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The strategic tuning of liquid crystalline phase behaviour by adjusting molecular 

symmetry was investigated. A family of sixteen symmetrical and unsymmetrical 

2,6-di(4’-n-alkoxybenzoyloxy) naphthalene derivatives were prepared and their 

liquid crystal properties examined by differential scanning calorimetry, polarised 

optical microscopy, and x-ray diffraction.  All mesogens formed nematic phases, 

with longer-chain analogues also exhibiting smectic C phases at lower 

temperatures. Melting temperatures of the compounds strongly depend on 

molecular symmetry, whereas clearing transitions are relatively insensitive to this 

effect. A detailed analysis indicates that the clearing point can be predicted based 

on the nature of the terminal alkyl chains, with only a secondary effect from 

molecular symmetry. Moreover, low symmetry molecules showed a greater 

tendency to form smectic C phases, which was ascribed to the selective 

depression of the melting point versus the SmC-N transition. This demonstrates 

that molecular symmetry-breaking is a valuable tool both for tuning liquid 

crystalline phase range and for increasing a material’s polymorphism. 

Keywords: phase transitions, liquid crystals, nematic, smectic, molecular 
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1. Introduction

Liquid crystalline (LC) materials’ unique combination of physical, optical, and 

electronic properties have led to their widespread use in myriad applications, including 

display devices,[1–4] biomedical imaging,[5–7] drug delivery,[8–12] 

thermography,[13–15] lasing,[16–18] and organic semiconductors.[19–23] The 

suitability of a liquid crystal for a given function depends both on the type of phase (e.g. 
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nematic, smectic, columnar, etc.) and the temperature range over which it is stable. 

Because self-assembly processes are highly sensitive to molecular structure, designing 

materials that exhibit both the desired LC properties and the physical, optical and 

electronic characteristics required for the target application remains an important but 

difficult challenge. In this context, we have demonstrated that molecular symmetry 

provides a useful handle for controlling the phase behavior of liquid crystalline 

materials, as symmetry-breaking tends to depress the solid-to-LC melting transition 

(Tm) without substantially altering either the clearing (Tc) or LC-LC transition 

temperatures, resulting in broader mesophases.[24–28]  

In the present work, we explore whether the selective destabilisation of the melting 

point can be exploited to uncover “hidden” LC phases. Consider a hypothetical liquid 

crystal with a Tc that lies below the melting point of the solid phase; the LC would 

either not be observed, or would form only a metastable monotropic phase on cooling 

(Figure 1a, top). Using symmetry-breaking to depress the melting point below the 

clearing point could thus give rise to an enantiotropic liquid crystal phase (Figure 1a, 

bottom) observed on both heating and cooling. Because LC-LC transitions also appear 

to be relatively insensitive to symmetry effects, this approach could be used to unmask 

additional phases in cases where the symmetric analog exhibits one or more mesophases 

(Figure 1b). As such, lowering the molecular symmetry could serve not only to broaden 

existing phases, but to enrich the phase diversity. 



 

Figure 1. The potential effects of symmetry breaking on the phase behaviour of a 

material without (a) or with (b) an existing LC phase. Cr = crystalline solid, I = 

isotropic liquid. 

 

To test this idea, we prepared a family of 2,6-di(4’-n-

alkoxybenzoyloxy)naphthalenes NP(m,n) (Figure 2), symmetric derivatives of which 

(i.e. m=n) have been reported to possess nematic (N) phases over broad temperature 

ranges.[29–33] Notably, the highest reported homologue in this series, NP(10,10), also 

exhibits a smectic C (SmC) mesophase below its nematic phase.[31] We speculated that 

other members of this series might also assemble into SmC phases if the melting 

temperature could be sufficiently depressed via symmetry breaking. Compounds that 

exhibit SmC-N transitions are relatively uncommon,[34–38] yet are attractive targets 

that could potentially avoid buckling defects associated with layer-contraction of SmC 

LCs cooled from SmA phases, which are known to degrade the performance of 

ferroelectric liquid crystals.[39–43] 



 

Figure 2. Compounds prepared for this study. 

