneously and potentially 

synergistically.  
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2 Materials and Methods 

2.1 Plant material and growth conditions 

Plant growth chambers were set at 24 °C. The temperature under the lights was closer to 

26 °C. Relative humidity was maintained at 60 % under a long-day photoperiod (16:8 h 

light/dark) using cool-white fluorescent lights (PHILIPS very high output 

F96T12/CW/VHO/EW). The light intensity inside the chamber was 120-130 μmol m−2 s−1. 

Tomato cultivars used in this study include cv Moneymaker (Halifax Seed Company Inc., 

cat. No. AIMTOMM, Halifax, NS, Canada), cv Castlemart and def-1 mutant (cv 

Castlemart background). The def-1 (defenseless-1) mutant is an isogenic mutant line that 

is deficient in the biosynthesis of JA. The effect of the mutation lies in the octadecanoid 

pathway between the synthesis of hydroperoxylinolenic acid and 12-oxo-phytodlenoic acid 

(Howe et al., 1996). 

Tomato seeds were germinated in a large petri dish between paper towel layers saturated 

with water for one week in the growth chamber before planting in 12 cm3 pots. Bean plants 

(Phaseolus vulgaris, cultivar “California Red Kidney”, Stokes, Thorold, ON, Canada), 

were grown in growth chambers at 25 °C, 60 % relative humidity and with a 16:8 h dark 

photoperiod and were planted directly in wet soil in 8 cm3 pots.  

Following planting, pots were left covered with a transparent lid for approximately one 

week before removal of the lid and regular watering. Non-autoclaved, peat–vermiculite 

growing mix (PRO-MIX® BX MYCORRHIZAETM; Premier Tech Ltd., Rivière-du-Loup, 

QC, Canada) was used for all planting.  

2.2 Mite strains and rearing conditions 

The non-adapted, ancestral reference T. urticae population (TU) was generated from mites 

collected from apples in the Vineland region in Ontario, Canada. In other publications, this 

mite strain is referred to as the ‘London strain’, which was used for genome sequencing in 

2011 (Grbić et al., 2011). The mite colony was reared under laboratory conditions on bean 

and kept at a high density for more than 8 years. 
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The T. urticae tomato adapted strain (TU-A) was derived by Wybouw et al. (2015) via  

experimental selection using the non-adapted London reference strain (TU) as the ancestral 

population. Initially, three independent tomato-selection lines were generated by 

transferring 200 randomly chosen adult females of the TU strain from bean to 3-week-old 

potted tomato plants on which they propagated for approximately 30–35 generations to 

generate the TU-A lines (Wybouw et al., 2015). The lines were shown to perform the same, 

as measured by total population size on diverse host plant species (bean, cucumber, pepper, 

tomato) after inoculation of 35 female mites for 10 days, and were combined into one 

population (Figure 2 in Wybouw et al., 2015). The TU-A population used here has been 

maintained on tomato (cv Moneymaker) for over 4 years.  

2.3 Damage assays 

A damage assay was used to verify tomato-adapted status of the TU-A strain, and 

characterize the performance of non-adapted, TU mites on the non-favorable host, tomato. 

Four-week-old tomato plants were infested with 100 adult female mites on the terminal-

adjacent leaflet of the third emerged leaf (Figure 2.1). Following 24 hours of feeding, the 

leaflet was cut at the petiole and the adaxial side of the leaflet was scanned using a Canon® 

CanoScan 8600F model scanner (Canon U.S.A. Inc., Melville, NY, U.S.A) at a resolution 

of 1200 dpi and a brightness setting of +25. Scanned plants were saved as .jpg files for 

subsequent analysis as described in Cazaux et al., 2014. Briefly, Adobe Photoshop 5 

(Adobe Systems, San Jose, CA) was used for damage quantification in four steps. First, a 

new layer was added to the picture of the scanned plant and a grid (0.25 mm x 0.25 mm) 

was overlaid on it. Secondly, red dots of known pixel size (52 pixels) were placed within 

grid units for which there was damage covering more than half of the grid unit. The next 

step, after all the damage had been covered by dots, was to calculate the number of dots 

from the total number of pixels (derived from the histogram tool) divided by the number 

of pixels per dot (52 pixels/dot). The last part of the process was to calculate area damaged 

by multiplying the number of dots by the area of one grid unit using the formula: 

Area damaged (mm2) = number of dots x 0.25 mm x 0.25 mm 

Three experimental trials were performed using 4 plants/mite strain/trial (n = 12).  
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2.4 Retention assay  

A retention assay was used to characterize the behavioural aspect of adaptation in terms of 

host acceptability. TU-A and TU lines were assessed for their predisposition to disperse 

after deposition on a tomato leaflet. Using four-week-old Moneymaker plants, 50 adult 

female mites were deposited on the terminal-adjacent leaflet of the third emerged leaf 

(Figure 2.1). Following 24 hours of feeding, the number of mites remaining on the infested 

leaflet were counted. The results are displayed as % retention on the leaflet. Three 

experimental trials were performed using 4 plants/mite strain/trial (n = 12). 

2.5 Fecundity assay 

To characterize the fitness of each mite strain on tomato, and again verify adaptation status 

of the TU-A strain, a fecundity assay was performed. For this experiment, a terminal-

adjacent leaflet of the third emerged leaf was isolated using lanolin (Sigma-Aldrich Co., 

Cat. No. L7387, St. Louis, MO, U.S.A) such that the 20 adult female mites placed on the 

leaflet had no choice but to remain there for the duration of the experiment (Figure 2.1). 

Following 4 days of feeding, the number of eggs on the leaflet were counted, and 

normalized to the average number of live mites on the leaflet ((# of live mites on day 0 + 

# of live mites on day 4)/2). This normalization was done to correct for mortality suffered 

by mites during the experiment as a mechanism to help control for that confounding effect. 

The results are displayed as number of eggs/mite. Three experimental trials were performed 

using 4 plants/mite strain/trial (n = 12). 

Several other experiments use fecundity as a measure of performance. The normalization 

procedure was carried out for all of them for the reason specified above.  
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Figure 2.1 Experimental set-up for damage, retention and fecundity assays. Four-

week-old tomato plants are used as a host for mites. Damage and fecundity assays involve 

infesting the terminal-adjacent leaflet of the 3rd emerged leaf with 100 and 20 adult female 

mites respectively. The lanolin barrier was used to keep mites on the leaflet they are 

infested on. The retention assay involved infesting the leaflet with 50 adult female mites 

and did not include a lanolin barrier, as the intention of the assay was to characterise their 

dispersal behaviour.  
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2.6 Transcriptomics 

The microarray data set of differentially expressed genes (DEGs) of Moneymaker samples 

collected after the 24 hour feeding period by 100 TU and TU-A mites taken from their 

rearing host (Figure 2.2) was obtained from the supplementary material of Wybouw et al. 

(2015). Analysis was carried out using resources from the Bioconductor project (open 

source software for bioinformatics; https://bioconductor.org/). Expression measures were 

calculated using the ‘affy’ package and included background correction, and 

normalization. Quality control HTML files of processed microarray data can be found in 

the supplementary material.  Batch effects (between arrays) were removed using the 

‘ComBat’ package. Differential gene expression was performed with the ‘limma’ package, 

using p values (no fold change cut off used). The heatmap and expression plots of DEGs 

and associated clusters were generated using the ‘pheatmap’, ‘amap’, ‘gplots’ and 

‘ggplot2’ packages. Gene ontology (GO) analysis of DEG heatmap clusters was performed 

using the package ‘topGO’. All R scripts used to carry out the analysis can be found in 

supplementary material. All analyses were performed with the assistance of Dr. Vladimir 

Zhurov (Department of Biology, Western University, London, ON, Canada) who wrote R 

scripts for analysis of a similar experiment and were modified for use here. 
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Figure 2.2 Schematic of microarray experimental treatment groups. This experiment 

was performed by Wybouw et al. (2015) and microarray data can be found in the 

supplementary material of that work. The same experimental set up was used in RT-qPCR 

experiment used to validate marker gene expression observed in microarray analysis.  
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2.7 Suppression assay: Co-infestation experiment 

The suppression assay was used to test the ability of non-adapted TU and adapted TU-A 

mites to suppress tomato defences. In this experiment 100 adult female mites of TU or TU-

A strains were applied to one of the terminal-adjacent leaflets of the 3rd emerged leaf of 4-

week-old tomato plants. On the opposite terminal-adjacent leaflet, 20 adult female TU 

mites were applied and allowed to feed and lay eggs for 4 days (Figure 2.3). The leaflets 

were isolated using lanolin to prevent dispersal of mites.  On day 4, the number of eggs 

laid by the non-adapted females was counted as well as the number of surviving mites. The 

total number of eggs was then normalized as described above. As the ‘inducer’ mite 

treatment occurred on a separate leaflet than the ‘receiver’ mites assessed for performance, 

benefits of suppression need to be attributed to a systemic process whereas a lack of 

observable suppression does not speak to events happening locally at the feeding sites. This 

experiment was performed 3 times using 6 biological replications/treatment (n = 18).  

 

 

 

Figure 2.3 Schematic of the suppression assay. Fecundity of 20 TU ‘receiver’ mites 

assessed after 4 days of feeding on a leaflet adjacent to one with 100 TU or TU-A ‘inducer’ 

mites. Leaflets are isolated using wet cotton and lanolin to prevent mite dispersal. This 

experiment, like all the others, was performed using whole plants, though the diagram only 

shows the relevant leaf.  
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2.8 Quantitative analysis of phytohormones 

Quantitative analysis of phytohormones was performed on tomato samples separated into 

three treatments: a no mite control, TU-infested or TU-A-infested. Using 4-week-old 

Moneymaker tomato plants, a terminal-adjacent leaflet of the third emerged leaf was 

infested with 100 adult mites. After 24h of feeding, the infested leaflet was cut at the petiole 

and immediately frozen in liquid nitrogen. The plant tissue was ground using a mortar and 

pestle in liquid nitrogen prior to lyophilisation and weighing. Dried samples were then 

analysed by Dr. Vicent Arbona (Universitat Jaume I, Castelló de la Plana, Spain), using 

the protocol described in (Durgbanshi et al., 2005). Briefly, plant hormones were quantified 

by isotopic dilution mass spectrometry of tomato samples. Isotope-labeled standards for 

JA, JA-Ile, SA and ABA (approximately 0.1 g) were added to plant samples before 

extraction. Ultra-performance liquid chromatography (UPLC)-electrospray ionization-

tandem mass spectrometry analyses were carried out on an Acquity SDS system (Waters, 

Milford, MA, U.S.A) coupled to a Micromass Quattro LC Triple Quadrupole Mass 

Spectrometer (Micromass/ Waters, Milford, MA, U.S.A). Quantification was 

accomplished with an external calibration via calibration curves with known 

concentrations of plant hormones (Ximénez-Embún et al., 2018). 

2.9 Marker gene expression analysis by quantitative RT-

PCR 

Plant tissue used for this analysis consisted of tomato leaflets that were flash frozen in 

liquid nitrogen after feeding by 100 female TU, or TU-A mites for 24 hours, or no mites 

(control). The sample size for marker gene validation of Moneymaker was only 2. The first 

sample consisted of plant tissue that was pooled from 5 biological replicates of 

experimental trial 1, and the second sample was derived from pooled tissues of 7 biological 

replicates of experimental trial 2. The sample size for marker gene validation of Heinz 

samples was 3, again pooling samples of each trial (n = 4 n = 3 and n = 4, respectively). 

The RNeasy Plant Mini Kit, including DNase treatment (Qiagen, Cat. No. 74904) was used 

for total RNA extraction using approximately 40 mg of ground plant tissue. Two 

micrograms of total RNA was reverse transcribed using the Maxima First Strand cDNA 
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Synthesis Kit for qRT-PCR (Thermo Fisher Scientific, Cat. No. K1672). Reactions were 

performed in triplicate for each biological replicate, using Maxima SYBR Green/ROX 

qPCR Master Mix (Thermo Fisher Scientific, Cat. No. K0222). The qRT-PCR was 

performed using an Agilent Mx3005P qPCR instrument (Agilent Technologies, Santa 

Clara, CA). Table 2.1 contains primer sequences and amplification efficiencies (E) used in 

qPCR reaction. ACTIN (Solyc03g078400.2.1) was used as the reference gene (Martel et al., 

2015) and was found to be transcribed at similar amounts in all samples as indicated by Ct 

values within ± 1 cycle. Ct values of three technical replicates were averaged to generate a 

biological replicate Ct value. For plotting, expression values for each target gene (T) was 

normalized to the reference gene (R). As the traditional ∆∆Ct method assumed 100% 

efficiency of primers, I have incorporated a different formula that accounts for the 

efficiency of each primer pair. If we take the relative number of fragments at the Ct as 1, 

then the relative quantity of template in the original sample (RQ) can be calculated using 

the efficiency (E in %) per gene as follows: 

RQ  =      1 

             (1+E) Ct 

 

After calculating the RQ of the target (T) gene, it needs to be normalized for the total 

amount of cDNA by dividing it by the RQ of the reference gene (R) as discussed in 

Hellemans et al. (2008). This normalized relative quantity (NRQ) was calculated using the 

simplified formula below (ER: efficiency of Reference gene (%), ET: efficiency of Target 

gene (%)):   

 

NRQ = (1+ER) CtR 

            (1+ET) CtT 

 

NRQs were Log2-transformed and analyzed via with a fixed factor linear model and 

ANOVA (Rieu and Powers, 2009) using basic packages in R.   
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Table 1.1 Primers used in qRT-PCR.  

