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Abstract 25 

 26 

Purpose: There is an increased interest in the benefits of conjugated α-linolenic acid (CLNA) on obesity-related 27 

complications such as insulin resistance and diabetes. The aim of the study was to investigate whether a 1% dietary 28 

supplementation of mono-CLNA isomers (c9-t11-c15-18:3 + c9-t13-c15-18:3) improved glucose and lipid metabolism in 29 

neonatal pigs. Methods: Since mono-CLNA isomers combine one conjugated two-double bond  system with an n-3 30 

polyunsaturated fatty acid (PUFA) structure, the experimental protocol was designed to isolate the dietary structural 31 

characteristics of the molecules by comparing a CLNA diet with three other dietary fats: 1) conjugated linoleic acid (c9-t11-32 

18:2 + t10-c12-18:2; CLA), 2) non-conjugated n-3 PUFA and 3) n-6 PUFA.  Thirty-two piglets weaned at 3 weeks of age 33 

were distributed into the four dietary groups. Diets were isoenergetic and food intake was controlled by a gastric tube. After 34 

2 weeks of supplementation, gastro-enteral (OGTT) and parenteral (IVGTT) glucose tolerance tests were conducted. 35 

Results: Dietary supplementation with mono-CLNA did not modify body weight/fat or blood lipid profiles (p>0.82 and 36 

p>0.57, respectively) compared with other dietary groups. Plasma glucose, insulin and C-peptide responses to OGTT and 37 

IVGTT in the CLNA group was not different from the three other dietary groups (p>0.18 and p>0.15, respectively). 38 

Compared to the non-conjugated n-3 PUFA diet, CLNA-fed animals had decreased liver composition in three n-3 fatty 39 

acids (18:3n-3; 20:3n-3; 22:5n-3) (p<0.001). Conclusions: These results suggest that providing 1% mono-CLNA is not 40 

effective in improving insulin sensitivity in neonatal pigs. 41 

 42 

Key words: conjugated linolenic acid: n-3 fatty acid: insulin resistance: pig  43 
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Introduction 44 

 45 

Conjugated fatty acids refer to a set of positional and geometric isomers of polyunsaturated fatty acids (PUFA) with 46 

conjugated double bonds. Conjugated linoleic acids (CLA) were first identified in the late eighties by Pariza et al. [1]. Since 47 

then, consumption of CLA was associated to weight loss [2] and improving of insulin sensitivity [3]. Another group of 48 

conjugated fatty acids recently received more attention because it combined an n-3 and a conjugated double bond: 49 

conjugated α-linolenic acids (CLNA) [4]. CLNA isomers are naturally present in plant seeds (di-CLNA) and in dairy 50 

products (mono-CLNA). Mono- and di-CLNA differ by their conjugated double-bond system: mono-CLNA have a single 51 

conjugated double-bond system at the n-5 or n-7 carbon, i.e rumelenic acid, c9-t11-c15-18:3, whereas di-CLNA have a 52 

double conjugated double-bond system at the n-5/n-7 or n-8/n-10 carbons, i.e α-eleostaric acid c9-t11-t13-18:3. Mono-53 

CLNA isomers are produced by biohydrogenation of α-linolenic acid by rumen bacteria [5, 6].  54 

Because of the worldwide problem of obesity in children and the related health problems such as hypertension and diabetes 55 

mellitus [7], there is an increased interest in the development of preventive and therapeutic strategies for improving insulin 56 

resistance  [8]. Indeed, using antidiabetic drugs is not appropriate for treating diabetes in children unless there is severe 57 

glucose intolerance, thereby finding natural strategies such as CLNA isomers is an attractive approach which deserves to be 58 

studied. Di-CLNA are able to decrease body weight [9] and fat[10, 11], as well as increase insulin sensitivity in rodents [9, 59 

