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Abstract 

 There is considerable interest in the potential impact of several polyunsaturated fatty 

acids (PUFA) in mitigating the significant morbidity and mortality caused by degenerative 

diseases of the cardiovascular system and brain. Despite this interest, confusion surrounds 

the extent of conversion in humans of the parent PUFA – linoleic acid or α-linolenic acid 

(ALA) - to their respective long chain PUFA products. As a result, there is uncertainty about 

the potential benefits of ALA versus eicosapentaenoic acid (EPA) or docosahexaenoic acid 

(DHA). Some of the confusion arises because although mammals have the necessary 

enzymes to make the long chain PUFA from the parent PUFA, in vivo studies in humans 

show that ~5% of ALA is converted to EPA and <0.5% of ALA is converted to DHA. Because 

the capacity of this pathway is very low in healthy, non-vegetarian humans, even large 

amounts of dietary ALA have a negligible effect on plasma DHA, an effect paralleled in the ω6 

PUFA by a negligible effect of dietary linoleic acid on plasma arachidonic acid. Despite this 

inefficient conversion, there are potential roles in human health for ALA and EPA that could 

be independent of their metabolism to DHA through the desaturation-chain elongation 

pathway.  
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Abbreviations:  

 

AA - arachidonic acid (20:4ω6) 

ALA - α-linolenic acid (18:3ω3) 

DGLA - dihomo-γ-linolenic acid (20:3ω6) 

DHA - docosahexaenoic acid (22:6ω3) 

DPA - docosapentaenoic acid (22:5ω3 or 22:5ω6) 

EFA - essential fatty acid  

EPA - eicosapentaenoic acid (20:5ω3) 

GLA - γ-linolenic acid (18:3ω6) 

LA - linoleic acid (18:2ω6) 

PUFA - polyunsaturated fatty acid(s) 

SDA - stearidonic acid (18:4ω3) 
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Introduction 

 Government regulatory agencies in North America and Europe recently began to 

require the addition of AA and DHA to infant milk formulas. This was an important milestone 

in recognizing the significance of limited conversion of LA to AA and ALA to DHA in infants. 

With an acceptance that infants are not able to make enough DHA from ALA to meet their 

needs, the concept of extremely limited efficiency of the desaturation – chain elongation 

pathway in humans has finally gained some acceptance, at least as applied to infants. 

Resistance to including DHA or AA in infant formulas was founded principally on a 

misunderstanding about the supposed efficiency of conversion of the parent to long chain 

PUFA in humans, a problem that arose primarily from inappropriate extrapolation from in vitro 

and animal studies to humans. Interest in this pathway is now focussed on whether one or 

more long chain ω3 PUFA are needed for adult health. As the use of fish oils to maintain 

cardiovascular and neurological health grows, a clearer understanding of the role of individual 

dietary PUFA in nutrition and metabolism is needed precisely because there is limited 

conversion of the parent to the long chain PUFA in humans.  

Given the current interest in the health implications of PUFA, it seems surprising now 

how difficult it was to establish that the two parent PUFA, LA and ALA, are in effect vitamins 

or at least pro-vitamins. Using mostly rat models, the pioneers like Ralph Holman, James 

Mead, Erik Aaes-Jorgensen, and Rodolfo Brenner made heroic efforts to unravel the main 

features of the biochemistry, metabolism and nutritional importance of PUFA. As in several 

fields of nutrition, extrapolation from PUFA studies done in animals to the human condition 

wasn’t easy. The present-day discussion surrounding the efficacy of the desaturation-chain 

elongation pathway show that several issues remain. For practical and ethical reasons, our 

understanding of the biological roles of and requirements for ω6 and ω3 PUFA in humans still 
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leans heavily on animal studies, but they have contributed to at least two important sources of 

confusion: the model known as ‘EFA deficiency’, and the extent of conversion of parent to 

long chain PUFA. 

This review focuses on two related questions concerned with the nutritional importance 

of ω6 and ω3 polyunsaturates (PUFA) in adult humans – (i) estimating the % conversion 

through the desaturation – chain elongation pathway of the shorter chain ‘parent’ PUFA to 

their principal respective long chain PUFA, i.e. metabolism of LA to AA or ALA to DHA, and 

(ii) implications of inefficient conversion of parent to long chain PUFA in humans for the 

nutritional or potentially health protective roles of individual PUFA. The context is that the 

extremely limited conversion of parent to long chain PUFA in humans presents an opportunity 

to investigate the clinical effects individual PUFA, especially ALA, EPA and DHA, with minimal 

confounding due to conversion of ALA or EPA to DHA.  

 

Historical Context: Two Important Sources of Confusion  

Almost 70 years ago it was discovered that normal growth and development in rats 

depends on the presence of LA and ALA in the diet. These two fatty acids are both eighteen 

carbon PUFA with LA having two and ALA having three double bonds (18:2ω6 and 18:3ω3, 

respectively). Plants but not mammals can insert double bonds into the eighteen-carbon 

homologue – oleic acid (18:1ω9) – to sequentially make LA and then ALA. The absence of 

either LA or ALA from the diet of rats induces clinical symptoms that cannot be corrected by 

any known saturated or monounsaturated fatty acids. The discovery that dietary fat deficiency 

caused specific symptoms due to insufficient ω6 and ω3 PUFA ushered in the brief era of 

‘vitamin F’.  
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By the 1950s, AA was available in pure form and although it too could relieve some 

symptoms of fat deficiency, it was generally less efficient than LA. Based probably on the 

‘essential amino acid’ model, and the fact that several different fatty acids seemed to be 

involved, vitamin F was replaced by the term ‘essential fatty acid’ (EFA). Initially, three PUFA 

were EFA – LA, AA and ALA, but it was soon learned that rats could synthesize AA from LA 

so AA was subsequently de-listed. Despite the broadly similar efficacy of both LA and ALA in 

preventing or correcting the gross symptoms of total dietary fat deficiency in rats (Greenberg 

and Deuel 1950; Mohrhauer and Holman 1963), the syndrome of ‘EFA deficiency’ became 

associated primarily with deficiency of ω6 PUFA, specifically LA. 

During the 1950-1990s, the few human studies examining the amount of PUFA needed 

to correct total dietary fat deficiency almost all involved ‘artificial’ feeding, either in infant 

formulas substituting for breast milk or in total parenteral nutrition for surgical patients. Both 

these human models showed that LA prevented the skin and gastrointestinal symptoms of 

total dietary fat deficiency. As in the concurrent rat studies of the day, these studies did not 

look carefully enough at the role of ω3 PUFA in the symptoms that were observed. Hence, 

there was little resistance to decreasing the number of EFA from two to just one - LA – which 

was declared in the early 1970s to be the one and only EFA (Holman 1971; Wene et al. 

1975). The situation favouring attention on the ω6 PUFA was encouraged by parallel 

discoveries in the early 1970s linking two of the long chain ω6 PUFA – dihomo-γ-linolenic acid 

(DGLA) and AA - to the newly discovered prostaglandins, which are now grouped under the 

superfamily of eicosanoids.  
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The Problem with EFA Deficiency 

Whether in rodents or in humans, modelling dietary requirements for ω6 PUFA is most 

commonly based on inducing and then correcting EFA deficiency. In the early studies, EFA 

deficiency was achieved by providing a diet as totally depleted of fat as possible. It was 

subsequently accepted that since fat is normally present in the diet, EFA deficient diets 

should also contain some fat. In order to assure total PUFA deficiency, the dietary sources of 

fat clearly had to rigidly exclude unsaturated fatty acids. At a result, EFA deficient diets 

contain neither monounsaturates, ω6 PUFA, nor ω3 PUFA.  

The lack of both ω6 and ω3 PUFA in EFA deficient diets creates a problem of both 

principle and practice (Cunnane 2003a). The problem related to principle is that ω6 and ω3 

PUFA are chemically and nutritionally two distinct families of nutrients, so one should be 

present when deficiency of the other is being evaluated experimentally and vice versa. 