 

2.10 Protease activity in mites 

The cysteine proteases activity of cathepsin L, cathepsin B, and legumain-like (legumain) 

was analysed from mite samples taken from bean (TU) or tomato (TU and TU-A). Each 

sample consisted of 100 mites, collected directly from the leaf with a pump (Cazaux et al., 

2014), frozen in liquid nitrogen, and kept at -80 °C until analysis. The protease activity 

assays can be found in Santamaría et al., 2015a and are briefly described here. Total 

proteins were extracted from homogenized mites (2-3 mg) in 150 µL of cold NaCl (150 

mM) using an Eppendorf pestle. The mite extracts were centrifuged at 10,000 rpm at 4 °C 

and supernatants were collected and used for enzymatic assays. The concentration of total 

protein mite extracts was determined using the Quick StartTM Bradford Protein Assay 

(Quick start Bradford 1x dye reagent, Bio-Rad, Cat# 500-0205), with Bovine Serum 

Albumin (Sigma-Aldrich, Cat # A7906) as the standard. Substrates used in the analysis of 

cathepsin L-, cathepsin B- and legumain-like activities were Z-FR-AMC (N-

carbobenzoxyloxy-Phe-Arg-7-amido-4-methylcoumarin, Sigma-Aldrich, Cat # 03-32-

1501), Z-RR-AMC (N-carbobenzoxyloxy-Arg-Arg-7-amid o-4-methylcoumarin, Sigma-

Aldrich, Cat # C5429), and Z-VAN-AMC (N-carbobenzoxyloxy-Val-Al a-Asn-7-amido-

4-methylcoumarin, Bachem, Bubendorf, Switzerland, Cat # I-1840.0050) respectively.  

Mite protein extracts were diluted to appropriate concentration in volume of 5 µL per 

sample (cathepsin L– 1 µg; cathepsin B – 2 µg, legumain-like – 5 µg). Then, 95 µL of 

appropriate substrate mix (0.1 M citric buffer with appropriate pH (4.5 for legumain and 

5.5 for cathepsins), and DTT 0.1 M (Invitrogen, Cat # D1532; final concentration 1 mM) 

and substrate depending on enzyme tested (final concentration 20 µM) was added to each 

sample in a 96 well microtiter plate. The plate was then incubated at 30 °C for 1 hour in 

Solyc ID Description Forward primer Reverse primer Efficiency 

Solyc03g078400 Actin CCTCAGCACATTCCAGCAG CCACCAAACTTCTCCATCCC 1.02 

Solyc09g084480 Proteinase inhibitor I AAGTGATGGGCCAGAAGTCA GGGACTGGAGAGCCATTCAA 1.04 

Solyc00g071180 
Cysteine proteinase 

inhibitor 
TCCATTCCAAAACAAAGTCGAG TTTCCACCTTCAGTGCCCTC 0.95 
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the dark. Fluorescence was measured with wavelength of excitation 340 nm and emission 

460 nm.  

Enzyme activity was calculated using fluorescence data. Quantification was performed 

with known amounts of AMC (7-amino-4-methylcoumarin, Sigma-Aldrich, Cat # 257370) 

in a standard reaction with concentration ranges depending on assay (cathepsin L range: 

0.781 – 25 µM; cathepsin B range: 0.125 – 10 µM; legumain-like range: 0.01–1 µM). Each 

sample was run with 3 technical replications, the mean value of which was used in 

statistical analysis. This experiment was performed twice with 6 biological 

replications/trial (n = 12). 

2.11 Protease % inhibition assay 

The ability of plant protease inhibitors to inhibit proteases was assessed in vivo against a 

commercial protease cathepsin L (EC 3.4.22.15; Sigma-Aldrich Cat. No. C6854). The plant 

samples were collected after feeding by 100 female TU, or TU-A mites for 24 h, or no 

mites (control) and crude protein extract was used as a source of protease inhibitors to 

calculate % inhibition (Figure 2.4). Protein isolation and protease activity assays were 

performed as described above with the additional step of incubating cathepsin L with crude 

plant protein extract prior to proteases activity detection. Briefly, 20 µg of plant protein 

extract was preincubated for 10 min at room temperature with 100 ng of cathepsin L. 

Subsequently, substrates were added at a final concentration of 0.2 mM and incubated for 

1 hour at 28 °C. Fluorescence was then measured using an excitation filter of 365 nm and 

an emission filter of 465 nm. The results are displayed as % inhibition, which is 1 minus 

the percent of protease activity relative to that in the absence of the inhibitor source (100% 

cathepsin) using Z-FR-AMC (N-carbobenzoxyloxy-Phe-Arg-7-amido-4-methylcoumarin; 

Sigma-Aldrich Cat. No. 03-32-1501) substrate susceptible to hydrolysis by cathepsin L 

activities. This experiment was performed 2 times using 5 - 7 plants/treatment (n = 12). 
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Figure 2.4 Schematic of % inhibition assay. Tomato tissue collection happed at the same 

time for all samples, following feeding by TU or TU-A mites for 24 hours in infested 

samples.  
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2.12 Synthetic PI assay 

Using the synthetic cysteine protease inhibitor E-64 (Sigma-Aldrich, Cat # E3132) the 

effect of protease inhibition was tested on mite cathepsin L activity as well as mite 

fecundity. The protease activity assay was performed as described as above. Treatment of 

mites consisted of spraying 2 mL of 10 µM solution of E-64 (or water for controls) onto 

the third emerged leaflet of Moneymaker tomato plants (4-week-old). Leaves were allowed 

to dry before the application of 20 adult female mites of either TU or TU-A populations 

taken from their rearing host. Fecundity was addressed 2 and 4 dpi. The fecundity assay 

was performed in 3 trials with 6 biological replications/trial (n = 15-18). Cathepsin L 

activity following E-64 inhibition was performed in 2 trials with 5 biological 

replications/trial (n = 10). The concentration used was that proposed by the supplier for 

optimal effect and was found to produce sub-lethal effects on mites in another study (data 

not shown, manuscript in preparation).  

 

Figure 2.5 Schematic of synthetic PI inhibitor assay. E-64 was used to inhibit cysteine 

protease inhibitor activity by spraying tomato leaves with 10 µM solution. After the leaflet 

dried, 20 adult female mites were placed on the leaf of either TU or TU-A populations. 

Fecundity was used to measure mite performance following treatment with E-64 compared 

to a control with water 2- and 4-days post inoculation.  



35 

 

2.13 Detoxification enzyme inhibitor assays 

Several classes of detoxification enzymes were characterized in terms of their involvement 

in mite detoxification of plant compounds. Inhibitor assays proceeded by spraying 

commercially available inhibitors on a terminal-adjacent leaflet of the third emerged leaf 

of 4-week-old tomato plants, applying mites and measuring their fecundity as a measure of 

performance following inhibition. The inhibitor compounds used were piperonyl butoxide 

(PBO; inhibitor of cytochrome P450 monooxygenases), S,S,S tributyl-phosphorotrithioate 

(DEF; inhibitor of esterases) and diethyl maleate (DEM; inhibitor of Glutathione S-

transferases). These inhibitors are well established as commercial insecticide synergists 

and have been used in studies of pesticide resistance (Snoeck et al., 2017; Van Pottelberge 

et al., 2009). Concentrations used for the experiment were determined a priori through 

pilot experiments involving dose response curves and checking for any phytotoxicity 

incurred by the plant in response to the inhibitors. Concentrations were chosen such that 

the inhibitor treatment caused an approximate increase of mortality of 10% compared to 

control treatments. To ensure that the inhibitor was showing a slight effect on the mites  

the activity of the detoxification enzymes were: 1) decreased to a low enough level to 

ensure survival of most of the mites on a favorable, non-challenging host; but 2) kept high 

enough that an effect of the inhibition would be seen on performance of mites on a 

challenging host (tomato), should such an effect exist. Pilot experiment results can be found 

in Appendix, Figure 1. The concentrations used for the inhibition experiment as determined 

by the pilot experiments were as follows: 2000 mg/L PBO, 4000 mg/L DEM and 250 mg/L 

DEF.  

Solutions were prepared using dimethyl formamide (0.01% V/V) and an emulsifier 

(0.0015% V/V) to first dissolve the inhibitors in solution (they are not water soluble) before 

bringing up the final volume to 10 mL with tap water. The ‘water’ control used in 

experiments also contained dimethyl formamide and the emulsifier in the same 

concentrations used in the inhibitor solutions.  

Treated Moneymaker leaflets were isolated at the petiole with lanolin and infested with 10 

spider mites (TU or TU-A). Following 3 days of feeding, the number of eggs was counted 

and normalized to the average number of mites/leaflet. Each experiment (control + 3 
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inhibitors) was performed 3 times using 6 biological replications/treatment (n = 18). To 

verify that the inhibitors were not affecting mites directly at the concentration used in 

tomato experiments, the same experiment was performed on the non-challenging host, bean 

(rearing host of TU and ancestral host of TU-A) and mite fecundity was assessed. It was 

predicted that inhibition would not affect mite performance on a non-challenging host since 

there was no difference in fecundity between strains on bean (Appendix, Figure 2), so any 

effect of inhibitors on tomato would be due to inhibition of detoxification of tomato 

metabolites. Control experiments on bean plants was performed twice by Dr. Cristina 

Rioja, Instituto de Ciencias de la Vid y del Vino, Logroño, La Rioja, Spain (n = 9) using 

the same mite strains, seed batches and chemicals as experiments performed in London, 

Ontario, Canada.  

This experiment was also performed on the Castlemart cultivar and the def-1 mutant with 

that background to: 1) assess the importance of mite detoxification of tomato induced 

responses; and 2) test if the same profile of detoxification classes were involved when using 

a different tomato cultivar host. This experiment was performed 3 times using 3-6 

plants/treatment (n = 12-13).  
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Figure 2.6 Schematic of detoxification assay using inhibitors of different classes of 

detoxification enzyme.  
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2.13.1 Detoxification enzyme activity assays 

Detoxification enzyme assays of mites following treatment with inhibitors was determined 

(at general level of enzyme class) in an attempt to validate their decreased activity from 

inhibition. Esterase activity was measured by following the increase in production of p-

nitrophenol (pNP) spectrophotometrically (absorbance at 405 nm) as a result of hydrolysis 

of p-nitrophenyl acetate (pNPA).  Briefly, a 100 mM pNP solution was prepared by 

dissolving 69.5 mg of pNP in 5 mL of sodium phosphate buffer (pH 7.5) and used to make 

standard dilutions (10 – 100 µM). A 0.5 mM pNPA (Sigma-Aldrich, Cat # N8130) was 

used as the substrate for esterases within the mite protein extracts that were prepared as 

above. Samples were analysed by comparing esterase activities in wells containing 20 µL 

of pNPA, 80 µL of buffer in addition of 100 µL of mite extract (100 µg/mL) compared to 

the standard dilution series of pNP.  

Glutathione-S-transferases catalyse the conjugation of L-glutathione (GSH) to 1-Chloro-

2,4-dinitrobenzene (CDNB) through the thiol group of the glutathione. The formation of 

GS-DNB conjugate is directly proportional to GST enzyme activity and was used to 

characterize GST activity in mites spectrophotometrically by measuring absorbance at 340 

nm. One unit of GST activity was defined as the amount of enzyme producing 1 mmol of 

GS-DNB conjugate per minute under the conditions of the assay. Briefly, a 0.1 M sodium 

phosphate buffer (pH 7.6) and 10 mM GSH (Sigma-Aldrich, Cat # G4251) and CDNB 

(Sigma-Aldrich, Cat # 237329) solutions were prepared in double distilled autoclaved 

water and absolute ethanol, respectively. For each sample analysed, 100 µL of GSH and 

100 µL of CDNB were added to 100 µL of mite extract (200 µg/mL) per well. Absorbance 

was read immediately following addition of all solutions to the wells of the plate (no 

incubation step).  

