European Journal of Nutrition

Dietary conjugated α-linolenic acid (CLNA) did not improve glucose tolerance in a neonatal pig model --Manuscript Draft--

Manuscript Number:			
Full Title:	Dietary conjugated α -linolenic acid (CLNA) did not improve glucose tolerance in a neonatal pig model		
Article Type:	Original Contribution		
Keywords:	conjugated linolenic acid; n-3 fatty acid; insulin resistance; pig		
Corresponding Author:	Christian-Alexandre Castellano, Ph.D. Research Center on Aging - Université de Sherbrooke Sherbrooke, QC CANADA		
Corresponding Author Secondary Information:			
Corresponding Author's Institution:	Research Center on Aging - Université de Sherbrooke		
Corresponding Author's Secondary Institution:			
First Author:	Christian-Alexandre Castellano, Ph.D.		
First Author Secondary Information:			
Order of Authors:	Christian-Alexandre Castellano, Ph.D.		
	Jean-Patrice Baillargeon, M.D		
	Mélanie Plourde, Ph.D.		
	Sandie I. Briand		
	Paul Anger, Ph.D.		
	Alain Giguère		
	J. Jacques Matte, Ph.D.		
Order of Authors Secondary Information:			
Abstract:	Purpose: There is an increased interest in the benefits of conjugated α -linolenic acid (CLNA) on obesity-related complications such as insulin resistance and diabetes. The aim of the study was to investigate whether a 1% dietary supplementation of mono-CLNA isomers (c9-t11-c15-18:3 + c9-t13-c15-18:3) improved glucose and lipid metabolism in neonatal pigs. Methods: Since mono-CLNA isomers combine one conjugated two-double bond system with an n-3 polyunsaturated fatty acid (PUFA) structure, the experimental protocol was designed to isolate the dietary structural characteristics of the molecules by comparing a CLNA diet with three other dietary fats: 1) conjugated linoleic acid (c9-t11-18:2 + t10-c12-18:2; CLA), 2) non-conjugated n-3 PUFA and 3) n-6 PUFA. Thirty-two piglets weaned at 3 weeks of age were distributed into the four dietary groups. Diets were isoenergetic and food intake was controlled by a gastric tube. After 2 weeks of supplementation, gastro-enteral (OGTT) and parenteral (IVGTT) glucose tolerance tests were conducted. Results: Dietary supplementation with mono-CLNA diet not modify body weight/fat or blood lipid profiles (p>0.82 and p>0.57, respectively) compared with other dietary groups. Plasma glucose, insulin and C-peptide responses to OGTT and IVGTT in the CLNA group was not different from the three other dietary groups (p>0.18 and p>0.15, respectively). Compared to the non-conjugated n-3 PUFA diet, CLNA-fed animals had decreased liver composition in three n-3 fatty acids (18:3n-3; 20:3n-3; 22:5n-3) (p<0.001). Conclusions: These results suggest that providing 1% mono-CLNA is not effective in improving insulin sensitivity in neonatal pigs.		
Suggested Reviewers:	Hélène Poirier h.poirier@agrosupdijon.fr		

Ignacio Fernández-Fígares ifigares@eez.csic.es
Darshan S. Kelley darshan.kelley@ars.usda.gov

1	Title : Dietary conjugated α -linolenic acid (CLNA) did not improve glucose tolerance in a neonatal pig model
2	
3	Running title: CLNA and glucose tolerance in neonatal pigs
4	
5	Christian-Alexandre Castellano ^{1,2*} , Jean-Patrice Baillargeon ³ , Mélanie Plourde ^{1,3} , Sandie I. Briand ^{4,5} , Paul Angers ⁶ , Alain
6	Giguère ⁷ and J. Jacques Matte ⁷
7	
8	¹ Research Center on Aging, Health and Social Sciences Center, Geriatrics Institute, Sherbrooke, QC, Canada
9	² Department Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
10	³ Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Sherbrooke, QC, Canada
11	⁴ Naturia Inc., Sherbrooke, QC, Canada
12	⁵ Institut national de santé publique du Québec, Montréal, QC, Canada
13	⁶ Department of Food Sciences and Nutrition, Faculty of Agriculture and Agri-Food Sciences, Université Laval, QC,
14	Canada, G1K 7P4.
15	⁷ Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
16	
17	
18	
19	
20	*Corresponding author:
21	Research Center on Aging, 1036 Belvedere South, Sherbrooke, (QC, Canada) J1H 4C4.
22	Tel: 1-819-780-2220 - Fax: 1-819-829-7141
23	E-mail: Alexandre.Castellano@USherbrooke.ca

25 Abstract

- 26
- 27 **Purpose**: There is an increased interest in the benefits of conjugated α-linolenic acid (CLNA) on obesity-related
- 28 complications such as insulin resistance and diabetes. The aim of the study was to investigate whether a 1% dietary
- supplementation of mono-CLNA isomers (c9-t11-c15-18:3 + c9-t13-c15-18:3) improved glucose and lipid metabolism in
- 30 neonatal pigs. **Methods:** Since mono-CLNA isomers combine one conjugated two-double bond system with an n-3
- 31 polyunsaturated fatty acid (PUFA) structure, the experimental protocol was designed to isolate the dietary structural
- 32 characteristics of the molecules by comparing a CLNA diet with three other dietary fats: 1) conjugated linoleic acid (c9-t11-
- 18:2 + t10 c12 18:2; CLA), 2) non-conjugated n-3 PUFA and 3) n-6 PUFA. Thirty-two piglets weaned at 3 weeks of age
- 34 were distributed into the four dietary groups. Diets were isoenergetic and food intake was controlled by a gastric tube. After
- 35 2 weeks of supplementation, gastro-enteral (OGTT) and parenteral (IVGTT) glucose tolerance tests were conducted.
- 36 **Results:** Dietary supplementation with mono-CLNA did not modify body weight/fat or blood lipid profiles (*p*>0.82 and
- 37 *p*>0.57, respectively) compared with other dietary groups. Plasma glucose, insulin and C-peptide responses to OGTT and
- 38 IVGTT in the CLNA group was not different from the three other dietary groups (*p*>0.18 and *p*>0.15, respectively).
- 39 Compared to the non-conjugated n-3 PUFA diet, CLNA-fed animals had decreased liver composition in three n-3 fatty
- 40 acids (18:3n-3; 20:3n-3; 22:5n-3) (p<0.001). Conclusions: These results suggest that providing 1% mono-CLNA is not
- 41 effective in improving insulin sensitivity in neonatal pigs.
- 42