Otherwise, any deficiency symptoms observed cannot be attributed directly to either one or 

other PUFA family. The practical problem is that ALA actually protects against ω6 PUFA 

depletion (Bourre et al. 1989; Greenberg and Deuel 1950; Hansen and Jensen 1983). This 

means that the double depletion, i.e. EFA deficiency, is a more extreme situation than the 

specific deficiency of either ω3 or ω6 PUFA alone (Cunnane 2003a; Guesnet et al. 2006). In 

hindsight, it is clear that the early research on EFA deficiency propelled the PUFA towards a 

legitimate and much needed seat at the essential nutrient table. The cost of that visibility was 

the inappropriate skewing of the nutritional importance of PUFA heavily towards to ω6 family, 

specifically LA, an imbalance the repercussions of which are still felt today.  

The EFA deficiency model also contributes to difficulties of extrapolating conversion of 

the parent to the long PUFA. This is not only because rats normally have more efficient 

conversion of the parent to long chain PUFA than humans but also because EFA deficiency 
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further increases this conversion. Hence, it was common to do studies on the desaturation – 

chain elongation pathway using EFA deficient rats (Holman 1971; Sprecher 1968). The 

stimulation of the desaturases in EFA deficient animals presumably occurs because declining 

tissue levels of the long chain PUFA feed back on the desaturation-chain elongation pathway 

to stimulate their own synthesis. These two confounders – the rat model and the stimulatory 

effect of EFA deficiency – were important contributors to the ongoing misunderstanding about 

the inefficient synthesis of long chain PUFA in humans.    

 

The Need for Long Chain PUFA in Infants   

By the 1970s, studies on early development raised concerns towards the prevailing 

attitude that ω3 fatty acids were not really important (Benolken et al. 1973; Lamptey and 

Walker 1976; Sinclair and Crawford 1972). In fairness, symptoms of ω3 PUFA deficiency are 

mild even under well controlled laboratory conditions in the most susceptible model known – 

the rapidly growing rat (Bourre et al. 1989; Moriguchi et al. 2004), so it took meticulous, 

painstaking, multi-generation studies to push this field forward. In the 1980-1990s, 

establishing PUFA requirements for healthy development in infants became the key 

battleground that helped refocus nutritional attention on the role of PUFA in free living 

humans instead of correcting EFA deficiency in patients or modelling PUFA requirements in 

lab animals.  

The hard wrought recognition that pre-formed DHA was necessary in formula milk for 

human infants was driven home by two key observations: First, the brain of the breast-fed 

infant acquires about 50% more DHA compared to the formula-fed infant receiving no DHA 

(Farquharson et al. 1992; Makrides et al. 1994). Hence, infants not given DHA are not able to 

make, or at least accumulate, as much DHA as those who were receiving DHA from breast 
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milk. Second, Zellweger syndrome is a rare but devastating inherited peroxisomal disease in 

which neurological and physical retardation are profound and death is likely within the first few 

years of life. DHA synthesis and brain DHA accumulation are severely impaired in Zellweger 

syndrome but the symptoms are not immediately apparent in breast-fed cases because they 

obtain DHA from breast milk and from limited body DHA stores (Martinez 1989). Zellweger 

cases that are bottle-fed a formula containing no DHA rapidly become symptomatic but also 

respond positively though very modestly to DHA supplementation (Martinez 1989). Combined 

with much associated research, these two observations were pivotal in dissipating the long 

debate about the nutritional importance of some pre-formed (dietary) DHA in infants.  

The challenge in this process was that studies on PUFA metabolism needed to be 

done in healthy infants. This was necessary both ethically and to reduce confounders 

associated with prematurity or low birth weight. The problem was that healthy term infants are 

not only able to make a small amount of DHA, but they also have considerable DHA stores at 

birth (Cunnane et al 2000) so they have the most ‘resistance’ to the absence of incoming pre-

formed DHA. Hence, paradoxically, the most suitable infant model was the one in which it 

was hardest to show the need for pre-formed DHA. Incidentally, although AA is present in all 

breast milk and a need for pre-formed AA has been legislated into infant formulas along with 

DHA, the role of dietary AA in healthy early development is much less clear than for DHA.  

 

The Desaturation-Chain Elongation Pathway  

 The pathway by which LA and ALA undergo conversion to their respective longer chain 

PUFA involves a sequence of desaturation and chain elongation steps that figuratively occur 

in two dimensions: In the first dimension, desaturation adds a double bond across two 

carbons of a fatty acid. In the second dimension, chain elongation adds two carbons at the 
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carboxyl end of a fatty acid. Not only PUFA but also saturated and monounsaturated fatty 

acids undergo desaturation and chain elongation; this is how plants convert palmitic acid 

(16:0) to stearic acid (18:0), oleic acid (18:1ω9) and on to LA and ALA. The desaturation - 

chain elongation pathway has several broadly consistent, well recognised features across 

species and in different tissues (Table 1). 

At each step, the pathway tends to favour either desaturation or chain elongation but, 

in fact, all the known PUFA can be both desaturated and chain elongated to a greater or 

lesser extent. For example, the most commonly known first downstream product of LA is the 

Δ6 desaturase product - γ-linolenic acid (GLA; 18:3ω6) – which can be elongated and further 

desaturated to AA. Nevertheless, LA’s lesser known product, eicosadienoic acid (20:2ω6), is 

also present in most tissues but is formed not by desaturation but by direct chain elongation 

of LA.  

The bidimensional nature of PUFA conversion and the flexibility of substrates for 

desaturation-chain elongation means that membership in each of the ω6 and ω3 PUFA 

families has burgeoned from 3-4 known fatty acids in the 1940s and 1950s, to a latticework of 

many possible fatty acids within each of these two families. At least eight double bonds can 

be present and chain lengthening out to more than 34 carbons has been described (Suh and 

Clandinin 2005), but these ‘ultra-long’ PUFA occur in very low amounts and their biological 

role is completely unknown at this time. Chemically, almost any member fatty acid can be 

converted in either dimension but, biologically, alternating desaturation and chain elongation 

tends to be favoured. In practical terms, this means that the downstream conversion of each 

‘parent’ PUFA produces a total of about 12 PUFA that are commonly measurable in human or 

animal tissues (Table 2).  
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Quantitatively, the main ω6 PUFA product of desaturation-chain elongation is AA, 

which is synthesized from LA in three steps – (i) Δ6 desaturation to GLA, (ii) chain elongation 

to DGLA, and (iii) Δ5 desaturation to AA. In the ω3 PUFA series, the equivalent fatty acid to 

AA is eicosapentaenoic acid (EPA), which is derived from ALA after the same three step 

sequence of two desaturations separating a single chain elongation step. However, EPA is a 

quantitatively (if not functionally) minor fatty acid. The broadly equivalent ω3 PUFA to AA as a 

membrane constituent is not EPA but DHA, the synthesis of which requires further 

desaturation and chain elongation.  

Originally, synthesis of DHA from EPA was thought to occur via two chain elongations 

separated by a single Δ4 desaturation but direct evidence for the Δ4 desaturase has so far 

been extremely elusive. Rather, the more convoluted ‘Sprecher pathway’ seems to be the 

only way to produce DHA (Voss et al. 1991). This pathway involves elongation of EPA to ω3 

docosapentaenoic acid (DPA; 22:5ω3) which is then Δ6 desaturated to 22:6ω3 and then chain 

elongated to 24:6ω3. The final step in making DHA is a two carbon chain shortening which is 

believed to occur in peroxisomes. The equivalent steps convert AA to ω6 DPA (22:5ω6), an 

isomer of ω3 DPA.  

  

In Vitro Evidence for Desaturation-Chain Elongation in Humans 

For many years, lipid enzymologists especially those studying plants had been 

assaying desaturase activity in order to understand the controls on synthesis of oleic acid 

from stearic acid, a step employing the Δ9 desaturase. They therefore were armed and ready 

to take the first crack at these measurements in animals, first with the same Δ9 desaturase 

and then to measure the conversion of LA and ALA to their respective long chain PUFA. 