12, 13]. Some studies also reported that either CLA [14] or n-3 PUFA [15] or the combination of the two [16] could 60 

improve glucose tolerance. Since a mono-CLNA such as c9-t11-c15-18:3 isomer combines the conjugated double bond 61 

system of CLA and the n-3 double bond of α-linolenic acid, it is reasonable to speculate that this original fatty acid structure 62 

may provide similar or even enhanced glucose tolerance than the conjugated or n-3 double bond structure. 63 

Bioavailability of mono-CLNA was reported to be high in rodents. The metabolism of mono-CLNA has already been 64 

studied in different animal models excluding pigs [5, 6, 17].   65 

The objective of the present study was to investigate whether dietary supplementation with mono-CLNA (c9-t11-c15-18:3 + 66 

c9-t13-c15-18:3) improves glucose metabolism in neonatal piglets. In order to isolate the role of the conjugated double-67 

bond in combination with the n-3 PUFA structure, mono-CLNA group will be compared with three other dietary treatments: 68 

CLA isomers, non-conjugated n-3 and non-conjugated n-6 PUFAs. 69 

 70 

Methods and materials 71 

 72 

Animals and diets 73 

Thirty two Yorkshire × Landrace × Duroc piglets (females and castrated males) weaned at 3 weeks of age were separated 74 

into eight groups of four animals. To control for food intake, an oesophageal gastric tube was installed into all animals as 75 

previously described by Cortamira et al. [18]. Individual adjoining metabolism cages with plastic floors allowed free 76 

movement and room temperature was kept at 27°C. At baseline, average body weight was 7.6 ± 0.4 kg. Within each group 77 

the piglets (from the same litter) were assigned to one of four dietary treatment groups, fed entirely with a commercial diet 78 

(barley (25%), maize (20%), dried whey (20%), soybean meal (10%), extruded soybean (8%) and plasma protein (5%); 79 

Table 1) plus either 1% of the caloric intake of the basal diet in the form of one the following lipid emulsion of specific fatty 80 
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acids: (1) synthetic mixture of two mono-conjugated α-linolenic acids (c9-t11-c15-18:3 + c9-t13-c15-18:3; CLNA); (2) 81 

mixture of two conjugated linoleic acids (c9-t11-18:2 + t10-c12-18:2; CLA); (3) n-3 fatty acids (W3); or (4) n-6 fatty acids 82 

(W6).  83 

Mono-CLNA isomers were synthesized by alkali isomerization of α-linolenic acid. Thereafter, CLNA isomers were purified 84 

by preparative chromatography using a reverse phase column,  as previously described by Trottier [19]. The fatty acid 85 

profile of the four lipid emulsions is shown in Table 2.  86 

All diets were isoenergetic. The feeding regime was based on daily increment of 7.1 g feed per kg
0.75 

body weight (g/kg
0.75

) 87 

up to the target maximum daily value of 56 g/kg
0.75

. The daily intake was adjusted three times per week according to 88 

changes in body weight in order to maintain the weight stable.
 
Basal diet was mixed with water (1:2) and infused with a 89 

syringe into the stomach via the gastric tube. Daily meals were given at 08:00, 11:30 and 16:00 hours; each representing 90 

45%, 20% and 35% of the diet caloric intake, respectively. Dietary treatments were given during the morning meal. Before 91 

the morning meal on day 0 (before attribution of treatments) and on day 15 post-weaning, body weight was measured and 92 

blood samples were collected via jugular venipuncture as previously described by Matte et al. [20]. 93 

On day 9 of the experimental protocol, a jugular catheter was installed by a non-surgical technique described by Matte et al. 94 

[21]. All animals were tested for insulin resistance by two glucose tolerance tests: a gastro-enteral (OGTT) and a parenteral 95 

(IVGTT) test. Briefly, after fasting for 18h, piglets (n=32) were given either an oral (OGTT) or an IV (IVGTT) dose of 96 

glucose (1.0g/kg BW) over a period of 120 min. Blood samples were collected every 30 min for 240 min (0, 30, 60, 90, 120, 97 