 

Nine unsymmetrical (m≠n) NP(m,n) derivatives with chains ranging from four to 

ten carbons in length (Figure 2) were synthesised in order to evaluate the effects of 

symmetry-breaking. The seven symmetric derivatives (m=n=4-10) previously reported 

in the literature were also prepared in order to confirm their phase assignments and to 

enable direct comparisons to the newly prepared low-symmetry analogues. In our initial 

analysis, the properties of derivatives with two chains of unequal lengths (m≠n) were 

compared to those of their symmetric isomers. To facilitate this discussion, fourteen of 

the derivatives were arranged into five isomeric series. The two remaining symmetric 

compounds, NP(4,4) and NP(10,10), are included in order to examine the group 

additivity effects in systems that contain either butyl or decyl chains, respectively (vide 

infra). 

 

2. Results and Discussion 

2.1: Synthesis 

Symmetric NP(m,n) derivatives were synthesised by the reaction of 2,6-

dihydroxynaphthalene with two equivalents of the corresponding 4-alkoxybenzoic acid, 



employing conditions similar to those described by Tsakos et al.[44] (Scheme 1, route 

a). This route was initially used to prepare NP(7,7) and NP(9,9) in yields of 37% and 

68%, respectively, after purification. The remaining symmetric derivatives were 

isolated as side products during the synthesis of unsymmetrical derivatives outlined 

below.  

 

Scheme 1. Synthesis of diester NP(m,n) compounds studied. Conditions: i) 1) 

DMAP and 2) EDCI, CH2Cl2, reflux, 24h. 

The unsymmetrical derivatives were prepared as illustrated in route b of Scheme 1. 

In the first step of this procedure, the appropriate 4-alkoxybenzoic acid was treated with 

an excess of 2,6-dihydroxynaphthalene to favor the production of the monoalkylated 

NP(m, OH) product. The NP(m,m) products with m = 4, 5, 6, 8, and 10 were also 

obtained as side products and isolated in 32-67% yields. After separation, the mono-

substituted product was reacted with a second benzoic acid to afford the final NP(m,n) 

products in yields of 40-75%. 

 

2.2: LC Characterisation 

The liquid crystalline properties of all compounds were investigated by 

differential scanning calorimetry (DSC), polarised optical microscopy (POM), and 

variable temperature x-ray diffraction (VT-XRD), the results of which are summarised 

in Tables 1-6. The shorter chain-length symmetrical compounds (m = n = 4-7) exhibited 



similar DSC and POM results. As a representative example, the DSC thermogram of 

NP(5,5) displays two peaks upon heating and three peaks on cooling; all peaks were 

observed on repeated heating/cooling cycles (Table 1). Upon cooling from the isotropic 

liquid, POM of this compound revealed the formation of a fluid phase that exhibits 

schlieren textures characteristic of a nematic phase (Figure 3a). Below the next 

transition at 118 °C, the texture rapidly transforms to a needle-like crystals with no 

observable fluidity (Figure 3b). The additional lower temperature peak observed in the 

DSC cooling curve does not correlate with any further changes by POM, and was 

attributed to a crystal-to-crystal transition. Similarly, NP(4,4), NP(6,6), and NP(7,7) 

were also found to exhibit crystalline – nematic – isotropic phase sequences. These 

results are in agreement with the existing literature for these symmetric NP(m,n) 

derivatives.[30–33] 

Figure 3. Polarised optical micrograph of NP(5,5) showing schlieren textures at 

270 ˚C (a) and needle-like textures at 116 ˚C (b). 

