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Abstract

Vibration-based structural health monitoring (SHM) seeks to detect, quantify, locate,
and prognosticate damage by processing vibration signals measured while the struc-
ture is operational. The basic premise of vibration-based SHM is that damage will
affect the stiffness, mass or energy dissipation properties of the structure and in turn
alter its measured dynamic characteristics. In order to make SHM a practical tech-
nology it is necessary to perform damage assessment using only a minimum number of
permanently installed sensors. Deducing damage at unmeasured regions of the struc-
tural domain requires solving an inverse problem that is underdetermined and(or)
ill-conditioned. In addition, the effects of local damage on global vibration response
may be overshadowed by the effects of modelling error, environmental changes, sensor
noise, and unmeasured excitation. These theoretical and practical challenges render
the damage identification inverse problem ill-posed, and in some cases unsolvable with
conventional inverse methods.

This dissertation proposes and tests a novel interpretation of the damage identifi-
cation inverse problem. Since damage is inherently local and strictly reduces stiffness
and(or) mass, the underdetermined inverse problem can be made uniquely solvable
by either imposing sparsity or non-negativity on the solution space. The goal of
this research is to leverage this concept in order to prove that damage identification
can be performed in practical applications using significantly less measurements than
conventional inverse methods require. This dissertation investigates two sparsity in-
ducing methods, l1-norm optimization and the non-negative least squares, in their
application to identifying damage from eigenvalues, a minimal sensor-based feature
that results in an underdetermined inverse problem. This work presents necessary
conditions for solution uniqueness and a method to quantify the bounds on the non-
unique solution space. The proposed methods are investigated using a wide range of
numerical simulations and validated using a four-story lab-scale frame and a full-scale
17 m long aluminum truss. The findings of this study suggest that leveraging the at-
tributes of both l1-norm optimization and non-negative constrained least squares can
provide significant improvement over their standalone applications and over other
existing methods of damage detection.
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Chapter 1

Introduction

Vibration-based structural health monitoring (SHM) seeks to detect, quantify, locate,

and prognosticate adverse changes to structural properties by processing vibration

signals [Rytter, 1993]. The appeal in using vibration measurements is to avoid direct

and potentially invasive damage evaluation methods so that the structure can be

continuously monitored without impeding its intended function. Measured vibrations

provide an avenue to identify damage because changes in physical properties manifest

as changes in dynamic response characteristics such as vibration frequencies, modes

shapes, and damping [Farrar et al., 2001, Brownjohn, 2007]. If the presence of damage

is detected from measured dynamic response, the next step in SHM is to quantify

and locate the detected damage. Quantifying and locating structural damage using

measured vibrations requires solving an inverse problem. An inverse problem arises

when the unknown and unobservable phenomenon, in this case damage, must be

deduced from partial information obtained from indirect observations of the system,

i.e. measured vibrations. There are many ways to pose and solve the vibration-

based SHM inverse problem in terms of the measurement type, the model, and the
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parameters [Doebling et al., 1996, Farrar and Worden, 2013].

The physics-based inverse problem seeks to reconstruct the change in physical

properties appearing as parameters in a structural dynamics model from the changes

in modal features. Since structural damage is typically a local phenomenon, solving

the physics-based inverse problem requires finding changes in a small subset of pa-

rameters. This poses a fundamental challenge to SHM because the effects of local

damage on global vibration response are weak and must be discerned from the effects

of modelling error, environmental changes, and unmeasured excitation [Moser et al.,

2011]. Furthermore, the parameter space must be large enough to account for local

changes occurring anywhere along the structure [Friswell, 2007]. The convention in

SHM is to estimate modal features from vibrations that provide direct spatial infor-

mation such as mode shapes, mode shape curvature, or modal strain energy to ensure

a high sensitivity to damage and enough measurements to uniquely solve the inverse

problem. However, spatially distributed features are inherently inaccurate, difficult

to extract, and require a substantial array of sensors to monitor full-scale structures

for damage [Doebling et al., 1997, Pintelon et al., 2007, Reynders et al., 2008].

This research presents a novel optimization framework for uniquely solving the

vibration-based SHM inverse problem using significantly less measurements than con-

ventional inverse methods require. The concept is to leverage sparsity in the solution

space using a combination of l1-norm optimization and the non-negative least squares.

Since damage tends to reduce a small subset of stiffness and mass parameters, the

inverse problem can be reframed as a problem in finding the sparsest reduction in the

parameter space, i.e. a non-negative change in parameters with the fewest nonzero

elements. This research substantiates if the solution has sufficiently few nonzero ele-
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ments with respect to its domain then imposing either sparsity or non-negativity as

a constraint on the inverse problem can result in physically meaningful solutions to

severely underdetermined inverse problems even when other forms of regularization

or constrained optimization have failed.

1.1 Motivation

One of the practical limitations of the physics-based inverse method is that ensuring

a unique solution to the vibration-based SHM inverse problem requires more informa-

tion than what is available from a few sensors [Berman, 1984]. Additional information

necessitates spatially distributed features which are sensitive to system identification

error and to the effects of unmeasured excitation. Some modal features are not spa-

tially distributed, such as the eigenvalues (i.e natural frequencies). The eigenvalues

are easier to extract, are less sensitive to noise, and only require measurements from a

few optimally placed sensors. However, only a small subset of eigenvalues can be ex-

tracted from vibration measurements. Several comprehensive reviews on the subject

conclude that without using spatially distributed modal features, there isn’t enough

modal information from eigenvalues to ensure a unique and physically meaningful

solution to the inverse problem [Doebling et al., 1996, Salawu, 1997, Sohn et al.,

2003].

Contrary to conventional inverse methods, early works on the sparsity concept

have verified that local damage can be quantified and located from changes in eigen-

values using sparse vector recovery in the form of l1-norm optimization [Zhou et al.,

2013, Hernandez, 2014]. Questions still remain on the practical limitations of impos-
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ing sparsity, the robustness of an eigenvalue-based damage identification method to

irreducible model error, and how various sparse vector recovery methods compare.

This research addresses these questions by proposing and investigating a variety of

sparsity inducing optimization methods on several types of structures.

1.2 Objective

The objective of this research is to investigate the merits of leveraging sparsity to

quantify and locate structural damage while contributing new theory underlying the

application of sparsity to physics-based inverse problems in vibration-based SHM.

Three convex optimization methods are investigated. The first method, the l1-norm

optimization, is a direct and popular approach to sparse vector recovery. The sec-

ond method, the non-negative least squares, indirectly imposes sparsity by targeting

reductions in stiffness and mass using the non-negative constraint. The final frame-

work combines the two methods into the non-negative constrained l1-norm optimiza-

tion method. A theory to determine uniqueness by estimating the bounds on the

optimal set of points satisfying the non-negative constrained l1-norm optimization is

investigated.

1.3 Contributions

This research develops a novel optimization framework for solving the vibration-based

inverse problem based on the merits of leveraging sparsity. The various sparse vector

recovery frameworks are validated and investigated for a wide range of structures
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increasing in complexity with each chapter of the dissertation: a series of numerical

simulations in ch.3, a four-story lab-scale steel frame in ch.4, and a 17 meter long

full-scale truss in ch.5. This research contributes theoretical and practical observa-

tions on the relationship between sparsity, non-negativity and the eigenvalues. The

contributions of each chapter are:

• Chapter 3 suggests the suitability of using the non-negative least squares to

solve the underdetermined damage identification inverse problem. It is argued

that the non-negative constraint induces unique solutions to the ill-posed in-

verse problem if the solution is sufficiently sparse. A measure for determining

uniqueness is presented. The method is verified on the linear truncated inverse

problem and its performance compared to l1-norm optimization using three nu-

merically simulated structures of increasing complexity. The findings of this

study are then extrapolated to the nonlinear inverse problem.

• In chapter 4, damage defined by simultaneous changes in stiffness and mass

is considered. This study suggests that the non-negative least squares and l1-

norm optimization are both inadequate as standalone programs. These findings

motivate a novel method - the non-negative constrained l1-norm optimization.

The proposed inverse method leverages the monotonic relationship between

the stiffness and mass parameters and the eigenvalues. The proposed inverse

method is tested for robustness on a four-story lab-scale steel frame where the

damage reduces the stiffness and mass.

• Chapter 5 presents the culmination of this research in terms of the proposed

algorithms from previous chapters and the complexity of the structure tested.
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This chapter introduces a novel concept of measuring solution space bounds

to the underdetermined system in order to aid in interpreting the validity of

the optimal solution. The standalone applications of the l1-norm optimization

and the non-negative constrained least squares are compared to the proposed

method. This chapter verifies and tests the proposed methods using experimen-

tal data measured from a 17 m long aluminum three-dimensional truss subjected

to three progressive damage cases.

Chapter 2 provides the fundamental theoretical background to inverse problems.

Chapters 3,4, 5, and Appendix A are presented in a form prepared for journal sub-

mission (each chapter has a section for the abstract, introduction, methods, results,

conclusions, and references). In addition to the primary scope of this work related

to the eigenvalues, appendix A provides an investigation into the application of l1-

norm regularization on the ill-conditioned inverse problem associated with using the

impulse response. Appendix A substantiates that l1-norm regularization is effective

at dealing with severely ill-conditioned over-constrained inverse problems.
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Chapter 2

Fundamentals

The Fundamentals chapter provides an extended summary of the physics-based in-

verse problem in vibration-based structural health monitoring (SHM). This includes a

theoretical background on the physics-based model and the eigenvalue problem. The

relevant advances in solving the inverse problem in SHM are discussed and detailed

through a literature review. This is followed by a section on solving the underde-

termined inverse problem using convex optimization. The chapter concludes with an

illustrative example.

2.1 Physics-based inverse problem

The physics-based inverse problem in vibration-based SHM seeks to estimate changes

in the physical properties of a structure, which appear as parameters in a model, using

changes in the dynamic characteristics describing the measured vibrations. This in-

verse problem has two primary applications that are not mutually exclusive: damage

identification and finite element (FE) model updating. In FE model updating, an ini-
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tial model and its parameter space are constructed from a physical description of the

structure. This model is inherently uncertain. The prior parameters are then updated

to minimize the model uncertainty using measurements from the healthy structure.

In damage identification, the prior model represents the healthy structure. Measure-

ments taken from the potentially damaged structure are used to detect, quantify, and

locate damage by estimating the change in parameters from the prior. Hence, FE

model updating can improve the reliability of the model for damage identification.

Although this work focuses on damage identification, FE model updating is used to

improve the models that were constructed for the experiments of this dissertation.

A significant body of research is devoted to FE model updating [Natke, 1988, Mot-

tershead and Friswell, 1993, Friswell and Mottershead, 1995, Imregun et al., 1995,

Gladwell and Ahmadian, 1995, Ahmadian et al., 1998, Mottershead et al., 2011, Jang

and Smyth, 2017].

2.1.1 Inverse method

The pursuit of a solution to the inverse problem is called the inverse method (also

referred to as the sensitivity method or model updating in later chapters). The

objective in the inverse method is to estimate the parameters of the model needed to

minimize the residual between the features identified from the measurements and the

features derived from the model. In general, the inverse method seeks to solve the

nonlinear least squares problem:

θ∗ = min
θ∈D(F)

||F(θ)− ẑ||2 (2.1)
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where F : θ → z is a nonlinear mapping between the parameters θ ∈ <p and the

features z ∈ <q. ẑ ∈ <q are the features estimated from the experimental data. The

inverse method is initialized with the parameters defining the prior. The following

sections detail the nonlinear operator, the parameters, and the features.

2.1.2 Model and parameters

The operator F and its parameters are derived from a model. In general, a model

is a transformation between an input and an output where the characteristics of the

transformation are defined by the model’s parameter space. In structural dynamics,

the vibration response in terms of displacement, velocity, or accelerations (outputs) of

a structure subjected to a known excitation in terms of time-varying forces (input) can

be modelled by any nth order linear transformation (e.g. physics-based, state space,

auto-regressive, auto-regressive moving average, machine-learned, etc.) as long as

the order of the model is suitable and the structure physically exhibits linear and

stationary behavior i.e.: infinitesimal vibrations, linear elastic stiffness, reciprocity,

and time-invariant physical properties.

Any suitable transformation is useful for detecting damage if the model is cali-

brated to the healthy structure. For example, estimating the change in coefficients of

an auto-regressive time series model to match the input-output behavior exhibited by

the monitored structure can indicate the presence of damage [Figueiredo et al., 2011].

However, only a few models are useful for interpreting the physical characteristics of

the damage (location, quantity and type). One is the physics-based model.

The nth order physics-based model is a transformation which satisfies the gov-

erning equations of motion derived from Newton’s second law (force = mass * accel-
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eration) regarding an n degree of freedom (DoF) dynamical structure. This model

transforms a vector of forces pt ∈ <n into displacement, velocity and acceleration

responses (xt, ẋt, ẍt ∈ <n) by a coupled system of second order linear differential

equation,

Mθ{ẍt}+ Cθ{ẋt}+ Kθ{xt} = {pt} (2.2)

where the mass M = MT ∈ <nxn, damping C = CT ∈ <nxn, and stiffness K =

KT ∈ <nxn matrices are functions of the parameter space θ ∈ <p. This model

describes structures exhibiting linear behavior.

2.1.3 Modal features

Modal features are derived from a combination of basic modal properties. Basic

modal properties (i.e. natural frequencies, mode shapes, and damping) can be es-

timated from measured vibrations using modal analysis techniques developed from

system identification theory [Jeong, 2002]. Since the vibration measurements depend

on the excitation forces and the parameter space is coupled with the velocity and dis-

placement responses, the system of equations of motion is not a practical operator for

eq. 2.1. A preferred alternative is to derive a direct mapping from the parameters to

the modal properties using the fundamental orthogonality properties of the equations

of motion. This approach is limited to lightly damped structures such that a classical

damping model is appropriate. This mapping is the direct eigenvalue problem in

structural dynamics.

In the case of classical damping, the response of a linear dynamic system can

be reduced to the sum of n weighted responses in its characteristic modes of vi-
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bration. In other words, there exists a coordinate transformation xt = Φq, where

Φ = [φ1, φ2, .., φn] and φi ∈ <n is orthogonal with respect to the stiffness and mass

matrices (φTi Mφj = 0 and φTi Kφj = 0, i 6= j). By selecting φi such that φTi Mφi = 1),

the orthogonality condition uncouples the equations of motion, and each element qi

of the vector q becomes the solution to a linear second order differential equation of

the form

q̈i + 2ζiωiq̇i + ω2
i qi = {φTi }{pt} (2.3)

where for i = 1...n, ζi and φi ∈ <n is the classical damping ratio and mode shape

associated with the ith natural frequency ωi.

Mode shapes, the set of vectors orthogonal with respect toK and M, are obtained

by considering the nontrivial solution {xt} = {φi}sin(ωit) to the coupled equations

of free vibration of a conservative system,

Mθ{ẍt}+ Kθ{xt} = 0 (2.4)

Substituting {xt} = {φi}sin(ωit) gives the direct eigenvalue problem,

(Kθ −Mθω
2
i ){φi} = 0 (2.5)

The eigenvalues and the eigenvectors of the direct eigenvalue problem correspond

respectively to the natural frequencies and mode shapes of the structure.

Features derived from eigenproperties (modal properties) are appealing because

a direct mapping to mass and stiffness exists independent of excitation. Hence, one

practical framework for posing the damage identification inverse problem is to define:

(i) the parameters in terms of mass and stiffness, (ii) the model using the direct
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eigenvalue problem, and (iii) the features in terms of the eigenproperties.

2.2 Inverse methods in vibration-based

SHM

The residual ||F(θ)− ẑ||2 is a non-convex function because the relationship between

the parameters and the features is in general nonlinear. Uncertainty quantification

frameworks such as a probabilistic Bayesian method and deterministic frameworks

such as the Gauss-Newton, trust-region method, and Levenburg-Marquardt have been

suggested for solving the inverse method [Simoen et al., 2015, Ahmadian et al., 1998,

Gorl and Link, 2003, Teughals et al., 2004]. This research uses a deterministic frame-

work based on constrained optimization.

The general optimization algorithm incrementally minimizes the objective through

a series of steps each defined by the suboptimal solution to a first or second order

truncated form of the inverse problem. The characteristics of the nonlinear inverse

problem are inferred by investigating the linearized Taylor series expansion of F(θ)−ẑ.

The Taylor truncation results in a system of linear equations defined as the sensitivity

equation,

S∆θ = ∆z (2.6)

where S ∈ <qxp is the Jacobian of F , ∆θ ∈ <p is the unknown change in parameters,

and ∆z ∈ <q is the difference between the features produced by the model evaluated

at the initial parameters and those estimated from the measurements.

In SHM, the preferred selection of the parameters and features are those that
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induce an over-constrained system of equations or specifically where S has full column

rank [Mottershead et al., 2011]. The over-constrained condition ensures that a unique

solution with respect to the ordinary least squares exists.

In practical applications of the inverse method, defining the feature space using

natural frequencies and mode shapes is the preferred practice to ensure that the

number of measurements exceeds the number of unknown parameters [Abdel Wahab

et al., 1999, Teughels and De Roeck, 2004, Pothisiri and Hjelmstad, 2003, Gorl and

Link, 2003, Weber et al., 2009, Chellini et al., 2010, Moaveni et al., 2013, Grip

et al., 2017]. This poses multiple challenges. A spatially distributed network of

sensors is needed since only a small subset of eigenvalues can be extracted from

measured vibrations, and the coordinates of the mode shapes can only be estimated

at sensor locations. Also, mode shapes are difficult to identify accurately [Doebling et

al., 1997, Reynders et al., 2008]. Unmeasured excitation further complicates modal

analysis since the mode shapes cannot be mass normalized and the uncertainty in

their estimation becomes dependent on the normalizing coordinate [Dohler et al.,

2013].

Time-domain features such as response measurements and the impulse-response

have also been suggested since they guarantee many measurements [Law and Li, 2006,

Lu and Law, 2007, Link and Weiland, 2009, Smith and Hernandez, 2018]. However,

taking more measurements in the same frequency range does not necessarily result in

more unique information [Shaverdi et al., 2009]. This results in severe ill-conditioning.

In addition, the time domain residual is a complex nonlinear function described by

many local minima. Hence, general optimization algorithms tend to converge to

suboptimal solutions.
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Even if enough measurements are taken, the sensitivity matrix tends to be ill-

conditioned due to a near rank-deficiency. Ill-conditioning is prevalent in vibration-

based SHM because of measurement correlation due to incomplete modal information

and a large parameter space [Mottershead, 1993]. Regularization is often necessary

to mitigate the solution’s sensitivity to measurement error in ill-conditioned problems

[ Neubauer, 1989, Vogel, 2002]. Among the various forms of regularization in SHM

(e.g. truncated singular value decomposition, QR- decomposition [Wu and Law, 2004,

Titurus and Friswell, 2008, Fritzen et al., 1998]), placing a side constraint on the

parameters is often preferred [Friswell et al., 2001, Gorl and Link, 2003, Weber et al.,

2009]. This type of penalized regularization is often done with the l2-norm in order

to enforce small changes in the estimated parameters. This form of regularization is

known as the Tikhonov regularization [Neubauer, 1989].

2.3 Convex optimization

In order to facilitate the following discussion on underdetermined inverse problems,

this section provides a description of convex optimization along with a few essential

terms and definitions.

In general, optimization seeks to find the global minimum of an objective function

over a given set. Convex optimization is a special case of general optimization where

the constraints and objective functions satisfy a set of conditions which guarantees

that the local minimum is the global minimum. The convex optimization program is
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expressed as
x∗ = min

x∈D
fo(x)

subject to hi(x) = 0, i = 1, ...,m

fi(x) ≤ 0, i = 1, ..., l

(2.7)

where x is the optimization variable, fo(x) is the objective function to be minimized,

hi(x) = 0 is a set of m affine equations, and fi(x) ≤ 0 is a set of l inequalities. Eq.

2.7 is a convex optimization program only if f0(x) is a convex function, hi(x) is affine,

fi(x) is a convex function, and there exists a feasible x.

The set of points for which the objective and the constraint functions are defined

is called the domain D of the optimization problem. The feasible region is the set of

all points x ∈ D that satisfies the constraints. The optimal solution fo(x∗) minimizes

the objective function given the constraints. x∗ is an optimal point if it solves the

optimization problem. The set of all optimal points is the optimal set. The optimal

set only has one optimal point if and only if the objective function is strictly convex

(not to be confused with convex). For more details on convex sets and functions see

[Boyd and Vandenberghe, 2004].

The advantage in formulating a convex optimization program as opposed to a gen-

eral optimization program is (i) the optimal solution is globally optimal, (ii) methods

which solve convex optimization are efficient and reliable, and (iii) the theory under-

lying convex optimization can be used to interpret solutions to the inverse method.
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2.4 Underdetermined inverse problems

Inverse methods in SHM are seldom defined by an underdetermined system of equa-

tions. If the number of parameters exceeds the number of measurements p < q, the

null space of S is non-empty and the inverse problem lacks a unique solution. In

model updating for the purposes of improving the accuracy of a model, an underde-

termined inverse problem is undesirable since a physically meaningful solution is not

obtainable even with regularization [Friswell et al., 2001, Mottershead et al., 2011].

2.4.1 Priors and sparsity

Although damage identification and model updating are both performed with the

inverse method, the solution spaces should be significantly different. While model

updating aims to make small adjustments to many parameters, damage identification

seeks to find a significant change in only a few spatially local stiffness and(or) mass

parameters. In other words, damage identification seeks solutions having few non-zero

elements, i.e. sparse vectors. Because the solution is potentially sparse, it is possible

to obtain meaningful solutions to the underdetermined inverse problem using convex

optimization [Zhou et al., 2013, Hernandez, 2014, Zhou et al., 2015].

Assume there exists one physically meaningful vector ∆θ among the infinite pos-

sible vectors satisfying the underdetermined system of equations S∆θ = ∆z. In order

to find ∆θ which best represents physical reality, we need to define a criterion that

can be uniquely satisfied and results in physically meaningful solutions. For example,

16



one criterion is to find the solution with the smallest magnitude l2-norm (||.||2), where

||∆θ||2 =

√√√√ p∑
i=1

∆θ2
i (2.8)

This criterion is common in FE model updating since the uncertainty in the prior

parameters is bounded and is expected to be spread among many parameters. Solving

the convex optimization program,

∆θ∗mp = min
∆θ∈D

||∆θ||2

subject to S∆θ = ∆z
(2.9)

results in the Moore-Penrose solution which has a closed form, ∆θ∗mp = ST (SST )−1∆z.

