
APPLYING MUTABLE OBJECT SNAPSHOTS TO A

HIGH LEVEL OBJECT-ORIENTED LANGUAGE

by

Matthew C. Davis

November, 2018

Director of Thesis: Mark Hills, PhD

Major Department: Computer Science

Software Engineers are familiar with mutable and immutable object state. Muta-

ble objects shared across modules may lead to unexpected results as changes to the

object in one module are visible to other modules sharing the object. When provided

a mutable object as input in Java, it is common practice to defensively create a new

private copy of the object bearing the same state via cloning, serializing/de-serializing,

specialized object constructor, or third-party library. No universal approach exists

for all scenarios and each common solution has well-known problems.

This research explores the applicability of concepts within the Computer Engineering

storage field related to snapshots. This exploration results in a simplified method of

memory snapshotting implemented within OpenJDK 10. A novel runtime-managed

method is proposed for declaring intent for object state to be unshared within the

method signature. Preliminary experiments evaluate the attributes of this approach.

A path for future research is proposed, including differential snapshots, alternative

block sizes, improving performance, and exploring a tree of snapshots as a foundation

to reason about changes to object state over time.

APPLYING MUTABLE OBJECT SNAPSHOTS TO A

HIGH LEVEL OBJECT-ORIENTED LANGUAGE

A Thesis

Presented to The Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Software Engineering

by

Matthew C. Davis

November, 2018

Copyright Matthew C. Davis, 2018

All Rights Reserved

APPLYING MUTABLE OBJECT SNAPSHOTS TO A

HIGH LEVEL OBJECT-ORIENTED LANGUAGE

by

Matthew C. Davis

APPROVED BY:

DIRECTOR OF THESIS:

Mark Hills, PhD

COMMITTEE MEMBER:

M.N.H. Tabrizi, PhD

COMMITTEE MEMBER:

Sergiy Vilkomir, PhD

CHAIR OF THE DEPARTMENT

OF COMPUTER SCIENCE: Venkat Gudivada, PhD

DEAN OF THE

GRADUATE SCHOOL: Paul J. Gemperline, PhD

DEDICATION

To my wife, Tara, who always took care of everything.

To my three boys, how quickly you grew.

I missed all of you so much.

(Luke, I owe you a game of soccer)

ACKNOWLEDGEMENTS

This thesis would not be possible without the support of Dr. Mark Hills, who always

believed in me and patiently guided me through the research process while allowing

this thesis to take on its own life and be my own work.

Much appreciation is due to Dr. Nasseh Tabrizi and to the Computer Science de-

partment for providing the opportunity to pursue my research interests in my home

state and for providing the environment conducive to academic research.

Acknowledgement is given to Shurtape Technologies and Sunil Tandon for support

of this research and providing flexibility at the key moments when nights after work

and weekends alone were insufficient.

Table of Contents

LIST OF TABLES . xii

LIST OF FIGURES . xiii

1 MUTABLE AND IMMUTABLE STATE 1

1.1 Introduction . 1

1.2 Mutable State . 2

1.2.1 Advantages . 2

1.2.2 Disadvantages . 2

1.3 Immutable State . 3

1.3.1 Advantages . 4

1.3.2 Disadvantages . 4

1.4 Discussion . 5

1.5 Preventing Unexpected Mutability: Current Practices 5

1.5.1 Use Immutable Objects . 5

1.5.2 Object.clone() . 6

1.5.3 Serialize/De-serialize . 6

1.5.4 Copy Constructor . 7

1.5.5 Reflection . 7

1.6 Motivation . 7

1.7 Hypothesis . 8

1.8 Prediction . 8

1.9 Organization of this Paper . 8

1.10 Summary . 8

2 JAVA PLATFORM . 9

2.1 Java Language . 9

2.1.1 Object Model . 11

2.1.2 Type System . 12

Strong and Static . 12

Safe . 13

Covariant . 13

Parameterized Types . 14

Auto-boxing and Unboxing . 16

Type Inference . 16

2.2 Compiler . 17

2.2.1 Parse . 17

2.2.2 Enter . 17

2.2.3 Annotate . 18

2.2.4 Attribute . 18

2.2.5 Flow . 18

2.2.6 Desugar . 18

2.2.7 Generate . 18

2.3 Bytecode . 19

2.4 Java Virtual Machine (JVM) . 20

2.4.1 Garbage Collectors . 21

2.4.2 Bytecode Interpreter . 21

2.4.3 Just-in-time Compilers . 22

2.5 Summary . 23

3 STORAGE SNAPSHOTS . 24

3.1 Introduction . 24

3.2 Application . 25

3.3 Approaches . 25

3.3.1 Copy-on-write . 26

3.3.2 Redirect-on-write . 26

3.3.3 Full image . 27

3.4 Discussion . 28

3.5 Summary . 29

4 PROPOSAL: INTENT-BASED OBJECT SNAPSHOTS IN JAVA 30

4.1 Introduction . 30

4.2 Abstraction . 31

4.2.1 Type . 32

4.2.2 Equality and Identity . 33

4.2.3 Snapshot Navigability . 33

4.3 Lexical Structure: Keyword snap 33

4.4 Syntax: Keyword snap . 34

4.5 Summary . 36

5 TRANSFORMATION TO STANDARD JAVA SYNTAX 37

5.1 Introduction . 37

5.2 Keyword snap . 38

5.3 Problems with this Approach . 39

5.4 Summary . 39

6 DIRECT IMPLEMENTATION IN OPENJDK 10 40

6.1 Introduction . 40

6.2 Java Virtual Machine Specification 41

6.3 Javac Compiler . 44

6.3.1 Keyword: snap . 44

Parse Step . 44

Generate Step . 46

6.3.2 Bytecode asnap (0xcb) . 50

6.3.3 Supporting Tools . 51

6.4 HotSpot JVM . 51

6.4.1 Snapshot semantics . 53

6.4.2 Bytecode 0xcb asnap . 53

6.4.3 Bytecode Interpreter . 55

6.4.4 c1 and c2 Just-in-time (JIT) compilers 64

6.5 Summary . 66

7 EVALUATION . 68

7.1 Key Research Questions . 68

7.1.1 Is the Behavior Predictable? 69

7.1.2 Is the Operation Universal? 69

7.1.3 What is the Performance Relative to Other Methods? 69

Benchmark Suite Selection . 71

The Benchmark Suite . 71

7.1.4 Is the Operation Provided by the JDK? 77

7.2 Evaluation Process . 77

7.2.1 System Under Evaluation . 78

7.2.2 Evaluation Environment . 78

7.3 Evaluation Results . 79

7.3.1 Is the Behavior Predictable? 79

7.3.2 Is the Operation Universal? 80

7.3.3 What is the Performance Relative to Other Methods? 81

7.3.4 Is the Operation Provided by the JDK? 84

7.4 Summary . 85

8 FUTURE WORK . 86

8.1 Direct JDK Implementation Approach 86

8.1.1 Deep Snapshots . 86

8.1.2 Platform Independence . 87

8.1.3 Differential Snapshots . 87

8.1.4 Simplify Snapshot Variable Load 95

8.1.5 Type Exception . 96

8.1.6 Bytecode Verification . 96

8.1.7 Garbage Collection . 96

8.1.8 Supporting Tools . 97

8.1.9 Escape Analysis Optimization 97

8.1.10 JIT Compiler Support . 97

8.1.11 Evaluate Predictable Behavior 98

8.2 Transformation Approach . 98

8.2.1 Identity Relationship . 98

8.2.2 Reasoning about Object State over Time 100

8.3 Future Research Questions . 100

8.4 Summary . 101

9 CONCLUSION . 102

9.1 Motivation . 102

9.2 Hypothesis . 102

9.3 Prediction . 103

9.4 Alternatives . 103

9.5 Evaluation . 104

9.6 Contribution . 105

9.7 Future Work . 106

9.8 Conclusion . 107

BIBLIOGRAPHY . 108

LIST OF TABLES

2.1 Java Bytecode Prefixes . 19

6.1 Adapted Java Virtual Machine instruction set 42

7.1 Summary of Evaluation Observations 85

9.1 Summary of Evaluation Observations 104

LIST OF FIGURES

2.1 Vehicle Type Hierarchy . 13

2.2 Java 1 raw type example . 15

2.3 Java 5+ parameterized type example 15

2.4 Java 5+ auto-boxing/unboxing example 16

2.5 Java 10 bytecode instruction groups 19

4.1 snap example . 31

4.2 Depth of non-shared state guarantee 32

4.3 JLS10 § 3.9 - adapted keyword list 34

4.4 JLS10 § 8.4.1 - adapted formal parameter grammar 35

4.5 JLS10 § 8.4.1 - adapted formal parameter rules 35

4.6 JLS10 § 8.4.1 - adapted formal parameter rules for enums 35

5.1 snap keyword example: pre-transformation 38

5.2 snap keyword example: post-transformation 38

6.1 JVMS § 2.11.5 - adapted object creation and manipulation 42

6.2 JVMS § 4.10.1.9 - asnap Type Checking Instruction 43

6.3 JVMS § 6.5 - asnap bytecode specification 43

6.4 JVMS § 7 - asnap mnemonic . 43

6.5 snap keyword example . 44

6.6 src/java.compiler/share/classes/javax/lang/model/element/Modifier.java 45

6.7 src/jdk.compiler/share/classes/com/sun/tools/javac/code/Flags.java 45

6.8 src/jdk.compiler/share/classes/com/sun/tools/javac/parser/Tokens.java 46

6.9 src/jdk.compiler/share/classes/com/sun/tools/javac/parser/JavacParser.java 46

6.10 src/jdk.compiler/share/classes/com/sun/tools/javac/jvm/Gen.java . . 47

6.11 src/jdk.compiler/share/classes/com/sun/tools/javac/jvm/Items.java . 48

6.12 src/jdk.jdeps/share/classes/com/sun/tools/classfile/Opcode.java . . . 48

6.13 src/jdk.compiler/share/classes/com/sun/tools/javac/jvm/ByteCodes.java 49

6.14 src/jdk.rmic/share/classes/sun/tools/asm/Instruction.java 49

6.15 src/jdk.rmic/share/classes/sun/tools/java/RuntimeConstants.java . . 49

6.16 src/jdk.compiler/share/classes/com/sun/tools/javac/jvm/Code.java . 50

6.17 src/jdk.compiler/share/classes/com/sun/tools/javac/jvm/ClassWriter.java 51

6.18 src/hotspot/share/interpreter/bytecodes.hpp 54

6.19 src/hotspot/share/interpreter/bytecodes.cpp 54

6.20 src/hotspot/share/interpreter/bytecode.hpp 54

6.21 src/hotspot/share/classfile/verifier.cpp 55

6.22 src/hotspot/share/interpreter/bytecodeInterpreter.cpp 56

6.23 src/hotspot/share/interpreter/templateTable.hpp 56

6.24 src/hotspot/share/interpreter/templateTable.cpp 56

6.25 src/hotspot/cpu/x86/templateTable x86.cpp 57

6.26 src/hotspot/share/interpreter/interpreterRuntime.cpp (1 of 2) 59

6.27 src/hotspot/share/interpreter/interpreterRuntime.cpp (2 of 2) 61

6.28 src/hotspot/share/opto/parse2.cpp 62

6.29 src/hotspot/share/oops/generateOopMap.cpp 62

6.30 src/hotspot/share/ci/bcEscapeAnalyzer.cpp 63

6.31 src/hotspot/share/ci/ciTypeFlow.cpp 64

6.32 src/hotspot/share/classfile/bytecodeAssembler.cpp 64

7.1 SmallObject.java . 72

7.2 LargeObject.java . 73

7.3 Example Benchmark Run . 75

7.4 Benchmark Harness - Snap . 76

7.5 Benchmark Harness - Clone . 76

7.6 Evaluation Environment . 78

7.7 Benchmarking Results - Violin Plot 81

7.8 Benchmarking Results - Violin Plot - Small Object w/o Serialize . . . 82

7.9 Benchmarking Results - Violin Plot - Large Object w/o Serialize . . . 83

8.1 Method w/asnap - javap output . 95

9.1 snap example . 103

Chapter 1

Mutable and Immutable State

This chapter provides an overview of mutable and immutable state object types as

they relate to this research. This chapter then describes why mutable types cannot

be completely avoided. Defensive methods presently employed by Java practitioners

to protect mutable state are summarized. The research motivation is stated, the

hypothesis is proposed, a prediction is made, and a paper structure is described to

experiment and collect observations to test the hypothesis.

1.1 Introduction

Software Engineers are familiar with mutable and immutable object state and

take steps to ensure shared objects with mutable states do not subsequently change

unexpectedly after a mutable object is passed by reference to a software module.

Common solutions to freeze the abstract state of a mutable object in Java include

cloning, serializing/de-serializing, or using a specialized object constructor. All of

these approaches have known problems and no universal approach exists for all objects

within Java. While using only immutable types in theory may be a solution to these

concerns, the software engineering team may not control the specification of all objects

the system under development must use, such as the standard class library.

1.2 Mutable State

A mutable object is characterized by the ability for its state to change [1, p.1816]

after its instantiation and construction. A specific example of a mutable object in

Java is an instance of the ArrayList class. During its lifetime, its abstract state

changes as clients add and remove objects from the list using mutator methods such

as add() and clear(). This ability of an object instance to change state is the defining

characteristic of mutable objects.

1.2.1 Advantages

Mutable objects naturally model real-life objects, which are expected to change

over time. For objects with state that change frequently, specifying mutability may

convey a performance advantage over an immutable alternative as new objects are

not created for each new abstract state transition [2, p.116-117].

1.2.2 Disadvantages

Sharing of mutable objects is less safe than sharing of immutable objects: the

changes to the mutable object made by one part of the system are also visible –

perhaps unexpectedly – to the other parts of the system sharing the object [2, p.116-

117]. Consequently, care must be taken to either expect these changes or to create an

unshared copy of the object with the same abstract state using the methods outlined

later in this section. These steps may require additional testing and complexity within

the modules using the mutable objects to address these situations.

2

1.3 Immutable State

An immutable object is characterized by the inability for its state to change [1,

p.1816] after its instantiation. An example of an immutable object in Java is an

instance of the String class [2, p.21]. During an instance’s lifetime, its abstract state

never changes. If clients request a mutated (changed) state, such as a trim or substring

via mutator methods, the String object instance constructs and returns a new String

object instance with the desired abstract state. The state of the original String object

instance remains unmodified.

This inability of an object instance to change state is the defining characteristic

of immutable objects. One advanced technique for implementing immutable objects

is Persistent Data Structures, which Michael J. Steindorfer [3, § 1.4] defines as:

[...] an immutable data structure that is a Directed Acyclic Graph (DAG)

and consists of separate immutable segments. A persistent data structure

is incrementally constructed by linking new immutable data segments to

an existing DAG of immutable data structure segments.

The basic example described by Steindorfer [3, § 1.4] is the cons-list originating

from LISP [4]. This type consists of a base case empty list, ∅, and a list cell type

consisting of head/this and tail/rest. Adding one atom, A, to ∅ results in the creation

of a new a list/cell, a, composed of A as head/this and ∅ as tail/rest. Adding a second

atom, B, to list cell a results in the creation of a new list/cell, b, composed of B as

the head and a as the tail. In this manner, a’s representation only contains A and

a pointer to b. b’s representation only contains B and a pointer to ∅. This avoids

duplication of atoms comprising the list instances and provides incremental, almost

version-controlled, history of changes to the object state leading from inception as ∅

up to and including current state, b.

3

From the client’s perspective, the immutable character of the persistent data struc-

ture is observable, but in fact the distinguishing characteristic is the internal repre-

sentation hidden from the client. The representation of a persistent data structure

is characterized by its composition of a new immutable DAG from the immutable

predecessor DAG plus an immutable delta. This new immutable DAG represents the

successor object instance state.

1.3.1 Advantages

Sharing of immutable objects is safe due to their unchanging abstract state char-

acteristic: another module sharing the object cannot unexpectedly change its state.

[2, p.116-117]. Due to this inherent characteristic, safe shared use of immutable type

instances is simpler to implement and test than with mutable objects.

As described within the Java Tutorials [5], immutable objects cannot be corrupted,

interfered with, or observed while in an inconsistent state by other threads. These

properties make immutable objects useful, fast, and safe to share across threads in

concurrent applications.

1.3.2 Disadvantages

Immutable objects are less suited to model objects in real life, which are expected

to change over time. For objects with frequently-evolving abstract state, the object

creation and destruction required for each evolution of an immutable object may incur

a performance penalty [2, p.116-117].

4

1.4 Discussion

Mutability is a design decision and is part of a type’s specification [2, p.116-117].

A modern system development team typically lacks specification authority for all

objects it will use. If it did have that authority, it is likely not practical to avoid

re-using existing, well-tested functionality. Consequently, it is not always practical to

avoid shared use of mutable objects. This is evident by the number of cloned mutable

objects encountered in many Java projects1.

1.5 Preventing Unexpected Mutability: Current Practices

When a shared mutable object is passed by reference into a software module

and outside changes to the shared object’s abstract state cannot be accepted, it is

necessary to adopt one of the defensive methods below to ensure the abstract state

of the shared object does not change unexpectedly.

1.5.1 Use Immutable Objects

Using immutable objects is a simple solution when the software module input

may be restricted to immutable objects. When the project team lacks specification

authority to the types the module accepts – i.e., standard Java Collections – this is

not a viable solution.

1Formally evaluating this frequency is suggested as future work in Chapter 8

5

1.5.2 Object.clone()

Object’s clone() method is intended to be overridden to produce a copy of an

instance whose type implements the Cloneable marker interface. The exact nature

and depth of the copy is under-specified and thus its behavior is expected to vary

based on the type [6, Object.clone()].

Further, it is not guaranteed a type marked as Cloneable has overridden its su-

pertype’s clone() method [7] even if current best practice per Bloch is to do so and

immediately call the supertype’s clone() method at the top of the current type’s im-

plementation [8]. The informal caution with clone() is, ”you get what you get.” For

these reasons, clone()’s behavior across types is inconsistent and its implementation

is not universal to all types.

1.5.3 Serialize/De-serialize

Java provides a predefined mechanism for copying an object graph to a data stream

called Serialization. This reliably outputs a deep copy but requires all types within

the graph implement the Serializable marker interface. The reverse of this process

is De-serialization, which accepts a data stream containing a serialized object graph

and re-constructs the corresponding object instances [6, java.io.Serializable].

Serialize/de-serialize is an alternative to Object.clone() and provides a predictable

depth of copy. As described in the API specification, if an object is not marked as

Serializable by the designer, the object may not be serialized [6].

Consequently, serialization is more predictable than clone(), but similarly non-

universal and more expensive from a runtime perspective [7] partially due to the

round trip from object graph to bit stream and back again.

6

1.5.4 Copy Constructor

If specification authority is possessed for a type, a copy constructor may be speci-

fied that accepts a type instance as input. The copy constructor creates a new object

as a copy of the old [7]. Similar to previous methods, this is non-universal.

1.5.5 Reflection

If a type must be copied, the project lacks specification authority for the type, and

the type does not support the methods above, Java’s Reflection API [6, java.lang.reflect]

provides a last-ditch capability to inspect the object’s state and produce a copy [7].

Using Reflection may be a brittle approach improperly reliant upon point-in-time

assumptions about the underlying type implementation, which may evolve. Subse-

quent changes to the type implementation or provision of an alternate implementation

may break these assumptions.

For this reason, external packages are available to automate dynamically inspect-

ing the class and creating a copy of the object graph [9, 10] [11, cloneBean()].