Enzymologists prefer to use purified enzyme preparations to determine rates, optimal pH, 



 

 
 

12

cofactors, and other parameters controlling enzyme activity. Desaturation and chain 

elongation occur in the endoplasmic reticulum so isolation of tissue microsomes and 

purification of the enzymes magnifies many fold the conversion efficiency of each step.  

With the rare exception of genetic anomalies such as Zellweger syndrome, humans 

have a fully functional desaturation-chain elongation pathway in the liver (and in other organs) 

that can convert some LA and ALA to their respective long chain PUFA. This has been 

established by several groups using in vitro assays on cells in culture or assays of the semi-

purified desaturase enzymes themselves (Aeberhard et al. 1978; Biagi et al. 1990; de Gomez 

Dumm and Brenner 1975). However, results of the desaturase assays vary a lot between 

studies and have not yielded consistent results (Blond et al. 1981). Nevertheless, the question 

– do humans have the enzyme machinery to convert LA or ALA to their respective long chain 

PUFA? - can unequivocally be answered in the affirmative.  

 

ALA Conversion to DHA: in Vivo Studies 

Although humans technically possess the ability to desaturate and chain elongate 

PUFA, it is critical to be able to estimate net in vivo conversion through the pathway, 

especially in the ω3 PUFA family. This is because although ALA is the dominant ω3 PUFA in 

the diet of most countries, it is DHA that is the dominant ω3 PUFA in membranes. DHA is not 

only found in relatively large amounts in membranes but, functionally, it is by far the most 

important ω3 PUFA, especially during early development (Salem et al. 1996). DHA is also 

associated with lower risk of degenerative diseases of the brain and cardiovascular system 

(Freund-Levi et al. 2006; Gebauer et al. 2006). Hence, it is important to clearly establish the 

extent to which ALA is useful as a source of membrane DHA and whether pre-formed dietary 

DHA is needed by adults as well as infants.  
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Biochemically, the same issue applies to the conversion of LA to AA as applies to ALA 

conversion to DHA. However, nutritionally, the context is the opposite for the ω6 compared to 

the ω3 PUFA because there is no known risk linking AA deficiency to cardiovascular or brain 

health in adults. Indeed, excess intake of ω6 PUFA, especially LA, may well be contributing to 

the risk of cardiovascular disease (see ω3 and ω6 PUFA and Human Diseases – A Brief 

Overview). 

The two commonest and most ethical ways to estimate desaturation-chain elongation 

of PUFA in intact humans are either using isotopically-labelled tracer fatty acids, or by 

analysis of plasma fatty acid profiles after dietary supplementation with the parent PUFA of 

interest. Both methods are indirect and both generally draw their information from a limited 

pool of body fatty acids, usually only blood plasma. Though they are very different 

approaches to the question, in omnivorous healthy adults, they nevertheless produce 

remarkably similar results. 

Using stable isotopes or radioisotopes of LA or ALA to measure PUFA metabolism, in 

vivo studies show that humans can synthesize the respective long chain PUFA. From a 

strictly qualitative perspective, the in vivo data therefore agree with the in vitro data. However, 

analysis of the disappearance of the label from the precursor PUFA and its appearance in 

long chain PUFA suggests that ALA conversion through to DHA is almost universally <0.5% 

(Table 3). Hence, using tracers, the best attempts to quantify this conversion in vivo lead to 

essentially the opposite conclusion to that derived from the in vitro data, i.e. that, in humans, 

conversion of ALA to DHA is extremely limited, indeed, negligible (<0.1%) in many studies.  

The response of plasma DHA to raised intake of ALA is the other common way to 

study conversion in the ω3 PUFA pathway. Flaxseed (linseed) oil contains 50-60% ALA so it 

has been used widely for this purpose. Several studies of similar dietary design show that 
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plasma DHA does not change significantly after supplementation with flaxseed oil or flaxseed 

itself (Table 4A). Like tracer studies, dietary supplementation studies of PUFA conversion do 

not fully agree on the apparent degree of conversion. Supplementation studies are also 

constrained by sampling being limited primarily to plasma with frequently no more than one 

blood sample before and one after the supplementation period.  

The ALA supplements used often exceed the normal ALA intake of ~1.5 g/d by 5-10 

fold (Table 4A) so it is legitimate to ask whether data from these supplementation studies are 

really suitable for understanding desaturation-chain elongation in humans consuming an 

‘average’ diet. By definition, the supplementation model requires a raised dose of the 

precursor PUFA or else the change in plasma fatty acid profile cannot be detected. Hence, 

this is a flaw that cannot easily be eliminated from the model but may nevertheless skew the 

data towards an underestimate of true desaturation-chain elongation.  

Equally importantly for the supplementation model – is plasma DHA too tightly 

regulated to allow for an increase after ALA supplementation? Here, the answer is clearer 

than with the substrate loading question: Plasma DHA does rise after supplementation with 

pure DHA (reviewed by Arterburn et al. 2006), which clearly shows that the combined effects 

of some β-oxidation, clearance to tissues, or further metabolism to other products do not 

prevent an increase in dietary DHA from raising plasma DHA. Hence, if DHA synthesis from 

ALA is occurring, it should be detectable by a measurable rise in plasma DHA after ALA 

supplementation. With two exceptions, this is rarely the case.  

The first exception is vegetarians/vegans. Vegans strictly exclude all animal foods 

including fish. Hence they consume no known source of DHA. If they couldn’t make DHA, 

they should have very low plasma DHA and, more importantly, should have symptoms of 

DHA deficiency such as impaired vision and cognition. However, although they have lower 
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plasma DHA, healthy vegans do not have clinical evidence of DHA deficiency (Geppert et al. 

2005; Melchert et al. 1987; Sanders et al. 1978). Intuitively, therefore, they must be making 

some DHA or reducing its turnover. One would therefore expect plasma DHA in vegetarians 

to rise in relation to ALA supplementation but this is not necessarily the case (Li et al. 1999, 

Fokkema et al. 2000). Vegans/vegetarians are an important window on the ALA conversion 

question but to better understand these apparent inconsistencies, more detailed studies are 

needed.  

The other exception in which plasma DHA generally rises after ALA supplementation is 

severe ω3 PUFA deficiency (Table 4B). However, in the few reported cases, the rise in 

plasma DHA is much less obvious in adults (Bjerve et al. 1989) than in the two reported cases 

involving children (Bjerve et al. 1988; Holman et al. 1982) and is confounded by the clinical 

histories and multiple nutritional insufficiencies of the patients. As shown in in vitro studies 

(Table 1), tissue content of the product (DHA) probably has an important impact on its own 

synthesis, i.e. when tissue content of DHA is very low (ω3 PUFA deficiency) ability to 

synthesize it from ALA would not surprisingly increase.  

Low tissue content of DHA may not stimulate enough DHA synthesis to prevent clinical 

symptoms, at least in infants. A rare glimpse into the tissue DHA response to different ω3 

PUFA intakes is available from two similar studies done in infants (Farquharson et al. 1992; 

Makrides et al. 1994). In both studies, the comparison is imperfect in the sense that breast-

fed babies were compared to those receiving a milk formula containing only ALA as the 

source of ω3 PUFA. Both studies showed that 2-6 month old infants receiving ALA as the only 

ω3 PUFA accumulate much less brain DHA than breast-fed infants of the same age. Breast-

fed infants obtain at least 50-60 mg/d of pre-formed DHA from breast milk and accumulate 

brain DHA at about 5 mg/d over the first 6 mo of life but the brains of formula-fed infants 
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accumulated only 2.5 mg/d of DHA (Cunnane et al. 2000). To prevent the depressed 

trajectory of brain DHA accumulation in infants receiving the ALA-based formulas, it was 

calculated that they would theoretically need to be able to convert at least 5% of dietary ALA 

to brain DHA. In other words, if ALA-fed infants not receiving dietary DHA achieve only 50% 

of the brain DHA accumulation of breast-fed infants, their ability to convert dietary ALA to 

brain DHA must be well under 5% (Cunnane et al. 2000).  