Cytochrome P450 activity was measured by detecting the O-deethylation of 7-ethoxy-4-

trifluoromethylcoumarin (7-EFC) by CYP 450s into fluorescent 7-hydroxy-4-

trifluoromethylcoumarin (7-HFC) and detected fluorometrically at 510 nm emission, 

excited at 410 nm. First, mite protein extracts were prepared with the Quick StartTM 

Bradford Protein Assay (Quick start Bradford 1x dye reagent, Bio-Rad, Cat# 500-0205) 

and diluted to a final concentration of 200 µg/mL. A reaction mix was prepared containing 
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5 mg of 7-EFC (Sigma-Aldrich, Cat # T2803) in 500 µL DMSO (0.4 mM final 

concentration), 152 mg of glucose-6-phosphate (Roche, Cat # 10 127 647 001) in 5 mL 

buffer (1 mM final concentration), 5 mg of NADP+ (Sigma-Aldrich, Cat # N8035) in 6.54 

mL buffer (0.2 mM final concentration) and glucose-6-phosphate dehydrogenase (Sigma-

Aldrich, Cat # G6378; 0.014 U/reaction) all added to 3.9 mL of 0.1 M sodium phosphate 

buffer (pH 7.4). Then, 50 µL of the reaction mixture was added to 50 µL of mite protein 

extract in each of the sample plate wells and incubated at 37 °C for 30 minutes in the dark 

while shaking at 200 rpm. Following the incubation step, the reaction was stopped by 

adding 100 µL of a 1:1 ratio, trizma/acetonitrile mix (trizma buffer (0.05 M, pH 10)). 

Standards were then added (100 µL/well) to the plate consisting of a standard dilution 

series of 7-HFC (Sigma-Aldrich, Cat # 368512) ranging from 200 – 2000 µM, where the 

highest concentration was prepared using 3 µL of 0.2 mM 7-HFC (in DMSO) and 3 mL of 

sodium phosphate buffer (0.1 M, pH 7.5). Finally, fluorescence of 7-HFC was detected 

fluorometrically at 510 nm while excited at 410 nm.  

All three enzyme activities were run on 96-well plates (clear for esterases and GSTs, 

opaque for CYPs). Blanks wells (just buffer) were used as a control for all assays. All 

samples/standard dilutions/blanks were run in triplicate. 

2.14 Statistical analysis 

ANOVAs were used in hypothesis testing for all experiments. This allowed for the 

combination of data across trials (of the same experiment) and therefore greater statistical 

power to detect differences between treatments/groups. Also, using ANOVAs allows for 

assessing the reproducibility of an experiment, which is also important to the scientific 

endeavor. In general, depending on the experiment in question, all the analyses consisted 

of two- or three-way factorial ANOVAs, where experimental trial, treatment, mite strain, 

and/or plant genotype were all considered categorical main effects. Again, depending on 

the experiment, an interaction term may also be included to answer certain biological 

questions. For example, if the difference between treatments in different mite strains were 

examined, a significant interaction between the main effects of treatment and mite strain 

would be interpreted as the mite strains responding differently to the treatment(s).  
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The main effect of trial was used as a reproducibility marker in two ways. If the main effect 

of trial was found to be significant, this was interpreted as a difference in absolute value of 

the response variable between trials, (regardless of any effect of other explanatory variables 

included in the analysis). This is generally to be expected when studying the interaction 

between two organisms (each bringing their own biological variability to the experiment) 

and is not reported in the text, but can be found in the supplemental data reporting the 

analyses. An interaction term between the main effects of trial and treatment was also 

included in the ANOVAs as a main effect. A significant interaction between trial and 

treatment indicates that patterns observed in individual trials between treatments was not 

the same among trials and suggests the experiment may not have been reproducible to the 

extent that data from all the trials could not be combined for analysis. If there is a significant 

interaction term, then a more detailed look into the data was warranted to identify: 1) if the 

pattern between treatments in each trial was different to the extent that the conclusions 

drawn would be different among trials; or 2) if the different patterns between treatments in 

each trial were only mildly variable and the same general trends were observed concerning 

the biological hypothesis in question (effect of treatment was the same direction in each 

trial, but to statically different magnitudes). Therefore, when an interaction term was found 

to be significant in the analysis, it is reported in the text with the effect size to be compared 

to the effect size of treatment. Readers may also be interested in looking at the interaction 

plots available in the supplementary statistical analyses. If the effect size of the interaction 

is much less than that of the main effect in question, then the data suggests that the same 

general trends were observed and the conclusions drawn from the significance value of the 

main effects can still be considered valid, though conclusions will be drawn with that 

statistical limitation in mind. Post hoc analyses of differences between means was 

performed using a Tukey-Kramer test, following identification of significant differences 

detected with an ANOVA. 

All statistical analyses can be found in the supplementary material in the form of R 

markdown files (HTML). All steps of analysis, from data exploration, hypothesis testing 

and linear model validation, with associated R scripts, can be found in those files. Model 

validation included checking residual distribution for normality, as well as plotting 

residuals against fitted values to check for linearity and equal variance.   
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3 Results 

As described in the Introduction, adaptation of a herbivore to a host plant is characterized 

by the ability of the herbivore to develop and reproduce having acquired the ability to avoid 

or overcome host-specific plant defences. It was therefore hypothesized here that TU mites 

would find tomato a challenging host, and show low acceptance of it as a host due to the 

constitutive and/or induced tomato defences. It was conversely hypothesized that TU-A 

mites have overcome some/all of their tomato host’s defences and display host acceptance 

and increased performance relative to TU mites.  

It was also hypothesized that the TU-A mite strain would actively suppress aspects of the 

tomato defence response. This hypothesis was tested through analysis of tomato 

transcriptome responses following feeding by TU and TU-A mites in a microarray 

experiment followed up by marker gene analysis using RT-qPCR. Hormone quantification 

was also performed to test for the suppressive ability of mites downstream of 

transcriptional responses. Additionally, the suppressive ability was tested at a systemic 

level using a co-infestation experiment. 

The adaptation mechanisms of detoxification was also characterized in TU-A mites using 

TU mites as a non-adapted reference. Detoxification enzyme inhibitors were used to test 

for the requirement of TU-A mites using detoxification as a method of adaptation to 

tomato.   

3.1 Damage analysis  

Damage analysis was performed to characterize the performance of the two mite strains on 

the tomato cultivar, Moneymaker, that served as host in subsequent experiments. TU-A 

mites were expected to inflict much more damage than TU mites due to their adaptation 

status.  

TU-A mites displayed a significantly greater amount of damage to tomato leaflets 

following 24h of feeding compared to TU mites (Figure 3.1). While the damage from non-

adapted, TU mites was near undetectable by the human eye (few, if any chlorotic spots), 

damage from TU-A mites was obvious and extensive (Figure 3.1B). TU-A mites produced 
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73.22 mm2 of damage on Moneymaker plants, whereas TU mites produced only 0.55 mm2 

(Figure 3.1A).  

To ascertain if adaptation of TU-A mites was tomato cultivar specific (adapted only to the 

Moneymaker cultivar they were maintained on or if it was adapted to tomato in general), 

100 TU or TU-A mites were left to feed on 3 different tomato cultivars in addition to 

Moneymaker for 24h prior to sample collection and damage quantification. TU-A mites 

were found to produce far greater damage than the TU mites on all of the cultivars tested, 

including Castlemart, Heinz, Microtom, and Moneymaker (Figure 3.2). On Castlemart, 

Heinz (1706), and Microtom TU-A mites produced around 30-40 mm2 of damage. 

Additionally, though TU-A mites produced a lot of damage on all cultivars tested relative 

to TU mites, they did incur the most damage on Moneymaker plants (62 mm2; Figure 3.2). 

TU mites performed poorly on all tomato cultivars producing 1.1 – 1.6 mm2 damage on 

Castlemart, Heinz and Moneymaker, and 0.36 mm2 damage on Microtom (Figure 3.2). 
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Figure 3.1 Mite damage on tomato cv. Moneymaker. Damage on tomato leaflets after 

24h of feeding by 100 adult female spider mites of different adaptation status. A, Bar graph 

shows the mean ± SE chlorotic spot area (mm2). Asterisk represents a significant difference 

between mite strains (two-way ANOVA, F = 71.38, p = 1.118e-07, η2p = 0.80, n = 12/mite 

strain).  B, pictures of representative Moneymaker leaflets fed on by TU and TU-A mite 

strains. 
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Figure 3.2 Mite damage on multiple tomato cultivars. Damage to tomato leaflets of 

different cultivars after 24h of feeding from 100 adult spider mites of TU or TU-A strains. 

Bar graph show the mean ± SE damage (mm2). Different letters represent significant 

differences between means (three-way ANOVA, F mite.strain = 311.85, p mite.strain < 2.2e-16, 

η2p mite.strain = 0.71;  , Fplant.genotype= 10.99, p plant.genotype = 1.842e-06, η2p plant.genotype= 0.21, 

followed by Tukey-Kramer post hoc test, p < 0.05; n = 18/mite strain). There was a 

significant interaction term between mite strain and trial (F mite.strain:trial = 21.12, p mite.strain:trial 

= 1.227e-08, η2p mite.strain:trial = 0.25); however, comparing the effect size of the interaction 

to that of the main effect of mite strain shows the interaction effect size to be almost 3-fold 

less than that of the  mite strain. Additionally, the interaction plot shown in the 

supplementary material suggest that this interaction arises due to the variability of damage 

by TU-A mites between trials, compared to a similar level of damage by TU in each trial. 

In all trials however, TU-A produced much more damage than TU, so the overall pattern 

was the same between trials. 

 

  

 

 

0

10

20

30

40

50

60

70

80

Castlemart Heinz Microtom Moneymaker

D
a
m

a
g
e

 (
m

m
2
)

TU

TU-A

c c cc

b

b

a

b



45 

 

3.2 Retention assay 

Another feature that is associated with mite host adaptation/acceptance is the tendency of 

the herbivore to stay on the host-plant it encounters. Therefore, an experiment designed to 

test the mite’s proclivity for staying and feeding on tomato was also used to characterize 

the adaptation status of TU-A mites. This assay was used to test how readily the mites 

accepted a new tomato plant as a host by testing if they stayed on the same leaflet they 

were placed on, or if they dispersed, looking for a new, more hospitable host. It was 

hypothesized that TU-A mites would remain on the tomato leaflet on which they were 

placed, whereas TU mites would likely move off the tomato leaflet in search of a more 

favorable host.  

Non-adapted, TU mites dispersed readily on Moneymaker with only ~31% remaining on 

the leaflet they were deposited onto. In contrast, ~92% of adult female TU-A mites 

remained on the leaflet they were placed on after 24h (Figure 3.3). This dispersal pattern 

is consistent with the hypothesis that adapted mites would remain on the tomato leaflet due 

to their ability to overcome defences encountered.  

 

 

Figure 3.3 Mite retention from tomato leaflet. Bar graph representing mean ± SE % of 

TU and TU-A mites remaining on Moneymaker leaflets after 24h following inoculation 

with 50 adult female mites. Asterisk represents a significant difference between mite strains 

(two-way ANOVA, F = 588.80, p < 2e-16, η2p = 0.96, n = 18/mite strain). 
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3.3 Fecundity assay 

The best measure of mite performance is fecundity as it relates directly to fitness and 

therefore adaptation status in a very meaningful way. As previously demonstrated, TU 

mites disperse when placed on tomato and would not be confined to the leaflet where 

fecundity was to be measured without a barrier impeding their escape. Lanolin (sheep wool 

fat) was used for this purpose. A lanolin barrier dispensed by a syringe was placed around 

the petiole of the infested leaflet and on leaf surfaces of any adjacent tomato leaves that 

would come into contact with the experimental leaf during the experiment (4 days of mite 

feeding and egg deposition). As the behavioural response of TU proved to be strong, a 

small number of mites would try to climb through the lanolin barrier and die within it. 

Therefore, a normalization of the number of eggs deposited to the average number of mites 

on the leaflet was performed following counting as described in the Methods section. The 

results are therefore displayed as the average number of eggs/mite 4 dpi.  

Fecundity of the different mite strains was tested by infesting tomato leaflets with 20 adult 

female mites and counting the eggs on the adaxial and abaxial side of the leaflet following 

4 days of feeding along with the number of remaining live mites. As TU-A mites are 

hypothesized to use tomato effectively as a plant host, deriving nutrients required for 

development and reproduction, it was hypothesized that TU-A mites would lay more eggs 

than TU mites and the effect size should be substantial to account for the high population 

counts found on the tomato plants used to rear and maintain TU-A mites.  

TU mites displayed significantly reduced fecundity relative to TU-A mites. TU mites laid 

an average of ~4 eggs/mite in 4 days. By contrast, TU-A mites laid ~27 eggs/mite (Figure 

3.4). It should be noted that normalization was also helpful in accounting for the observed 

but not quantified increase in the mortality of TU mites (non-lanolin related) when the 

number of eggs was being counted at the conclusion of the experiment, compared to very 

little mortality of TU-A mites. It is likely that mortality was due to the toxic effect of tomato 

metabolites on TU mites, or starvation if they refused to feed.  
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Figure 3.4 Mite fecundity on tomato. Bar graph representing the mean ± SE number of 

eggs/mite 4 dpi on Moneymaker leaflets for TU and TU-A mites. Asterisk represents a 

significant difference between mite strains (two-way ANOVA, F = 623.54, p < 2e-16, η2p 

= 0.96, n = 16/mite strain).  

 

 

 

 

 

 

Results from the damage, dispersal and fecundity assays all support the characterization of 

TU-A mites as adapted to tomato to the extent that they cause substantial plant damage and 

produce well enough to colonize the host. This supports the overall hypothesis of this work: 

TU-A mites use mechanisms (whether genetic or physiologically based) to overcome 

and/or suppress tomato defences. Further analysis detailed below revealed several such 

mechanisms at play.  