Note that ∆θ∗mp is unique since SST has full rank. Uniqueness can also be proven by

verifying that ||∆θ||2 is strictly convex.

Minimizing with respect to different norms results in different optimal sets. This

can be leveraged to induce a more desirable solution. Since damage identification

seeks sparse solutions, one potential criterion is to minimize the number of non-zero

elements in order to determine the sparsest solution. One measure for counting the

number of non-zero elements in a vector is the l0 pseudo-norm. Hence minimizing

the l0-pseudo norm results in the sparsest solution. However, the l0 pseudo-norm is a

non-convex function and hence can be computationally expensive to minimize with a

non-convex solver. The problem of minimizing non-zero elements can be relaxed to

a convex form by replacing the pseudo-norm with the l1-norm (||.||1) where

||∆θ||1 =
p∑
i=1
|∆θi| (2.10)
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This convex optimization program, referred to as the basis pursuit [Donoho, 2006], is

written as
∆θ∗bp = min

∆θ∈D
||∆θ||1

subject to S∆θ = ∆z
(2.11)

The optimal point ∆θ∗bp does not have a closed form since the derivative does not

exist everywhere for the absolute value operator. ||∆θ||1 is also not strictly convex

and hence there is no guarantee that ∆θ∗bp is unique.

The differences in the optimal solution between norms can be explained geometri-

cally. Fig. 2.1 presents a two-dimensional representation of a generic underdetermined

system of linear equations and the projections of the l2-norm, the l1-norm, and the l0

pseudo-norm. In each sub-figure, the optimal solution minimizing the specific norm-

operator subject to the linear system is shown. The point(s) at which the projection

of the norm-operator intersects with the linear system is the optimal point. From

Fig. 2.1a, the projection of the l2-norm is a circle, so its optimal point is unbiased.

From Fig. 2.1b, the l1-norm projection is a rhombus and biases the optimal point to

the axes which by definition are sparse vectors. From Fig. 2.1c, the l0 pseudo-norm

guarantees the sparsest vector; however, the operator is non-convex.

Figure 2.1: Optimal solutions to the underdetermined system of equations with respect to
the a) l2-norm, b) l1-norm, c) l0 pseudo-norm
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The criterion for selecting a satisfactory solution to the underdetermined inverse

problem is also manipulated by constraining the feasible region to reflect prior engi-

neering experience. Local damage is often defined by a strict reduction in stiffness

and(or) mass. Some authors have suggested using the non-negative constraint to im-

pose the strict stiffness reduction prior on the solution space [Hassiostis and Jeong,

1995, Ren and De Roeck, 2002, Li and Law, 2010, Smith and Hernandez, 2019].

The non-negative constrained least squares solves the following convex optimization

program,
∆θ∗nn = min

∆θ∈D
||S∆θ −∆z||2

subject to ∆θ ≥ 0
(2.12)

There is no guarantee in this problem that ∆θ∗nn is unique. Subsequent chapters

address this problem in greater detail.

2.4.2 Illustrative example

Figure 2.2: a) Damaged beam, b) discretized model with sparse damage

To illustrate how the choice of the optimization program affects the solution to the

undetermined inverse problem consider the following example regarding the damaged

beam in Fig. 2.2. 10 elements are monitored for damage using 3 identified eigenvalues.

The sensitivity equation is defined by S ∈ <3x10, the unknown change in stiffness is
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∆θ ∈ <10, and the change in eigenvalues between the damaged and undamaged

structure is ∆z ∈ <3. The system of equations is clearly underdetermined. Damage

induces a 10% stiffness reduction in element 4 and we wish to reconstruct the change

in stiffness from the associated shift in eigenvalues. The estimated change in stiffness

using ∆θ∗mp, ∆θ∗bp, and ∆θ∗nn are shown in Fig. 2.3. The Moore-Penrose solution

(Fig. 2.3a) may be unique however it is physically meaningless. The solutions to

the basis pursuit and the non-negative least squares on the other hand are physically

meaningful as well as sparse.
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Figure 2.3: Optimal points using a) the Moore-Penrose, b) basis pursuit, and the c) non-
negative constrained least squares
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Chapter 3

Non-negative Constrained Inverse

Eigenvalue Problems - Application

to Damage Identification

Abstract

Damage identification using eigenvalue shifts is ill-posed because the number of iden-

tifiable eigenvalues is typically far less than the number of potential damage loca-

tions. This paper shows that if damage is defined by sparse and non-negative vectors,

such as the case for local stiffness reductions, then the non-negative solution to the

linearized inverse eigenvalue problem can be made unique with respect to a subset

of eigenvalues significantly smaller than the number of potential damage locations.

Theoretical evidence, numerical simulations, and performance comparisons to sparse

vector recovery methods based on l1-norm optimization are used to validate the find-
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ings. These results are then extrapolated to the ill-posed nonlinear inverse eigenvalue

problem in cases where damage is large, and linearization induces non-negligible trun-

cation errors. In order to approximate the solution to the non-negative nonlinear least

squares, a constrained finite element model updating approach is presented. The pro-

posed method is verified using three simulated structures of increasing complexity:

a one-dimensional shear beam, a planar truss, and a three-dimensional space struc-

ture. For multiple structures, this paper demonstrates that the proposed method

finds sparse solutions in the presence of measurement noise.

3.1 Introduction

Given the mass M, viscous damping Cd, and stiffness K matrices of a structure, the

direct eigenvalue problem seeks to solve

(Mλ2
j + Cdλj + K)φj = 0, j = 1...n

for the eigenvalues λj and eigenvectors φj.

The inverse eigenvalue problem consists in using the set of eigenvalues and eigen-

vectors to estimate M,Cd, and K. Solving the inverse eigenvalue problem for prac-

tical applications poses a challenge because only a subset of eigenvalues can be ex-

tracted from vibration data, and the corresponding eigenvector coordinates can only

be estimated at sensor locations. This effectively reduces the number of independent

parameters that can be used to define M,Cd, and K.

One application of the inverse eigenvalue problem is in damage identification us-

ing measured structural vibrations. The objective of damage identification is to:
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(a) detect, (b) localize, (c) categorize, and (d) quantify changes in material or geo-

metric properties which adversely impact the structure’s performance [1]. Because

structural vibrations emerge from the complex interaction between structural compo-

nents, changes in local material properties tend to manifest themselves in the identi-

fied modal characteristics of the structure. Inverse eigenvalue analysis can be used to

identify damage from identified changes in modal characteristics between the struc-

ture’s undamaged and potentially damaged state [2]. In this paper, inverse eigenvalue

analysis is specifically used to identify spatially localized damage such as cracks, per-

forations, reductions in thickness, etc., and to quantify these damages in terms of

changes in material stiffness.

When defined in terms of stiffness, damage has an important property; non-

negativity. Physically, non-negativity reflects the property that damage tends to

strictly reduce the stiffness of the damaged element [3]. Therefore the resolution of

damage identification can be significantly improved by strictly searching for stiffness

reductions that are non-negative [4]. This characteristic differentiates damage iden-

tification from finite element model (FEM) updating, and can be used to restrict the

feasible space of solutions.

A priori information, such as non-negativity and(or) sparsity, can be considered

as a type of regularization. Recent application of regularization techniques can be

found in [4–6, 8]. Weber adapted Kaltenbacher’s iterative Tikhonov regularization

and singular value decomposition to improve numerical stability [6, 7]. Li proposed

an adaptive Tikhonov regularization that systematically eliminates free parameters

that do not satisfy the strict stiffness reduction prior [4]. Grip applied total variation

regularization in order to enforce sparsity on the solution space [8]. Other notable
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alternatives not explicitly mentioned are reviewed in [3,9]. Existing algorithms work

well when the number of measurements is larger than the number of unknown pa-

rameters. However, obtaining more measurements than unknowns poses a practical

dilemma; one must either increase the number of measurement devices and rely on less

robust features such as eigenvectors, or reduce the number of unknown parameters

by an a priori subset selection.

One potential alternative is to strictly monitor the structure’s eigenvalues, which

by virtue of their inherent robustness would simultaneously reduce uncertainty and

the required number of measurement devices [10–12]. Of course, the use of eigenvalue-

based methods would result in an underdetermined system of equations (given that

only a subset of the smallest eigenvalues can be identified from structural vibrations).

If the solution space is unconstrained, then the inverse eigenvalue problem is ill-

posed [13]. As this paper will show, a solution space constrained by non-negative

vectors may yield a unique solution if a sparse non-negative solution exists.

A sparse vector that satisfies an underdetermined system of linear equations is

sometimes unique with respect to the smallest number of non-zero elements, i.e.

the sparsest solution [14–16]. This finding has motivated sparse vector recovery;

methods which seek to efficiently minimize the number of non-zero elements. In some

applications, such as compressed sensing and localized damage identification, sparsity

is a desirable characteristic. In structural health monitoring (SHM), sparse vector

recovery methods have been successfully applied to the linear damage identification

problem [17–23]. The noted works are largely based on minimizing with respect to

the l1-norm. The l1-norm is a surrogate measure of the number of non-zero elements

that is numerically convex, and can be minimized in a tractable manner [14–16].
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Though successful, l1-norm based damage identification methods require user biased

regularization parameters. Furthermore, the l1-norm forces sparse solutions even

if the best solution is not sparse. However, methods that force sparsity are not

necessary to the recovery of sparse, non-negative vectors. If a sparse non-negative

solution exists, then non-negative constraints alone can recover a unique solution to

the underdetermined linear system. If the solution is not sparse, then non-negativity

alone will fail to deliver a sparse solution. This could prove to be a more robust and

efficient approach.

The relationship between non-negativity and sparsity has only recently been ex-

plored [24–26,28]. For systems of linear equations, the set {x| Ax = b, x ≥ 0} defines

the non-negative feasible space. Applying a non-negative constraint to a highly under-

determined system of equations may at first seem trivial, but in the context of sparsity

its far from it. It has been mathematically verified that if solutions to Ax = b are

sparse enough, and matrix A of a special structure, then the non-negative feasible

space may only contain one solution, i.e. a singleton [25, 28]. If the feasible set is a

singleton, then a unique solution exists and the constrained inverse problem becomes

well-posed.

The objective of this paper is to show that sparse stiffness reductions can be

located and quantified using only a subset of eigenvalue shifts by applying a non-

negative constraint to the solution of the underdetermined nonlinear equations that

result from the inverse eigenvalue problem. This paper can be broadly divided into

two parts: the linearized inverse eigenvalue problem (section 3.3-3.5), and the non-

linear inverse eigenvalue problem (section 3.6-3.7). This paper begins by introducing

the parameter to eigenvalue operator (section 3.2). Section 3.3 presents the lin-

25



earized eigen-sensitivity inverse problem for small magnitude damage identification.

Section 3.3.1 explains the theoretical evidence for obtaining unique solutions with

the non-negative constraint and the role of sparsity. Section 3.3.2 presents the pro-

posed method to obtain non-negative solutions, the non-negative least squares, and

the uniqueness verification from [26]. In order to compare existing sparse recovery

methods, section 3.3.3 reviews l1-norm optimization. In sections 3.4 and 3.5, the

proposed method is verified, and compared to sparse recovery techniques that use l1-

norm optimization using a simulated shear beam from [19], a simulated planar truss

from [4], and a simulated 3D truss from [27]. Section 3.6 introduces the nonlinear

inverse problem for locating and quantifying large damage. Motivated by the success

of the non-negative constrained linearized inverse problem, section 3.6.1 presents the

non-negative nonlinear least squares; a program that enforces the strict stiffness re-

duction prior on solutions to the nonlinear inverse problem. The proposed method

uses sequential convex programming, substituting the preferred Gauss-Newton ap-

proach to FEM updating. Section 3.7 verifies the methodology with an investigation

on the effect of measurement noise using the simulated planar truss and 3D truss.

Section 3.8 concludes the paper with a discussion on the main findings, and suggests

possible directions for future research on the topic.

——————————————-

3.2 Parameter to eigenvalue operator

For lightly damped structures, the eigenvalue problem can be approximated by solv-

ing:
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(K− λjM)φj = 0, j = 1...n (3.1)

where the eigenvalues λ = λ1, λ2, ..., λn are the roots of the polynomial resulting from

det (K− λjM) = 0 (3.2)

When damage can be defined by independent parameters that induce additive

changes in the stiffness matrix, the stiffness matrix can be parameterized as

Kθ =
p∑
i=1

Eifi (θi) (3.3)

where fi (·) is a function, θi is the ith parameter that contributes to the stiffness matrix,

and Ei is the elementary influence matrix corresponding to the ith parameter [13]. θi

is often defined as the element’s elastic modulus, shear modulus, cross sectional-area,

or moment of inertia. In these cases, fi(θi) is a positive monotonic function.

The parameter-to-eigenvalue map is denoted by

F(θ) = λ (3.4)

where F is a nonlinear operator between the vector spaces θ ∈ <px1 and λ ∈ <nx1.

In practice, the number of eigenvalues that can be identified from global vibrations,

denoted as m, is far less than the number of possible damage elements. In this paper,

m < n and m < p .
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3.3 Linear inverse problem

If changes in stiffness due to damage are small enough such that neglecting higher

order terms in the nonlinear operator induces only minor linear truncation errors,

and the change in stiffness can be approximated by

∂K
∂θi
≈ ∆K

∆θi
= Ei

∆fi
∆θi

(3.5)

then the relationship between the changes in parameters ∆θ ∈ <p and the changes in

the identified eigenvalues between the undamaged and damaged structure ∆λ ∈ <m

can be approximately defined by

Sθu∆θ ≈ ∆λ (3.6)

where Sθu ∈ <mxp is the gradient of the nonlinear operator F(·), also known as the

sensitivity matrix or the Jacobian, evaluated at the parameters of the undamaged

structure denoted θu ∈ <n. For clarity, the subscript θu is dropped for the rest of the

sections on the linear inverse problem. Based on the sensitivity method to structural

dynamics proposed in [13] and the gradient of the eigenvalues [29], the sensitivity

matrix can be written as

Sj,i = ∂λj
∂θi

= φTj
∂K
∂θi

φj ≈
∆fi
∆θi

φTj Eiφj (3.7)

where i = 1...p and j = 1...m denote the row and column entry of the sensitivity

matrix.
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In this paper, the objective in small magnitude damage identification is to de-

termine the change in parameters due to damage given the identified changes in

eigenvalues such that

S∆θ = ∆λ+ ε0 (3.8)

where ε0 defines some measure of fit to the linear approximation. Since m < p,

eq. 3.8 constitutes an underdetermined system of linear equations. Without addi-

tional equations or constraints, a solution ∆θ is non-unique. However, additional

constraints specific to damage identification can be considered, and may help reduce

the indeterminacy of the problem.

3.3.1 Non-negative constraints and sparsity

The change in the vector of parameters that describes localized stiffness reductions

can be represented by a non-negative, k-sparse vector, where k represents the number

of nonzero elements, and k << p. Given the sparse stiffness reduction prior, one

appropriately constrained set of solutions to the linear inverse problem is

SNN = {∆θ| S∆θ = ∆λ+ ε0, ∆θ ≥ 0} (3.9)

The feasible region, SNN , is comprised of non-negative vectors ∆θ that satisfy the

system of equations. Note that SNN is not an explicit constraint on sparsity. In

fact, sparse constraints are not explicitly used in any of the methods proposed in this

paper.

If there exists a ∆θ ≥ 0 containing few non-zero elements that satisfies the system

of equations, then that vector may be the only non-negative vector to satisfy the
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system of equations. In other words, if a sparse and non-negative solution exists then

the set SNN may contain only only one vector. A highly underdetermined system that

is satisfied by strictly one non-negative vector may seem unlikely, but consider the

following lines of reason from [26]. There are m equations and p unknowns. If p−m

constraints are active and act as equalities, then the solution will be unique. For a

non-negative constraint to become an equality constraint, the associated constrained

element must be zero. Therefore, a sparse solution, having at least p−m zero elements,

may result in a single feasible point [26]. If the feasible region contains only one point,

referred to as a singleton, then that point is the unique solution to the constrained

inverse problem. To emphasize, the non-negative constraint promotes uniqueness to

the underdetermined linear system because there exists a sparse solution.

The singleton property is not a general property of all non-negative constrained

linear inverse problems; specific conditions must be satisfied. As proven in [28], the

mapping matrix, in this case S, must belong to the class of matrices having a row-span

intersecting the positive orthant in order for the singleton phenomenon to occur, and

will not occur otherwise. As defined in [25], a matrix A has a row span intersecting

the positive orthant if there exists a strictly positive vector w that can be obtained

as a linear combination of rows of A, that is

∃ h s.t. hTA = wT > 0 (3.10)

The eigenvalue sensitivity matrix belongs to this matrix class because by definition

its rows are always non-negative. This occurs because the influence matrices (eq.

3.3) represent stiffness matrices of substructures and hence must be positive semi-

definite. By the definition of a positive semi-definite matrix, φTj Eiφj ≥ 0 for all j and
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i. Since fi(θi) from eq. 3.3 is a positive monotonic function, then by definition of the

sensitivity matrix

Sj,i ≈
∆fi
∆θi

φTj Eiφj ≥ 0

The positive sensitivity matrix property is reflected physically because a reduction in

stiffness always increases the natural period of the structure.

Although the sensitivity matrix satisfies the strict property needed to tighten SNN

to a single point, it is unknown whether this singleton phenomenon is guaranteed to

occur. In current literature, the proofs that guarantee the singleton phenomenon

require large minimum subspace angles between columns of the mapping matrix, and

depend on the maximum number of nonzero elements of the solution [25]. The next

section presents work from [26] that quantifies the size of SNN , and determines if the

set only contains one point (unique solution).

3.3.2 Unique solutions to the non-negative

least squares

In addition to truncation error, the estimated eigenvalues are functions of measure-

ment noise and system identification errors. The model also does not perfectly rep-

resent the structure of interest. One measure of solution quality is the Euclidean

magnitude of the residual between the measured and modelled change in eigenvalues.

The authors propose to use the Non-negative Least Squares (NNLS) to minimize the

residual and impose the non-negative constraint. The NNLS is a constrained convex
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optimization program, and can be written simply as

min
∆θ,ε0

||ε0||2

subject to S∆θ = ∆λ+ ε0

∆θ ≥ 0

(3.11)

where ε0 ∈ <mx1 is an optimization variable that represents the closest possible fit

to the affine constraint such that the non-negative constraint holds. The NNLS is

strictly convex with respect to ε0 implying there exists only one optimal point ε∗0
that minimizes the objective function [30]. However, an infinite number of vectors

∆θ∗ may exist that satisfy the affine constraint given ε∗0. Given the characteristics

of the damage identification inverse problem: sparsity, the class of the sensitivity

matrix, and the non-negative constraint, the authors expect only one ∆θ∗ to satisfy

{∆θ∗| S∆θ∗ = ∆λ+ ε∗0, ∆θ∗ ≥ 0}. The ∗ notation indicates the optimal solution to

the optimization.

The optimal solution can be checked for uniqueness by the following measure

posed in [26]. Dillon proves that the non-negative feasible region contains only one

point if and only if the optimal solution to the following convex optimization program

results in ||d∗||1 = 0:

min
Y,Y′,d

||d||1

subject to (Y−Y′)T (∆λ+ ε∗0) = d

YTS ≥ I

Y′TS ≤ I

(3.12)
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where Y,Y′ ∈ <pxm. The details of the proof are based on duality in convex opti-

mization theory and can be found in [26]. The optimal solution ||d∗||1 is not only

an indicator of uniqueness, but can be interpreted as a measure of uniqueness, where

smaller values indicate smaller feasible regions.

The uniqueness measure can be used to determine if the optimal solution to the

NNLS correctly represents the change in parameters due to damage. Consider an

ideal situation, one without truncation or measurement error. In the ideal case, there

exists a feasible set of parameters ∆θ ≥ 0 such that ||ε∗0||2 = 0. If ||d∗||1 = 0, then

the feasible set is a singleton and the optimal point ∆θ∗ is the only solution that fits

S∆θ∗ = ∆λ. Thus the uniqueness measure implies that the optimal point must be

the correct damage location. In the case where the feasible set is not a singleton,

then additional constraints/equations may be needed to induce a unique solution.

A check on uniqueness provides a means of verifying the accuracy of the solution

without knowing the solution prior; a distinct advantage over using l1-norm methods

where an equivalent uniqueness measure has not been established.

3.3.3 Least l1-norm optimization

This paper compares the NNLS to a method that is synonymous with sparse recovery.

The basis pursuit, also known as the least l1-norm optimization, is the preferred

method for solving the underdetermined system of linear equations for the sparsest

solution [14–16]. The basis pursuit is defined as

min
∆θ

||∆θ||1

subject to S∆θ = ∆λ
(3.13)
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Note that the sparsest feasible solution will not be strictly sparse because the

sparsest solutions must be adjusted to fit the equality. The zero elements of the

sparsest solution are only approximately zero. If the level of measurement error is

significant, or the linear approximation error large, the least l1-norm can be modified

to accommodate noise. This is known as basis pursuit denoising. Basis pursuit

denoising can be programmed as

min
∆θ

||∆θ||1

subject to ||S∆θ −∆λ||2 ≤ α

(3.14)

where α is the user specified regularization parameter. These two convex optimization

programs have broad applications in signal processing fields. In SHM, they have been

successfully applied to the ill-posed eigen-sensitivity inverse problem in simulation

and experiment, hence a reputable reference for comparison [19,22].

3.4 Simulated experiments

and implementation

The performance of the basis pursuit and non-negative least squares is dependent

on the structure of the sensitivity matrix and the number of identified eigenvalues.

A variety of damage scenarios and structures are simulated in order to verify the

methodology. Three structures, each increasing in complexity, are considered: i) a 21

element non-uniform shear beam simulated in [19], ii) a 31 element planar bar truss

simulated in [4], and iii) a 144 element three-dimensional truss simulated in [27].
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The shear beam has 21 degrees of freedom with elements enumerated from 1, the

first mass closest to the support, to 21, the free end. The spring stiffness are as

follows: k1 = ... = k7 = 1000, k8 = ... = k14 = 750, and k15 = ... = k21 = 500,

and the masses: m1 = ... = m7 = 1, m8 = ... = m14 = 0.75, and m15 = ...