1.6 Motivation

The motivation for this research is the reality that the preceding options are not

universal, have under-specified behavior, or require external libraries. For almost

two decades software engineers have contended with these problems in Java with no

further solutions available.

Similar to past efforts to improve Java – notably Pizza’s parametric abstraction

enhancements [12] – it is apparent Java’s present limitations are not necessarily a

prediction of its future capabilities. Offering plausible alternative paths forward is

the motivation for this research.

7

1.7 Hypothesis

The hypothesis of the research is that a universal Java mechanism is feasible that

allows a method designer to universally specify when a method’s actual parameter

should be guaranteed to possess non-shared state with predictable semantics.

1.8 Prediction

To test the hypothesis, this paper predicts that a mechanism may be implemented

in Java that is: universal (applies to all object instances), predictable (behavior is

consistent across types), self-contained (does not require external libraries), and has

reasonable performance (relative to existing methods).

1.9 Organization of this Paper

Chapters 2 and 3 provide further background context, Chapter 4 specifies an

abstract solution, Chapters 5 and 6 outline alternative implementation approaches,

and Chapter 7 evaluates the stronger alternative against the prediction. Future

work is outlined in Chapter 8. Conclusions are drawn in Chapter 9.

1.10 Summary

Software engineers rarely green-field an entire object landscape. In the author’s

experience, system inputs and outputs are often composed of existing types over

which the software engineer lacks specification authority. In these situations, shared

mutable objects cannot be universally avoided, and defensive steps must be adopted

to prevent unexpected modification to shared mutable object state. The existing

defense options available in Java 10 are inconsistent, non-universal, or both.

8

Chapter 2

Java Platform

This chapter provides an overview of the Java programming language and its key

supporting tools, which together represent a development platform that has remained

influential and in wide practical use for over two decades. As the Java platform is the

basis for this research, a basic understanding of its components, design, and operation

benefits the reader.

2.1 Java Language

The primary characteristics of Java are described in the Java Language Specifica-

tion [13] and summarized below with emphasis on details relevant to this paper.

Object Oriented. Java programs are organized around objects. In Java, objects

are instances of classes. Classes define common structure and behavior of their object

instances. The internal behavior and structure of an object is hidden to clients: in-

stead, clients are provided a contract of abstract behavior by which they may interact

with the object.

High-level. The underlying machine details and representations are not available

to the program as this would defeat Java’s goal of maximum portability and reduce

the safeness of the language.

Concurrent. The language specification provides for concurrency of programs

such that methods and data elements may be guarded/locked to ensure only one

thread may use them at a time. Given that execution environments differ, the Java

language specifies the allowed behaviors of concurrent programs such that consistent

behavior may be obtained across platforms.

Strong and Static typing. Each Java object and object reference is declared

in the source code to be of a specific type. At compile time the type declaration is

checked against the reference usage to ensure the declared type is compatible with

its usage. The goal is to increase program reliability by minimizing runtime errors

and unexpected behavior. Some potentially-unsafe operations such as unchecked

downcasts are allowed by the compiler. These generate a runtime error if the operation

is found to be unsafe at runtime. Hence, Java’s basic type safety is still robust. As of

Java 10, type inference is expanded to local variables [14]. The type is still inferred

at compile time, which maintains Java’s strong and static typing guarantees.

Simplified syntax similar to C++. Java uses C++-ish syntax in an attempt

to appear familiar to software engineers – not for source-level compatibility with C++.

Many of the complexities of C++ are omitted such as manual memory management.

An assumption of Automatic memory management. The language provides

constructs for objects to clean up after themselves upon garbage collection once they

are no longer being used but is largely neutral about the implementation mechanism

of garbage collection, which has varied widely in form and method over time.

Portable. The Java Language Specification[13] and the Java Virtual Machine

Specification[15] are purposefully designed to eliminate Java-program-observable de-

pendencies or assumptions about the execution hardware. The language specification

provides a platform-neutral set of described behaviors and representations such that

the the operation of a compiled Java program executed on a compliant JVM appears

10

to be functionally equivalent regardless of the underlying hardware. This portability

of execution is one of the more notable aspects of Java and the mechanism of this

characteristic is described in subsequent sections below.

Other Java language features exist, such as exceptions and closures, but they will

not be discussed in this paper.

2.1.1 Object Model

Similar to typical class-based and object-oriented languages, Java object tem-

plates are called classes and are defined in source code. These classes include code

(behavior), data (state), and contracts (method signatures, object type, interfaces).

In Java, all code and data are declared inside a class.

Each Java class must occupy a position in the class hierarchy and inherits from

one ”parent” class. This parent class’ implemented behavior and state are implicitly

bestowed upon the new class. By default, classes directly inherit from Java’s funda-

mental type, Object, but the actual parent class is decided by the software engineer.

Java’s one-parent approach avoids the well-known difficulties1 and hard-to-remember

rules required for languages such as C++ where a class is allowed multiple parents.

In addition to the object type hierarchy, classes may implement interfaces, which

are a set of method signatures that represent a contract of behavior. If a class

implements an interface, it is contractually obligated to implement all its required

methods and this obligation is checked at compile time. It is important to note the

contract enforcement is focused on the implemented method signatures and not on

the logic within the methods, which form part of the required behavior. This latter

check is not provided by Java and is left in the responsibility of the software engineer.

1To some extent, these problems have been introduced in the form of default interface methods

11

As of Java 8, interfaces may include a default method implementation. The goal

of default methods is to allow interfaces to evolve without breaking classes that pre-

viously implemented the un-evolved interface. Previously, once objects implemented

an interface, the interface could effectively not be modified without also modifying

all implementing classes [16].

A side-effect of this enhancement is default methods may conflict if, for instance,

two interfaces are implemented by one class and both interfaces contain a default

implementation for the same method signature. In this case, despite the design goal,

implementing classes may still require modification in reaction to interface evolution.

A class may be used to create many different objects, each with its own state (data)

but all sharing a common set of behaviors (code) and contracts (method signatures,

object type, interfaces). Creating an object from a class is called instantiation as

it creates a distinct instance of the object class in memory. This memory holds

the state (data) of the object instance. Data that is static, or held in common to

all instances of a class, is stored elsewhere in memory. Classes may be declared as

abstract, which means they may not be instantiated; rather, these classes only exist

in the type hierarchy to bestow state and behavior to child classes and to provide a

common type to which all descendants are co-variant.

2.1.2 Type System

Java’s type system may be succinctly described as strong, static, safe, and covari-

ant with support for parameterized types.

Strong and Static

As a statically-typed language, the type of every Java expression or variable is de-

termined at compile time. As a strongly-typed language, each variable has a known

12

type and its contents and operations must be compatible with that type. By identi-

fying the types during compilation, the allowable operations are known and checked

to detect errors before the program is executed by a user [13, § 4].

Safe

The preceding attributes provide a greater level of safety as type checking is

performed to ensure all operations on an expression or variable are valid [13, § 4]. For

instance, multiplying two strings is not a valid operation.

Covariant

While it is not the purpose of this paper to discuss substitutability at length, a

short discussion will suffice.

Given an object hierarchy of Object with subtype Vehicle with subtypes Car and

Bus (see Figure 2.1), covariance intuitively is the idea that an object of type Car may

also be typed as its ancestor types – Vehicle and Object – in that order of precedence.

Vehicle Type Hierarchy

Object

Vehicle

Car Bus

Figure 2.1: Vehicle Type Hierarchy

That is, an object of type Car is a Vehicle, which is an Object. The implication is

that wherever Vehicle is used, Car or Bus may be substituted given that a Car is also

13

a Vehicle and a Bus is also a Vehicle. That is the intuitive description of co-variance.

The implication, of course, is that subtypes must syntactically and behaviorally

adhere to the contract of the parent in order for covariance within a type hierarchy to

produce reasonable outcomes. Java enforces the syntactic aspects of this contract but

the behavioral aspect is within the domain of the software engineer to enforce. This

latter behavioral requirement was formally described by Liskov and Wing in 1994 [1]

and is generally referred to as the Liskov Substitution Principle.

Parameterized Types

Also called parametric polymorphism – or very loosely, generics – parameterized

types ensure type safety but allow a class or method or type to use more than one

type. The classic example is a List of objects. In Java 1-4, Lists and Collections were

comprised of members of type Object. This is now called a ”raw type” [13, § 4.8].

This scheme was troublesome to the practitioner – and one the author personally

found frustrating at the time – as any Object was legally insertable into the collection

and a downcast cast to the desired type was required upon retrieving the object from

the collection. This operation may result in a runtime error when incompatible types

were previously and erroneously inserted into the collection. See Figure 2.2 for a

simplified example of raw type usage with no compile-time errors that will result in

an obvious runtime error due to the unchecked cast.

Starting in Java 5, types may accept additional type arguments as parameters,

which are checked at compile time to ensure type safety. Unlike some other languages,

once the Java compiler has validated type safety, it erases the parameterized type

information and the type is output as a raw type in the Java bytecode in a process

called Type Erasure [13, § 4.6].

14

1 // Raw type
2 ArrayList myList = new ArrayList () ;
3
4 myList .Add(new St r ing (”4”)) ;
5 myList .Add(new I n t eg e r (5)) ; // oops ! (but v a l i d at compi le time)
6 myList .Add(new St r ing (”6”)) ;
7
8 St r ing myString = ”” ;
9

10 while (myList . s i z e ()) {
11 myString = myString + ((St r ing) myList . get (0)) // runtime error !
12 }

Figure 2.2: Java 1 raw type example

Type Erasure is important to understand as not all type information is available

at runtime. See Figure 2.3 for an example of type-safe parameterized type usage

in contrast to Figure 2.2. The software engineer may include parameters in classes,

methods, and interfaces to provide reusable functionality for multiple types while

remaining type-safe.

1 // Parameterized type
2 ArrayList myList<Str ing> = new ArrayList <>();
3
4 myList . Add(new St r ing (”4”)) ;
5 myList . Add(new I n t e g e r (5)) ; // Compile−t ime error
6 myList . Add(new St r ing (”6”)) ;
7
8 St r ing myString = ”” ;
9

10 while (myList . s i z e ()) {
11 myString = myString + myList . get (0)
12 }

Figure 2.3: Java 5+ parameterized type example

15

Auto-boxing and Unboxing

For performance, traditional stack-based primitive types are provided by Java such

as integers, floats, and arrays as well as flexible but slower heap-based object-oriented

analogs of those primitives: Integer, Float, and various collection types.

To simplify programming in Java 5 and later, the Java compiler uses Java’s strong

and static typing attributes to automatically convert primitives to reference types and

vice-versa according to rules defined in the Java Language Specification [13, § 5.1.8].

Figure 2.4, for instance, is invalid code in Java 1.4 due to the assignment of

incompatible types, but is valid in 1.5+ due to the rules defining implicit conversion

between primitive types (i.e., int) and their object variants (i.e., Integer) defined

within the language specification and implemented within the compiler.

1 // Auto−box ing (Java 5+)
2 int myIntPrimit ive = 5 ;
3 I n t e g e r myIntObj = myIntPrimit ive ;
4
5 // Auto−unboxing (Java 5+)
6 int myIntPrimit ive2 = myIntObj ;

Figure 2.4: Java 5+ auto-boxing/unboxing example

Type Inference

Type inference is a compile-time Java construct where the compiler automatically

infers the type of an expression or variable and is described in the Java Language

Specification [13, § 18]. A full discussion of this topic is not relevant to this paper

and only a short discussion is provided for background.

In the original Java language, all types were explicitly input into source code and

checked by the compiler. In a departure from this approach, Java 7 [17] introduced the

16

diamond on the right-hand side (RHS) of the equals, for instance, when instantiating

a parameterized type and assigning it to a variable of clear type. In this case the

required instantiation type is obvious to the compiler and this simple type inference

is performed at compile time – it is not necessary to explicitly add it. See the right-

hand-side of line 2 in Figure 2.3 for an example of this simple type inference.

Further expansion of type inference was specified for Java 8 [18] in support of

Lambda formals and in Java 10 [13] on the left-hand side (LHS) of the equals to infer

the type of a declaration based on its usage without explicit type declaration [14].

2.2 Compiler

Java’s standard compiler, javac, is a component of OpenJDK, is written in Java,

and is responsible for accepting Java source code as input and emitting Java bytecode

in the form of a platform-neutral Java .class file. To complete this operation, javac

executes seven phases as described in and summarized below [19].

2.2.1 Parse

In the initial step, javac starts with an unknown raw input file (hopefully contain-

ing valid Java code) and parses it into a stream of tokens. This token sequence is the

input to construct an abstract syntax tree (AST) representing the input file [19].

2.2.2 Enter

Each node in the abstract syntax tree (AST) is visited and each program symbol

is registered and assigned its appropriate scope based on its tree position. Each class’

parameters, interfaces, and parent are determined and scoped to the class. At the

end, the set of top-level classes is saved into a queue for the attribute step [19].

17

2.2.3 Annotate

Java compiler annotations are a compiler extension mechanism whereby compiler

operation may be extended in limited ways at compile time based on annotations

added within the code [19].

2.2.4 Attribute

Each top-level class is evaluated to determine which external items are referenced,

which may trigger parsing and entering of additional source files. In this phase, name

resolution and type checking occur as well as the conversion of run-time literals to

compile-time constants, which is referred to as constant folding [19].

2.2.5 Flow

This step reviews the tree to ensure all statements are reachable, all variables are

used, final variables are assigned only once, and checked exceptions are handled [19].

2.2.6 Desugar

The desugar phase converts elements of the language that exist only in the Java

Language Specification for source code and are not supported within JVM bytecode.

These include inner classes, foreach loops, assertions, and class literals [19].

2.2.7 Generate

This step outputs the Java .class files from the de-sugared abstract syntax tree

according to the input source and compiler options [19].

18

Bytecode Instruction Groups

• Load/store

• Conversion

• Arithmetic/logic

• Object creation/manipulation

• Operand stack management

• Control transfer

• Method invocation and return

• Specialized tasks (i.e., exceptions)

Figure 2.5: Java 10 bytecode instruction groups

2.3 Bytecode

Jave bytecodes are the instruction set of a fictionalized machine – the Java Vir-

tual Machine (JVM). Each Java bytecode instruction is composed of one byte that

represents the opcode along with zero or more bytes for operands. Approximately

80% of the 256 available bytecodes are presently in use as of JDK10.

The bytecode mnemonic prefix/suffix refers to the operand type and numerics

refer to source/target of the operation. I.e., d2f converts double to float, fload 0 loads

a float from local variable 0 and is a faster form of fload with operand 0.

Some bytecodes not in use according to the standard are used internally by the

compiler or HotSpot for various purposes, particularly in HotSpot where bytecodes

are re-written in memory with unused bytecodes that represent fast paths – more

efficient codepaths where the necessary safety pre-conditions have been previously

validated by the JVM and may be skipped going forward.

Prefix/Suffix Operand Type Prefix/Suffix Operand Type

a Reference f Float
b Byte i Integer
c Char l Long
d Double s Short

Table 2.1: Java Bytecode Prefixes

19

2.4 Java Virtual Machine (JVM)

The Java Virtual Machine (JVM) is a program that executes on a host computer

and emulates many aspects of an actual computing machine: registers, instruction

pointer, memory, pointers, IO, etc. This program is intended to accept machine

instructions of a fictionalized computer called the Java Virtual Machine. These in-

structions are called bytecode. While it is possible to create a computer that natively

executes Java bytecode [20], that is not usually the point.

The Java Virtual Machine accepts bytecodes in a .class file as input, translates the

bytecode instructions into the native instructions of the host computer, and executes

those instructions.

In this way, compiled Java bytecode may be executed on many different types

of host computer without change and without regard for the target processor, ar-

chitecture, number of registers, etc. Further, platform-specific optimizations may be

flexibly selected and applied by the JVM at the time of execution rather than being

targeted in advance at compile time.

The key, of course, is whether a Java Virtual Machine exists for the host com-

puter’s architecture. Generally this is not a significant problem. The reference imple-

mentation of the JVM is HotSpot, which is part of OpenJDK and is licensed under

the GNU Public License v2 with the classpath exception.

As of August 2018 HotSpot implementations exist within the main OpenJDK

repository for a wide variety of platforms including Windows x86/x64, Linux x64,

Solaris x64/SPARC, MacOS x64, and ARM 32/64. Third parties provide additional

ports of HotSpot to other platforms such as IBM’s port for zOS/POWER.

A ”Zero” HotSpot implementation within the main OpenJDK repository excises

platform-specific assembly code with the goal of simplifying porting to a new plat-

20

form at the initial cost of performance. Native optimizations may be subsequently

implemented over time to improve performance.

JVMs have important aspects that depart from this fictionalized machine metaphor.

These aspects simplify the job of the typical software engineer and are outlined below.

HotSpot is no exception.

2.4.1 Garbage Collectors

The purpose of the garbage collector is to re-claim memory that was previously

allocated but is no longer in use. This effectively provides automatic memory man-

agement. A variety of methods are employed to efficiently re-claim unused memory.

The intent is to free the software engineer from direct memory management.

It is noteworthy that garbage collection / automatic memory management is not

necessarily required. Recently, OpenJDK provided a ”no op” garbage collector which

does nothing and is intended for applications that are short-lived or create little to

no garbage [21] .

2.4.2 Bytecode Interpreter

Given the JVM is a fictionalized machine executing on non-fictional hardware, a

translation must be undertaken from the Java bytecode to the underlying machine

instructions. The bytecode interpreter executes native instructions for each Java

bytecode and often includes some basic bytecode re-writing to improve performance.

21

2.4.3 Just-in-time Compilers

The Just-in-time (JIT) compilers implemented in many JVMs allow method ex-

ecution to bypass the JVM’s bytecode interpreter by asynchronously compiling and

optimizing heavily-used methods into native code for more direct and faster execution.

Within the reference HotSpot JVM, two compilers are implemented using C++

and native assembler: c1 and c2. Both compile Java bytecode methods into native

machine code of the underlying machine.

c1 is intended as a client compiler that has a fast warm-up and contains interme-

diate and less-costly optimizations [22]. The idea is that clients have fewer users, tend

to run applications for shorter periods, and will exercise the code less intently than

a multi-user server; consequently, this balance of fast compilation and fast startup

makes sense for clients.

c2 is intended as a server compiler that has a longer warm-up and contains ad-

vanced and more-costly optimizations [22]. The idea is a server has a larger number

of users, may run for a longer time, and will have methods that are more heavily used

than in a client situation; thus a longer warm-up and more-costly optimizations may

be a good trade-off for servers.

In reality, servers and clients use both compilers in HotSpot’s current implementa-

tion, which employs a tiered compilation strategy to provide an optimal and dynamic

level of optimization regardless of whether the host computer is a client or a server

[23, § Tiered Compilation].

This paper is not about the JIT compilers and the specific optimization strategies.

For the purposes of this paper, the above description is sufficient for understanding.

22

2.5 Summary

Java, as a whole, has remained an active and evolving development platform for

more than two decades. While not designed as a research language [13, § 1], the

platform continues to increase in capability, is actively maintained, is widely-used,

and is a stable and open platform for extension. In these ways it is an appropriate

and real-life platform for evaluating this paper’s proposal.

23

Chapter 3

Storage Snapshots

This chapter provides an overview of storage snapshots, which are a common tech-

nology employed in storage systems. A high-level understanding is beneficial to the

reader as snapshot terminology is used throughout the remainder of this paper.

