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Abstract
Induced pluripotent stem cells (iPSC) technology has propelled the field of stem
cells biology, providing new cells to explore the molecular mechanisms of
pluripotency, cancer biology and aging. A major advantage of human iPSC,
compared to the pluripotent embryonic stem cells, is that they can be generated
from virtually any embryonic or adult somatic cell type without destruction of
human blastocysts. In addition, iPSC can be generated from somatic cells
harvested from normal individuals or patients, and used as a cellular tool to
unravel mechanisms of human development and to model diseases in a manner
not possible before. Besides these fundamental aspects of human biology and
physiology that are revealed using iPSC or iPSC-derived cells, these cells hold an
immense potential for cell-based therapies, and for the discovery of new or
personalized pharmacological treatments for many disorders. Here, we review
some of the current challenges and concerns about iPSC technology. We
introduce the potential held by iPSC for research and development of novel
health-related applications. We briefly present the efforts made by the scientific
and clinical communities to create the necessary guidelines and regulations to
achieve the highest quality standards in the procedures for iPSC generation,
characterization and long-term preservation. Finally, we present some of the
audacious and pioneer clinical trials in progress with iPSC-derived cells.

Key words: Induced pluripotent stem cells; Reprogramming; Cell-based therapy; Stem cell
banking; Disease modelling
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E-Editor: Ma YJ Core tip: In this review, we present the current status on the basic and applied research
involving induced pluripotent stem cells (iPSC). We discuss concerns around iPSC
reprogramming technology, and present initiatives that have been recently developed for
the use of iPSC in health-related issues. We also introduce some of the audacious clinical
trials already ongoing to treat patients with cells derived from iPSC.
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INTRODUCTION
In 2006, Kazutoshi Takahashi and Shinya Yamanaka reported for the first time the
reprogramming of induced pluripotent stem cells (iPSC) from mouse somatic cells by
forced expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc, now termed
Yamanaka factors[1]. Subsequently, the Yamanaka factors, or other combinations of
factors were successfully used to reprogram a wide range of mouse or human somatic
cells  into  iPSC[2-5].  iPSC  achieve  a  high  degree  of  dedifferentiation  and  acquire
properties similar to those of embryonic stem cells (ESC). Indeed, iPSC and ESC are
morphologically  indistinguishable,  and in  vitro  these  cells  have  the  potential  to
differentiate into cells of the three germ layers (ectoderm, endoderm and mesoderm)
and to originate virtually all cells of adult organisms. Like mouse ESC, mouse iPSC
have the capacity to aggregate and integrate the inner cell mass, and participate in the
development of an embryo upon injection into a host blastocyst and its subsequent
transfer into a foster pseudo pregnant female. Additionally, iPSC which contribute to
the germline have the potential to generate viable and fertile animals[6-9].

This novel reprogramming strategy applicable to human cells raised a great interest
in the scientific and medical community, as iPSC represent an alternative source of
pluripotent  cells  to human ESC. Moreover,  iPSC present the advantage of  being
derived  from  somatic  cells  collected  in  a  non-invasive  manner,  harbouring  the
individual’s  genetic  background,  thus  being  autologous  and  limiting  immune
rejections[10].  iPSC also overcome ethical  concerns associated to the derivation of
human ESC from blastocysts. At present, advancements and refinements have been
made  to  the  original  reprogramming  procedure  to  circumvent  some  critical
experimental  issues,  such  as  the  delivery  of  the  reprogramming  factors  with
integrative  vectors.  Although  Yamanaka  factors  are  commonly  used  for  repro-
gramming iPSC, other transcription factors, epigenetic regulators, microRNAs and/or
small molecules have been shown to cooperate or substitute Yamanaka factors for the
process.  Reprogrammed cells are currently an invaluable tool for in vitro  disease
modelling, high-throughput screens for drug discovery and toxicity tests. In addition,
reprogramming raises the possibility for the derivation of patient-specific autologous
cells  for  personalized  therapies[11].  Here,  we  introduce  some  of  the  challenges
remaining to be faced to originate iPSC in a reliable fashion and with the quality
required  for  safe  clinical  applications.  We  also  present  the  current  and  future
applications and therapeutic strategies involving iPSC to improve health.

