
Theoretical Computer Science 709 (2018) 31–47
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Group mutual exclusion in linear time and space

Yuan He a, K. Gopalakrishnan b,∗, Eli Gafni a

a Department of Computer Science, University of California at Los Angeles, Los Angeles, CA-90095, United States
b Department of Computer Science, East Carolina University, Greenville, NC-27858, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 May 2016
Received in revised form 12 April 2017
Accepted 30 May 2017
Available online 7 June 2017

Keywords:
Mutual exclusion
Group mutual exclusion
Remote memory reference complexity
Lamport’s Bakery Algorithm
Black and White Bakery Algorithm

We present two algorithms for the Group Mutual Exclusion (GME) Problem that satisfy
the properties of Mutual Exclusion, Starvation Freedom, Bounded Exit, Concurrent Entry and First
Come First Served. Both our algorithms use only simple read and write instructions, have
O (N) Shared Space complexity and O (N) Remote Memory Reference (RMR) complexity
in the Cache Coherency (CC) model. Our first algorithm is developed by generalizing
the well-known Lamport’s Bakery Algorithm for the classical mutual exclusion problem,
while preserving its simplicity and elegance. However, it uses unbounded shared registers.
Our second algorithm uses only bounded registers and is developed by generalizing
Taubenfeld’s Black and White Bakery Algorithm to solve the classical mutual exclusion
problem using only bounded shared registers. We show that contrary to common
perception our algorithms are the first to achieve these properties with this combination
of complexities.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mutual Exclusion is a classical problem in distributed computing introduced by Dijkstra in 1965 [4]. The Group Mutual
Exclusion (GME) problem, introduced by Joung in 2000 [10], is a natural generalization of the classical mutual exclusion
problem.

Before formally stating the problem, we first motivate the generalization by the following illustrative example. In univer-
sity environment we can think of the critical section as a room allocated by the University to students of all faiths to pray
in the most neutral policy, FCFS (First-Come First-Serve). Naturally (to believers!), students of different faith cannot use the
room to pray concurrently. However, students of the same faith are encouraged to pray concurrently. Since students pray
individually, a student cannot overtake another waiting student to enter the prayer room just because a member of her
faith is currently praying. This will prolong the waiting of the waiting student. Yet, students who arrive while only others of
the same denomination are present can enter and pray without waiting. We assume that open minded Christian, or secular
who might call to God at a dire strait, may pick a different denomination from time to time, though, they have to declare
their pick upon arrival. If a member of different declared denomination is present, then service is FCFS. Students negotiate
entrance to the prayer room by writing on a blackboard, intermittently taking a break from waiting to have coffee, and then
come back to check the negotiated queue. Henceforth a student is a process, and each student depending on UID, has a
space allocated on the blackboard to be written in exclusion.

* Corresponding author.
E-mail addresses: heyuan89@cs.ucla.edu (Y. He), gopal@ecu.edu (K. Gopalakrishnan), eli@ucla.edu (E. Gafni).
http://dx.doi.org/10.1016/j.tcs.2017.05.030
0304-3975/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.tcs.2017.05.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:heyuan89@cs.ucla.edu
mailto:gopal@ecu.edu
mailto:eli@ucla.edu
http://dx.doi.org/10.1016/j.tcs.2017.05.030
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.05.030&domain=pdf

32 Y. He et al. / Theoretical Computer Science 709 (2018) 31–47
In Group Mutual Exclusion problem, processes repeatedly cycle through four sections of code viz., Remainder Section,
Entry Section, Critical Section (CS) and Exit Section, in that order. An execution of the last three sections will be called an
invocation. A process picks a session number when it leaves the remainder section and this session number can be different
in each invocation. A process is said to be an active process, if it is in one of its invocations. Two active processes are in
conflict if their session numbers are different. Unlike the classical mutual exclusion problem, multiple processes are allowed
to be in the critical section at the same time, provided they are not conflicting. In fact, in the presence of active processes
all of which are mutually non-conflicting, entry into the critical section takes bounded number of process steps. Formally,
the problem consists of designing code for the entry section and the exit section such that the following four properties are
satisfied.

P1 Mutual exclusion: No two conflicting processes can be in the critical section at the same time.
P2 Starvation freedom: If no process stays in the critical section forever, then any process that enters the entry section

eventually enters the critical section.
P3 Bounded exit: After entering the exit section, a process is guaranteed to leave it within a bounded number of its own

steps.
P4 Concurrent entry: In the absence of conflicting processes, a process in the entry section should be guaranteed to enter

the critical section within a bounded number of its own steps.

The Concurrent Entry property is crucial to the GME problem. It was stated informally by Joung [10] and then later
formalized by Hadzilacos [6]. The intent of this property is to ensure concurrency: active processes that request the same
session, in the absence of conflicting processes, should be allowed to enter the CS without unnecessary synchronization
among themselves.

In this paper, we will require that the algorithm satisfies the First Come First Served (FCFS) property in addition to the
above four properties. The standard way to formalize this is to split the entry section into two sections viz., Doorway Section
and Waiting Room Section. The doorway section of the code is free of “wait” statements, i.e., it can be completed by a process
in a bounded number of its own steps. The waiting room section is where the actual synchronization with other conflicting
processes occurs and may entail indefinite waiting. The notion of doorway was originally introduced by Lamport [12] in the
context of classical mutual exclusion problem. We would say that process Pi doorway precedes process P j , if Pi completes
the doorway before P j enters the doorway. Now, the FCFS property can be formally stated as given below.

P5 FCFS: If process Pi doorway precedes process P j and the two processes request different sessions, then process P j does
not enter the critical section before process Pi .

If neither Pi doorway precedes P j nor P j doorway precedes Pi , we would say the two processes are doorway concurrent.

1.1. Model

We consider a system consisting of N processes, named P1, P2 . . . P N and a set of shared variables. Each process also has
its own private variables. Processes can communicate only by writing into and reading from shared variables. An execution
is modeled as a sequence of process steps. In each step, a process performs some local computation or reads from a shared
variable or writes into a shared variable. We assume that these steps of reading or writing are atomic. The processes take
steps asynchronously. Specifically, this means that an unbounded number of steps of some other process could be performed
in between two consecutive steps of a process. We assume that our processes are live; this means that if a process is active
it will eventually execute its next step.

We allow only simple read and write operations on shared variables. We assume that these read and write operations
are atomic. However, we do not assume that processes have access to more powerful synchronization operations such as
atomic test-and-set and compare-and-swap.

There are two general architectural paradigms considered for shared memory in the literature, viz., Distributed Shared
Memory (DSM) Model and Cache–Coherency (CC) Model. In the DSM model, each processor has its own memory module
and each shared variable is assigned to a particular processor. When a processor is referencing a shared variable, it is
locally accessible, if it is allocated to that processor itself; on the other hand, it is a remote access, if it is allocated to
some other processor. In the CC model, all shared variables are stored in a global memory module that is not associated
with any particular processor. Each processor also has a local cache and some hardware protocol ensures cache coherence,
i.e., all copies of the same variable in different local caches are consistent. Every time a process reads a shared variable, it
does so using a local (cached) copy of the variable. A local copy of the variable may not be valid, if the process has never
read the variable before or if some process overwrote it in the global memory module. Whenever, upon reading a cached
variable, the process is informed by the system that its value is invalid, it makes a remote memory reference and migrates
the variable to its local cache. We assume that once a shared variable is brought into a process’s local cache it remains
there indefinitely. Also, every time a process writes a shared variable, the process writes the variable in the global memory
module, which involves a remote memory reference. Note that, this action invalidates all cached copies of that variable. In

Y. He et al. / Theoretical Computer Science 709 (2018) 31–47 33
this paper, we will be working exclusively under the cache–coherency model, a model of practical significance considering
that virtually every modern multi-processor is cache–coherent.

By the term time complexity, we mean Remote Memory Reference (RMR) complexity in this paper. It is simply the worst
case number of remote memory references performed by a process in one invocation. This is because remote memory refer-
ences are the most time consuming operations as they involve interconnect traversal. Also, counting the number of remote
memory references is probably the only reasonable way to evaluate the time complexity of mutual exclusion algorithms,
since plain steps complexity of mutual exclusion algorithms is unbounded. An algorithm is called a local-spin algorithm if
the maximum number of remote memory references made in any invocation is bounded.

By the term space complexity, we mean the total amount of shared space a solution entails. We do not count the private
variables when measuring space complexity. There are two different situations of interest, one in which the shared variables
are unbounded registers and the other in which the shared variables are bounded registers.

1.2. Our contribution and related work

Joung’s original algorithm for the GME problem satisfies the four basic properties. It does not satisfy the FCFS property.
Moreover, it has unbounded RMR complexity. Hadzilacos (see [6]) gave the first solution for the GME problem that has the
FCFS property. His algorithm can be thought of as a modular composition of two independent algorithms, one, “the FCFS
algorithm” provides FCFS property (but not necessarily guarantees mutual exclusion) and the other, “the ME algorithm”
provides mutual exclusion property (but not necessarily FCFS). This algorithm has shared space complexity of �(N2). It
was (mistakenly in hindsight, see Section 4) claimed that the algorithm has RMR complexity of O (N) in the CC model.
The algorithm uses only bounded shared variables and simple read and write operations. It was left as an open problem to
develop a solution (satisfying P1 through P5) for the GME problem that runs in linear time and space using only bounded
shared variables.