 

0

5

10

15

20

25

30

TU TU-A

#
 e

g
g
s
/m

it
e

 4
 d

p
i

*



48 

 

3.4 Tomato transcriptomics 

Plant response to mite feeding is an important aspect of studying the interaction between 

mites and tomatoes and can offer unique insight into the result of herbivore adaptation on 

plant response to feeding. The response to herbivory and wounding is to a large extent 

orchestrated by JA and its bioactive conjugate, JA-Ile. This has been conclusively 

demonstrated with respect to mite induced defences in tomato (Martel et al., 2015). The 

hormone SA also seems to be involved in the response to spider mites by tomato (Ament 

et al., 2010; Kant et al., 2004). If TU-A mites are manipulating tomato defences, then 

induced responses are expected to be lower than those induced by the non-adapted TU 

mites. It was hypothesized that a lack of induced responses would be evident at the 

transcriptional level, and an analysis of tomato microarray data should reveal DEGs in 

biological processes related to defence against herbivory. Biological processes containing 

genes differentially induced by TU-A mites compared to TU mites that would support a 

characterization of attenuation of induced defences include: JA biosynthesis, JA response, 

response to wounding, genes associated with the synthesis of PIs and other tomato defences 

such as alkaloids and PPOs. 

Previous research regarding plant suppression by mites focused the analysis of gene 

expression induction using only marker gene analysis by RT-qPCR (Alba et al., 2014; Glas 

et al., 2014; Schimmel et al., 2017). It was not until Wybouw et al. (2015) published their 

work on tomato response to TU and TU-A mites that plant modulation by adapted mites 

could be assessed at the level of whole transcriptome response. In the original analysis by 

Wybouw et al. (2015), global analysis of DEGs was performed in response to both TU and 

TU-A mites. The analysis presented here narrowed the focus to those genes that were found 

to be differentially expressed upon feeding by TU mites in the original analysis, as I was 

interested in how the response to TU mites changes compared to the same set of genes in 

response to TU-A mites. A heatmap illustrating tomato induced responses to TU and TU-

A mites feeding for 24h, filtered by tomato response to TU (Figure 3.5A). Different clusters 

generated by this analysis revealed differential gene induction based on mite adaptation 

status (Figure 3.5B), representing 4 patterns of gene induction by both TU and TU-A mites.  
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Cluster 2 contained 270 DEGs that were most highly induced in TU-treated samples and 

much less induced in TU-A-treated samples. Gene ontology (GO) analysis of biological 

processes (BP) revealed that DEGs detected in cluster  2 were enriched in genes involved 

in many processes related to herbivory recognition and induced defence including: 85 of 

430 annotated genes involved in the response to JA; 18 of 268 annotated genes in the 

response to wounding; 7 of 101 annotated genes in JA biosynthetic processes; 6 of 34 

annotated genes in the negative regulation of peptidase activity (PIs) and 4 of 65 annotated 

genes involved in alkaloid biosynthetic processes. These differential responses to TU-A 

mites compared to TU mites indicate that some elements within the defence response 

against non-adapted mites are being manipulated to the potential and hypothesized 

advantage of adapted mites.  

Clusters 4 and 1 included genes that are similarly expressed in response to TU and TU-A 

mites. Cluster 4 contained 304 genes that are upregulated in response to mite feeding 

regardless of adaptation state. Biological processes represented in cluster 4 include: 41 of 

430 annotated genes in response to JA and 20 of 268 annotated genes in response to 

wounding. This suggests that some elements within the JA defence response pathway were 

still employed by the plant, regardless of mite adaptation status. Indeed, in cluster 4 there 

are also 9 of 225 annotated genes in response to chitin; 8 of 255 annotated genes in the 

MAPK cascade; 7 of 164 annotated genes in the JA mediated signalling pathway; and 10 

of 193 annotated genes in the SA mediated signalling pathway. These genes were 

upregulated in response to both mite strains and represent early events in the defence 

response. Additionally, there were 8 of 34 annotated genes in the negative regulation of 

peptidase activity that were upregulated and could encode PIs encountered by both mite 

strains.  

 Cluster 1 contained 107 annotated genes that were downregulated in response to mite 

feeding by both mite strains. Biological processes represented in cluster 1 include: 4 of 152 

annotated genes in chlorophyll biosynthetic process; 4 of 256 annotated genes in 

chloroplast organization; and 5 of 134 annotated genes in aromatic amino acid family 

biosynthetic process; and 3 of 150 annotated genes involved in the regulation of meristem 

growth. These results suggest that many aspects of the transcriptional change from growth 
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and developmental processes to reallocate resources to the defence response were still 

occurring in response to TU-A mites.  

Cluster 3 contained 115 genes that were downregulated in response to TU mites and less 

downregulated in response to TU-A mites, and therefore represent genes attenuated in 

response to TU by TU-A mites. Biological processes represented in this cluster included: 

4 of 215 annotated genes in abscisic acid-activated signalling pathway; 1 of 8 annotated 

genes in the negative regulation of developmental growth; 1 of 5 annotated genes involved 

in DNA replication, and synthesis of RNA primers; 1 of 5 annotated genes in photosystem 

stoichiometry adjustment; and 1 of 6 annotated genes in positive regulation of protein 

complex disassembly. Therefore, many other aspects of the switch from a growth 

transcriptional program to a defensive one were attenuated in the response to TU-A mites.  

In general, more genes were up-regulated (574) than down-regulated (222). Up-regulated 

genes were almost split evenly between clusters 2 and 4 (270 and 304, respectively) and 

similarly so with the down-regulated genes being split between clusters 1 and 3 (107 and 

115, respectively). 

There are also several genes that were robust in their reproducibility as markers of the JA-

dependent induced defence response in tomato including: JA biosynthetic enzymes 

lipoxygenase D (LOXD) and allene oxide synthase 1 (AOS1); proteinase inhibitors (PI); 

leucine aminopeptidase (LAP); threonine deaminase; and polyphenol oxidases (PPO) 

(Martel et al., 2015). Genes of this type were assessed in the list of DEGs in order to 

characterize their levels of induction under the conditions of this analysis. Lipoxygenase D 

(LOXD; Solyc03g122340) was represented in cluster 2, showing an attenuated induction 

upon feeding by TU-A mites compared to TU, while another JA biosynthetic enzyme, 

allene oxide synthase (AOS; Solyc04g079730), was represented in cluster 4, being 

upregulated to the same degree by both mite strains. Two well studied tomato cysteine PIs 

were selected as markers for that class of defence protein. Protease inhibitor I 

(Solyc09g084480) was represented in cluster 4 and Cysteine PI (Solyc00g071180) was 

represented in cluster 2. Interestingly, 2 leucine aminopeptidases (of 3 in tomato) were 

found to be differentially expressed upon mite feeding in this analysis and both were 



51 

 

represented in cluster 4. They were Leucine aminopeptidase A1 (LapA1; Solyc12g010020) 

and leucine aminopeptidase 2 (lap2; Solyc00g187050). Threonine deaminase 

(Solyc09g008670) was represented in cluster 4. The uncharacterized PPOs with locus IDs: 

Solyc08g074620 and Solyc08g074650 were both represented in cluster 2, while 

Solyc08g074630 was in cluster 4. 

In summary, the transcriptional analysis performed here revealed an attenuation of induced 

tomato defences by TU-A mites in a way that is hypothesized to benefit them. Further 

analysis was required to validate the biological relevance of this modulation of plant 

response with respect to increased mite performance including the relevance of cysteine 

protease inhibitors and their effect on mites.  
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Figure 3.5 Analysis of tomato DEGs in response to mite feeding. A, heatmap illustrating 

DEGs following 24 hours of feeding by TU and TU-A mites filtered by DEG in response 

to TU mites. B, Expression plots of clusters identified in heatmap. Data represents an 

analysis of published microarray data (Wybouw et al., 2015). 
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3.5 Suppression assays 

Results from the transcriptional analysis of tomato genes induced by TU and TU-A mites 

revealed an attenuation, but not complete suppression of tomato defences. To test the 

biological and functional relevance of this attenuation, a co-infestation experiment was 

performed. It was hypothezed that there would be an increase in the performance of TU 

mites when feeding on the same leaf (though different leaflets) as TU-A mites as they 

would benefit from any suppression of plant defences by TU-A (Glas et al., 2014). 

Specifically, the prediction was that TU mites would deposit more eggs during 4 days of 

feeding on a leaf co-infested with TU-A ‘inducer’ mites compared to the control TU 

‘inducer’ mites.  

Contrary to the hypothesis, there was no benefit observed in terms of fecundity of TU mites 

when co-infesting a leaf with TU-A mites (Figure 3.6), suggesting whatever benefit of 

transcriptional attenuation TU-A mites exerts is relevant locally, only at the feeding site. 

Unfortunately, due to the fact that there was no observable phenotypic difference between 

eggs laid by TU and TU-A mites, a co-infestation experiment where both mite strains feed 

on the same leaflet is not feasible.  
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Figure 3.6 Suppression assay. A, Bar graph representing the mean ± SE number of 

eggs/mite 4 dpi of ‘receiver’ mites on Moneymaker leaflets. No difference in fecundity 

was observed between treatments of TU or TU-A ‘inducer’ mites (n = 20/mite strain). B, 

schematic of assay.  

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

TU inducer TU-A inducer

#
 e

g
g
s
/ 

m
it
e

A 

B 



56 

 

3.6 Quantitative analysis of phytohormones  

To further characterize the observed transcriptional attenuation locally, I tested whether 

transcriptional changes translated into physiological states. Several genes involved in JA 

biosynthesis and response to JA were found to be attenuated in TU-A infested tomato 

leaves, so it was predicted that levels of JA and JA-Ile in these leaves would be intermediate 

between those of non-infested and TU-infested plants. As the only genes associated with 

SA were those involved in SA biosynthetic processes and the salicylic acid mediated 

signaling pathway, both represented in cluster 4, it was predicted that there would be 

similar levels of SA accumulated in response to both TU and TU-A mites, but there would 

be an increase relative to the non-infested control. As the only involvement of ABA 

detected in the analysis of DEGs in response to TU did not include ABA biosynthesis, it 

was hypothesized that not only would ABA levels be the same between mite strains, but 

there would also be no induction due to mite feeding.  

To test these predictions, hormone levels were quantified in tomato leaflets infested with 

the different mite strains. Leaflets with no mites (but still isolated with lanolin) were taken 

as a control at the same time as samples collected after feeding by 100 mites for 24 hours. 

Whole leaflets were sampled for the analysis and a lanolin barrier was used to make sure 

TU mites remained on the infested leaflet. TU mites induced a dramatic (10x) increase in 

JA levels, indicating a strong response of tomato tissue to mite herbivory, whereas TU-A 

mites induced the accumulation of lower amounts of JA (Figure 3.7A). The same pattern, 

with less magnitude was seen in JA-Ile levels, where TU mites induced more than double 

the amount of constitutive levels and TU-A again induced intermediary levels (Figure 

3.7B). Interestingly, SA and ABA levels did not change upon feeding by TU or TU-A mites 

(Figure 3.7C, D) with the possible exception of induced SA levels upon TU feeding that 

were not statistically significant. These results support the interpretation of the 

transcriptional response being attenuated in tomato fed on by TU-A mites, where the JA 

defence pathway was manipulated.  
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Figure 3.7 Quantitative analysis of Moneymaker phytohormones.  Moneymaker 

leaflet samples were taken after feeding by TU and TA mites for 24 hours. Samples were 

analyzed using Ultra-performance liquid chromatography (UPLC)-electrospray 

ionization-tandem mass spectrometry. Bar graphs represent mean ± SE hormone level 

(ng/g). A, JA levels are shown. Different letters represent significant differences between 

means (two-way ANOVA, F = 7.28, p = 0.01952, η2p = 0.68, followed by Tukey-Kramer 

post hoc test, p < 0.05, n = 4-6/cultivar). B, JA-Ile levels are shown. Different letters 

represent significant differences between means (two-way ANOVA, F = 5.46, p = 

0.03194, η2p = 0.58, followed by Tukey-Kramer post hoc test, p < 0.05, n = 4-6/cultivar). 

C and D, SA and ABA levels are shown, respectively. No significant differences between 

means were detected. 
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3.7 Protease inhibitor marker gene analysis 

Protease inhibitors represent a major defence protein used by tomato against herbivores, 

and Figure 3.5B displays an attenuation of the expression of genes encoding protease 

inhibitors in cluster 2 when plants are fed on by TU-A mites. This attenuation of PIs may 

represent a functional benefit of plant response modulation by TU-A mites. Using an 

independent set of samples, validation of microarray data of PI induction was performed 

using RT-qPCR of the two chosen protease inhibitor transcripts identified in section 3.4. 

Protease inhibitor I (Solyc09g084480) and Cysteine PI (Solyc00g071180) were assessed 

for transcript abundance in samples fed on by TU, TU-A or no mites (control). It was 

predicted that Protease inhibitor I (Solyc09g084480) would be induced to similar levels in 

both TU and TU-A-treated samples and Cysteine PI (Solyc00g071180) would be attenuated 

in TU-A-treated samples. 