43 Key words: conjugated linolenic acid: n-3 fatty acid: insulin resistance: pig

44 Introduction

45

- 46 Conjugated fatty acids refer to a set of positional and geometric isomers of polyunsaturated fatty acids (PUFA) with
- 47 conjugated double bonds. Conjugated linoleic acids (CLA) were first identified in the late eighties by Pariza et *al.* [1]. Since
- 48 then, consumption of CLA was associated to weight loss [2] and improving of insulin sensitivity [3]. Another group of
- 49 conjugated fatty acids recently received more attention because it combined an n-3 and a conjugated double bond:
- 50 conjugated α-linolenic acids (CLNA) [4]. CLNA isomers are naturally present in plant seeds (di-CLNA) and in dairy
- 51 products (mono-CLNA). Mono- and di-CLNA differ by their conjugated double-bond system: mono-CLNA have a single
- 52 conjugated double-bond system at the n-5 or n-7 carbon, *i.e* rumelenic acid, *c9-t11-c15-18:3*, whereas di-CLNA have a
- 53 double conjugated double-bond system at the n-5/n-7 or n-8/n-10 carbons, *i.e* α -eleostaric acid c9-t11-t13-18:3. Mono-
- 54 CLNA isomers are produced by biohydrogenation of α -linolenic acid by rumen bacteria [5, 6].
- 55 Because of the worldwide problem of obesity in children and the related health problems such as hypertension and diabetes
- 56 mellitus [7], there is an increased interest in the development of preventive and therapeutic strategies for improving insulin
- 57 resistance [8]. Indeed, using antidiabetic drugs is not appropriate for treating diabetes in children unless there is severe
- 58 glucose intolerance, thereby finding natural strategies such as CLNA isomers is an attractive approach which deserves to be
- 59 studied. Di-CLNA are able to decrease body weight [9] and fat[10, 11], as well as increase insulin sensitivity in rodents [9,
- 60 12, 13]. Some studies also reported that either CLA [14] or n-3 PUFA [15] or the combination of the two [16] could
- 61 improve glucose tolerance. Since a mono-CLNA such as *c9-t11-c15-*18:3 isomer combines the conjugated double bond
- 62 system of CLA and the n-3 double bond of α -linolenic acid, it is reasonable to speculate that this original fatty acid structure
- 63 may provide similar or even enhanced glucose tolerance than the conjugated or n-3 double bond structure.
- 64 Bioavailability of mono-CLNA was reported to be high in rodents. The metabolism of mono-CLNA has already been
- 65 studied in different animal models excluding pigs [5, 6, 17].
- 66 The objective of the present study was to investigate whether dietary supplementation with mono-CLNA (c9-t11-c15-18:3 +
- 67 *c9-t13-c15-*18:3) improves glucose metabolism in neonatal piglets. In order to isolate the role of the conjugated double-
- 68 bond in combination with the n-3 PUFA structure, mono-CLNA group will be compared with three other dietary treatments:
- 69 CLA isomers, non-conjugated n-3 and non-conjugated n-6 PUFAs.
- 70

71 Methods and materials

72

73 Animals and diets

- 74 Thirty two Yorkshire × Landrace × Duroc piglets (females and castrated males) weaned at 3 weeks of age were separated
- 75 into eight groups of four animals. To control for food intake, an oesophageal gastric tube was installed into all animals as
- 76 previously described by Cortamira et *al.* [18]. Individual adjoining metabolism cages with plastic floors allowed free
- 77 movement and room temperature was kept at 27°C. At baseline, average body weight was 7.6 ± 0.4 kg. Within each group
- 78 the piglets (from the same litter) were assigned to one of four dietary treatment groups, fed entirely with a commercial diet
- 79 (barley (25%), maize (20%), dried whey (20%), soybean meal (10%), extruded soybean (8%) and plasma protein (5%);
- 80 Table 1) plus either 1% of the caloric intake of the basal diet in the form of one the following lipid emulsion of specific fatty