3.1 Introduction

Similar to a photograph, a snapshot is a point-in-time image of something as it

existed at a particular moment [24]. Storage Snapshots, meaning snapshot capability

within a storage system, is a mature technology with multiple applications that have

been discussed in the literature for several decades [25, 26, 27]. The design goals of

storage snapshots are typically:

1. Provide a stable image of the storage state (the data) at a particular moment

in time, either for faster recovery after a system failure or for other applications

such as accidental file deletion recovery, backups, etc. This image lifespan may

be short or long.

2. Do the above without consuming a large amount of space or overwhelming the

limited I/O capabilities of the underlying storage hardware.

An overview of snapshot technology is provided by Xiao, et al. [28, § 2].

3.2 Application

Snapshot storage technology is widely-used and presently available in a variety

of products including those from VMware, RedHat, and Microsoft, including nearly

all commercial storage systems from IBM, NetApp, Dell, HPE, and others. These

products allow consistent snapshots while a system is running as well as provide a

point-in-time image of the system for rollback or other applications.

Storage snapshot technology must not be confused with the transaction control

techniques utilized by database management systems logically described by Haerder

[29] and later adapted for Software Transactional Memory [30] in an effort to increase

software parallelism and reliability without resorting to traditional program lock se-

mantics. This latter approach has its own research area around snapshots (i.e., [31]),

which is distinct from the topic of this section. Further, storage snapshots should not

be confused with backup and recovery solutions, which are intended to survive total

media failure and therefore do not rely on the blocks of the active (running) image

to partially compose the point in time backup image.

3.3 Approaches

Two primary approaches are employed to snapshot a running storage area: copy

on write (COW) and redirect on write (ROW) [32, § IIA]. These are considered differ-

ential snapshots as they work by fixing either the active data or the snapshot (point-

in-time) data as a coherent image and subsequently track the differential changes

between the active image and the point in time [24]. Both approaches have trade-

offs, which are discussed below. A third approach, which involves a complete copy of

the data, is also described.

25

3.3.1 Copy-on-write

In the copy-on-write (COW) approach [28, § 2], a snapshot triggers an evaluation

of writes and creation of a map indicating blocks altered since the snapshot as well

as pointers into a snapshot area to the original-state block copies.

Upon write, if the write evaluation determines the target block has not been

altered since the snapshot, the current value of the target block is copied to a new

block in the snapshot area and the map is updated indicating the block has been

altered along with a pointer to the block containing the original value. Subsequently,

the write that triggered the copy continues and overwrites the target block.

To re-construct the original state at the time of the snapshot, the system uses the

map to overlay the original block values over the active state of the volume. Removing

the snapshot is as simple as removing or de-allocating the block copies.

The advantage of this approach is faster read performance of the active volume

as the active-state data is not fragmented as it is with redirect-on-write. The dis-

advantage is the three I/O operations described above on the first write to a block

post-snapshot [32, § IIA] [27, § 1].

3.3.2 Redirect-on-write

In the redirect-on-write (ROW) approach [28, § 2], a snapshot triggers a redirection

of writes to a snapshot area and creation of a map indicating blocks altered since the

snapshot as well as a pointer to the redirected active-state block.

If the write is to a block that has not yet been written since the snapshot, the

map is updated indicating the block has been altered and a pointer to the redirected

block is added. Subsequently, the write that triggered the redirection continues and

is written to the redirected block in the snapshot area.

26

To re-construct the original state at the time of the snapshot, the system may

simply read the original volume – it remains unchanged. Removing the snapshot is

more I/O intensive as the system must use the map to copy the fragmented active-

state values back to the original block locations.

The advantage of this approach over copy-on-write is the elimination of the three

I/O operations required for the first write to a copy-on-write block. The disadvantage

is the active-state data is fragmented in the storage medium, which may degrade

sequential read performance; further, removing the snapshot is I/O intensive [32,

§ IIA] [27, § 1] as the active-state image is re-assembled by applying the redirected

writes back to the source image.

3.3.3 Full image

A full image snapshot is simply an entire copy of the source storage area to a

target storage area. This approach is non-differential, which means it carries the

disadvantage of requiring n ·x storage to store n snapshots of x amount of data. The

advantage is fast read and write performance to both copies of the data [24].

In practice, a storage system is required to meet an I/O and time budget for

a snapshot operation. A complete copy of a large volume can easily exceed the

fixed budget and impair performance, which may make full copies infeasible in a

live system. This difficulty may be addressed by combining differential and non-

differential techniques.

In the case of NetApp1 SnapMirror, the storage system maintains its I/O and time

budget by combining techniques: an inexpensive (I/O and time) differential snapshot

is created against the source volume, and this point-in-time differential snapshot

image is then copied to the target [33, § 1.2.2].

1IBM N Series is a re-badged NetApp FAS

27

3.4 Discussion

Choosing a snapshot approach is an exercise in selecting trade-offs [24]. A full-

image snapshot will require more storage than the two differential approaches and in

practice may require an underlying differential snapshot implementation to meet time

and I/O budgets, similar to NetApp’s SnapMirror technology [33, § 1.2.2]. Within

the differential snapshot methods:

Copy-on-write provides faster reads of the active-state image at the cost of three

I/O operations for each block when it is first modified post-snapshot [28, § 2] and

additionally allows for a lower-cost removal of a snapshot from media as the original

(unchanged) blocks are outside the original image allocation and may simply be de-

allocated. In essence, COW is ”pay me now.”

Redirect-on-write reduces the I/O necessary for each block when it is first

modified post-snapshot at the expense of slower reads against the active state image

and more expensive removal of snapshots [28, § 2]. In essence, ROW is ”pay me later.”

In addition to the type of snapshot employed, block sizes influence the relative

performance of the implementation [34, § 4]. The specific bitmap technique employed

to manage the block redirection step for reads and writes is an additional influence

to consider [32]. The specific implementation details of these techniques are beyond

the scope of this paper and mentioned here for the reader’s benefit.

28

3.5 Summary

Storage snapshot technology has a long history and is widely employed in storage

and virtualization systems as described within this chapter. In commercial systems

the user/operator is generally not confronted with any choice of snapshot methods –

it ”just works.”

But software engineers designing or implementing a snapshot facility in a new

or existing system should: understand the options and trade-offs; choose a snapshot

methodology based on the expected application parameters; and recognize that, even

within the same methodology, implementation details may be reasonably expected to

influence the overall performance and throughput of the system.

29

Chapter 4

Proposal: Intent-based Object Snapshots in Java

This chapter outlines a proposal to insert a new snap keyword into the Java

Language Specification [13] as a novel intent-based declaration that an actual method

parameter must possess unshared state. The runtime then unshares the object state

as-needed according to the design intent. The syntax and semantics of this proposed

keyword are discussed herein. Chapters 5 and 6 subsequently outline two alternative

implementation options for this proposal.

4.1 Introduction

As previously described, when a software engineer needs to fix a point-in-time state

of a shared mutable input object, direct methods (clone, serialize, copy constructor)

explicitly perform this operation within the method body. But each method has

varying or under-specified outcomes that are not guaranteed, do not work universally,

or do not clearly convey the intent.

Rather than explicitly perform one of the Java-native operations on the object

within a method body, this proposal allows the method designer intent to be declared

in the formal parameter declaration of the method signature, similar to final, and

the development environment enforces the method design intent to ensure the state

of the object indeed is not shared during execution.

1 // Snap/ unshare o b j I n p u t s t a t e p r i o r to i t e r a t i n g
2 public void addAll (snap ArrayList<Str ing> objInput) {
3 for (S t r ing s t r : objInput) {
4 this . add (s t r) ;
5 }
6 }

Figure 4.1: snap example

In Figure 4.1, the method designer intends to receive as input an unshared view

of objInput’s abstract state. Of course, the method designer may choose to share this

view with other collaborating objects and methods by explicitly passing the object

outside the method as a reference or method parameter. But in the initial case, the

addAll() method alone has visibility to the point-in-time state of objInput at the time

the actual parameter is loaded.

To be clear, the intent is not to make a mutable object immutable, but rather to

unshare its mutable state within a specific context as determined appropriate by the

method designer.

The mechanism by which this is implemented is not as important as the guarantee

that state alterations outside the method will not be visible within the method and

vice-versa – unless the method explicitly takes action to the contrary. Consequently,

in this section only the Java Language Specification [13] adaptations are discussed.

Adaptations involving the JVM or development environment are discussed in subse-

quent chapters.

4.2 Abstraction

The abstract behavior of a formal method parameter declared with modifier

snap may be intuitively understood as a guarantee that the object referenced in

the actual parameter possesses an abstract state that is, at invocation of the method,

31

non-shared. The method may take subsequent steps to share the object with collabo-

rating methods and objects during its execution, but at the time the method receives

the actual parameter, the state is non-shared.

Given an object contains a graph of object relationships, the depth of this guar-

antee must be understood. For the purposes of this abstraction, the depth of the

guarantee is to the object in question as well as its direct descendants. This is shown

in Figure 4.2. Extending this guarantee deeper into an object graph similar to serialize

is described in Chapter 8 as future work.

Pre-Snapshot Object

Object

a b

c

d e f

g

Post-Snapshot

Object

a b

c

d e f

g

Objects with guaranteed non-shared state are shaded

Figure 4.2: Depth of non-shared state guarantee

4.2.1 Type

The apparent and actual types of the original and point-in-time object instances

are identical in this proposal.

32

4.2.2 Equality and Identity

The original (pre-snap) and point-in-time (post-snap) object instances may or

may not be the same identity. Unlike clone(), serialize, object constructor, and third-

party library, it is not guaranteed that identities will differ. Consequently, the equality

operator may return true or false, depending on the circumstances. As outlined later

within this chapter, circumstances exist when the method designer’s intent of a point-

in-time/non-shared state is realized without any action by the runtime. For example,

an enum type is by definition an immutable type and therefore no action is needed

to achieve the intent.

A discussion regarding identity equality of snapshots is laid out in Chapter 8,

future work, including whether snapshots of an object should share a common identity.

4.2.3 Snapshot Navigability

New object instances created by the snap keyword may have a distinct identity

and in this proposal no mechanism is defined to navigate or analyze relationships

among related identities beyond the Java-native double-equals equality operator.

4.3 Lexical Structure: Keyword snap

This proposal centers on a new Java keyword, snap , which requires the fol-

lowing adaptations to the Java Language Specification[13]. Keywords, by definition,

cannot be used as identifiers [13, § 3.9]. To prevent naming collisions during the

research, underscores are used within the snap keyword (Figure 4.3) as a differen-

tiator as snap could conceivably be an identifier extant within existing code.

33

Java Keywords

• abstract

• assert

• boolean

• break

• byte

• case

• catch

• char

• class

• const

• continue

• default

• do

• double

• else

• enum

• extends

• final

• finally

• float

• for

• if

• goto

• implements

• import

• instanceof

• int

• interface

• long

• native

• new

• package

• private

• protected

• public

• return

• short

• static

• strictfp

• super

• switch

• synchronized

• this

• throw

• throws

• transient

• try

• void

• volatile

• while

•
• snap

Figure 4.3: JLS10 § 3.9 - adapted keyword list

4.4 Syntax: Keyword snap

The formal method parameter grammar defined in the Java Language Specifica-

tion [13, § 8.4.1] must be modified to include snap in addition to final as a valid

modifier as shown in Figure 4.4.

The snap keyword in this context is only valid for reference types, as primitives

are unshared stack-based objects passed by value and therefore lack the same concerns

as shared reference types of mutable state. This is expressed in Figure 4.5.

Given snap is a declaration of design intent, it has no effect on enum types,

which are immutable. In the case of enums, no compile or runtime error is raised and

instead no snapshot operation is undertaken. This is expressed in Figure 4.6

34

FormalParameterList :
ReceiverParameter
FormalParameters , LastFormalParameter
LastFormalParameter

FormalParameters :
FormalParameter { , FormalParameter}
ReceiverParameter { , FormalParameter}

FormalParameter :
{Var iab l eMod i f i e r } UnannType Var i ab l eDec l a ra to r Id

Var iab l eMod i f i e r :
Annotation
f ina l
snap

ReceiverParameter :
{Annotation} UnannType [I d e n t i f i e r .] this

LastFormalParameter :
{Var iab l eMod i f i e r } UnannType{Annotation} . . .

Var i ab l eDec l a ra to r Id
FormalParameter

Figure 4.4: JLS10 § 8.4.1 - adapted formal parameter grammar

It is a compile-time error if snap appears more than once as a modifier for a for-
mal parameter declaration or if the UnannType of the formal parameter declaration
is not a reference type.

Figure 4.5: JLS10 § 8.4.1 - adapted formal parameter rules

It is neither a compile-time nor a runtime error if snap is a modifier on a formal
parameter with apparent or actual type enum. Rather, at runtime no snap operation
is performed on enum types.

Figure 4.6: JLS10 § 8.4.1 - adapted formal parameter rules for enums

35

4.5 Summary

In this chapter a set of modifications to the Java Language Specification [13] is

described that accommodate a new keyword, snap . This keyword is lexically and

syntactically defined in addition to its abstract meaning and behavior.

The following two chapters outline two alternative implementation strategies that

align with the abstraction described in this Chapter.

36

Chapter 5

Transformation to Standard Java Syntax

This chapter discusses a transformation approach to implementing the snap key-

word from Chapter 4. A transformation approach accepts code in an enriched syntax

or Domain-Specific Language (DSL) and transforms the input to another, usually

standard, language. Herein, the transformation target language is Java 10.

5.1 Introduction

As outlined in Chapter 1, Java 10 lacks a native and universal functionality to

snapshot – or fix – a point-in-time image of shared mutable object state with abstract

semantics consistent in the view of the software engineer.

Consequently, when working with shared mutable objects in the standard Java

language, knowledge of an object’s type and type implementation may be required

to understand what options, if any, are available for protecting shared object state

against unexpected modification.

Further, if two otherwise-unrelated types implement a particular interface as well

as Cloneable, there is no guarantee both underlying types implement the same clone()

semantics when the server method is interacting with the objects uniformly by their

apparent interface type. This problem similarly applies to parameterized types and

methods acting as a server for disparate input types with unknown clone() semantics.

5.2 Keyword snap

A method parameter modified by a snap keyword is demonstrated in Figure

5.1. The syntactical position of this modifier is similar to final. The snap keyword

declares a need to snapshot or unshare the current object state after the function

prologue but before method body uses the object instance.

1 // Create and re turn a snapshot o f o b j
2 public T snap (s n a p T obj) {
3 return obj ;
4 }

Figure 5.1: snap keyword example: pre-transformation

The shared identity of the object passed to the method must not be visible to the

method body; rather, only the identity of the unshared snapshot may be visible; in

other words, the method body only has visibility to the snapshot copy of the input

object but not to the actual input object itself. In this way, the method body works

only with the non-shared mutable object state without concern for the underlying

details of the snapshot operation involved in creating this non-shared state.

Out of the software engineer’s view, the transformation removes the non-standard

snap keyword from the method signature and inserts Java code atop the method

body to copy each input snap object’s state to a new identity.

The experimental mechanism in Figure 5.2 evaluates the object type to determine

whether it may be cloned or serialized and – based on that information – to do so.

1 public T snap (T obj) {
2 obj = (SnapTree . g e t In s tance ()) . snap (obj) ; // i n s e r t e d
3 return obj ;
4 }

Figure 5.2: snap keyword example: post-transformation

38

5.3 Problems with this Approach

Rather quickly this approach encounters a number of problems. First, the facility

cannot be universal as it is not mandatory for all objects to be Cloneable, Serializable,

or both. Some objects are neither and this facility could not work for them. Further,

there is no effective mechanism for discovering copy constructors at runtime.

Second, the semantics of the snapshot operation may not be predetermined with-

out knowing or inspecting the underlying input type. Particularly in the instance of

clone, where there is explicitly no guarantee of semantics, this approach propagates

this under-specified behavior to the method body. This variation in behavior may be

surprising to a software engineer.

Third, serializing and cloning may throw checked exceptions that must be handled

or propagated up the stack. Given the transparent intent of the snapshot operation,

it is probably not appropriate to require these checked exceptions be added to the

method signature. It is even less appropriate to eat the exception and return the

original object, which breaks the contract and may cause future errors due to the

sharing of state that the employing method innocently believed to be non-shared.

5.4 Summary

The three issues presented themselves early in the evaluation process. While the

process abstracts some complexity to benefit the software engineer, the facility seems

dangerous to use in practice.

Some improvements are likely possible at build time but the fundamental issues

remain using the native capabilities. A further and possibly viable alternative could

be to employ a non-native third-party mechanism such as the GSON [35], cloning

[36], or other [9, 10, 11] libraries. This is described in Chapter 8 as future research.

39

Chapter 6

Direct implementation in OpenJDK 10

This chapter describes the process of directly implementing the snap keyword

from Chapter 4 in OpenJDK 10. This approach implements the keyword in the parse

and generate phases of the javac compiler and defines a new JVM bytecode, 0xcb

asnap in the Java Virtual Machine Specification [15]. The HotSpot 10 reference JVM

is modified to accept the new bytecode and perform full-image object snapshots.

6.1 Introduction

As outlined previously, Java 10 lacks a native, universal, predictable method to

unshare mutable object state. This chapter describes implementing full-copy object

snapshots directly in Java 10 using an additional keyword and JVM bytecode. This

approach bypasses the limitations of the native Java mechanisms. At the time exper-

imental implementation commenced, OpenJDK 10 was the latest OpenJDK release.

Both the javac compiler and HotSpot JVM are adapted.

While most of the implementation is platform independent, four lines of x64-

specific code exist that are not presently ported to other platforms1.

Within this chapter, code listings are reformatted to fit the written page. Updated

or inserted code is indicated by the initials, MCD.

1See Chapter 8 for future work extending the functionality to further platforms

6.2 Java Virtual Machine Specification

The Java Virtual Machine Specification [15] defines the abstract operation of a

compliant Java virtual machine while leaving many details of its internal representa-

tion (i.e., objects [15, § 2.7]) open to the JVM implementer as explicitly outlined in

section 2.13 of the specification [15, § 2.13].

As this direct implementation proposal alters the abstract behavior of the Java

Virtual Machine – in particular by modifying the list of bytecodes – the specification

must be adapted to include the changes proposed. This section lists the changes

needed and subsequent sections detail the implementation within HotSpot 10 on x64.

§ 2.11.1 Types and the Java Virtual Machine [15, § 2.11.1]. This table is

adapted to include a new row, Tsnap, with asnap added to its intersection with the

reference column (Table 6.1).

§ 2.11.5 Object Creation and Manipulation [15, § 2.11.5]. In this section,

the asnap bytecode must be inserted as shown in Figure 6.1.

§ 4.10.1.9 Type Checking Instructions [15, § 4.10.1.9]. In this section, type

safety constraints are defined for each relevant Java bytecode. Here instructions must

be added for asnap that require the top of the operand stack be a pointer to a reference

type (Figure 6.2).

§ 6.5 JVM Instructions [15, § 6.5]. Each bytecode is specified in this section

including its form, format, operand stack pre/post condition, and semantics. Here

asnap is added as a valid bytecode, 0xcb (Figure 6.3).

§ 7 Opcode Mnemonics by Opcode [15, § 7]. In this section an insertion is

required to add asnap to the References mnemonic table (Figure 6.4).

With the specification amended, implementation within a target environment –

in this case OpenJDK 10 on x64 – may proceed.