= m21 = 0.5. The fundamental frequency is 0.436 Hz. The planar truss, as shown

in Fig. 3.1, is comprised of 25 translation degrees of freedom and 31 elements. The

truss was used in [4] to successfully demonstrate damage identification by changes

in vibration response using the adaptive Tikhonov Gauss-Newton method; a method

that also applies non-negative constraints. That method used vibration response as

the damage sensitive feature, which resulted in a greater number of equations than

unknowns. The truss is composed of ideal pinned bars, each with a modulus of

elasticity of 70 GPa, cross sectional area of 0.0025 m2, and density 2770 kg/m3. The

first three natural frequencies of the structure as simulated in this paper are 25.12

Hz, 53.20 Hz, and 87.76 Hz.

The simulated 3D truss is a beam element model based on the physical description

of the 17.24 m long aluminum truss tested in [27]. Fig. 3.2 presents the physical

characteristics of the truss. The truss is comprised of aluminum tubes each having

modulus of elasticity of 69.64 GPa, density of 2714.5 kg/m3, and Poisson’s ratio

equal to 0.33. Fig. 5.2a presents the beam element model demarcated by 11 bays.

The model is comprised of 144 beam elements each having 12 degrees of freedom.

The boundary conditions were fixed at the end of bay 1, and pinned in the y and z

coordinates at the end of bay 11. The first three natural frequencies of the structure

as simulated in this paper are 12.04 Hz, 13.14 Hz, and 16.93 Hz. Fig. 5.2b-e presents

the naming convention for each cluster of elements defining a section of the truss.
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Note thatMChi denotes the 11 main chord segments along the indicated length, and

Stri denotes all 12 parallel struts sharing the indicated plane. The element groups

are intended to help convey the results of the simulations to the reader.

The simulations are ideal because the model used to generate the simulated data

is also the one used to implement the algorithm. The ideal simulations verify that the

underdetermined system of equations possess unique non-negative sparse solutions,

and that the measure of uniqueness can improve the robustness of the method with

respect to incomplete modal information.

Figure 3.1: Statically indeterminate planar bar truss used for simulations (adopted from [4])

6 Panels @ 1.73m = 10.38m
.31m

4 Panels @ 1.64m = 6.56m

MAIN CHORD - TYP
152.4m Ø O.D. x 7.94mm

DIAGONAL BRACE - TYP
76.2mm Ø O.D. x 6.35mm

STRUT - TYP
50.8mm Ø O.D. x 4.76mm

END STRUT - ONLY
63.5mm Ø O.D. x 6.35mm

AXIAL BRACE - TYP
50.8mm Ø O.D. x 6.35mm

1.83m

1.98m

Figure 3.2: Plan view of 3D truss with dimensions and cross-section details

The CVX platform on Matlab was used to implement the convex optimization
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Figure 3.3: a) 3D truss model used to implement algorithms. Bays numbered 1-11. Red
nodes indicate locations of boundary conditions: fixed condition at bay 1, and pinned in the
y and z direction at bay 11. Clusters of elements defining the truss sections use the following
naming conventions: b) main chords in red (MCh1,2,3,4) and axial diagonals (Axi) in black,
c) diagonal braces at plane 1 (P1D) in red and diagonal braces in plane 2 (P2D) in black,
d) struts (Str1,2,3,4) in red, and e) diagonal braces at level 1 (Lv1D) in black and diagonal
braces at level 2 (Lv2D) in red

programs. This platform used the Gurobi solver at the best numerical precision to

solve the optimization problems [33]. Throughout this paper, any value less than

1e− 7 is denoted as zero, otherwise the value was noted as is.
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3.5 Numerical simulations

to linear methods:

Verification and comparison

The NNLS (eq. 3.11) and uniqueness measure (eq. 3.12) are applied to simulated

damage cases for both the shear beam and the truss structures described in the

previous section. The results are compared to those obtained from the basis pursuit

(eq. 3.13).

For the shear beam, the following four damage cases are considered: i) 5% stiffness

reduction at El.6, ii) 5% and 10% stiffness reductions at El.6 and El.15 respectively,

iii) 5%, 10%, and 5% reductions at El.6, El.15, and El.19, and iv) 5%, 10%, and

5% stiffness reductions at El.6, El.15, and El.17. Six eigenvalues are identified thus

S ∈ <6x21. The results of the NNLS and the basis pursuit are shown in Fig. 3.4.

For damage cases i-iii, Fig. 3.4a-c, the desired sparse solution is recovered with both

the basis pursuit (blue) and the NNLS (yellow). In damage case iv, presented in Fig.

3.4d, both algorithms misidentified the damage.

The optimal solution to the NNLS (||ε∗0||2) and the measure of uniqueness (||d∗||1)

are computed for each damage case. In damage cases i-iii, the measure of uniqueness is

||d∗||1 = 0. This result implies only one feasible vector, ∆θ∗, satisfies S∆θ∗ = ∆λ+ε∗0.

||ε∗0||2 > 0 due to the small truncation error. The uniqueness measure provides strong

evidence that the estimated stiffness reduction is correct. In damage case iv, ||ε∗0||2 = 0

and ||d∗||1 = 1. The measure of uniqueness is large (relative to the user’s experience),

thus indicating that the obtained estimated stiffness reduction is not unique and
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therefore the accuracy of the solution should be doubted. The solution is also over-

fitting the data as indicated by ||ε∗0||2 = 0. The two measures provide evidence that

additional constraints or equations may be needed to produce a unique solution.

Now consider a damage case where the solution should not be sparse, such as

structural deterioration that spans a large portion of the shear beam. In this example,

the deterioration reduces the stiffness of the first fifteen elements by 5%. Fig. 3.5a

depicts the solutions for the basis pursuit denoising as a function of the regularization

parameter α (eq. 3.14), and Fig. 3.5b depicts the results for the NNLS. For all choices

of the regularization parameter, the solution indicates incorrectly that the damage is

sparse. The NNLS, however, does not yield a sparse solution albeit incorrect. Note

that the measure of uniqueness indicates a non-unique solution.

Next, the performance of the NNLS and the basis pursuit in detecting a 1% stiff-

ness reduction at any single element (taken separately, one at a time) is investigated.

Eigenvalues are selected sequentially from the lowest in increments of one until ei-

ther a proper identification is obtained or a threshold of 20 eigenvalues is reached.

The tests are performed on the shear beam, the planar truss, and the 3D truss. For

each structure, the average estimated stiffness reduction corresponding to the small-

est number of eigenvalues needed for proper identification was equal to 0.01 with a

variance less than 10−5. Fig. 3.6 presents the minimum number of eigenvalues re-

quired to properly identify damage in each element for a) the shear beam, b) the

planar truss, and c) the 3D truss. If minimum number of eigenvalues is the criteria

for performance, then the basis pursuit (dashed line) slightly outperforms the NNLS

(solid line) for the shear beam. However, a different trend can be observed for the

same procedure on both trusses. The average minimum number of eigenvalues re-
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Figure 3.4: The estimated stiffness reduction (E.S.R.) of each element using the NNLS
(yellow) and the basis pursuit (blue) given six identified eigenvalues for the following damage
cases: a) 5% reduction at El.6, b) 5% and 10% reductions respectively at El. 6 and El. 15,
c) 5%, 10%, and 5% reductions at El.6, El. 15, and El. 19., and d) 5%, 10%, and 5%
reductions at El.6, El. 15, and El. 17.

quired for successful damage identification on the planar truss using the NNLS was

4.4 eigenvalues, while l1-norm optimization averaged 7.0 eigenvalues. Regarding the

3D truss, only 65% of the damage cases were identified using the basis pursuit within

the specified range of 20 eigenvalues. The unidentified elements were omitted from

Fig. 3.6c; hence the discontinuities of the dashed line. The results indicate that the

NNLS outperforms the basis pursuit for both truss structures. The results of this

simulation also indicate that the average minimum number of eigenvalues needed for

unique identification increases with the size of the structural domain. The 3D truss
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Figure 3.5: Estimated stiffness reduction (E.S.R.) using: a) basis pursuit denoising as a
function of the regularization parameter, and b) the NNLS, for the case where the stiffness
of the first 15 elements of the shear beam are reduced by 5%

required on average the most number of identified eigenvalues, 7.8 total, to properly

identify a single damaged element using the NNLS.

The NNLS’s success in recovering sparse solutions is correlated to a unique non-

negative feasible set. In order to demonstrate this correlation, the minimum number

of eigenvalues required to obtain a unique solution to the NNLS (||d∗||1 = 0) is

compared to the minimum eigenvalue recovery results for the NNLS. The results

for the shear beam are shown in Fig. 3.7a, the planar truss in Fig. 3.7b, and the

3D truss in Fig. 3.7c. The minimum number of eigenvalues for uniqueness (dashed

line) is never less than the minimum number of eigenvalues for sparse recovery (solid

line). The intuition is that the singleton property of the non-negative constraint most

often dictates the sparse recovery in the NNLS, but not always. Sometimes a sparse

recovery can occur, although it may not necessarily be the only feasible solution as

indicated in Fig. 3.7 where the dashed and solid points at a given element are not

equal.
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Figure 3.6: Minimum number of eigenvalues required to properly identify a 1% stiffness
reduction at each element on a) the shear beam, b) the planar truss, and c) the 3D truss
using the NNLS (solid) and the basis pursuit (dashed). The eigenvalues are selected lowest to
highest until a proper identification is obtained or a maximum of 20 eigenvalues is reached.
The basis pursuit only identified damage at 65% of the elements on the 3D truss

3.6 Nonlinear inverse problem

The linear model and method can be applied to small damage cases, but is insufficient

to quantify and locate larger damages, where the linear truncation error is non-

negligible. This section addresses the problem of substantial linear truncation errors

due to large stiffness reductions. The objective is to solve the nonlinear system of

equations defined in eq. 3.4 for θ, the parameters now representing the damaged

structure, given λ, the associated eigenvalues of the damaged structure.
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Figure 3.7: The minimum number of eigenvalues that satisfies the uniqueness condition
||d∗||1 = 0 (dashed), and the minimum number needed to successfully identify damage using
the NNLS (solid), given a 1% stiffness reduction at any one element. Results shown for all
elements comprising a) the shear beam, b) the planar truss, and c) the 3D truss

The inverse eigenvalue problem is typically formulated as an unconstrained non-

linear least squares (NLS) program:

min
θ∈D(F )

1
2 ||F(θ)− λδ||22 (3.15)

where λδ = λ + ε, and ε represents the modelling, system identification error, and

measurement noise. The preferred method to approximate the global minimum to

the NLS is by iteratively solving a series of linear approximated least square type

problems, typically referred to as finite element model updating. Without constraints,
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FEM updating is a Gauss-Newton iterative method.

The Gauss-Newton method can be derived from first order conditions for a local

minimum of the unconstrained NLS:

STθ∗(F(θ∗)− λδ) = 0 (3.16)

where F(θ∗) and Sθ∗ are respectively the nonlinear operator and the sensitivity ma-

trix evaluated at the parameters satisfying local optimality. There are two primary

concerns with the optimal conditions for a system having more nonlinear equations

than unknowns. One, Sθ∗ generally has full row rank for highly underdetermined

problems, hence the null space of STθ∗ is empty. In order to satisfy the local optimum,

F(θ∗) = λδ, which implies that noise will be over-fit. Two, the optimal condition has

more unknowns than equations; therefore there exists an infinite number of solutions

that satisfy the local optimum.

3.6.1 Non-negative nonlinear least squares

Like the linear inverse problem, only the feasible set that defines non-negative changes

in the structure’s parameters is of interest. Again, sparsity is not explicitly used as

a constraint. The objective is not to approximate the global minimum to the un-

constrained NLS, but instead approximate the minimum to the following constrained

NLS:
min
θ∈D(F )

1
2 ||F(θ)− λδ||22

∆θ = θu − θ ≥ 0
(3.17)
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The first order optimality conditions for the non-negative NLS are defined as

{STθ∗(F(θ∗)− λδ)}i = 0 if ∆θ∗i ≥ 0

{STθ∗(F(θ∗)− λδ)}i > 0 if ∆θ∗i = 0
(3.18)

for i = 1...p [31]. Unlike the optimal conditions to the unconstrained NLS, the non-

negative constraint can prevent over-fitting in the presence of noise.

In order to approximate local optimality to the non-negative NLS, a heuristic

known as sequential convex programming (SCP) is applied. In the SCP method, a

sequence θk is generated by setting

θk+1 = θk + ∆θk for k = 0, 1, 2... (3.19)

where ∆θk is the solution to a linearized convex sub-problem

min
∆θ∈D(F )

||Sθk∆θk −∆λk||2 + αkΦ(∆θk)

subject to fi(∆θk) ≤ 0 i = 1, 2, 3...
(3.20)

fi(∆θk) are convex constraint equations often defining a trust region, αk ∈ < is an

iterated regularization parameter, and Φ : ∆θ → <+ ∪ 0 is a proper convex penalty

functional that can bound the step size and (or) impose known prior characteristics on

the optimal solution. Sθk is the sensitivity matrix evaluated at the updated parameter

defined at the kth iteration, and ∆λk = F(θk) − λδ. For clarity, note that the index

k is not the same as the degree of sparsity, k-sparse. SCP’s can be related to the

Gauss-Newton methods by manipulating the above constraints. For example, the

classic Gauss-Newton method applies eq. 3.20 at each iteration with Φ(∆θk) = 0,
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and the constraints removed. If Φ = ||.||2, then the routine is equivalent to the

Levenberg-Marquardt method [7].

In this paper, the author proposes to solve the following convex sub-problem at

each iteration:
min

∆θk∈D(F )
||Sθk∆θk −∆λk||2

θu − (∆θk + θk) ≥ 0

lb ≤ ∆θk ≤ ub

(3.21)

where θu − (∆θk + θk) ≥ 0 ensures that the final estimated change in parameters is

non-negative, and lb = ub = 0.05 defines a lower and upper bound on the trust region

for each step. For clarity, note that the first iteration solves the non-negative least

squares problem with an upper bound, but any subsequent changes in the updated

parameters do not have to be strictly non-negative.

The SCP is initialized at the parameter representing the undamaged structure,

θu = 1, a vector of ones, and its associated identified eigenvalues (λu). The iterations

are terminated when the residual

||F(θk)−F(θk+1)||2 ≤ c (3.22)

becomes sufficiently small, where c = 10−5 for this paper. The estimated changes in

parameters due to damage are calculated as

∆θ∗ = θu − θ∗ =
∑
k=1

∆θ∗k (3.23)

where θ∗ are the parameters at the terminated iteration that are desired to match

the true parameters of the damaged structure.
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The graphic in Fig. 3.8 presents an example of a successfully implemented generic

SCP process juxtaposed with the linear inverse problem. Beginning at the undamaged

parameter (green marker), each local optimal solution ∆θ∗k moves the operator point

one step closer to the damaged parameter (blue star) until convergence. In Fig. 3.8b,

it is clear that without an updated solution, the damage magnitude approximated

from the linear inverse problem is overestimated. Note that because SCP is a heuristic,

like Newton type methods, it can fail to find the optimal or even a feasible point.

3 2 1 u

3

2

1

u

*
u
 

u

Figure 3.8: The nonlinear relationship (solid) and linearized relationship (dashed) between
a given stiffness parameter and a given eigenvalue. a) The nonlinear method incremen-
tally approaches the damage location, linearizing about the (red) operating points θk, and
minimizing ∆λk. b) The linear approximated inverse problem without iterations
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3.7 Verification and

numerical simulations

In this section, the efficacy of the proposed constrained NLS is verified. First, im-

provement over the linear NNLS is demonstrated. Consider the damage case where

the stiffness at El.7 and El.8 of the shear beam are reduced by 85% and 50% re-

spectively. Six eigenvalues are identified, which results in 6 nonlinear equations and

21 unknown parameters. The estimated stiffness reductions using the NNLS for the

linear approximated problem are shown in Fig. 3.9a. The damages at El.7 and El.8

are greatly overestimated (nearly a 250% stiffness reduction at El.7), and the false

indications of damage that occur at El.10 and El.18 are too large to distinguish from

numerical error. In Fig. 3.9b, the final converged solution to the non-negative NLS

is presented. The overestimation is corrected, and the false positives are completely

removed. For visualization, Fig. 3.9c presents the estimated stiffness reduction of

the constrained NLS at each iteration. The solution converges after 24 iterations.

Note that the uniqueness measure calculated for the NNLS indicates a singleton set.

Although the solution to the linear approximated NNLS incorrectly represents the

damage, the uniqueness measure implies that the best fit feasible solution to the lin-

ear problem is unique. Perhaps the uniqueness measure could be used as a guide

to determine the uniqueness of the solution to the nonlinear method, however the

authors have not rigorously verified this.

The proposed non-negative constrained NLS is also verified on the 3D truss. In

this example, the elastic modulus of the plane 2 diagonal (P2D) element in bay 9 is
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Figure 3.9: Given 85% and 50% stiffness reductions at El.7 and El.8 of the shear beam,
a) the estimated stiffness reduction (E.S.R.) to the non-negative least squares applied to
the linearized inverse problem, b) the final estimated stiffness reduction to the non-negative
nonlinear least squares (NLS), and c) the estimated stiffness reduction at each iteration for
the non-negative NLS

reduced by 30%, and the diagonal at level 1 (Lv1D) in bay 5 is reduced by 70%. 10

natural frequencies are identified resulting in an inverse problem with 10 equations and

144 unknowns. Fig. 3.10a presents the estimated stiffness reduction using the NNLS.

The true damage locations are superimposed over the model using a thick green line,

and any significant damages predicted by the algorithm are superimposed in the color

red. Note that a correct identification is indicated by a green line highlighted in red.

Based on Fig. 3.10a, the correct damage locations are contained in the non-zero

subset of the optimal solution to the NNLS, however the results indicate a significant
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false positive at one of the struts in bay 3. Fig. 3.10b presents the converged solution

to the proposed non-negative constrained NLS. The method correctly quantifies and

locates both of the damaged elements.

Figure 3.10: Estimated stiffness reduction using a) the non-negative least squares, and b)
the non-negative nonlinear least squares for a 70% stiffness reduction at Lv1D bay 5 and a
30% stiffness reduction at P2D bay 9 on the 3D truss

3.7.1 Measurement error investigation

This section investigates the effect of measurement noise on the proposed method-

ology. The measurement error contained in ε is defined as a realization of a p-

dimensional Gaussian random vector with zero mean and standard deviation of com-

ponent εi proportional to the specified coefficient of variation. The vector of noise is
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added to eigenvalues of the damaged structure.

The noise simulations are first considered for the planar truss. The damage cases

simulated in [4] are replicated. The damage scenario is defined by 10% axial stiff-

ness reductions at El.18, El.19, and El.22, and a 15% stiffness reduction at El.20.

The number of possible damage locations is 31 rendering S ∈ <mx31. Without mea-

surement noise the exact location and magnitude of the damage is determined using

the proposed methodology when nine (or more) eigenvalues are identified. The re-

sults of the method with eight and nine identified eigenvalues are presented in Fig.

3.11. Note that the uniqueness measure applied to the linear approximated NNLS is

significantly smaller with nine identified eigenvalues than with eight. Furthermore,

at eight eigenvalues, the NNLS overestimates the truncation error as indicated by

||ε∗||2 = 0. Again linear truncation error is large, and one cannot infer that the

uniqueness measure indicates anything about the quality of the final solution to the

nonlinear method.
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Figure 3.11: Estimated stiffness reduction (E.S.R.) using the non-negative nonlinear least
squares given 10% stiffness reductions at El.18, El.19, and El.22, and a 15% stiffness re-
duction at El.20 on the planar truss. Results based on a) eight identified eigenvalues and b)
nine eigenvalues

Four tests with coefficients of variation (CoV) equal to 0.0005, 0.001, 0.0015, and
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0.002 were performed. The range of values selected for the CoV were obtained from

uncertainty quantification studies on system identification of real structures [34]. The

non-negative NLS was performed using 1, 000 realizations of ε with the specified CoV

for each test totaling four thousand simulations. Results for the proposed method

using nine identified eigenvalues are presented in Fig. 3.12. The results are compiled

into box plots, where the central hash denotes the median, and the bottom and top

edges of the box denote the 25th, and 75th percentiles. The whiskers extend to the

most extreme data points not considered outliers. An outlier is at least 1.5 times

greater than the edges of the box. For all noise cases, the damage locations are

all identified with varying degrees of accuracy. It is unclear that the magnitude of

damage at El.20 is larger than the other identified damage locations. The margin of

error about the estimated stiffness reduction and the number of false positive outliers

increase with increased level of noise. In all cases, El.15 and El.16 are falsely identified.

The large range between the 25th and 75th percentile about El.15 and El.16 indicate

a significant level of uncertainty.

Now consider the same damage locations and same CoV, except with increased

stiffness reductions. The damage scenario is represented by 30% axial stiffness reduc-

tions at El.18, El.19, and El.22, and a 45% stiffness reduction at El.20. Fig. 3.13

presents the results in box plots using nine eigenvalues. It is now possible to observe

the damage location and magnitude more clearly due to the decreased ratio between

the noise and change in eigenvalues. The margin of estimation error about the loca-

tions is tighter than the previous damage scenario. It is apparent in this example that

El.20 is more severely damaged. The false positives at El.15 and El.16 still remain,

again showing significant levels of uncertainty. It is worth noting that these false pos-
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itives are detected in elements which are close to the actual damage elements, which

from a practical point of view is not as detrimental as cases where false positives are

completely disconnected from the true positives.
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Figure 3.12: Estimated stiffness reduction (E.S.R.) using non-negative nonlinear least
squares given 10% stiffness reductions at El.18, El.19, El.22, and a 15% reduction at El.20
on the planar truss using nine eigenvalues corrupted by Gaussian white noise with coeffi-
cients of variation of a) 0.0005, b) 0.001, c) 0.0015, and d) 0.002

In this final simulation, the investigation into measurement error is extended to

the 3D truss. The same damage case presented in Fig. 3.10, that is 70% and 30%

stiffness reductions respectively at Lv1D bay 5 and P2D bay 9, are tested in the

presence of measurement error. Fig. 3.14 presents the results for the non-negative

constrained NLS using 10 eigenvalues containing measurement noise. The coefficient

of variation of the random noise vector corresponding to Fig. 3.14a is 0.0005, and
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Figure 3.13: Estimated stiffness reduction (E.S.R.) using the non-negative nonlinear least
squares given 30% stiffness reductions at El.18, El.19, El.22, and a 45% reduction at El.20
on the planar truss using nine eigenvalues corrupted by Gaussian white noise with coeffi-
cients of variation of a) 0.0005, b) 0.001, c) 0.0015, and d) 0.002

Fig. 3.14b is 0.002. Those values correspond to the minimum and maximum coef-

ficients of variation previously tested on the planar truss. The solution to each of

the 1000 realizations are presented in box plots. For the tested noise levels, the two

groups of elements that dominate the solution are the struts (shown in blue) and the

level 1 diagonals (shown in red). The locations of the dominant estimated stiffness

reductions are superimposed over the structure as red lines (dominant implying a me-

dian estimated stiffness reduction of at least 10%). In the presence of measurement

error, large false positive occur at the bay 4 strut and the bay 9 strut. The significant

spread between the 25th and 75th percentiles at the struts occurs because the solution
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tends to alternate back and forth predicting damage at the bay 5 or bay 9 struts, but

very rarely at both locations simultaneously. The relatively small stiffness reduction

at P2D bay 9 is missed by the algorithm. Despite the large false positives and the

missed identification, the most significant damage at bay 5 is apparent among the

noise even for CoV = 0.002. The correctly identified damaged element also has a

tighter bound on its variance than its neighboring false positives. A tighter variance

at the correctly identified damaged element relative to the large spread at the spuri-

ous damage locations is a reoccurring feature of the proposed method substantiated

by both the planar and 3D trusses.