- 81 acids: (1) synthetic mixture of two mono-conjugated α -linolenic acids (*c9-t11-c15-18:3 + c9-t13-c15-18:3*; CLNA); (2)
- 82 mixture of two conjugated linoleic acids (c9-t11-18:2 + t10-c12-18:2; CLA); (3) n-3 fatty acids (W3); or (4) n-6 fatty acids 83 (W6).
- 84 Mono-CLNA isomers were synthesized by alkali isomerization of α-linolenic acid. Thereafter, CLNA isomers were purified
- by preparative chromatography using a reverse phase column, as previously described by Trottier [19]. The fatty acid
- 86 profile of the four lipid emulsions is shown in Table 2.
- All diets were isoenergetic. The feeding regime was based on daily increment of 7.1 g feed per kg^{0.75} body weight (g/kg^{0.75})
- 88 up to the target maximum daily value of 56 g/kg^{0.75}. The daily intake was adjusted three times per week according to
- 89 changes in body weight in order to maintain the weight stable. Basal diet was mixed with water (1:2) and infused with a
- 90 syringe into the stomach via the gastric tube. Daily meals were given at 08:00, 11:30 and 16:00 hours; each representing
- 91 45%, 20% and 35% of the diet caloric intake, respectively. Dietary treatments were given during the morning meal. Before
- 92 the morning meal on day 0 (before attribution of treatments) and on day 15 post-weaning, body weight was measured and
- 93 blood samples were collected via jugular venipuncture as previously described by Matte et *al.* [20].
- 94 On day 9 of the experimental protocol, a jugular catheter was installed by a non-surgical technique described by Matte et *al*.
- 95 [21]. All animals were tested for insulin resistance by two glucose tolerance tests: a gastro-enteral (OGTT) and a parenteral
- 96 (IVGTT) test. Briefly, after fasting for 18h, piglets (n=32) were given either an oral (OGTT) or an IV (IVGTT) dose of
- 97 glucose (1.0g/kg BW) over a period of 120 min. Blood samples were collected every 30 min for 240 min (0, 30, 60, 90, 120,
- 98 150, 180, 210 and 240 min) starting after the initial glucose infusion. Blood samples were centrifuged at 3000 rpm for 10
- 99 min at 4°C and plasma was stored at -20°C until glucose, insulin and C-peptide analyses were performed. Two days after
- 100 the first glucose test, the protocol was repeated with the other glucose test using the same animal. All animals were
- 101 sacrificed on day 17. The liver was removed, weighed and samples were stored at -20°C for further analysis. The digestive
- 102 tract, brain, lungs and heart were removed and stored at -20°C until lipid quantification was performed.
- 103 Throughout the experimental protocol animals were cared for according to the recommended code of practice of Agriculture
- 104 Canada [22] and the procedure was approved by the local Animal Care Committee following the guidelines of the Canadian
- 105 Council on Animal Care [23].
- 106
- 107 Biochemical analyses
- 108 Plasma glucose was measured by an enzymatic colorimetric assay (GLU GOD-PAP; Roche Diagnostics, Indianapolis, IN,
- 109 USA) whereas insulin (Porcine Insulin RIA Kit PI-12K; Linco Research Inc., St Charles, MI USA) and C-peptide (Porcine
- 110 C-peptide RIA kit PCP-22k; Linco Research Inc.) were assayed by commercial RIA kits. The homeostatic model
- 111 assessment (HOMA2), described by Levy et *al.* [24] was used to estimate insulin sensitivity (HOMA2-%S) and secretion
- 112 (HOMA2-%B) from baseline plasma parameters measured during OGTT and IVGTT. The area under the curve (AUC) of
- 113 glucose, insulin and C-peptide were calculated using the trapezoidal method [25] between 0 and 210 min. Matsuda's insulin
- sensitivity whole-body index (ISI) was also calculated from the data generated during the OGTT [26]. An insulin sensitivity
- 115 index (SI) derived from the IVGTT was calculated according to a modified method described by Bergman and colleagues
- 116 [27, 28].

- 117 SI was determined from 120 to 210 min of the IVGTT, *i.e.* after the end of the infusion to assess the deconvolution of
- 118 glucose with regards to insulin after the glucose peak. Total cholesterol, triglyceride and non-esterified fatty acid (NEFA)
- 119 concentration in plasma at day 1 and day 15 were measured by the service diagnostic of the Faculty of Veterinary Medicine
- 120 at the Université de Montréal (Montreal, QC, Canada). The fatty acid composition of the four diets and liver was
- 121 determined by gas chromatography as previously described by Castellano et *al.* [29].
- 122

123 Statistical Analysis

- 124 According to results obtained from similar porcine studies [15], the calculated sample size per group (n = 8) was sufficient
- 125 to detect a difference in insulin sensitivity of at least 15% with a power of 80% and a level of significance of 0.05.
- 126 The data were analyzed by using the MIXED procedure implemented in Statistical Analysis Systems software (version 6.11
- 127 of SAS, Cary, NC, USA) [30] according to a completely randomised design with four treatments (CLNA, CLA, W3, and
- 128 W6) as the main factor. The piglet was considered as the experimental unit. The following model was used:
- 129 $Y_{ij} = \mu + F_i + e_{ij}$
- 130 where Y_{ii} is the dependent variable, μ is the overall mean, F_i is the treatment effect and e_{ii} is the residual error. Comparisons
- 131 among treatments were done using the following *a priori* contrasts (CLNA vs. W3 for CLA properties; CLNA vs. W6 for
- both CLA and n-3 PUFA properties; CLNA vs. CLA for n-3 PUFA properties) using a Dunnett's correction. All values are
- 133 presented as mean \pm SEM and differences are considered significant at p < 0.05.
- 134

135 **Results**

- 136
- 137 Anthropometry and blood lipid parameters
- 138 Body weight of piglets pre-treatment was 7.6 ± 0.4 kg. After 2 weeks of supplementation (day 15), there was no difference
- 139 (p>0.82) between treatments for either body weight (10.2 ± 0.4 kg) or fat content (10.0 ± 0.8 %). Total cholesterol,
- 140 triglyceride and NEFA concentrations in blood plasma for day 1 vs. day 15 were, 5.9 ± 0.8 vs. 2.0 ± 0.1 mmol/l, 0.7 ± 0.1

141 vs. 0.3 ± 0.1 mmol/l and 708.3 \pm 146.7 vs. 769.6 \pm 101.8 μ mol/l, respectively. There was no difference (p>0.34) according

- 142 to dietary treatments for these parameters.
- 143

144 *Liver fatty acid profile*

- 145 There was no significant difference (*p*=0.67) in liver weight between dietary treatments. The overall organ weight was 248
- 146 ± 14 g. Evaluation of liver fatty acid composition was used as an indicator of whole body fatty acid status modification from
- 147 dietary treatments. Mono-CLNA (c9-t11-c15-18:3 + c9-t13-c15-18:3) liver content, was higher (p<0.001) in the CLNA diet
- 148 than the other diets (0.25 vs. 0.01 g/100g fatty acids, respectively). With regards to n-3 fatty acids, 18:3n-3, 20:3n-3 and
- 149 22:5n-3 were 20 to 40% lower (p<0.001) in CLNA diets compared to the W3 diet. Total n-3 PUFA was also significantly
- 150 lower (p < 0.001) in the CLNA diet than the W3 diet (9.27 vs. 10.77 g/100g fatty acids, respectively). In contrast, the
- 151 proportion of arachidonic acid (20:4n-6) was 8% higher in the CLNA group compared to the W3 group, resulting in a
- significantly higher total n-6 PUFA level (CLNA vs. W3, 40.61 vs. 39.52 g/100g fatty acids, respectively).