The longer chain symmetrical derivatives exhibit more complex mesophase 

behaviour, as demonstrated by the example of NP(10,10). The DSC shows three peaks 

on heating and four peaks on cooling that are consistently observed on repeated 

heating/cooling cycles (Table 6).  The XRD diffraction pattern of the phase just below 

the highest temperature transition (215 °C) (Figure 4a) consists of two low intensity 

broad peaks, indicating a lack of positional order, which is typical of a nematic phase. A 

nearly identical XRD pattern is observed upon cooling to just above the next phase 



transition (176 °C) (Figure S4), verifying that this structure is maintained over the entire 

phase range. Below the next transition (161 °C) (Figure 4b), a sharp peak indexed to 

d001 develops in the low angle region, consistent with the onset of lamellar ordering. 

The corresponding layer spacing of 30.3 Å is considerably shorter than the molecular 

length of 47.4 Å calculated by molecular modelling, which suggests that the molecules 

adopt a tilted orientation within each layer. Combined with the broad peak observed in 

the high angle region, indicative of a lack of positional order within individual layers, 

this XRD pattern points to the formation of a SmC phase. At room temperature (Figure 

4c), the low angle d001 peak disappears, suggesting the loss of lamellar order, and 

numerous sharp high angle peaks develop, indicating the formation of a crystalline 

solid.  

Figure 4. The XRD of NP(10,10) at 215 ˚C (a), 161 ˚C (b), and 25 °C (c). 



The POM results provide further evidence for this phase sequence. The fluid 

schlieren textures (Figure 5a) of the high temperature nematic phase are once again 

formed. Cooling to below the subsequent phase transition at 170 °C, we observe the 

sudden onset of a fingerprint-like texture (Figure 5b), which quickly gives way to a 

modified schlieren texture of the SmC phase (Figure 5c). These intermediate “transition 

bars” are commonly observed features of N-SmC transitions.[45–51] At room 

temperature, needle-like crystallites (Figure S1) similar to those observed for NP(5,5) 

are formed. Thus, in keeping with the previous report[31], our DSC, POM, and XRD 

data confirm a sequence of crystalline – smectic C – nematic – isotropic phases for 

NP(10,10).  

Figure 5. Polarised optical micrograph of NP(10,10) at 220 ˚C (a), 171 ˚C (b), and 

168 ˚C (c). 

Our findings for the symmetric NP(8,8) and NP(9,9) derivatives deviate from 

those of Pastorelli et al.[32], who, on the basis of POM studies, reported that these 

compounds exhibit only a nematic mesophase. Our observations confirm the formation 

of a nematic liquid crystal for both compounds, with melting and clearing points in 

good agreement with this earlier work. However the DSC thermogram of NP(9,9) 

shows an additional low enthalpy peak between the melting and clearing transitions, 

indicating the formation of an intermediate phase. This peak is observed on both heating 

and cooling, with limited hysteresis, suggesting an LC-LC transition. POM and XRD 

studies (see ESI) demonstrate that this is a SmC phase. While we observed phase 



behavior for NP(8,8) on heating that is consistent with Pastorelli’s findings, we note 

that this compound forms a previously unreported monotropic SmC on cooling.  

Like their symmetric isomers, the unsymmetrical compounds in series 1 

(m+n=10) and 2 (m+n=12) possess crystalline – nematic – isotropic phase sequences. 

Derivatives in series 3 (m+n=14) exhibit more complex polymorphism. NP(10,4), 

consistent with its symmetric analog NP(7,7), possesses only a nematic mesophase on 

heating and cooling. In contrast, NP(8,6) and NP(9,5) both form additional  monotropic 

SmC phases on cooling. The unsymmetrical compounds in series 4 and 5, like NP(9,9) 

and NP(10,10), display crystalline – SmC – nematic – isotropic phase sequences on 

heating and cooling; the SmC phases in these cases are all enantiotropic. 

Table 1: Phase behaviour of series 1 (m+n = 10). 

 

 

Table 2: Phase behaviour of series 2 (m+n = 12). 

 

 

 

 

 



Table 3: Phase behaviour of series 3 (m+n = 14). 

 

 

Table 4: Phase behaviour of series 4 (m+n = 16). 