Subsequently, in [8], Jayanti et al. presented an algorithm presumed to be of linear time and space, solving the challenge
of Hadzilacos. Jayanti et al. retained the idea of modular composition and also the “ME algorithm” that Hadzilacos used.
They came up with a clever modification to the “FCFS algorithm” of Hadzilacos to reduce the space complexity to �(N).
Although they did not explicitly claim so, their algorithm was also deemed to have the linear RMR Complexity in view of
the wrong claim by Hadzilacos.1

Both works use a slightly modified version of a classical mutual exclusion algorithm developed independently by Burns
[2] and Lamport [13] as the “ME algorithm”. This is an elegant algorithm that uses just one bit of shared space per process.
In Section 4, we show that this algorithm actually has an intricate structure and has the worst case RMR complexity of
�(N2). It follows that algorithms of both Hadzilacos and Jayanti et al. are of RMR complexity �(N2). Hence, the challenge
posed by Hadzilacos has yet to be met. Our observation, and part of our contribution, that the challenge is still on, initiated
this paper.

Our first algorithm, presented in Section 2, is a generalization of the classic Lamport’s Bakery Algorithm to solve the GME
problem while maintaining its simplicity and elegance. It uses unbounded registers to solve the GME problem (satisfying P1
through P5) and runs in linear time and space.

Takamura and Igarashi also made an attempt in [14] to generalize Lamport’s Bakery Algorithm to solve the GME problem.
They presented three different algorithms in that paper. However, none of their algorithms satisfies the concurrent entry
property nor the FCFS property.

In 2004 (which is after the publication of [6] and [8]), Taubenfeld [15] came up with an elegant algorithm called Black and
White Bakery Algorithm that solves the classical mutual exclusion problem with only bounded shared registers. His approach
is a lot simpler than a prior method that bounds the registers of the Lamport’s Bakery Algorithm developed by Jayanti et al.
in [9]. Our second algorithm, presented in Section 6 is a generalization of the Black and White Bakery Algorithm to solve
the GME problem. Our algorithm satisfies the properties P1 through P5 and runs in linear time and space using bounded
shared registers. Thus, our algorithm is the first one to solve the open problem originally posed by Hadzilacos, a decade and
a half ago.

We present a comparison of different GME algorithms in Table 1. To make the comparison fair, we include only those
algorithms that solve the problem using only simple read/write instructions. The first row in the table describes the prop-
erties of Joung’s original algorithm for the GME problem. The next four rows compare the algorithms for the GME problem
that use unbounded shared registers. The last four rows compare the algorithms for the GME problem that use bounded
shared registers.

2. Generalizing Lamport’s Bakery Algorithm

In this section, we present a very simple algorithm for the GME problem by generalizing Lamport’s Bakery Algorithm
(see [12]) for the classical mutual exclusion problem. This algorithm is based on the method commonly used in bakeries, in

1 For example, the recent paper by Bhatt and Huang [1] explicitly states that the RMR complexity of the algorithm by Jayanti et al. is O (N).

34 Y. He et al. / Theoretical Computer Science 709 (2018) 31–47
Table 1
Comparison of GME algorithms that use only simple read/write instructions.

Algorithm RMR Space P2? P3? P4? P5? Bounded?

Joung [10] ∞ O(N) Yes Yes Yes No Yes

Takamura et al. [14] I ∞ O(N) No Yes No No No
Takamura et al. [14] II O(N) O(N) Yes No No No No
Takamura et al. [14] III O(N) O(N) Yes No No No No
This work (GLB Algorithm) O(N) O(N) Yes Yes Yes Yes No

Keane & Moir [11] O(log N) O(N) Yes No No No Yes
Hadzilacos [6] O(N2) O(N2) Yes Yes Yes Yes Yes
Jayanti et al. [8] O(N2) O(N) Yes Yes Yes Yes Yes
This work (BWBGME Algorithm) O(N) O(N) Yes Yes Yes Yes Yes

which a customer receives a token number upon entering the store and the holder of the lowest token number is the next
one served. We will refer to it as Generalized Lamport’s Bakery (GLB) Algorithm.

The algorithm is presented in Fig. 1. It uses three shared variables. The first one Session is an integer array of size N
and Session[i] indicates the session number that process Pi requests in the current invocation to enter the CS. The second
one is Token, an integer array of size N and Token[i] represents the token number selected by process Pi . The third shared
variable is Choosing, a boolean array of size N and Choosing[i] is true would indicate that process Pi is currently attempting
to make a new request to enter the critical section. The Session array and the Token array are initialized to zero and the
Choosing array is initialized to false. The doorway of the algorithm consists of lines 3–6 and the waiting room is made up
of lines 7–10.

When a process leaves the remainder section, it first sets the variable Choosing[i] to true to signal other processes that
it is about to make a new request to enter the critical section. Next, it places the desired session number in Session[i]. We
assume that all session numbers are positive integers. It then selects its token number to be one more than the maximum
of the token numbers of all other processes and places it in Token[i]. Finally, Pi sets Choosing[i] to false to signal other
processes that it has completed the doorway section for the new request.

Figure 1 Generalized Lamport’s Bakery Algorithm.
Shared variables:

Session: array[1..N] of integer, initially all 0
Token: array[1..N] of integer, initially all 0
Choosing: array[1..N] of boolean, initially all false

Private variables:
mysession: integer, initially 0

1: repeat
2: REMAINDER SECTION

3: Choosing[i] := true
4: Session[i] := mysession
5: Token[i] := 1 + max({Token[j]|(1 ≤ j ≤ n)})
6: Choosing[i] := false

7: for j := 1 to N do
8: wait until ((Choosing[j] = false) ∨ (Session[j] ∈ {0, mysession}))
9: wait until (((Token[i], i) < (Token[j], j)) ∨ (Token[j] = 0)∨

(Session[j] ∈ {0, mysession}))
10: end for

11: CRITICAL SECTION

12: Token[i] := 0
13: Session[i] := 0
14: forever

In the waiting room, at line 8, for each other process P j , process Pi checks to see whether Session[j] is zero or same
as mysession. In either case, there is no problem and so Pi can move on. On the other hand, if process P j is requesting
a conflicting session (i.e., Session[j] /∈ {0, mysession}), Pi waits for P j to finish the doorway and set Choosing[j] to be false.
Next, at line 9, process Pi waits on each conflicting process P j (i.e., Session[j] /∈ {0, mysession}) until either P j has exited the
critical section (i.e., Token[j] = 0) or P j has a larger token number (i.e., ((Token[i], i) < (Token[j], j))). It is possible that two
conflicting processes pick the same token number. In that case, we use the process identifier to resolve the ties (line 9). The
relation “less than” among ordered pairs of integers is defined as in the Lamport’s Bakery Algorithm. That is (a, b) < (c, d)

if a < c or if a = c and b < d (a, b, c and d are all integers). For simplicity, if Token[i] = Token[j], we say the process with

Y. He et al. / Theoretical Computer Science 709 (2018) 31–47 35
the smaller process identifier has the smaller token number. After the loop, process Pi enters the CS. In the exit section, Pi
resets Token[i] to 0 and then Session[i] to 0.

3. Proof of correctness of the generalized Lamport’s Bakery Algorithm

The algorithm satisfies the mutual exclusion property, starvation freedom property, bounded exit property, concurrent
entry property and the FCFS property. Here we present a complete proof that the algorithm satisfies these properties.

Lemma 1. The GLB algorithm has the FCFS property.

Proof. Assume two conflicting processes i and j request the CS. Also assume that process i finishes the doorway before
process j starts the doorway. So, when process j is computing its token number, it will read the token number of process i
and select a larger token number. As process j has a larger token number, when process j checks with process i at line 9,
it will wait for process i to exit the CS. �
Lemma 2. The GLB algorithm has the Mutual Exclusion property.

Proof. Suppose two conflicting processes i and j are in the CS at the same time with different sessions. By Theorem 1,
process i and process j must be doorway-concurrent. Without loss of generality, we assume process i enters the CS first.
Since processes i and j are doorway concurrent, process j has at least finished executing line 3 when process i checks on
process j at line 8.

If process j has also finished updating Session[j] by that time, process i will wait for process j to finish the doorway,
as they are requesting conflicting sessions. Since process i enters the CS first, it must have a smaller token number than
process j. As a consequence, at line 9, process j will wait for process i because it finds that process i has a smaller token
number. Therefore, process j cannot enter the CS until process i finishes the CS and resets its token number, which is
contradicting with our assumption.

On the other hand, if process j has not finished updating Session[j] by that time, then process i will not wait on process
j in line 8 as Session[j] = 0. However, if this is the case, process i has already selected its token number whereas process j
has not yet begun selecting its token number. So, process j’s token number is guaranteed to be larger than that of process
i and process j will wait on process i at line 9. Therefore, process j cannot enter the CS until process i finishes the CS and
resets its token number, which is contradicting with our assumption. �
Lemma 3. The GLB algorithm has the Bounded Exit property.