CHALLENGES TO OVERCOME
The constant visitation to the initial reprogramming strategy by many researchers
worldwide  has  led  to  the  understanding  of  the  molecular  bases  and  to  the
improvement of the cell reprogramming process, bringing iPSC closer to safe clinical
applications. However, the full translational potential of iPSC is still hampered by
flaws, such as the inefficiency and the frequent incomplete reprogramming of the
cells, and de novo mutations occurring during the reprogramming process and during
the cultivation of generated iPSC[5,12]. The efficiency to reprogram somatic cells into
iPSC remains low (often much less than 1%), and likely further decline in aged cells or
in cells with a high number of divisions, and by the action of the reprogramming
factors  themselves  which  trigger  a  senescence-like  response[13-16].  Intriguingly,
paracrine factors  secreted by senescent  cells  have been reported to  facilitate  the
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reprogramming  of  non-senescent  cells  by  Yamanaka’s  factors,  in  vivo  in  mouse
tissues[17]. In any case, the reprogramming of aged-cells and senescent cells has been
successfully achieved and gave rise to rejuvenated iPSC with properties similar to
those originated from young somatic cells[13,18,19].

Exhaustive  studies  of  many  iPSC  worldwide  have  invariably  indicated  the
existence of disparities in gene expression between iPSC and ESC, some of which may
be attributed to genetic and epigenetic background variations already present in the
somatic  cells  and  ESC.  However,  the  full  impact  of  the  minute  number  of
differentially  expressed  genes  in  iPSC  properties  and  specification  during
differentiation remains unknown. A variability in X chromosome inactivation and
reactivation of human female iPSC has also been observed[5,20-23]. Indeed, some human
iPSC maintained the inactivation of the X chromosome during the reprogramming
process,  while  others  displayed  both  X  chromosomes  reactivated  or  with
abnormal/partial  reactivation.  The  stability  of  the  X  chromosome reactivation/
inactivation may also vary with the cultivation of the cells overtime, the freezing and
thawing processes required for the long-term conservation of these cells. This may
result in a mixed population of iPSC displaying discrepant biological properties due
to variable states of  X chromosomes activation and inactivation.  In addition,  the
inactivation of X chromosomes may occur randomly during differentiation[7]. These
points  are  of  particular  interest  if  iPSC  are  to  be  used  to  model  early  human
embryonic development, X-linked diseases that depend on the activation of one or
both X chromosomes and inherited sex-modulated disorders, such as autism[20-23].
Moreover,  teratoma  formation  assays,  performed  routinely  to  determine  the
pluripotency  of  iPSC,  do  not  discriminate  between  chromosome  X  activation
/inactivation status, and other specific tests have to be performed to determine X
chromosome status[21].

De novo point mutations and genetic variations occurring during the initial steps of
the reprogramming process have been reported by several research groups[24-28]. The
mutations may not only occur in open chromatin regions including protein coding
regions and transcriptional regulatory elements, but also in non-coding regions such
as  lamina-associated  heterochromatin  due  to  oxidative  stress  aggressions[24].
Chromosomal aberrations, such as abnormal chromosome number have also been
described in iPSC and ESC[29]. Fibroblasts are commonly the favourite primary cell
source for reprogramming, but these cells are very resistant to genomic alterations.
Thus, cells less tolerant for the accumulation of mutations and genomic aberrations
should be identified and preferably utilized for  reprogramming.  Mutations also
accumulate in mitochondrial DNA of somatic cells with age, and are likely to limit the
metabolic function and affect the energy supply in iPSC-derived differentiated cells,
thus affecting their potential for disease modelling, drugs screens and therapeutic
applications[30,31].

Another foreseen advantage of iPSC is the capacity to generate them for autologous
purposes  (Figure  1),  in  order  to  produce  cells  tolerated  by  the  host  organism.
However,  this  high  expectation  of  immune  tolerance  was  questioned  by  the
elimination of mouse iPSC transplanted in isogenic mice[32]. The immune responses
were attributed to partial reprogramming and genomic instability of the iPSC, and the
transplantation of terminally differentiated cells did not show immunogenicity[33].
This observation suggests that differentiated cells from iPSC, which are the cells
envisioned  to  be  used  in  therapeutic  approaches,  would  not  trigger  aggressive
immune response in patients. Nevertheless, the immunotolerance of cells prepared
autologously  from  iPSC  has  to  be  assessed  and  controlled  for  safe  clinical
applications, which may still require a preventive immunosuppression of the patients.
Thus, for the safe use of iPSC in clinical, and even to model diseases faithfully, it is
important to further understand the genetic and epigenetic mechanisms underlying
the reprogramming process and obtain protocols to generate iPSC with the highest
quality, and purity, and test their integrity and functionality.