3.8 Conclusion

Inverse eigenvalue problems are typically ill-posed. This fact has hindered the use of

eigenvalue shifts to detect local damages using standard finite element model updating

methods. This paper presents an exception. If it is physically reasonable to constrain

the solution set to only contain non-negative vectors and the solution is sparse then

the inverse problem can become well-posed, and physically meaningful solutions to

finite element model updating can be obtained. This situation occurs when damage

is spatially localized and strictly reduces the stiffness. Part one of this paper presents

theoretical evidence that justifies the use of the non-negative constrained least squares

method to induce unique solutions to the underdetermined system of linearized eigen-

value equations. In order to check if the solution is unique, a means of measuring the

uniqueness of the feasible solution set is presented. Numerically simulated damages

performed on three structures, namely a shear beam, a planar truss, and a three-
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Figure 3.14: Estimated stiffness reduction (E.S.R.) using the non-negative nonlinear least
squares for a 70% stiffness reduction at the level 1 diagonal (Lv1D) at bay 5 and a 30%
stiffness reduction at the plane 2 diagonal (P2D) at bay 9 on the 3D truss using 10 eigen-
values corrupted by Gaussian white noise with coefficients of variation of a) 0.0005 and b)
0.002

dimensional truss, support the hypothesis. The non-negative least squares is shown

to perform as well or better than the l1-norm sparse recovery methods.

Part two adapts the non-negative constraint to the nonlinear inverse eigenvalue

problem associated with large magnitude damages. A constrained FEM updating

approach is constructed in order to solve the nonlinear least squares problem where

the solution space represents only reductions in stiffness. The proposed non-negative

nonlinear least squares accurately recovers the sparse non-negative vectors that best

represents large magnitude damages. The proposed method is shown to perform

56



adequately in the presence of measurement noise, with the exception that small mag-

nitude damages are disguised by noise. The authors expect that future work on the

subject will focus on the effect of modelling errors (bias) on the proposed methodology

and on quantifying the uncertainty in the damage estimates.
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Chapter 4

Identifying Local Reductions to

Mass and Stiffness with

Incomplete Modal Information,

Sparsity, and

Non-negative Constraints

Abstract

l1-norm regularized inverse methods have been suggested as a means to quantify and

localize spatially sparse damage from a set of identified natural frequencies. Thus

far, damage has been interpreted as changes in stiffness without any appreciable as-

sociated changes in mass. In seeking to generalize l1-norm based inverse methods
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to encompass damage that produces significant changes in both mass and stiffness,

this paper finds that sparsity is too weak a prior to uniquely solve the associated

underdetermined inverse problem. However, when damage is defined by local re-

ductions to stiffness and mass then the addition of a non-negative constraint when

combined with sparsity can yield physically meaningful solutions. This work proposes

a two-step model updating method to obtain sparse and non-negative solutions. The

findings and proposed method are verified using two numerical models: a shear beam

and a four-level plane frame. The proposed methodology is experimentally validated

using vibration data taken from a four-level bolted steel frame subjected to multiple

damage scenarios.

4.1 Introduction

Sparse vector recovery algorithms based on l1-norm optimization have been suggested

as a means to solve the inverse eigenvalue problem (IEP) for the purposes of quan-

tifying and locating local structural damage [1, 2]. The IEP seeks to determine the

parameters defining the stiffness and mass matrices such that the associated eigen-

value problem has the eigenvalues identified from the global vibrations [3,4]. Although

the number of identifiable natural frequencies is typically insufficient to determine a

unique solution to the general IEP [5–7], it was found that if the sought damage only

affects a small subset of stiffness parameters then the IEP can be solved uniquely with

sparse vector recovery. In many damage cases it is reasonable to consider stiffness

only and neglect changes in mass, but in certain situations both mass and stiffness

parameters may need to be identified. This paper investigates the unanswered ques-
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tion of whether sparsity is a strong enough prior to uniquely determine both changes

in mass and stiffness from a subset of natural frequencies.

Sparsity can be a desirable solution characteristic whenever damage is expected

to be localized in small regions of the structural domain. Recently, methods that

target sparse solutions have been mathematically formalized based on the concept of

minimizing the number of nonzero elements of the possible solution [8, 9]. However,

operators that count nonzero elements are non-convex and hence a combinatorial

search algorithm is needed to solve the problem. The l1-norm has been suggested

as a relaxed surrogate to counting nonzero elements because the function is geomet-

rically similar to the nonzero counting operator, yet is conveniently convex [8, 10].

Implementation of the l1-norm in combination with traditional least squares tends to

produce sparse solutions [10] and in some cases even produce the unique solution with

the least nonzero elements for underdetermined systems of linear equations [8, 11].

Application of sparse recovery methods can also be found in the structural health

monitoring (SHM) literature, specifically combined with the inverse approach to dam-

age identification as described in [12, 13]. Hernandez proposed l1-norm optimization

to quantify and locate small changes in stiffness from natural frequencies [1], and

validated the method on a cantilever beam [14]. The authors in [2] presented a

nonlinear l1-norm regularized least squares approach to the IEP. The application of

sparse vector recovery has been extended to other damage features as well such as:

the combination of natural frequencies and mode shapes using l1-norm regulariza-

tion [15, 16] or using total variation regularization [17], frequency response functions

using orthogonal matching pursuit [18], the time domain impulse response using l1-

norm regularization [19], and methods using measured response signals [20].
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Another convex constraint that induces sparse solutions is non-negativity. Non-

negativity is particularly appropriate for the purposes of damage identification given

that damage tends to strictly reduce the local stiffness and/or mass of a damaged

element [21]. Non-negativity and sparsity are not only physically inherent to the

damage identification solution space, but can have complementary effects in regards

to solving underdetermined inverse problems. If the solution is sparse enough and

the structure of the inverse problem satisfies certain conditions, the non-negative con-

straint can recover the sparsest solution to an underdetermined system of algebraic

equations [22,23]. In SHM, Hassiotis and Jeong were the first to show that the dam-

age identification IEP could be solved using just non-negative constraints [24]. Later

Smith and Hernandez proposed a similar method and found that the damage iden-

tification IEP satisfies the characteristics needed for unique sparse recovery. Other

methods have also suggested the application of non-negative constraints for damage

identification [25,26].

Among the mentioned inverse-based damage identification methods none have

considered the more general case of identifying both the mass and stiffness parameters.

The problem is of particular importance to the IEP since damage that reduces both

stiffness and mass inversely affect the natural frequencies and further inhibit the

existence of a unique solution. In this paper, the authors suggest that sparsity may be

too weak a prior to quantify and locate changes in mass and stiffness simultaneously,

but if the non-negative constraint is also imposed then the probability of unique

identification significantly improves.

The objective of this paper is to investigate this claim by testing the performance

of the most popular l1-norm based inverse methods in identifying changes to stiffness
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and mass parameters on two numerical models: a uniform stiffness shear beam and a

four-level frame. In addition, this paper proposes a two-step model updating method

which combines the non-negative constraint and l1-norm optimization to resolve the

non-uniqueness issue. In step one, the nonlinear mapping is linearized and a non-

negative constrained l1-norm optimization program is used to solve the system of

linear equations. In step two, the parameters associated with the nonzero elements of

the sparse solution from step one are updated. The proposed method is verified on the

numerical simulations and experimentally validated using vibration data measured

from a one meter tall bolted steel frame. Each tested damage case is conducted by

removing bolted connections; the intention being to significantly reduce both mass

and stiffness.

The outline of the paper is as follows. The following section develops the in-

verse eigenvalue problem using the sensitivity method in structural dynamics. The

method of approach section then details the l1-norm optimization methods inves-

tigated, and the proposed non-negative and sparsity-based inverse approach. The

methods are then investigated on the shear beam in the numerical verification sec-

tion. Afterwards the experimental validation is detailed along with the challenges

associated with non-unique solutions. The results of the frame experiment and the

frame numerical simulations are summarized, followed by concluding remarks.

4.2 Sensitivity-based inverse method

The sensitivity-based inverse approach to damage identification seeks to update a pa-

rameterized model such that the difference between the identified modal features from
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the potentially damaged structure and those predicted by the model are minimized.

In this paper, the feature residual is defined by the following system of algebraic

equations

rj(θ) = λ̂j − λj(θ) , j = 1, · · · , q (4.1)

where λ̂j ∈ < is the jth eigenvalue identified from the physical system. λj(θ) is

its matched jth eigenvalue derived from the model using the undamped eigenvalue

equation,

Kφj = Mφjλj (4.2)

where φj ∈ <n is the eigenvector corresponding to the jth eigenvalue. In practice,

the total number of identified eigenvalues q is typically far less than the number of

degrees of freedom n.

This paper is restricted to cases where the mass matrix M = MT ∈ <nxn and

the stiffness matrix K = KT ∈ <nxn can be written as a linear combination of the

updating parameters, that is

K = K0 −
pk∑
i=1

Kiδki

M = M0 −
pm∑
i=1

Miδmi

(4.3)

where δki ∈ < is the ith parameter contributing to the stiffness matrix, δmi ∈ < is the

ith parameter contributing to the mass matrix, and Ki and Mi are respectively the

stiffness and mass elementary influence matrices. K0 and M0 are the stiffness and

mass matrices of the initial reference structure. Let θ ∈ <p define the concatenated

stiffness and mass parameters (θ = [δk ∈ <pk , δm ∈ <pm ]) where p = pk + pm. The

66



linear decomposition is valid when the physical changes to the damaged system affect

material properties such as elastic modulus, shear modulus, cross-sectional area, and

other linear multipliers of stiffness or mass.

Since the residual r(θ) lacks a closed form and is nonlinear, estimating θ requires

iteratively solving a linearized form of eq. 4.1 until convergence. From the sensitiv-

ity approach in structural dynamics [27], the residual when approximated by a first

order Taylor series expansion about a point θ0 ∈ <p results in the following linear

relationship

rj(θ) ≈ rj(θ0) + S(θ0)(θ − θ0) (4.4)

where S ∈ <qxp is the sensitivity matrix and a function of θ. The θ notation is

dropped for convenience.

In order to determine damage relative to a healthy baseline, updating is initialized

at θ0 = 0. Rewriting eq. 4.4 and evaluating at θ0 = 0 gives the sensitivity equation,

that is

Sθ = ∆λ̂+ ε (4.5)

where the jth component ∆λ̂j = λ̂j−λj(θ0), and ε comprises the truncation error and

any measurement noise or system identification error that may exist. Note for clarity

that θ > 0 indicates a reduction in the stiffness or mass from the reference structure.

In this paper, the number of identifiable eigenvalues is always less than the total

number of stiffness and mass parameters (q < p) rendering eq. 4.5 an underdeter-

mined system of linear equations.
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4.2.1 Sensitivity matrix

The columns of the sensitivity matrix associated with the stiffness parameters are

always negative, while columns associated with the mass parameters are always pos-

itive. This can be deduced from the definition of the sensitivity matrix. From the

rate of change of the eigenvalues [28], the sensitivity matrix is

Sj,i = ∂λj
∂θi

= φTj

(
∂K
∂θi
− λj

∂M
∂θi

)
φj (4.6)

where i = 1, · · · , p. Combining eq. 4.3 and eq. 4.6 and treating δm and δk as

independent variables gives

Sj,i = [−φTj Kiφj , λjφTj Miφj] (4.7)

This paper uses the terms stiffness sensitivity matrix to refer to −φTj Kiφj and mass

sensitivity matrix to refer to λjφTj Miφj.

The stiffness and mass influence matrices represent stiffness and mass matrices

of substructures, and hence must abide the positive semi-definite condition. By def-

inition of a positive semi-definite matrix −φTj Kiφj ≤ 0 and λjφ
T
j Miφj ≥ 0 for all

j and i since the eigenvalues are always non-negative. The monotonic property is

physically validated by the observation that a reduction in stiffness always reduces

the natural frequencies of the structure while a reduction in mass always increases

the frequencies.
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4.3 Method of approach

4.3.1 l1-norm optimization methods

The intuition behind sparse vector recovery is to minimize the number of nonzero

elements of the solution while finding a satisfactory fit to the system of equations.

The l1-norm has been suggested as a relaxed convex surrogate to counting nonzero

elements and is among the most popular sparse recovery methods. This paper inves-

tigates three closely related l1-norm optimization programs that have been applied in

related damage identification research.

In the case where the changes in parameters due to damage are small such that the

truncation error is negligible, the linear sensitivity equation eq. 4.5 is a satisfactory

model. The underdetermined linear inverse problem can be solved for a sparse solution

using the following convex optimization program known as the basis pursuit denoising,

min
θ
||θ||1

s.t. ||Sθ − (∆λ̂+ ε)||2 ≤ α

(4.8)

where {α ∈ < | α ≥ 0} is the regularization parameter; a predefined scalar acting as

a weight between the solution fit measured by the Euclidean norm (||.||2) and sparsity

in terms of the vector l1-norm (||.||1). As α → ||∆λ̂ + ε||2, one obtains the sparsest

solution, i.e. the solution with the fewest nonzero elements, θ∗ = 0. As α → 0, one

most often obtains a vector comprised of at most q nonzero elements provided S has

full row rank [29]. Again q is the number of rows of the sensitivity matrix.

Taking α = 0, the optimization program is equivalent to the basis pursuit, the
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second l1-norm based method investigated in this paper. Replacing the least squares

term with an affine constraint, the basis pursuit is written as

min
θ
||θ||1

s.t. Sθ = ∆λ̂+ ε

(4.9)

In cases where the damage magnitude is large enough such that the linear trunca-

tion error in eq. 4.5 is non-negligible, a nonlinear approach to the problem is needed.

This paper briefly compares the proposed method to the nonlinear LASSO. The non-

linear LASSO directly minimizes the following nonlinear optimization program using

an iterative nonlinear solver,

min
θ
||r(θ)||2 + α||θ||1 (4.10)

where again α is a regularization parameter defining the trade off between solution

fit and solution sparsity.

4.3.2 Proposed inverse method for non-negative

sparse vector recovery

This paper suggests that the non-negative constraint is a necessary condition to quan-

tify and locate damage in terms of stiffness and mass. By constraining the solution

space to the non-negative orthant, not only is the expected physical damage prop-

erties imposed, but the structure of the sensitivity matrix leveraged such that the

inverse problem provides physically meaningful results. Since the stiffness sensitiv-
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ity matrix is always negative, and the mass sensitivity matrix always positive, the

non-negative constraint forces the solution of the inverse problem to compensate any

eigenvalue increase from the undamaged to damaged structure with a reduction in

mass as opposed to a spurious increase in stiffness or vice versa. This claim becomes

apparent in the subsequent numerical verification and validation sections.

The proposed method is implemented in two steps. Step one, the non-negative

basis pursuit eq. 4.11 is solved, and a reduced system of algebraic equations is formed

comprised of the parameters associated with the nonzero elements of step one’s solu-

tion. In step two, the reduced nonlinear system is then solved using the non-negative

nonlinear least squares eq. 4.12. The non-negative basis pursuit proposed for step

one is defined as
min
θ
||θ||1

s.t. Sθ = ∆λ̂+ ε

θ ≥ 0

(4.11)

The non-negative constrained nonlinear least squares is then applied to the reduced

nonlinear system associated with the nonzero elements, that is,

min
θ̃∈D(r̃)

1
2 ||r̃(θ̃)||

2
2

θ̃ ≥ 0
(4.12)

where r̃ is the reduced residual comprised of the sparse subset of parameters θ̃ ∈ <p̃

where p̃ << p.

Some details on the feasibility of the basis pursuit and the non-negative basis

pursuit are briefly noted. As long as the sensitivity matrix is full row rank then
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the basis pursuit is always feasible. In other words, there always exists a solution θ

which satisfies the linear system of equations. The non-negative basis pursuit however

can be infeasible if there does not exist a vector that satisfies the linear system of

equations and the non-negative constraint. Infeasibility is often rare, at least to the

point that it was not observed in any simulation or experiment, primarily because the

stiffness sensitivity matrix is always positive and the mass sensitivity matrix is always

negative. If in the case, the optimization program was infeasible, one could relax the

affine constraint in eq. 4.11 to a more flexible form, that is ||Sθ −∆λ̂||2 <= α. The

smallest feasible value of α would be the optimal solution to the non-negative least

squares (min
θ
||Sθ − λ̂||2 s.t. θ ≥ 0).

The linear convex optimization programs were implemented using the CVX pack-

age in MATLAB [30]. This platform used the Gurobi solver at the best numerical

precision to solve the optimization programs. The non-negative nonlinear squares

was implemented using MATLAB’s constrained nonlinear least squares fmincon with

the interior-point optimization option [31]. The gradient of the objective function

was provided to the solver. The nonlinear LASSO was solved using MATLAB’s un-

constrained nonlinear least squares fminunc function. The gradient of the objective

function was numerically approximated.

4.4 Numerical verification:

Shear beam

This section presents ideal numerical simulations used to demonstrate the basis pur-

suit’s performance in identifying changes in mass and stiffness on a basic structure.
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This follows with a demonstration highlighting the improvement to the inverse method

when including a non-negative constraint. The simulations are ideal because the

model used to derive the algorithm is also the one used to generate the data. For this

proof of concept, a shear beam model with ten degrees of freedom is investigated.

Each element (El.) is enumerated from one the first mass closest to the support to

number ten, the free end. The shear beam has stiffness k1 = ... = k10 = 1500 and

alternating masses along the beam’s length: m1 = 1, m2 = 2, m3 = 1, ... , m10 = 2.

The structure is undamped and its fundamental natural frequency is .740 Hz.
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Figure 4.1: a) The successful detection of a 1% stiffness reduction on the shear beam as
a function of damage location and number of identified natural frequencies using the basis
pursuit. b) Estimated change in stiffness δk for a 1% stiffness reduction at El.7 on the shear
beam using 6 natural frequencies

Prior to investigating problems involving stiffness and mass, this simulation first

verifies that the basis pursuit successfully identifies changes in only stiffness on the

shear beam. In this set of simulations, each damage case consists of a 1% reduction in

stiffness at each element, taken one at a time. The basis pursuit was tested on each of

the ten damage cases using 1, 2, 3,..., 10 natural frequencies totalling 100 tests. The

sensitivity matrix contains 10 columns each corresponding to an element’s stiffness.

Fig. 4.1 presents which damage cases were correctly identified, alongside the solution
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to one example in which 6 frequencies were used to identify a 1% stiffness reduction at

El.7. The authors considered successful identification when i) the solution identified

the correct stiffness location, ii) when the magnitude of the estimated damage was

within 20% the true magnitude, and iii) when the estimated magnitudes at all other

elements were less than 20% the true damage magnitude. From Fig. 4.1a, the basis

pursuit solves the inverse problem for 82% of the cases, thus verifying the success of

the l1-norm approach.
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Figure 4.2: The estimated change in stiffness δk (black) and in mass δm (grey) for a 1%
reduction in mass and stiffness at El.7 on the shear beam using 10 frequencies. Optimal
solution shown using a) the non-negative basis pursuit, b) the basis pursuit, and c) the basis
pursuit denoising as a function of regularization parameter. Dashed line in (c) is same
solution shown in (b)

In contrast, the performance of the basis pursuit drastically reduces when at-
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tempting to identify reductions in stiffness and mass at a single element. In this

simulation, the stiffness and mass at El.7 were reduced by 1% their original values.

The maximum number of natural frequencies, in total ten, were used to identify the

damage. The sensitivity matrix is comprised of the stiffness and mass parameters

rendering S ∈ <10x20. Fig. 4.2 presents the optimal solution θ∗ of a) the non-negative

basis pursuit (eq. 4.11), b) the basis pursuit (eq. 4.9), and c) the basis pursuit de-

noising (eq. 4.8) as a function of the regularization parameter α. By observing Fig.

4.2, it is clear that the non-negative constraint is a necessary condition to estimate

the correct reduction in mass and stiffness; otherwise the solution is dominated by

physically meaningless changes in mass.
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Figure 4.3: The successful detection of a 1% stiffness and mass reduction on the uniform
shear beam as a function of damage location and number of identified natural frequencies
using a) the non-negative basis pursuit, and b) the basis pursuit

In order to verify that the previous observation is a reoccurring phenomenon, the

methods are tested on each possible damage location for the entire range of natural

frequencies using the same approach that appeared in the first simulation. In this

simulation, each ith damage case consists in a reduction in the stiffness ki and the

mass mi by 1% their respective baseline. Fig. 4.3 presents which damage cases
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were correctly identified. Successful identification required that the method correctly

estimated both the change in stiffness and in mass. Fig. 4.3a indicates that the

non-negative basis pursuit successfully identifies 68% of the damage cases, while Fig.

4.3b indicates that the basis pursuit only succeeded in 26% of the cases. Since the

maximum number of eigenvalues were considered, Fig. 4.3b also indicates that it is

likely impossible to estimate mass and stiffness simultaneously for damage occurring

at El.1, 3, 5, 6, 7 and El.9 using natural frequencies and a sparsity prior.