154	Basal plasma glucose, insulin and C-peptide concentration
155	Baseline plasma glucose, insulin and C-peptide concentrations were evaluated before the OGTT or IVGTT load of glucose
156	(Table 3). A significant treatment effect was detected for fasting insulin concentration on the OGTT day (p=0.03) and on
157	calculated insulin sensitivity HOMA-%S but the specific contrast test did not allow discrimination between the CLNA
158	group and the other dietary groups ($p>0.22$). There was no other treatment difference for OGTT and IVGTT ($p>0.14$; Table
159	3).
160	
161	Monitoring of glucose, insulin and C-peptide during OGTT and IVGTT
162	AUC for glucose, insulin and C-peptide monitored between 0 and 210 min are reported in Table 4. Among the four dietary
163	groups, there was no significant difference in glucose, insulin and C-peptide monitoring over the OGTT and the IVGTT.
164	Dietary intake did not improve the Matsuda's ISI $(p=0.71)$ calculated from the OGTT nor the minimal model-derived
165	insulin sensitivity calculated from the IVGTT (SI; $p=0.51$).
166	
167	Discussion
168	
169	The present study aimed to investigate whether dietary supplementation with mono-CLNA improves body composition and
170	glucose tolerance in neonatal piglets.
171	This model was chosen because piglets represent 1) an accelerated model of postnatal development to study human neonatal
172	nutrition and development [31], 2) a relevant model for insulin resistance [32] and 3) a suitable model for evaluating
173	nutritional strategies to enhance glucose tolerance and prevent type 2 diabetes and cardiovascular diseases later in life [33].
174	
175	Body composition and blood lipids
176	Mono-CLNA might combine anti-obesity properties of CLA, along with those of the α -linolenic acid. There is evidence
177	suggesting that CLA decreases body weight, fat accumulation and improves serum lipids in mice [34], rats [35], hamsters
178	[36] and humans [37]. Similarly, α -linolenic acid was reported to improve the same biomarkers in hamsters [38] and
179	humans [39]. Many studies in rodents [10-12, 40-42] showed that dietary di-CLNA supplementation decreases body
180	weight, body fat as well as plasma triglycerides and cholesterol. This study speculates that because mono-CLNA has an
181	original structure compared to di-CLNA, this conjugated fatty acid will have improved or equally effective glucose
182	tolerance than CLA or α -linolenic acid alone. None of them combined an n-3 PUFA and a CLA structure. However, dietary
183	supplementation of piglets with mono-CLNA for 14 days did not improve body weight, body fat nor blood lipid profiles.
184	Our findings extend previous studies in rodents which reported that dietary mono-CLNA did not lower body weight [17,
185	43]. By analogy, dietary di-CLNA isomers did not lower adipose tissue weight as well as total cholesterol and triglycerides
186	in the plasma of animals [12, 17, 42, 44, 45] and humans [46].
187	
188	Liver fatty acid composition
189	CLNA and CLA concentrations in liver reflected the dietary intake of these fatty acids. This response suggests that a 2-
190	week supplementation was sufficient for stabilization of PUFA status within the piglet's body. Our results are in the line

- 191 with Chartrand et *al.* [47] who reported that dietary fatty acid content consumed for at least 14 days was proportional to
- 192 plasma fatty acid profiles and remained constant up to study completion at 36 days. Our results also showed that giving
- 193 mono-CLNA to piglets changed the n-3 and n-6 fatty acid balance. More specifically, compared to the W3 diet, feeding
- 194 mono-CLNA for 2 weeks decreased the proportions of 18:3n-3, 20:3n-3, 20:5n-3, 22:5n-3 together with an increase in
- 195 20:4n-6 and total n-6 PUFA content. Since a previous study in mice reported that n-3 PUFA chronic depletion in the liver
- 196 led to the development of hepatic insulin resistance over a 3 month period [48], further studies need to be carried out for an
- 197 extended period of time in pigs fed CLNA with additional health indicators (blood biochemical, other tissue lipid profile,
- 198 etc) in order to better assess the safety aspects of consuming dietary mono-CLNA isomers.
- 199

200 Glucose tolerance

- 201 One of our hypotheses was that combining a conjugated and an n-3 PUFA structure in one fatty acid, like mono-CLNA,
- 202 would improve insulin sensitivity considering that dietary CLA seems to lower insulinemia in rats [49] and α-linolenic acid
- 203 intake seems to reduce insulin resistance in rats [50] and in humans [51].
- 204 Our results suggest a significant treatment effect for fasting insulin concentration and insulin sensitivity on the OGTT day
- 205 (*p*=0.03). However, we consider that this result is unlikely of biological significance because specific *a priori* contrasts
- 206 indicate that there is no treatment effect of mono-CLNA diet compared to the three other dietary groups. Moreover, these
- 207 differences were not confirmed at the day of IVGTT or during the two glucose tolerance tests. One possible explanation
- 208 could be a higher insulin secretion generated by environmental/psychological stresses during the first experiment, *i.e.*
- 209 human presence, handling, noise, etc [52, 53]. Also, no treatment effect was seen on C-peptide, a good indicator of
- 210 endogenous insulin secretion [54], either for OGTT or IVGTT.
- 211 In regards to the different indexes of insulin sensitivity (HOMA2-%S, ISI_{Matsuda} and SI) and insulin secretion (Insulin and C-
- 212 peptide levels, AUCs and HOMA2-%B), none were improved by ingestion of mono-CLNA for 2 weeks.
- 213 Results on a closer structural analog to mono-CLNA such as di-CLNA showed some inconsistency. Indeed, although
- several studies reported that dietary supplementation with di-CLNA isomers can decrease type 2 diabetes risk [12] and
- 215 improve glucose tolerance [9, 55] in mice, others reported an increase in insulin resistance (HOMA-IR index) in rats [44]
- similar to what is reported in mice [56, 57], pigs [58], and humans [59]. Moreover, most of the studies using n-3 PUFA
- supplement in humans failed to improve insulin sensitivity [60, 61].
- 218
- 219 Limitations of the present study
- 220 The present study extends previous findings [9, 40, 44, 55] using a neonatal pig model and randomised experimental design
- to compare mono-CLNA diet vs. three other dietary treatments (CLA, W3, and W6). Nevertheless, it has some limitations
- including the duration of the supplementation and the composition of the CLA diet, since we used a mixture of two isomers:
- 223 *c9-t11-18:3 + t10-c12-18:3*. Even if most previous studies have used a CLA isomer mixture, recent findings show that
- 224 purified CLA isomers could have opposite actions on glucose tolerance, with *t10-c12-18:3* reducing insulin sensitivity and
- 225 *c9-t11-*18:3 enhancing insulin tolerance [3]. Mono-CLNA was also a mixture of two isomers and this is mostly because it is
- 226 not possible to cost effectively separate the two CLNA isomers for generating high doses of single CLNA isomers for