TU mites induced high levels of expressions of both genes relative to the non-challenged 

tomato, and TU-A produced a much more attenuated, though still significant induction 

(Figure 3.8). This suggests that there is more suppression of cysteine proteases than is 

evident in the microarray data, or conversely, as this experiment was performed ~2 years 

after the microarray, the TU-A population may have increased their ability to suppress 

them since the time the microarray was performed.  

These results suggest that the increased performance of TU-A mites could be in part due 

to the decreased amount of cysteine PIs encountered during mite feeding, allowing TU-A 

mites to metabolize plant contents without peptidases within their guts being inhibited.  
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Figure 3.8 Protease inhibitor marker gene analysis. Normalized relative quantity of 

marker genes in Moneymaker determined by RT-qPCR. Shown are mean NRQs ± SE. 

Protease inhibitor I (Solyc09g084480) and Cysteine PI (Solyc00g071180) values were 

normalized to Actin (Solyc03g078400). A, Protease Inhibitor I constitutive (No mite) and 

induced transcriptional activity following feeding by TU and TU-A mites. Different letters 

represent significant differences between means (one-way ANOVA, F = 175.48, p = 

0.00078, η2p = 0.99, followed by Tukey-Kramer post hoc test, p < 0.05, n = 2/treatment). 

B, Cysteine PI transcriptional levels. Different letters represent significant differences 

between means (one-way ANOVA, F = 2699.20, p = 1.309e-05, η2p = 0.999, followed by 

Tukey-Kramer post hoc test, p < 0.0001, n = 2/treatment). 
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3.8 Protease % inhibition assay 

Gene expression data suggest that TU-A mites transcriptionally suppress PI genes. This is 

expected to reduce PI activity in tomato and might be a method evolved by TU-A mites to 

overcome the negative effects PIs may have on their digestive physiology. To test if 

transcriptional attenuation leads to reduced activity of PIs in tomato plants upon infestation 

by TU-A mites, the activity of PIs was determined. Inhibitor activity of tomato PIs was 

determined in vitro using % inhibition assays. This assay characterizes the ability of PIs in 

protein extracts of tomato tissue to inhibit a commercial protease. These assays therefore 

serve as a proxy for determining the inhibitory affect of tomato PIs against proteases that 

would be found in the mite gut. Cathepsin L serves as a good representative of biologically 

important cysteine proteases presumed to act within the mite gut.  

 It was hypothesized that tomato samples fed on by TU-A mites would have decreased PI 

activity and thus reduced ability to inhibit the cathepsin L protease activity that was 

measured in the in vitro assay. Contrary to the prediction, Moneymaker samples collected 

after feeding by TU-A mites had increased PI activity seen as higher inhibitory activity 

(37.4%) than TU samples (24.9%; Figure 3.9A). Interestingly, TU mites failed to induce 

PIs, where no mite control samples displayed 19.4% inhibition, although there was a trend 

of increased inhibition in TU-treated samples. This was unexpected given that they have 

been shown to induce expression of PI associated genes (Figure 3.5B, and Figure 3.8).  

This result was so surprising that the experiment was repeated using a different tomato 

cultivar, Heinz (1706). The damage assay revealed that while TU-A mites produce far more 

damage on Heinz than TU mites, in accordance to their adaptation status, the amount of 

damage they produce was almost halved on Heinz compared to Moneymaker. Given that 

PIs are highly responsive to wounding, I hypothesized that infesting TU-A mites on Heinz, 

where it produced less damage, would provide an opportunity to test my original 

hypothesis again. This assay supported the prediction, where TU mites produced a 

significant increase of inhibitory activity in Heinz plants, whereas TU-A mites had an 

intermediate increase that was not statistically different than the control (Figure 3.9B). 

Additionally, RT-qPCR marker gene analysis of Heinz samples characterizing the 
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expression of the same PI genes assessed in Moneymaker showed that they were attenuated 

in Heinz in response to TU-A mites, as they were in Moneymaker (Figure 3.9C). 

Thus, PI activity in the Moneymaker background did not follow transcriptional changes, 

indicating that, PI activity in this cultivar may be regulated at the post-transcriptional level 

or conceivably, there could be unannotated PIs that went undetected in the microarray. 

Conversely, on Heinz, TU-A mites did suppress tomato PI activity at both the 

transcriptional and physiological levels. The difference observed in response to TU and 

TU-A mites by these two tomato cultivars may be due to the genetic or physiological 

differences between them, or due to the difference in the amount of damage incurred during 

TU-A mite feeding, representing a confounding effect of wounding on tomato PI activity.  

In summary, as TU-A did affect PI activity in Heinz, but not in Moneymaker, it has been 

demonstrated that attenuation of PI activity may still be one of the strategies used by mites 

to overcome this defence mechanism; however, the attenuation of their expression is not 

expected to contribute to their adaption status on Moneymaker.  
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Figure 3.9 Percent inhibition of commercial cathepsin L. The ability to inhibit cathepsin 

L activity in tomato protein extracts was tested using tomato samples that were fed on by 

no mites, or 100 mites of TU/TU-A strains. Data shown in A and B are mean ± SE % 

inhibition of samples relative to samples of cathepsin L activity that were not incubated 

with plant extracts (100% cathepsin L). A, % inhibition of Moneymaker tomato samples. 

Different letters represent significant differences between means (two-way ANOVA, F = 

22.00, p = 1.536e-06, η2p = 0.60, followed by Tukey-Kramer post hoc test, p < 0.001; n = 

12/treatment). B, % inhibition of Heinz tomato samples. Different letters represent 

significant differences between means (two-way ANOVA, F = 4.32, p = 0.025026, η2p = 

0.26, followed by Tukey-Kramer post hoc test, p < 0.001; n = 12/treatment). C, normalized 

relative quantity of Protease inhibitor I (Solyc09g084480) and Cysteine PI 

(Solyc00g071180) normalized to Actin (Solyc03g078400). Shown are mean NRQs ± SE. 

Different letters represent significant differences between means within each gene 

(uppercase and lower case letters are used to distinguish between genes; one-way 

ANOVAs, F PI1 = 46.88, p PI1 = 0.0002176, η2p PI1 = 0.94; F CysPI = 24.37, p CysPI = 0.001317, 

η2p CysPI = 0.89; followed by Tukey-Kramer post hoc test, p < 0.05; n = 2-3/treatment). 
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3.9 Mite protease inhibitor assay 

Given the opposing results of PI activity in Moneymaker and Heinz tomato cultivars due 

to mite feeding, I investigated the importance of cysteine proteases on mite physiology 

when feeding on tomato. To address this, a fecundity assay was performed after treatment 

of mites with a synthetic PI, E-64. This pharmacological approach was used because it 

would remove the possibility of PI activity manipulation by mites. The use of a controlled 

concentration of E-64 allowed for direct determination of any inhibitory effect. Fecundity 

was used as the measure of mite performance on tomato with and without PI treatment. 

Fecundity was measured 2 and 4 dpi to make sure the treatment had enough time to take 

effect and to test for any possible feedback loop associated with inhibition of mite cysteine 

proteases, which would represent a limitation to this approach. It was predicted that E-64 

treatment would lead to decreased fecundity due to inhibitory effects on cysteine proteases 

in the mite gut affecting digestion.  

E-64 is an irreversible, potent, and highly selective cysteine protease (and trypsin) 

inhibitor. The trans-epoxysuccinyl group (active moiety) of E-64 irreversibly binds to an 

active thiol group in many cysteine proteases, such as papain, actinidase, and cathepsins B, 

H, and L to form a thioether linkage. E-64 is a very useful cysteine protease inhibitor for 

use in in vivo studies because it has a specific inhibition, is permeable in cells and tissues, 

and has low toxicity (Sigma-Aldrich, Cat # E3132, product information). When mite 

protein extracts were incubated with E-64, a greater than 80% reduction in cathepsin L-

like activity was observed (Santamaría et al., 2015b). This suggests that E-64 is an 

appropriate inhibitor of the cathepsin L for use in this study. The leaf spraying application 

technique of E-64 was chosen because this more accurately reflects the natural interaction, 

where PIs would be ingested upon plant feeding and interact with digestive content.  

Conversely to the % inhibition experiment that determined the effect of tomato PIs on a 

commercial protease (cathepsin L from human liver), this experiment tests the effect of a 

commercial PI against endogenous mite proteases. First, an in vitro assay to determine 

cathepsin L activity post treatment with 10 µM of E-64 was performed under the same 

conditions as the fecundity assay to verify decreased cysteine protease activity in mites due 

to E-64. As previously mentioned, cysteine proteases have been hypothesized to be 
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important in mite digestion, and cathepsin L is highly represented among mite cysteine 

proteases, so it serves as a good marker for this experiment. E-64 was capable of decreasing 

cathepsin L activity in TU mites both 2- and 4-days post feeding on treated tomato plants 

(Figure 3.10A). Activity in TU-A mites was decreased only on day 4 post feeding 

compared to the control, and to a substantial lesser extent than the decrease observed in TU 

mites (Figure 3.10B). There was a significant interaction between treatment with E-64 and 

dpi for TU mites (three-way ANOVA, Ftreatment:dpi interaction = 5.0427, ptreatment:dpi = 0.03134, 

η2ptreatment:dpi = 0.13), but the decrease in cathepsin L activity was most pronounced at 4 

dpi, suggesting that there was no feedback loop that would result in increased protease 

levels upon inhibition. Therefore, E-64 was able to inhibit Cathepsin L activity, more in 

TU than in TU-A mites. 

The test for physiological effects of the reduced mite cathepsin L activity following E-64 

treatment, was determined with a fecundity assay of TU and TU-A mites following 

treatment. Contradictory to the hypothesis, E-64 had no effect on TU or TU-A mite 

fecundity at 2 or 4 dpi on Moneymaker (Figure 3.11). The only difference detected was an 

increase in number of eggs/mite on day 4 relative to day 2 for TU-A samples (Figure 

3.11B), which suggests that the mites were performing well and continuing to lay eggs. 

There was no increase in number of eggs/mite between days in the TU samples, which 

supports earlier results indicating tomato is not a favorable host that supports their fitness. 

Therefore, there was no physiological effect associated with reduced cathepsin L activity 

on TU and TU-A mites, at the level of decrease achieved by E-64 in this experimental set-

up.  
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Figure 3.10 E-64 inhibition of cathepsin L activity. Cathepsin L activity in mite samples 

after feeding on water/E-64 treated Moneymaker leaves for 2 and 4 dpi. Bar graphs depict 

the mean ± SE cathepsin L activity (nmol/min/mg). A, TU mite samples. Different letters 

represent significant differences between means (three-way ANOVAs, F dpi = 21.10, p dpi 

= 6.084e-05, η2p dpi = 0.39; F treatment = 42.93, p treatment = 1.918e-07, η2p treatment = 0.57; 

followed by Tukey-Kramer post hoc test, p < 0.05; n = 10/treatment). B, TU-A mite 

samples. Different letters represent significant differences between means (three-way 

ANOVAs, F dpi = 6.39, p dpi = 0.016412, η2p dpi = 0.16; F treatment = 9.48, p treatment = 

0.004157, η2p treatment = 0.22; followed by Tukey-Kramer post hoc test, p < 0.05; n = 

10/treatment). An interaction was detected between treatment and trial (F treatment:trial = 

11.46, p treatment:trial = 0.001847, η2p treatment:trial = 0.26). The effect size was 0.2-fold higher 

than that of the main effect of treatment and the interaction plot (supplementary material) 

shows the decrease in activity due to E-64 happened only in one of two trials. Therefore, 

the statistically significant difference displayed on the graph is very weak. Additionally, 

the biological relevance of such a small decrease should be considered. 
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Figure 3.11 E-64 fecundity assay. Bar graphs showing mean ± SE number of eggs/mite 

mites 2 and 4 dpi following application of 20 female mites to treated leaves. A, TU 

fecundity. No differences between means observed. B, TU-A fecundity. Asterisk 

represents significant difference between days (three-way ANOVA, F = 716.60, p < 2.2e-

16, η2p = 0.92; n = 18). The effect of treatment was not found to be significant for TU or 

TU-A mite strains and there was no interaction between treatment and dpi (mites behaved 

the same to treatment both days). There was an interaction between dpi and trial (F dpi:trial 

= 7.69, p dpi:trial = 0.001074, η2p dpi:trial = 0.21); however, the effect size was more than 4-

fold less than that of dpi and the interaction plot (supplementary material), shows the same 

general pattern in all three trials, with more eggs laid by day 4 than day 2. 
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3.10 Mite cysteine protease activity on rearing and 
experimental hosts  

Despite the transcriptional attenuation of some PIs revealed in the microarray analysis and 

the marker gene RT-qPCR, the % inhibition assay suggested that TU-A mites are indeed 

encountering PIs against cathepsin L when feeding on Moneymaker. Additionally, the E-

64 assay determined that inhibition of cathepsins by E-64 was relatively small and had no 

effect on mite fecundity, suggesting that both non-adapted and adapted mites are 

insensitive to inhibition by E-64 to a biologically relevant level (with this method of 

delivery). The prediction then arises that on Moneymaker, while TU mites are probably 

not encountering a high level of PIs during ingestion (constitutive levels and not much 

induced), TU-A mites possess a level of cysteine protease activity high enough to 

outcompete the high levels of PIs ingested, and therefore serves as the mechanism of 

overcoming this specific induced tomato defence.  