Proof. Since the exit section consists of two simple write instructions, a process that enters the exit section will trivially
finish it within a bounded number of its own steps. �

We now define another property called Deadlock Freedom. Deadlock freedom simply means deadlocks cannot occur
in the system. Informally, Deadlock occurs in the system when one or more processes are “trying to enter” their critical
sections, but no process ever does so. Lamport (see page 329 in [13]) has shown that under the assumptions that no process
stays in the critical section forever (which we are assuming), there are only finitely many processes (which we are assuming)
and the algorithm satisfies the “Bounded Exit property” (which we have just now shown is the case for our algorithm), the
deadlock freedom property can be formally stated as follows:

P6 Deadlock Freedom If one or more processes are forever trying to enter their critical section with no success for any of
them, then there exists a process that enters the critical section infinitely often.

Lemma 4. The GLB algorithm has the Deadlock Freedom property.

Proof. Suppose the algorithm does not satisfy the deadlock freedom property. Then there is an execution of the algorithm
in which a nonempty set S of processes enter the entry section but none of them enters the CS, and no process enters the
CS infinitely often. We observe that no process can wait at line 8 forever since every process j that requests the CS will
finish the doorway eventually and set Choosing[j] to false and process j enters the CS only finitely many times. Therefore,
processes in the set S must wait on line 9 forever. There exists a process i that has the smallest token number among all
processes in S and that process i will pass all other processes at line 9 and enter the CS, which is a contradiction with our
assumption. �

It is easy to observe that the Starvation Freedom property immediately implies the Deadlock Freedom property. However,
the converse is not necessarily true. Deadlock freedom means that the entire system of processes will always continue

36 Y. He et al. / Theoretical Computer Science 709 (2018) 31–47
to make progress. However, it does not preclude the possibility of individual processes not making progress (i.e., waiting
forever in the entry section).

Lemma 5. The GLB algorithm has the Starvation Freedom property.

Proof. Lamport has proved (see page 330 in [13]) that if an algorithm satisfies the deadlock freedom property and the
FCFS property, then it necessarily satisfies the starvation freedom property. Hence, combining Lemma 1 and Lemma 4, we
conclude that our algorithm has the starvation freedom property. �
Lemma 6. The GLB algorithm has the Concurrent Entry property.

Proof. Assume that process i requests a session, and no other process requests a different session. This means, for every
other process j, it holds that Session[j] ∈ {0, mysession}. Since process i always checks whether Session[j] ∈ {0, mysession} in
both the busy–wait loops in line 8 and line 9, it cannot wait on either lines. So, it enters the CS within a bounded number
of its own steps, thus satisfying the concurrent entry property. �

We now analyze both the time and space complexity of the algorithm. The algorithm uses three shared variables, Session,
Token and Choosing, each of which is an array of size N . So, obviously the algorithm has �(N) shared space complexity.
However, the token numbers used by this algorithm will grow in an unbounded manner, just like in the Lamport’s Bakery
Algorithm.

We now analyze the time complexity of the algorithm. As said before, by time complexity, we mean the RMR complexity
of the algorithm because remote memory references are the most time consuming operations. Recall that in the CC model,
all shared variables are stored in a global memory module and processes migrate them to their local cache to access them.
In the waiting room, there are only two loops viz., the busy–wait loops in line 8 and line 9. In line 8, when process i
is busy waiting for a process j, if Choosing[j] changes to false, then process i will immediately terminate the wait. It is
possible that (before process i observes the changed value of Choosing[j]) precess j sets the Choosing[j] to true again and
requests another conflicting session. In that case, since process i doorway-proceeds process j, process j will get a larger
token number than process i. So, process j cannot enter the CS to finish that invocation and therefore cannot change the
Session again until process i finishes the CS. Thus, line 8 can only involve a maximum of five RMR (three for Choosing[j] and
two for Session[j]). Similarly in line 9, when process i is busy-waiting on Token[j], if Token[j] changes, its new value will
be either zero or a larger token number and in either case, process i will terminate the wait. Also, any change in Session[j]
will also entail a change in Token[j] and thus terminate the wait. Hence, line 9 involves a maximum of five RMR (one for
Token[i], two for Token[j], two for Session[j]). There are only a constant number of RMR in line 8 and line 9. As these two
lines are enclosed within a for loop that can run a maximum of N times, it follows that the entire waiting room is of O (N)

RMR complexity. Note that the doorway made up of line 3 through line 6 involves only a constant number of RMR, except
for the implicit loop in line 5. The implicit loop in line 5 has O (N) RMR complexity as it involves inspecting the token
numbers of all other processes. Finally, it is easy to see that the exit section consisting of lines 12–13 involves exactly two
RMR. Hence, the overall RMR complexity of this algorithm in the CC model is O (N).

We now summarize the results in the form of the following Theorem.

Theorem 1. The Generalized Lamport’s Bakery Algorithm presented in Fig. 1 solves the GME problem by satisfying all the five properties
P1 through P5 in linear space (with unbounded registers) and time (RMR under the CC model) using only simple read and write
operations.

An earlier paper by Takamura and Igarashi [14] also made an attempt to generalize Lamport’s Bakery Algorithm to solve
the GME problem. They presented three different algorithms in that paper. Their first algorithm is fairly simple, but does
not satisfy the starvation freedom property. Their second and third algorithms do satisfy the starvation freedom property.
However, apart from being quite complicated, they do not satisfy the bounded exit property. None of the three algorithms
satisfies the FCFS property nor concurrent entry property. However, all three of their algorithms satisfy a weaker property
known as concurrent occupancy in the literature (see [11] and [6]). The GLB algorithm shown in Fig. 1 is the simplest and
most natural generalization of Lamport’s Bakery Algorithm for the GME problem.

4. A flaw in the literature

We now look at attempts to solve the GME problem using only bounded shared registers and simple read and write
operations. Two prominent algorithms in this regard are that of Hadzilacos [6] and that of Jayanti et al. [8]. Both of the
algorithms can be viewed as a modular composition of an “FCFS Algorithm” and an “ME Algorithm”. Not only that both of
the algorithms use modular composition technique, but also they both use the same “ME Algorithm”. Hadzilacos’s algorithm
is of space complexity �(N2) and he claimed that his algorithm is of O (N) RMR complexity in the CC model. Hadzilacos
posed it as an open problem to devise an algorithm to solve the GME problem in linear time and space using only bounded

Y. He et al. / Theoretical Computer Science 709 (2018) 31–47 37
Figure 2 Burns–Lamport ME algorithm.
1: L: Competing[i] := true
2: for j := 1 to i − 1 do
3: if Competing[j] then
4: Competing[i] := false
5: wait until not Competing[j]
6: goto L
7: end if
8: end for
9: for j := i + 1 to N do

10: wait until not Competing[j]
11: end for

shared variables. Jayanti et al. came up with a clever modification to the “FCFS algorithm” of Hadzilacos and reduced the
space complexity to �(N). We now show that the “ME Algorithm” they used is of complexity �(N2) in the CC model thus
establishing that neither of these two algorithms has O (N) RMR complexity.

The “ME algorithm” used by them is independently discovered by Burns [2] and Lamport [13]. This algorithm is depicted
in Fig. 2. In this algorithm Competing is a shared array of size N . Each element of the array is a boolean variable, initialized
to false. The code given in Fig. 2 is for process Pi . The variable j is a private variable.

We now briefly describe the algorithm. Every process Pi owns a single bit Competing[i]. Only Pi can write into Compet-
ing[i]; Other processes can read it. Before entering the CS, Pi sets its bit to true and checks all lower numbered processes
(lines 1–3). If any of them, say process P j , is found to have set its bit to true, then process Pi resets its bit to false, allowing
the smaller-numbered process to make progress. It then waits for process P j ’s bit to become false and then restarts the
competition to enter the CS by going to line 1. Having checked all lower-numbered processes, process Pi then checks the
higher-numbered ones and waits for each of them to set its bit to false. However, this time while Pi is waiting it does not
set its bit to false. After that process Pi enters the CS. It turns out that this simple algorithm guarantees mutual exclusion.
We refer the reader to [13] (see also [2]) for a proof of correctness.

To analyze the RMR complexity under the CC Model, consider the following sequence of events:

1. Process P N sets its bit to true.
2. Process P (N−1) sets its bit to true.
3. Process P N checks all lower-numbered processes and finds that P (N−1) ’s bit is set. So, P N sets its bit to false and waits

for Competing[N − 1] to become false.
4. Process P (N−2) sets its bit to true.
5. Process P (N−1) checks all lower-numbered processes and finds that process P (N−2) ’s bit is set. So, process P (N−1) sets

its bit to false and waits for Competing[N − 2] to become false.
6. Process P N now finds Competing[N − 1] to be false and so restarts the competition by setting its bit to true.
7. Process P N checks all lower-numbered processes and finds that process P (N−2) ’s bit is set. So, P N sets its bit to false

and waits for Competing[N − 2] to become false.
8. Process P (N−3) sets its bit to true.
9. Process P (N−2) checks all lower-numbered processes and finds that process P (N−3) ’s bit is set. So, process P (N−2) sets

its bit to false and waits for Competing[N − 3] to become false.
10. Process P N now finds Competing[N − 2] to be false and so restarts the competition by setting its bit to true.
11. Process P N checks all lower-numbered processes and finds that process P (N−3) ’s bit is set. So, P N sets its bit to false

and waits for Competing[N − 3] to become false.
12. .
13. .
14. .
15. Process P N checks all lower-numbered processes and finds that process P1’s bit is set. So, P N sets its bit to false and

waits for Competing[1] to become false.
16. Process P1 checks all higher-numbered processes and finds that all the bits are false and enters CS.
17. Process P1 exits the CS and sets its bit to false.