227	feedir	ng animals. Therefore, a direct comparison between CLA and CLNA diets based only on the chemical structure is				
228	limite	d.				
229						
230	Conc	lusions				
231	This s	study showed that mono-CLNA, combining conjugated and an n-3 double-bound structure, did not provide additive				
232	impro	wement for body composition, glucose tolerance or blood lipid profile in the neonatal piglet model supplemented for a				
233	period of 2 weeks. Conversely, mono-CLNA decreased total n-3 PUFA in liver, a finding which merits consideration in					
234	regard	ls to neonatal development and safety.				
235						
236	Ackn	owledgments				
237	The a	uthors are grateful to M. Guillette for her invaluable technical assistance; to Mélanie Turcotte and the animal care				
238	team	under supervision of D. Morrissette; and to S. Methot for his help with statistical analysis. The authors are also				
239	gratef	ul to Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT) and Naturia Inc (Sherbrooke,				
240	Canad	a) for a Ph.D scholarship to M. P at the time where the experiment was carried-out and to Fonds de recherche				
241	Québ	ec-santé for a current Junior 1 salary award. Mono-CLNA were generously provided by Naturia Inc. (Sherbrooke, QC,				
242	Canao	a). The financial support was provided by Naturia Inc and the Mathing Investment Initiative of Agriculture and Agri-				
243	Food	Canada. None of the authors has any financial conflict of interest.				
244						
245	Refer	rences				
246	1.	Pariza MW, Ha YL (1990) Conjugated dienoic derivatives of linoleic acid: a new class of anticarcinogens. Med				
247		Oncol Tumor Pharmacother 7:169-171.				
248	2.	Plourde M, Jew S, Cunnane SC, Jones PJ (2008) Conjugated linoleic acids: why the discrepancy between animal and				
249		human studies? Nutr Rev 66:415-421. doi:10.1111/j.1753-4887.2008.00051.x				
250	3.	Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G (2006) Biological effects of conjugated linoleic acids in				
251		health and disease. J Nutr Biochem 17:789-810. doi:10.1093/ilar.47.3.243				
252	4.	Hennessy AA, Ross RP, Devery R, Stanton C (2011) The health promoting properties of the conjugated isomers of				
253		α-linolenic acid. Lipids 46:105-119. doi:10.1007/s11745-011-3636-z				
254	5.	Plourde M, Destaillats F, Chouinard PY, Angers P (2007) Conjugated α-linolenic acid isomers in bovine milk and				
255		muscle. J Dairy Sci 90:5269-5275. doi:10.3168/jds.2007-0157				
256	6.	Destaillats F, Berdeaux O, Sébédio JL, Juaneda P, Grégoire S, Chardigny JM, Bretillon L, Angers P (2005)				
257		Metabolites of conjugated isomers of α -linolenic acid (CLnA) in the rat. Journal of Agricultural and Food Chemistry				

258 53:1422-1427. doi:10.1021/jf0481958

259 7. Levy-Marchal C, Arslanian S, Cutfield W, Sinaiko A, Druet C, Marcovecchio ML, Chiarelli F, Amemiyia S, 260 Berenson G, Caprio S, et al. (2010) Insulin resistance in children: Consensus, perspective, and future directions. 261 Journal of Clinical Endocrinology and Metabolism 95:5189-5198. doi:10.1210/jc.2010-1047 262 8. World Health Organization (2000) Obesity: preventing and managing the global epidemic. In: Consultation RoaW 263 (ed) WHO Technical Report Series. World Health Organization, Geneva, p 252. 264 9. Vroegrijk IOCM, van Diepen JA, van den Berg S, Westbroek I, Keizer H, Gambelli L, Hontecillas R, Bassaganya-265 Riera J, Zondag GCM, Romijn JA, et al. (2011) Pomegranate seed oil, a rich source of punicic acid, prevents diet-266 induced obesity and insulin resistance in mice. Food Chem Toxicol 49:1426-1430. doi:10.1016/j.fct.2011.03.037 267 10. Koba K, Akahoshi A, Yamasaki M, Tanaka K, Yamada K, Iwata T, Kamegai T, Tsutsumi K, Sugano M (2002) 268 Dietary conjugated linolenic acid in relation to CLA differently modifies body fat mass and serum and liver lipid 269 levels in rats. Lipids 37:343-350. 270 11. Saha SS, Chakraborty A, Ghosh S, Ghosh M (2012) Comparative study of hypocholesterolemic and hypolipidemic 271 effects of conjugated linolenic acid isomers against induced biochemical perturbations and aberration in erythrocyte 272 membrane fluidity. Eur J Nutr 51:483-495. doi:10.1007/s00394-011-0233-0 273 12. McFarlin BK, Strohacker KA, Kueht ML (2009) Pomegranate seed oil consumption during a period of high-fat 274 feeding reduces weight gain and reduces type 2 diabetes risk in CD-1 mice. Br J Nutr 102:54-59. 275 doi:10.1017/S0007114508159001 276 13. Al-Muammar MN, Khan F (2012) Obesity: The preventive role of the pomegranate (Punica granatum). Nutrition 277 28:595-604. doi:10.1016/j.nut.2011.11.013 278 14. Henriksen EJ, Teachey MK, Taylor ZC, Jacob S, Ptock A, Kramer K, Hasselwander O (2003) Isomer-specific 279 actions of conjugated linoleic acid on muscle glucose transport in the obese Zucker rat. Am J Physiol Endocrinol 280 Metab 285:E98-E105. doi:10.1152/ajpendo.00013.2003 281 15. Behme MT (1996) Dietary fish oil enhances insulin sensitivity in miniature pigs. J Nutr 126:1549-1553. 282 16. Winzell MS, Pacini G, Ahrén B (2006) Insulin secretion after dietary supplementation with conjugated linoleic acids 283 and n-3 polyunsaturated fatty acids in normal and insulin-resistant mice. Am J Physiol Endocrinol Metab 290:E347-284 E354. doi:10.1152/ajpendo.00163.2005 285 17. Plourde M, Ledoux M, Grégoire S, Portois L, Fontaine JJ, Carpentier YA, Angers P, Chardigny JM, Sébédio JL 286 (2007) Adverse effects of conjugated alpha-linolenic acids (CLnA) on lipoprotein profile on experimental 287 atherosclerosis in hamsters. Animal 1:905-910. doi:10.1017/S1751731107000079