150, 180, 210 and 240 min) starting after the initial glucose infusion. Blood samples were centrifuged at 3000 rpm for 10 98 

min at 4°C and plasma was stored at -20°C until glucose, insulin and C-peptide analyses were performed. Two days after 99 

the first glucose test, the protocol was repeated with the other glucose test using the same animal. All animals were 100 

sacrificed on day 17. The liver was removed, weighed and samples were stored at -20°C for further analysis. The digestive 101 

tract, brain, lungs and heart were removed and stored at –20°C until lipid quantification was performed. 102 

Throughout the experimental protocol animals were cared for according to the recommended code of practice of Agriculture 103 

Canada [22] and the procedure was approved by the local Animal Care Committee following the guidelines of the Canadian 104 

Council on Animal Care [23]. 105 

 106 

Biochemical analyses 107 

Plasma glucose was measured by an enzymatic colorimetric assay (GLU GOD-PAP; Roche Diagnostics, Indianapolis, IN, 108 

USA) whereas insulin (Porcine Insulin RIA Kit PI-12K; Linco Research Inc., St Charles, MI USA) and C-peptide (Porcine 109 

C-peptide RIA kit PCP-22k; Linco Research Inc.) were assayed by commercial RIA kits.  The homeostatic model 110 

assessment (HOMA2), described by Levy et al. [24] was used to estimate insulin sensitivity (HOMA2-%S) and secretion 111 

(HOMA2-%B) from baseline plasma parameters measured during OGTT and IVGTT. The area under the curve (AUC) of 112 

glucose, insulin and C-peptide were calculated using the trapezoidal method [25] between 0 and 210 min. Matsuda’s insulin 113 

sensitivity whole-body index (ISI) was also calculated from the data generated during the OGTT [26]. An insulin sensitivity 114 

index (SI) derived from the IVGTT was calculated according to a modified method described by Bergman and colleagues 115 

[27, 28]. 116 
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SI was determined from 120 to 210 min of the IVGTT, i.e. after the end of the infusion to assess the deconvolution of 117 

glucose with regards to insulin after the glucose peak. Total cholesterol, triglyceride and non-esterified fatty acid (NEFA) 118 

concentration in plasma at day 1 and day 15 were measured by the service diagnostic of the Faculty of Veterinary Medicine 119 

at the Université de Montréal (Montreal, QC, Canada). The fatty acid composition of the four diets and liver was 120 

determined by gas chromatography as previously described by Castellano et al. [29]. 121 

 122 

Statistical Analysis 123 

According to results obtained from similar porcine studies [15], the calculated sample size per group (n = 8) was sufficient 124 

to detect a difference in insulin sensitivity of at least 15% with a power of 80% and a level of significance of 0.05. 125 

The data were analyzed by using the MIXED procedure implemented in Statistical Analysis Systems software (version 6.11 126 

of SAS, Cary, NC, USA) [30] according to a completely randomised design with four treatments (CLNA, CLA, W3, and 127 

W6) as the main factor. The piglet was considered as the experimental unit. The following model was used:  128 

Yij = µ + Fi + eij 129 

where Yij is the dependent variable, µ is the overall mean, Fi is the treatment effect and eij is the residual error. Comparisons 130 

among treatments were done using the following a priori contrasts (CLNA vs. W3 for CLA properties; CLNA vs. W6 for 131 

both CLA and n-3 PUFA properties; CLNA vs. CLA for n-3 PUFA properties) using a Dunnett’s correction. All values are 132 

presented as mean ± SEM and differences are considered significant at p<0.05. 133 

 134 

Results 135 

 136 

Anthropometry and blood lipid parameters 137 

Body weight of piglets pre-treatment was 7.6 ± 0.4 kg. After 2 weeks of supplementation (day 15), there was no difference 138 