Note that during the above sequence of events, process P N got blocked by each one of the lower numbered processes
once. At the end of the above sequence, process P1’s request is satisfied. Also, at the end of the above sequence, the
Competing bit of P2 through P N are all false. Now, we can create a similar sequence of events, but this time with only
processes P2 through P N participating. We can recursively create a similar sequence of events again and again until finally
we have only process P N participating.

The net effect is that in this worst case scenario, process P N got blocked by process P (N−1) a total of (N − 1) times,
by process P (N−2) a total of (N − 2) times and so on. So, the total number of times that process P N gets blocked by some
other processes is

38 Y. He et al. / Theoretical Computer Science 709 (2018) 31–47
N−1∑
k=1

k = N(N − 1)/2 = �(N2)

In the CC model, at least one remote memory reference is involved each time a process gets blocked and hence the
worst case RMR complexity of the algorithm in Fig. 2 is �(N2) in the CC Model.

Therefore, the problem of developing a linear time (RMR) and linear (shared) space algorithm that uses only bounded
shared variables for the GME problem, originally posed by Hadzilacos, is still open.

One might get the impression that we can immediately fix the problem, by plugging in some other mutual exclusion
algorithm that has O (N) RMR Complexity in place of Lamport–Burnst Mutual Exclusion Algorithm. Unfortunately, the situ-
ation is not that simple as we have to adapt the ME algorithm so that it provides concurrent entry for application in the
development of GME algorithm using the modular composition technique. The Lamport–Burnst algorithm is easy to adapt
by simply adding an extra condition to check whether the session number of the other process is the same as the session
number of this process in all wait-until loops. On the other hand, the mutual exclusion algorithm of Taubenfeld [15] which
has O (N) RMR Complexity, as well as that of Yang and Anderson [16] which has O (log N) RMR Complexity, is not suitable
for plugging in the modular design. Simply adding an extra condition to check the session number in all wait-until loops in
these algorithms does not provide concurrent entry as they have more intricate structures. As far as we know, there is no
mutual exclusion algorithm of O (N) RMR complexity in the literature, that is easily adaptable to provide concurrent entry
and can be plugged in the modular design. So, the problem of developing a linear time and linear space GME algorithm
that uses only bounded registers is indeed a non-trivial problem. We develop such an algorithm in Section 6.

5. Black and White Bakery Algorithm

In 2004, Taubenfeld [15] came up with an elegant algorithm called Black and White Bakery Algorithm that solves the
classical mutual exclusion problem with only bounded shared registers. In this section, we first review this algorithm and
in the next section, we generalize the ideas developed in that paper and solve the GME problem with only bounded shared
registers in linear time and space.

The key idea in this algorithm is to view the token as a colored token, i.e., the token has two components color and
number. The color will be either black or white and the number will be a positive integer. As in Lamport’s Bakery algorithm,
we also use the Choosing shared variable. The algorithm also uses an additional shared bit variable called GlobalColor which
can be either black or white. Unlike the other shared variables, GlobalColor is a multi-writer, multi-reader variable.

The algorithm is depicted in Fig. 3.
When process Pi wants to enter the CS, it first sets the Choosing variable to true to notify other processes that it is

attempting to pick its token. Then it reads the value of GlobalColor and sets its own token color to the read value. It then
picks a number which is greater than the token numbers of all processes which have the same token color as that of Pi .
After having selected the colored token, the process resets its Choosing variable to false to indicate to other processes that
it is done with picking a token.

Once Pi has got its colored token, it enters the waiting room and it waits until its colored token is the lowest and then
enters the CS. The order between the colored tokens is defined as follows: If two tokens have the same color, the token with
the smaller number is smaller. If two token have different colors, the token whose color is different from the GlobalColor is
smaller. If two processes have the same token color and the same token number, the process identifiers are used to break
the tie as in Lamport’s Bakery algorithm.

When Pi is through with the CS, it sets the shared variable GlobalColor to the opposite of its own token color and then
resets its own token number to zero. The setting of GlobalColor to the opposite color is to ensure that priority is given to
waiting processes whose token color is the same as the one that Pi held.

If at a certain point of time t , the GlobalColor has a value of c, then the algorithm ensures that all processes with token
color different from c that are in the entry section at time t enter the CS before any process with a token color of c.

After each time the GlobalColor changes, the token numbers again start from one and hence the token numbers used
can only grow up to N , where N is the number of processes. We refer the reader to [15] for a complete exposition of the
algorithm.

6. Solving GME with bounded registers

In this section, we generalize the ideas developed by Taubenfeld in [15] and solve the GME problem using bounded
registers in linear time and space.

Our algorithm also uses a multi-writer, multi-reader shared bit variable called GlobalColor (see Fig. 4) which can only
be black or white. All other shared variables used in the algorithm can only be written by one process even though they
can be read by multiple processes. Each process uses a shared variable called Token that has three components viz., session,
color and number. We assume that processes can read or write into this Token variable atomically even though it has
three components. This is not an unreasonable assumption as this can be implemented without the aid of any higher
level synchronization primitives by encoding three integers into a single integer using simple techniques (which we are
not elaborating further here). Finally each process also has a boolean shared variable called Choosing. Unlike the GlobalColor

Y. He et al. / Theoretical Computer Science 709 (2018) 31–47 39
Figure 3 Black and White Bakery Algorithm.
1: repeat
2: REMAINDER SECTION

3: Choosing[i] := true
4: Token[i].color := GlobalColor
5: Token[i].number := 1 + max({Token[j].number |

Token[i].color = Token[j].color})
6: Choosing[i] := false

7: for j := 1 to N do
8: wait until (Choosing[j] = false)

9: if Token[i].color = Token[j].color then
10: wait until

(((Token[i].number, i) < (Token[j].number, j))∨
(Token[i].color �= Token[j].color)∨
(Token[j].number = 0))

11: else
12: wait until

((Token[i].color �= GlobalColor)∨
(Token[i].color = Token[j].color)∨
(Token[j].number = 0))

13: end if
14: end for

15: CRITICAL SECTION

16: if Token[i].color = black then
17: GlobalColor := white
18: else
19: GlobalColor := black
20: end if
21: Token[i].number := 0

22: forever

Figure 4 Header for Black and White Bakery GME Algorithm in Fig. 5.
Shared variables:

GlobalColor: a bit of type {black, white}, initialized arbitrarily
Token: array[1..N] of (session: integer, color ∈ {black, white, ⊥}, number: integer), initially all (0, ⊥, 0)

Choosing: array[1..N] of boolean, initially all false

Private variables:
mysession: integer, initially 0
mycolor: a bit of type {black, white}, initialized arbitrarily
mynumber: integer, initially 0
other: (session: integer, color ∈ {black, white, ⊥}, number: integer), initially (0, ⊥, 0)

variable, the token color of a process can be black or white or a special value denoted by ⊥ which indicates that the process
has not yet set its token color.

The algorithm is depicted in Fig. 5 and we will refer to it as the Black and White Bakery GME (BWBGME) Algorithm. The
doorway of the algorithm is made up of lines 3–15 and the waiting room section consists of lines 16–23. When a process
leaves the remainder section, it picks a session number and then updates its Token variable to reflect it. It then sets its
Choosing variable to be true to notify other processes that it has initiated the task of picking a token. The token color is set
to be the same as the current value of the shared variable GlobalColor. The token number is set to be one more than the
maximum of token numbers of conflicting processes with the same color and is set to be 1 in case there are no conflicting
processes with the same color. The process then updates its Token variable to reflect the chosen color and number (line 14).
It then sets its Choosing variable to be false to notify other processes that it is done with the task of picking a colored token
(line 15).

In the waiting room, for each other process P j , process Pi checks to see if it is an active conflicting process. If it is
not, then there is no problem and Pi does not wait on P j . If it is, then process Pi waits until P j has completed selecting
its token color and number, if it has initiated the task (line 17). Process Pi then checks whether it has priority over P j

(lines 18–22). If so, it does not wait on process P j and otherwise it waits on P j . The priority order between conflicting
processes is the same as that in the Black and White Bakery Algorithm.