288	18.	Cortamira NO, Seve B, Lebreton Y, Ganier P (1991) Effect of dietary tryptophan on muscle, liver and whole-body
289 290		doi:10.1079/BJN19910045
291	19.	Trottier JP (2005) Synthèse et purification d'isomères conjugués des acides linoléique et α-linolénique. In: Faculté
292		des sciences de l'argiculture et de l'alimentation. Université Laval, Quebec, p 78.
293 294	20.	Matte J, Girard C, Sève B (1986) Importance of folic acid administred during gestation on haematological status of piglets. Can J Anim Sci 66:523-527.
295 296	21.	Matte JJ (1999) A rapid and non-surgical procedure for jugular catheterization of pigs. Laboratory Animals 33:258-264.
297 298	22.	Agriculture Canada (1993) Recommanded Code of Practice for Care and Handling of Pigs. In: Publication no. 1771E. Agriculture Canada, Ottawa, Ont., Canada
299 300	23.	Canadian Council on Animal Care (1993) Guide to the Care and Use of Experimental Animals. In: Vol. 1. Cavadian Council on Animal Care, Ottawa, Ont., Canada
301 302	24.	Levy JC, Matthews DR, Hermans MP (1998) Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21:2191-2192.
303 304	25.	Allison DB, Paultre F, Maggio C, Mezzitis N, Pi-Sunyer FX (1995) The use of areas under in diabetes research. Diabetes Care 18:245-250.
305 306	26.	Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 22:1462-1470.
307 308 309	27.	Bergman RN, Phillips LS, Cobelli C (1981) Physiologic evaluation of factors controlling glucose tolerance in man. Measurement of insulin sensitivity and β -cell glucose sensitivity from the response to intravenous glucose. J Clin Invest 68:1456-1467.
310 311 312	28.	Boston RC, Stefanovski D, Moate PJ, Sumner AE, Watanabe RM, Bergman RN (2003) MINMOD Millennium: A Computer Program to Calculate Glucose Effectiveness and Insulin Sensitivity from the Frequently Sampled Intravenous Glucose Tolerance Test. Diabetes Technol Ther 5:1003-1015. doi:10.1089/152091503322641060
313 314	29.	Castellano CA, Audet I, Laforest JP, Chouinard Y, Matte JJ (2010) Fish oil diets do not improve insulin sensitivity and secretion in healthy adult male pigs. Br J Nutr 103:189-196. doi:10.1017/S0007114509991590
315 316	30.	Littell RC, Henry PR, Ammerman CB (1998) Statistical Analysis of Repeated Measures Data Using SAS Procedures. J Anim Sci 76:1216-1231.

317 318	31.	Puiman P, Stoll B (2008) Animal models to study neonatal nutrition in humans. Current Opinion in Clinical Nutrition and Metabolic Care 11:601-606. doi:10.1097/MCO.0b013e32830b5b15
319 320 321	32.	Christoffersen B, Ribel U, Raun K, Golozoubova V, Pacini G (2009) Evaluation of different methods for assessment of insulin sensitivity in Göttingen minipigs: Introduction of a new, simpler method. American Journal of Physiology - Regulatory Integrative and Comparative Physiology 297:R1195-R1201. doi:10.1152/ajpregu.90851.2008
322 323	33.	Bellinger DA, Merricks EP, Nichols TC (2006) Swine models of type 2 diabetes mellitus: Insulin resistance, glucose tolerance, and cardiovascular complications. ILAR Journal 47:243-258.
324 325	34.	Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32:853-858.
326 327	35.	Noguchi R, Yasui Y, Suzuki R, Hosokawa M, Fukunaga K, Miyashita K (2001) Dietary effects of bitter gourd oil on blood and liver lipids of rats. Arch Biochem Biophys 396:207-212. doi:10.1006/abbi.2001.2624
328 329	36.	Gavino VC, Gavino G, Leblanc MJ, Tuchweber B (2000) An isomeric mixture of conjugated linoleic acids but not pure cis- 9,trans-11-octadecadienoic acid affects body weight gain and plasma lipids in hamsters. J Nutr 130:27-29.
330 331	37.	Smedman A, Vessby B (2001) Conjugated linoleic acid supplementation in humans - Metabolic effects. Lipids 36:773-781.
332 333	38.	Yang L, Leung KY, Cao Y, Huang Y, Ratnayake WMN, Chen ZY (2005) α-linolenic acid but not conjugated linolenic acid is hypocholesterolaemic in hamsters. Br J Nutr 93:433-438. doi:10.1079/bjn20041365
334 335 336	39.	Baxheinrich A, Stratmann B, Lee-Barkey YH, Tschoepe D, Wahrburg U (2012) Effects of a rapeseed oil-enriched hypoenergetic diet with a high content of α -linolenic acid on body weight and cardiovascular risk profile in patients with the metabolic syndrome. Br J Nutr 108:682-691. doi:10.1017/S0007114512002875
337 338 339	40.	Hontecillas R, Diguardo M, Duran E, Orpi M, Bassaganya-Riera J (2008) Catalpic acid decreases abdominal fat deposition, improves glucose homeostasis and upregulates PPAR α expression in adipose tissue. Clin Nutr 27:764-772. doi:10.1016/j.clnu.2008.07.007
340 341 342	41.	Chen PH, Chen GC, Yang MF, Hsieh CH, Chuang SH, Yang HL, Kuo YH, Chyuan JH, Chao PM (2012) Bitter melon seed oil-attenuated body fat accumulation in diet-induced obese mice is associated with cAMP-dependent protein kinase activation and cell death in white adipose tissue. J Nutr 142:1197-1204. doi:10.3945/jn.112.159939
343 344 345	42.	Arao K, Wang YM, Inoue N, Hirata J, Cha JY, Nagao K, Yanagita T (2004) Dietary effect of pomegranate seed oil rich in 9cis, 11trans, 13cis conjugated linolenic acid on lipid metabolism in obese, hyperlipidemic OLETF Rats. Lipids Health Dis 3 doi:10.1186/1476-511X-3-24