 

 

Table 5: Phase behaviour of series 5 (m+n = 18). 

 

 

Table 6: Phase behaviour of NP(4,4) and NP(10,10). 

 

 



2.3: Symmetry Effects 

Having determined the phase behaviour of these compounds, we turned our 

attention to the impact of molecular symmetry on the LC phase ranges. In order to 

provide an overview of all sixteen NP(m,n) compounds, their phase behaviour is 

presented graphically in Figure 6, with compounds sorted into isomeric series 1-5. 

Figure 6. LC phase behaviour of the NP(m,n) compounds upon heating. 

Our initial analysis followed an approach inspired by Thomas Carnelley’s 

observation that unsymmetrical molecules melt at lower temperatures than their more 

symmetric isomers.[24–28,52,53] For this reason, we compared isomeric compounds 

with different degrees of symmetry. An examination of the phase behaviour within each 

isomer series reveals clear trends with respect to the melting point (Tm, black-

grey/orange boundary). Without exception, low symmetry compounds melt at lower 

temperatures than the corresponding symmetric isomer, with an average depression of -

25.9 °C. The magnitude of this melting depression increases as the disparity between m 

and n increases within a series. In contrast, the clearing point (Tc, grey-white boundary) 

exhibits small positive and negative fluctuations, with an average change of +0.8 °C, 

associated with symmetry-breaking. As a result of these conflicting effects, less 

symmetric isomers uniformly display expanded LC phase ranges, with an average 



increase of 26.8 °C. These results are consistent with earlier studies on both columnar 

and highly ordered lamellar mesophases.[24–28] Collectively, these findings 

demonstrate that molecular shape and symmetry, in large part determined by the chain 

lengths on the periphery of a mesogen, is a major determinant of LC phase formation 

and stability as recently argued by Goodby.[54] 

As noted above, the clearing temperatures of low symmetry NP(m,n) 

derivatives were in some cases higher than their more symmetrical isomers. The most 

pronounced example is NP(6,4), which has a Tc that is almost 8 °C higher than that of 

NP(5,5). These observations suggest that factors other than molecular symmetry may 

dominate; for example, if odd-even effects have a significant impact on Tc, then 

replacing two odd-numbered C-5 chains in NP(5,5) with even-numbered C-6 and C-4 

chains in NP(6,4) could plausibly cause the observed elevation in Tc, irrespective of 

symmetry. More generally, while clearing temperatures of the symmetrical derivatives 

tend to decrease with increasing chain length (Figure 7), this variation is markedly 

nonlinear; similar trends have been noted across other mesogenic series.[55] This non-

uniform trend indicates that the specific chain lengths, and not just the average number 

of carbons, should be considered in assessing symmetry effects.   

With these consideration in mind, we undertook an alternative analysis based on 

a group additivity approach that assumes that the contribution of a chain should, in the 

absence of symmetry effects, be the same from molecule to molecule. A similar analysis 

was employed by Attard and coworkers in their examination of non-symmetric 

dimers.[56] Thus, the Tc of NP(6,4) could be usefully approximated by taking the 

average value of the two symmetric isomers NP(6,6) and NP(4,4). Indeed, this group 

additivity approach predicts a clearing temperature of 282.8°C, in good agreement with 

the observed value of 281.3°C. 



Figure 7. Clearing temperatures (Tc) of the symmetric NP(m,n) derivatives. 

More generally, we compared the experimentally-determined Tc of 

unsymmetrical NP(m,n) derivatives to the temperatures predicted by this group 

additivity approach, i.e. the average Tc for the two symmetric analogs NP(m,m) and 

NP(n,n) (Figure 8a). The analogous comparison between the experimentally observed 

Tc and the values of the corresponding symmetric isomer are shown in Figure 8b. In 

both plots, the compounds are grouped according to chain length disparity, (m-n), since 

symmetry effects in Tm were noted to increase with m-n. For cases where the 

discrepancy in chain lengths is small (m-n=2), the trends in observed Tc closely parallel 

the predictions based on group additivity, with the predicted and observed values in all 

cases being within 1-2 °C. In contrast, the prediction based on symmetric isomers 

alternates between values that are too high or too low. Hence, it appears that the group 

additivity approach provides a more reliable estimate of clearing temperature than a 

simple comparison between isomers with distinct symmetries.  