40 Y. He et al. / Theoretical Computer Science 709 (2018) 31–47
Figure 5 Black and White Bakery GME Algorithm.
1: repeat
2: REMAINDER SECTION

3: Token[i] := (mysession, ⊥, 0)

4: Choosing[i] := true
5: mycolor := GlobalColor
6: mynumber := 0
7: for j := 1 to N do
8: other := Token[j]
9: if ((other.color = mycolor) ∧ (other.session /∈ {0, mysession})) then

10: mynumber := max(other.number, mynumber)
11: end if
12: end for
13: mynumber := mynumber + 1
14: Token[i] := (mysession, mycolor, mynumber)
15: Choosing[i] := false

16: for j := 1 to N do
17: wait until

((Choosing[j] = false) ∨ (Token[j].session ∈ {0, mysession}))
18: if Token[j].color = mycolor then
19: wait until (((mynumber, i) < (Token[j].number, j))∨

(Token[j].color �= mycolor) ∨ (Token[j].session ∈ {0, mysession}))
20: else
21: wait until ((GlobalColor �= mycolor)∨

(Token[j].color = mycolor) ∨ (Token[j].session ∈ {0, mysession}))
22: end if
23: end for

24: CRITICAL SECTION

25: if mynumber �= 1 then
26: if (not OPPOSITECOLOR(mycolor)) then
27: if mycolor = black then
28: GlobalColor := white
29: else
30: GlobalColor := black
31: end if
32: end if
33: end if
34: Token[i] := (0, ⊥, 0)

35: forever

Figure 6 Method OPPOSITECOLOR(color) for Black and White Bakery GME Algorithm in Fig. 5.
1: for j := 1 to N do
2: other := Token[j]
3: if ((other.session �= 0) ∧ (other.color = color)) then
4: return true
5: end if
6: end for
7: return false

At the time of exiting, process Pi checks whether its token number is 1 (line 25). If so, it just resets its Token variable
to the initial value and exits. If not, it checks whether there is an active process (not necessarily a conflicting process) with
the opposite token color (see Fig. 6). The opposite token color, denoted by color, is defined to be black if color = white, and
vice versa. If so, it just resets its Token variable to the initial value and exits. If not, then it updates the GlobalColor to the
opposite of its token color and then resets its Token variable to the initial value. In particular, note that token color is reset
to ⊥. This is important to ensure that other processes do not erroneously use a process’s old token color while determining
the priority.

The generalization of the Black and White Bakery Algorithm to solve the GME problem is quite tricky. While the formal
proof of correctness can be found in Section 7, we provide some main insights into our generalization here. In the original
Black and White Bakery Algorithm, when a process is attempting to enter the CS, it selects its token color as the current
global color and its token number to be one more than the maximum of token numbers of processes with the same color.
When it exits the CS, it simply updates the GlobalColor to be the opposite of its own token color. A naive generalization of
Black and White Bakery Algorithm would simply add an additional check to see whether the other process is a conflicting
process in all busy–wait loops. This naive generalization, nevertheless, cannot ensure the correctness in the case of group
mutual exclusion. In the GME, as processes with the same session and different token colors can be in the CS at the same
time, if a process leaving the CS simply updates the GlobalColor as before, it may erroneously allow conflicting processes to
stay in the CS simultaneously.

Y. He et al. / Theoretical Computer Science 709 (2018) 31–47 41
Consider the following scenario. Initially, the GlobalColor is white. Processes Pi and P j request the session S and get the
token color of white. Then, Pi and P j enter the CS concurrently because there is no conflict. When Pi is exiting, it sets the
GlobalColor to black. Next, a process Pk requests the same session S and gets its token color of black. It is easy to see that
Pk enters the CS by the concurrent entry property. After that, a process Pl starts to request a conflicting session S ′ and gets
the token color of black. In the waiting room, Pl waits for P j since they have different token color and the GlobalColor is
black. However, if we let Pk exit the CS and then simply set the GlobalColor to white, Pl will stop waiting for P j as it sees
the GlobalColor is different from its token color. Hence, two conflicting processes P j and Pl will be in the CS simultaneously,
thus violating the mutual exclusion property.

To get a correct generalization, we observed a key invariant of the original Black and White Bakery Algorithm.

Invariant 1. After a process Pi gets its token color from the GlobalColor, the GlobalColor cannot be flipped twice, before the process Pi
finishes the critical section and gets out of the exit section.

In the original Black and White Bakery Algorithm, suppose a process Pa gets a token color of black and after some time
the GlobalColor gets changed to white by some process Pb . Now, in order for some other process Pc to change it again to
black, Pc must be a white process. However, Pc can change it only while it exits. In order to exit, Pc must first enter the
CS. As GlobalColor is currently white and Pa has a color of black, Pa will have the higher priority over Pc to enter the CS.
So, the GlobalColor cannot be changed again until Pa gets out completely.

The fundamental idea in generalizing the Black and White Bakery Algorithm is to ensure that this invariant is maintained.
It is not difficult to see that doing so solves the mutual exclusion violation illustrated in the previous scenario. Although
processes P j and Pk with different token color stay in the CS at the same time, the GlobalColor will not be updated when
Pk executes the exit section (as otherwise the GlobalColor is flipped twice since P j got its token color and before it exits)
and therefore, Pl will still wait for P j until it exits.

In order to maintain this invariant in the generalization, when a process finishes the CS, we let it check whether there
is another active process with the opposite token color. If there exists such a process, then the exiting process does not
update the GlobalColor. Otherwise, the process updates the GlobalColor to be the opposite color of its own token color. Also,
while a process is checking this condition, it may unintentionally access the old token color of another process even though
that process has already finished the previous invocation. To prevent this from happening, we let processes reset their token
color to empty (⊥) at the end of the exit section.

However, the new GlobalColor updating mechanism is not enough to keep this invariant. A process in the doorway may
read the (opposite) GlobalColor and then stop before updating its token color. Hence, another process in the exit section
would have no clue as to which color this process will get (it will see a color of ⊥ for this process). It could erroneously
think that there are no active processes with the opposite token color and flip the GlobalColor (while in fact there is an
active process with the opposite color). We can devise an intricate sequence of execution to show that the key invariant
does not hold if there is such a process that stops just before writing down its token color in the doorway.

In order to handle this, we use a different scheme (from that in the original Black–White algorithm) for token number
picking (lines 7–12) and add another condition to check before updating the GlobalColor (line 25). When a process is picking
a token number, it determines the maximum of token numbers of conflicting processes with the same token color and then
increments it by 1. If there are no such processes, it selects its token number to be 1. At the time of exiting, a process does
not even attempt to update the GlobalColor if its token number is 1. On the other hand, if its token number is 2 or more,
then it attempts to update the GlobalColor (it actually does if there is no active process with the opposite token color).

These changes are necessary to solve the issue of overlooking a process with the opposite token color having a “⊥” value.
Suppose that a hanging process Ph has read a value of black for GlobalColor and has not yet written into its token color
variable. Suppose that some other process changes the GobalColor from black to white after some time. Later, if a process
Pu starts to execute the algorithm and attempts to change the GlobalColor again, then Pu must be a white-colored process
with a token number greater or equal to 2. In order for process Pu to get a token number of 2 or more, there must exist
an active conflicting white-colored process P v with a smaller token number. Clearly, one of Pu and P v must be in conflict
with the hanging process Ph because either Pu or P v has a different session with Ph . Therefore, at least one of Pu or P v

would have waited (in line 17) for Ph to finish the token selection before it enters the CS because Ph is hanging at the
doorway when Pu and P v enter the waiting room. Whichever is the case, as Pu can enter the CS only after P v has left the
CS, we can conclude that the “hanging process” Ph has really written down the read GlobalColor to its token variable by
the time Pu is checking Ph ’s token color in the exit section. This shows that the scenario that we mentioned before cannot
possibly occur anymore. A formal proof that our generalization maintains this key invariant is available in the next section
(see Lemma 9).

7. Proof of correctness of the Black and White Bakery GME Algorithm

In this section, we present a complete and formal proof of the correctness and complexity analysis of Black and White
Bakery GME Algorithm. In particular, we show that our algorithm satisfies the properties P1 through P5, uses only bounded
registers and has linear time and space complexity.

42 Y. He et al. / Theoretical Computer Science 709 (2018) 31–47
We use the notation Pi@x to denote that process Pi is executing line x of the algorithm. The notation Pi@x → P j@y

means process Pi executes line x before process P j executes line y. We use color to denote the opposite color (i.e, color =
black if color = white, and vice versa). color is not defined if color =⊥. It is easy to see that GlobalColor always has a value
of either black or white. Consider the execution of the algorithm on the global time line. We use Ii to denote the time
interval that the GlobalColor remains as some color after it has been flipped (i − 1) times from the beginning. Once the
GlobalColor is changed to the opposite color at the end of Ii , the GlobalColor remains as that color during the interval Ii+1.
We use ti to represent the time point at which the GlobalColor is flipped to the opposite color at the end of Ii . Note that, ti
will be the starting point of the time interval Ii+1. Process Pti denotes the process that flips the GlobalColor at ti .

Here is an example to show a possible execution of the algorithm.

At the beginning, the GlobalColor is initialized to black, and it remains black in the time interval I1. At the time point t1,
the GlobalColor is set to white by a process Pt1 . Then, the GlobalColor remains as white in the time interval I2. Note that we
are not claiming that the GlobalColor will not be updated during I2. However, the GlobalColor will not be updated to black
during I2 by the very definition of the interval I2. The GlobalColor remains as white in the time interval I2 until a process
Pt2 sets it to black at time point t2.

Lemma 7. If a process Pi gets a Token.number of 2 or more, then when Pi is calculating its Token.number in the doorway (lines 7–13),
there must exist a conflicting process P j with the same Token.color as Pi and a smaller Token.number. Moreover, Pi cannot enter the
CS before P j finishes the CS.