346 347	43.	Plourde M (2006) Étude des effets physiologiques des acides alpha-linoléniques conjugués. In: Sciences de l'alimentation et de la nutrition. Université Laval, Quebec, p 224.
348 349 350	44.	Miranda J, Fernández-Quintela A, Macarulla MT, Churruca I, García C, Rodríguez VM, Simón E, Portillo MP (2009) A comparison between CLNA and CLA effects on body fat, serum parameters and liver composition. J Physiol Biochem 65:25-32. doi:10.1007/BF03165966
351 352 353	45.	Shinohara N, Ito J, Tsuduki T, Honma T, Kijima R, Sugawara S, Arai T, Yamasaki M, Ikezaki A, Yokoyama M, et al. (2012) Jacaric acid, a linolenic acid isomer with a conjugated triene system, reduces stearoyl-CoA desaturase expression in liver of mice. J Oleo Sci 61:433-441. doi:10.5650/jos.61.433
354 355	46.	Yuan G, Sinclair AJ, Xu C, Li D (2009) Incorporation and metabolism of punicic acid in healthy young humans. Mol Nutr Food Res 53:1336-1342. doi:10.1002/mnfr.200800520
356 357	47.	Chartrand R, Matte JJ, Lessard M, Chouinard PY, Giguere A, Laforest JP (2003) Effect of dietary fat sources on systemic and intrauterine synthesis of prostaglandins during early pregnancy in gilts. J Anim Sci 81:726-734.
358 359 360	48.	Pachikian BD, Essaghir A, Demoulin JB, Neyrinck AM, Catry E, de Backer FC, Dejeans N, Dewulf EM, Sohet FM, Portois L, et al. (2011) Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: Genomic analysis of cellular targets. PLoS ONE 6 doi:10.1371/journal.pone.0023365
361 362 363	49.	Houseknecht KL, Heuvel JPV, Moya-Camarena SY, Portocarrero CP, Peck LW, Nickel KP, Belury MA (1998) Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the Zucker diabetic fatty fa/fa rat. Biochem Biophys Res Commun 244:678-682. doi:10.1006/bbrc.1998.8303
364 365 366	50.	Chicco AG, D'Alessandro ME, Hein GJ, Oliva ME, Lombardo YB (2009) Dietary chia seed (Salvia hispanica L.) rich in a-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. Br J Nutr 101:41-50. doi:10.1017/S000711450899053X
367 368 369	51.	Muramatsu T, Yatsuya H, Toyoshima H, Sasaki S, Li Y, Otsuka R, Wada K, Hotta Y, Mitsuhashi H, Matsushita K, et al. (2010) Higher dietary intake of alpha-linolenic acid is associated with lower insulin resistance in middle-aged Japanese. Prev Med 50:272-276. doi:10.1016/j.ypmed.2010.02.014
370 371	52.	Armario A, Castellanos JM, Balasch J (1985) Chronic noise stress and insulin secretion in male rats. Physiology and Behavior 34:359-361.
372 373	53.	Funderburke DW, Seerley RW (1990) The effects of postweaning stressors on pig weight change, blood, liver and digestive tract characteristics. Journal of Animal Science 68:155-162.
374	54.	Faber OK, Binder C (1986) C-peptide: An index of insulin secretion. Diabetes/Metabolism Reviews 2:331-345.

- 375 55. Hontecillas R, O'Shea M, Einerhand A, Diguardo M, Bassaganya-Riera J (2009) Activation of PPAR γ and α by
 376 punicic acid ameliorates glucose tolerance and suppresses obesity-related inflammation. J Am Coll Nutr 28:184-195.
 377 doi:10.1080/07315724.2009.10719770
- 56. Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O
 (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in
 mice. Diabetes 49:1534-1542. doi:10.2337/diabetes.49.9.1534
- 57. Kelley DS, Vemuri M, Adkins Y, Gill SHS, Fedor D, Mackey BE (2009) Flaxseed oil prevents trans-10, cis-12conjugated linoleic acid-induced insulin resistance in mice. Br J Nutr 101:701-708.
 doi:10.1017/S0007114508027451
- 58. Fernández-Fígares I, Lachica M, Martín A, Nieto R, Gonzáez-Valero L, Rodríguez-López JM, Aguilera JF (2012)
 Impact of dietary betaine and conjugated linoleic acid on insulin sensitivity, protein and fat metabolism of obese
 pigs. Animal 6:1058-1067. doi:10.1017/S1751731111002308
- 387 59. Risérus U, Arner P, Brismar K, Vessby B (2002) Treatment with dietary trans10cis12 conjugated linoleic acid causes
 388 isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care 25:1516-1521.
 389 doi:10.2337/diacare.25.9.1516
- 390 60. Vessby B (2000) Dietary fat and insulin action in humans. Br J Nutr 83:S91-S96. doi:10.1017/S000711450000101X
- 391 61. McAuley K, Mann J (2006) Nutritional determinants of insulin resistance. J Lipid Res 47:1668-1676.
- 392 doi:10.1194/jlr.R600015-JLR200
- 393

395 Table 1: Composition of basal diet

Ingredients	Calculated concentration		
Digestible energy (MJ/kg)	14.98		
Total protein (%)	19.94		
Crude fibre (%)	1.90		
Fat (%)	7.49		
Lysine (%)	1.40		
Methionine (%)	0.43		
Tryptophan (%)	0.24		
Calcium (%)	0.80		
Phosphorus (%)	0.70		