Both the tracer and dietary supplementation methods offer only indirect estimates of 

conversion of ALA to DHA synthesis but, overall, they concur in showing extremely low 

(<0.5%) net response of plasma DHA to ALA (tracer or supplement) in ‘average, healthy’ 

adult humans. They also show that this is the norm and is not a side effect either of 

incorporation of newly synthesized DHA elsewhere or high loss of DHA via β-oxidation (see 

‘Other Metabolic Processes’). Hence, it seems clear that the main reason plasma DHA is 

essentially unaffected by dietary supplementation with ALA is because of very low synthesis. 

Though imperfect, this estimation process using three very different models (isotopically 

labelled ALA, ALA supplements, brain DHA accumulation in ALA–fed infants) seems robust 

enough to provide fairly secure boundaries of probability within which conversion of ALA to 

DHA is unlikely to ever normally exceed 1% in humans. Other reviews on this topic have 

come to the same conclusion (Brenna 2002; Burdge 2006; Cunnane 2003b; Gerster 1998).  

 

Conversion of Other PUFA 

ALA to EPA. Whether using dietary supplementation studies with ALA or by tracing 

13C-ALA metabolism, it is clear that conversion of ALA to EPA is higher than for ALA 

conversion to DHA and is on the order of ~5% (Tables 3, 4). Hence, depending on the dose 

of ALA used, plasma EPA usually rises by 20-100% after supplementing humans with ALA. 
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ω3 DPA may or may not rise modestly after ALA supplementation or after administration of a 

tracer dose of 13C-ALA (Goyens et al. 2006; McCloy et al. 2004). The change in ω3 DPA after 

ALA supplementation is noticeably less than for EPA but more than for DHA (Cunnane 

2003b). Collectively, these data show that conversion of ALA to ω3 long chain PUFA really 

bogs down after EPA. 

Stearidonic acid to long chain ω3 PUFA. Stearidonic acid (SDA; 18:4ω3) is the 

immediate Δ6 desaturase product of ALA. It naturally occurs at moderately elevated levels in 

only a couple of foods, notably blackcurrant and borage oils. Few studies have evaluated 

metabolism of SDA in humans but one clearly shows that plasma EPA doubles but ω3 DPA 

and DHA do not change after SDA supplementation (James et al. 2003). By providing a pre-

formed dietary source of SDA, any ‘rate-limiting’ effect (Table 1) of the Δ6 desaturase that 

would supposedly restrain ALA’s conversion would be bypassed but this did not have any 

effect on plasma levels of longer chain ω3 PUFA in this study. Since β-oxidation of 18 carbon 

fatty acids increases with each additional double bond from 0 (stearic acid) to 3 double bonds 

(ALA; Cunnane et al. 2003a), the fourth double bond in SDA might further enhance the β-

oxidation of SDA, thereby reducing its availability for further desaturation and chain 

elongation.      

EPA to DHA. Supplementation of pure EPA has not yet been studied exhaustively in 

humans but available data suggest that supplements of pure EPA do not change plasma DHA 

levels in healthy adults (Boston et al. 2004; Horrobin et al. 2002; James et al. 2003). This is 

consistent with the lack of effect of SDA or ALA supplements on plasma DHA and confirms 

that , in humans, desaturation-chain elongation-retroconversion of ω3 PUFA beyond EPA is 

minimal. The implication is that the steps beyond ω3 DPA that involve peroxisomal processing 

of the fatty acid are the bottleneck in this slow to minimal conversion through to DHA. 



 

 
 

18

LA to AA. LA tracer (Table 3C) and supplementation (Table 5A) studies in healthy 

adults uniformly suggest that <0.1% dietary of LA is converted to AA a value that may rise 

depending on overall nutritional status or ω6 PUFA deficiency (Table 5B). There are four main 

reasons why conversion of LA to AA has attracted much less interest than the conversion of 

ALA to DHA: (i) people in industrialized countries have abundant LA intake, (ii) non-

vegetarians have abundant AA intake, (iii) there is concern about side effects of excess ω6 

PUFA giving rise to increased risk of degenerative diseases (Hamazaki and Okuyama 2003; 

Yam et al. 1996), possibly through a chronic overload of ‘2 series’ eicosanoids derived from 

AA (Lands 2005), and (iv) unlike with DHA, the literature provides no clear reason to worry 

about adults achieving adequate intakes or tissue levels of AA.  

It is unclear whether infants may have a requirement for preformed dietary AA so it is 

not yet appropriate to be complacent about role of dietary AA in infant development. Although 

AA synthesis seems to be very low in infants (Demmelmair et al. 2001), it may be under tight 

regulation because, unlike with DHA, brain AA levels in infants seem not to depend on the 

presence of incoming AA (Farquharson et al. 1992). Nevertheless, AA may promote fat cell 

development in infants, an effect that warrants close scrutiny (Massiera et al. 2003). 

GLA and DGLA to AA. Plasma AA appears to be essentially as unaffected by GLA as 

by LA supplementation (Horrobin 1990; Manku et al. 1988). Pure DGLA given as a 

supplement (El Boustani et al. 1986; Stone et al. 1979) or as a tracer (El Boustani et al. 1986; 

Stone et al. 1979) is converted to AA.  

 

Why the Disconnect Between in Vitro and in Vivo Data?   

Desaturation – chain elongation is a complex pathway because it is responsive to – (i) 

hormones, nutritional and metabolic changes, (ii) differences in substrate availability and 
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substrate competition, and (iii) high or low levels of the end-products. Hence, without 

reference to data describing the efficiency of the conversion of parent to long chain PUFA in 

an intact organism, the in vitro information about a certain desaturase step being ‘rate-limiting’ 

(Table 1) is meaningless for understanding the implications for dietary requirements or health 

attributes of the long chain PUFA in humans. 

An important consideration with isotopically-labelled molecules is that they are 

assumed to behave like the unlabelled molecules they are intended to mimic, i.e. they are 

‘tracers’ imitating the ‘tracee’. In order to be a true tracer, the smallest dose that can measure 

the process of interest should be used but this has not always been the case, either in vitro or 

in vivo. Some human stable isotope studies looking at conversion have used relatively high 

doses of tracer equivalent to 50-100+% of the daily intake of the PUFA in question (Burdge et 

al. 2002; Burdge and Wootton 2002; Emken et al. 1994; Hussein et al. 2005; Pawlosky et al. 

2001). High amounts of tracer or substrate may reduce in vivo conversion of ALA to DHA in 

healthy adults by as much as 50% (compare Table 3A to 3B). However, this skewing effect 

can also occur in vitro, where the amount of ‘free’ substrate seen by the desaturase enzymes 

probably greatly exceeds what they see in vivo. Parallel issues involving the amount of ‘free’ 

substrate also seem to occur in trying to resolve why both fatty acids and cholesterol seem to 

so easily traverse the blood-brain barrier when injected into the blood but not when given 

orally (Cunnane et al. 1999; Edmond et al. 1991; Jurevics and Morell 1995). 

Another challenge with stable isotope studies of PUFA conversion is that interpretation 

of both the supplementation and tracer studies is largely based on the plasma pool, which 

actually retains a very small proportion of the tracer or supplement administered. Plasma itself 

also has no capacity to effect conversion which takes place principally in the liver. Hence, 

small errors in analysis or small differences in study design can potentially significantly affect 
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the calculation of % conversion. Examining other pools like adipose tissue (McCloy et al. 

2004) or excretion of the tracer in breath is occasionally done (Burdge 2006; DeLany et al. 

2000), which is an additional window on PUFA metabolism (though not on the PUFA 

conversion pathway itself) that can increase confidence in this methodology.  

Some investigators have used deuterated (2H) PUFA while others use 13C-enriched 

PUFA as the tracer. Some have used fatty acids labelled at just one carbon (DeLany et al. 