4.5 Frame structure experiment

A clear trend indicating that the non-negative constraint enhances the performance

of the inverse eigenvalue approach was found using the simulated shear beam. In

order to substantiate these observations, irreducible model error must be considered.

For the purpose of validation, the authors tested the methods and observations on

vibration data measured from the bolted fixed-moment steel frame shown in Fig.

4.4a.

The 1.22 m tall frame was comprised of 3.18 mm thick steel plates and steel angles,

and assembled as shown in the elevation drawing Fig. 4.5. At each connection, the

plate parallel to the floor is fastened to an orthogonal plate by two angles and six bolts

as presented in detail drawing C-C’. Two damage scenarios were tested. In damage

case 1 (DC1) a single steel angle connecting the fourth level post to the third level

beam was removed (Fig. 4.4b), and in damage case 2 (DC2) the steel angle at the

first level was removed. The damage introduced was intended to significantly impact

local mass and stiffness. The modelled beam elements affected by the damages are
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Figure 4.4: a) Photo of the bolted steel frame experiment before damage. b) Photo of damage
case 1 where the third level steel angle was removed

Figure 4.5: Diagram of the physical system with dimensions. Locations of the hammer
strikes and accelerometers used for system identification are shown. On the far right is the
structural model and the locations damage case 1 (DC1) and damage case 2 (DC2)
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shown in Fig. 4.5 along side an element naming convention that is adhered to in this

paper.

The frame was instrumented with four uniaxial accelerometers (PCB 333B30)

located at each level. To excite the structure’s modes, five hammer strikes from a

modal impact hammer (PCB 086C03) were delivered at levels two, three, and four

totaling 15 tests for the undamaged and damaged configurations. The sampling

frequency was 400 Hz collecting 8192 points for each test. The ERA-OKID was used

to extract modal information using the input measurements from the force transducer

at the tip of the hammer and the outputted accelerations measured at the four degrees

of freedom. The lowest four identified frequencies were selected. The average of the

frequencies identified from the undamaged frame and the damaged frame are listed

in Table 1. The coefficient of variation of the identified frequencies on average was

below 0.001 due to the controlled lab space where the experiments were conducted.

Because the variance was low, only the average of the identified frequencies were used

to implement the algorithms.

Table 4.1: Comparison of Average Modal Frequencies

Mode Model-
undamaged

(Hz)

Undamaged
structure
(Hz)

Damage
case one
(Hz)

Damage
case two
(Hz)

1 6.10 6.02 6.10 5.90
2 19.38 19.30 18.68 19.08
3 34.37 34.41 33.87 34.38
4 47.35 47.34 47.29 47.45

The finite element model used to derive the eigenvalue sensitivities (eq. 4.7) is

comprised of 34 discrete beam elements and 30 translation degrees of freedom oriented

parallel to the floor. The modulus of elasticity was 200 GPa. Coincident nodes were

78



fixed. At first, the derived natural frequencies were significantly larger than those

identified from the undamaged frame indicating a need to update the model. The

discrepancy between the model and the physical system was presumably dominated

by an inadequate assumption on the rigidity of the connections. In order to match

the model’s frequencies to those identified, two design parameters were selected for

updating: the moment of inertia of all vertically oriented and all horizontally oriented

beam elements at the connections. The natural frequencies derived from the updated

model are listed under Model in Table 5.1.

Each stiffness parameter (δki, eq. 4.3) corresponds to the elasticity of a single

beam element. Among the 34 total stiffness parameters, 11 are identical in terms

of their influence on the identified eigenvalues due to the frame’s symmetry about

its vertical axis. Hence, it is impossible to distinguish parameters on the left hand

side of the frame from the right hand side. In order to clearly present the following

analysis, the parameters of the sensitivity matrix are restricted to the 19 stiffness

parameters demarcated in Fig. 4.6a. For the same reasons, the mass parameters

(δmi) are restricted to the subset associated with the nodes demarcated in Fig. 4.6c.

Despite removing the frame’s global symmetry, the presence of local quasi-dependencies

between stiffness parameters would complicate successful application of the inverse

method. This challenge is ubiquitous to the damage identification IEP because the

number of unique measurements is so limited. In order to locate local colinearity,

the cosine angles between all 19 stiffness parameter sensitivities were calculated. Fig.

4.7a presents the cosine angles between each column of the stiffness sensitivity matrix
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Figure 4.6: Parameter subset selections highlighted in red: a) the stiffness elements associ-
ated with beams, posts, and connections, b) the stiffness elements associated with connections
only, and c) the mass nodes

derived from the baseline model, computed as

Ci,j = |Si · Sj|
||Si||2||Sj||2

, i, j = 1...pk (4.13)

where i and j respectively indicate the row and column of C. If Ci,j = 1 then the

ith and jth elements are colinear, and if Ci,j = 0 then the ith and jth elements are

orthogonal. The white colored blocks represent values of Ci,j ≥ 0.99. The clusters

of Ci,j ≥ 0.99 indicate that the parameters representing the connections and the pa-

rameters defining the adjacent beams or posts (e.g. El.1 and El.2; El.3 and El.4) are

nearly colinear and indistinguishable. The model discretization created additional

complications because of the disproportionate scaling of the colinear adjacent param-

eters. Fig. 4.7b presents the normalized euclidean magnitudes of the columns of the

sensitivity matrix indicating the disproportionate scaling. It is clear from Fig. 4.7b
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that the beams and posts are more sensitive to damage than the connections. The

proposed method, like any inverse based approach, cannot distinguish parameters

among a colinear cluster. Instead inverse algorithms have a strong tendency to iden-

tify the most sensitive parameter among a colinear cluster which in this case are the

beams and posts.

Figure 4.7: Left hand side figure depicts the cosine angles between each column of the stiff-
ness sensitivity matrix normalized between zero and one where zero indicates orthogonality.
The right hand side figure presents the normalized Euclidean magnitude of each column of
the stiffness sensitivity matrix

Since the inverse method cannot distinguish damage between the connections and

the beams and posts, only the stiffness parameters associated with the connections

are included in the columns of the stiffness sensitivity matrix in addition to the mass

parameters for the remainder of this paper. The 11 stiffness parameters associated

with connections are demarcated in Fig. 4.6b.
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4.6 Numerical verification:

Frame structure

This section presents numerical simulations representative of the experiment to follow

intended to verify the proposed methods and observations. Only the first damage case

is simulated in this section. The removed third level steel angle was modelled as an

equivalent reduction in bending stiffness through the change in its inertial term by

reducing the thickness of El.13 and El.15 by one-third and one-half respectively. The

damage was implemented in the model by reducing the elastic modulus of El.13 and

El.15 to respectively 29.6% and 12.5% their original values, and reducing the mass at

nodes 10, 11, and 12 to respectively 83.3%, 71.4%, and 85.7% their original values.

The solutions are presented as estimated changes in stiffness δk and changes in mass

δm where +1 indicates a 100% reduction. The parameter setup is comprised of the

15 mass parameters and the 11 stiffness parameters associated with the connections

rendering the sensitivity matrix as S ∈ <4x26.

The following simulation again suggests that sparsity alone may be too weak a

prior to differentiate between changes in mass from changes in stiffness using measured

natural frequencies. The basis pursuit denoising (eq. 4.8) and the nonlinear LASSO

(eq. 4.10) are investigated. Fig. 4.8a and Fig. 4.8b present the solution paths

to respectively the basis pursuit denoising and the nonlinear LASSO as functions

of the regularization parameter (α). Consider Fig. 4.8a. If an over-fit solution is

selected, indicated by the dashed (1) line, 100% and 45%mass increases are incorrectly

estimated at the first level. The sparsest solution, indicated by the dashed (2) line,
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provides no information on stiffness and incorrectly identifies the mass reduction

location. Note that some solutions overestimate the damage magnitudes predicting

over 100% reductions in stiffness and increases in mass. This phenomenon is a result

of the linear truncation error and the underlying monotonic properties of the nonlinear

operator. Fig. 4.8b indicates that the nonlinear LASSO performs in a similar manner

with the exception that the estimated magnitudes are more accurate. The stiffness

reduction at El.13 is correctly identified, however significant mass increases are falsely

detected at the first level. Note that the solution path to the nonlinear LASSO lacks

relative smoothness because the optimization program is non-convex and hence lacks

guarantees on convergence or global optimality.

The next simulation verifies the performance of the proposed non-negative inverse

method. Since the magnitude of the stiffness and mass reduction is substantial, the

solution to the non-negative basis pursuit requires updating to account for the linear

truncation error. As described in section three, the method entails solving the non-

negative basis pursuit (eq. 4.11) and then updating the parameters associated with

the nonzero elements of the solution using the non-negative nonlinear least squares

(eq. 4.12). Fig. 4.9a presents the final solution as the estimated change in stiffness δk

and change in mass δm. Alongside the optimal solution, Fig. 4.9b presents the values

of the simulated damage. By observation, it is clear that the proposed non-negative

method correctly quantifies and locates the stiffness reductions. The method identifies

a mass reduction at the correct level, however only one damaged node was located.

In terms of quantification, the contribution of all three mass reductions accumulate

at the single node, and hence appears as an overestimation in mass reduction.

The final simulation investigates the effects of measurement error. A vector of
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Figure 4.8: a) The solution path to the basis pursuit denoising, and b) the nonlinear LASSO
as functions of the regularization parameters. Black and grey lines indicate stiffness and
mass parameters respectively. Solutions selected at (1), (2), and (3) are superimposed over
the frame in the right hand figures. Solid circles indicate estimated changes in mass and
thick colored lines indicate estimated changes in stiffness

simulated measurement noise ε is added to both the damaged and undamaged eigen-

values. The measurement error contained in ε is defined as the realization of a q-

dimensional Gaussian random vector with zero mean and standard deviation of each

component εi proportional to the specified coefficient of variation (cv). Two tests

comprised of random noise defined by cv = 0.001 and 0.002 were performed. 0.002

was equal to the maximum coefficient of variation obtained from uncertainty quan-

tification studies in system identification using ambient vibrations [32]. For each test,

the algorithm was implemented on 1,000 realizations of ε.
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Figure 4.9: Proposed non-negative method applied to simulated damage case 1 (DC1). The
results presented as a) the estimated change in stiffness (δk) and the estimated change
in mass (δm), alongside b) the exact change in stiffness and mass. The locations of the
estimated and exact damage locations are shown in the right hand figures

Fig. 4.10a and Fig. 4.10b presents the estimated changes in stiffness and mass for

all 1,000 realizations of the Gaussian random variable with respectively cv = 0.001

and cv = 0.002. The results are compiled into box plots, where the central hash

denotes the median, and the bottom and top edges of the box denote the 25th and

75th percentiles. The whiskers extend to the most extreme data points not considered

outliers, where the extreme data is within +/- 2.7 standard deviations from the

mean assuming a normal distribution [31]. For both levels of measurement noise, the

variance of the estimated stiffness reductions is small at the true damaged locations.

The estimated mass reduction appears to be more sensitive to measurement error
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than the estimated changes in stiffness. The location of the damage in terms of mass

and stiffness is still apparent despite the measurement error.
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Figure 4.10: Box plots of estimated change in stiffness δk and mass δm using proposed
non-negative method on simulated damage case 1 (DC1) perturbed by white noise with a)
cv = 0.001 and b) cv = 0.002. Estimated solution and exact damage locations superimposed
over the frame in right hand side figures. Solid circles indicate changes in mass and thick
colored lines indicate changes in stiffness

4.7 Experimental validation results

This section presents a summary of the experimental results aimed at validating

the proposed methodology using the physical system. The proposed non-negative

inverse method is used to quantify and locate the missing steel connections using the
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changes in the four natural frequencies identified from the vibration data measured

from the damaged and undamaged frame. Both damage scenarios are considered.

The parameter setup is again comprised of the mass parameters and the stiffness

parameters associated with the connections totalling 26 parameters rendering S ∈

<4x26.

Fig. 4.11 presents the estimated changes in stiffness and in mass for damage case

1 alongside the modelled damage location and magnitude. The algorithm identifies

approximately 50% reductions in mass and stiffness at the third level of the frame,

and a false positive at the fourth level. The false positive is not detrimental as it is

in close proximity to the true damage. Overall, the algorithm successfully identifies

both the change in mass and in stiffness. Fig. 4.12 presents the estimated changes

in stiffness and in mass for damage case 2 alongside the modelled damage location

and magnitude. The algorithm identifies approximately 60% reduction in stiffness at

the first level of the frame, and a small false positive at third level. The estimated

changes in mass are also located at first and second level, however it is unclear if

changes in mass are present or if these are spurious results given the small estimated

magnitude.

4.8 Conclusion

This paper suggests and demonstrates that sparse vector recovery is too weak a prior

to simultaneously identify changes in stiffness and mass from a subset of identified

natural frequencies. However, in cases where damage is defined by strict reductions

in stiffness and mass, the associated underdetermined inverse eigenvalue problem can
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Figure 4.11: a) Estimated change in stiffness δk and change in mass δm using proposed
method on simulated damage case 1 using the vibration data. b) The modelled changes in
stiffness and mass due to the damage

be uniquely solved when non-negativity is imposed on the solution space. This claim

is substantiated using a numerically simulated ten degree of freedom shear beam

and a four-level frame. Simulations regarding the shear beam indicate that it is

impossible to quantify and locate both the mass and stiffness parameters for most

sparse damages located along the beam’s length unless a non-negative constraint was

included. A multi-damage location scenario using the simulated frame also indicated

the same finding; a non-negative constraint is needed to identify changes in mass and

stiffness.

In addition to these observations, this paper proposed a two-step model updat-
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Figure 4.12: a) Estimated change in stiffness δk and change in mass δm using proposed
method on simulated damage case 2 using the vibration data. b) The modelled changes in
stiffness and mass due to the damage

ing method to solve the nonlinear inverse problem, which combined the non-negative

constraint, l1-norm optimization, and the nonlinear least squares. The method was

verified on the frame model in the presence of measurement error, and then validated

using vibration data measured from a four-level bolted steel frame subjected to dam-

age. Two damage cases were investigated. In each case, a steel connection angle was

removed which significantly reduced the stiffness and mass of the associated dam-

aged element. Using four identified natural frequencies, the proposed non-negative

inverse method successfully quantified and located the local reductions to mass and

stiffness for the first tested damage case. In the second damage case, the method

89



correctly identified stiffness reductions but underestimated the true quantity of the

mass reductions.

For future work, the authors wish to determine if the sparse and non-negative

constraints are sufficient to differentiating local damage in global vibrations from

changes in environmental features such as temperature. In addition to environmental

impacts, the scalability of the method needs further investigation in the context of

larger experiments.
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Chapter 5

Non-negative and Sparsity

Constrained Inverse Problems

in Damage Identification -

Application to a

Full-scale 3D Truss

Abstract

Non-negative constrained least squares and l1-norm optimization are sometimes viable

inverse-based methods used to quantify and locate damage described by local stiffness

reductions using measured changes in natural frequencies. Although the two methods

provide meaningful solutions to the associated underdetermined inverse problem when
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the physically correct solution is sufficiently sparse, each method is disadvantaged in

terms of either solution uniqueness, regularization, or forced sparsity. This paper

addresses these challenges and argues that combining the non-negative constraint

and l1-norm optimization improves performance and abates or improves upon the

deficiencies of the standalone methods. This paper demonstrates that the optimal set

of solutions satisfying the non-negative least squares is bounded and that estimating

these bounds provides a novel measure for interpreting the validity of the sparse

solution recovered from the proposed non-negative constrained l1-norm optimization

method. The proposed method is numerically verified and experimentally tested on

vibration data taken from a 17.24 m long full-scale three-dimensional truss subjected

to three progressive local damage cases.

5.1 Introduction

Damage identification is often contextualized as a parameter estimation inverse prob-

lem where the parameters of a finite element (FE) model are periodically calibrated

to the physical system in order to deduce the physical cause of any measured shifts in

dynamic behavior [1]. When measured dynamic features are restricted to the natu-

ral frequencies, calibration (FE model updating) requires solving a severely ill-posed

inverse problem described by an underdetermined system of equations given that the

number of parameters defining the spatial domain greatly outnumbers the identifi-

able modes of vibration. Conventional regularized least squares methods that may

improve ill-conditioning are insufficient to determine physically meaningful solutions

to underdetermined inverse problems [2].
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Sparsity, the characteristic describing vectors with few nonzero elements, can be

one necessary condition for obtaining meaningful solutions to underdetermined inverse

problems [3]. Damage defined by reductions in stiffness at local regions of the spatial

domain are represented by sparse vectors. Hence damage sufficiently restricted in

space, i.e. sufficiently sparse, may be identifiable from changes in natural frequencies

using the inverse method [4].

If the local characteristics of damage are known apriori, one approach to solving

the inverse problem is to directly impose locality on the solution space in the form

of sparsity. The first attempts at imposing locality, thus indirectly imposing sparsity,

were through minimum rank perturbation theory [5, 6]. Since that time, convex op-

timization theory matured and efficient convex methods that target sparse solutions

to inverse problems were introduced [3, 7, 8]. The most popular methods minimize

the l1-norm - the convex surrogate to counting a vector’s nonzero elements [9]. In

structural health monitoring (SHM), l1-norm optimization has applications in force

localization [10], data compression [11], and notably local damage identification. In

damage identification, Hernandez proposed l1-norm optimization to identify small

changes in stiffness from natural frequencies [4] and validated the method on a can-

tilever beam [12]. The authors in [13] presented an l1-norm regularized nonlinear least

squares approach to account for the eigenvalues’ nonlinear dependence on stiffness.

The application of the l1-norm has been extended to other damage features as well

such as: the combination of natural frequencies and mode shapes [14, 15], the time-

domain impulse response [16], and measured response signals [17]. Other notable

sparse vector recovery approaches are based on orthogonal matching pursuit [18] and

total variation regularization [19].
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Although l1-norm regularization has facilitated using natural frequencies for dam-

age identification, the sparsity prior is not without its limitations. l1-norm optimiza-

tion forces a sparse solution with at most k nonzero elements where k is the number of

unique measurements [20]. Forced sparsity is problematic to solution interpretation

since not all changes in frequencies are due to local damage and hence not all solu-

tions should be sparse [21]. Furthermore, the solution to l1-norm optimization may

not be unique [4,13]. These characteristics are unsatisfactory in terms of interpreting

the validity of the solution, since the solution is always sparse yet may be physically

meaningless and(or) non-unique.

When defined in terms of stiffness, damage has another important property -

non-negativity. Physically, non-negativity reflects the property that damage tends

to strictly reduce the stiffness of the damaged element [22, 23]. Methods that target

sparse solutions such as l1-norm optimization are not necessary to the recovery of

sparse and non-negative solutions [24]. If a sufficiently sparse non-negative solution

exists, then it may be the only non-negative solution to satisfy the underdetermined

linear system [25, 26]. This implies that the non-negative constraint can induce a

unique and sparse solution without explicitly imposing sparsity. Hassiotis and Jeong

first demonstrated that local damage identification could be performed with a subset

of natural frequencies by using non-negative constraints [27]. Later Smith and Her-

nandez bridged the gap between sparse damage and non-negativity, and found that

the eigenvalue sensitivity matrix satisfies the necessary conditions to induce unique

non-negative solutions [21]. The necessary condition is that the span of rows of the

matrix must intersect the non-negative orthant [7, 26]. In [21], a measure for deter-

mining whether the system of equations possesses a nontrivial unique non-negative
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solution was presented based on work by [28]. Despite the appeal in using non-

negative least squares, the method also has its disadvantages. Specifically, there is no

mechanism to penalize the magnitude of the estimated stiffness reduction in order to

regularize the solution.

This paper leverages the concepts of non-negativity, uniqueness, and sparsity to

improve and build upon the l1-norm optimization and the non-negative least squares.

The objective of this paper is to illustrate that the linearized damage identification

inverse problem using natural frequencies: (i) is among a special class of underdeter-

mined inverse problems with a bounded set of solutions satisfying the non-negative

least squares, (ii) that finding the sparsest solution within this non-negative set im-

proves the inverse method’s performance over the standalone application of l1-norm

optimization or the non-negative least squares, and (iii) that measuring the bounds

of the non-negative least squares solution space can aid in interpreting the validity

of the recovered sparse solution. Using the sensitivity-based inverse method, this pa-

pers proposes a non-negative constrained l1-norm optimization program to identify

local stiffness reductions from a subset of natural frequencies. This paper provides a

method to measure the bounds on the optimal set to the non-negative least squares

in order to aid in interpreting the validity of the sparse prior. The proposed methods

are first verified numerically, and then tested using vibration data measured from a

17.24m long aluminum 3D truss subjected to three local damage scenarios. Only 6

modes of vibration were identified and the spatial domain is defined by 144 stiffness

parameters. In this experiment, the derived natural frequencies from the finite ele-

ment (FE) model do not match the natural frequencies identified from the healthy

structure. In order to discern damage from model error, the proposed method min-
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imizes the residual between the natural frequencies identified from the undamaged

and damaged structure.

The outline of the paper is as follows. Section 5.2 develops the damage identifica-

tion inverse problem using the sensitivity method in structural dynamics. Section 5.3

develops the theory of the unique sparse and non-negative solution to the underde-

termined inverse problem, and details the proposed methodologies: the non-negative

constrained l1-norm optimization method, and the measure of solution space bounds.

All of the convex optimization programs were implemented using the CVX package

in MATLAB using the Gurobi solver [29]. Section 5.4 introduces the model of the

truss, which is then used to illustrate the proposed methods. Section 5.5 compares

the proposed method to the standalone applications of the l1-norm optimization and

the non-negative least squares. Section 5.6 details how solutions can be interpreted

from the solution set bounds, also referred to as the measure of uniqueness. The re-

maining paper is devoted to experimental validation. Section 5.7 provides a detailed

summary of the physical structure and additional details on the FE model. Section

5.8 summarizes the vibration modal tests conducted on the truss, the process used

to identify the natural frequencies, and the sources of uncertainty in the identified

modes. In section 5.9, the results of the proposed method using the vibration data

are summarized.