Figure 8b shows a marked odd-even effect for (m-n=2); unsymmetrical 

molecules with even-numbered carbon alkyl chains have higher than predicted clearing 

temperatures, whereas those with an odd number of carbons are lower than predicted. A 

subtle odd-even effect is also apparent in the plot of Tc of the symmetrical derivatives as 



a function of chain length (Figure 7), and may underlie the trends in Figure 8b. Hence, 

when an unsymmetrical derivative with two even carbon chains, such as NP(6,4), is 

compared to its symmetric isomer, NP(5,5), the odd-even effect elevates the Tc of the 

former. Conversely, this model correctly predicts that NP(5,7) should clear at a lower 

temperature than its isomer NP(6,6), regardless of symmetry considerations.  

For m–n=4, both the symmetric and unsymmetrical isomers have chains with the 

same parity, so the odd-even effect should have a negligible impact. In this case, the 

group additivity predictions diverge from the observed Tc with the unsymmetrical 

compounds having uniformly lower clearing temperatures than predicted. This suggests 

that molecular symmetry does cause a depression of Tc, albeit the magnitude of the 

effect is significantly smaller than for Tm. This is in line with our earlier result for Tm; 

symmetry effects become more pronounced at greater chain length disparity. Therefore, 

our analysis indicates that there is a balance between odd-even and symmetry effects 

that govern the clearing temperature. At small chain length disparity (m-n=2) odd-even 

effects dominate, whereas at larger chain length differences (m-n=6) symmetry effects 

become significant. 

 

 

 

 



 

Figure 8. Comparison of the experimental clearing points (Tc) for the unsymmetric 

compounds to the ‘group additivity’ predictions (a) and the respective symmetric isomer 

values (b). See discussion for details of predicted values. 

When the group additivity approach was applied to the melting temperature, we 

found that the predicted Tm values differed significantly from those of the isomer 

comparison approach (Figure 9). However, both models predict melting points that are 

substantially higher than the experimentally-determined values, with an increased effect 

at larger chain length disparities. Thus, while neither model provides a reliable 

prediction of Tm, both support the conclusion that symmetry-breaking serves to depress 

this transition. 

 

a)  

b)  



 

Figure 9. Comparison of the experimental melting points (Tm) for the unsymmetric 

compounds to the respective symmetric isomer values and the ‘group additivity’ 

predictions. See discussion for details of predicted values. 

What of the prediction, outlined in Figure 1, that selective suppression of Tm 

could lead to not just broader mesophases, but also increased phase diversity? Of the 

symmetric derivatives, only NP(9,9) and NP(10,10) form SmC phases on both heating 

and cooling. The unsymmetrical NP(10,8) also forms an enantiotropic smectic phase, 

with a SmC-N transition temperature (157.1°C) that is similar to that of NP(9,9).  

However, because the former compound has a lower melting point, its smectic phase 

range (33°C) is considerably broader than that of the latter (17°C). Notably, because 

both the SmC-N transition and Tc are relatively insensitive to symmetry effects, these 

compounds exhibit similar nematic temperature ranges.    

The shorter-chain symmetrical derivatives show a decreased tendency to form 

smectic phases. Thus, NP(8,8) exhibits a monotropic SmC phase, only observed upon 

cooling. However, its low symmetry isomers, NP(10,6) and NP(9,7) both possess 

enantiotropic SmC phases over ranges of 12-13° C. This difference can be understood 

in terms of the selective depression of Tm by symmetry-breaking. The monotropic 

nematic-SmC transition of NP(8,8) lies approximately 2° C below the melting point; the 

smectic phase is observed only because of hysteresis between the freezing and melting 

points. Whereas NP(9,7) has a similar SmC-N transition temperature as NP(8,8), 



desymmetrisation lowers the melting point of the former by approximately 15°C, 

allowing the smectic phase to persist on heating as well as on cooling. 