The cathepsin L activities of TU and TU-A mites were comparable when feeding on 

Moneymaker in the E-64 experiment; however, it is unclear if that level of activity was 

constitutively expressed in the ancestral non-adapted strain or induced only upon host-shift 

to tomato. Therefore, cysteine protease activity was measured in TU mites on bean (rearing 

host) and both TU and TU-A mites on Moneymaker tomato plants. Cysteine protease 

activity was measured by the activity of cathepsins L- and B-like as well as legumain-like.  

Cathepsin L and B activity of TU mites on bean and TU-A mites on Moneymaker were the 

not statistically different (8.7-8.8 and 1.7-1.9 nmol/min/mg respectively; Figure 3.12A, B), 

suggesting there was no global change in the activity of these enzyme families during the 

adaptation process. Interestingly, TU mites on Moneymaker had decreased cathepsin L and 

B activity compared to their activity on bean (7.8 and 0.7 nmol/min/mg, respectively; 

Figure 3.12A, B). TU mites on Moneymaker had slightly higher Legumain activity (0.15 

nmol/min/mg) than those of TU mite on bean and TU-A mite on Moneymaker, which had 

the same levels (0.12-0.13 nmol/min/mg; Figure 3.12C). However, the small scale on 

which the difference was detected, leaves the biological relevance of that statistical 

difference in question.  
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Figure 3.12 Mite cysteine protease activity on rearing and experimental hosts. Bar 

graphs representing mean ± SE specific enzymatic activity (nmol/min/mg) of TU mites on 

bean and Moneymaker and TU-A on Moneymaker. A, cathepsin L activity. Different 

letters represent significant differences between means (two-way ANOVA, F = 9.012, p = 

0.0008607, η2p = 0.38; followed by Tukey-Kramer post hoc test, p < 0.01; n = 12). B, 

cathepsin B activity. Different letters represent significant differences between treatment 

means (two-way ANOVA, F = 76.91, p = 1.552e-12, η2p = 0.84; followed by Tukey-

Kramer post hoc test, p < 0.05; n = 12). C, legumain activity. Different letters represent 

significant differences between treatment means (two-way ANOVA, F = 23.85, p = 6.311e-

07, η2p = 0.61; followed by Tukey-Kramer post hoc test, p < 0.001; n = 12). There were 

significant interactions detected between treatment and trial terms in the cathepsin L and 

cathepsin B ANOVAs (F = 3.47, p = 0.0439514, η2p = 0.188; and F = 16.64,  p = 1.374e-

05, η2p = 0.53, respectively), however, their effect sizes of the interactions were 2- and  

1.6-fold smaller than those of the treatments, respectively. The interaction plot for 

cathepsin L displayed somewhat different patterns in two trials due to high variability to 

TU-A on Moneymaker. The interaction plot for cathepsin B shows a similar pattern in both 

trials (supplementary material).  
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In summary, with regards to suppression as a mechanism of T. urticae adaptation to tomato, 

there is evidence that modulation occurs at the transcriptional and hormonal levels; 

however, the biological relevance of that suppression, whatever it may be, is occurring 

locally where the mite is feeding, and does not include the suppression of cysteine proteases 

(at least on Moneymaker). It would be surprising if the observed induced defence 

attenuation has no biological relevance (or benefit) to TU-A mites, as the programs with 

decreased induction (JA defense pathway related) and decreased down-regulation (growth 

and photosynthesis) are extremely indicative of a compromised defence response.  

3.11 Detoxification enzyme inhibitor assays 

Detoxification of toxic plant metabolites is another key adaptation strategy of overcoming 

plant defence (and xenobiotic compounds in general). This strategy has been implicated in 

T. urticae evolution of pesticide resistance (Alyokhin and Chen, 2017; (Dermauw et al., 

2013; Yang et al., 2001) and mite adaptation to cyanogenic plants (Wybouw et al., 2014). 

In the studies noted above, the overexpression of genes encoding enzymes that metabolize 

xenobiotics were shown to be associated with the resistance and adaptation, respectively. 

Therefore, in addition to characterizing the ability of TU-A mites to suppress tomato 

defences, the ability of mites to detoxify phytochemicals of Moneymaker was also 

characterized. Specifically, I tested the requirement of global esterase, GST and CYP 

activity for T. urticae adaptation to tomato. Again, a pharmacological approach was used 

that has been well established in studies of mite resistance to pesticides (Khalighi et al., 

2016).  

Preliminary experiments determined appropriate concentration of inhibitors (Appendix, 

Figure 1), producing sublethal effects (Appendix, Figure 2). This was done to ensure there 

would be no confounding effect of inhibitor induced mortality independent of their effect 

on detoxification enzyme inhibition. Based on these data, the concentration chosen for use 

on the challenging host (tomato), did not affect mite performance under the same 

experimental conditions when feeding on a non-challenging (and ancestral) host (bean). 

Detoxification enzyme inhibitors were then used to test for their involvement in the high 

performance of TU-A mites. Mites were treated via ingestion through 3 days of feeding on 

a non-challenging host (bean) sprayed with an inhibitor. S,S,S tributyl-phosphorotrithioate 
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(DEF) was used to inhibit esterases, DEM was used to inhibit GSTs and PBO was used to 

inhibit CYPs. Following treatment, mite performance was measured via fecundity after 2 

days of feeding on non-treated Moneymaker tomato plants in order to quantify any effect 

on mite performance. The prediction was that each inhibitor class is involved in toxic 

tomato metabolite metabolism, and therefore a decrease in TU-A fecundity would be 

observed upon their inhibition and subsequent encounter with tomato metabolites. As TU 

performance on tomato is already quite poor, it was hypothesized that little if any effect of 

inhibitors would be observed, as they are not using them to the extent that they are 

overcoming toxic metabolites.  

Enzyme activity assays were also performed to test whether the knock-down of activity 

following treatment with the inhibitor could be verified in vitro, again something not done 

in other studies that use these inhibitors on mites. For these experiments, mites were 

collected after 24h of treatment (as opposed to the 3 days of treatment in the fecundity 

assay), because this was thought to be the window of time where a decrease would be most 

prominent (given hypothesized feedback loops). DEF decreased esterase activity to a large 

extent in both TU and TU-A mites (Figure 3.13A). No decrease in GST activity could be 

detected following DEM treatment (Figure 3.13B). PBO treatment had a significant, but 

minimal effect on mite CYP activity in TU and TU-A mites (Figure 3.13C). 

None of the inhibitor treatments affected TU performance on Moneymaker (Figure 3.14A). 

TU-A mites showed reduction in fecundity following treatment by all 3 inhibitors 

individually on Moneymaker (Figure 3.14B). As the effect on inhibition of TU-A esterase, 

GST and CYP enzymes was only observed on tomato and not the non-challenging host 

bean, it can be concluded that these classes of enzyme are contributing to TU-A 

performance on tomato by metabolizing otherwise toxic tomato compounds. As before, 

TU mites laid fewer eggs than TU-A mites on Moneymaker. Treatment with inhibitors did 

not decrease the fecundity of TU-A mites to the level of TU mites.  

In addition to determining the importance of detoxification of tomato compounds derived 

from the tomato cultivar TU-A mites were reared on, TU-A mites were also presented with 

a different tomato cultivar defence profile with and without inhibitor treatment. The tomato 
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cultivar used to test this was Castlemart. One benefit of using Castlemart is the existence 

of a mutant in this genetic background, defenseless-1 (def-1), that is devoid of JA 

accumulation and induced JA-regulated defences upon wounding, including the 

accumulation of wound-induced proteinase inhibitors (WIPI) transcripts and elevated 

proteinase inhibitors in response to herbivory (Li et al., 2002). Therefore, it was possible 

to characterize the involvement of the detoxification enzyme classes that were involved in 

detoxifying Moneymaker metabolites in the detoxification of both constitutive and induced 

tomato defences of a different tomato cultivar. Again, the prediction was that TU-A mites 

would be compromised in their fecundity following treatment with inhibitors of each class 

tested.  

TU mites did not display a decrease in fecundity of inhibitor treatments compared to the 

control, with the exception of DEF treatment on the Castlemart genotype (Figure 3.15A). 

Also, the only inhibitor to have an effect on TU-A mites was DEF and only on def-1; 

however, there was a trend of decreased fecundity of DEM- and PBO-treated mites (Figure 

3.15B). The fact that esterase inhibition only affected TU-A performance on def-1 mutant 

suggests that they are susceptible to induced defences relative to the constitutive ones. 

Also, that DEM and PBO inhibitor treatment only affected mite performance on 

Moneymaker suggests that they are using esterases and CYPs to detoxify plant compounds 

that are potentially unique in quantity or quality compared to those of Castlemart.  
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Figure 3.13 Detoxification enzyme inhibitor activity following inhibition. Bar graphs 

showing the mean ± SE enzyme activity of TU and TU-A mites following treatment with 

water or enzyme inhibitor on Bean after 24h. A, effect of DEF (250 mg/L) on esterase 

activity of TU and TU-A mites. Difference between esterase activity detected between mite 

strains (two-way ANOVA, F mite.strain = 112.16, p mite.strain = 2.336e-08, η2p mite.strain = 0.80). 

Different letters represent significant differences between means (two-way ANOVA, F 

treatment = 2488.71, p treatment < 2.2e-16, η2p treatment = 0.99). Different letters represent 

significant differences between means as determined by Tukey-Kramer post hoc test, p < 

0.05; n = 5/mite strain. B, no effect of DEM (4000 mg/L) was observed on GST activity in 

TU or TU-A mites. C, effect of PBO (2000 mg/L) activity on CYP activity. Difference 

between CYP activity detected between mite strains (three-way ANOVA, F mite.strain = 

166.61, p mite.strain < 2.2e-16, η2p mite.strain = 0.69). CYP activity was reduced by PBO in TU 

and TU-A mites (three-way ANOVA, F treatment = 27.92, p treatment = 1.226e-06, η2p treatment 

= 0.27). Different letters represent significant differences between means as determined by 

Tukey-Kramer post hoc test, p < 0.05; n = 19-24/mite strain). An interaction between mite 

strain and trial was detected (three-way ANOVA, F mite.strain:trial = 17.19, p mite.strain:trial = 

7.392e-07, η2p mite.strain:trial = 0.32; however, the effect size was 2-fold smaller than those of 

the corresponding main effects and the interaction plot showed no difference in pattern 

between trials.   
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Figure 3.14 Detoxification inhibitor assay: Moneymaker. Bar graphs showing the mean 

± SE number of eggs/mite of TU and TU-A following treatment with water or enzyme 

inhibitor and feeding on Moneymaker. Concentrations of DEF, DEM and PBO were 250 

mg/L, 4000 mg/L and 2000 mg/L PBO respectively. A, no effect of inhibitors was observed 

on fecundity of TU mites. B, effect of inhibitors on TU-A fecundity. Different letters 

represent significant differences between means (ANOVA, F = 4.83, p = 0.004445, η2p = 

0.19; followed by Tukey-Kramer post hoc test, p < 0.05; n = 18/mite strain). TU-A mites 

laid more eggs than TU mites (three-way ANOVA, F= 400.90, p < 2.2e-16, η2p = 0.76). 

TU-A mites laid more eggs than TU mites (three-way ANOVA, F mite.strain = 546.48, p 

mite.strain < 2.2e-16, η2p mite.strain = 0.82). 
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Figure 3.15 Detoxification inhibitor assay: Castlemart and def-1. Bar graphs showing 

the mean ± SE number of eggs/mite of TU and TU-A mites following treatment with water 

or enzyme inhibitor. A, effect of inhibitors on fecundity of TU mites on Castlemart and 

def-1. There was a difference in number of eggs/mite laid by TU mites between plant 

genotypes (three-way ANOVA, F plant.Genotype = 48.65, p pant.Genotype = 6.523e-10, η2p 

plant.Genotype = 0.37). Different letters represent significant differences between means within 

each genotype (uppercase and lowercase letters used to distinguish between plant 

genotypes; three-way ANOVA, F treatment = 8.42, p treatment = 5.869e-05, η2p treatment = 0.23, 

followed by Tukey-Kramer post hoc test, p < 0.05, n = 12-13/mite strain). An interaction 

between treatment and trial was detected (F treatment:trial = 2.37, p treatment:trial = 0.03651, η2p 

treatment:trial = 0.14); however, the effect size was 1.6-fold smaller than those of the 

corresponding main effects and the interaction plot showed little difference in pattern 

between trials. B, effect of inhibitors on TU-A fecundity on Castlemart and def-1. There 

was a difference in number of eggs/mite laid by TU-A mites between plant genotypes 

(three-way ANOVA, F plant.genotype = 78.06, p plant.genotype = 3.409e-13, η2p plant.genotype = 0.51). 