41

bytecode byte short int long float double char reference

Tipush bipush sipush
Tconst iconst lconst fconst dconst aconst
Tload iload lload fload dload aload
Tstore istore lstore fstore dstore astore
Tinc iinc

Taload baload saload iaload laload faload daload caload aaload
Tastore bastore sastore iastore lastore fastore dastore castore aastore
Tadd iadd ladd fadd dadd
Tsub isub lsub fsub dsub
Tmul imul lmul fmul dmul
Tdiv idiv ldiv fdiv ddiv
Trem irem lrem frem drem
Tneg ineg lneg fneg dneg
Tshl ishl lshl
Tshr ishr lshr
Tushr iushr lushr
Tand iand land
Tor ior lor

Txor ixor lxor
i2T i2b i2s i2l i2f i2d
l2T l2i l2f l2d
f2T f2i f2l f2d
d2T d2i d2l d2f

Tcmp lcmp
Tcmpl fcmpl dcmpl
Tcmpg fcmpg dcmpg

if TcmpOP if icmpOP if acmpOP

Treturn ireturn lreturn freturn dreturn areturn
Tsnap asnap

Table 6.1: Adapted Java Virtual Machine instruction set

[...]
Snapshot a class instance (resulting in a new object identity): asnap.

Figure 6.1: JVMS § 2.11.5 - adapted object creation and manipulation

42

[. . .]
asnap

An asnap i n s t r u c t i o n i s type s a f e i f f the one can v a l i d l y
pop a r e f e r e n c e type or array o f r e f e r e n c e types o f f the
incoming operand stack .

i n s t ru c t i on I sTypeSa f e (asnap , Environment , O f f s e t , StackFrame ,
NextStackFrame , ExceptionStackFrame) :−

canPop (StackFrame ,
[class (’ java / lang /Object ’ , PoppedStackFrame) ,
arrayOf (class (’ java / lang /Object ’ , PoppedStackFrame))] ,

exceptionStackFrame (StackFrame , ExceptionStackFrame) .
[. . .]

Figure 6.2: JVMS § 4.10.1.9 - asnap Type Checking Instruction

asnap
Operation : Snapshot ob j e c t i n s t ance
Format : asnap
Forms : asnap = 203 (0 xcb)
Operand Stack :

. . . , o b j e c t r e f →

. . . , o b j e c t r e f
Desc r ip t i on :

The o b j e c t r e f on top o f the operand stack i s popped o f f ,
and a new ob j e c t i d e n t i t y o f the same type and s i z e i s
c r ea ted . The contents o f the source ob j e c t are copied
to the new ob j e c t i d e n t i t y . D i rec t r e f e r e n c e type
members with in the new o b j e c t r e f are a l s o copied anew
such that a two−l a y e r deep c lone i s the net e f f e c t .

Notes :
The asnap i n s t r u c t i o n does not c a l l the ob j e c t
type ’ s con s t ruc to r .

Figure 6.3: JVMS § 6.5 - asnap bytecode specification

[. . .]
203 (0 xcb) asnap

Figure 6.4: JVMS § 7 - asnap mnemonic

43

6.3 Javac Compiler

Java’s standard compiler, javac, is a component of OpenJDK and emits Java

bytecode in the form of a .class file corresponding to a valid stream of input Java

source code. The compiler completes a set of tasks in pursuit of this end as described

in Chapter 2 and not repeated here.

This section discusses the modified parts of the javac compilation process necessary

to implement the keyword snap and emit the new 0xcb bytecode, asnap.

6.3.1 Keyword: snap

Within javac a new keyword, snap , is defined, which is scoped to the formal

parameter modifier of a method signature. This scoping position is similar to that

of the formal parameter modifier final as seen in Figure 6.5 and consistent with the

adapted Java Language Specification [13, § 8.4.1] described in Chapter 4.

1 // Create and re turn a snapshot o f o b j
2 public T snap (s n a p T obj) {
3 return obj ;
4 }

Figure 6.5: snap keyword example

This keyword must be defined as a token for parsing, mapped to a new snap flag

describing the formal parameter in the abstract syntax tree, and then the proper

bytecodes emitted when loading an actual parameter bearing the snap keyword

flag for its first use subsequent to method invocation.

Parse Step

Two declarations are required to represent snap internally within the com-

piler. First, declare snap a modifier for Java language elements (Figure 6.6).

44

Second, declare snap flags and masks for Java language elements (Figure 6.7)

1 public enum Modi f i e r { [. . .]
2 [. . .]
3 /∗∗ The m o d i f i e r {@code s t a t i c } ∗/ STATIC,
4 /∗∗ The m o d i f i e r {@code f i n a l } ∗/ FINAL,
5 /∗∗ The m o d i f i e r {@code s n a p } ∗/ SNAP, /∗ MCD ∗/
6 /∗∗ The m o d i f i e r {@code t r a n s i e n t } ∗/ TRANSIENT,
7 [. . .]

Figure 6.6: src/java.compiler/share/classes/javax/lang/model/element/Modifier.java

1 /∗ Access f l a g s & other mod i f i e r s f o r Java c l a s s e s & members ∗/
2 public class Flags { [. . .]
3 /∗ Standard Java f l a g s . ∗/
4 public stat ic f ina l int PUBLIC = 1 ;
5 public stat ic f ina l int PRIVATE = 1<<1; [. . .]
6 public stat ic f ina l long SNAP = 1L<<40; /∗ MCD ∗/
7 [. . .]
8 public stat ic f ina l long
9 ExtendedStandardFlags =

10 (long) StandardFlags | DEFAULT | SNAP, /∗ MCD ∗/
11 Mod i f i e rF lags =
12 ((long) StandardFlags& ĨNTERFACE) | DEFAULT | SNAP, /∗MCD∗/
13 InterfaceMethodMask =
14 ABSTRACT | PRIVATE | STATIC | PUBLIC | STRICTFP | DEFAULT,
15 AnnotationTypeElementMask= ABSTRACT | PUBLIC,
16 LocalVarFlags = FINAL | PARAMETER | SNAP, /∗ MCD ∗/
17 ReceiverParamFlags = PARAMETER; [. . .]

Figure 6.7: src/jdk.compiler/share/classes/com/sun/tools/javac/code/Flags.java

The parser maps the input sequence of Java tokens into an abstract syntax

tree. First, snap must be defined as a valid token for the javac token scan-

ner to recognize it (Figure 6.8). Upon encountering this token, code is needed to

set the corresponding modifier flags in the abstract syntax tree in method Javac-

Parser.modifiersOpt() (Figure 6.9).

45

1 public enum TokenKind
2 implements Formattable , F i l t e r <TokenKind>{ [. . .]
3 FINAL(” f i n a l ”) ,
4 SNAP(” s n a p ”) , /∗ MCD ∗/ [. . .]

Figure 6.8: src/jdk.compiler/share/classes/com/sun/tools/javac/parser/Tokens.java

1 protected void sk ip (boolean stopAtImport ,
2 boolean stopAtMemberDecl ,
3 boolean s t o p A t I d e n t i f i e r ,
4 boolean stopAtStatement) {
5 while (true) {
6 switch (token . kind) { [. . .]
7 case FINAL:
8 case SNAP: /∗ MCD ∗/
9 [. . .]

10 ParensResult analyzeParens () { [. . .]
11 outer : for (int lookahead = 0 ; ; lookahead++) {
12 TokenKind tk = S . token (lookahead) . kind ;
13 switch (tk) { [. . .]
14 case FINAL:
15 case SNAP: /∗ MCD ∗/
16 [. . .]
17 protected JCModif iers modi f i ersOpt (JCModif iers p a r t i a l) { [. . .]
18 while (true) {
19 long f l a g ;
20 switch (token . kind) { [. . .]
21 case FINAL: f l a g = Flags .FINAL; break ;
22 case SNAP : f l a g = Flags .SNAP; break ; /∗ MCD ∗/ [. . .]

Figure 6.9: src/jdk.compiler/share/classes/com/sun/tools/javac/parser/JavacParser.java

Generate Step

While mapping the de-sugared or flat (no inner classes, assertions, for-each loops,

etc) Java abstract syntax tree to bytecodes in the Generate step, we need to set the

”snap needed” flag on each formal method parameter bearing the snap flag. This

step is performed in Gen.visitIdent() (Figure 6.10).

46

1 public void v i s i t I d e n t (JCIdent t r e e) {
2 Symbol sym = t r e e . sym ;
3 i f (t r e e . name == names . t h i s | | t r e e . name == names . super) {
4 [. . .]
5 } else i f (sym . kind == VAR && sym . owner . kind == MTH) {
6 /∗ MCD Set snap i nd i c a t o r i f snap f l a g s e t ∗/
7 i f ((sym . f l a g s () & Flags .SNAP)==0
8 | | (sym . f l a g s () & Flags .PARAMETER) == 0) {
9 /∗ MCD Orig ina l code be low ∗/

10 r e s u l t = items . makeLocalItem ((VarSymbol)sym) ;
11 /∗ MCD Orig ina l code above ∗/
12 }
13 else {
14 // Ind i ca t e snap i s needed a f t e r load
15 LocalItem tmpResult = items . makeLocalItem ((VarSymbol)sym) ;
16 tmpResult . needSnap = true ;
17 r e s u l t = tmpResult ;
18
19 // Prevents needSnap from be ing s e t again and again
20 sym . f l a g s f i e l d −= Flags .SNAP;
21 }
22 } [. . .]

Figure 6.10: src/jdk.compiler/share/classes/com/sun/tools/javac/jvm/Gen.java

To accomplish this step, the ”snap needed” flag must first be added to the local

variable classes and – if the flag was set (see Figure 6.10) – then when the variable

is first loaded off the method stack, the ”snap needed” flag is cleared, the asnap

bytecode is emitted, the result is stored back on the method stack to replace the

reference to the original object, and then the reference is re-loaded off the method

stack to put the snapped reference back on top of the operand stack, which returns

us to the same state as before the snapshot, but with the original reference replaced

by the snapshot reference on the method stack and the operand stack (Figure 6.11).

The asnap bytecode is defined as 0xcb in Opcode.java and ByteCodes.java as

shown in Figures 6.12 and 6.13. The bytecode must be specified in Instruction.balance()

to prevent an invalid bytecode error. This step is shown in Figure 6.14.

47

1 /∗∗ An item rep r e s en t i n g a l o c a l v a r i a b l e . ∗/
2 class LocalItem extends Item { [. . .]
3 /∗ MCD Ind i c a t e s whether l o c a l var must be snapped on load . ∗/
4 boolean needSnap = fa l se ;
5
6 Item load () {
7 i f (reg <= 3)
8 code . emitop0 (i l o a d 0 + Code . t runcate (typecode) ∗ 4+reg) ;
9 else

10 code . emitop1w (i l o ad + Code . t runcate (typecode) , reg) ;
11 /∗ MCD I f a snap i s requ ired , snap on f i r s t load on ly ∗/
12 i f (needSnap) {
13 // Only snap on the f i r s t load , not a f t e r
14 needSnap = fa l se ;
15 // I t on ly makes sense to snap r e f e r ence t ype s
16 i f (type . i sRe f e r en c e ()) {
17 code . emitop0 (asnap) ; // Snap the r e f e r ence
18 this . s t o r e () ; // Store the new re f e r ence
19 this . load () ; // Re−l oad new r e f
20 }
21 }
22 /∗ MCD End Snap Logic ∗/ [. . .]

Figure 6.11: src/jdk.compiler/share/classes/com/sun/tools/javac/jvm/Items.java

1 /∗∗See JVMS, chapter 6 .
2 ∗ <p>In a d d i t i o n to p r o v i d i n g a l l the s tandard opcodes
3 ∗ d e f i n e d in JVMS, t h i s c l a s s a l s o p r o v i d e s l e g a c y suppor t
4 ∗ f o r the PicoJava e x t e n s i o n s . [. . .] ∗/
5 public enum Opcode {
6 NOP(0 x0) ,
7 [. . .]
8 ASNAP(0 xcb) , /∗ MCD Add asnap Opcode ∗/
9 [. . .]

Figure 6.12: src/jdk.jdeps/share/classes/com/sun/tools/classfile/Opcode.java

In Figure 6.15, asnap is declared along with its corresponding name and length.

Figure 6.16 adds support to emit 0xcb asnap bytecode as a zero-parameter bytecode.

For successful operation it is also necessary to define the bytecode mnemonic.

48

1 /∗∗ Bytecode i n s t r u c t i o n codes , as w e l l as typecodes used as
2 ∗ i n s t r u c t i o n m o d i f i e r s . [. . .] ∗/
3 public interface ByteCodes {
4 /∗∗ Byte code i n s t r u c t i o n codes . ∗/
5 int i l l e g a l = −1,
6 nop = 0 ,
7 [. . .]
8 asnap = 203 , /∗ MCD Add asnap Opcode∗/
9 ByteCodeCount = 204 ; /∗ MCD Was 203 (l a s t + 1) ∗/

10 [. . .]

Figure 6.13: src/jdk.compiler/share/classes/com/sun/tools/javac/jvm/ByteCodes.java

1 /∗∗ Balance the s t a c k ∗/
2 int balance () {
3 switch (opc) {
4 case opc dead : case op c l ab e l : case op c i i n c :
5 [. . .]
6 case opc asnap : /∗ MCD Add asnap OpCode ∗/
7 return 0 ;
8 [. . .]
9 }

10 throw new CompilerError (” i n v a l i d opcode : ” + toS t r i ng ()) ;
11 }

Figure 6.14: src/jdk.rmic/share/classes/sun/tools/asm/Instruction.java

1 int opc asnap = 203 ; /∗ MCD Add asnap OpCode ∗/ [. . .]
2 /∗ Opcode Names ∗/
3 St r ing opcNames [] = { [. . .]
4 ” breakpoint ” ,
5 ”asnap” /∗ MCD Add asnap OpCode ∗/
6 } ;
7 [. . .]
8 /∗ Opcode Lengths ∗/
9 int opcLengths [] = { [. . .]

10 1 /∗ MCD Add asnap OpCode ∗/
11 } ;

Figure 6.15: src/jdk.rmic/share/classes/sun/tools/java/RuntimeConstants.java

49

1 /∗ Emit an opcode wi th no operand f i e l d . ∗/
2 public void emitop0 (int op) {
3 emitop (op) ;
4 i f (! a l i v e) return ;
5 switch (op) { [. . .]
6 case asnap : /∗ MCD Add asnap Opcode ∗/
7 break ; [. . .]
8 private stat ic class Mneumonics {
9 private f ina l stat ic St r ing [] mnem =

10 new St r ing [ByteCodeCount] ;
11 stat ic { [. . .]
12 mnem[breakpoint] = ” breakpo int ” ;
13 mnem[asnap] = ”asnap” ; /∗ MCD Add asnap Opcode ∗/
14 [. . .]

Figure 6.16: src/jdk.compiler/share/classes/com/sun/tools/javac/jvm/Code.java

In some cases optimizations are possible but at the expense of greater impact to the

current code base. This is visible in the Generate step of javac where execution may

be simplified by replacing the aload/asnap/astore/aload pattern with a more-complex

asnap bytecode, but this would reduce the generality and simplicity of asnap’s current

function and require more extensive modification to the existing code base, which is

outside the scope of this research2.

6.3.2 Bytecode asnap (0xcb)

The new bytecode, 0xcb asnap, triggers an object-level snapshot within the JVM.

This bytecode takes no parameters, pops an object reference off the operand stack,

snaps the reference (creating a new instance), then pushes the new reference onto the

operand stack. The implementation is described in the HotSpot JVM section below.

2See Chapter 8, future work

50

6.3.3 Supporting Tools

The scope of OpenJDK is well beyond a runtime and compiler tool chain. A

set of supporting tools such as disassemblers and analyzers are included that rely on

a knowledge of the Java Language Specification [13] and the Java Virtual Machine

Specification [15], the knowledge of which is often represented in the form of Java

classes. While it is not the purpose of this research to adapt supporting tools in

OpenJDK, Figure 6.17 adds the snap flag to class and method dump output to ease

troubleshooting and as an example.

1 /∗∗ Return f l a g s as a s t r i n g , separa ted by ” ” . ∗/
2 public stat ic St r ing flagNames (long f l a g s) {
3 S t r i ngBu i l d e r sbuf = new St r i ngBu i l d e r () ;
4 int i = 0 ;
5 long f = f l a g s & StandardFlags ;
6 while (f != 0) { [. . .] }
7 return sbuf . t oS t r i ng () ;
8 }
9 // where

10 private f ina l stat ic St r ing [] flagName = {
11 ”PUBLIC” , ”PRIVATE” , ”PROTECTED” , ”STATIC” , ”FINAL” ,
12 ”SUPER” , ”VOLATILE” , ”TRANSIENT” , ”NATIVE” , ”INTERFACE” ,
13 ”ABSTRACT” , ”STRICTFP” , ”SNAP” } ; /∗ MCD ∗/

Figure 6.17: src/jdk.compiler/share/classes/com/sun/tools/javac/jvm/ClassWriter.java

6.4 HotSpot JVM

Java’s reference JVM, HotSpot, is a component of OpenJDK and accepts com-

piled .class files containing Java bytecode input. HotSpot contains both a bytecode

interpreter as well as two bytecode compilers, c1 and c2. Java bytecodes are initially

executed by the bytecode interpreter and as the profiler detects that a method is

heavily used (and meets certain criteria such as method size), it is compiled into

51

native instructions to improve execution performance. As the hot spots in the code

may shift during execution, methods may go through multiple iterations of being in-

terpreted, c1-compiled, c2-compiled, and back to interpreted. The mechanism of this

operation is not the topic of this paper, but the intuition is important to understand.

This section discusses the modified parts of the HotSpot reference JVM necessary

to minimally implement bytecode 0xcb asnap according to the semantics described

earlier in this chapter. The basic requirement for the HotSpot JVM is to recognize

the new 0xcb asnap bytecode as valid and when encountered:

1. Pop the reference off the operand stack

2. Determine the actual class of the object reference

3. Allocate a new, empty object of the same class on the heap

4. Copy the input object contents (two layers deep) to the new object3

5. Push the new object reference onto the top of the operand stack

HotSpot is primarily written in C++ with selected platform-specific assembler

included for speed of execution. To keep the research size small, the four lines of

necessary native code were implemented only for x64. Porting to other platforms is

a task for future research.

The two layer copy performs the same basic copy operation for any direct class

members of JVM internal type instanceobject or arrayobject. The result is effectively

a predictable but non-deep copy of the object. Implementing a deep snapshot is a

future activity described in Chapter 8.

3Extending depth to the entire object graph is discussed in Chapter 8 as future work

52

6.4.1 Snapshot semantics

The snapshot implemented within HotSpot is a full-image contiguous snapshot

that in the current research iteration is a two-layer copy, meaning the object and its

children are copied, but not the entire n-deep object graph.

Initially the author considered implementing a deep and differential snapshot with

the block size being the individual field members within the object while maintaining

a bitmap and relationship between the original and the snapshot similar to Copy-on-

Write or Redirect-on-Write snapshots of a storage system.

To narrow the block size to individual object members within HotSpot would be

a large undertaking outside the scope of this paper. HotSpot deeply and generally

considers object fields to be contiguously allocated on the heap and a pre-determined

distance from the top of the object heap location. This memory model representation

is frequently exposed or its abstraction pierced in pursuit of maximum performance.

Consequently, implementation would require adapting bytecode re-writing, platform-

specific fastpaths, and significant modifications to the c1 and c2 compilers and garbage

collection. This is deemed an interesting topic for future research but not feasible for

the author at this time.

6.4.2 Bytecode 0xcb asnap

The declaration of the 0xcb asnap bytecode is shown in Figures 6.18 and 6.19.

Each bytecode supported by HotSpot’s bytecode interpreter is represented by an im-

plementation class descending from class Bytecode. The additional class representing

asnap is shown in Figure 6.20 and is a minimal implementation.

Bytecode verification for 0xcb asnap is left for a future task. To enable evaluation

for this research, an empty validate function was created and is shown in Figure 6.21.