The symmetric homologs with even shorter chain lengths fail to exhibit SmC 

phases on either heating or cooling, presumably because the melting points lie well 

above the SmC-N transition temperatures. However, while NP(7,7) lacks a smectic 

phase, two of its isomers, NP(8,6) and NP(9,5), form monotropic SmC phases upon 

cooling. The remaining isomer in this series, NP(10,4), exhibits only a nematic 

mesophase. No smectic phases were observed for either NP(6,6), NP(5,5) or any of 

their isomers. These results highlight a key constraint of the approach presented in 

Figure 1: while it is indeed possible to uncover “hidden” SmC phases through symmetry 

breaking, this strategy is limited by the extent to which Tm can be lowered and the 

relative position of the SmC-N transition. In the present system, the suppression of Tm 

appears to be insufficient to overcome the dramatic reduction of the SmC-N transition at 

shorter chain lengths. Nevertheless, we have successfully demonstrated expanded phase 

ranges, new enantiotropic phases, or exposed monotropic phases of the SmC phase in 

the low symmetry isomers of NP(9,9), NP(8,8) and NP(7,7). 

 

3. Conclusions 

In the present work, we have examined the impact of molecular symmetry as a means to 

broaden liquid crystal temperature ranges and to increase the number of 

thermodynamically stable mesophases. The sixteen symmetrical, NP(n,n) and 

unsymmetrical, NP(m,n), naphthalene mesogens examined all form nematic 

mesophases, with low symmetry analogs exhibiting an increased tendency to form SmC 

phases. This represents a potentially useful strategy for the creation of materials with 

specified phase sequences. Moreover, our results demonstrate that phase sequences seen 



only at high molecular weights within a symmetrical series can be observed for smaller 

low-symmetry analogs, which opens the door to the design of liquid crystals that are 

compatible with vapour deposition methods. Such materials could also be more easily 

solution processed because both lower molecular weights and decreased symmetry are 

known to increase solubility.[55–57] 

 

 

Experimental Section 

Materials and Methods 

All solvents used were reagent grade. Methyl 4-hydroxy benzoate, 2,6-

dihydroxynaphthalene, 4-dimethylamino pyridine (DMAP), and N-(3-

dimethylaminopropyl)-N’-ethylenecarbodiimide hydrochloride (EDCI) were purchased 

from TCI America. All other reagents were purchased from Sigma-Aldrich. All reagents 

were used as received without further purification. 4-Alkoxybenzoic acids were 

prepared from methyl 4-hydroxybenzoate via alkylation followed by hydrolysis 

according to previously reported procedures.[60] Column chromatography was 

performed on silica gel 60 (230-400 mesh) purchased from Silicyle Inc. CDCl3 was 

obtained from Cambridge Isotope Laboratories Inc.  

400 MHz and 500 MHz 
1
H NMR spectra were obtained on a Bruker AMX-400 400 

MHz and Varian AS500 Unity Inova 500 MHz spectrometers, respectively. High 

resolution mass spectrometry was carried out on an Agilent 6210 TOF LC/MS (ESI+) 

by Hongwen Chen (SFU), and on a Bruker micrOTOF II LC/MS (ESI
+
) by Nonka 

Sevova at Notre Dame Mass Spectrometry and Proteomics facility. Phase transition 

temperatures and enthalpies were determined using differential scanning calorimetry 

(DSC) on a TA Instruments DSC Q2000 equipped with a TA Instruments Refrigerated 



Cooling System 90, heating and cooling at a rate of 10˚C min
-1

. Polarised optical 

microscopy was carried out using an Olympus BX50 microscope equipped with a 

Linkam LTS350 heating stage. X-ray scattering experiments were conducted using a 

Rigaku R-Axis Rapid diffractometer equipped with an in-house built temperature 

controller.[61] Calculations were carried out by density functional theory (DFT) using 