(p>0.82) between treatments for either body weight (10.2 ± 0.4 kg) or fat content (10.0 ± 0.8 %). Total cholesterol, 139 

triglyceride and NEFA concentrations in blood plasma for day 1 vs. day 15 were, 5.9 ± 0.8 vs. 2.0 ± 0.1 mmol/l, 0.7 ± 0.1 140 

vs. 0.3 ± 0.1 mmol/l and 708.3 ± 146.7 vs. 769.6 ± 101.8 μmol/l, respectively. There was no difference (p>0.34) according 141 

to dietary treatments for these parameters. 142 

 143 

Liver fatty acid profile 144 

There was no significant difference (p=0.67) in liver weight between dietary treatments.  The overall organ weight was 248 145 

± 14 g. Evaluation of liver fatty acid composition was used as an indicator of whole body fatty acid status modification from 146 

dietary treatments. Mono-CLNA (c9-t11-c15-18:3 + c9-t13-c15-18:3) liver content, was higher (p<0.001) in the CLNA diet 147 

than the other diets (0.25 vs. 0.01 g/100g fatty acids, respectively). With regards to n-3 fatty acids, 18:3n-3, 20:3n-3 and 148 

22:5n-3 were 20 to 40% lower (p<0.001) in CLNA diets compared to the W3 diet. Total n-3 PUFA was also significantly 149 

lower (p<0.001) in the CLNA diet than the W3 diet (9.27 vs. 10.77 g/100g fatty acids, respectively). In contrast, the 150 

proportion of arachidonic acid (20:4n-6) was 8% higher in the CLNA group compared to the W3 group, resulting in a 151 

significantly higher total n-6 PUFA level (CLNA vs. W3, 40.61 vs. 39.52 g/100g fatty acids, respectively). 152 

 153 



CLNA and glucose tolerance in neonatal pigs   European Journal of Nutrition – v2013-06-21 

6 

 

Basal plasma glucose, insulin and C-peptide concentration 154 

Baseline plasma glucose, insulin and C-peptide concentrations were evaluated before the OGTT or IVGTT load of glucose 155 

(Table 3). A significant treatment effect was detected for fasting insulin concentration on the OGTT day (p=0.03) and on 156 

calculated insulin sensitivity HOMA-%S but the specific contrast test did not allow discrimination between the CLNA 157 

group and the other dietary groups (p>0.22). There was no other treatment difference for OGTT and IVGTT (p>0.14; Table 158 

3).   159 

 160 

Monitoring of glucose, insulin and C-peptide during OGTT and IVGTT 161 

AUC for glucose, insulin and C-peptide monitored between 0 and 210 min are reported in Table 4. Among the four dietary 162 

groups, there was no significant difference in glucose, insulin and C-peptide monitoring over the OGTT and the IVGTT. 163 

Dietary intake did not improve the Matsuda’s ISI (p=0.71) calculated from the OGTT nor the minimal model-derived 164 

insulin sensitivity calculated from the IVGTT (SI; p=0.51).  165 

 166 

Discussion 167 

 168 

The present study aimed to investigate whether dietary supplementation with mono-CLNA improves body composition and 169 

glucose tolerance in neonatal piglets. 170 

This model was chosen because piglets represent 1) an accelerated model of postnatal development to study human neonatal 171 

nutrition and development [31], 2) a relevant model for insulin resistance [32] and 3) a suitable model for evaluating 172 

nutritional strategies to enhance glucose tolerance and prevent type 2 diabetes and cardiovascular diseases later in life [33].  173 

 174 

Body composition and blood lipids 175 

Mono-CLNA might combine anti-obesity properties of CLA, along with those of the α-linolenic acid. There is evidence 176 

suggesting that CLA decreases body weight, fat accumulation and improves serum lipids in mice [34], rats [35], hamsters 177 

[36] and humans [37]. Similarly, α-linolenic acid was reported to improve the same biomarkers in hamsters [38] and 178 

humans [39]. Many studies in rodents [10-12, 40-42]  showed that dietary di-CLNA supplementation decreases body 179 

weight, body fat as well as plasma triglycerides and cholesterol. This study speculates that because mono-CLNA has an 180 

original structure compared to di-CLNA, this conjugated fatty acid will have improved or equally effective glucose 181 

tolerance than CLA or α-linolenic acid alone. None of them combined an n-3 PUFA and a CLA structure. However, dietary 182 

supplementation of piglets with mono-CLNA for 14 days did not improve body weight, body fat nor blood lipid profiles. 183 