5.2 Method of approach

From the sensitivity-based inverse method to structural dynamics [2], this paper

relates changes in the stiffness parameters defining a model to changes in the identified
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eigenvalues (natural frequencies squared) between the undamaged and potentially

damaged structure through an approximate system of linear equations:

S∆θ = ∆λ (5.1)

where ∆λ ∈ <q is the change in the eigenvalues identified from the undamaged and

potentially damaged physical system, S ∈ <qxp is the sensitivity matrix, and ∆θ ∈ <p

is the unknown change in the parameters defining the stiffness matrix.

This paper is restricted to cases where changes to the mass matrix M = MT ∈

<nxn due to damage are negligible, and the stiffness matrix K = KT ∈ <nxn can be

written as a linear combination of the candidate parameters:

K = K0 −
p∑
i=1

Ki∆θi (5.2)

where ∆θi ∈ < is the change in the ith parameter contributing to the change in the

stiffness and Ki is an elementary influence matrix. K0 is the stiffness matrix defining

the model of the baseline structure. The linear decomposition is valid when damage

affects material properties such as elastic modulus, shear modulus, cross-sectional

area, and other linear multipliers of stiffness.

From the rate of change of the eigenvalues [30] and the sensitivity method [2], the

sensitivity matrix S ∈ <qxp is

Sj,i = ∂λj
∂∆θi

= φTj

(
∂K
∂∆θi

− λj
∂M
∂∆θi

)
φj (5.3)
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Combining eq. 5.2 and eq. 5.3,

Sj,i = −φTj Kiφj (5.4)

where φj ∈ <n is the mode shape corresponding to the jth eigenvalue λj ∈ < which

satisfy

Kφj = Mφjλj (5.5)

and

φTj Mφj = 1 (5.6)

In practice, the number of identifiable eigenvalues q is far less than the number

of parameters defining the stiffness matrix p, hence eq. 5.1 is an underdetermined

system of linear equations. The sensitivity matrix is derived from an imperfect model

of the physical system and the identified eigenvalues contain measurement error.

5.3 Non-negative sparse

vector recovery

5.3.1 l1-norm optimization

The intuition behind sparse vector recovery is to minimize the number of nonzero

elements of a feasible vector which fits the system of equations to a specified degree of

satisfaction. The following convex optimization program, known as the basis pursuit
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denoising, targets sparse solutions to eq. 5.1:

min
∆θ

||∆θ||1

s.t. ||S∆θ −∆λ||2 ≤ α

(5.7)

where {α ∈ < | α ≥ 0} is the regularization parameter; a predefined scalar acting as a

weight between the solution fit in terms of the Euclidean norm (||.||2) and sparsity in

terms of the vector l1-norm (||.||1). As α→ ||∆λ||2, one obtains the sparsest solution

∆θ∗ = 0, i.e. the optimal point with the fewest nonzero elements. As α → 0, one

obtains the least sparse solution, which typically is comprised of at most q nonzero

elements, the row rank of S [20]. If we consider a sparse solution as having at most

q-nonzero elements, it is clear that eq. 5.7 must force a sparse solution for all α.

Note that issues regarding uniqueness of solutions are expected and that reduc-

tions in stiffness from different elements are indistinguishable if they generate the

same changes in the subset of the spectrum being used. Even if every element is

distinguishable, the underdetermined system of equations may have two satisfactory

and different sparse solution both with the same number of nonzero elements.

5.3.2 Non-negative constrained

l1-norm optimization

The stiffness reduction prior can be imposed on the solution space as a non-negative

constraint, that is ∆θ ≥ 0, in accordance with eq. 5.2. This paper proposes the non-

negative constrained basis pursuit (NNL1) to estimate the spatially sparsest reduction
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in stiffness. The NNL1 convex optimization program is written as

min
∆θ

||∆θ||1

s.t. ||S∆θ −∆λ||2 ≤ α

∆θ ≥ 0

(5.8)

The trade-off between sparsity and fit using α as defined for eq. 5.7 is also valid for

the NNL1. The exception is α can be bounded by a value greater than zero below

which the problem is infeasible. The smallest feasible α is unique and can be obtained

from the optimal solution to the non-negative least squares (NNLS). The NNLS is a

constrained convex optimization program taken as

min
∆θ,ε0

||ε0||2

subject to S∆θ = ∆λ+ ε0

∆θ ≥ 0

(5.9)

where ε0 ∈ <q is an optimization variable. Since the NNLS is strictly convex in ε0,

then an optimal point minimizing the NNLS (ε∗0) is unique by definition [20]. Since

||ε∗0||2 is the unique global minimum to the NNLS, then the NNL1 is only feasible if

α ≥ ||ε∗0||2.

By considering the trade-off between the degree of sparsity and fit, we expect

that if α = ||ε∗0||2, then the NNL1 yields the best fit solution and one that is sparse

containing at most q-nonzero elements. The set of vectors satisfying the infimum of

the NNL1 when α = ||ε∗0||2 is of primary importance in this paper since it shares in-

formation with the non-negative least squares solution while also being sparse enough
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for physical interpretation.

5.3.3 Measure of uniqueness

The set of all possible vectors satisfying the infimum to the specified optimization

program is defined as its optimal set. We define the optimal set of the NNLS with

SNN = {∆θ∗| S∆θ∗ = ∆̃λ, ∆θ∗ ≥ 0}

where for convenience ∆̃λ = ∆λ+ε∗0. Note that the optimal set to the NNL1 evaluated

at α = ||ε∗0||2 is a subset of SNN . We are interested in quantifying bounds on SNN as

an aid for interpreting the legitimacy of the sparse solution resulting from the NNL1.

Consider the following argument. In addition to the system of equations, S∆θ = ∆̃λ,

additional equations may arise when the non-negative constraint is active on elements

of the optimal point ∆θ∗i = 0. Hence, sparse solutions tend to induce additional

equations through the non-negative constraint thus improving the proximity to a

unique solution. From optimization theory, this phenomenon can be attributed to the

complementary slackness condition [20]. If a total of p − q non-negative constraints

are active on ∆θ∗i = 0, then SNN is a singleton set. This phenomenon was frequently

observed for a variety of damage cases using a numerically simulated shear beam, 2D

truss, and 3D truss [21]. In the case the SNN is a singleton, then the optimal set has

one unique point and that optimal point simultaneously satisfies the infimum of the

NNL1 and the NNLS. If the optimal point is not unique, we can quantify bounds on

SNN to determine a metric for the optimal set’s size, or in other words, its proximity

to a unique solution.
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An intuitive approach to determining bounds on SNN was provided in [28] based on

similar techniques developed in [31]. We may interpret bounds on SNN as the worst-

case distance between any two members of the solution set satisfying the NNLS for

each vector coordinate. This is equivalent to solving the following convex optimization

program for all p coordinates:

dk = max
∆θ′≥0, ∆θ≥0

∆θk −∆θ′k

subject to S∆θ = ∆̃λ

S∆θ′ = ∆̃λ

(5.10)

For intuition, dk for k = 1 · · · p is the length of the kth side of the smallest hyper-cube

containing SNN . Eq. 5.10 can be reformulated using duality theory to obtain a single

convex optimization program

min
Y,Y′,d̃

||d̃||1

subject to (Y−Y′)T (∆̃λ) = d̃

YTS ≥ I

Y′TS ≤ I

(5.11)

where Y,Y′ ∈ <pxq are optimization variables.

Since each coordinate d̃k is an upper bound on dk and strong duality holds, then

||d̃∗||1 provides a metric on the bounds of SNN . In [32], it was proven that if ||d̃∗||1 = 0

then SNN was a singleton. It follows from ||d̃∗||1 = 0 that ∆θ∗ is the unique optimal

point to both the NNLS and the NNL1 evaluated at α = ||ε∗0||2. Hence we refer to

||d̃∗||1 as the measure of uniqueness.
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Although eq. 5.11 has a clear interpretation when ||d̃||1 = 0, the implications

of ||d̃∗||1 > 0 are unclear. In order to interpret a non-zero measure of uniqueness,

this paper derives an upper bound on ||d̃||1 to normalize about. For convenience,

let M = (Y − Y′)T . The optimal point d̃∗ of eq. 5.11 remains unchanged if the

objective function is substituted with ||M∆̃λ||/||∆̃λ||. By definition of an induced

matrix norm, ||M∆̃λ||/||∆̃λ|| ≤ ||M||. Hence, if we normalize ||d̃||1 with ||∆̃λ||1,

then an upper bound on the uniqueness measure can be determined by the following

convex optimization program

δub = min
Y,Y′

||Y−Y′||1

subject to YTS ≥ I

Y′TS ≤ I

(5.12)

Using the upper bound, we implement the measure of uniqueness as

δ = ||d̃||1
δub||∆λ+ ε∗0||1

, 0 ≤ δ ≤ 1 (5.13)

Note that if eq. 5.12 is feasible then SNN must be bounded. This program is always

feasible since the sensitivity matrix has all non-positive entries.

5.4 Truss model

This section provides a description of the FE model of the experimental truss and the

three damage scenarios. Ideal numerical simulations based on the truss model are used

in the following sections to verify and illustrate the methodologies. A more detailed
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description of the physical truss and damage cases are provided in the experimental

validation section.

The simulated 3D truss is a beam element model based on the physical description

of the 17.24m long aluminum truss. Fig. 5.1 presents a plan view of the truss

with overall dimensions and descriptive labels. The truss is comprised of aluminum

cylindrical tubes each having modulus of elasticity of 69.64 GPa, density of 2714.5

kg/m3, and Poisson’s ratio equal to 0.33. Fig. 5.2a presents the beam element model

demarcated by the 11 bays. The FE model is comprised of 144 beam elements. The

boundary conditions were pinned in all three directions at the end of bay 1, and pinned

in the y and z directions at the end of bay 11. The stiffness matrix was condensed to

the translation degrees of freedom associated with the z and y coordinates. The first

six natural frequencies of the condensed FE model are presented in Table 5.1. Their

associated mode shapes are presented in Fig. 5.13. Fig. 5.2b-e presents the naming

convention for each cluster of elements defining a section of the truss. The element

groups are intended to help convey the results of the simulations to the reader.

Three damage cases are studied. Each of the three damage cases was modelled

as an approximate reduction in the damaged element’s elastic modulus proportional

to the reduction in axial stiffness expected in the physical experiments. The three

damage cases are in shown in Fig. 5.3. DC1 consists of a 30% reduction in the elastic

modulus at bay 9, DC2 consists of an 82% reduction in elastic modulus at the same

element in bay 9, and DC3 consists of 82% reductions in stiffness at bay 5 and bay

9. For clarity, note that the damaged element in Bay 9 is parallel to the x− y plane,

and the damage element in Bay 5 is parallel to the x− z plane.
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6 Panels @ 1.73m = 10.38m
.31m

4 Panels @ 1.64m = 6.56m

MAIN CHORD - TYP
152.4m Ø O.D. x 7.94mm

DIAGONAL BRACE - TYP
76.2mm Ø O.D. x 6.35mm

STRUT - TYP
50.8mm Ø O.D. x 4.76mm

END STRUT - ONLY
63.5mm Ø O.D. x 6.35mm

AXIAL BRACE - TYP
50.8mm Ø O.D. x 6.35mm

1.83m

1.98m

Figure 5.1: Plan view of the truss with dimensions and nomenclature

Figure 5.2: a) 3D truss model with bays numbered 1-11. Red nodes indicate locations of
boundary conditions. Clusters of elements defining the truss sections use the following
naming conventions: b) main chords in red (MCh) and axial diagonals (Axi) in black, c)
diagonal braces at plane 1 (P1D) in red and diagonal braces in plane 2 (P2D) in black, d)
struts (Str) in red, and e) diagonal braces at level 1 (Lv1D) in black and diagonal braces
at level 2 (Lv2D) in red
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Figure 5.3: Damage locations indicated in red accompanied by photos of the true damage.
Damage Case 1 (DC1): 1/3rd cut located at bay 9. Damage Case 2 (DC2): 3/4th cut
located at Bay 9. Damage Case 3 (DC3): 3/4th cut located at bay 5 and bay 9

5.5 Numerical simulations

This section presents a series of ideal numerical simulations representative of the ex-

periment to follow. The purpose of the numerical simulations is to compare l1-norm

optimization and non-negative least squares as standalone programs while verifying

the non-negative constrained basis pursuit and the measure of uniqueness. The simu-

lations are ideal because the model used to derive the algorithms is also the one used

to generate the data.

Fig. 5.4 presents the solution path for the basis pursuit denoising as a function

of the regularization parameter (eq. 5.7) for the three damage cases. Each line

color represents a different section of the truss denoted by the legend. Superimposed

over the truss is the solution when α = 0 (the basis pursuit). From Fig. 5.4, l1-

norm optimization fails to deliver meaningful solutions in all three damage cases.

In contrast, the non-negative constraint forges additional equations from which a

solution that is sparse and meaningful is obtained. Fig. 5.5 presents the estimated
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Figure 5.4: Estimated stiffness reduction (E.S.R.) using the basis pursuit denoising and 6
natural frequencies plotted as a function of the regularization parameter (α) for a) damage
case 1, b) damage case 2, and c) damage case 3

stiffness reductions for the three damage cases using the non-negative least squares

(eq. 5.9). In DC1, the optimal point to the NNLS identifies the damage exactly.

As the damage severity increases to DC2, noting Fig. 5.6b, the NNLS preserves

the correct damage location and provides an acceptable approximation of magnitude

albeit overestimated. As the linear truncation error increases, so does the optimal

solution ||ε∗0||2. In DC3, the NNLS fails to identify the damaged elements. The

optimal point to the NNLS, although displaying apparent peaks, is not sparse.

Fig. 5.6 presents the estimated stiffness reduction using the NNL1 (eq. 5.8) for

the three damage cases along with the measure of uniqueness (δ). In DC1 and DC2,

δ = 0 indicates that the optimal points for the NNLS and the NNL1 are identical.

As the number of damage locations increase to DC3, the uniqueness measure results

in δ > 0, which indicates that the optimal point is not unique. Where the NNLS
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Figure 5.5: Estimated stiffness reduction (E.S.R.) using the non-negative least squares and
6 eigenvalues for a) damage case 1, b) damage case 2, and c) damage case 3

failed to deliver an interpretable solution, the non-negative basis pursuit provides

a reasonable estimation in term of quantity, sparsity, and location. Note that the

stiffness parameters at Lv1D bays 5 and 6 are nearly inseparable given that a small

perturbation in each induces nearly identical changes in the 6 eigenvalues.

5.6 Uniqueness measure investigation

5.6.1 Interpretation

As indicated in the previous example, the measure of uniqueness provides information

to interpret the characteristics of the solution to the NNL1 and the NNLS. If SNN is

not a singleton (i.e. δ > 0) then the NNLS fails to deliver a sparse and meaningful

solution. On the contrary, the NNL1 is expected to always yield a sparse and non-
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Figure 5.6: Estimated stiffness reduction (E.S.R) using the non-negative basis pursuit with
6 eigenvalues for a) damage case 1, b) damage case 2, and c) damage case 3. δ is the
measure of uniqueness

negative solution. Although the NNL1 provides an opportunity to identify the damage

where the NNLS fails (see DC3), the lack of uniqueness implies that the optimal

point to the NNL1 is one sparse solution among other satisfactory solutions. How

then can we decide if the sparse solution to the NNL1 is physically meaningful in

the case where the solution is not unique? This paper suggests when the measure of

uniqueness is large, the optimal point to the NNL1 is more likely meaningless since

the non-negative constraints are not providing additional equations. Since the non-

negative constraints only act as equations where ∆θi = 0, then we can deduce that the

underlying solution has too many non-zero elements relative to available equations to

solve the underdetermined system of equations. We now proceed to substantiate this

claim with the following numerical simulations.

We first quantify the normalization term δub as a function of the total identified
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natural frequencies, evaluating δub between 2 and 8 natural frequencies (see Fig.

5.7a). Consider the normalized measure of uniqueness δ as a function of the number

of identified frequencies and the number of damage locations. Beginning with DC2

as the single damage location case, then DC3 as the two location case, we iteratively

produce 82% reductions at other arbitrarily selected beam elements until 9 elements

have been damaged. Fig. 5.7b presents δ as a function of damage location and total

number of identified natural frequencies. Observe from Fig. 5.7b that as the total

number of damage locations increases, δ increases consistently across every tested

natural frequency case. This trend clearly indicates that as the solution becomes less

sparse (i.e. more damage locations) the measure of uniqueness increases. Also observe

that as the number of identified natural frequencies increases, δ tends to decrease.

Finally, consider that the number of damage locations must be less than the number

of identified frequencies to obtain a meaningful solution. With that consideration, we

observe that large values of δ consistently indicate a failed attempt at identifying a

physically meaningful solution.
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Figure 5.7: a) Estimated upper bound on the uniqueness measure as a function of total
identified natural frequencies. b) Normalized measure of uniqueness as a function of total
identified frequencies and total number of damage locations
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5.6.2 Regularization

The measure of uniqueness can also help interpret the need for regularization. Con-

sider the following. Again, the optimal points for the NNL1 and the NNLS are

identical when δ = 0 and α = ||ε∗0||2. Since these solutions are identical, we can infer

that the l1-norm was not active in the NNL1 and therefore no regularization took

place in the traditional sense of penalizing the magnitude of the solution. In the pres-

ence of measurement error, it may be necessary to maintain a small solution norm

if the sensitivity matrix is ill-conditioned. Therefore, when the solution is unique,

we suggest to perturb the regularization parameter by a small amount in order to

activate the l1-norm if necessary. From observation of testing these methods, if a

small change in ||S∆θ−∆λ||2 results in a significant decrease in ||∆θ||1, then the reg-

ularization parameter should be incrementally relaxed until the optimal solution to

the non-negative basis pursuit becomes stable. This process is akin to regularization

parameter selection using the L-curve method.

To illustrate this phenomenon, consider as an example the optimal solution trade-

off curves shown in Fig. 5.8 for two different realizations of DC2 with an arbitrary

level of measurement error added to ∆λ. In both cases, the solution to the NNLS

is unique. However, in case (a), if the estimated stiffness reduction is based on the

optimal point at α = ||ε∗0||2, we obtain an incorrect solution with an unrealistically

large l1-norm (||∆θ∗||1 = 10). However by perturbing the regularization parameter,

the optimal point rapidly moves to a more reasonable solution occurring at the L-curve

criterion. Notice that Fig. 5.8a exhibits the classic shape of the L-curve with a well

defined corner, while Fig. 5.8b does not. The L-curve phenomenon is a result of ill-
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conditioning. The underdetermined matrix cannot be defined as ill-conditioned since

the matrix is already rank deficient. Instead, we can treat the sensitivity matrix as

an overdetermined (or exact) system of equations by forming a new matrix comprised

of the columns of the sensitivity matrix associated with the non-zero elements of the

optimal point to the NNLS. Then calculating the condition of the reduced sensitivity

matrix, measured by the ratio of its smallest and largest singular values, we find an

indicative discrepancy in conditioning between the two examples. In Fig. 5.8a the

condition of the reduced sensitivity matrix is approximately 500, while the condition

of the reduced sensitivity matrix in Fig. 5.8b is only 54.8. Since case (a) is poorly

conditioned, it is necessary to regularize in the traditional sense, hence the need for

the L-curve criteria. On the other hand, case (b) is well conditioned and hence lacks

the sharp corner. These results are consistent with the examples provided in [2].
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Figure 5.8: Optimal solution trade-off curves for DC2 with measurement error in the case
a) exhibiting the L-curve criterion, and b) not exhibiting L-curve criterion
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5.6.3 Numerical verification in the presence of

measurement error

The performance of the proposed NNL1 with the combined interpretation from the

uniqueness measure is investigated in the presence of measurement error. Measure-

ment noise is defined by the vector ε ∈ <q and is added to both the eigenvalues

associated with the undamaged and damaged structure. ε is defined as a realization

of a q-dimensional Gaussian random vector with zero mean and standard deviation of

component εi proportional to the specified coefficient of variation. Four tests with co-

efficients of variation (CoV) equal to 0.0005, 0.001, 0.0015, and 0.002 were performed.

The range of values selected for the CoV were obtained from uncertainty quantifi-

cation studies in system identification [33]. DC3 is investigated. In quantifying the

probability of detection, a successful detection occurred when the maximum values

of ∆θ∗ contained the correct damage locations and their values were 50% larger than

any other element. For DC3, we allowed Lv1D bay 5 and 6 to both indicate a correct

damage location given that these elements are inseparable in terms of their associated

eigenvalue sensitivity.

Fig. 5.9 presents the probability of detection (PoD) and the statistics of δ: the

median value, and the 25th and 75th percentiles as functions of the total number of

identified frequencies. The method was performed on 500 realizations of ε for each

test. Each sub-figure corresponds to one of the four CoV values. Consider first the

difference between the solid and dashed black lines. The dashed is the PoD if the

regularization parameter perturbation addressed in the previous subsection is not

considered. Notice that this PoD is significantly lower than when the perturbation is
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used (solid line). Consider the uniqueness measure. From Fig. 5.9a-d, there is clear

indication in the PoD and the uniqueness measure that the NNL1 requires at least

6 natural frequencies to successfully identify DC3. Two important observations are

made: i) independent of noise, large values of uniqueness indicate that the number

of frequencies is insufficient to identify the correct solution and ii) a low-value or

a unique solution does not aid in discerning successful detection in the presence of

measurement error.
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Figure 5.9: Probability of detection for DC3 with regularization perturbation (thick black
line) and without perturbation (dashed black line) presented as functions of the number of
natural frequencies for the coefficients of variation: a) 0.0005, b) 0.001, c) 0.0015, and
d) 0.002. The median (dashed) and 25th and 75th percentiles (solid) for the measure of
uniqueness shown with thin red lines.
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5.7 Experiment physical description

The experimental structure used to validate the proposed methods is a highway sign

support truss tested at Purdue University [34]. A series of modal tests were conducted

on the truss in various damage states. The vibration data and all the necessary

experiment details were originally made publicly available through the Network for

Earthquake Engineering Simulations and is now available in [34]. Fig. 5.10a presents

a photo of the truss taken during the time of testing. The three-dimensional structure

is comprised of two truss sections bolted together at 10.38m from the left-hand side

(Fig. 5.10b) with each section constructed entirely by welded 6061-T6 aluminum

pipes. The axial braces were welded to aluminum stiffener plates that offset the ends

of each axial brace from the outer diameter of the main chord by approximately 7.5cm

(Fig. 5.10c). Fig. 5.1 presents the plan view of the truss with additional details.