Different letters represent significant differences between means within each genotype 

(uppercase and lowercase letters used to distinguish between plant genotypes; three-way 

ANOVA, F treatment = 3.64, p treatment = 0.0165769, η2p treatment = 0.13, followed by Tukey- 

Kramer post hoc test, p < 0.05, n = 12-13/mite strain). An interaction between plant 

genotype and trial was detected (F plant.genotype:trial = 4.45, p plant.genotype:trial = 0.0150106, η2p 

plant.genotype:trial = 0.11); however, the effect size was 4.6-fold smaller than those of the 

corresponding main effects and the interaction plot showed little difference in pattern 

between trials. 
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4 Discussion 

Thus far, avenues of research have focused either exclusively on detoxification as a 

mechanism of overcoming toxic plant compounds or on suppression of plant defence 

pathways as a means to adaptation. This study characterized both mechanisms in parallel 

within one species of generalist herbivore during one adaptation event.  

4.1 Tomato damage positively correlated with mite 
adaptation status 

It is of no surprise that tomato leaf tissue experiences more damage from mites that are 

adapted versus mites that are not (Figure 3.1A). The difference in damage is visually 

striking (Figure 3.1B) and exemplifies why pest adaptation is such a concern for producers 

in agriculture. A small population of non-adapted mites will not produce enough damage 

to be of consequence economically, and thus represents a threshold of pest status that is 

acceptable.  

When TU-A mites were used to infest a selection of tomato cultivars, it was demonstrated 

that they outperform TU mites every time (Figure 3.2). This supports previous findings in 

that adaptation to one host will provide protection against those defences that are shared 

by other hosts (Fellous et al., 2014), in this case, different tomato cultivars. Additionally, 

though TU-A mites produced a lot of damage on all cultivars tested relative to TU mites, 

they did cause the most damage on Moneymaker plants (Figure 3.2), suggesting that their 

adaptation, while not cultivar specific per se, is to some extent shaped by the cultivar-

specific secondary compounds they were exposed to during adaptation. This suggests that 

the ability of TU-A mites to overcome Moneymaker defences required it to adapt to 

different components of the defence program, some of which may be common to all tomato 

cultivars, but present in different quantities.  

4.2 Mite performance improves dramatically through 
adaptation 

Both fecundity and retention assays support the adaptation status of TU-A mites (Figure 

3.3 and 3.4). Adaptation therefore leads to both behavioural and physiological changes to 
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mite populations. Both their tendency to stay on a tomato leaf and feed, and deposition of 

large quantities of eggs on the leaf are advantages of adaptation. TU-A mites appear to 

have gained the ability to utilize tomato tissue in a way that bypasses the defences such 

that they are no longer distasteful to them (which would lead to a feeding deterrent effect) 

and they are no longer effective against (which would lead to the low fecundity shown by 

non-adapted mites).  

4.3 Tomato transcriptional response and suppression assay 
point to a localised attenuation of tomato defences 

Blaazer et al. (2018) suggest the ability to suppress host plant defenses may be a mechanism 

that mites use as generalists, providing them the ability to readily utilize a novel host plant. 

They argue that detoxification may only be effective on a narrow range of similar hosts, 

while suppression may allow for utilization of a wider range of hosts, as it would operate 

by targeting conserved components in the plant defence pathway. The data presented here 

suggest that the ability to modulate a plants hosts’ defence response (at the transcriptional 

level), occurs over time and generations, where any suppressive ability of TU was not 

detectable at the transcriptional level. Although there was no other tomato transcriptional 

profile in response to other non-adapted arthropods to compare the TU response with (to 

compare changes in the magnitude and composition of response), the fact that tomato was 

such an unfavorable host to them suggests that the host response to TU mite feeding was 

not compromised in any significant way. 

The difference between the TU-A, induced vs TU, induced tomato responses was one that 

can best be described as attenuated. The heatmap and cluster analyses highlight DEGs that 

were differentially expressed upon feeding by TU and TU-A mites (filtered by response to 

TU). The analysis of genes in clusters 2 and 4 of the heatmap (Figure 3.5) illustrate that 

despite some aspects of early responses (response to JA and wounding) being suppressed 

by TU-A mites, much of the early responses of the JA/SA signalling pathways remain 

upregulated in response to both TU and TU-A mites. Similarly, analysis of clusters 1 and 

3 illustrate that while many of the genes involved in growth and photosynthesis that are 

down-regulated upon TU feeding are still downregulated in response to TU-A, though there 

are other genes that are significantly less downregulated in response to TU-A involved in 
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these biological processes. This may mean the plant was compromised in its resource 

allocation response to attack, where the plant has not sufficiently switched from a growth 

mode to a defence mode (Clark and Harvell, 1992; Zhou et al., 2015). Overall, this suggests 

that while the plant is still recognizing TU-A mites as they feed and do attempt to switch 

from growth/development to defence, aspects of that defence response are compromised 

by TU-A mites.  

When JA and JA-Ile levels in TU-A infested tomatoes were measured, they were 

intermediate between those of control and TU-treated plants, which verified microarray 

data (Figure 3.7). At the same time, SA levels did not increase significantly after mite 

attack, contrary to previous findings (Alba et al., 2014; Ament et al., 2004; Kant et al., 

2004, 2008, Martel et al., 2015). Marker gene analysis of selected PI genes induced greatly 

upon TU feeding also verify microarray data, where expression in TU-treated samples were 

induced more than two-fold compared to induction by TU-A (Figures 3.8 and 3.9).  

Additionally, many genes associated with secondary metabolism synthesis were also 

induced to intermediary levels (Figure 3.5, cluster 2), though the differential down-

regulation of these genes were not verified by RT-qPCR.  

The biological relevance of the observed suppression of tomato defences by TU-A feeding 

at the transcriptional level was assessed using a co-infestation experiment where the 

suppressive capabilities of TU-A was challenged across leaflets. There was no observed 

suppression of plant defences in a systemic fashion (Figure 3.6). This indicates that the 

biological effect of TU-A mite attenuated responses was happening locally at the feeding 

site and not translated systemically, suggesting systemic responses have not been 

compromised.  

It has been demonstrated that T. urticae is able to synthesize secreted proteins in their 

secretory glands and presumably secrete them into plant tissue via the stylet, affecting their 

interaction with their host plant (Jonckheere et al., 2016; Villarroel el al., 2016). Ectopic 

expression of prime candidates from an in silico prediction of T. urticae (and T. evansi, a 

specialist mite species feeding on Solanaceous plants) secretomes resulted in suppression 

of defences downstream of SA signalling in Nicotiana benthamiana (close relative of 
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tobacco) and improved mite performance (Villarroel et al., 2016). Results from that study 

demonstrated that both T. urticae and T. evansi are sensitive to SA facilitated defences, but 

secreted proteins (via saliva) reduced their negative effects. In my study, sensitivity to SA 

defences was not assessed; however, if there was a biological relevance to SA pathway 

attenuation it did not occur downstream of SA signalling, but potentially at its synthesis 

(Figure 3.7).  

In support of localized suppression of tomato defences, Schimmel et al. (2017) observed 

the phenomenon of hyper-suppression of plant defences by T. evansi locally upon the 

addition of T. urticae competitors to the same leaflet. Specifically, hyper-suppression was 

observed when T. evansi mites were allowed to establish on a tomato plant for a few days 

before the addition of T. urticae mites on another isolated section of the leaflet. Both JA 

and SA defences were shown to be suppressed more strongly than the base level of 

suppression deployed by T. evansi at the local feeding site, resulting in increased 

reproductive output. This local hyper-suppression of defences coincided with increased 

expression of candidate T. evansi salivary defence-suppressing effector proteins. It was 

theorised that the competitor-induced overcompensation promoted competitive population 

growth of T. evansi on tomato (Schimmel et al., 2017).  

4.4 Plant and commercial cysteine protease inhibitors have 
little effect on TU-A mites 

The analysis of T. urticae bodies and faecal extracts by Santamaria et al. (2015b) 

demonstrated that aspartyl, cathepsin B- and L-like and legumain proteases were 

prominently represented as digestive proteases in spider mites, with aspartyl and cathepsin 

L-like proteases being especially active. When taken together with gene expression data, 

the hypothesis emerged that there was a digestive role for cysteine and aspartyl proteases 

in T. urticae nutritional uptake, making them prime targets for tomato anti-digestive 

proteins. Cathepsin L was used in this study as a marker for cysteine proteases (cathepsin 

B-, cathepsin L- and legumain-like).  

In this study, microarray and RT-qPCR data indicate an attenuation of tomato PI 

biosynthesis at the level of gene expression in response to TU-A mites relative to TU 
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(Figure 3.5 and 3.8, respectively). However, when PI activity was assessed in Moneymaker 

and Heinz leaf tissue fed on by TU and TU-A mites, compared to a no mite control, no 

such attenuation was observed in Moneymaker, while it was observed in Heinz (Figure 

3.9). TU mites failed to induce cysteine PI activity in Moneymaker after 24h of feeding, as 

assessed through the % inhibition of cathepsin-L activity, despite high induction of PI 

genes. These results suggest that post translational regulation of PIs is occurring in 

Moneymaker such that a small induction of gene expression results in high levels of 

activity. The post translational modification may be accomplished either by the plant itself 

or mite effectors present in the ancestral non-adapted strain and either lost or ineffectual in 

TU-A mites. As supported by the % inhibition/activity of PIs in the Heinz cultivar, it could 

be that the level of physical wounding to the plant by TU-A mites is enough to overcome 

whatever suppressive abilities the effectors within the ancestral strain had in the TU-A-

treated Moneymaker samples. This supports the hypothesis that mites use suppression of 

defences as a mechanism of overcoming host-shift, that may not be relied upon to the same 

extent further down the adaptation timeline, when population numbers are high and damage 

is extensive.   

To further interrogate the role of cysteine protease inhibitors against non-adapted and 

adapted mites, a commercial inhibitor (E-64) was used to treat mites prior to assessing their 

fecundity on Moneymaker. In this way, any suppression of PIs by mites was bypassed, and 

the direct effect of inhibition of cysteine proteases in general, in addition to tryspsin, was 

characterized. Despite a decrease in cathepsin L-like activity in TU mite samples treated 

with E-64 (Figure 3.10A), no decrease in mite performance was observed in reproductive 

output (Figure 3.11A). With respect to TU-A mites, a decrease in cathepsin-L activity was 

only observed on day 4 post spraying, and its biological relevance was questionable (Figure 

3.10B). No change in fecundity was observed in TU-A mites when treated with E-64 

(Figure 3.11B). When the concentration of E-64 was increased 5-fold more than the 

recommended concentration by the supplier, still no effect on TU-A mites was observed 

(data not shown). The very slight decrease in cathepsin L-like activity observed in TU and 

TU-A mites upon E-64 treatment could indicate that the levels within mites, in both the 

ancestral and adapted populations, were up-regulated to such an extent that they were not 

affected by protease inhibition at the level Moneymaker PIs and the commercial PI E-64 
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can impart. Protease activities of TU mites on bean and Moneymaker, and TU-A mites on 

Moneymaker suggest that these high levels of cathepsin L activity are constitutive, and 

were not induced upon host shift to tomato (Figure 3.12). This is consistent with the work 

of Santamaria et al., (2015b), where they found no change in cathepsin L, B or legumain 

activity when mites were reared on bean or tomato. However, there is evidence in T. urticae 

of unspecific increases in cathepsin B and L, legumain and aspartyl protease genes in 

response to inhibition by the barley PI HvCPI-6, which targets cysteine proteases 

(Santamaría et al., 2015b). Also, activities of mite proteases change when mites feed on 

transgenic Arabidopsis plants that over-expressed different types of protease inhibitors 

(Santamaria et al., 2012). This suggests the increase in proteases, whether constitutive or 

in response to PIs ingested, is a mechanism of overcoming that particular class of tomato 

defence protein. However, it has also been demonstrated that proteases can gain mutations 

that then make them insensitive to inhibitors that once targeted them (Volpicella et al., 

2003).  

It is unknown if the tomato adaptation of T. urticae in this study was at all associated with 

de novo mutation in proteases expressed originally in the mites feeding on Moneymaker, 

or over-expression of a different repertoire of proteases, representing a more effective set. 

The study by Wybouw et al. (2015) was performed to determine the reciprocal 

transcriptional responses of tomato and mites due to mite adaptation. They determined that 

about ~45% (444 of 994) of the differentially expressed genes between TU and TU-A 

strains could be attributed to genetic adaptation. They found that TU-A mites both changed 

their constitutive transcript levels in addition to altering their transcriptional plasticity. 