Our findings extend previous studies in rodents which reported that dietary mono-CLNA did not lower body weight [17, 184 

43]. By analogy, dietary di-CLNA isomers did not lower adipose tissue weight as well as total cholesterol and triglycerides 185 

in the plasma of animals [12, 17, 42, 44, 45] and humans [46].  186 

 187 

Liver fatty acid composition 188 

CLNA and CLA concentrations in liver reflected the dietary intake of these fatty acids. This response suggests that a 2-189 

week supplementation was sufficient for stabilization of PUFA status within the piglet’s body. Our results are in the line 190 
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with Chartrand et al. [47] who reported that dietary fatty acid content consumed for at least 14 days was proportional to 191 

plasma fatty acid profiles and remained constant up to study completion at 36 days. Our results also showed that giving 192 

mono-CLNA to piglets changed the n-3 and n-6 fatty acid balance. More specifically, compared to the W3 diet, feeding 193 

mono-CLNA for 2 weeks decreased the proportions of 18:3n-3, 20:3n-3, 20:5n-3, 22:5n-3 together with an increase in 194 

20:4n-6 and total n-6 PUFA content. Since a previous study in mice reported that n-3 PUFA chronic depletion in the liver 195 

led to the development of hepatic insulin resistance over a 3 month period [48],  further studies need to be carried out for  an 196 

extended period of time in pigs fed CLNA with additional health indicators (blood biochemical, other tissue lipid profile, 197 

etc) in order to better assess the safety aspects of consuming dietary mono-CLNA isomers. 198 

 199 

Glucose tolerance 200 

One of our hypotheses was that combining a conjugated and an n-3 PUFA structure in one fatty acid, like mono-CLNA, 201 

would improve insulin sensitivity considering that dietary CLA seems to lower insulinemia in rats [49] and α-linolenic acid 202 

intake seems to reduce insulin resistance in rats [50] and in humans [51].  203 

Our results suggest a significant treatment effect for fasting insulin concentration and insulin sensitivity on the OGTT day 204 

(p=0.03). However, we consider that this result is unlikely of biological significance because specific a priori contrasts 205 

indicate that there is no treatment effect of mono-CLNA diet compared to the three other dietary groups. Moreover, these 206 

differences were not confirmed at the day of IVGTT or during the two glucose tolerance tests. One possible explanation 207 

could be a higher insulin secretion generated by environmental/psychological stresses during the first experiment, i.e. 208 

human presence, handling, noise, etc [52, 53]. Also, no treatment effect was seen on C-peptide, a good indicator of 209 

endogenous insulin secretion [54], either for OGTT or IVGTT. 210 

In regards to the different indexes of insulin sensitivity (HOMA2-%S, ISIMatsuda and SI) and insulin secretion (Insulin and C-211 

peptide levels, AUCs and HOMA2-%B), none were improved by ingestion of mono-CLNA for 2 weeks. 212 

Results on a closer structural analog to mono-CLNA such as di-CLNA showed some inconsistency. Indeed, although 213 

several studies reported that dietary supplementation with di-CLNA isomers can decrease type 2 diabetes risk [12] and 214 

improve glucose tolerance [9, 55] in mice, others reported an increase in insulin resistance (HOMA-IR index) in rats [44] 215 

similar to what is reported in mice [56, 57], pigs [58], and humans [59]. Moreover, most of the studies using n-3 PUFA 216 

supplement in humans failed to improve insulin sensitivity [60, 61]. 217 

 218 

Limitations of the present study 219 

The present study extends previous findings [9, 40, 44, 55] using a neonatal pig model and randomised experimental design 220 