53

1 class Bytecodes : A l l S t a t i c {
2 public :
3 enum Code {
4 i l l e g a l = −1,
5
6 // Java b y t e c o d e s
7 nop = 0 , // 0x00 [. . .]
8 asnap = 203 , // 0 xcb /∗ MCD asnap Opcode ∗/
9 [. . .]

Figure 6.18: src/hotspot/share/interpreter/bytecodes.hpp

1 void Bytecodes : : i n i t i a l i z e () { [. . .]
2 // Java by t ecodes
3 // by tecode name fmt wide? r e s u l t tp s t k t rap s
4 de f (asnap , ”asnap” , ”b” , NULL, T OBJECT, 0 , fa l se) ; /∗MCD asnap∗/
5 [. . .]

Figure 6.19: src/hotspot/share/interpreter/bytecodes.cpp

1 /∗ MCD Begin asnap ∗/
2 class Bytecode asnap : public Bytecode {
3 public :
4 Bytecode asnap (Method∗ method , address bcp) :
5 Bytecode (method , bcp) { v e r i f y () ; }
6 void v e r i f y () const {
7 a s s e r t (java code () == Bytecodes : : asnap , ” check asnap”) ;
8 }
9 // Returns index

10 long index () const { return ge t index u1 (java code ()) ; } ;
11 } ;
12 /∗ MCD End asnap ∗/

Figure 6.20: src/hotspot/share/interpreter/bytecode.hpp

54

1 void C l a s sV e r i f i e r : : ver i fy method (const methodHandle& m, TRAPS) {
2 HandleMark hm(THREAD) ;
3 method = m; // i n i t i a l i z e method
4 l o g i n f o (v e r i f i c a t i o n) (” Ver i f y i ng method %s” ,
5 m−>name and s i g a s C s t r ing ()) ;
6 [. . .]
7 while (! bcs . i s l a s t b y t e c o d e ()) { [. . .]
8 switch (opcode) {
9 case Bytecodes : : nop : [. . .]

10 /∗ MCD Begin Snap Opcodes ∗/
11 case Bytecodes : : asnap :
12 v e r i f y a snap (index , ¤t f rame , CHECK VERIFY(this)) ;
13 no c on t r o l f l ow = fa l se ; break ;
14 /∗ MCD End Snap Opcodes ∗/ [. . .]
15 /∗ MCD Begin Snap Opcodes ∗/
16 void C l a s sV e r i f i e r : : v e r i f y a snap (u2 index ,
17 StackMapFrame∗ current f rame , TRAPS) {
18 // TODO MCD Ensure operand i s r e f e r ence type
19 }
20 /∗ NCD End Snap Opcodes ∗/

Figure 6.21: src/hotspot/share/classfile/verifier.cpp

6.4.3 Bytecode Interpreter

HotSpot executes the stream of Java bytecodes within a method using a template-

based bytecode interpreter when the method is not presently compiled. Consequently,

interpretation is the baseline mode of operation within the HotSpot JVM and was

originally its only mode of operation [22].

The interpreter maintains a table of native assembly code with a template entry

corresponding to each Java bytecode. At startup, the interpreter and this table are

loaded into memory by InterpreterGenerator. This approach is more performant

than a switch-based interpreter due the fewer number of compare operations and the

utilization of the native C stack to pass its arguments [37].

Figures 6.22, 6.23, and 6.24 convey the addition of asnap to the bytecode inter-

preter as well as its native template table.

55

1 Bytecode In te rp r e t e r : : run (i n t e r p r e t e r S t a t e i s t a t e) {
2 [. . .]
3 const stat ic void∗ const o p c l a b e l s d a t a [2 5 6] = { [. . .]
4 /∗ 0xC8 ∗/ &&opc goto w ,&&opc j s r w ,
5 &&opc breakpoint , &&opc asnap /∗ MCD Add asnap ∗/
6 [. . .]
7 switch (opcode) { [. . .]
8 CASE(asnap) : UPDATE PC AND CONTINUE(1) ; /∗ MCD ∗/
9 [. . .]

Figure 6.22: src/hotspot/share/interpreter/bytecodeInterpreter.cpp

1 [. . .] stat ic void asnap () ; /∗ MCD ∗/ [. . .]

Figure 6.23: src/hotspot/share/interpreter/templateTable.hpp

1 void TemplateTable : : i n i t i a l i z e () {
2 i f (i s i n i t i a l i z e d) return ; [. . .]
3 /∗ MCD Begin Snap Bytecodes ∗/
4 // Java spec bcode ubcp | d i sp | clvm | iswd in out gen arg
5 de f (Bytecodes : : asnap , ubcp | | clvm | , vtos , vtos , asnap ,) ;
6 /∗ MCD End Snap Bytecodes ∗/ [. . .]

Figure 6.24: src/hotspot/share/interpreter/templateTable.cpp

The native x64 assembly code the asnap bytecode referenced in the table entry

above is shown in Figure 6.25. This assembly code:

1. Pops the object reference off the operand stack

2. Calls into the VM to perform the object snapshot (Fig. 6.26, 6.27)

3. Pushes the new object reference back onto the operand stack

Given the routine is native to x64, future effort is required to port the code to

other platforms or elevate it to a platform-independent implementation.

56

1 /∗ MCD Begin asnap ∗/
2 void TemplateTable : : asnap () {
3 t r a n s i t i o n (vtos , vtos) ;
4
5 // Pop the a tos o f f the operand s t a c k
6 pop (rax) ;
7
8 // C a l l VM to snap a tos . Creates new atos re turned in rcx
9 call VM (rcx , CAST FROM FN PTR(address ,

10 InterpreterRunt ime : : asnap) ,
11 rax) ;
12
13 // Push the a tos back onto the operand s t a c k
14 push (rcx) ;
15 }
16 /∗ MCD End asnap ∗/

Figure 6.25: src/hotspot/cpu/x86/templateTable x86.cpp

At this point it is necessary to understand HotSpot internally refers to Java class

type representations as klass objects – due to class being a reserved word in C++.

The klass object contains the method vtable (behavior) and defines the in-memory

layout of all object instances of that klass (layout).

The contents of each object instance is stored on the heap and its access is rep-

resented by an oops (ordinary object pointer) heap object. The klass is required to

correctly interpret the Java class content layout of an oops on the heap. Each oops

begins with a mark word and a klass word. The former is comprised of a series of

flags and the latter is a pointer to the klass object describing the behavior and layout

of the oops.

The call into the VM from Figure 6.25 is dispatched into the InterpreterRuntime

where a new C++ routine implements the snap operation. The snap operation uses

the object reference popped off the operand stack as input and works as follows. This

rundown is organized using the line numbers shown in Figures 6.26 and 6.27.

57

Lines 5-7: Using the object reference provided as input, derive the Klass object

pointer from the object reference’s klass word. The klass is necessary to determine

the layout of the oops object, including its length.

Lines 9-11: First ensure we are not about to try to instantiate an abstract class or

snapshot using a klass definition that is not yet initialized.

Lines 13-14: Create a new oops object: using the klass derived from the source

object, allocate a new oops on the heap. This ensures the new oops is of correct size.

Line 17: Calculate the size of the oops body (sans mark and klass words).

Lines 19-22: Copy the old oops body bytes to the new oops body.

Lines 24-29: To copy the first layer of object members, we need the layout of the

members. Get the InstanceKlass object, which will provide this layout. Instantiate

a field descriptor, fd, which will be used to assess each field.

Line 32: Loop over each field in the object.

Lines 33-35: Determine the field type using the field descriptor, fd.

58

1 /∗ MCD Begin Snap Support ∗/
2 IRT ENTRY(void , InterpreterRunt ime : : asnap (JavaThread∗ thread ,

oopDesc∗ s r c ob j))
3 a s s e r t (oopDesc : : i s o op (s rcob j , true) , ”must be a va l i d oop”) ;
4
5 // Get the k l a s s o b j e c t r e f e r ence from the oopHeader & cas t to

ins tanceK las s
6 Klass ∗ s r ck = srcob j−>k l a s s () ;
7 Ins tanceKlas s ∗ s r c i k = Ins tanceKlas s : : c a s t (s r ck) ;
8
9 // Make sure we are not i n s t a n t i a t i n g an a b s t r a c t k l a s s & k l a s s

i s i n i t i a l i z e d
10 s r c i k−>c h e c k v a l i d f o r i n s t a n t i a t i o n (true , CHECK) ;
11 s r c i k−> i n i t i a l i z e (CHECK) ;
12
13 // A l l o ca t e the new oop
14 oop dstob j = s r c i k−>a l l o c a t e i n s t a n c e (CHECK) ;
15
16 // Ca l cu l a t e s i z e in by t e s o f o b j e c t body (s i z e − mark word)
17 int oopbodys ize = s r c i k−>l a y ou t h e l p e r ()−HeapWordSize ;
18
19 // Copy the oops f i e l d con ten t s (no deep copy f o r now)
20 Copy : : c o n j o i n t j b y t e s (((markOop∗) s r c ob j)+1, // source
21 ((markOop∗) ds tob j)+1, // de s t
22 oopbodys ize) ; // bdy sz (b y t e s)
23
24 // Get the k l a s s o b j e c t r e f e r ence from the oopHeader & cas t to

ins tanceK las s
25 Klass ∗ dstk = dstobj−>k l a s s () ;
26 Ins tanceKlas s ∗ d s t i k = Ins tanceKlas s : : c a s t (dstk) ;
27
28 f i e l dD e s c r i p t o r fd ;
29 int l ength = s r c i k−>j a v a f i e l d s c o u n t () ;
30
31 // Loop over the o b j e c t f i e l d s
32 for (int i = 0 ; i < l ength ; i += 1) {
33 // Get the f i e l d d e s c r i p t o r f o r the f i e l d
34 fd . r e i n i t i a l i z e (s r c i k , i) ;
35 BasicType f t = fd . f i e l d t y p e () ;

Figure 6.26: src/hotspot/share/interpreter/interpreterRuntime.cpp (1 of 2)

59

Lines 38-39: Ignore static fields and fields that are neither object nor array.

Lines 40-42: Get the oop of the field member. Due to lines 38-39 it will either be

an array or an object. From the oop’s klass word get a reference to the klass.

Lines 45-50: If the field member is an object, get the layout via InstanceKlass,

allocate the new oop on the heap, and calculate its body size based on its layout.

Lines 51-64: If the field member is an array: in this branch both object and type

arrays must be considered. Object arrays are an array of objects and type arrays

are an array of primitives. Get the layout via TypeArrayKlass or ObjArrayKlass,

allocate the new oop on the heap, and calculate its body size based on its layout.

Lines 66-69: Copy the body of the object member oops to the new oops similar to

lines 19-22.

Lines 70-71: Store the newly-created member object reference in the new object’s

member reference field.

Line 75: Return the pointer to the new object back to the assembler template rou-

tine.

60

37 // Only snap non−s t a t i c ob j arr and o b j e c t in s tance f i e l d s
38 i f (! fd . i s s t a t i c ()) {
39 i f (f t == TARRAY | | f t == T OBJECT) {
40 // Get the in s tance / array o b j e c t
41 oop s r c f l d o b j = srcob j−>o b j f i e l d (fd . o f f s e t ()) ;
42 Klass ∗ s r c f l d k = s r c f l d ob j−>k l a s s () ;
43 oop d s t f l d o b j ;
44 int oop f ldbodys i z e ;
45 i f (f t==T OBJECT) { // Object
46 Ins tanceKlas s ∗ s r c f l d i k = Ins tanceKlas s : : c a s t (s r c f l d k) ;
47 // A l l o ca t e new oop
48 d s t f l d o b j = s r c f l d i k −>a l l o c a t e i n s t a n c e (CHECK) ;
49 // s i z e − mark word
50 oop f ldbodys i z e=s r c f l d i k −>l a y ou t h e l p e r ()−HeapWordSize ;
51 } else { // T ARRAY
52 ArrayKlass∗ s r c f l d a k ;
53 i f (s r c f l d k−>i s t yp eAr r ay k l a s s ()) { // Type Array
54 s r c f l d a k = TypeArrayKlass : : c a s t (s r c f l d k) ;
55 } else { // Object Array
56 s r c f l d a k = ObjArrayKlass : : c a s t (s r c f l d k) ;
57 }
58 // A l l o ca t e new oop
59 d s t f l d o b j = s r c f l dak−>a l l o c a t e a r r ayAr ray (1 ,
60 ((arrayOop) s r c f l d o b j)−>l ength () ,CHECK) ;
61 // header + e l emen t s i z e ∗ num elements
62 oop f ldbodys i z e = s r c f l dak−>a r r ay heade r i n by t e s ()
63 + ((1 << s r c f l d ak−>l o g 2 e l emen t s i z e ())
64 ∗ ((arrayOop) s r c f l d o b j)−>l ength ()) ;
65 }
66 // Copy the oops f i e l d con ten t s (no deep copy f o r now)
67 Copy : : c o n j o i n t j b y t e s (((markOop∗) s r c f l d o b j)+1,// src a f .mw
68 ((markOop∗) d s t f l d o b j)+1, // de s t a f t e r mark word
69 oop f ldbodys i z e) ; // body s i z e in by t e s
70 // Update the f i e l d r e f e r ence
71 dstobj−>o b j f i e l d p u t (fd . o f f s e t () , d s t f l d o b j) ;
72 }
73 }
74 }
75 thread−>s e t vm r e su l t (ds tob j) ; // Return the new oops
76 IRT END
77 /∗ MCD End Snap Support ∗/

Figure 6.27: src/hotspot/share/interpreter/interpreterRuntime.cpp (2 of 2)

61

Figure 6.28 adds asnap support to the parser used by the optimization engine,

which requires all bytecodes encountered be defined.

1 void Parse : : do one bytecode () { [. . .]
2 switch (bc ()) {
3 case Bytecodes : : asnap : // MCD Fal l−through ; Snap Support
4 case Bytecodes : : nop :
5 // do noth ing
6 break ; [. . .]

Figure 6.28: src/hotspot/share/opto/parse2.cpp

Interpreted methods are mapped during garbage collection with the maps stored

in the OopMapCache. HotSpot generates these maps during garbage collection as

it is walking the thread stacks to determine which objects are in use on the stack.

Figure 6.29 shows adding asnap to the OopMap generator.

1 // Se t s the curren t s t a t e to be the s t a t e a f t e r e x e c u t i n g the
2 // current i n s t r u c t i o n , s t a r t i n g in the curren t s t a t e .
3 void GenerateOopMap : : i n t e rp1 (BytecodeStream ∗ i t r) { [. . .]
4 // a b s t r a c t i n t e r p r e t a t i o n o f curren t opcode
5 switch (i t r−>code ()) { [. . .]
6 case Bytecodes : : asnap :
7 break ; /∗ MCD ASnap Support ∗/ [. . .]

Figure 6.29: src/hotspot/share/oops/generateOopMap.cpp

HotSpot’s BCEscapeAnalyzer class conservatively analyzes code blocks at the

bytecode level to determine the escape state of objects used by a code block under

analysis. The determination algorithm [38] allows HotSpot to perform optimizations

such as elimination of synchronization locks for thread-local objects for which there

can be no contention [23, § Escape Analysis]. Escape states are computed as follows:

1. None: The object cannot be used outside the scope

62

2. Arg: The object is passed as an argument but is otherwise unobservable outside

the scope

3. Global: The object escapes the method: it is either returned, stored in a static

field, or stored in an object that escapes the method.

In future research, the intent for non-shared state conveyed by snap could

conceivably be combined with the escape analysis to shed the additional asnap/as-

tore/aload bytecode pattern in situations where the input object’s escape state is such

that the snap operation has no net benefit. This would allow intent-based defensive

programming with a minimum performance penalty and would need to address the

fact that the escape analyzer is executed lazily and its analysis is not always available

to the runtime [23, § Escape Analysis].

Bytecode asnap is added in Figure 6.30 as all bytecodes must be represented in

the switch statement, but the implementation is minimal and further work is needed

to properly analyze the input and output of the asnap bytecode.

1 void BCEscapeAnalyzer : : i t e r a t e o n e b l o c k (c iB lock ∗blk ,
2 S t a t e I n f o &state , GrowableArray<c iB lock ∗> &s u c c e s s o r s) {
3 [. . .]
4 while (s . next () != ciBytecodeStream : :EOBC()
5 && s . c u r b c i () < l i m i t b c i) {
6 f a l l t h r o u g h = true ;
7 switch (s . cur bc ()) {
8 case Bytecodes : : nop :
9 case Bytecodes : : asnap : // MCD Snap Support

10 break ; [. . .]

Figure 6.30: src/hotspot/share/ci/bcEscapeAnalyzer.cpp

The type flow analyzer requires all bytecodes be identified; consequently, asnap is

added to the analyzer switch statement in Figure 6.31.

63

1 bool ciTypeFlow : : StateVector : : app ly one bytecode ([. . .]
2 switch (s t r−>cur bc ()) { [. . .]
3 case Bytecodes : : asnap : // MCD Snap Support
4 case Bytecodes : : r e tu r n :
5 { break ; } // do noth ing . [. . .]

Figure 6.31: src/hotspot/share/ci/ciTypeFlow.cpp

The bytecode assembler is modified in Figure 6.32 to insert support for asnap.

This class is used by the VM to create new methods such as during default method

analysis when new overpass methods are generated.

1 /∗ MCD Begin Snap Support ∗/
2 void BytecodeAssembler : : asnap () {
3 code−>append (Bytecodes : : asnap) ;
4 }
5 /∗ MCD End Snap Support ∗/

Figure 6.32: src/hotspot/share/classfile/bytecodeAssembler.cpp

6.4.4 c1 and c2 Just-in-time (JIT) compilers

Intuitively, when HotSpot determines4 a method is ”hot” and meets specific cri-

teria such as method size, the method is compiled into native code and the bytecode

interpreter is bypassed for subsequent executions. The Just-in-time (JIT) compilers

implemented in many JVMs perform this compilation asynchronously and compile

heavily-used methods into native code for more direct and faster execution.

HotSpot’s c1 compiler is intended as a client compiler that has a fast warm-up and

contains intermediate and less-costly optimizations [22]. The idea is that clients have

fewer users, tend to run applications for shorter periods, and will exercise the code

less intently than a multi-user server; consequently, this balance of fast compilation

4The rules and mechanism for this determination are outside the scope of this paper

64

and fast startup makes sense for clients.

HotSpot’s c2 compiler is intended as a server compiler that has a longer warm-up

and contains advanced and more-costly optimizations [22]. The idea is a server has

a larger number of users, may run for a longer time, and will have methods that are

more heavily used than in a client situation; thus a longer warm-up and more-costly

optimizations may be a good trade-off for servers.

In reality, servers and clients use both of these compilers in HotSpot’s current

implementation, which employs a tiered compilation strategy to provide an optimal

and dynamic level of optimization regardless of whether the host computer is a client

or a server [23, § Tiered Compilation].

This paper does not alter the c1 and c2 compilers to compile the 0xcb asnap byte-

code due to time constraints. When encountering an unknown bytecode, the compiler

will fail. For expected results as described in this chapter and in the evaluation, the

c1 and c2 compilers must be suppressed via command line to ensure the runtime exe-

cutes only with the bytecode interpreter. Adapting c1 and c2 is future work described

in Chapter 8.

65

6.5 Summary

To implement object-level snapshots directly in OpenJDK 10, several changes

were needed. First, the javac compiler was modified to declare the snap keyword

and 0xcb asnap bytecode, which takes zero parameters. The parse step and abstract

syntax tree within javac were modified to map the new keyword within a method’s

formal parameter declaration into a new flag within the abstract syntax tree.