2000), while others commonly use uniformly labelled tracers (Table 3). Other differences in 

study design that also affect the tracer-tracee ratio such as the PUFA content or ω3/ω6 PUFA 

ratio of the background diet (Goyens et al. 2006) could contribute to inter-study differences in 

apparent PUFA conversion rate or efficiency. Vegetarianism does appear to have a significant 

impact on ALA conversion to DHA (see next section) but this has not been studied in the 

tracer model. Pregnancy and lactation may also affect synthesis of long chain PUFA in 

humans but are not the subject of this review. 

 

Other Metabolic Processes  

 If desaturation and chain elongation were the principle determinants of the degree of 

conversion of parent to long chain PUFA, AA and EPA rather than AA and DHA would be 

found in equivalent amounts in tissues. However, even the fatty acid composition of the 

microsomal preparations doing the desaturation does not change in ways predictable from 

experimentally induced changes in desaturase activity (Poisson and Cunnane 1991). Hence, 

although the ω6 and ω3 PUFA undergo the same sequence of desaturation and chain 

elongation, other processes affecting their metabolism must be relevant to determining which 

of the parent or long chain PUFA actually accumulate in membrane phospholipids.  
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 These other processes that affect PUFA metabolism in vivo include rapid clearance of 

the derived long chain PUFA out of the plasma and into tissue membranes, differential 

esterification into membrane lipids, extensive conversion to further downstream products, or 

loss to lipid peroxidation, β-oxidation or carbon recycling. If these processes were ongoing at 

a sufficient rate, it would be wrong to assume that a low rate of conversion from ALA was 

occurring if, in fact, it was high DHA turnover (or degradation) that prevented a rise in plasma 

DHA.  

Stable isotope studies are the best way to assess fatty acid turnover via β-oxidation. 

Very preliminary estimates suggest that <5% of DHA is β-oxidized in healthy, omnivorous 

adult humans over an 8 day period, whereas >60% of ALA is β-oxidized (McCloy et al. 2004, 

Freemantle et al. 2006). Hence, stable isotope studies can clearly distinguish high from low 

rates of β-oxidation of PUFA and 5% oxidation of newly synthesized DHA is still insufficient to 

account for the lack of change in plasma DHA during ALA supplementation. If accompanied 

by somewhat higher ALA conversion to DHA, lower β-oxidation of DHA in vegans might help 

account for their relative resistance to DHA deficiency. This question is pivotal in 

understanding DHA homeostasis but an answer to it awaits further study.  

Synthesis of downstream products of DHA, whether neuroprotectins/docosanoids 

(Lukiw and Bazan 2006), ultra-long chain PUFA or peroxidation products, might also make it 

difficult to accurately distinguish actual from net DHA synthesis. However, the absolute 

amounts of these products of DHA are several orders of magnitude lower than DHA itself, so 

their synthesis cannot reasonably be expected to drain the plasma DHA pool in the time 

frame of tracer or ALA supplementation experiments (mostly <1 wk). 

 PUFA carbon recycling refers to the recovery of carbon in non-PUFA from PUFA 

undergoing β-oxidation (Cunnane et al. 2003). Carbon recycling excludes the down-stream 



 

 
 

22

metabolites like hydroxy-fatty acids, eicosanoids, docosanoids/neuroprotectins or products of 

peroxidation, but includes newly synthesized lipids (and possibly amino acids or other 

molecules) into which carbon can be incorporated after fatty acid β-oxidation. Up to 100 times 

more carbon from ALA is used by neonatal rats and primates to make other lipids like 

cholesterol and saturated or monounsaturated fatty acids than is used to make DHA 

(Cunnane et al. 2003; Demar et al. 2005; Menard et al. 1998; Sheaff Greiner et al. 1996; 

Sinclair 1975). In rats, especially neonatal rats, extensive carbon recycling of ALA occurs 

under extremes of very high total fat intake or very deficient ω3 PUFA intake (Cunnane et al. 

2006; Taha et al. 2006) so this pathway could easily affect conversion of ALA to DHA by 

reducing the availability of ALA for desaturation. In a primate model, about 15% of 13C-DHA 

was also recycled into newly synthesized fatty acids (Sheaff Greiner et al. 1996), so carbon 

recycling is not limited to the ‘parent’ PUFA ALA or LA. However, preliminary evidence 

suggests there is minimal recycling from AA (Cunnane et al. 2003). Detectable amounts of 

ALA recycling occur in adult humans (Burdge 2006) but it is much lower than in neonatal 

animal models. The point is that in contrast to the situation in rats or possibly primates, in 

adult humans, it seems unlikely that recycling of the parent PUFA contributes in any 

meaningful way to the very low apparent conversion to DHA or AA. 

 PUFA retroconversion is the process by which a longer chain PUFA raises the level of 

a precursor PUFA, i.e. DHA intake raising EPA levels. EPA can rise when DHA alone is given 

(Arterburn et al. 2006; Conquer and Holub 1997; Gronn et al. 1990) and stable isotope 

studies suggest this occurs by chain shortening of DHA (Lemaitre-Delaunay et al. 1999), 

hence, retroconversion. The available data do not indicate that retroconversion of DHA to 

EPA consumes all the DHA nor that it occurs fast enough to prevent detecting a change in 

plasma DHA that might occur after EPA (or ALA or SDA) supplementation.  
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The bottom line is that desaturation measured in isolated microsomal enzyme 

preparations is a model system that takes conversion out of context, i.e. the in vitro model 

doesn’t represent the actual fate of these fatty acids in an intact liver or, more challenging still, 

in an integrated living organism. Hence, optimized in vitro conditions permitting the 

conversion of several pmoles of 14C-LA to 14C-GLA/min/mg of microsomal protein do not 

easily translate into an in vivo value permitting one to say that a certain percentage of dietary 

LA or ALA is converted to the first, second or third in the series of their respective long chain 

PUFA products. In a way, PUFA researchers themselves have propagated the misleading 

concept of effective conversion of ALA to DHA because they always show the pathway with 

arrows connecting the parent to the long chain PUFA when, in reality, the arrows are much 

fainter (almost non-existent) in some species like humans than others, especially rats and 

most other lab rodents. This is the reason for showing the fatty acids in Table 2 as a list not a 

pathway connected together by arrows. 

 

The Issue is – do we Need Long Chain PUFA in the Diet? 

Accepting that humans have a very limited capacity to convert the parent to long chain 

PUFA, the issue becomes one of determining whether there is an equivalent need for the long 

chain PUFA in adults as there is in infants. Assuming for the sake of argument that plasma 

stable isotope enrichment data, in fact, truly reflect the human body’s ability to convert LA to 

AA, <0.5% conversion of the average North American LA intake (10 g/d) would yield about 50 

mg/d of AA, the impact on long term eicosanoid production of ‘2 series’ eicosanoids of which 

is still unknown.  

Similarly, at a conversion rate of 0.5%, a daily intake of 1000 mg ALA would produce 

DHA at a rate of about 5 mg/d; a 2000 mg/d intake of ALA and somewhat lower conversion 
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(0.2%) would produce 2 mg/d of DHA. A DHA intake of about 200-300 mg/d is widely viewed 

as having a beneficial impact on cardiovascular outcomes (www.issfal.org.uk, Gebauer et al. 

2006; Lands 2005). To obtain 200 mg/d of DHA from ALA would require converting an intake 

of 2000 mg/d ALA to DHA at a rate of 10%. No published data suggest 10% of ALA intake 

can be converted to DHA under any sustainable conditions. Furthermore, ALA intakes of 

2000 mg/d are uncommon (Hu et al. 1999). Even if the 0.5% figure derived from several 

stable isotope studies underestimates actual conversion of ALA to DHA in healthy adults by 

several fold, the desaturation-chain elongation pathway does not appear to be designed to 

allow humans to make even 20 mg/d of DHA let alone the recommended 200+ mg/d. Recent 

data suggest the human brain turns over DHA at about 4 mg/d (Rapoport 2006), an amount 

that non-vegetarians would appear to have great difficulty making from ALA.  