Proof. According to line 9, when a process is calculating its Token.number, it will ignore any process with the same session
or different Token.color. Assume there doesn’t exist such a conflicting process P j with the same Token.color as Pi and smaller
Token.number. It is easy to see that Pi will get a Token.number of 1, which is a contradiction with Pi getting a Token.number
of 2 or more. Therefore, such P j must exist when Pi is calculating its Token.number.

Moreover, as P j has the same Token.color as Pi and a smaller Token.number, Pi will wait for P j at line 19 until P j exited
the CS and reset its Token. Thus, our claim is true. �
Lemma 8. If a process Pti flips the GlobalColor at the time point ti , then there must exist a conflicting process Pt̃i

with the same
Token.color as Pti and a smaller Token.number when Pti was calculating its Token.number (lines 7–13). Moreover, both Pti and Pt̃i
execute line 5 in the time interval Ii .

Proof. Since process Pti flips the GlobalColor at time point ti , according to line 25, Pti must have the Token.number of 2 or
more. By Lemma 7, there must exist a conflicting process Pt̃i

with the same Token.color and a smaller Token.number when
Pti was calculating its Token.number in the doorway. Next, we show that both Pti and Pt̃i

execute line 5 in time interval Ii .
We prove our claim using mathematical induction. Without loss of generality, assume the GlobalColor is initialized to c.

K = 1: Process Pt1 flips the GlobalColor from c to c at t1. Obviously, Pt1 and Pt̃1
must have the Token.color of c. Since I1 is

the first and the only time interval that the GlobalColor is c before time point t1 and so, Pt1 and Pt̃1
must execute

line 5 in I1.
K = 2: Process Pt2 flips the GlobalColor from c to c at t2. Pt2 and Pt̃2

must have the Token.color of c. Since I2 is the only
time interval that the GlobalColor is c before t2, Pt2 and Pt̃2

execute line 5 in I2.

Assume the claim holds for K = (i − 1).

K = i: Process Pti may flip the GlobalColor either from c to c̄ or c̄ to c at time point ti . We consider only the case where
GlobalColor flips from c to c̄ at time point ti as the argument is similar in the other case.
If Pti flips the GlobalColor from c to c̄ at ti , it is easy to see both Pti and Pt̃i

have the Token.color of c.

Y. He et al. / Theoretical Computer Science 709 (2018) 31–47 43
We prove our claim by showing both Pti and Pt̃i
execute line 5 in Ii

1. Assume Pti does not execute line 5 in Ii , then it must execute line 5 before ti−2 since the GlobalColor is c̄ during
Ii−1. By induction hypothesis, in time interval Ii−1, Pti−1 and Pt̃i−1

execute line 5 and then write their Token.color of c.
Clearly, Pti must conflict with either Pti−1 or Pt̃i−1

since Pti−1 and Pt̃i−1
have different sessions. Therefore, according to

line 17, at least one of Pti−1 or Pt̃i−1
will wait for Pti to finish the doorway to set Choosing[ti] to false. By Lemma 7,

Pti−1 cannot enter the CS before Pt̃i−1
finishes the CS. So, when Pti−1 enters the CS, Pti has already wrote down its

Token.color of c and finished the doorway. After Pti−1 finishes the CS and checks the condition at line 26, it will find
out that Pti has the opposite Token.color, and so, Pti−1 will not update the GlobalColor, which is a contradiction with the
assumption that Pti−1 flips the GlobalColor at ti−1. Therefore, process Pti executes line 5 in time interval Ii .

2. Since Pti executes line 5 in Ii , it must read the Token.number of Pt̃i
in Ii , which implies Pt̃i

does not reset its Token
until Pti reads it in Ii . Assuming Pt̃i

does not execute line 5 in Ii , it must execute line 5 before ti−2. Obviously, Pt̃i
conflicts with either Pti−1 or Pt̃i−1

. Therefore, before Pti−1 enters the CS, Pt̃i
has already written down its Token.color of

c and finished its doorway. Pt̃i
keeps its Token at least until Pti reads it in Ii and this implies Pt̃i

keeps its Token when
Pti−1 is exiting. Hence, in the exit section, Pti−1 will find that Pt̃i

has the opposite Token.color and so, Pti−1 will not flip
the GlobalColor, which is a contradiction. So, process Pt̃i

executes line 5 in Ii .

We have shown that if Pti flips the GlobalColor from c to c̄ at ti , then both Pti and Pt̃i
execute line 5 in Ii .

Hence, we have proved our claim for the case K = i and therefore the result follows by mathematical induction. �
Lemma 9. After a process Pi executes line 5, the GlobalColor cannot be flipped more than once before Pi finishes the exit section
(line 34).

Proof. Without loss of generality, we assume Pi reads the GlobalColor of c at line 5 in the time interval Ii . Assume that the
GlobalColor is flipped twice at time ti and ti+1 before Pi finishes the exit section. Pti+1 represents the process that flips the
GlobalColor at ti+1.

By Lemma 7 and Lemma 8, in Ii+1, two conflicting processes Pti+1 and Pt̃i+1
execute line 5 and then finish the CS.

So, Pi must conflict with either Pti+1 or Pt̃i+1
. Before Pti+1 enters the CS, Pi must finish the doorway and write down its

Token.color of c. Thus, after Pti+1 has finished the CS, it will find out that Pi has the opposite Token.color and fail to update
the GlobalColor, which is a contradiction with our assumption that Pti+1 flips the GlobalColor at ti+1. Hence, we have proved
the lemma. �
Lemma 10. If process Pi and process P j request conflicting sessions and process Pi finishes the doorway before process P j executes
line 4, then process P j does not enter the CS before process Pi finishes the CS.

Proof. For the sake of concreteness, assume process Pi gets the Token.color of c. Process P j may have a Token.color of
either c or c̄. We consider both possibilities.

1. If process P j has the Token.color of c, it will get a larger Token.number than Pi as P j has not begun to calculate its
Token.number when Pi finishes the doorway. Thus P j will wait for Pi at line 19 until Pi finishes the CS and resets its
Token at line 34.

2. If process P j gets the Token.color of c̄, that means the GlobalColor was flipped to c̄ after Pi read the GlobalColor of c at
line 5. By Lemma 9, the GlobalColor cannot be flipped again to c until Pi finishes the exit section. Hence, P j will find
out it has the different Token.color from Pi and waits for it at line 21. None of the conditions in line 21 can become
true until Pi finishes the CS and resets its Token[i].

We have shown that in all cases, process P j cannot enter the CS before process Pi finishes the CS. �
Theorem 2. The BWBGME algorithm satisfies the FCFS property.

Proof. If processes Pi and P j request conflicting sessions and Pi finishes the doorway before P j starts the doorway, by
Lemma 10, P j cannot enter the CS before process Pi enters the CS. �
Theorem 3. The BWBGME algorithm satisfies the Mutual Exclusion property.

44 Y. He et al. / Theoretical Computer Science 709 (2018) 31–47
Proof. Suppose the algorithm does not satisfy the mutual exclusion property. At some point of time, there exist two pro-
cesses Pi and P j requesting different sessions that are in the CS simultaneously. By Lemma 10, neither Pi nor P j can
finish their doorway before the other executes line 4. Thus, processes Pi and P j must have an overlap when they execute
lines 4–15. Since Pi and P j have different sessions, they wait for each other at line 17 to finish the doorway to set Choosing
to false before determining which one of them has the priority.

For the sake of concreteness, we assume that process Pi enters the CS with the Token.color of c. When Pi checks line 18
for P j , it may have the Token[j].color of c or c̄. We analyze both cases.

1. Process Pi finds that P j has the same Token.color of c. In order for Pi to enter the CS, it must have a smaller Token.num-
ber in comparison to P j . So, process P j cannot enter the CS before Pi finishes the CS and resets its Token[i] as it has
the larger Token.number, contradicting the assumption.

2. Process Pi finds that process P j has the opposite Token.color of c̄. There are two possibilities: (I) after process P j reads
the GlobalColor of c at line 5, the GlobalColor is flipped to c and then process Pi executes line 5 get the Token[i].color
of c or (II) after process Pi reads the GlobalColor at line 5 of c, it is flipped to c and then process P j reads it at line
5 and gets the Token[j].color of c̄. In order for process Pi enter the CS, it must find out the GlobalColor is c when it
checks line 21. Therefore, by Lemma 9, only case II can be true. On the other hand, when process P j executes line 21,
it will find that none of the conditions are satisfied because the GlobalColor cannot be flipped to c again by Lemma 9.
Therefore, P j will wait for Pi until it finishes the exit section, contradicting the assumption that P j and Pi stay in the
CS at the same time.

We have proved that in all cases we get a contradiction with our assumption, and hence, the algorithm satisfies the
Mutual Exclusion property. �
Theorem 4. The BWBGME algorithm satisfies the Bounded Exit property.

Proof. Since the exit section does not contain any busy–wait loop, a process that enters the exit section will finish it within
a bounded number of its own steps. �
Theorem 5. The BWBGME algorithm satisfies the Concurrent Entry property.