PROMISING NON-THERAPEUTIC APPLICATIONS FOR iPSC
iPSC technology allows the reprogramming of cells from individuals in the context of
their genetic background, and the genetic and epigenetic behaviours of iPSC have
been showed to reflect those of the proper cells of a donor individual[34,35]. Therefore,
iPSC are considered a great tool to model human diseases, and if reprogrammed from
cells of a patient with genetic variations causing the disease, iPSC have the potential
to  generate  cells  or  tissue-like  structures  in  vitro  mimicking those of  the  patient
affected by the disease of interest (Figure 1). However, inter and intra-clonal (epi)
genetic variability of iPSC acquired during reprogramming and or the differentiation
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Figure 1

Figure 1  Applications of human induced pluripotent stem cells. A: Pharmacotherapy can be optimized to the patients by testing the drugs on cells differentiated
from patient-derived induced pluripotent stem cells (iPSC) to model the disease (blue panel). This approach may be used to determine the adequate treatment plan to
specific patients and to limit side effects or non-responsiveness experienced by conventional clinical approaches supported by medical history and examinations, and
test results to implement the treatment based on generic clinical approaches; B: iPSC-derived from patients may also be corrected for genetic defects and
consequently used to treat the patients in cell-based or regenerative therapies (orange panel); C: iPSC may be used to derive immune cells to eliminate cancer cells,
or to be inactivated and injected to vaccinate people against cancer cells; D: iPSC used to study developmental processes, model diseases and test drugs to assess
toxicity in specific cell types (yellow panel); E: iPSC originated from non-diseased individuals are being characterized and preserved in Biobanks worldwide for
allogenic cell-based therapies in HLA matched patients (green panel). iPSC: Induced pluripotent stem cells.

process may confound the results  and the outcomes of  experiments or therapies
involving iPSC. A thorough analysis  of  iPSC and other control  cells,  such as the
original  cells  used  for  reprogramming,  have  to  be  performed.  For  instance,  the
comparison of several iPSC lines obtained from different donors and control cells is
recommended to reliably appreciate the impact of the genetic variations in the disease
and  to  limit  the  variability  in  the  outcomes  which  is  inherent  to  iPSC  clones’
differences. The correct differentiation of iPSC into the target cells relevant to model
the disease of interest is also critical, and is often hampered by the limited knowledge
about the experimental conditions leading to the proper cell differentiation and the
variability existing in the differentiation processes[35]. The major challenge for disease
modelling using iPSC remains to establish the right cell type(s) with a phenotype
which represent accurately the pathological aspects of the disease of interest. Another
interesting  feature  is  that  iPSC  are  pluripotent  and  their  differentiation  can  be
triggered in order to mimic early steps of embryonic development, which make them
a cell source of choice to study congenital or early age onset diseases (Figure 1). Many
groups have already used iPSC to model the pathophysiology of a variety of diseases,
such as cardiovascular diseases, neuronal and neurological disorders, and cancer
amongst  others[34-36].  However,  for  diseases  which  are  multigenic  and/or  age-
dependent with late onset, or complex and systemic, iPSC may be more difficult to
use for establishing a disease model[35,37]. Organoids, which are 3-dimensional cellular
structures mimicking the organization and functions of organs or tissues, may also be
generated by differentiation of iPSC to obtain more complex cellular models in vitro.
In addition, iPSC are also an invaluable tool to study the genetic pathways involved
in diseases in well-controlled environments, and to test the effect of novel and known
drugs in patient-derived iPSC (Figure 1).

Interestingly, primary cancer cells from different types of human cancers, such as
melanoma,  gastric  cancer,  glioblastoma  and  pancreatic  ductal  adenocarcinoma,
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among  others,  have  been  successfully  reprogrammed  into  iPSC  or  at  least  into
pluripotent cells, offering new possibilities to study early stages of cancer initiation
and  progression  in  vitro[38,39].  iPSC  might  be  especially  useful  to  model  cancers
emerging at young ages or with familial inherited characteristics, since these cancers
have an early onset which may be promoted by the embryonic developmental process
itself, which is recapitulated to a large extent during iPSC differentiation. An obvious
limitation to this model is that it fails to be submitted to environmental factors such as
chemical pollution, smoking and virus infection, among others, that may contribute to
tumorigenesis.  Another limitation comes from the fact that iPSC reprogramming
process changes the epigenetic status of the original source cell, which in the case of
cancer cells may also contribute to their tumorigenic nature.