to compare mono-CLNA diet vs. three other dietary treatments (CLA, W3, and W6). Nevertheless, it has some limitations 221 

including the duration of the supplementation and the composition of the CLA diet, since we used a mixture of two isomers: 222 

c9-t11-18:3 + t10-c12-18:3. Even if most previous studies have used a CLA isomer mixture, recent findings show that 223 

purified CLA isomers could have opposite actions on glucose tolerance, with t10-c12-18:3 reducing insulin sensitivity and 224 

c9-t11-18:3 enhancing insulin tolerance [3]. Mono-CLNA was also a mixture of two isomers and this is mostly because it is 225 

not possible to cost effectively separate the two CLNA isomers for generating high doses of single CLNA isomers for 226 
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feeding animals. Therefore, a direct comparison between CLA and CLNA diets based only on the chemical structure is 227 

limited. 228 

 229 

Conclusions 230 

This study showed that mono-CLNA, combining conjugated and an n-3 double-bound structure, did not provide additive 231 

improvement for body composition, glucose tolerance or blood lipid profile in the neonatal piglet model supplemented for a 232 

period of 2 weeks. Conversely, mono-CLNA decreased total n-3 PUFA in liver, a finding which merits consideration in 233 

regards to neonatal development and safety.  234 
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Table 1: Composition of basal diet 395 

Ingredients Calculated concentration 

Digestible energy (MJ/kg) 14.98 

Total protein (%) 19.94 

Crude fibre (%) 1.90 

Fat (%) 7.49 

Lysine (%) 1.40 

Methionine (%) 0.43 

Tryptophan (%) 0.24 

Calcium (%) 0.80 

Phosphorus (%) 0.70 

Provided (per kg basal diet): Mn, 40 mg; Zn, 2935 mg; Fe, 299 mg; Cu, 19 mg; I, 2 mg; Se 297 μg; vitamin 

A, 4.9 mg; vitamin D, 37.5 μg; vitamin E,  66.8 mg; menadione, ; thiamin, 2.7 mg; riboflavin, 8.7 mg; 

niacin, 31 mg; panthothenic acid 21.2 mg; folic acid, 0.7 mg; pyridoxine, 2.6 mg; biotin, 120 μg; vitamin 

B12, 25.1 μg; choline, 303 mg 
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Table 2: Analytical fatty acid composition (g/100 g fatty acids) of lipid emulsions added to the dietary treatments 397 

Fatty acid CLNA CLA W3 W6 

16:0 6.37 6.04 6.10 5.97 

16:1n-7 0.05 0.04 0.07 0.08 

18:0 3.23 3.39 3.60 3.63 

18:1n-9 22.40 21.61 23.39 22.89 

18:1n-7 0.01 0.04 0.06 0.05 

18:2n-6 15.72 19.49 18.58 53.08 

18:3n-3 12.65 13.24 46.99 12.88 

18:3n-6 0.19 0.08 0.21 0.10 

20:0 0.06 0.14 0.14 0.23 

20:1n-9 0.02 0.01 0.02 0.08 

20:2n-6 1.72 1.50 0.06 0.07 

20:3n-3 0.40 0.04 0.08 0.03 

20:3n-6 1.13 0.03 0.04 0.03 

20:4n-6 0.10 0.01 0.01 0.01 

20:5-n-3 0.62 0.02 0.01 0.01 

22:1n-9 0.66 0.04 0.08 0.03 

22:5n-3 0.11 0.03 0.12 0.03 

22:6n-3 0.05 0.04 0.03 0.03 

24:0 0.84 0.07 0.06 0.12 

24:1n-9 0.59 0.12 0.01 0.03 

c9-t11-18:2 0.87 16.82 0.03 0.05 

t10-c12-18:2  1.70 16.77 0.02 0.02 

c9-t11-c15-18:3 + c9-t13-c15-18:3 30.33 0.25 0.16 0.46 

Total conjugated 32.61 33.50 0.24 0.53 

SFA 10.24 9.63 9.92 9.95 

MUFA 23.86 21.92 23.90 23.34 

PUFA 65.87 68.45 66.23 66.81 

n-3:n-6 ratio 2.06 0.25 2.50 0.25 

SFA = total saturated fatty acids; MUFA = total monounsaturated fatty acid; PUFA = total 

polyunsaturated fatty acids; n-3:n-6 ratio = n-3 PUFA to n-6 PUFA ratio 
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Table 3: Basal plasma concentrations of glucose, insulin and C-peptide during OGTT or IVGTT according to the dietary 399 
treatments 400 