Proof. If a process Pi requests a session, and no other process requests a different session, for every other process
P j , it holds that Token[j].session ∈ {0, mysession} from the view of Pi . Since process Pi always checks Token[j].session
∈ {0, mysession} in all busy–wait lines (lines 17,19 and 21), Pi will not wait at any line when there is no conflict and
so, it enters the CS within a bounded number of its own steps. �
Theorem 6. The BWBGME algorithm satisfies the Deadlock Freedom property.

Proof. Suppose the algorithm does not satisfy the deadlock freedom property. There is an execution of the algorithm in
which a nonempty set S of processes enter the entry section but none of them enters the CS, and no process enters the CS
infinitely often. As every process in the entry section will finish the doorway eventually and set the Choosing to be false,
processes in set S cannot wait on line 17 forever. Let S1 be the subset of S that consists of processes having the Token.color
of c, and S2 be the subset of S that consists of processes having the Token.color of c̄. Since no process enters the CS infinitely
often, the GlobalColor cannot be changed infinitely often. Assume the GlobalColor remains as c after some time.

We observe that processes in S2 cannot wait on line 21 forever, because any process in S2 will find that their Token.color
is different from the GlobalColor and stop waiting. So, processes in S2 can only wait on line 19. Also, we observe that
processes in S2 cannot wait for any process in S1 on line 19, because processes in S2 will find that they have different
Token.color with processes in S1 at line 19, which will make processes in S2 immediately terminate waiting. Thus, a pro-
cess in S2 must wait for another process in S2 at line 19. In the set S2, there must be a process that has the smallest
Token.number and that process will pass all other processes in S2 at line 19 and enter the CS. This situation contradicts with
our assumption that processes in S cannot enter the CS. So S2 = ∅.

On the other hand, a process in S1 cannot wait for any other processes in S1 at line 21 because it will find they have
the same Token.color and stop waiting. Therefore, every process in S1 must wait for another process in S1 at line 19. In the
set S1, there must exist a process that has the smallest Token.number among all processes in S1 and that process will pass
all other processes in S1 and enter the CS, which is a contradiction. So S1 = ∅.

Hence, we have S = S1 ∪ S2 = ∅, which contradicts with our assumption and the theorem is proved. �
Theorem 7. The BWBGME algorithm satisfies the Starvation Freedom property.

Proof. Lamport has proved that [13] if an algorithm satisfies the deadlock freedom property and the FCFS property, then it
necessarily satisfies the starvation freedom property. Hence, using Theorem 2 and Theorem 6, we infer that the algorithm
has the starvation freedom property. �

Y. He et al. / Theoretical Computer Science 709 (2018) 31–47 45
Theorem 8. The shared variables used in the BWBGME algorithm are bounded.

Proof. Obviously, every shared variable used in the algorithm is bounded except possibly Token.number and Token.session.
However, if at all the Token.session variable is unbounded, it is due to the nature of the application and not due to the
design of the algorithm. In other words, if the underlying application uses only a bounded number of sessions, so will
our algorithm. Hence, we need to concern ourselves with only Token.number variable. Here we show that the value of
Token.number cannot be larger than N + 1.

If not, there must exist an execution sequence

Pi1 @5 → Pi1 @13 →Pi2 @13 → Pi3 @13 → ...

→ Pi j @13 → ... → PiN+2 @13
(1)

such that all processes in the sequence have the same Token.color of c, and for all j except 1, Pi j gets its Token[i j].number at
line 13 by incrementing the previous largest number Token[i j−1].number. Pi1 gets its Token.number of 1 by virtue of it not
finding any conflicting process with the same Token.color when it executes lines 7–12. It is easy to see that for any j, Pi j

and Pi j+1 have different session numbers as Pi j+1 increments Pi j ’s Token.number. Here we prove the theorem by showing
that such a sequence doesn’t exist.

We first show that every process in the sequence (1) executes line 5 in the same time interval I .
If not, there exist two processes in the sequence, say Pik and Pik+1 that execute line 5 in different intervals. As they have

the same Token.color, after one of them executes line 5, the GlobalColor is flipped twice before the other process executes
line 5. By Lemma 9, the previous process already resets its Token before the GlobalColor is flipped twice, and therefore, Pik+1

will fail to read Pik ’s Token.number and increment the number, which contradicts our assumption that every process in the
sequence (1) increments the previous largest Token.number. So, every process in the sequence (1) executes line 5 in the
same interval I .

Since we only have N processes, by the pigeonhole principle, at least two processes, say Pix and Pi y (not necessarily
distinct processes, but with x < y), from the above sequence (Pi1 , Pi2 , .., PiN+2) must exit their CS before PiN+2 executes line
number 3. So, we have

Pix @34 → Pi y @34 → PiN+2 @3 (2)

It is easy to see that every two adjacent processes in sequence (1) have different sessions, hence, for any j, Pi j+1 cannot
enter the CS before Pi j completely exits and resets its Token[i j]. Consequently, we can conclude that Pi1 and Pi2 must have
exited by the time Pi y exits (as Pi1 and Pi2 are the first two processes in the sequence 1, Pix and Pi y are some processes
in the sequence (1) and the processes in the sequence (1) exit one after the other). Thus, before PiN+2 begins to execute the
doorway, Pi1 and Pi2 must already have finished their exit section, which is represented by the following sequence.

Pi1 @34 → Pi2 @34 → PiN+2 @3 (3)

By our previous claim, Pi1 , Pi2 . . . PiN+2 execute line 5 in the same interval and so they all get the same color, say c. In order
for Pi1 to enter the CS, all processes conflicting with Pi1 in the system, having Token.color of c̄ must have already finished
the exit section and reset their Token. In order for Pi2 to enter the CS, all processes conflicting with Pi2 in the system, having
Token.color of c̄ must have already finished the exit section and reset their Token. Every process that has the Token.color of c̄
must be in conflict with either Pi1 or Pi2 , as these two processes have different session numbers. Hence, after Pi2 finishes
the CS and checks the condition at line 26, it will find that there is no process with the opposite Token.color of c̄ in the
system. So, Pi2 will flip the GlobalColor to c, which immediately starts a new time interval I ′ . This contradicts our previous
claim that every process in the sequence (1) executes line 5 in the same interval I (as PiN+2 in particular will execute line 5
in a different interval).

So, we have shown that such a sequence of processes cannot exist and so proved that the value of the shared variable
Token.number is bounded by N + 1. �
Theorem 9. The BWBGME Algorithm has O (N) shared space complexity and O (N) RMR Complexity under the CC model.

Proof. It is trivial to observe that algorithm is of O (N) shared space complexity. Therefore, we focus on proving the RMR
complexity here. From line 17 through line 22, there are three busy–wait loops, one each at lines 17, 19 and 21. Since
line 19 and line 21 are located in different branches, it is not difficult to see that a process that goes through lines 17–22
executes only two busy–wait loops viz., line 17 and line 19 or line 17 and line 21.

In line 17, when a process Pi is busy waiting for a process P j , if Choosing[j] changes to false, then process Pi will
immediately terminate the wait. It is possible that process P j executes a new invocation and resets the Choosing[j] to true
again with another conflicting session. However, in that case, since process Pi doorway proceeds P j , according to the FCFS
property, P j cannot reenter the CS before Pi . So, this can occur at most once. Thus, line 17 can only involve at most five
RMR (three for Choosing[j] and two for Token[j]).

Suppose process Pi in the entry section executes line 19 and waits for a process P j . If process P j changes its Token[j],
it will be either resetting its Token, or getting a new Token in a new invocation. If process P j resets its Token[j], Pi will

46 Y. He et al. / Theoretical Computer Science 709 (2018) 31–47
immediately terminate the wait because it will detect Token[j].session is 0. However, it is possible that P j wants to reenter
the CS with a new Token before Pi detects that P j is in the remainder section. In view of the FCFS property, process P j
cannot reenter the CS before process Pi enters the CS. So, sooner or later process Pi will be able to compare its Token[i]
with that of process P j . Therefore, the maximum number of RMR at line 12 is two (for Token[j]).

Suppose process Pi in the entry section executes line 21 and waits for another process P j . Without loss of generality,
assume Pi gets the Token.color of c. If the GlobalColor is set to c̄, then process Pi will find out GlobalColor �= mycolor and
stop the wait. Note that GlobalColor cannot be changed twice to c again when process Pi is waiting at line 21 in view of
Lemma 9. Hence, process Pi will be able to detect the fact that the GlobalColor has changed sooner or later.

It is important to realize that if the variable GlobalColor is overwritten, its cached copies will immediately be invalidated,
even if the actual value of the GlobalColor does not really change. This could potentially cause multiple RMR when a process
Pi is waiting in line 21. Suppose that the GlobalColor is set again to c by another process Pk with the Token[k].color of c̄
executing the exit section. Now, this situation will cause Pi to migrate the GlobalColor to cache again, but Pi will continue
to be blocked as the value of GlobalColor has not been really changed. In that case, by Lemma 9, Pk cannot start a new
invocation and set the GlobalColor to c again before Pi enters the CS. This is because, if Pk gets its Token.color of c̄ in
the new invocation, the GlobalColor is actually flipped to c̄ after Pi executes line 5. When Pk finishes the CS in the new
invocation, it will find out Pi has the opposite Token[i].color of c and fail to set the GlobalColor. So, Pi will see that the
GlobalColor is updated, but still get blocked at line 21 for at most N − 1 times in the whole loop lines 16–23. Hence, the
amortized RMR complexity of GlobalColor for each process P j is constant.