iPSC can also be used for toxicity tests and drug discovery screening studies to treat
diseases in a more personalized manner[40]. Indeed, numerous studies have indicated
that iPSC recapitulate in vitro  the response of  the cell-donor individuals to drug
exposition in vivo. This observation implies the possibility to perform highly accurate
and personalized preclinical trials in vitro using iPSC or iPSC-derived cells (Figure 1).
Since pre-clinical phase trials are critical to decide about the progression of drug
development for clinical applications, thorough experiments and control methods
have yet to be implemented and standardized to test new drugs[41]. In 2011, the US
Food  and  Drug  Administration/FDA  has  established  a  set  of  guidelines  to
manufacture and evaluate the quality of cells and tissues derived from stem cells for
patients’ regenerative medicine applications, but do not make recommendations for
the  use  of  cells  for  in  vitro  assays.  The  International  Society  for  Stem  Cell
Research/ISSCR has also released recommendations to guide physicians,  ethical
committees and review boards to evaluate early-phase stem cells based clinical trials
(“Stem  Cell-Based  Clinical  Trials:  Practical  Advice  for  Physicians  and
Ethics/Institutional Review Boards”, http://www.isscr.org/docs/default-source
/clinical-resources/isscr-stem-cell-based-clnical-trials-practical-advice_
final_23jan2018.pdf?sfvrsn=2).  However,  these efforts  to  prepare guidelines and
recommendations  to  set  gold  standards  and to  evaluate  the  quality  of  products
derived from iPSC, or stem cells in general, for in vitro (pre) clinical assays and drug
toxicity testing have to be continued to reach a safe and reliable use of stem cells.

REPROGRAMMING CELLS FOR ANTI-AGING AND CANCER
TREATMENT
An interesting concept of cell-aging reversion in vivo, which has allowed to prolong
the  lifespan  of  a  mouse  model  of  premature  aging,  has  also  emerged  with  the
reprogramming technology[42]. Indeed, the short-term exposure to Yamanaka factors
has contributed to a partial reprogramming of cells, and amended the physiological
and cellular hallmarks of aging,  due to a probable remodelling of the epigenetic
marks which are  acquired during aging[42].  Further  understanding of  the  partial
reprogramming timings and markers may harness balanced conditions to obtain
rejuvenated cells with a full potential to perform their functions and with a minimal
dedifferentiation state to avoid oncogenic risks[43]. Partial reprogramming approaches
and the consequent epigenetic rejuvenation may serve to develop future interventions
for the treatment of age-related diseases, improvement of health and longevity[42,43].

Recently, the potential of iPSC for immunotherapy was explored, with a particular
interest in the quest for treatment of cancers[44].  Indeed, iPSC were used to derive
human dendritic  cells  and macrophages which have a potent antigen presenting
activity with the capacity to activate T-cells, thus presenting a great potential to be
used for cancer immunotherapies. Indeed, iPSC reprogrammed from T-cells (isolated
from peripheral blood mononuclear cells) have been shown to retained the expression
of the original T-cell receptor/TCR rearrangement[45].  Thus, these cells could be a
source for illimited production of specific clones of T-cells, bypassing their residence
in the thymus for their development and maturation. Human tumour antigen-specific
cytotoxic T-cells have also been generated by several groups, and iPSC can also be
engineered to harbour chimeric  antigen receptors/CAR targeting cancer  cells[46].
Natural Killer cells harbouring CAR constructs targeting tumours have also been
generated from iPSC, and showed to inhibit the growth of tumours in vivo[47]. These
approaches  may  serve  to  develop  effective  treatments  for  refractory  oncologic
malignancies.  Furthermore,  a  recent  report  has  showed  that  iPSC  may  express
tumour-associated  antigens  and  be  used  for  autologous  tumour  vaccination[48].
Indeed, the injection of irradiated mouse iPSC and adjuvant CpG (successfully used in
tumour vaccination) in mouse, triggered a strong in vivo  immune response which
controlled the tumour growth from breast  cancer,  melanoma and mesothelioma
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injected cells. Thus, the injection of irradiated-iPSC led to the instatement of a broad
anti-tumoral immune status able to restrain the development of multiple cancers
without any overt adverse effect[48], suggesting that this approach has the potential to
be translated in clinical applications.