 Diet 

Index CLNA CLA W3 W6 SEM P-value 

OGTT       

Glucose 

(mmol/l) 
5.6 5.4 5.5 5.8 0.2 0.74 

Insulin 

(pmol/l) 
58.8 50.3 63.9 62.6 5.9 0.03 

C-peptide 

(pmol/l) 
53.0 64.4 68.3 49.9 7.9 0.27 

HOMA2-%S
a
 94.6 106.6 87.0 89.8 9.0 0.05* 

HOMA2-%B
a
 82.0 79.1 89.3 80.7 6.7 0.57 

IVGTT       

Glucose 

(mmol/l) 
5.8 5.3 5.3 5.6 0.3 0.26 

Insulin 

(pmol/l) 
57.3 64.3 55.2 58.9 6.9 0.62 

C-peptide 

(pmol/l) 
43.9 58.8 57.3 66.9 9.0 0.31 

HOMA2-%S
a
 88.5 102.3 98.8 92.7 12.5 0.76 

HOMA2-%B
a
 82.8 96.6 88.2 81.5 7.4 0.14 

W3 = omega-3 fatty acids diet; W6 = omega-6 fatty acids diet; CLNA = conjugated alpha-

linolenic acids diet; CLA = linoleic acids diet; OGTT=oral glucose tolerance test; IVGTT 

= intravenous glucose tolerance test.  

a
Calculated insulin sensitivity (HOMA2-%S) and β-cell function (HOMA2-%B) based on 

homeostatic model assessment [24]. 

*Specific contrasts p-values for CLNA vs. CLA, CLNA vs. W3 and CLNA vs. W6 were 

0.22, 0.53 and 0.81, respectively.   
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Table 4: Plasma glucose, insulin and C-peptide responses in OGTT and IVGTT 402 

 Diet 

Index CLNA CLA W3 W6 SEM P-value 

OGTT       

Glucose 

(mmol × min/l)
a
 

23.3 22.6 22.2 22.9 0.6 0.56 

Insuline 

(nmol × min/l)
a
 

478.3 441.1 453.0 426.4 36.4 0.70 

C-peptide 

(nmol × min/l)
a
 

618.5 550.5 573.8 563.8 52.6 0.68 

ISI (0, 210 min)
b
 7.7 8.7 7.7 7.9 0.6 0.21 

IVGTT       

Glucose 

(mmol × min/l)
a
 

28.5 27.6 28.2 27.5 0.9 0.81 

Insuline 

(nmol × min/l)
a
 

517.5 565.9 530.9 484.6 36.8 0.42 

C-peptide 

(nmol × min/l)
a
 

706.1 791.8 744.3 697.8 54.58 0.55 

SI (120, 210 min)
c
 5.0 4.5 4.7 5.4 0.68 0.51 

W3 = omega-3 fatty acids diet; W6 = omega-6 fatty acids diet; CLNA = conjugated alpha-linolenic acids 

diet; CLA = linoleic acids diet; OGTT = oral glucose tolerance test; IVGTT = intravenous glucose 

tolerance test;  

a
Values are AUC from 0 to 210 min during OGTT or IVGTT. 

b
Insulin sensitivity index (ISI) [26] calculated as follow: ISI= (Glubasal × Insbasal × Glumean × Insmean)

0.5
. 

c
Minimal model-derived insulin sensitivity index (SI) based on MINMOD Millennium [28]. 
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