B3LYP/3-21G* in Gaussian 09, details of which are provided in ESI.
58 

 

Synthesis 

Symmetric derivatives NP(m,n) (m=n). In a flame-dried 50 ml round bottom flask, 

2,6-dihydroxynaphthalene (0.2 g, 1.25 mmol) was dissolved in dry DCM (30 mL) under 

N2. 4-alkoxybenzoic acid (2.75 mmol) was added followed by DMAP (3.75 mmol). 

This mixture was stirred at ~0 °C under N2 for 15 minutes. EDCI (2.50 mmol) was then 

added and the mixture was stirred at ~0 °C under N2 for 15 minutes before refluxing for 

48 hours. The solution was then cooled to room temperature, and poured over ice; the 

organic phase was separated and washed with water (2 x 30 mL), 10% HCl (40 mL), 

and brine (40 mL). The organic phase was dried over MgSO4 and the solvent was 

removed by rotary evaporation. This crude product was then purified by column 

chromatography on silica with dichloromethane as eluent. The solvent was removed 

under reduced pressure and the resulting product was recrystallised from ethyl acetate to 

afford a white solid in yields of 37-68 %. Note that several of the symmetric NP(m,n) 

compounds were isolated as side products of the monoester synthesis described below. 

Analytical data of the NP(m,n) (m=n) compounds can be found in the ESI. 

Monoesters NP(m,OH). In a flame-dried 250 ml round bottom flask, 2,6-

dihydroxynaphthalene (1.0 g, 6.24 mmol) was dissolved in dry DCM (100 mL) under 

N2. The appropriate 4-alkoxybenzoic acid (4.16 mmol) was added, followed by DMAP 



(6.66 mmol). This mixture was stirred at ~0 °C under N2 for 15 minutes, at which time 

EDCI (4.16 mmol) was then added. This mixture was stirred at ~0 °C under N2 for 15 

minutes, then refluxed for 12 hours. The solution was then cooled to room temperature 

and the solid precipitate was removed by filtration. The solution was then poured over 

ice and the organic phase was separated and washed with water (2 x 100 mL), 10% HCl 

(100 mL), and brine (100 mL), then dried over MgSO4 and the solvent was removed by 

rotary evaporation. This crude product was then purified by column chromatography on 

silica with a gradient from 5% to 40% of DCM in hexanes as the eluent. The first 

fraction was recrystallised from ethyl acetate to yield NP(m,n) (m=n) product as a 

white solid (32-67%). The second fraction was recrystallised from acetonitrile to yield 

NP(m,OH) product as a white solid (13-57%).  Analytical data for the NP(m,OH) 

compounds can be found in the ESI.  

Unsymmetrical derivatives NP(m,n) (m ≠ n). In a flame-dried 50 ml round bottom 

flask, NP(m,OH) (0.1 g) was dissolved in dry DCM (25 mL) under N2. The appropriate 

4-alkoxybenzoic acid (1.5 equiv.) was added followed by DMAP (3 equiv.). This 

mixture was stirred at 0 °C under N2 for 15 minutes. EDCI (2 equiv.) was then added. 

This mixture was stirred at 0 °C under N2 for 15 minutes before refluxing for 48 hours. 

The solution was then cooled to room temperature, then poured over ice. The organic 

phase was separated and washed with water (2 x 25 mL), 10% HCl (30 mL), and brine 

(30 mL), then dried over MgSO4 and the solvent was removed by rotary evaporation. 

The crude product was then purified by column chromatography on silica gel with 

dichloromethane as eluent. The resulting product was recrystallised from ethyl acetate 

to afford a white solid in yields of 40-75 %. Analytical data of the NP(m,n) (m≠n) 

compounds can be found in the ESI. 
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