Second, within the javac generate step the snap flag, if set in the abstract syntax

tree, triggers the output of an asnap, astore, and aload bytecodes upon the first aload

of a snapshot parameter subsequent to method invocation.

This sequence, when executed within the JVM, takes the aloaded object reference

off the top of the operand stack, snaps it, pushes the new snapshot reference back

onto the top of the operand stack, and then astores and aloads it again to update

the object reference on the method stack and put the new object reference back on

top of the operand stack. Recall this activity occurs during an aload and this set of

operations results in a state similar to an aload, except the object now on the method

and operand stacks is the snapped copy of the object.

Within the HotSpot JVM, declarations for bytecode 0xcb asnap are added but

bytecode verification and escape analysis are left for future work. The bytecode

interpreter is modified to accept the 0xcb bytecode and x64 assembler code is inserted

into the template table to handle popping the object off the operand stack, calling

into the VM using the object reference, and pushing the new returned snapshot

object back onto the stack. Within the VM, the klass type of the object reference is

determined and another object of the same type and size is created on the heap. The

contents of the initial object are copied to the new object. For the new object, direct

members are also copied to new objects. A deep copy facility is left as future work.

66

During the course of the implementation, various other support areas were min-

imally updated as well as the exit analyzer and type flow analyzer. The c1 and c2

compilers were not adapted and this task is left for future research as described in

Chapter 8. Consequently, during evaluation, the JIT compilers must be disabled.

The outcome of this activity is an object-level snapshot facility that produces ob-

jects with a two-layer deep snapshot that can be triggered using the keyword snap

on the formal method declaration. This is a simple and natural means by which to

unshare the state of an input object where shared state is not desired. This facility is

sufficient to evaluate the prediction set out in Chapter 1. This evaluation is carried

out in Chapter 7.

67

Chapter 7

Evaluation

”It is noticeably hard to predict the effect of optimization

strategies in Java without implementing them.”

- Michael J. Steindorfer and Jurgen J. Vinju

This chapter evaluates the experimental implementation described in Chapter 6 to

determine its characteristics relative to the prediction set out in Chapter 1. It out-

lines the pertinent research questions relevant to a software engineering practitioner,

outlines the process by which to evaluate these characteristics, then performs and

summarizes the evaluation.

7.1 Key Research Questions

The four questions raised in Chapter 1 relative to the prediction are detailed

below. Each question is described within the context of the current Java development

environment as well as its criteria for evaluation.

1. Is the behavior predictable?

2. Is the operation universal?

3. What is the performance relative to other methods?

4. Is the operation native to the JDK?

7.1.1 Is the Behavior Predictable?

Software Engineers value predictable behavior that reduces the testing required

to verify correctness relative to a specification. A key question: is the behavior of the

operation predictable without understanding the type’s underlying implementation?

The evaluation of this characteristic simply pertains to whether the operation

produces a consistent outcome discernible in advance without a requirement to un-

derstand the concrete implementation of the type upon which the operation is per-

formed. Within Chapter 8, a user study is suggested as future work to confirm

whether software engineers generally find the behavior more predictable.

7.1.2 Is the Operation Universal?

A second limitation of the native facilities available relates to their non-universal

nature of operation. When the method designer intends to unshare the state of a

shared mutable object, a navigation of the available options by concrete type should

not be necessary.

The evaluation of this characteristic pertains to whether it applies to all object

instances regardless of concrete type – that is, its operation is universal.

7.1.3 What is the Performance Relative to Other Methods?

To some extent, the optimizations within the HotSpot JVM to fastpath clone() is

a reflection of clone()’s frequent use. This frequency itself is a reflection of its value

to software engineers who need to fix the state of a shared mutable object.

An evaluation of relative performance vis-á-vis existing native approaches is un-

dertaken to assess the relative cost or benefit of using the snapshot method based on

a simple benchmark suite.

69

The reader should clearly note this performance comparison is between:

1. A minimal and un-optimized implementation developed by one person after

work and over some weekends, and

2. Native methods heavily optimized over an extended period of time by several

software engineers.

Multiple articles explain the difficulty of evaluating Java performance due to the

non-deterministic nature of JVM operation: from thread-scheduling to Just-In-Time

Compilation to Garbage Collection to other JVM operations [39, 40]. Horkỳ et al.

[41] point out multiple technical details confuse even simple scenarios and produce

”tricky results.”

The performance evaluation focuses on steady state execution rather than startup.

The system under evaluation is the custom HotSpot 10 on x64, which is the target

platform/JVM combination discussed in Chapter 6. Implementation and performance

evaluations on other platforms and JVMs is not undertaken at this time as the func-

tionality is currently implemented experimentally for one JVM and solely on x64.

At the outset of the performance evaluation, a warm-up cycle of the benchmarking

is executed and its results discarded. This is appropriate for steady-state performance

evaluation. Replay compilation is not considered as evaluation is performed with the

bytecode interpreter only. Garbage collection is requested in between measurable

activities to minimize some aspects of non-determinism.

70

Benchmark Suite Selection

The benchmark suite is a simple evaluation of relative performance. Given the

implementation in Chapter 6 is a minimal and un-optimized research prototype, there

are limits to the conclusions that may be drawn about performance. Still, it is

desirable to understand the relative performance attributes.

With that in mind, two objects were created that model a small and simple object

as well as a large and relatively complex object. The objects include a mix of member

objects, primitive data types, object arrays, and primitive arrays.

The Benchmark Suite

The first object in the suite is the small object, which is defined in Figure 7.1 and

consists of members: Integer[] (array), int, and String. This object overrides several

methods inherited from its parent.

The second object in the suite is the large object, which is defined in Figure 7.2

and consists of members: int[], Object[], and String[] (all of array size 10000). This

object overrides several methods inherited from its parent.

71

1 public class SmallObject implements S e r i a l i z a b l e , Cloneable {
2 public SmallObject (SmallObject cpySource) {// Cpy Constructor
3 this . i n t1 = cpySource . i n t1 ;
4 this . s t r 1 = cpySource . s t r 1 ;
5 this . i n t Sho r tL i s t = cpySource . i n t Sho r tL i s t . c l one () ;
6 }
7 public SmallObject (int i n I n t) { // Constructor
8 for (int i = 0 ; i < i n t Sho r tL i s t . l ength ; i++) {
9 i n tSho r tL i s t [i] = in In t ;

10 }
11 in t1 = in In t ;
12 s t r 1 = (In t eg e r . valueOf (in t1)) . t oS t r i ng () ;
13 }
14 private I n t eg e r [] i n t Sho r tL i s t = new I n t eg e r [1 0] ;
15 private int i n t 1 ;
16 private St r ing s t r 1 ; [. . .]
17 // Override Methods
18 public Object c l one () throws CloneNotSupportedException {
19 return super . c l one () ;
20 }
21 public boolean equa l s (Object o) {
22 i f (o == this) { return true ; } // Ident
23 i f (! (o i n s t an c e o f SmallObject)) {return fa l se ;} // Type
24 SmallObject so = (SmallObject) o ;
25 return (this . i n t1 == so . i n t1
26 && this . s t r 1 . equa l s (so . s t r 1)
27 && Arrays . equa l s (this . i n tSho r tL i s t , so . i n t Sho r tL i s t)) ;
28 }
29 public int hashCode () {
30 int hash = 3 ;
31 hash = 17 ∗ hash+Arrays . deepHashCode (this . i n t Sho r tL i s t) ;
32 hash = 17 ∗ hash+this . i n t1 ;
33 return 17 ∗ hash+Objects . hashCode (this . s t r 1) ;
34 }
35 }

Figure 7.1: SmallObject.java

72

1 public class LargeObject extends SmallObject {
2 public LargeObject (LargeObject cpySource) {// Cpy Constructor
3 super (cpySource) ;
4 this . i n t L i s t = cpySource . i n t L i s t . c l one () ;
5 this . o b jL i s t = cpySource . ob jL i s t . c l one () ;
6 this . s t r L i s t = cpySource . s t r L i s t . c l one () ;
7 }
8 public LargeObject (int i n I n t) { // Constructor
9 super (i n In t) ;

10 for (int i = 0 ; i < i n t L i s t . l ength ; i++) {
11 i n t L i s t [i] = in In t ;
12 ob jL i s t [i] = i n t L i s t [i] ;
13 s t r L i s t [i] = ob jL i s t [i] . t oS t r i ng () ;
14 }
15 }
16 private int [] i n t L i s t = new int [1 0 0 0 0] ;
17 private Object [] ob jL i s t = new Object [1 0 0 0 0] ;
18 private St r ing [] s t r L i s t = new St r ing [1 0 0 0 0] ;
19 // Override Methods
20 public Object c l one () throws CloneNotSupportedException {
21 return super . c l one () ;
22 }
23 public boolean equa l s (Object o) {
24 i f (o == this) { return true ; } // Ident
25 i f (! (o i n s t an c e o f LargeObject)) {return fa l se ;} // Type
26 i f (! super . equa l s (o)) { return fa l se ; } // Super
27 LargeObject so = (LargeObject) o ;
28 return (Arrays . equa l s (this . i n tL i s t , so . i n t L i s t)
29 && Arrays . equa l s (this . ob jL i s t , so . ob jL i s t)
30 && Arrays . equa l s (this . s t rL i s t , so . s t r L i s t)) ;
31 }
32 public int hashCode () {
33 int hash = super . hashCode () ;
34 hash = 37 ∗ hash + Arrays . hashCode (this . i n t L i s t) ;
35 hash = 37 ∗ hash + Arrays . deepHashCode (this . o b jL i s t) ;
36 return 37 ∗ hash + Arrays . deepHashCode (this . s t r L i s t) ;
37 }
38 }

Figure 7.2: LargeObject.java

73

The test harness accepts as parameters the number of repetitions and the number

of objects to work with for each repetition. All actions beneath (a) and (b) calculate

runtime. Garbage collection is requested before each measure operation.

1. Perform a self-check confirming the snap facility is present and operating

2. Perform the following steps for the number of repetitions desired

(a) Create the desired number of small objects and store them in an ArrayList

i. Loop over the objects array list twice (warm-up)

ii. Clone each object in the array list

iii. Snap each object in the array list

iv. Serialize/De-serialize each object in the array list

v. Copy each object in the array list via copy constructor

(b) Create the desired number of large objects and store them in an ArrayList

i. Loop over the objects array list twice (warm-up)

ii. Clone each object in the array list

iii. Snap each object in the array list

iv. Serialize/De-serialize each object in the array list

v. Copy each object in the array list via copy constructor

3. Output the results of the comparison

As previously described, all evaluations are performed using the bytecode inter-

preter: no evaluations are performed using the c1 or c2 JIT compilers as they are not

modified by this paper. This suppression was effected by using the −Xint command

line option, which puts HotSpot into interpreted-only mode.

74

>java . exe −Xint edu . ecu . seng7000 . ecumatt . ex2 .Main 60 2

Se l f−Check Phase
−−−−−−−−−−−−−−−−−−
− main PRE : myList . count=1 (2761399) [Yogi]
− testNorm PRE : i n c o l l . count=1 (2761399) [Yogi]
− testNorm POST: i n c o l l . count=3 (−1563221239) [Yogi ,Norm, Stan]

− main MID : myList . count=3 (−1563221239) [Yogi ,Norm, Stan]
− testSnap PRE : i n c o l l . count=3 (−1563221239) [Yogi ,Norm, Stan]
− testSnap POST: i n c o l l . count=1 (2581513) [Snap]

− main POST: myList . count=3 (−1563221239) [Yogi ,Norm, Stan]

Benchmarking Phase
−−−−−−−−−−−−−−−−−−
[. . .]
− Bui ld ing 60 Small Objects −> 135 ,000 ns
− 60 Noop (warmup loop #1) −> IDENT
− 60 Noop (warmup loop #2) −> IDENT
− 60 Clones −> EQUIV −> 1 ,573 ,700 ns
− 60 Snaps −> EQUIV −> 2 ,232 ,700 ns
− 60 S e r i a l i z e / Un s e r i a l i z e s −> EQUIV −> 49 ,488 ,300 ns
− 60 Copy Constructors −> EQUIV −> 2 ,911 ,600 ns

− Bui ld ing 60 Large Objects −> 1 ,086 ,203 ,600 ns
− 60 Noop (warmup loop #1) −> IDENT
− 60 Noop (warmup loop #2) −> IDENT
− 60 Clones −> EQUIV −> 2 ,241 ,800 ns
− 60 Snaps −> EQUIV −> 5 ,348 ,300 ns
− 60 S e r i a l i z e / Un s e r i a l i z e s −> EQUIV −> 17 ,990 ,479 ,400 ns
− 60 Copy Constructors −> EQUIV −> 7 ,118 ,100 ns
[. . .]

Figure 7.3: Example Benchmark Run

An example run is shown in Figure 7.3 and the snap and clone benchmark code is

shown in Figures 7.4 and 7.5. The benchmark program outputs run data as matrices

for plotting and analysis in GNU Octave or other tools. A violin plot of the run data

is shown in the Evaluation Results section (Figure 7.7).

75

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Snap ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
2 System . out . p r i n t f (”− %d Snaps ” , cnt) ;
3 int i = 0 ;
4 objOutput = new ArrayList<>() ;
5 e l apsed = 0 ;
6 for (T obj : obj Input) {
7 System . gc () ;
8 s t a r t = System . nanoTime () ;
9 newObj = snap (obj) ;

10 end = System . nanoTime () ;
11 e lapsed += end − s t a r t ;
12 objOutput . add (newObj) ;
13 objTimeSnap . add (end − s t a r t) ;
14 }
15 System . out . p r i n t f (” −> ”) ; System . out . p r i n t f (”%s ” , padRight (

evalEquiv (objInput , objOutput) . t oS t r i ng () ,10) . sub s t r i ng (0 , 5)) ;
16 System . out . p r i n t f (” −> ”) ; System . out . p r i n t f (”%s ns\ r \n” ,

NumberFormat . g e t I n t e g e r I n s t an c e () . format (e l apsed)) ;

Figure 7.4: Benchmark Harness - Snap

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Clone ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
2 System . out . p r i n t f (”− %d Clones ” , cnt) ;
3 objOutput = new ArrayList<>() ;
4 e l apsed = 0 ;
5 for (T obj : obj Input) {
6 System . gc () ;
7 s t a r t = System . nanoTime () ;
8 newObj = (T) obj . c l one () ;
9 end = System . nanoTime () ;

10 e lapsed += end − s t a r t ;
11 objOutput . add (newObj) ;
12 objTimeClone . add (end − s t a r t) ;
13 }
14 System . out . p r i n t f (” −> ”) ; System . out . p r i n t f (”%s ” , padRight (

evalEquiv (objInput , objOutput) . t oS t r i ng () ,10) . sub s t r i ng (0 , 5)) ;
15 System . out . p r i n t f (” −> ”) ; System . out . p r i n t f (”%s ns\ r \n” ,

NumberFormat . g e t I n t e g e r I n s t an c e () . format (e l apsed)) ;

Figure 7.5: Benchmark Harness - Clone

76

7.1.4 Is the Operation Provided by the JDK?

The JDK is a standalone, cross-platform development environment. While third-

party externalities are important, the author’s personal opinion is that third party

tools should not be required to manage sharing of state among software modules.

This question is evaluated by assessing whether the operation may be performed

using only the JDK and standard library.

7.2 Evaluation Process

The evaluation considers each research question individually and its evaluation

process is described below.

Is the Behavior Predictable?1 In this evaluation we evaluate whether the

behavior of the operation may be predicted without knowledge of the underlying

concrete type – for instance, an object instance of apparent type List. If the operation

behavior may be predicted, then this binary evaluation is true; otherwise, false.

Is the Operation Universal? This evaluation considers whether all object

instances may have the operation applied. If the operation may be applied without

restriction, then this binary evaluation is true; otherwise, false.

What is the Performance Relative to Other Methods? This non-binary

evaluation uses the benchmark suite described above to quantify performance of the

operation relative to the other operations available.

Is the Operation Provided by the JDK? In this evaluation we evaluate

whether the operation is natively implemented within the JDK or if additional exter-

nalities are required for the operation to succeed. If the operation may be executed

using only the JDK, then this binary evaluation is true; otherwise, false.

1Chapter 8 suggests a future user study to assess further

77

7.2.1 System Under Evaluation

The system is the head of the OpenJDK 10 master repository as of July 1, 2018

built using the fastdebug target by Microsoft Visual C++ 2010 and containing the

javac compiler and HotSpot JVM modifications described in the previous chapter.

7.2.2 Evaluation Environment

The evaluation was carried out using hardware described in Figure 7.6 in an

unloaded and otherwise unburdened state. This hardware is a typical example of

x64-based client hardware readily available at the time of the article’s writing with

no special or noteworthy abilities beyond its compact size.

Operating System:Microsoft Windows 10 Enterprise 10.0.17134 Build 17134
Architecture: x64-based PC
Processor: Intel R© CoreTM i5-6300U CPU @ 2.40GHz, 2 Cores
Memory: 8 GB
Storage: 235.48 GB NVMe THNSN5256GPU7 TO w/BitLocker
Make: Microsoft Corporation
Model: Surface Pro 4
BIOS: Microsoft Corporation 108.2318.769, 2018-08-14
Other: Virtualization-based security Running

Figure 7.6: Evaluation Environment

When evaluating the performance of Java code, the literature emphasizes the need

to evaluate the code on multiple platforms and multiple JVMs to provide a clearer

picture of performance [40, 39]. In this paper, the evaluation is limited to HotSpot

10 on x64 as that is the platform of this experimental implementation.

Future research may expand the implementation to further platforms and discover

noteworthy cross-platform and cross-VM performance variances. For the purposes of

this paper, the findings are relevant only to HotSpot 10 on x64.

78

7.3 Evaluation Results

This section summarizes the evaluation results of each research question.

7.3.1 Is the Behavior Predictable?

While more work is suggested2 to quantify how software engineers assess pre-

dictability, a straightforward test is used: regardless of the concrete type, is the

operation’s behavior predictable?

• Clone()

False. This operation is under-specified and the API documentation states its

behavior is type dependent [6, § Object.clone()]. These problems are discussed

within the literature [7, 8]. Without evaluating the underlying type implemen-

tation, the behavior of this operation may not be consistently predicted.

• Serialize

False. This operation is predictable to a larger extent than clone() in that it

predictably replicates the entire object graph. A serialize operation may throw a

NotSerializableException if any concrete type in the input object graph lacks the

Serializable marker interface as described within the Java API documentation

[6, § java.io.Serializable]. As it is necessary to consider the type of all objects

within the object graph, this operation is not be evaluated as true.

• Snap

True. In this proposal, the snap operation is specified with consistent behavior

across types based on the method designer’s intent and an evaluation of the

actual type passed as input to the method (i.e., snapping immutable enums is

2See Chapter 8, future work

79

unnecessary). Chapter 4 and 6 discuss the specifics of this specification.

• Copy Constructor

False. This operation is not provided natively by the JDK as evidenced by a

search of Java API documentation [6] and is implemented by various designers

in a non-universal type-specific manner.

7.3.2 Is the Operation Universal?

This research question is answered below for each operation under evaluation.

• Clone()

False. This operation is not universally-supported for all concrete types as

evidenced by the Java API documentation’s description of the Cloneable marker

interface [6, § java.lang.Cloneable].

• Serialize

False. This operation is not universally supported for all concrete types as

evidenced by the description of the Serializable marker interface within the

Java API documentation [6, § java.io.Serializable].