Provided (per kg basal diet): Mn, 40 mg; Zn, 2935 mg; Fe, 299 mg; Cu, 19 mg; I, 2 mg; Se 297 μ g; vitamin A, 4.9 mg; vitamin D, 37.5 μ g; vitamin E, 66.8 mg; menadione, ; thiamin, 2.7 mg; riboflavin, 8.7 mg; niacin, 31 mg; panthothenic acid 21.2 mg; folic acid, 0.7 mg; pyridoxine, 2.6 mg; biotin, 120 μ g; vitamin B12, 25.1 μ g; choline, 303 mg

Fatty acid	CLNA	CLA	W3	W6
16:0	6.37	6.04	6.10	5.97
16:1n-7	0.05	0.04	0.07	0.08
18:0	3.23	3.39	3.60	3.63
18:1n-9	22.40	21.61	23.39	22.89
18:1n-7	0.01	0.04	0.06	0.05
18:2n-6	15.72	19.49	18.58	53.08
18:3n-3	12.65	13.24	46.99	12.88
18:3n-6	0.19	0.08	0.21	0.10
20:0	0.06	0.14	0.14	0.23
20:1n-9	0.02	0.01	0.02	0.08
20:2n-6	1.72	1.50	0.06	0.07
20:3n-3	0.40	0.04	0.08	0.03
20:3n-6	1.13	0.03	0.04	0.03
20:4n-6	0.10	0.01	0.01	0.01
20:5-n-3	0.62	0.02	0.01	0.01
22:1n-9	0.66	0.04	0.08	0.03
22:5n-3	0.11	0.03	0.12	0.03
22:6n-3	0.05	0.04	0.03	0.03
24:0	0.84	0.07	0.06	0.12
24:1n-9	0.59	0.12	0.01	0.03
<i>c9-t11-</i> 18:2	0.87	16.82	0.03	0.05
<i>t10-c12-</i> 18:2	1.70	16.77	0.02	0.02
<i>c9-t11-c15-</i> 18:3 + <i>c9-t13-c15-</i> 18:3	30.33	0.25	0.16	0.46
Total conjugated	32.61	33.50	0.24	0.53
SFA	10.24	9.63	9.92	9.95
MUFA	23.86	21.92	23.90	23.34
PUFA	65.87	68.45	66.23	66.81
n-3:n-6 ratio	2.06	0.25	2.50	0.25

397 Table 2: Analytical fatty acid composition (g/100 g fatty acids) of lipid emulsions added to the dietary treatments

SFA = total saturated fatty acids; MUFA = total monounsaturated fatty acid; PUFA = total

polyunsaturated fatty acids; n-3:n-6 ratio = n-3 PUFA to n-6 PUFA ratio

Table 3: Basal plasma concentrations of glucose, insulin and C-p	peptide during OGTT or IVGTT according to the dietary
--	---

400 treatments

	Diet					
Index	CLNA	CLA	W3	W6	SEM	P-value
OGTT						
Glucose (mmol/l)	5.6	5.4	5.5	5.8	0.2	0.74
Insulin (pmol/l)	58.8	50.3	63.9	62.6	5.9	0.03
C-peptide (pmol/l)	53.0	64.4	68.3	49.9	7.9	0.27
HOMA2-%S ^a	94.6	106.6	87.0	89.8	9.0	0.05*
HOMA2-%B ^a	82.0	79.1	89.3	80.7	6.7	0.57
IVGTT						
Glucose (mmol/l)	5.8	5.3	5.3	5.6	0.3	0.26
Insulin (pmol/l)	57.3	64.3	55.2	58.9	6.9	0.62
C-peptide (pmol/l)	43.9	58.8	57.3	66.9	9.0	0.31
HOMA2-%S ^a	88.5	102.3	98.8	92.7	12.5	0.76
HOMA2-%B ^a	82.8	96.6	88.2	81.5	7.4	0.14

W3 = omega-3 fatty acids diet; W6 = omega-6 fatty acids diet; CLNA = conjugated alphalinolenic acids diet; CLA = linoleic acids diet; OGTT=oral glucose tolerance test; IVGTT = intravenous glucose tolerance test.

^aCalculated insulin sensitivity (HOMA2-%S) and β -cell function (HOMA2-%B) based on homeostatic model assessment [24].

*Specific contrasts *p*-values for CLNA *vs*. CLA, CLNA *vs*. W3 and CLNA *vs*. W6 were 0.22, 0.53 and 0.81, respectively.

402 Table 4: Plasma glucose, insulin and C-peptide responses in OGTT and IVGTT

	Diet					
Index	CLNA	CLA	W3	W6	SEM	P-value
OGTT						
$\begin{array}{l} \text{Glucose} \\ (\text{mmol}\times\text{min/l})^a \end{array}$	23.3	22.6	22.2	22.9	0.6	0.56
Insuline $(nmol \times min/l)^a$	478.3	441.1	453.0	426.4	36.4	0.70
$\begin{array}{l} \text{C-peptide} \\ (nmol \times min/l)^a \end{array}$	618.5	550.5	573.8	563.8	52.6	0.68
ISI (0, 210 min) ^b	7.7	8.7	7.7	7.9	0.6	0.21
IVGTT						
$\begin{array}{l} \text{Glucose} \\ (\text{mmol}\times\text{min/l})^a \end{array}$	28.5	27.6	28.2	27.5	0.9	0.81
Insuline $(nmol \times min/l)^a$	517.5	565.9	530.9	484.6	36.8	0.42
C -peptide $(nmol \times min/l)^a$	706.1	791.8	744.3	697.8	54.58	0.55
SI (120, 210 min) ^c	5.0	4.5	4.7	5.4	0.68	0.51

W3 = omega-3 fatty acids diet; W6 = omega-6 fatty acids diet; CLNA = conjugated alpha-linolenic acids diet; CLA = linoleic acids diet; OGTT = oral glucose tolerance test; IVGTT = intravenous glucose tolerance test;

^aValues are AUC from 0 to 210 min during OGTT or IVGTT.

^bInsulin sensitivity index (ISI) [26] calculated as follow: ISI= $(Glu_{basal} \times Ins_{basal} \times Glu_{mean} \times Ins_{mean})^{0.5}$.

^cMinimal model-derived insulin sensitivity index (SI) based on MINMOD Millennium [28].