For other conditions at line 21, if process P j resets the Token[j], Pi will be able to pass process P j . It is possible that P j
may want to reenter the CS before Pi detects that P j is in the remainder section. In the new invocation, process P j may
execute line 3 and write Token[j] of (mysession, ⊥, 0) and block Pi again. However, by the FCFS property, process P j cannot
reenter the CS before process Pi and so Pi will be able to detect the new Token[j] or that the GlobalColor is flipped when
process P j finishes the doorway, which would make process Pi stop waiting. Hence, the overall RMR made at line 21 is
constant.

Since the RMR complexity of lines 17, 19 and 21 is constant and lines 17–22 are enclosed within a for loop that can run
a maximum of N times, it follows that the waiting room (lines 16–23) is of O (N) RMR complexity.

It is trivial to see that lines 8–11 costs constant RMR and so, lines 7–12 is of O (N) RMR complexity. It is not difficult
to see that the function used in the algorithm is of O (N) RMR complexity. It is also seen that other lines involve constant
RMR. Hence, the overall RMR complexity of this algorithm is O (N) in the CC model. �

We summarize the results by stating the properties of our algorithm in the following theorem.

Theorem 10. The BWBGME Algorithm presented in Fig. 5 solves the GME problem by satisfying all the five properties P1 through P5 in
linear space (with bounded registers) and time (RMR under the CC model) using only simple read and write operations.

8. Conclusions and open problems

We presented two algorithms for solving the GME Problem. Both our algorithms satisfy all the five properties P1 through
P5, use only simple read and write operations, run in linear time and linear space. Our first algorithm made use of un-
bounded shared registers whereas the second algorithm used only bounded shared registers. There is no algorithm in the
literature that achieves the combination of both linear time and space complexity while satisfying all five properties in the
model in which we are working. As a side contribution, we clarified a flaw in the literature.

Even though the token numbers in our BWBGME algorithm are bounded, the bound is N + 1 which is not a constant.
We leave the development of a linear time and linear space GME algorithm satisfying all five properties, which uses only
simple read and write instructions and whose shared registers are bounded by a constant, as an open problem.

Although the five properties mentioned in the problem statement given in the section 1 are the most important proper-
ties, there is no end to the wish list of desirable properties. We now discuss some other esoteric properties considered in
the literature.

The FCFS property captures fairness across processes requesting different sessions, but not across processes requesting
same sessions. This fairness property is captured by the first-in-first-enabled (FIFE) property, described below. The FIFE
property was first introduced by Fischer et al. [5] in the context of l-exclusion problem.

P7 FIFE: If process Pi doorway precedes process P j and the two processes request the same sessions, and P j enters the
CS before process Pi , then Pi enters the CS within a bounded number of its own steps.

Another interesting property is the so-called Strong Concurrent Entry (SCE) property. It was first stated in [8] and is a
strengthening of the basic concurrent entry property. This property is desirable as late processes (even if they are conflicting)
cannot prevent a process from entering the CS within a bounded number of its own steps.

P8 SCE: If a process Pi has completed its doorway, and Pi doorway precedes every active process that requests a different
session from that of Pi , then Pi enters the CS within a bounded number of its own steps.

Y. He et al. / Theoretical Computer Science 709 (2018) 31–47 47
Our algorithms do not satisfy the FIFE property or the strong concurrent entry property. It would be nice to develop
algorithms that satisfy the FIFE property and SCE property in addition to having all the desirable properties of our BWBGME
algorithm stated in Theorem 10. We leave that as an open problem. In [8], a couple of algorithms that additionally satisfy the
FIFE property and SCE property are developed by using the notion of abortable mutual exclusion. In [3] an algorithm satisfying
FIFE property in addition to other properties is developed. However, none of them runs in bounded linear space. Moreover,
these algorithms use the “co-begin co-end construct” with the additional assumption that if one co-routine terminates
naturally, all the other coroutines are aborted, thus deviating from the simple model of a process that we are working with
in this paper.

Acknowledgements

The authors would like to thank an anonymous referee who found a subtle error in an earlier version of our Black and
White Bakery GME algorithm. The authors would also like to thank Alex Aravind for pointing out a typo in the Black and
White Bakery GME Algorithm that was published in the conference version [7].

References

[1] V. Bhatt, C-C. Huang, Group mutual exclusion in O (log n) RMR, in: Proceedings of the 29th Annual ACM Symposium on Principles of Distributed
Computing, PODC’10, 2010, pp. 45–54.

[2] James E. Burns, Complexity of Communication Among Asynchronous Parallel Processes, Ph.D. thesis, Georgia Institute of Technology, 1981.
[3] R. Danek, V. Hadzilacos, Local-spin group mutual exclusion algorithms, in: Proceedings of the 18th International Symposium on Distributed Computing,

DISC’04, in: Lecture Notes in Comput. Sci., vol. 3274, Springer-Verlag, 2004, pp. 71–85.
[4] E. Dijksra, Solution of a problem in concurrent programming control, Commun. ACM 8 (9) (1965) 569.
[5] M. Fischer, N. Lynch, J. Burns, A. Borodin, Resource allocation with immunity to limited process failure, in: Proceedings of the 20th IEEE Annual

Symposium on Foundations of Computer Science, FOCS’79, 1979, pp. 234–254.
[6] V. Hadzilacos, A note on group mutual exclusion, in: Proceedings of the 20th Annual ACM Symposium on Principles of Distributed Computing, PODC’01,

2001, pp. 100–106.
[7] Yuan He, K. Gopalakrishnan, E. Gafni, Group mutual exclusion in linear time and space, in: Proceedings of the 17th International Conference on

Distributed Computing and Networking, ICDCN’16, ACM, New York, NY, USA, ISBN 978-1-4503-4032-8, 2016, Article No. 22.
[8] P. Jayanti, S. Petrovic, K. Tan, Fair group mutual exclusion, in: Proceedings of the 22nd Annual ACM Symposium on Principles of Distributed Computing,

PODC’03, 2003, pp. 278–284.
[9] P. Jayanti, K. Tan, G. Friedland, A. Katz, Bounding Lamport’s Bakery Algorithm, in: Proceedings of the 28th Conference on Current Trends in Theory and

Practice of Informatics, SOFSEM’01, in: Lecture Notes in Comput. Sci., vol. 2234, Springer-Verlag, 2001, pp. 261–270.
[10] Y. Joung, Asynchronous group mutual exclusion, Distrib. Comput. 13 (4) (2000) 189–206.
[11] Patrick Keane, Mark Moir, A simple local-spin group mutual exclusion algorithm, in: Proceedings of the 18th Annual ACM Symposium on Principles of

Distributed Computing, PODC’99, 1999, pp. 23–32.
[12] L. Lamport, A new solution of Dijkstra’s concurrent programming problem, Commun. ACM 17 (8) (1974) 453–455.
[13] L. Lamport, The mutual exclusion problem: parts I and II, J. ACM 33 (2) (1986) 313–348.
[14] M. Takamura, Y. Igarashi, Group mutual exclusion algorithms based on ticket orders, in: Proceedings of the 9th Annual International Computing and

Combinatorics Conference, COCOON’03, in: Lecture Notes in Comput. Sci., vol. 2697, Springer-Verlag, 2003, pp. 232–241.
[15] G. Taubenfeld, The Black–White Bakery Algorithm, in: Proceedings of the 18th International Symposium on Distributed Computing, DISC’04, in: Lecture

Notes in Comput. Sci., vol. 3274, Springer-Verlag, 2004, pp. 56–70.
[16] J.H. Yang, J. Anderson, A fast, scalable mutual exclusion algorithm, Distrib. Comput. 9 (1) (1995) 51–60.

http://refhub.elsevier.com/S0304-3975(17)30474-7/bib42483130s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib42483130s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib4275726E733831s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib44483034s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib44483034s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib44696A3635s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib464C42423739s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib464C42423739s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib4861647A3031s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib4861647A3031s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib4847473136s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib4847473136s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib4A50543033s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib4A50543033s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib4A54464B3031s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib4A54464B3031s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib4A6F753030s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib4B4D3939s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib4B4D3939s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib4C616D703734s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib4C616D703836s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib54493033s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib54493033s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib5461753034s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib5461753034s1
http://refhub.elsevier.com/S0304-3975(17)30474-7/bib59413935s1

	Group mutual exclusion in linear time and space
	1 Introduction
	1.1 Model
	1.2 Our contribution and related work

	2 Generalizing Lamport's Bakery Algorithm
	3 Proof of correctness of the generalized Lamport's Bakery Algorithm
	4 A ﬂaw in the literature
	5 Black and White Bakery Algorithm
	6 Solving GME with bounded registers
	7 Proof of correctness of the Black and White Bakery GME Algorithm
	8 Conclusions and open problems
	Acknowledgements
	References