• Snap

True. In this proposal, the snap operation is specified as applicable to any con-

crete object instance as the method designer is specifying intent. The runtime

may use its knowledge of the actual runtime type or escape analysis to omit the

snapshot operation when there is no need to do so – i.e., enums. But the intent-

based mechanism described in Chapter 4 and 6 remains intact and applies to

all object instances.

80

• Copy Constructor

False. This operation is not provided natively by the JDK as evidenced by a

search of Java API documentation [6] and is implemented by various designers

in a non-universal type-specific manner.

7.3.3 What is the Performance Relative to Other Methods?

The benchmark suite violin plots immediately show the performance penalty in-

curred by serialization relative to clone(), snap, and copy constructor. Perhaps due

to the expensive round-trip operation, this penalty nearly ruins the plot scale (Figure

7.7) and pushes other methods to the bottom of the plot.

Clone() Snap Serialize Copy
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

Small Object Performance in ns (n=60)

Clone() Snap Serialize Copy
0

5e+008

1e+009

1.5e+009

Large Object Performance in ns (n=60)

Figure 7.7: Benchmarking Results - Violin Plot

81

To improve the scale of the plot, Figure 7.8 removes Serialization and the scale

significantly narrows. This plot clearly shows Copy Constructor takes a penalty (30%

at the mean) relative to Snap. Snap clearly takes a penalty (42% at the mean) relative

to clone() and is rarely faster.

It is notable that clone() in HotSpot is heavily optimized by many talented soft-

ware engineers across many years of active development. Snap is not optimized; how-

ever, it benchmarks as more performant than two extant methods: copy constructor

and serialization. Only the heavily-optimized clone() is consistently faster.

Clone() Snap Copy
0

20000

40000

60000

80000

100000

120000

140000

Small Object Performance in ns (n=60)

Figure 7.8: Benchmarking Results - Violin Plot - Small Object w/o Serialize

82

Figure 7.9 visualizes the benchmark results for the large object scenario without

Serialization. This plot clearly shows Copy Constructor takes a penalty (31% at the

mean) relative to Snap. Snap clearly takes a penalty (140% at the mean) relative to

clone() and is rarely faster.

Again, clone() in HotSpot is heavily optimized and snap is not optimized; however,

snap again appears more performant than two extant methods: copy constructor and

serialization. Only the heavily-optimized clone() is consistently faster.

Clone() Snap Copy
0

100000

200000

300000

400000

Large Object Performance in ns (n=60)

Figure 7.9: Benchmarking Results - Violin Plot - Large Object w/o Serialize

83

7.3.4 Is the Operation Provided by the JDK?

This research question is answered below for each operation under evaluation.

• Clone()

True. This operation is provided natively by the JDK as evidenced by the Java

API documentation [6, § Object.clone()].

• Serialize

True. This operation is provided natively by the JDK as evidenced by the Java

API documentation [6, § java.io.Serializable].

• Snap

True. In this proposal, the snap operation is specified in a revised Java Language

Specification to be a modifier on the method formal parameter declaration.

Further details are provided in Chapter 6.

• Copy Constructor

False. This operation is not provided natively by the JDK as evidenced by

a search of Java API documentation [6]. If desired, the type designer must

implement a copy constructor facility for each type undergoing design and im-

plementation. It is true that no externalities are generally required to implement

a copy constructor, but unlike clone() or serialization, it is not a native facility.

84

7.4 Summary

The evaluation proposed a method for answering the following research questions

and implemented that method to arrive at the answers summarized in Table 7.1:

Is the Behavior Predictable?3 In this evaluation we evaluate whether the

operation behavior may be predicted without knowledge of the underlying concrete

type – for instance, an object instance of apparent type List. If the operation may

be predicted, then this binary evaluation is true; otherwise false.

Is the Operation Universal? This evaluation considers whether all object

instances may have the operation applied. If the operation may be applied without

restriction, then this binary evaluation is true; otherwise false.

What is the Performance Relative to Other Methods? This non-binary

evaluation uses the described benchmark suite to quantify relative performance.

Is the Operation Provided by the JDK? This evaluation considers whether

the operation is natively available within the JDK – that is, no externalities are

required for the operation to succeed. If the operation may be executed with only

the JDK under test, then this binary evaluation is true; otherwise false.

Table 7.1 summarizes the observations from this evaluation.

Research Question Clone() Snap Serialize Copy Constructor

Predictable? False True False False
Universal? False True False False

Provided by the JDK? True True True False
Performance Rank 1 2 4 3

Table 7.1: Summary of Evaluation Observations

3Chapter 8 suggests a future user study to assess further

85

Chapter 8

Future Work

Throughout this research and as described in the preceding chapters, areas of fu-

ture work are apparent, some of which appear to be quite interesting. This chapter

provides a suggested list of future work organized by approach with notes regarding

potential issues and solutions, where known and as appropriate.

8.1 Direct JDK Implementation Approach

This section pertains to the direct JDK implementation described in Chapter

6, which utilizes the new 0xcb asnap bytecode to pop an actual parameter object

reference off the operand stack after aload, create a point-in-time copy of a portion

of the object graph, and replace the frame and operand on-stack reference.

8.1.1 Deep Snapshots

The abstraction described in Chapter 4 and the direct implementation in Chapter

6 is intended for research and is limited to snapshotting two layers of the object graph,

similar to some implementations of clone(). Due to this limitation, which candidly is

due to time constraints, its immediate utility may be less than desired.

As future work, the author suggests an empirical study to determine the distri-

bution of typical object graph depths. In the author’s view, snapshotting the entire

graph appears to be the more-compelling approach as it maximally unshares the ob-

ject, but more analysis would refute or confirm this view. It is observed solutions such

as serialize, GSON [35], and cloning libraries [36] choose to copy the entire graph.

A further option is to let the designer decide by additionally providing a deepsnap

keyword and corresponding 0xcc adsnap opcode that specifically performs a deep snap

as a further alternative. In this scenario one must question how the method designer

would intelligently select the ”correct” keyword as the choice requires knowledge of

type-specific behavior similar to the conundrum present today in standard Java, albeit

without the limitations on universality or errant CloneNotSupported and NotSerial-

izable exceptions.

8.1.2 Platform Independence

The direct implementation described in Chapter 6 utilizes one four line native

x64 routine (Figure 6.25) that could be avoided as its operation is simply to pop the

operand stack, call into the VM’s platform-neutral code, then push the result back

onto the operand stack. Eliminating this x64-specific masm would make the solution

platform independent. An alternative to this approach is to implement the routine

for other platforms.

8.1.3 Differential Snapshots

The implementation described in Chapter 6 is a compromise based on feasibility

relative to a time limitation. The author’s initial intent was to explore differential

snapshots in HotSpot using a block size smaller than the object heap bucket. This

change in approach was necessitated by a fuller understanding of HotSpot’s pursuit of

maximal performance through platform-specific fastpaths and shortcuts that bypass

the fig leaf abstraction responsible for protecting the internal object representation.

87

In HotSpot, implementing differential snapshots would be quite an undertaking.

Nearly all object member access is calculated as an offset from the top of the heap

object based on an assumption of contiguous allocation and read directly by a dizzying

array of routines, native and otherwise. Implementing differential snapshots would

require a level of indirection: that these routines would need to check a data structure

to determine the actual location of the object member block on the heap as it may

reside in a different bucket. Recall differential snapshots store block data in multiple

areas and the meaning of each area varies whether the differential strategy is Copy-

on-Write or Redirect-on-Write.

What follows is a discussion for conceptual illustration and not a formal definition

of a differential snapshot implementation within HotSpot. Within this section the

operation of the snapshot area is not described.

Let a concrete type, MyType, descend directly from type Object and possess two

members, public int member1 and public int member2. Let v1 be a valid instantiation

of MyType. In this instantiation, access to member member1 and member2 within

the JVM is straightforward as it is a simple offset calculated from the top of the heap

object. Consequently, accessing or mutating v1.member1 or v1.member2 uses basic

pointer arithmetic and is unaltered from the current scenario.

Now let us introduce a differential snapshot. For the purposes of our example,

we will utilize a redirect-on-write methodology to 0xcb asnap MyType instance v1

and store the point-in-time snapshot as v2. When the block size is the object as in

the Chapter 6 implementation, writes may continue across v1 and v2 as they operate

entirely in separate spaces on the heap. But in a differential snapshot scenario, both

versions of the object state – v1 and v2 – occupy the same memory locations at the

outset: v1.member1 accesses the same physical address on the heap as v2.member1.

When a write to v1.member1 occurs, that write must not affect v2.member1 and

88

vice versa. Consequently, during the asnap operation an indirection bitmap must be

activated for v1 and for v2. This bitmap indicates whether the member value is stored

”here” (on this object) or ”there” (at some other location) and whether the value is

”shared” or ”private.” The bitmap for v1 is initialized as ”here/shared.” Further, v2

is created on the heap simply as an object header and bitmap. Its bitmap is initially

a copy of v1’s before all ”here/shared” entries are changed to ”there/shared” with a

pointer to v1. The current state of the system is as follows:

• Object instance v1:
member1: ”here/shared” → (local)
member2: ”here/shared” → (local)

• Object instance v2:
member1: ”there/shared” → v1
member2: ”there/shared” → v1

In this initial state, a read of v1.member1 evaluates v1’s bitmap and as the

member1 value is ”here” (on this object) it therefore reads the value directly from

v1’s object representation on the heap. Similarly, a read of v2.member1 evaluates

v2’s bitmap and sees the value is ”there” (on some other object) with a pointer to v1

and reads the same value (v1.member1) directly from v1’s object representation on

the heap.

Writes are more interesting. A write to v1.member1, which is ”here/shared” must

be redirected to prevent affecting the value of v2.member1. Thus, v1’s bitmap for

member1 is changed from ”here/shared” to ”there/private” with a pointer into a

snapshot area on the heap to which the write is redirected. Subsequent reads and

writes of v1.member1 are directed by the bitmap to the private snapshot block so as

not to disturb v2.member1. The current state of the system is as follows:

89

• Object instance v1:
member1: ”there/private” → Snapshot area
member2: ”here/shared” → (local)

• Object instance v2:
member1: ”there/shared” → v1
member2: ”there/shared” → v1

A write to v2.member1 is similar but slightly altered. As the bitmap value for

the member is ”there/shared,” the write must be redirected. The bitmap value for

the member is changed to ”there/private” with a pointer into a snapshot area on the

heap to which the write is redirected. Similar to the previous example, subsequent

reads and writes of v2.member1 are redirected to the private snapshot block so as

not to disturb the original block value, which is no longer referenced by anyone. The

current state of the system is as follows:

• Object instance v1:
member1: ”there/private” → Snapshot area
member2: ”here/shared” → (local)

• Object instance v2:
member1: ”there/shared” → v1
member2: ”there/shared” → v1

Let us now assume a second snapshot of v1 is taken, v3. When asnap executes,

similar to v2 it creates a header-only object representation on the heap. Unlike

v2 where all v1 bitmap entries were ”here/shared,” v1 currently has entries flagged

”there/private.” In this case and prior to bitmap copy, v1’s ”there/private” flags are

changed to ”there/shared.” v1’s bitmap is then copied to v3’s and in v3’s bitmap all

90

”here/shared” entries are changed to ”there/shared” with a pointer to v1. 1 The

outcome of this operation is as follows:

• Object instance v1:
member1: ”there/shared” → Snapshot area
member2: ”here/shared” → (local)

• Object instance v2:
member1: ”there/shared” → v1
member2: ”there/shared” → v1

• Object instance v3:
member1: ”there/shared” → Snapshot area
member2: ”there/shared” → v1

Now let us asnap v2 to a new object, v2.1. The process follows the same pattern as

with v2 and v3. Note that the v2 and v2.1 references to v1 are to v1’s original values.

For instance, v2.member2 clearly points to the same memory area as v1.member2

but it may not be clear without emphasis that v2.member1 continues to point to the

original value of v1.member, to which v1 has lost visibility but to which neither v2 nor

v2.1 have lost visibility. This value remains in v1’s original object representation on

the heap, which is obscured to v1’s own view by means of its bitmap, which redirects

reads and writes from abstract clients to v1.member1 onto the shared snapshot area.

The outcome of this operation is as follows:

• Object instance v1:
member1: ”there/shared” → Snapshot area
member2: ”here/shared” → (local)

1For clarity some steps were not discussed in the creation of v2 as they were not relevant.

91

• Object instance v2:
member1: ”there/shared” → v1
member2: ”there/shared” → v1

• Object instance v2.1:
member1: ”there/shared” → v1
member2: ”there/shared” → v1

• Object instance v3:
member1: ”there/shared” → Snapshot area
member2: ”there/shared” → v1

Now let us write to v2.member1, which requires redirecting to a non-shared write.

The outcome of this operation is as follows:

• Object instance v1:
member1: ”there/shared” → Snapshot area
member2: ”here/shared” → (local)

• Object instance v2:
member1: ”there/private” → Snapshot area
member2: ”there/shared” → v1

• Object instance v2.1:
member1: ”there/shared” → v1
member2: ”there/shared” → v1

• Object instance v3:
member1: ”there/shared” → Snapshot area
member2: ”there/shared” → v1

It may be observed from the simplistic examples above that the root of any snap-

shot tree is a traditional oops object plus a read/write redirection bitmap. Subsequent

snapshots are represented as an object header plus a redirection bitmap. Each object

92

in the snapshot tree may source its data from up to two places: the oops object at

the top of the snapshot tree or from the snapshot area.

Let us pause for a moment as there are obvious arguments against differential

in-memory snapshots using the object member as the block size. For instance,

1. Saving memory is not worth the effort. One may argue saving memory is

not important in modern systems. A review of compressed oops as implemented

within HotSpot demonstrates a presence of will to reduce memory consumption

at the trade-off of significant complexity. The rationale provided is that while

memory is cheap, bandwidth and cache are in ”short supply” [23, § Compressed

Ordinary Object Pointer]. While evaluation of this trade-off is beyond the scope

of this paper, the effort to bring it into existence is notable.

2. There won’t be any real memory savings: the block size of object mem-

bers is too small. In storage snapshots, the block size is large relative to the

pointer size, which provides the necessary economy for snapshots as the low

cost of additional pointers is offset by eliding large data blocks that would oth-

erwise be redundant. In HotSpot, object members are a sequence of references

or primitives, both of which occupy relatively little memory. It would be a

false economy to use two 32 or 64-bit pointers to ”economize” an 8-bit ”byte”

member. Consequently, if differential snapshots are to be pursued some con-

sideration should be applied to determine when to duplicate the member value,

and when not to, based on the overhead of referencing relative to the projected

savings. And even then, future analysis is needed to understand options and

trade-offs.

3. Performance will suffer. This may be true due to poorer locality and addi-

tional indirection. Future research is needed to ascertain relative performance.

93

4. Garbage could accumulate. As member values within snapshots are up-

dated, the approach described informally above will accumulate some garbage.

Let us assume v1 has member1 and is snapped as v2. member1 is marked

here/shared. If both v1 and v2 write to member1, the ”here” value for v1.member1

is present but not in use. Further, if v1 is snapped again as v3, v1’s ”there/pri-

vate” pointer into the snapshot area is marked ”there/shared.” If both v1 and

v3 write to member1, then the original ”there/private” value is now garbage.

Depending on the design of the snapshot area and garbage collection, it might

be some time before the garbage value is collected.

Returning to the simplified example, removing non-root snapshots is trivial as no

snapshot in the tree directly relies upon any non-root node value. Let us remove v2

from the middle of the tree. The outcome of this operation is as follows:

• Object instance v1:
member1: ”there/shared” → Snapshot area
member2: ”here/shared” → (local)

• Object instance v2:
member1: ”there/private” → Snapshot area
member2: ”there/shared” → v1

• Object instance v2.1:
member1: ”there/shared” → v1
member2: ”there/shared” → v1

• Object instance v3:
member1: ”there/shared” → Snapshot area
member2: ”there/shared” → v1

Removing the root node is possible when no dependent snapshots remain and is

delegated to garbage collection via enhancement to include the root and snapshot area

94

pointers (if present) in the object graph. Within HotSpot, default garbage collection

is generational and intuitively functions by walking the thread stacks and object graph

to determine reachable oops instances. Found objects are moved to a survivor area

and pointers updated. The previous area is subsequently re-used and the memory

occupied by the inaccessible objects is re-used.

8.1.4 Simplify Snapshot Variable Load

The javac implementation described in Chapter 6 utilizes the 0xcb asnap bytecode

to snap the object upon its first aload and subsequently emits an astore and aload to

update the stack frame and push the snapped object reference back atop the operand

stack as demonstrated by the disassembler output in Figure 8.1.

public T snap (T) ;
d e s c r i p t o r : (Ledu/ecu/ seng7000 /ecumatt/ex2/ SmallObject ;)

Ledu/ecu/ seng7000 /ecumatt/ex2/ SmallObject ;
f l a g s : (0 x0001) ACC PUBLIC
Code :

s tack =1, l o c a l s =2, a r g s s i z e =2
0 : 0x2b a load 1
1 : 0xcb asnap
2 : 0x4c a s t o r e 1
3 : 0x2b a load 1
4 : 0xb0 areturn

LineNumberTable :
l i n e 103 : 0

S ignature : #74 // (TT;)TT;

Figure 8.1: Method w/asnap - javap output

It appears possible to combine the operation of these four steps into one asnap at

the cost of creating the corresponding asnap 1, asnap 2, . . . bytecodes and amending

the base asnap to accept a stack frame location parameter (similar to base aload)

from which it would retrieve and snap the object, return the value back to the stack

95

frame location, and leave the snapped reference atop the operand stack.

Intuitively, this would be a faster approach at the expense of generalization. Fur-

ther work is required to determine the extent of any difference.

8.1.5 Type Exception

The JLS specification [13, § 8.4.1] adaptation described in Chapter 4 includes

an operative exception for enum types that is not implemented in Chapter 6. This

activity is left as future work as well as a mechanism for immutable and singleton types

to exclude themselves from the snapshot process, only if consistent with design intent

described in Chapter 4. An example of such a situation may be an immutable object

where the state, as it cannot change, is effectively non-shared – there is effectively no

value to snapping the object instance.

8.1.6 Bytecode Verification

As described in Chapter 6, the bytecode verification specified in Figure 6.2 is not

implemented in Figure 6.21 and its implementation is left for future work.

8.1.7 Garbage Collection

The current minimal implementation can fail when garbage collection is triggered

while the snap operation is running. This did not impede benchmarking as the

benchmarking suite requests garbage collection before each snap operation, but this

problem should be addressed as future work.

96

8.1.8 Supporting Tools

Supporting tools within OpenJDK not necessary to complete this research are not

adapted and an attempt was not made to enumerate or explore this area. Tools that

contain a switch statement based on bytecode that expect an entry for every known

bytecode may be expected to fail when encountering 0xcb asnap. Similarly, tools

that require an understanding of every known bytecode will likely behave in a similar

manner. Enumerating and adapting the constellation of tools surrounding OpenJDK

is beyond the scope of this research.

8.1.9 Escape Analysis Optimization

An escape analysis of formal parameters bearing the snap modifier may allow

omission at runtime of the asnap/astore/aload pattern when the variable is fully

captured within the method. While it is easy to claim a practitioner should not

declare effort is needed to fix object state when that is not the case, snap is

a declaration of intent and may be one element of a defensive strategy in the face

of uncertainty or to protect against future adaptations to the calling code. One

restriction with escape analysis within the current HotSpot implementation is that

it is performed lazily [23, § Escape Analysis] and its output is not always available;

hence, this optimization may not be attainable for all invocations. As future work,

an empirical analysis of publicly-available source code may provide useful indicators

regarding the optimization’s potential degree of benefit.