Figure 5.10: Photos of a) the experimental truss taken during the time of testing, b) one of
the four bolted splines at bay 7, and c) a typical axial brace-stiffener assembly [34]
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Three successive damage cases were introduced to the truss, each damage state

a progression from the previous damage state. The first damage state, damage case

1 (DC1), consists of a 0.3cm thick saw-cut driven 1/3rd the pipe’s diameter deep

located at the center of a vertically oriented diagonal brace at bay 9. After the DC1

vibration tests were performed, additional material was removed from the existing

saw-cut increasing the cut depth to approximately 3/4th the pipe’s diameter. This

saw-cut constitutes damage case 2 (DC2). For the third damage state, damage case 3

(DC3), a second saw-cut 3/4th the pipe’s diameter deep was introduced to a transverse

oriented diagonal brace at bay 5. Photos of the 1/3rd and 3/4th thick saw-cuts are pre-

sented in Fig. 5.3 along with the locations of the damage superimposed over the truss

model. Since the baseline structure was established and tested prior to introducing

the damage, any unintended damage accumulation or changes in environmental con-

ditions between tests would not be normalized for. Hence, this experiment emulates

the properties inherent to the field application of an SHM system.

5.7.1 Finite element model

The FE model used to verify the methodologies is also the model used to derive the

sensitivity matrix for the physical system. Additional details on the model updating

are provided for completeness. The FE model was constructed in the software ANSYS

using a physical description of the truss. After initial model construction, the primary

beam elements associated with the diagonal and axial braces were discretized again at

each end to provide a mechanism to perform model updating as shown in Fig. 5.11.

The connection elements were then updated to account for the increased flexibility

of the welds and the offset of the connections. The axial stiffness of the updating
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parameters associated with the vertically oriented and transverse oriented diagonals

were all assigned the same stiffness reduction based on the results from a high fidelity

model of the connections. After the initial updating, a single parameter defining all

axial brace connections (elements labelled (1) in Fig. 5.11) was updated to improve

the modal match with those identified from the vibration data taken from the baseline

structure. The model was calibrated using only the three mentioned parameters.

Figure 5.11: Locations of the three model updating parameters: (1) axial braces, (2) verti-
cally oriented diagonals, and (3) transverse oriented diagonals

5.8 Modal tests and analysis

This section provides details on the physical test setup. The vibration data acquisi-

tion system consisted of 22 uni-directional (PCB 333B40) accelerometers. In order to

maximize the number of observable modes, the data acquisition system was assembled

into four various output configurations each comprised of the 22 sensors. Fig. 5.12

presents the locations and orientations of the sensors comprising each output con-

figuration as well as the nomenclature used to reference each test setup i.e. y1, y2,

z1, z2. For each output configuration,the dynamic response was induced using two

types of vertically oriented forced oscillation: the electro-dynamic shaker (VG-100
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from Vibration Test Systems), and the modal sledge hammer (PCB 086D50). The

shaker input consisted of band limited white noise at 0 - 200 Hz. For each hammer

test, between 14 and 17 hammer strikes were delivered. Measurements were taken for

320 seconds at a 512 Hz sampling frequency for both experiments.

Figure 5.12: Excitation-input locations and sensor-output configurations

5.8.1 System identification

Modal analysis was performed in two parts: first the extraction of the mode shapes

necessary for matching the modes from the model to the physical system, followed

by the extraction of natural frequencies used to implement the damage identification

algorithms. For each of the 8 possible single-input multi-output test setups, the sub-
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space identification algorithm was used to extract the mode shapes. The mode shapes

obtained were stitched together using the coincident nodes shared with an additional

triaxial sensor configuration not shown. At 6 samples per cycle, 40 Hz was consid-

ered a reasonable upper bound on the largest identifiable natural frequency. After

identifying the mode shapes, six modes that also could be produced by the FE model

were selected for damage identification implementation. Fig. 5.13 presents the mode

shapes produced by the FE model shown in blue superimposed over those identified

and averaged in red. Note strong agreement with modes exhibiting uni-directional

motion, such as 1st transverse bending, 1st vertical bending, and 2nd vertical bending,

and weaker agreement with modes exhibiting bi-planar motion. For the purposes of

modal matching, the observed agreement was sufficient.

One simple yet effective method for identifying natural frequencies is to calcu-

late the frequency response function (FRF) for each single-input single-output sensor

combination and select the peaks. By identifying modes from each sensor, the con-

tribution to uncertainty from the sensor noise could be estimated. Regarding the

shaker excitation, the FRF, being the ratio of the power spectral densities of the

measured input and output, was obtained using Welch’s method with a Hamming

window segmented into seven sections. The power spectral densities of the hammer

tests were obtained using the same method, except the window spanned each hammer

strike. The power spectral densities were then averaged. Fig. 5.14 presents a sample

FRF calculated from the shaker test and the y1 and z1 sensor at bay 6. The example

highlights that the obsevability of the modes dependend on sensor orientation. In

the example presented in Fig. 5.14, the 2nd transverse mode at 21.3 Hz was only

observable in the z-oriented sensor, while the 2nd vertical mode at 32.6 Hz was only
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Figure 5.13: The six mode shapes selected for implementation. The averaged identified mode
shape presented in red superimposed over the modes produced by the FE model in blue

observable in the y-oriented sensor. There were 9 observable modes in the 40 Hz

range, however, only 6 were produced by the FE model. The 6 labeled modes in Fig.

5.14 are those that were selected and implemented for damage identification.
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Figure 5.14: Sample FRF evaluated from the shaker input using outputs y1 (solid line)
and z1 (dashed line) at bay 6. Labelled modes are those selected for damage identification
implementation

5.8.2 Summary of identified natural frequencies

and sources of uncertainty

Table 5.1 provides a summary of the average identified natural frequencies for each of

the four tested structural states. The average percent deviation of the listed natural

frequencies are compared to those identified from the undamaged structure. The

error between the natural frequencies produced by the updated FE model and those

identified from the undamaged structure was large (≈ 6%). This relative error is

significant because the change in natural frequencies induced by damage (< 2%) is

overshadowed by the model uncertainty. Hence, it would be impossible to identify

damage without comparing relative shifts in the identified natural frequencies between

the undamaged and damaged structure.
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To convey the sources of uncertainty in the modal tests, Table 5.2 provides the

coefficient of variation for each mode measured across all possible single-input single-

output sensor combinations for all 8 test setups. Juxtaposed is the average coefficient

of variation for each mode identified from the 22 sensors comprising a single test

setup then averaged across all 8 test setups. The first statistic estimates the vari-

ance of the natural frequencies identified from every test, while the second statistic

estimates the variance corresponding to an individual sensor. A comparison of the

two statistics reveals that the contribution to uncertainty from the test setup far

outweighed the contribution from measurement noise and system identification error.

The uncertainty due to measurement noise was reasonably low (< .001). The varia-

tion between tests were orders of magnitude larger than values indicated in literature

relating to uncertainty quantification of identified natural frequencies [33]. Since the

authors were not present during the time of testing, they cannot provide an adequate

physical explanation for the source of this significant error.

Table 5.1: Comparison of Average Modal Frequencies (Hz)

FE Model-
undamaged

Undamaged DC I DC II DC III

1st Trans. 11.46 10.23 10.09 10.23 10.19
1st V ert. 13.65 12.72 12.64 12.54 12.56
1st Tors. 17.35 18.61 18.43 18.50 18.48
2nd Trans. 22.74 21.34 20.98 21.22 20.45
2nd V ert. 33.93 32.63 32.62 32.58 32.53
2nd Tors. 36.01 36.20 35.97 35.86 35.11
Av. Deviate 6.07% - 0.88% 0.61% 1.64%
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Table 5.2: Average Coefficient of Variation (σ/µ)

1st
Trans.

1st
V ert.

1st
Tors.

2nd
Trans.

2nd
V ert.

2nd
Tors.

All Tests .014 .0047 .0065 .0140 .0005 .0039
Sensor Noise .0008 .0006 .0001 .0008 .0001 .0009

5.9 Experimental validation results

This section summarizes the results of the proposed non-negative constrained basis

pursuit in identifying damage on the 3D truss using changes in the natural frequen-

cies identified from the vibration measurements. The proposed method was imple-

mented on the average of all the test setups shown in Fig. 5.12; their average values

summarized in Table 5.1. In considering the probability of detection in the previous

measurement error investigations presented in Fig. 5.9, it was unlikely that successful

damage identification was possible using a single realization of the natural frequen-

cies given how large the variance in the identified frequencies were. By averaging,

we minimized the intolerable level of uncertainty in the test setups. Despite using

all of the sensors for the presentation of these results, we could also have used data

from 1 sensor from each test configuration and ended up with similar results since

the variance between sensors was reasonably low.

Fig. 5.15 presents the estimated stiffness reduction using the NNL1 along with

the measure of uniqueness for DC1, DC2, and DC3. In DC1, shown in Fig. 5.15a,

the NNL1 algorithm fails to locate the 1/3rd saw-cut at bay 9. However, the measure

of uniqueness (δ = 0.409) reflects the lack of a unique solution indicating that the

obtained sparse solution is not physically meaningful. This result may be reasonable
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given that the 1/3rd saw-cut most likely did not produce a statistically significant

change in the natural frequencies. In DC2, shown in Fig. 5.15b, the NNL1 accurately

identifies the damage at bay 9 though overestimates the magnitude of the damage.

The measure of uniqueness (δ = 0.075) satisfies the condition that the optimal set

of the NNLS should be tightly bounded for a meaningful solution. Finally in DC3,

shown in Fig. 5.15c, the estimated stiffness reduction is a unique solution (δ = 0).

The algorithm predicts damage at bay 6 adjacent to the true damage and indicates the

second damage location at bay 9. The bay 6 estimation, though adjacent to the true

damage, is consistent with the numerical simulations. Although the predicted damage

at Bay 9 is located at the P1D member, this is a good result given that P1D and P2D

are nearly colinear due to the local symmetry between between the two vertically

oriented planes. Other indications that the damage is detected is that the identified

damage locations are oriented in the same direction as the true damaged elements,

and that the estimated stiffness reduction at bay 9 is approximately equal in both

DC2 and DC3. Despite these positives, the algorithm does significantly overestimate

the stiffness reduction at bay 5.

5.10 Conclusion

Although natural frequencies extracted from global vibrations lack sufficient infor-

mation to uniquely estimate unknown model parameters for the purposes of model

updating or other general applications, they can be sufficient to uniquely identify

damage described by sparse reductions in stiffness. Previous research suggests im-

posing sparsity on the solution space with l1-norm optimization or non-negative least
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Figure 5.15: Estimated stiffness reduction and measure of uniqueness using the non-negative
constrained basis pursuit implemented on vibration data taken from DC1, DC2, and DC3

squares in order to obtain meaningful solutions. This paper argues as standalone

applications, they exhibit clear disadvantages: (i) the lack of regularization using

the non-negative least squares, and (ii) forced sparse solutions using l1-norm opti-

mization. However by determining the intersection of their optimal set of solutions

using the non-negative constrained l1-norm optimization (NNL1), these deficiencies

are abated or improved upon.

This paper shows that the optimal set of solutions for the NNL1 is contained

in the optimal set of the non-negative least squares. This paper verifies using mea-

surement noise, that if the non-negative least squares has a unique solution, i.e. its

optimal set is a singleton, then the regularization parameter should be relaxed to

check for ill-conditioning. In cases where the optimal set to the non-negative least

squares is not unique and hence fails to deliver a sparse and meaningful solution, the

non-negative constrained l1-norm optimization can provide improvement by enforcing
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sparsity. However, if the bounds on the optimal set to the NNL1 are large than this

implies that the forced sparse solution of the NNL1 is likely physically meaningless.

The proposed NNL1 method is validated using vibration data measured from a

full-scale 17.24 m long aluminum 3D truss subjected to three progressive damage

cases. The truss model contains 144 possible damage locations and only 6 natural

frequencies were identified from the vibration data. Despite significant model error

and a severely underdetermined inverse problem, we considered the results of all three

damage cases successful validations.

For future work, the authors wish to improve the tightness of the measured bounds

on the optimal set to the non-negative least squares, and verify and validate the

concepts provided in this work on a wider range of structures and in more severe

environments. In addition, only the linearized inverse problem is solved and hence

estimated solutions needs improvement in terms of quantification. In future work,

we will address how to update the solution in order to more accurately quantify the

magnitude of the damage.
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Chapter 6

Conclusion

This research concludes that the inverse problem in vibration-based structural health

monitoring aimed at damage identification requires significantly less measurements

to solve than what is needed to ensure uniqueness provided: (i) damage produces a

sufficiently sparse reduction in the stiffness and(or) mass parameters, and (ii) sparsity

and(or) non-negativity are imposed on the solution space.

The findings of this research suggest that for severely underdetermined inverse

problems, such as the ones exhibited by strictly using eigenvalues, l1-norm optimiza-

tion may not be sufficient for practical application since (i) it does not recover unique

solutions, (ii) it forces sparsity which is not necessarily desirable since the solution

may in fact be the realization of uncertainty unrelated to damage, and (iii) may be

too weak in applications to full-scale structures. However, if the damage strictly

reduces stiffness and(or) mass, these issues are clearly improved upon or abated by

imposing both non-negativity and sparsity on the solution space. These conclusions

are evidenced by successful attempts at identifying damage on a four-story lab-scale

frame and a 17 m long 3D truss using the proposed non-negative constrained l1-norm
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optimization method while the standalone application of l1-norm optimization failed.

The specific conclusions of each chapter are as follows:

• Chapter 4 finds that the linearized underdetermined inverse problem is uniquely

solvable with respect to the optimal set satisfying the non-negative constrained

least squares only if there exists a solution that is sufficiently sparse. The op-

timal solution is only unique and meaningful if a sufficiently sparse solution

exists. We prove that the linearized inverse eigenvalue problem satisfies the

necessary conditions to obtain a unique solution if the sensitivity matrix is de-

fined by changes in stiffness only. The non-negative constrained nonlinear least

squares also shows a similar tendency to a unique solution. In the presence of

measurement error, the non-negative constrained method performs adequately,

however its robustness to measurement error may be problematic if the changes

in stiffness induced by damage are insignificant in size.

• In chapter 5, this work finds that when the sensitivity matrix is defined by stiff-

ness and mass, it violates the necessary conditions for the non-negative least

squares to induce a unique solution. In addition, the l1-norm optimization as a

standalone program performs poorly in identifying both stiffness and mass. The

proposed combined method, the non-negative constrained l1-norm optimization,

does however recover meaningful solutions to both the linear and nonlinear in-

verse problem. The method is experimentally validated using vibration data

measured from a four-story lab-scale steel frame. The frame highlights an im-

portant challenge in using eigenvalues. Since unique measurements are limited,

it is common to have quasi-dependent parameters due to global and local ge-

ometric symmetries. These quasi-dependent parameters should be identified
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prior to solving the inverse problem in order to determine possible uniqueness

issues with the obtained solution.

• In chapter 6, we show that the optimal solution sets to the non-negative con-

strained l1 norm optimization and the non-negative least squares intersect. We

find that measuring the bounds on the optimal set satisfying the non-negative

least squares provides a meaningful interpretation to the non-negative l1-norm

optimization method. The proposed method and our interpretation to the mea-

sure on solution bounds are validated using vibration data measured from a 17

m long aluminum 3D truss subject to three damage cases. The results of this

experiment demonstrate the method’s robustness to significant model error.

However, since only the linear inverse problem was solved, only the location of

damage was determined. Quantification necessitates further solution updating

to account for non-linearity in the inverse problem.

Although the proposed methods were tested on a variety of structures including a

full-scale experiment, the performance of the proposed methods in operational envi-

ronments are unknown and require further investigation. We suggest for future work

to determine tight bounds on the maximum number of identifiable damage locations

given a specified number of eigenvalues. In terms of broader future studies, we suggest

investigating how sparsity can be leveraged to detect the presence of local damage

and discern true damage from signal noise or changes in environment. One potential

damage indicator appears with the proposed measure of uniqueness, where the exis-

tence of a sparse solution due to damage induced solution uniqueness. However, the

damage detection application requires further investigation.
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Appendix A

Detection of Spatially Sparse

Damage Using Impulse Response

Sensitivity and

LASSO Regularization

Abstract

This paper presents an impulse response sensitivity approach enhanced with a least

absolute shrinkage and selection operator (LASSO) regularization in order to detect

spatially sparse (localized) damage. The analytical expression for impulse response

sensitivity was derived using Vetter calculus. The proposed algorithm exploits the

fact that when damage is sparse, an l1-norm regularization is more suitable than

the common least squares (l2-norm) minimization. The proposed methodology is
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successfully applied in the context of a simulated 21 degree of freedom non-uniform

shear beam with noise-contaminated measurements, limited modal parameters, and

limited sensor locations. Single input-single output and single input-two output cases

are investigated.

A.1 Introduction

Damage is generally defined as any change that adversely affects the system’s current

or future performance. In some cases, such as corrosion, damage takes place over a

large portion of the structural domain. However, in other cases, such as perforations,

dents or cracks, damage takes place in a small region of the domain. Detecting lo-

calized damage from global vibration measurements is an appealing but challenging

proposition of structural health monitoring (SHM). The appeal comes from the ef-

ficiency and cost effectiveness of monitoring large domains with a small number of

sensors. The difficulties stem from a combinations of factors: (i) local damage has

a limited effect on global vibrations, (ii) analytical damage sensitivity is affected by

modeling errors and (iii) measurement noise can overshadow response changes due to

damage. These effects combined conspire to make the problem ill-posed (non-unique

solutions) and ill-conditioned (high sensitivity to measurement noise and model per-

turbations).

When a finite element model (FEM) is used to represent the structure of interest,

localized damage can be modeled as a change in the corresponding stiffness and(or)

damping of a small subset of elements (Fig. A.1). The change in stiffness and(or)

damping manifests itself as changes in the structure’s dynamic properties. In this
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paper, we focus on changes in the impulse response. More specifically, this paper

aims to use inverse sensitivity to map temporal changes in the impulse response to

changes in the vector that describes the elastic properties of each element in the

model.

Figure A.1: Example k-sparse damages located on finite element mesh where k = 4. The
impulse response of the system is evaluated using noisy single input-single output system

Searching through all possible combinations of damaged elements in order to find

which one better represents the observed changes is clearly impractical, and not very

elegant. Therefore it is necessary to simultaneously find effective algorithms and

impose realistic constraints that eliminate the need to resort to the combinatorial

approach. This paper imposes a constrain on the solution that promotes sparsity.

Physically, sparsity means that the number of damaged elements is small with respect

to the total number of elements that describes the domain.

By definition k-sparse vector is one that contains k non-zero elements in which k is
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significantly less than the dimension of the vector. Imposing sparsity on the optimal

solution, while simultaneously satisfying the linear system of equations can be done

via a variety of optimization algorithms [1–3]. Though differing in form, each of these

methodologies promotes sparsity by minimizing the l1-norm.

Recognizing sparsity in structural dynamic inverse problems has provided advan-

tages to other applications outside of damage detection, particularly in force identifi-

cation. In [4, 5], impact force location and time histories were successfully identified

using sparse reconstruction techniques. In [6], the weighted l1-norm regularization was

used to determine the time histories of moving forces, an important inverse problem

in bridge structural health monitoring.

Sparsity constraints have been indirectly used by Kaouk and Zimmerman [7] to

detect damage using a minimum rank perturbation criteria. Although low rank per-

turbation of the stiffness matrix does not necessarily imply spatial sparsity, their work

represents one of the first contributions that use sparsity as a constraint in structural

dynamics. It was not until the benefits of sparsity constraints were realized in signal

processing fields, such as compressed sensing [1, 2, 8] that any direct connection was

made between localized damage and sparsity in SHM.

The most notable uses of spatial sparsity in localized damage detection are found

in [9–12]. Link and Zimmerman [9] used greedy matching pursuit methods to detect

spatially sparse damage using frequency response functions. However, more effective

and efficient sparse recovery algorithms such as the Basis Pursuit are now commonly

used. In [10], eigenvalue and eigenvector sensitivities were employed to detect local-

ized damage in a simulated truss. One experimentally validated example of exploiting

spatial sparsity in SHM can be found in work by Hernandez [11,12], which strictly uti-
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lizes eigenvalue shifts and l1 minimization to locate sparse damages. This FEM based

work completely undermined the traditional requirements on modal information for

local damage recovery in a global setting.

Results from [11] indicate that the increase in modal information improves the

effectiveness of the l1 optimization, and that additional modal information allows

each perturbed element a more unique effect on the global response; an important

characteristic for successful inversion in convex optimization theory. In this paper,

the framework in [11] is reformulated such that modal information and uniqueness are

improved, while at the least preserving the level of modal spectrum incompleteness

conducted in [11]. The impulse response is the natural choice for satisfying the above

criteria because it contains information on mode shapes, natural frequencies, and

damping.

This paper uses impulse response sensitivity to locate and quantify spatially sparse

damage with respect to a finite element model. Using empirical changes in the impulse

response as a damage sensitive feature has been used by other researchers [13, 14],

however without imposing the spatial sparsity constraint explicitly. Using Vetter

calculus, an analytical expression for the sensitivity of the impulse response is derived

and used to setup the inverse problem of detecting reductions in model parameters

based on identified changes in impulse response. The inverse problem is effectively

solved using least absolute shrinkage and selection operator (LASSO) regularization,

an efficient l1-based optimization scheme.

The paper begins by presenting the systems of interest and the method of ap-

proach. This is followed by a brief section on LASSO regularization, then a section on

implementation and verification. The numerical implementation is carried out using
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a shear-beam structure with 21 degrees of freedom. The impulse response sensitivity

is defined by single input-single output (SISO), and single input-two output (SITO)

systems. In all cases, limited spectral data and noise-contamination are considered.

A.2 Method of approach

The sensitivity approach is a popular and practical framework for finite model up-

dating in structural dynamics [15]. The sensitivity matrix maps changes in element

stiffness and(or) damping to associated changes in system response characteristics.