Specifically, TU-A mites changed the expression of 16 proteases (GO:0006508 

proteolysis) through genetic adaptation and this could have resulted in them being less 

affected by tomato PIs (Wybouw et al., 2015). Alternatively, it could be that the pH of the 

mite digestive compartments (3.5–5.5) is not within the optimal or functional range of 

tomato PIs (Bensoussan et al., 2018; Santamaría et al., 2015b), and therefore they do not 

have the activity required to produce a negative effect on mites. 
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4.5 Detoxification by P450s, esterases and GSTs involved 
in tomato adaptation 

A theory postulated by Krieger et al. in 1971, and supported in the literature (Heidel-

Fischer and Vogel, 2015), stated that the ability of generalist herbivores to colonize new 

host species is facilitated by their ability to detoxify a wide range of toxins that different 

plant families are likely to produce. Following this, the ability of T. urticae to feed on such 

a vast number of different plant species from phylogenetically distant families has also 

been hypothesized to be facilitated by extensive rearrangement of their xenobiotic 

metabolism by differential expression and synthesis of enzymes belonging to the three 

phases of detoxification  (Dermauw et al., 2013; Grbić et al., 2011; Wybouw et al., 2014).  

However, this hypothesis is somewhat vague with regard to the timeframe for xenobiotic 

metabolism rearrangement and has not been elaborated upon. For example, does this 

hypothesis apply to the initial host transfer of mites, where they use detoxification to 

survive long enough to adapt and colonize the plant. Or does it apply to the adaptation 

process itself, where rearrangement represents an outcome of adaptation, allowing for 

colonization. The results of this study provide support for the latter. It was observed that 

the tomato adapted mites used all three classes of detoxification enzymes tested, esterases, 

GSTs, and CYP in their utilization of Moneymaker as a host (Figure 3.14). Global levels 

of esterases and CYPs were only slightly higher in TU-A mites compared to TU mites, 

while global levels of GST activity were the same between TU and TU-A mites (Figure 

3.13). The similar global activity of all these enzymes coupled with the fact that inhibition 

of them affected TU-A mites suggests that the enzymes represented in that global analysis 

of activity are better tailored to metabolizing tomato defences, as opposed to a general 

increase in activity of those enzymes to cope with toxic tomato metabolites. Therefore, 

detoxification does not appear to be employed successfully during the initial host-shift, but 

rather selection occurs during the adaptation process for detoxification enzymes deployed 

by the mite tailored to the defences encountered when on tomato. There are reports of 

allelic variation, gene duplication, overexpression, and sub-functionalization of CYPs as 

examples of how this modulation can occur (Mao et al., 2006 & 2007; Wen et al., 2006; 

Bass et al., 2013). For example, Mao et al. identified a CYP gene (CYP6AE14) from cotton 

bollworm (Helicoverpa armigera) that allowed it to tolerate gossypol, a cotton metabolite 
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which is otherwise inhibitory to herbivore growth and development. CYP6AE14 was found 

to be highly expressed in the bollworm midgut and its expression correlated with larval 

growth when gossypol is included in the diet. 

The decreased performance of TU and TU-A mites (eggs/mite) on Castlemart relative to 

Moneymaker suggests that Castlemart represents a more challenging host (Figure 3.14 and 

3.15), further supported by the results of the damage assay (Figure 3.2). The fact that the 

decreased performance of TU-A mites in response to inhibition (of esterases) is only 

observed in the def-1 mutant (Figure 3.15B) indicates that they are relying on detoxification 

for defences that are constitutively expressed in tomato (and may be shared with the 

Moneymaker cultivar). This is consistent with the suppression hypothesis, where it is the 

induced defences that are inhibited upon attack via effectors. It is reasonable to then 

hypothesize that mites may make use of an alternative strategy against constitutive 

defences. 

Detoxification enzyme assays revealed that enzyme activity was only severely reduced in 

DEF treated mites, slightly reduced in PBO treated mites and unaffected in DEM treated 

mites (Figure 3.13). Therefore, conclusive and very probable biologically relevant 

decreases in enzyme activity were only verified for DEF treated mites. As an effect on 

fecundity was observed under each inhibitor condition in TU-A mites on Moneymaker, it 

is likely that the decrease in activity was biologically relevant for all enzyme inhibitors, 

but the window to observe that decrease in enzymatic activity may be small due to possible 

feedback loops associated with their inhibition. The lack of significant effect on TU-A 

fecundity when mites were treated with any inhibitor on Castlemart and DEM or PBO on 

def-1 plants may be due to a lack of sufficient decrease in activity of those enzymes to see 

an effect. This also may speak to the degree to which mites can tailor their adaptive 

response to defences of specific plant cultivars. There is much literature on the difference 

in defensive strategies and traits between plant species (Johnson, 2011), but there is also 

reason to study the difference between cultivars of the same species, as their metabolite 

profile will also differentially affect herbivores. 
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In general, it remains unclear what specific mechanism mites are using in their 

detoxification of plant toxic compounds. One possibility is that TU-A mites overexpress 

many genes encoding enzymes that can metabolize (modify, degrade, or detoxify) tomato 

defence compounds. Another possibility is allelic variation of gene-coding regions of 

detoxification enzymes allowing for the selection of allozymes with increased metabolic 

efficiency (Rioja et al., 2017). These are not theoretically mutually exclusive mechanisms 

and could be happening simultaneously.  

This study of T. urticae clearly demonstrates the continuum that exists between generalists 

and specialist herbivores. While the TU-A population is still a generalist in that it could be 

placed on other hosts and adapt to them, they employ mechanisms used by specialists to 

adapt to certain host plants when they are selected to do so. It should be mentioned that the 

ability to utilize different host plant species in the future will most likely be impacted 

(positively or negatively) by the adaptation to tomato, and the genetic/transcriptomic 

changes associated with it (Savolainen et al. 2013). Negative genetic correlations in fitness 

associated with adaptation to new hosts at the cost of losing the ability to develop on an 

old host can result in host specialization, limiting the potential host range. However, 

polyphagous herbivores are predicted to develop no or positive correlations, broadening 

the potential host range they can utilize (Ehrlich & Raven 1964; Gould 1979; Agrawal 

2000). Indeed, the ability of any mite population to use new plant hosts will be modulated 

by the life history of that population and what hosts it has previously been adapted to. 

It is important to note that the while I consider TU-A to be an adapted population (genetic 

change intrinsic to the population compared to the ancestral strain, as supported by 

Wybouw et al., 2015), there remains the possibility that the increased performance of TU-

A mites observed in this study was due to acclimation (physiological level changes due to 

environment). In other studies, herbivore strains to be compared were often reared on the 

same host for 2 generations (common garden experiments) to remove any 

environmental/maternal effects that may be playing a role in their differential performance 

on a challenging host (Wolf, 2013). As I was only studying the general mechanisms mites 

can use to overcome plant defences, whether they be genetically or physiologically 

determined, I did not implement the common garden approach here.   
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5 Future directions 

As there is evidence for both suppression and detoxification in plant host utilization by 

both generalist and specialists, it remains unresolved whether a generalist’s greatest tool 

for utilizing new hosts it its ability to modulate its detoxification enzyme profile in response 

to new and different plant compounds so as to propagate on that host long enough for an 

effector to evolve and target plant responses. Or, conversely, if suppression targeting a 

conserved portion of the plant response to herbivory is required first in order for there to 

be enough generations to change its detoxification profile and become ‘adapted’. 

Performing transcriptomic and performance assays of both plant and mite periodically 

through the adaptation process (every month for 30 generations) would shed a lot of light 

on how the transcriptional profile of the defence response in tomato and the host shift 

response in mite change overtime. When this is correlated to performance of herbivore and 

host, we may have the chance to see if each of these mechanisms are employed to the same 

extent throughout the adaptation process, or if one allows for the progression of the other. 

Additionally, the study of reciprocal responses of plant and mite among many different 

mite populations, having undergone independent adaptation events, would also be 

extremely helpful in understanding the patterns of use of these mechanisms in naturally 

derived populations.  

As discussed in the Introduction, there are several other mechanisms of adaptation that 

were not addressed in this study. For example, TU-A mites may have behavioural 

adaptations that went uncharacterized and unappreciated in this study. Additionally, there 

could be physiological adaptations, such as increased excretion efficiency of small 

molecules that could be responsible for some measure of the increased performance on 

tomato. Indeed, while attenuation of tomato response to feeding was observed at several 

levels, the lack of systemic attenuation leaves the biological relevance of this attenuation 

in question. Detoxification, while observed to play a role, was not responsible for the 

majority of the increased performance of TU-A compared to TU (this may have been better 

measured by applying all three inhibitors and assessed the cumulative and possible 

synergistic effects). Therefore, there is much of the adaptation process of TU-A that 

remains uncharacterized. 
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The results of this study are summarized in Figure 5.1 and indicate that suppression and 

detoxification are not mutually exclusive adaptation strategies. While one or the other may 

be favoured under certain environmental conditions, they should not be considered in 

isolation. There is every reason to suspect that these processes interact and are dynamic in 

time. The responses suppressed or not suppressed by the herbivore will result in the 

selection pressure faced by the detoxification machinery of the herbivore and therefore take 

part in shaping them. It is also important to note that adaptation may only ever be a journey 

and not a destination, as there is no evidence to suggest that once a population becomes 

adapted (performs well by whatever criteria we have set) that their reciprocal responses 

stop changing and become fixed. As the population remains on one host for an extended 

period of time, it will continue to fine-tune its adaptation mechanisms, becoming more 

efficient, as observed in the gradual increase in mite performance through the experimental 

selection (not a binary characteristic). Whether there is a threshold of adaptation, where the 

maximum level of nutrients is obtained at the lowest cost to the herbivore remains 

unknown. Evidence exists suggesting the better a population becomes at utilizing one host, 

it will loose its capabilities of feeding on different ones (Fellous et al., 2014), leading to 

specialization and perhaps speciation when coupled with reproductive isolation. An 

interesting, though potentially extremely long-term, experiment would be to adapt a T. 

urticae population to a challenging host and see if it becomes specialized. In such a case 

we would expect to observe it lose its ability to feed on other hosts (including its ancestral 

host), and its polyphagous nature. It could be that other factors present in an ecological 

setting are required to push a generalist population to be specialized, and that exclusive 

utilization of one host is not sufficient.  
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Figure 5.1 Model of the tomato response to adapted spider mites. Tomato responses 

are in green. Mite responses are in red.  

 

 

 

 

 

Local attenuation of tomato responses by TU-A mites: 

- intermediate accumulation of JA, JA-Ille and 

possibly SA 

- minimal induction of PI genes (though activity 

is high in Moneymaker) 

- downregulation of growth-related processes 

impeded when switching from growth strategy 

to defence strategy 

No systemic 

transmission of 

attenuation by TU-A 

mites 

Mite cysteine (cathepsin L, 

cathepsin B and legumain) protease 

activity (global) is the same in TU 

mites on bean and TU-A  

Mites on tomato 

Mite detoxification enzymes (CYPs, 

esterases, GSTs) are required for 

increased performance of TU-A 

mites on tomato 



92 

 

6 Conclusion 

As more detailed reports are generated regarding the interaction between plants and 

herbivores at the molecular through to the ecological level, we are still uncovering more 

and more complexity within those interactions. The way we engage in agriculture can only 

be improved upon as we incorporate more of our understanding of these interactions into 

the control of them in the field. We have been trying to overcome the effects of herbivory 

on our crops for a fraction of the time that plants have been co-evolving with them, and 

there is power in the diversity of plant defence compounds that exist in nature. We are not 

as good at synthesizing compounds as plants, and we have ever decreasing number of new, 

synthetic compounds being developed. Regulatory bodies are becoming ever more 

stringent about what compounds are acceptable due to public demand for safer, ‘greener’ 

pesticides, with very stringent toxicological and eco-toxicological criteria imposed by 

regulatory agencies (Marcic, 2012). Regardless, politics largely constrain scientific 

endeavour at this point, and scientific outreach will be key in the acceptance on any new 

biotechnologies developed for use in agriculture. There is every reason to believe that 

economic benefits will come from environmentally sound pest control practices that are 

more sustainable (Culliney, 2014). We need to focus our attention not just on applied 

biology, synthetic pesticides, and engineering plants with known defence compounds, but 

also on the continued interrogation of the basics of plant herbivore interaction at all levels. 

Despite the great progress that has been made in the field of plant-herbivore interaction, 

there is still much we do not know about the molecular and genetic mechanisms behind 

plant defence and herbivore adaptation to those defences.  
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Appendices 

 

Figure 1 Detoxification enzyme inhibitor assay pilot experiments. Bar graphs showing 

mean ± SE % Mortality of TU and TU-A mites following treatment with different inhibitors 

at increasing concentrations. A and B, PBO treatment. C and D, DEM treatment. E and 

F, DEF treatment. Control was water with dimethyl formamide and emulsifier in the same 

concentration that was used for dissolving inhibitors. 
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Figure 2 Inhibitor assay control: fecundity on non-challenging host. Bar graphs 

representing fecundity after treatment with water or inhibitors of TU and TU-A mites on 

bean. The lack of inhibitor effect on bean means these enzymes are not contributing to mite 

performance on this non-challenging host. Inhibitors are not having an effect on mite 

performance in the absence of challenge (metabolites that require detoxification). There is 

also a lack of difference between mite strains on bean, suggesting there was no cost to TU-

A mites in their adaptation to tomato, as they can still use their ancestral host without 

consequence. Control was water with dimethyl formamide and emulsifier in the same 

concentration that was used for dissolving inhibitors.  
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