 

ω3 and ω6 PUFA and Human Diseases – A Brief Overview 

Over thirty years of human clinical trials indicates that EPA and DHA hold considerable 

promise in the primary and secondary reduction of the risk of morbidity and mortality from 

cardiovascular disease (Lands 2005). EPA and DHA may well turn out to be important in 

mitigating other diseases, especially psychiatric, cognitive and neurodegenerative disorders, 

but reports on these applications are really only beginning to emerge (Freund-Levi et al. 

2006). Fish, shellfish and encapsulated fish oils are by far the commonest dietary sources of 

EPA and DHA. Capsules containing EPA but no DHA or DHA but no EPA are becoming 

available and their clinical effects are being investigated as well (Arterburn et al. 2006; Boston 

et al. 2004) but they have still not been widely studied. The two main intermediate ω3 PUFA, 

SDA and ω3 DPA, are also starting to receive attention but as yet little is known of their health 

implications.  
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The potential health impact of ALA supplementation has been studied in relation to 

cardiovascular disease but its effects are enigmatic. On the one hand there is evidence of a 

modest, beneficial effect of ALA on cardiovascular health (Baylin et al. 2003; Cunnane et al. 

1995; Djoussé et al. 2005; Dolecek 1992; Hu et al. 1999). This risk reduction may be 

achieved through reduction of specific markers associated with cardiovascular disease 

(Carlson and Walldius 1975; Ferrucci et al. 2006; Freese and Mutanen 1997; Goyens and 

Mensink 2006; Szapary et al. 2007; Zhao et al. 2004). On the other hand, EPA and DHA 

generally have a stronger protective on cardiovascular risk than ALA so with low conversion 

to EPA and negligible conversion to DHA, it is unclear whether ALA acts directly or through 

EPA. If part of the cardiovascular benefit of ALA is due to desaturation-chain elongation to 

EPA, at even ~5% conversion, a generous intake of 2000 mg ALA would only produce about 

100 mg/d EPA, an amount roughly equivalent to current EPA intake in North America. About 

100 mg/d of EPA could have a mild, beneficial cardiovascular effect involving inhibition of 

platelet aggregation, reduction of triglycerides, inhibition of 2 series eicosanoid synthesis and 

action, inhibition of LA conversion to AA, and stabilization of heart rhythm.  

The potential health effects of AA in adult humans have attracted sporadic attention. 

Except in very low amounts suitable for infant milk formulas, AA has rarely been studied as a 

human dietary supplement. After 50 d supplementation with 1.5 g/d of AA, urinary excretion of 

2 series eicosanoids increased but no other adverse symptoms were reported (Ferretti et al. 

1997; Kelley et al. 1998). Clearly further work on this topic is needed. The health implications 

of encapsulated GLA (as evening primrose or borage oil) received considerable attention in 

the 1980s and 1990s (Horrobin 1990). The main interest in these intermediate ω6 PUFA was 

to try to exploit the low conversion especially of LA and GLA to AA and to use them to raise 

levels of the ‘1 series’ eicosanoids derived from DGLA, thereby hopefully counteracting the 
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pro-inflammatory effects of excessive amounts of the 2 series eicosanoids derived from AA. 

The idea of using GLA or DGLA and 1 series eicosanoids to prevent the damaging effects of 

AA and the 2 series eicosanoids has shifted towards the ω3 PUFA and their own ‘3 series’ 

eicosanoids derived from EPA or the docosanoids derived from DHA (Lukiw and Bazan 

2006). At present, there is at best weak evidence to suggest that any ω6 PUFA can be 

exploited to reduce the risk of cardiovascular, psychiatric or neurological diseases. 

With its emphasis on the primacy of LA, early EFA research in humans led to interest 

in the potential health effects of LA. It needs to be clearly stated that the risk of LA deficiency 

(indeed deficiency of all ω6 PUFA) is rare in non-surgical adult patients who consume 

adequate dietary energy. Furthermore, the intake of LA needed to prevent a risk of ω6 PUFA 

deficiency in adults is low (no more than 2 g/d) but current LA intakes exceed this ‘adequate 

intake’ by 3-10 fold in all countries for which data are available. Hence, it is fair to say that in 

most developed countries LA intakes are excessive and there is no need or even vaguely 

legitimate rationale to explore therapeutic uses of LA, certainly for the main causes of 

morbidity and mortality. Historically, interest in the health effects of LA focussed on 

cardiovascular protection by cholesterol lowering. However, there is much more to 

cardiovascular health than cholesterol lowering and many more effective nutritional 

interventions than LA supplements.  

Hence, there is general agreement that diets of developed countries are heavily 

skewed in favour of the ω6 PUFA, especially LA. There is also general agreement that 

chronic low grade inflammation aggravates or promotes the degenerative processes that are 

the main causes of mortality and morbidity in developed countries. What is still more 

conjecture than fact is the hypothesized direct link between elevated ω6 PUFA intake (mainly 

LA), elevated 2 series eicosanoids, and increasing prevalence of degenerative disease 
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processes (Hamazaki and Okuyama 2003; Lands 2005). This broadly-cited concept makes 

intuitive sense but has as yet received little direct experimental support (Nelson et al. 1997) 

because good eicosanoid measurements are difficult to do, so insufficient data are available 

to support or refute it. Until this link is better substantiated, it will be difficult to target specific 

nutrient-based strategies towards the task of reducing chronic disease risk more effectively 

than is being done at present with fish, shellfish or encapsulated fish oils. While it is still 

unknown whether ω3 PUFA act more by inhibiting 2 series eicosanoids, stimulating 3 series 

eicosanoids or by their effects on membrane composition affecting cell signalling systems, 

their broadly beneficial clinical effects on cardiovascular and neurological health remain clear 

and well-supported.   

 

Health Attributes of Individual PUFA 

 PUFA have several well accepted attributes in relation to preventing or mitigating the 

effects of degenerative cardiovascular or neurological disease processes in adults (Table 6). 

Concentrated dietary sources or supplements of ALA, EPA and DHA are now widely available 

so it is important to get beyond the general agreement that ω3 PUFA are generally beneficial 

and start examining whether some of their effects can be more effectively or specifically 

targeted to one or more of these fatty acids. DHA is a much more important membrane 

constituent than EPA (in all organs but especially in the brain) so it is reasonable to assess 

different neurological targets for DHA than for EPA. Furthermore, the limited evidence to date 

shows that there is very low to negligible conversion of EPA to DHA in humans (James et al. 

2003, Boston et al. 2004) so it makes sense to explore different mechanisms of action for 

EPA compared to DHA. DHA’s effects seem membrane-based whereas EPA seems to act 

more like a modulator, possibly of eicosanoids, but it may also affect energy substrate 
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availability or gene expression differently from DHA (Freemantle et al. 2006; Gottlicher et al. 

1993).  

ALA has cardiovascular health effects similar to but much milder than those of EPA 

and DHA. There is no obvious mechanism by which ALA would affect cardiovascular or 

neurological health except possibly through a mild inhibitory effect on desaturation-chain 

elongation of ω6 PUFA or mild inhibition of 2 series eicosanoids. ALA is a better substrate for 

fatty acid β-oxidation and ketogenesis than any other common dietary fatty acid (whether 

saturated, monounsaturated or PUFA; Cunnane 2003a). The therapeutic effects of chronic, 

mild to moderate stimulation of ketones are now under increasing scrutiny, especially in 

relation to ‘brain health’ (Veech 2004, Maalouf et al. 2007). Given the emerging link between 

brain hypometabolism and cognitive decline in the elderly, strategies to improve energy 

substrate availability to the adult or aging brain need further investigation (Hoyer 2004; Reger 

et al. 2004; Reiman et al. 2004; Veech 2004, Freemantle et al. 2006).  

Though still highly speculative, it is conceivable that ALA could potentially become a 

tool in this strategy, not to increase EPA or DHA, but to improve brain fuel supply by mildly 

increasing ketogenesis (Freemantle et al. 2006). Insulin resistance is the main non-genetic 

risk factor for cognitive decline in the elderly and appears to contribute to impaired glucose 

availability to the brain (Steen et al. 2005). Hence, imaginative strategies to bypass the risk of 

deteriorating brain glucose uptake are needed and could involve exploiting ALA as a 

ketogenic substrate, EPA as a modulator of fatty acid β-oxidation and DHA as key structural 

component of synaptosomal function, learning and memory.  
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Implications of Extremely Limited Conversion: What is an EFA? 