8.1.10 JIT Compiler Support

As described in Chapter 6, the bytecode interpreter is adapted, but the c1 and

c2 JIT compilers within HotSpot are not modified and were disabled in this paper

97

to force bytecode-interpreter only execution for evaluation in Chapter 7. For optimal

performance and to ensure special command line parameters are not required, c1 and

c2 JIT support is an item of future work.

8.1.11 Evaluate Predictable Behavior

In Chapter 7, predictable behavior is evaluated along narrow lines. It would be in-

teresting to determine via a user study whether software engineers in practice find the

snap approach more or less predictable than the currently-standard approaches.

This is suggested as future work.

8.2 Transformation Approach

A logical next step for transformation exploration involves incorporating a non-

native mechanism such as the GSON [35] or cloning [36] libraries. These involve

an adjustment of the snapshot depth guarantee in Chapter 4 but otherwise appear

to warrant research. The trade off with these approaches is expected to be runtime

performance, but the extent of the penalty is not known and the benefit is eliminating

the need to adapt HotSpot and other JVMs to accommodate the additional bytecode.

8.2.1 Identity Relationship

The Java Language Specification defines the == identity operator as follows:

At run time, the result of == is true if the operand values are both null or both

refer to the same object or array; otherwise, the result is false [13, § 15.21.3].

Using a helper class to maintain a tree of snapshots in the transformation approach

may provide the ability to identify multiple points in time of the same object. This

98

raises interesting questions:

1. Let mutable object type T be instantiated as A and let the state of A be

modified using a mutator method giving A′. Did A’s identity change due to

modification?

→ The answer to this, obviously, is ’no.’

2. Let A be snapped as B. Do A and B have the same identity?

→ The answer, as implemented in Chapter 4, 5, and 6, is obviously ’no’

3. Should A and B have the same identity?

→ Why or why not?

4. Should A′ and B have the same identity?

→ Why or why not?

5. What are the implications if A shared the same identity as A′, and B as A?

To be clear, the present definition of identity is well-understood and modification

thereof should not to be taken lightly. But it is a question similar to the Ship of

Theseus: at what point does A stop being A? It is clear and accepted that A == A′

meaning mutation operations upon a mutable object do not alter identity. But if

A and A′ are the same identity and if B is a point-in-time of A, do both not meet

the definition of identity equality specified in the Java Language Specification [13,

§ 15.21.3]?

In common practice an additional consideration seems apparent that is unclear

from the Java Language Specification. While a particular object may change and

mutate over time and retain its identity, only one object at any time may have that

particular identity. Arguing whether that is appropriate or not in a world where the

same object simultaneously exists in multiple states is beyond the scope of this paper.

99

Instead, it may be more useful to sidestep and consider a facility for reasoning

about the identity relationship without upsetting the == apple cart. This may be

accommodated by defining and transforming a new operator, perhaps @=, into a call

to the snapshot helper object that returns true if the objects are == or both share

the same snapshot root – and false otherwise.

Further consideration of this topic is suggested as future work.

8.2.2 Reasoning about Object State over Time

With multiple states of an object present simultaneously, it is feasible to determine

which objects share a common ancestor state and navigate mutable object state sim-

ilar to a tree. Further, recording the sequence of states selectively for specific objects

at specific times or events may provide a foundation to check runtime conformance

with a formal behavioral model. Given the programmatic nature of the functionality,

it may be possible to trigger snapshots on state transitions to address problems of

time scale [42, 43] encountered by other researchers.

8.3 Future Research Questions

As of this writing, the relative frequency of the existing methods – clone(), seri-

alize, copy constructor, third party library – does not appear to be well-understood.

Future work is suggested to analyze publicly-available repositories to determine and

draw conclusions regarding the frequency of usage.

100

8.4 Summary

This area of mutable memory snapshots and runtime-managed unsharing of state

by an intent declaration provides numerous accessible avenues for future researchers

interested in providing better tools and solutions for software engineers. These solu-

tions may have a positive impact on real-world development of large systems where

problems of mutable object state sharing become most apparent.

101

Chapter 9

Conclusion

This chapter draws conclusions relative to the observations in Chapter 7 regarding

the experiment in Chapter 6 and the hypothesis and prediction in Chapter 1. A

summary is provided of the motivation, key research questions, and contribution.

9.1 Motivation

The motivation for this research is the premise Java should offer a universal and

predictable manner to declare a need to unshare the state of a mutable object. For

almost two decades software engineers have continued to use the same broken array

of tools in Java or worked around the limitations with third-party libraries.

Similar to past efforts to improve Java, notably Pizza’s parametric abstraction

enhancements [12], Java’s present limitations are not necessarily a prediction of its

future. Offering an alternative path forward is the motivation for this research.

9.2 Hypothesis

The hypothesis of the research is described in Chapter 1: namely, that a universal

Java mechanism is feasible that allows a method designer to universally declare when

a method’s actual parameter should be guaranteed to present non-shared state with

predictable semantics.

9.3 Prediction

To test the hypothesis, Chapter 1 predicted a mechanism to unshare state may be

implemented in Java that is: universal (applies to all object instances), predictable

(behavior is consistent across types), self-contained (does not require external li-

braries), and has reasonable performance (relative to existing methods).

9.4 Alternatives

After an overview of Java in Chapter 2 and Snapshot concepts in Chapter 3,

an abstract solution is proposed in Chapter 4 with specific changes proposed to the

Java Language Specification [13] in support of the proposal.

The basic idea is to add a new keyword, snap , as a formal method parameter

modifier as shown in Figure 9.1. This modifier declares the method designer’s intent

to unshare the state of the actual method parameter, which involves transparently

taking a point-in-time snapshot of the object before its use within the method body.

1 // Snap/ unshare o b j I n p u t s t a t e p r i o r to i t e r a t i n g
2 public void addAll (snap ArrayList<Str ing> objInput) {
3 for (S t r ing s t r : objInput) {
4 this . add (s t r) ;
5 }
6 }

Figure 9.1: snap example

Two alternative implementations were considered:

Chapter 5 discusses a transformation approach that encountered seemingly-fatal

limitations that may have workarounds requiring the use of third-party libraries. This

research is attempting to avoid OpenJDK externalities.

103

Chapter 6 describes a direct minimal implementation in OpenJDK’s javac com-

piler and HotSpot JVM. The basic idea is to create a new Java bytecode, 0xcb asnap,

which creates a point-in-time writable copy of an object and returns the point-in-time

copy of the object in its place on the operand stack. This action is triggered by javac

on the first load of a method parameter bearing the snap modifier keyword.

9.5 Evaluation

Chapter 7 evaluated the method proposed in Chapter 6 against the research

questions posed in Chapter 1 and predicted could be true:

1. Is the operation universal?

2. Is the operation’s outcome predictable?

3. Are third-party externalities required, or does the JDK stand on its own?

4. What is the performance relative to the extant native methods?

The observations from the evaluation in Table 9.1 indicate the Chapter 1 predic-

tion is true and indicates the hypothesis is likely correct. A direct implementation

of snapshots with the desired attributes appears feasible and is characterized by rea-

sonable performance with improvements available (see Chapter 8).

Research Question Clone() Snap Serialize Copy Constructor

Predictable? False True False False
Universal? False True False False

Provided by the JDK? True True True False
Relative Performance? 1 2 4 3

Table 9.1: Summary of Evaluation Observations

104

9.6 Contribution

A novel mechanism is proposed in this research to enable a method designer to

declare intent to unshare mutable object state and for the runtime to manage to that

declared intent.

Modifications to the Java Language Specification [13] are proposed as a concrete

example. These are set out in Chapter 4 whereby method designers may clearly

declare intent to unshare mutable object state using the snap modifier on a

formal method parameter declaration. This proposal is followed by two alternative

implementation strategies in Chapters 5 and 6.

An initial direct implementation in OpenJDK 10 is described more or less step-by-

step in Chapter 6 along with proposed modifications to the Java Virtual Machine

Specification [15] centered around a new bytecode, 0xcb asnap. This bytecode is

implemented in both javac and the HotSpot JVM’s bytecode interpreter.

This paper may serve as a rough guide for future researchers undertaking similar

modifications to OpenJDK. Within this paper these tasks are laid out step-by-step.

The initial JDK toolchain setup is detailed in the OpenJDK repository [44]. Scant

documentation exists relative to HotSpot internals aside from the actual sources,

which bear few comments except in certain areas. Dissecting the code’s operation

required extended effort – usually on weekends or nights after work – to explore and

determine how to adapt the codebase. Hopefully this paper will save some researchers

time in the future..

Multiple paths for future work are proposed for researchers interested in providing

simpler and improved facilities over what presently exists in Java and OpenJDK.

105

9.7 Future Work

To be clear, the implementation in Chapter 6 is a minimal implementation and

not yet suitable for insertion into the Java Language Specification, Java Virtual Ma-

chine Specification, and OpenJDK. The author has no illusions about this fact and

details the future work remaining in Chapter 8:

1. Direct JDK Implementation Approach

(a) Deep Snapshots

(b) Platform Independence

(c) Differential Snapshots

(d) Simplify snapshot variable load

(e) Type exception

(f) Bytecode verification

(g) Supporting tools

(h) Escape Analysis Optimization

(i) JIT Compiler Support

(j) Evaluate Predictable Behavior

2. Transformation Approach

(a) Identity Relationship (b) Reasoning re: object state over time

3. Evaluate clone(), serialize, and object constructor use

106

9.8 Conclusion

This paper sets out an experimental implementation and a plan for future work

that aims to solve a common problems for software engineers – universally unsharing

mutable object state without knowledge of the underlying concrete type. As part of

this work, a novel intent-based mechanism, formal parameter modifier snap , is

proposed for guaranteeing non-shared state of objects input into a software module.

The evaluation of the novel, intent-based snap method shows a promising

approach to solve a long-lived and troublesome problem for software engineers in a

simple and performant manner.

107

BIBLIOGRAPHY

[1] B. H. Liskov and J. M. Wing, “A Behavioral Notion of Subtyping,” ACM
Trans. Program. Lang. Syst., vol. 16, no. 6, pp. 1811–1841, Nov. 1994. [Online].
Available: http://doi.acm.org/10.1145/197320.197383

[2] B. Liskov and J. Guttag, Program Development in Java: Abstraction, Specifica-
tion, and Object-Oriented Design, 1st ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2000.

[3] M. J. Steindorfer, “Efficient immutable collections,” Ph.D. dissertation, Univer-
sity of Amsterdam, 2017.

[4] J. McCarthy, “Recursive functions of symbolic expressions and their computation
by machine, part i,” Communications of the ACM, vol. 3, no. 4, pp. 184–195,
1960.

[5] “Immutable Objects (The JavaTMTutorials >> Essential Classes >
Concurrency),” Accessed: 2018-10-21. [Online]. Available: https:
//docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

[6] “Java SE 10 & JDK 10 API Specification,” 2018, Accessed: 2018-09-22. [Online].
Available: https://docs.oracle.com/javase/10/docs/api/overview-summary.html

[7] V. Ruzicka, “Java Cloning Problems,” 2017, Accessed: 2018-09-22. [Online].
Available: https://www.vojtechruzicka.com/java-cloning-problems/

[8] J. Bloch, Effective Java, 3rd ed. Addison-Wesley Professional, 2017.

[9] “EsotericSoftware/kryo: Java binary serialization and cloning: fast,
efficient, automatic,” 2018, Accessed: 2018-09-22. [Online]. Available:
https://github.com/EsotericSoftware/kryo#copyingcloning

[10] “kostaskougios/cloning: deep clone java objects,” 2018, Accessed: 2018-09-22.
[Online]. Available: https://github.com/kostaskougios/cloning

[11] “BeanUtils (Commons BeanUtils 1.8.3 API),” 2010, Accessed: 2018-09-22.
[Online]. Available: https://commons.apache.org/proper/commons-beanutils/
javadocs/v1.8.3/apidocs/org/apache/commons/beanutils/BeanUtils.html

[12] M. Odersky and P. Wadler, “Pizza into Java: Translating theory into practice,”
in Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. ACM, 1997, pp. 146–159.

[13] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, and D. Smith, “The
Java Language Specification: Java SE 10 Edition,” 2018, Accessed: 2018-09-16.
[Online]. Available: https://docs.oracle.com/javase/specs/jls/se10/html/index.
html

[14] “JEP 286: Local-Variable Type Inference,” Accessed: 2018-09-16. [Online].
Available: http://openjdk.java.net/jeps/286

[15] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, “The Java Virtual Machine
Specification: Java SE 10 Edition,” 2018, Accessed: 2018-09-16. [Online].
Available: https://docs.oracle.com/javase/specs/jvms/se10/html/index.html

[16] “JSR 335: Lambda Expressions for the Java Programming Language,” Accessed:
2018-09-16. [Online]. Available: https://www.jcp.org/en/jsr/detail?id=335

[17] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, “The Java Language
Specification: Java SE 7 Edition,” 2015, Accessed: 2018-10-21. [Online].
Available: https://docs.oracle.com/javase/specs/jls/se7/html/index.html

[18] “The Java Language Specification: Java SE 8 Edition,” Accessed: 2018-09-22.
[Online]. Available: https://docs.oracle.com/javase/specs/jls/se7/html/index.
html

[19] D. Erni and A. Kuhn, “The Hackers Guide to javac,” University of Bern, Bach-
elor’s thesis, supplementary documentation, 2008.

[20] H. McGhan and M. O’Connor, “PicoJava: a direct execution engine for Java
bytecode,” Computer, vol. 31, no. 10, pp. 22–30, Oct 1998.

[21] “JEP 318: Epsilon: A No-Op Garbage Collector,” Accessed: 2018-09-16.
[Online]. Available: http://openjdk.java.net/jeps/318

[22] M. Paleczny, C. Vick, and C. Click, “The Java Hotspot TM Server Compiler,”
in Proceedings of the 2001 Symposium on Java TM Virtual Machine Research
and Technology Symposium, vol. 1, no. S 1, 2001.

109

[23] “5 Java HotSpot Virtual Machine Performance Enhancements,” Accessed: 2018-
10-13. [Online]. Available: https://docs.oracle.com/javase/10/vm/java-hotspot-
virtual-machine-performance-enhancements.htm#JSJVM-GUID-3BB4C26F-
6DE7-4299-9329-A3E02620D50A

[24] G. Duzy, “Match snaps to apps,” Storage, Special Issue on Managing the infor-
mation that drives the enterprise, pp. 46–52, 2005.

[25] S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Leverett, W. A. Mason, R. N.
Sidebotham et al., “The Episode file system,” in Proceedings of the USENIX
Winter 1992 Technical Conference. San Fransisco, CA, USA, 1992, pp. 43–60.

[26] D. Hitz, J. Lau, and M. A. Malcolm, “File System Design for an NFS File Server
Appliance,” in USENIX winter, vol. 94, 1994.

[27] W. Xiao, Y. Liu, Q. Yang, J. Ren, and C. Xie, “Implementation and perfor-
mance evaluation of two snapshot methods on iSCSI target storages,” in Proc.
of NASA/IEEE Conference on Mass Storage Systems and Technologies, 2006.

[28] W. Xiao, Q. Yang, J. Ren, C. Xie, and H. Li, “Design and analysis of block-level
snapshots for data protection and recovery,” IEEE Transactions on Computers,
vol. 58, no. 12, pp. 1615–1625, 2009.

[29] T. Härder and A. Reuter, “Principles of Transaction-Oriented Database
Recovery,” ACM Comput. Surv., vol. 15, no. 4, pp. 287–317, 1983. [Online].
Available: https://doi.org/10.1145/289.291

[30] J. R. Larus and R. Rajwar, “Transactional memory,” Synthesis Lectures on Com-
puter Architecture, vol. 1, no. 1, pp. 1–226, 2007.

[31] X. Zhang, L. Peng, and L. Xie, “A Lightweight Snapshot-based Algorithm
for Software Transactional Memory,” in Proceedings of the 9th International
Conference for Young Computer Scientists, ICYCS 2008, Zhang Jia Jie,
Hunan, China, November 18-21, 2008, 2008, pp. 1254–1259. [Online]. Available:
https://doi.org/10.1109/ICYCS.2008.180

[32] J. Li, H. Liu, L. Cui, B. Li, and T. Wo, “iROW: An Efficient Live
Snapshot System for Virtual Machine Disk,” in 18th IEEE International
Conference on Parallel and Distributed Systems, ICPADS 2012, Singapore,
December 17-19, 2012, 2012, pp. 376–383. [Online]. Available: https:
//doi.org/10.1109/ICPADS.2012.59

[33] A. Osuna and C. Carlane, IBM System Storage N Series SnapMirror. IBM,
International Technical Support Organization, 2006.

110

[34] W. Xiao, Y. Liu, Q. Yang, J. Ren, and C. Xie, “Implementation and perfor-
mance evaluation of two snapshot methods on iSCSI target storages,” in Proc.
of NASA/IEEE Conference on Mass Storage Systems and Technologies, 2006.

[35] “google/gson: A Java serialization/deserialization library to convert Java
Objects into JSON and back,” 2018, Accessed: 2018-10-02. [Online]. Available:
https://github.com/google/gson

[36] K. Kougios and et. al., “kostaskougios/cloning: deep clone java objects,” 2018,
Accessed: 2018-10-02. [Online]. Available: https://github.com/kostaskougios/
cloning

[37] “OpenJDK HotSpot Runtime Overview,” Accessed: 2018-10-13. [Online]. Avail-
able: http://openjdk.java.net/groups/hotspot/docs/RuntimeOverview.html

[38] J. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff, “Escape
Analysis for Java,” in Proceedings of the 1999 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages & Applications (OOPSLA
’99), Denver, Colorado, USA, November 1-5, 1999., 1999, pp. 1–19. [Online].
Available: https://doi.org/10.1145/320384.320386

[39] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. L. Hosking, M. Jump, H. B. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovic, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The
DaCapo benchmarks: java benchmarking development and analysis,” in
Proceedings of the 21th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2006, October
22-26, 2006, Portland, Oregon, USA, 2006, pp. 169–190. [Online]. Available:
https://doi.org/10.1145/1167473.1167488

[40] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java
performance evaluation,” in Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada,
2007, pp. 57–76. [Online]. Available: https://doi.org/10.1145/1297027.1297033

[41] V. Horký, P. Libic, A. Steinhauser, and P. Tuma, “DOs and DON’Ts of
Conducting Performance Measurements in Java,” in Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering, Austin,
TX, USA, January 31 - February 4, 2015, 2015, pp. 337–340. [Online].
Available: https://doi.org/10.1145/2668930.2688820

[42] P. Parizek, F. Plasil, and J. Kofron, “Model Checking of Software Components:
Combining Java PathFinder and Behavior Protocol Model Checker,” in 30th

111

Annual IEEE / NASA Software Engineering Workshop (SEW-30 2006), 25-28
April 2006, Loyola College Graduate Center, Columbia, MD, USA, 2006, pp.
133–141. [Online]. Available: https://doi.org/10.1109/SEW.2006.23

[43] N. Rivierre, F. Horn, and F. D. Tran, “On monitoring concurrent systems
with TLA: an example,” in Fifth International Conference on Application of
Concurrency to System Design (ACSD 2005), 6-9 June 2005, St. Malo, France,
2005, pp. 36–45. [Online]. Available: https://doi.org/10.1109/ACSD.2005.29

[44] “Building OpenJDK,” Accessed: 2018-10-19. [Online]. Available: http:
//hg.openjdk.java.net/jdk10/jdk10/raw-file/tip/common/doc/building.html

112