ONGOING CLINICAL TRIALS
Many promising therapeutic applications are currently being tested in preclinical
experiments using iPSC-derived cells for their potential to generate functional cells
able to replace damaged or dysfunctional tissues in patients[49]. However, the era of
human clinical trials using iPSC-derived cells has already started. Indeed, the first
reported clinical trial involving iPSC-derived cells was designed to treat the Age-
Related Macular Degeneration (AMD), a disease that affects the macula of the eye and
results in the blur of the central vision[50,51]. In 2013, sheets of retinal pigment epithelial
(RPE) cells, differentiated from patient-derived iPSC, were transplanted into the eyes
of  a  patient  suffering AMD. Six  months  after  transplantation,  the  patient  visual
treatment acuity was improved with no safety-related concerns. However, as the
second trial participant was ready to start, two mutations, that were not present in the
original reprogrammed fibroblasts, were detected in the RPE cells used to treat the
first patient. While further analysis revealed that the risk of carcinogenesis was low,
the study was halted and only resumed in 2016. The first formal trial using iPSC was
approved in 2016 when Cynata Therapeutics launched the first clinical trial using an
allogeneic  iPSC-derived  mesenchymal  stem  cell  called  CYP-001 [51].  Cynata
Therapeutics just recently concluded the Phase 1 clinical trial  of CYP-001 for the
treatment of steroid-resistant acute graft versus host disease/GvHD, and the results
showed positive safety and efficacy data for the treatment of the disease. Cynata
Therapeutics is  currently planning a phase 2 trial.  In 2018,  the Kyoto University
announced the first  clinical  trial  to treat  Parkinson’s  disease using iPSC-derived
dopaminergic progenitors to be transplanted into human patients. The objective of
this trial will be to evaluate the safety and efficacy of the transplantation of iPSC-
derived dopaminergic neurons into the brain of Parkinson’s disease patients[52-54]. In
the  oncological  front,  the  American  Company  Fate  Therapeutics  has  recently
approved the usage of a NK cell-based cancer immunotherapy for the treatment of
advanced solid tumours with cells derived from a clonal master characterized iPSC
line[55]. This study is expected to evaluate the safety and tolerability of multiple doses
of these cells in subjects who have progressed or failed with immune checkpoint
inhibitors therapy. Recently, a clinical trial has been approved to generate sheets of
cardiomyocytes that surgeons plan to implant into the heart of three patients with
heart diseases[56]. While some companies and researchers are patiently waiting for the
results  of  clinical  studies  concerning the  iPSC regenerative  potential,  others  are
currently looking into other therapeutic strategies. For instance, with CRISPR-Cas9
technologies, stem cell biologists are attempting to repair mutated genes in human
iPSC before using iPSC-derived cells to treat the patients.

iPSC BANKING
The use of iPSC for autologous therapeutic purposes seems more appropriate, since
the  cells  derived  from  the  patient  should  present  a  reduced  risk  of  immune
rejection[10]. However, in light of recent findings, an autoimmune reaction to iPSC-
derived cells may not be completely avoided[57].  In addition, the use of iPSC from
patients for autologous purposes may, in many cases, require the correction of genetic
defects  that  contribute  to  the  pathology  (Figure  1).  On  the  other  hand,  having
allogenic  iPSC  already  generated,  characterized  and  tested  for  the  absence  of
contaminating agents and for the integrity of the (epi)genome would save time in the
preparation of iPSC-derived cells needed for engraftment and treatment of patients.
In this case, the human leucocyte antigens/HLA of iPSC should be typed in order to
be able to quickly match the cells with the patients in need[58,59].  In principle, this
strategy would reduce the costs and the number of “off-the-shelf” iPSC samples that
could be stored in biobanks. Indeed, a few hundreds of homozygous iPSC lines could
provide a  match for  more  than 90% of  genetically  homologous populations[60,61].
However, banking the total number of iPSC necessary to match all haplotypes of
multi-ethnic populations with genetic heterogeneity, such as the population of North
America, may be much more challenging and costly[62]. Nevertheless, a number of
banking initiatives,  both to  store  iPSC for  research and clinical  purposes,  are  in
progress in Europe, Asia and North America, with coordinated standards to have a
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well-documented, traceable and quality controlled repository of iPSC[59,63]. However,
the banking initiatives do not reach a consensus in the general public and scientists,
since there are only a few clinical trials ongoing with results that remain to prove that
iPSC-derived cells are useful for successful therapies. In addition, there is a debate on
which financial entities (private or public) should support the high costs of these
initiatives[64]. It is also important to set high standard regulation and quality control
for iPSC production, characterization and cell preservation, as well as their use in
clinical  environments.  Finally,  it  is  also utterly important to provide the general
public, and patients in particular, all the necessary information about the procedures
and the risks associated to the use of iPSC-derived cells, the limitations of these novel
approaches, and to be realistic with the expectations of the patients.