 The term EFA is still in widespread use but with broader acceptance of the inefficient 

conversion of parent to long chain PUFA in humans, the usefulness of this term needs to be 

questioned. A detailed rationale for this concern has been published (Cunnane 2003a). 

Historically, the PUFA defined as EFA have already varied a lot because in the 1970s, the 

original three EFA - LA, ALA, and AA – were reduced to just one (LA). It then became much 

clearer in the 1980s that both ω3 and ω6 PUFA had unique and important nutritional roles. 

The research in this period really defined the subtlety of the roles associated with ω3 PUFA 

and in so doing provided crucial new insights into their physiological functions. With only LA 

and ALA as dietary PUFA, rats could normally produce sufficient amounts of their respective 

long chain PUFA to grow and reproduce normally, so ALA regained its stature as an EFA. 

Therefore in rats, by definition, only LA and ALA are EFA; the longer chain PUFA are strictly 

not EFA in rats but they are still commonly grouped as EFA for convenience.  

We now see that conversion of parent to long chain PUFA is much less efficient in 

humans than in rats and that human infants definitely need pre-formed dietary DHA. If infants 

actually need pre-formed dietary DHA and ALA is so inefficiently converted to DHA, is ALA 

truly an EFA in humans? If so, by what criteria? Indeed, is ALA doing anything specific in 

humans? If EPA conversion to DHA is minimal, but it can be made from ALA, is EPA actually 

doing anything unique that qualifies it as an EFA? Infants need dietary DHA but do healthy 

adults? Adult humans can’t normally make much DHA but, it still isn’t clear that what 

conditions lead to clear and specific symptoms of DHA deficiency in adults.  

Conditionality is the heart of the issue. Infancy is a ‘condition’ leading to a dietary need 

for DHA. Are there ‘conditions’ leading to a dietary need for DHA (or EPA, or AA) in adults 

and if so, what are they? For instance, is one or other PUFA needed in infants but not needed 
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by healthy adults, or needed in infants but also in adults suffering from disease X? Are 

different amounts needed to treat condition X versus condition Y? Do vegans actually need 

less DHA than omnivores (because they eat better diets or have fewer risk factors for 

cardiovascular disease)? If the conditionality of PUFA requirements can be acknowledged, 

such conditions will then be sought out and the field will move forward. Conditions for 

requiring a nutrient form the framework for a better understanding not only of that nutrient’s 

function but also how to provide foods or supplements that will respond most effectively to 

meeting that need and preventing, reducing or eliminating the symptoms of deficiency. It may 

eventually be possible to estimate ‘minimally sufficient’ compared to ‘optimal’ DHA intakes but 

this depends on accepting the more basic concept of conditionality.  

At least we can unreservedly say the DHA is ‘conditionally indispensable’ or 

‘conditionally essential’ in infants. We can recommend DHA intake in adults but we can’t yet 

call it ‘conditionally indispensable’ in adults because we can’t really say what constitutes DHA 

deficiency in adults or how much DHA would be needed to prevent it. To be an essential 

nutrient, the molecule needs to be more than unique – it has to do something no other 

nutrient does; in adults, at least one of ALA, EPA, or DHA is required, but which one?   

Now that a fair amount is known about the subtlety of PUFA metabolism, it can be 

seen that metabolism through the pathway is very slow but also somewhat flexible and 

vulnerable to inhibition. Definitions should therefore be flexible enough to correspond to the 

physiology of these fatty acids in humans. We need to be able to define and agree on the 

conditions of dietary essentiality at least of LA, AA, ALA, EPA and DHA – for the moment they 

look challenging enough! Acknowledging the conditionally indispensable nature of some 

PUFA simply means that the EFA join the ranks of other similar organic nutrients like the 
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‘conditionally in/dispensable amino acids’, which is the more correct and official term for the 

‘essential amino acids’.  

 

Conclusions 

 We make the case that most adult humans are virtually unable to convert ALA to DHA. 

The consequence is that people not eating foods or supplements containing DHA have lower 

plasma and tissue DHA and have a higher risk of declining mental and cardiovascular 

function. Hence, in combination with EPA, dietary DHA may be useful in protecting those at 

higher risk (smoking, obesity, sedentary lifestyle, etc.). The clinical impact of supplemental 

EPA and DHA would, however, be expected to be lower in those who, for other reasons, are 

already at lower risk of declining mental or cardiovascular function. ALA has some mildly 

protective effects but probably more so in those at lower risk. Hence the potential role of 

these ω3 PUFA to protect brain and cardiovascular function is a moving target that is 

conditional on lifestyle, environmental risk factors and possibly genetic susceptibility. Defining 

the conditions that make ALA, EPA or DHA necessary nutrients in adults is therefore an 

important priority. Adults also make virtually no AA from LA but, at the moment, this appears 

to have no adverse health implications. 

It has been argued that the low capacity of the human desaturation-chain elongation 

system is a result of humans evolving on diets that contained fish and shellfish (Broadhurst et 

al. 1998; Cunnane 2005). The idea is that the capacity of this pathway in our forebears was 

largely irrelevant because of the continuous consumption of pre-formed AA, EPA and DHA 

from fish and shellfish. It is therefore only with widespread abandonment of ‘shore-based’ 

foods, especially during the last fifty years, that issues of desaturation-chain elongation have 

become evident. Returning to the key nutritional attributes of a ‘shore-based’ diet, especially 



 

 
 

32

higher ω3 and lower ω6 PUFA intake, is essential from a health perspective, or the 

consequences could be disastrous as much for mental as for cardiovascular health (Andlin-

Sobocki et al. 2005).    
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Table 1  

Main features of the desaturation – chain elongation pathway observed in vitro. 

 

1. Desaturation is usually a slower process that chain elongation.  

2. Desaturation usually (but not exclusively) alternates with chain elongation.  

3. Mole for mole, the desaturases favour ω3 fatty acids over ω6 (or ω9) fatty acids. 

4. Double bond position in a PUFA determines its efficacy as a desaturase substrate.  

5. Desaturation is linked to the electron transport chain.  

6. Several similar desaturases act in succession, permitting conversion of LA and ALA to all the 

known long chain PUFA. 

7. Desaturation is increased when the diet is low in either LA and/or ALA or when the membrane 

content of long chain PUFA is substantially reduced.   

8. Overloading the desaturase assay with the substrate fatty acid, eg. ALA, or with the end-

product, eg. DHA, causes substrate or end-product inhibition, respectively. 

9. Certain cofactor nutrients (notably vitamin B6, iron and zinc) as well as certain hormones 

(notably insulin) are involved in both desaturation and chain elongation to the extent that 

dietary deficiency of key cofactors, eg. zinc, or deficiency of insulin (type 1 diabetes) can 

effectively shut the pathway down.  

10. Through truncated β-oxidation, the reverse of chain elongation (chain shortening by two 

carbons) is important in the synthesis of DHA. 

11. DHA synthesis (or ω6 DPA synthesis) seems to involve a repeated Δ6 desaturation followed 

by chain shortening in peroxisomes, a pathway that is widely but not yet universally accepted.  

12. When multiple desaturations and chain elongations are needed, i.e. to convert ALA to DHA, 

the first desaturation is commonly viewed as the ‘rate limiting’ step 
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ALA = Alpha-linolenic acid, DHA = Docosahexaenoic acid, DPA = Docosapentaenoic acid, LA = 

Linoleic acid, PUFA = Polyunsaturated fatty acids 
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Table 2 

The common ω6 and ω3 polyunsaturated fatty acids. 