In this paper, we seek a relationship between small changes in the impulse response

to small changes in the parameters that define the stiffness matrix. The impulse

response of a linear system is described by [16]

h(t, θ) =
∫ t

0
C(θ)eA(θ)(t−τ)Bδ(τ)dτ + Dδ(t) = C(θ)eA(θ)tB + Dδ(t) (A.1)

where A, B, C, and D are the matrices that define the state-space model of the

system. We seek to find

∆h(t) = S(t)∆(θ) (A.2)

where ∆θ ∈ <px1 is a vector of changes in the parameters that define the stiffness

and(or) damping matrix of the structure, S ∈ <rmxp is the impulse response sensitivity

matrix, and ∆h(t) ∈ <rmx1 is the corresponding change in the impulse response

between damaged and undamaged state. r is the number of output sensors, p is

the total number of damage sensitive parameters, and m is length of the impulse

response i.e. the sampling frequency times the total time of the impulse response.
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In the case of multiple outputs, the impulse response and the sensitivity matrix

for each input-output combination are concatenated. Unless the domain of possible

damage locations is larger than the time domain of the impulse response, eq. A.2 is

overdetermined. In this paper, eq. A.2 is highly overdetermined.

The sparse nature of the inverse problem is revealed in ∆θ with respect to localized

damage. In the case of localized damage, only a few parameters that define the

stiffness and damping matrix are affected. Therefore only a few elements of the vector

∆θ will be nonzero indicating damaged parameters, and the elements unaffected by

damage will be zero. This implies that the optimal solution ∆θ is sparse.

We restrict our attention to the case where the stiffness K and damping Cd ma-

trices may be expressed as

K(θ) =
pk∑
i=1

Ei,Kfi(θ) and Cd(θ) =
pd∑
j=1

Ej,Cdgj(θ) (A.3)

where E·,· is an elementary influence matrix and fi(θ) and gj(θ) are differentiable func-

tions. By taking the first term of the Taylor series expansion around the parameter

of interest, the stiffness and damping matrices may be approximated as

K(θ) =
pk∑
i=1

Ei,Kθi and Cd(θ) =
pd∑
j=1

Ej,Cdθj (A.4)

where p = pk + pd. In this paper, the sensitivity matrix is defined as the derivative of

the impulse response with respect to a change in parameter θ, written as

S(t, θ) = ∂h(t, θ)
∂θ

= ∂

∂θ

(
C(θ)eA(θ)tB + Dδ(t)

)
(A.5)
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Where A, B, C, and D are written as (for acceleration measurements)

A =

 0 I

−M−1K(θ) −M−1Cd(θ)

, B =

 0

−M−1b2


C = c2

[
−M−1K(θ) −M−1Cd(θ)

]
, D = c2M−1b2

(A.6)

b2 and c2 are respectively the input and output influence matrices, and M = MT ∈

<nxn is the mass matrix [16]. The derivative of an exponential mapping can be

obtained using results from Vetter [17] and Brewer [18]. Applying the chain rule from

Vetter’s calculus [17] the sensitivity is written as

∂h(t, θ)
∂θ

= ∂C
∂θ

eAtB + (Ip ⊗C)∂e
At

∂θ
B + (Ip ⊗ (CeAt))∂B

∂θ
+ ∂D

∂θ
δ(t) (A.7)

Such that ⊗ is the Kronecker product, and Ip is a p x p identity matrix. Because B

and D are not dependent on θ, ∂B/∂θ = 0 and ∂D/∂θ = 0. Thus eq. A.7 is reduced

to
∂h(t, θ)
∂θ

= ∂C
∂θ

eAtB + (Ip ⊗C)∂e
At

∂θ
B (A.8)

where
∂C
∂θi

=
[
−M−1Ei,K −M−1Ei,Cd

]
(A.9)

and
∂C
∂θ

=
[
∂C
∂θ1

∂C
∂θ2

...
∂C
∂θp

]T
(A.10)

Using Brewer’s derivation [18], the derivative of the matrix exponential can be ex-

152



pressed in terms of complex eigenvalues and mode shapes as

∂eAt

∂θ
=

2n∑
k

2n∑
l

(αkγ∗k)
∂A
∂θ

(Ip ⊗ αlγ∗l )fkl(t), fkl(t) =


teλkt , λk = λl

eλlt−eλkt
λl−λk

, λk 6= λl

 (A.11)

where

∂A
∂θi

=

 0 0

−M−1Ei,K −M−1Ei,Cd

 , ∂A∂θ =
[
∂A
∂θ1

∂A
∂θ2

...
∂A
∂θp

]T
(A.12)

λk is the kth eigenvalue of A, αk is the kth eigenvector of A, and γk is the kth

eigenvectors of AT which are normalized such that

γ∗kαk = 1 (A.13)

In order to be consistent with the spectral bandwidth of the identified impulse re-

sponse used to compute ∆h(t), the sensitivity matrix is truncated at the specified

number of identified frequencies (m). Using the spectral representation of an expo-

nential mapping, the truncation at the specified eigenvalue λm is defined as

eAt =
2m∑
k=1

αkγ
∗
ke
λkt (A.14)

where α and γ are normalized according to eq. A.13.
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A.3 LASSO regularization

In 1996, R. Tibshirani [3] proposed LASSO regression for estimating linear models

which seeks to minimize the following residual function (in reference to eq. A.2)

min

∆θ ∈ <p
1
2 ||∆h− S∆θ||22 + λ||∆θ||1 (A.15)

with regularization parameter λ ≥ 0. Note that the regularization parameter (λ) in

the context of the LASSO should not be confused with the eigenvalue.

LASSO typically recovers a sparse solution due to the l1-norm constraint. For

implementation purposes, this paper implements LASSO via the MATLAB package,

Lasso and Elastic-Net Regularized Generalized Linear Models (glmnet), an efficient

procedure for fitting the lasso regularization path for linear regression [19]. The

algorithm uses cyclical coordinate descent computed along a regularization path to

optimize the objective function over each parameter with others fixed, and cycles

repeatedly until convergence.

The choice of the regularization parameter is subject to the user where larger

values of λ tend towards sparser solutions at the expense of increased noise sensitivity.

To remove user bias to the known solution, we use the glmnet’s built in cross validation

algorithm to select a value of λ. The cross validation uses 10 folds. An external loop

of cross validation is used to avoid selection bias. After cross validation we choose

the λ value which gives the most regularized model such that the error is within

one standard error of the minimum. We constrain the maximum number of nonzero

elements in ∆θ to about 20 percent of the total number of elements (p).
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A.4 Simulations and verification

This section compares the proposed methodology with that proposed in [11], which

uses l1-norm minimization and frequency sensitivity. Results are presented for both

single input-single output systems and single input-two output systems. The simu-

lations are ideal because the model used to generate the simulated data is also the

one used to implement the algorithm. For this proof-of-concept paper this might be

adequate, however for a complete investigation, the effects of irreducible model error

should be included. This aspect will be considered in an upcoming paper by the

authors which will also include validation using experimental results.

The simulated model is a 21 degree of freedom, non-uniform shear beam with

degrees of freedom enumerated from 1 the first mass closest to the support, to 21

the free end. The spring stiffness are as follows: k1 = ... = k7 = 1000, k8 = ...

= k14 = 750, and k15 = ... = k21 = 500, and the masses: m1 = ... = m7 = 1, m8 = ...

= m14 = 0.75, and m15 = ... = m21 = 0.5. The structure is classically damped with

a damping coefficient of 0.01. The fundamental frequency is 0.436 Hz.

In all simulations to follow, only small stiffness related damage is considered. The

proposed method does not hold for larger damages. Large damage cases require

updating the sensitivity matrix iteratively to account for the nonlinear relationship

between changes in impulse response and changes in stiffness.

The impulse response is measured in units of acceleration. The impulse response

sensitivity matrix is defined by eq. A.8. The change in impulse response between the

damaged and undamaged system contains only the specified lower natural frequencies,

which are typically the only ones that can be identified from structural vibrations.
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Localized damage is less prominent in the lowest frequencies. The fewer the number

of natural frequencies that are identified in the impulse response, the less likely the

proposed methodology can identify damage in the presence of noise.

Figure A.2: Above, the undamaged impulse response and the impulse response for a 10%
stiffness reduction given 6 identified frequencies. Below, the change in impulse response
between the damaged and undamaged system

Fig. A.2 presents the undamaged system impulse response, the impulse response of

the system with a 10% stiffness reduction in Element (El.) 6, and the change between

the two, given 6 identified frequencies. The following simulations are conducted first

for single input-single output (SISO) systems, and then for single input-two output

(SITO) systems. The input sensor is fixed at El. 21 for all tests and the output

sensor(s) to be specified.
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A.4.1 Single input-single output

The first simulated case demonstrates the efficacy of the methodology for an ideal

simulation without measurement error. The stiffness of element 6 is reduced by 1%

and the lowest four frequencies are identified within the impulse responses of the

original system and the damaged system. No prior information about the quantity

or magnitude of damages are known except that the solution is sparse. The impulse

response for the cantilever is defined by a system with a single input and single

output, where the output and input are fixed at elements 3 and 21 respectively, and

the sensitivity matrix is truncated according to the number of identified frequencies

(eq. A.11, A.14).

To demonstrate the preference to the LASSO regularization over the Tikhonov,

Fig. A.3 presents the estimated stiffness reduction and its damaged locations using

LASSO and the Tikhonov for a range of selected regularization parameters λ. In Fig.

A.3a the damage at element 6 is apparent when the LASSO is used , while in Fig.

A.3b the Tikhonov provides no information on the damage at element 6. Note that

as the regularization parameter is increased the weight on the penalty is increased.

In regards to the LASSO, the solution becomes sparser with increasing λ because the

weight on the l1 norm penalty is increased. Clearly an optimal choice of λ is between

0.01 and 0.1. In regards to the Tikhonov, no benefit is gained from increasing the

weight on the l2 norm penalty.

We then select the regularization parameter using cross validation. It is immedi-

ately clear from Fig. A.4 that the l1 constrained solution identifies the true damaged

element, and estimates the magnitude of the reduction in stiffness precisely. In stark
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Figure A.3: The estimated stiffness reduction for damage at El. 6 as a function of the regu-
larization parameter λ for: a) the LASSO regularization, and b) the Tikhonov regularization

contrast, no information is gained about the damaged element when the regulariza-

tion is subjected to the l2 constrained parameter nor is the solution sparse. The

solution to the LASSO contains only one non-zero element and hence is sparse.

The performance of the l1 constrained regularization method in detecting a 1%

stiffness reduction in any single element taken separately is considered next. Fig. A.5a

presents the minimum number of frequencies required to identify this reduction at any

single element. Frequencies are selected sequentially from the lowest in increments of

one until a proper detection is obtained. We compare the sparse sensitivity method

with frequency shifts from [?] to the proposed sparse sensitivity method with impulse

responses. The number of identifiable frequencies required to detect a single damage

at any element (exception at El. 15) is less in the impulse response sensitivity method

than when using frequency sensitivity. Fig. A.5b presents the estimated stiffness
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Figure A.4: Estimated stiffness reduction for every element. In this case, only the stiffness
of El. 6 was reduced by 1%. (a) The l1-based solution, and (b) the l2-based solution

reduction for each damaged element using the impulse response method for the case

where only four frequencies were identified.

Sparsity is not necessarily synonymous of a single damage element, thus multiple

damage locations and varying percent reductions in stiffness must also be considered.

Fig. A.6(a-c) presents the following scenarios:(i) the stiffness of El. 6 reduced by 1%

and El. 7 by 1%, (ii) stiffness of El. 6 reduced by 1% and El. 7 by 3%, and (iii)

El. 6 reduced by 1% and El. 7 by 5%. Successful damage detection for cases (i-iii)

were made despite the proximity of the two damage locations. Fig. A.6(d-f) presents

the following scenarios: (iv) the stiffness of El. 6 reduced by 1% and El. 15 by 1%,

(v) stiffness of El. 6 reduced by 1% and El. 15 by 3%, and (vi) El. 6 reduced by

1% and El. 15 by 5%. In cases (iv) and (v) damages were correctly located, and

their reductions in stiffness accurately estimated. In case (vi) a small false positive
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Figure A.5: a) Number of frequencies required in order to identify a single element damage
for frequency shift method (FS) and impulse response method (IR). Frequencies selected
sequentially from the lowest in increments of one until a proper detection is obtained. (b)
Estimated stiffness reduction for every element using the impulse response method and 4
identified frequencies

is obtained at El. 19 and the estimated magnitudes of the stiffness reduction at the

true damage locations are underestimated. In all previous cases the impulse response

and sensitivity matrix were truncated at the 6th frequency.

The effect of measurement noise ε on eq. A.2 is investigated. Noise is defined

as the realization of an n-dimensional Gaussian random vector with zero mean and

standard deviation of each component εi proportional to the corresponding h(ti),

where n is length of the vector in time. The vector of noise is added to the measured

output for both damaged and undamaged states. The impulse responses are then

identified from the simulated noisy outputs given a white Gaussian input using the

Observer/Kalman Filter Identification (OKID). The number of identified frequencies

in the spectral bandwidth of the impulse response varied from 4 to 10. The locations of
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Figure A.6: Estimated stiffness reduction for the following multiple damage cases: a) 1%
damage at El. 6 and El. 7, b) 1% damage at El. 6 and 3% at El. 7, c) 1% damage at El.
6 and 5% damage at El. 7, d) 1% damage at El. 6 and El. 15, e) 1% damage at El. 6 and
3% at El. 15, and f) 1% damage at El. 6 and 5% damage at El. 15

the input and output remain the same. In each case, 1000 simulations were performed

and a probability of detection (POD) was obtained. The criteria for detection were:

(i) the method correctly identifies the damaged element, and (ii) it does not assign

a value greater than 20 percent than that of the element of greatest reduction to

any other element. The sampling frequency of the impulse response was taken at 20

Hz. To reduce the effects of noise from the identified damping which is often more

sensitive to noise than other dynamic features, we consider only the identified impulse

response between 2.5 and 27.5 sec. For a single output system with impulse response

sampled at a frequency of 20 Hz, the size of the sensitivity matrix is 500 x 21.

The POD is compared to those obtained from [11] for a single 10% stiffness re-

duction at El. 2, El. 6, El. 14, and El. 20. Fig. A.7 presents the POD for each case
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Figure A.7: Probability of detection (POD) as a function of the coefficient of variation of the
selected frequencies for impulse response (IR) and frequency sensitivity (FS) method [11].
(a) Corresponds to spring 2, (b) to spring 6, (c) to spring 14, and (d) to spring 20

as a function of the maximum coefficient of variation of the identified frequencies.

It is clear that the impulse response method results in larger POD values than the

frequency sensitivity method for El. 2, 6, and 14. Only for El. 20 are the results

comparable. An inverse proportional trend occurs with damage at El. 20 within the

specified domain of noise as seen in Fig. A.8d. This trend may be due to collinearity

between El. 20 and El. 1, where the method estimates a false positive damage at El.

1 large enough to violate the specified threshold for a correctly identified damage. Fig.

A.8a presents the average estimated stiffness reduction for each element for damage

at El. 20 with 10 identified frequencies for an increasing fraction of noise (NF) of

the standard deviation of ε. The small addition of noise is apparently beneficial at

first, however an expected depreciation of the POD occurs as the fraction of noise is

increased (Fig. A.8b). This effect was not observed in Fig. A.7d due to the realized
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Figure A.8: a) The average estimated stiffness reduction for each element with 10 identified
natural frequencies with increasing fraction of noise (NF) for a 10% stiffness reduction at
spring 20, and b) the probability of detection (POD) as a function of the fraction of noise
for a 10% stiffness reduction at spring 20.

range of noise.

The final SISO simulation is presented in Fig. A.9. The POD is computed as a

function of magnitude of stiffness reduction for a fixed level of noise. for each case,

1000 independent simulations are performed for each fraction of stiffness reduction

taken at 0.01 to 0.05 in 0.01 increments, and 0.05 to 0.2 in 0.05 increments. In

all cases, the maximum coefficient of variation of all frequencies was fixed at 0.001.

Again these results are compared to those from [11]. By observation of Fig. A.9,

the impulse method detects smaller magnitudes of damage with higher probability

than the frequency sensitivity method from [11]. However the maximum fraction of

stiffness reduction that the impulse method detects is significantly lower than in [11].

From these simulation results one could hypothesize that linearization errors affect the
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Figure A.9: Probability of detection (POD) as a function of the fraction of stiffness reduction
of the selected frequencies for impulse response (IR) and frequency sensitivity (FS) method
[11]. The maximum coefficient of variation is 0.001. (a) Corresponds to spring 2, (b) to
spring 6, (c) to spring 14, and (d) to spring 20

impulse response sensitivity approach more drastically than the frequency sensitivity

approach proposed in [11].

A.4.2 Single input-two outputs

In this section the performance of the proposed methodology is examined in the

case of single input and two outputs. For a single input two output system with

impulse responses sampled at 20 Hz, the sensitivity matrix is 1000 x 21. In the

following simulations, the effects of measurement noise and limited spectral data are

considered. The criteria for a sparse damage detection, the LASSO criteria, and the

impulse response truncation described in previous sections remain the same. For

clarity, output locations are often referred to as outputs, and enumerated from 1 to
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21 (from top to bottom) based on their associated element locations.

We first examine the efficacy of the single input-two output system with measure-

ment error by estimating the probability of detecting a 10% stiffness reduction at El.

6 as a function of noise. The POD is evaluated at fractions of noise between 0% to

15% the standard deviation of ε. The standard deviation of ε is proportional to h(t)

computed at a single output located at El. 3 with a single input located at El. 21.

The vector of noise is added to both outputs. For reference, 4% noise resulted in a

0.001 maximum coefficient of variation in the frequencies in the previous section. Fig.

A.10 present the POD for a fixed input at El. 21 and outputs located respectively at

i) El. 3, ii) El. 17, and iii) El. 3 and 17.

Figure A.10: Probability of detection (POD) as a function of the fraction of noise and
identified frequencies (F#) for SISO and SITO systems. Output(s) located at i) El. 3, ii)
El. 17, and iii) El. 3 and El. 17 . a) POD of the two output case (TO) and the case with
a single output (SO) located at El. 3. b)POD of the two output case (TO) and the the case
with a single output (SO) located at El. 17

With 8 and 10 identified frequencies, the POD of the SITO system decays more
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rapidly with additional noise than the SISO cases. Perhaps this is a consequence of

the addition of noise with additional outputs. With 4 and 6 identified frequencies the

SITO outperforms the SISO with output 17. With 4 identified frequencies the SITO

outperforms the SISO with output 3.

Next, the performance of both the SISO and SITO systems as a function of all

single and two output combinations are investigated. The effects of output location

and quantity are isolated by fixing all other variables. We now estimate the probability

of detecting a 10% stiffness reduction at El. 6 for a level of noise fixed at 8%. The

noise ε is the realization of a Gaussian random variable with zero mean, and a fixed

standard deviation proportional to h(t) evaluated at outputs located at El. 1 and El.

2 and input located at El. 21. In a two output system, the vector ε is added to both

outputs, and in the case of a single output only the noise proportional to output 1 is

added. The input was fixed at El. 21 for all simulations.

Fig. A.11 presents the POD as a function of all combinations of two outputs

located between El. 1 and El. 20. The diagonal of Fig. A.11 depicts the POD of

the SISO systems at the specified output locations. The results show a generally

high POD for single output systems, and two output systems. 82% of all two output

combinations and 65% of the single output possibilities resulted in greater than 90%

POD.

Using the data from Fig. A.11, we investigate the maximum and minimum bounds

of the POD for SITO systems and compare them to the SISO systems. Fig. A.12

presents the maximum and minimum POD achieved by each output of interest with

the addition of the another output. Superimposed is the POD of the SISO system

evaluated at the output of interest.
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Figure A.11: Probability of detecting a 10% stiffness reduction at El. 6 with 8% noise as a
function of all output pairs. The diagonal represents the POD for single output systems

In regards to this damage case, for every output there exists at least one additional

output that in combination will yield a POD no worse than that of the output imple-

mented alone. The result of the additional output, and hence the addition of modal

information (i.e. mode shapes) is intuitively consistent with observations made in

previous simulations where the addition of identified frequencies increased the POD.

Despite this intuitive phenomenon, there still exists combinations of outputs that

yield a POD that is below that of the single output case as shown by the minimum

SITO POD obtained.

Using data from Fig. A.11, we further investigate the POD as a function of output

location, and output quantity. Fig. A.13 presents the percent relative difference

(PRD) between the POD of the output of interest in combination with all other

outputs (PODO∗,O), and the POD of all other outputs individually implemented in
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Figure A.12: The maximum (Max SITO) and minimum (Min SITO) achievable POD of
each output of interest for a two output system, and the POD for each output of interest
for a single output system (SISO)

SISO (PODO). The PRD is expressed as

PRD = PODO∗,O − PODO

PODO

(A.16)

By observation of the PRD in Fig. A.13, the increase in POD with the addition

of certain outputs of interest is often disproportionally larger than the decreases in

POD that may occur. As an example observe the PRDs of the output of interest

located at El. 5. Four individual SISO output cases have a greater than 25% gain

in POD when combined with El. 5, while combinations that perform less well than

the SISO case only reduce the POD by less than 10%. This phenomenon is typical

across all elements, with the exceptions of El. 7, 12, and 17. The majority of SITO

combinations that contain outputs located at either 7, 12, and 17 perform less well
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than if implemented in a SISO system. This implies that outputs 7, 12, and 17 are

poor sensor locations for sparse recovery.

Figure A.13: For each single output of interest, the percent relative difference of the POD
between the single input-single output, and the single input-two output case in which the two
sensors are the output of interest combined with all other outputs

A.5 Conclusion

This paper explores the use of impulse response sensitivity for detecting spatially

sparse damage in structural systems. The paper shows that it is possible (at least in

simulated systems) to detect spatially sparse stiffness reductions in the presence of

noise and limited spectral data by measuring changes in identified impulse response.

The sensitivity of the impulse response with respect to changes in stiffness was found

using Vetter calculus. The proposed method is compared to the Tikhonov regular-

ization and the frequency sensitivity methods from [11]. It was also found that the
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impulse response sensitivity provides better probability of detection results with re-

spect to frequency sensitivity, however it is more sensitive to linearization errors and

thus its performance degrades as the size of damage increases.

Within the context of the proposed impulse response sensitivity, the paper investi-

gates the effect of multiple outputs. The results imply that additional output sensors

are often better but not always. This paper provides a proof of concept for the impulse

response sensitivity using LASSO regularization. In future work the authors plan to

expand this study by applying the proposed methodology to experimental data and

determining optimal FEM resolution for sparse damage detection. We also seek to

bolster the mathematical theory and include large damage extent by formulating the

approach to account for the nonlinear sensitivity.
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