 

linoleic acid (18:2ω6)     α-linolenic acid (18:3ω3) 

γ-linolenic acid (18:3ω6)      stearidonic acid (18:4ω3) 

dihomo-γ-linolenic acid (20:3ω6)    ω3 eicosatetraenoic acid (20:4ω3) 

arachidonic acid (20:4ω6)      eicosapentaenoic acid (20:5ω3) 

adrenic acid (22:4ω6)     ω3 docosapentaenoic acid (22:5ω3) 

ω6 docosapentaenoic acid (22:5ω6)   docosahexaenoic acid (22:6ω3) 
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Table 3 

Desaturation-chain elongation data obtained using stable isotopes in adult humans. 

Conversion to  Reference Subjects Isotope Dose 
(mg) 

Blood 
fraction EPA DHA 

        
A. ALA tracer – Low dose (< 100 mg) 
1. Vermunt et al. 

2000 
15 M/F [U-13C] 45 TL 5.1% TR 

2. McCloy et al. 
2004 

6 F [U-13C] 47 TL 1.5% 0.3% 

3. Goyens et al. 
2005 

29 M/F [U-13C] 30 + 20 
daily 

TL 7% 0.07% 

       
B. ALA tracer – High dose (> 100 mg) 
1. Emken et al. 

1994 
7 M [2H] 3500  TL 6% 3.8% 

2. Pawlosky et 
al. 2001 

8 M/F [2H] ethyl 
ester 

1000  TL 0.2% TR 

3. Burdge et al. 
2002 

6 M [U-13C] 700  TL 7.9 % TR 

4. Burdge and 
Wootton 2002 

6 F [U-13C] 700  TG TR TR 

5. Burdge et al. 
2003 

14 M/F [U-13C] 700  TG + PC TR TR 

6. Hussein et al. 
2005 

38 M [U-13C] 400  TL 0.03% TR 

        
C. LA tracer AA  
1. Nichaman et 

al. 1967a 
4 M [1-14C] 100 μl PL + CE 2%  

2. McCloy et al. 
2004 

6 F [U-13C] 47 TL 0.9%  

3. Hussein et al. 
2005 

38 M [U-13C] 400  TL 0.2%  

 
Legend: U- = uniformly labeled, TL = Total lipids, PC = Phosphatidylcholine, PL = 
Phospholipids, CE = Cholesteryl esters, ALA = Alpha-linolenic acid, EPA = Eicosapentaenoic 
acid, DHA = Docosahexaenoic acid, LA = Linoleic acid, DGLA = Dihomo-gamma-linolenic 
acid, AA = Arachidonic acid, TR = Trace (< 0.1%). 
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Table 4 

Change in plasma EPA and DHA in humans after ALA supplementation 

Legend: F = Flaxseed, FO = Liquid flax oil, FOC = Flax oil capsule, M = Margarine, TL = Total 
lipids, PL = Phospholipids, ALA = Alpha-linolenic acid, EALA = Ethyl alpha-linolenic acid 
ester, EPA = Eicosapentaenoic acid, DHA = Docosahexaenoic acid, TR = Trace (< 0.1%) 

Change in  Reference Subjects Duration 
(weeks) 

ALA  
(g·d-1) 

ALA 
form 

Blood 
fraction EPA DHA 

        
A. Healthy Adults 

    
1. Kelley et al. 

1993 
10 M 8 20.5 FO 

 
TL TR + 38% 

2. Nordstrom 
et al. 1995 

22 M/F 12 9.6 FO TL + 0.02% + 0.5% 

3. Harper et 
al. 2006 

31 M/F 26 3 FOC TL + 53% + 4% 

4.  Szapary et 
al. 2007 

30 M/F 10 40 F TL + 12% TR 

5. Mantzioris 
et al. 1995 

15 M 4 13.7 M PL + 138% + 14% 

6. Cunnane et 
al. 1995 

10 M/F 4 9 F PL + 33% TR 

7. 17 M 6 3.7 M PL + 13% TR 
 

Li et al. 
1999 17 M 6 15.4 M PL + 250% TR 

8. James et 
al. 2003 

15 M/F 3 1.5 FOC PL + 23% TR 

9. Finnegan et 
al. 2003 

29 M/F 26 4.5 M PL + 90% TR 

10. Wallace et 
al. 2003 

8 M 12 3.5 FOC PL + 60% + 2% 

11. de Groot et 
al. 2004 

29 F 26 2.8 M PL TR TR 

12. Goyens et 
al. 2006 

10 M/F 6 [1.1% of 
energy] 

M PL + 9.7% + 0.03%

         
B. ALA Deficiency 
1. 8 0.12 mL/d TR TR 
 

Bjerve et al. 
1989 

3 M/F 
(Adults)  0.5 mL/d 

EALA TL 
+ 41% + 18% 

2. Holman et 
al. 1982 

1 F 
(Child) 

32 1.625 g/d ALA PL + 0.68% + 0.45%

3. Bjerve et al. 
1988 

1 F 
(Child) 

20 0.51 g/d ALA TL + 278% + 180% 
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Table 5 

Change in plasma AA in humans after LA supplementation 

 Reference Subjects Duration 
(weeks) 

LA 
(g·d-1) 

LA form Blood 
fraction 

% change 
in AA 

        
A. Healthy Adults  
1. Nichaman et 

al. 1967b 
5 M 4 11 - 52 SO + SFO PL 

 
TR 

2 Lasserre et 
al. 1985 

24 F 20 15  SFO PL 
 

TR 

3. Manku et al. 
1988 

18 M/F 12 2.88 EPO PL 
 

TR 

4. Mantzioris et 
al. 1994 

15 M 4 20.3 M PL TR 

5. Nordstrom et 
al. 1995 

22 M/F 12 9.9 SO TL + 0.08% 

6. de Groot et 
al. 2004 

29 F 26 10.9 M PL 
 

TR 

        
B. Undernourished children or EFA deficiency 
1. Miller et al. 

1987 
5 M/F 4-6 2.3 mg/kg Cutaneous 

SO 
TL TR 

        
2. 5 M/F 3.5 Isocal TM PC + 13 % 
 

Harper et al. 
1990   

16.9% 
energy  PE + 5 % 

 
Legend: SO = Safflower oil, SFO = Sunflower oil, EPO = Efamol evening primrose oil, M = 
Margarine, TL = Total lipids, PL = Phospholipids, PC = Phosphatidylcholine, PE = 
Phosphatidylethanolamine, LA = Linoleic acid, AA = Arachidonic acid, TR = Trace (< 0.1%) 
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Table 6 

Commonly accepted health attributes of individual PUFA. 

 

1. ALA makes a mildly positive but inconsistent contribution to cardiovascular health. As the 

main dietary ω3 PUFA, especially for vegans and many vegetarians, the mechanism of 

this beneficial effect needs clarification. 

2. ALA has no known benefit for ‘brain health’ or to reduce risk for any neurological, 

psychological or psychiatric disease. 

3. EPA alone has received insufficient attention but in combination with DHA is beneficial for 

cardiovascular health.  

4. DHA alone has received insufficient attention but in combination with EPA is beneficial for 

cardiovascular health.  

5. Unlike with EPA, the focus of attention with DHA effects on neurological function in adults 

is in relation to cognition and reduction of the risk of Alzheimer’s disease. Preliminary 

indications of a beneficial effect of DHA supplementation on cognition in the elderly are 

encouraging (Freund-Levi et al. 2006) but clear-cut results are not yet available (Maclean 

et al. 2005). 

6. As a replacement for other dietary fats or oils, relatively large amounts of LA may 

contribute to cholesterol lowering but this effect justifies neither the current high intake of 

LA nor raising it.  

7. There is not yet any good evidence that GLA, DGLA, AA or SDA have beneficial effects on 

the cardiovascular or neurological systems.  

8. In contrast to the ω3 PUFA, there is currently little need or rationale to explore the effects 

of supplementary ω6 PUFA in cardiovascular or neurological disease. 
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AA = Arachidonic acid, ALA = Alpha-linolenic acid, EPA = Eicosapentaenoic acid, DGLA = 

Dihomo-gamma-linolenic acid, DHA = Docosahexaenoic acid, GLA = Gamma-linolenic acid, 

LA = Linoleic acid, SDA = Stearidonic acid 

 