CONCLUSION
The ability to generate pluripotent stem cells, iPSC, from human somatic cells using a
simple  experimental  approach  easy  to  implement,  has  undeniably  opened  new
possibilities for modelling diseases and to undertake developmental studies that
could  never  have  been  performed  before  (Table  1).  The  bulk  of  the  molecular
mechanisms involved in the reprogramming process has been largely unveiled, which
has  already  allowed  great  improvements  in  the  iPSC  generation  process.
Consequently, iPSC have achieved a quality sufficient to be used in novel clinical
approaches. The use of patient-derived iPSC offers the possibility to develop and test
patient-specific pharmacotherapies and derive stem cells which may be corrected for
genetic defects before their use for autologous purposes (Figure 1). In the field of
cancer, the study of iPSC biology and their reprogramming mechanism has not only
provided  new  insights  in  epigenetic  changes  contributing  to  cancer,  but  has
positioned iPSC as a cell source to originate immune cells with great potential for the
development of immunotherapies against cancer. The inactivated iPSC themselves are
now thought to be instrumental for future vaccinations and to provide protection
against cancers.

Even studies of incomplete reprogramming processes of iPSC have provided new
means to revert aging in cells and paved the way for future research directions aiming
to treat age-related diseases and to improve health in longevity. In prevision of their
future  potential  use  in  therapies,  stem cells  and iPSC research communities  are
coming together to set up guidelines and recommendations to delineate the best
approaches and practices to obtain and characterize iPSC with the highest quality
necessary to derive cells for clinical applications. Efforts are also made worldwide to
organize biobanks with traceable information and quality to store iPSC, that would be
ready for prompt clinical interventions. There is no doubt that iPSC technology has
helped basic and clinical researchers to make a leap forward in many fields of basic
and applied  research,  including  cell-based  therapies.  This  relatively  recent  and
evolving  technology  has  rapidly  opened  a  conduit  between  the  bench  and  the
bedside, and is already the object of several pioneering clinical trials to treat various
diseases, including neurodegenerative diseases. Although these clinical assays may
seem premature to many scientists and clinicians, their results are awaited with high
expectations and will be determinant to accelerate and diversify clinical interventions
based on iPSC-derived cells.

Although many technical hurdles remain to be surpassed for iPSC technology to
fully  reach  its  potential.  In  just  over  ten  years  after  its  first  development  this
technology has remarkedly led to several clinical applications, and provide new ways
of  obtaining  disease  models  in  vitro  to  better  study  the  mechanism  of  human
pathologies and to improve patients’ treatment in a more adequate and personalized
manner. Thus, iPSC technology has already been “a giant leap” in terms of obtention
of human cells with incredible versatility and potential for therapeutic applications.
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Table 1  Some weak and strong points of induced pluripotent stem cells technology

Weak points Strong points

Limitations Possible solutions Strengths Further improvements

Slow, inefficient and variable
reprogramming process

Banking of fully characterized iPSC Easy reprogramming process to
implement

Reduce time, and increase efficiency
and consistency of reprogramming

Differential gene expression in
comparison to ESC

Improve the reprogramming using
other combinations of
reprogramming factors

Strong proliferation capacity Establish culture conditions
promoting genome stability

Variable X inactivation status and
genome instability

Test for X inactivation, sequencing to
check for genome integrity

Allogenic and personalized cell
therapy

Eliminate mutagenic potential and
differential gene expression due to
reprogramming

Point mutations Whole genome sequencing to verify
the absence of mutations - Possible
correction by genome editing - Use
cell source for reprogramming less
susceptible to resist to mutations

Model human diseases, including
cancer, and test patient-specific
pharmacotherapies

Establish cells (tissues) with the
adequate phenotypes characterizing
the disease of interest

Immunotolerance of iPSC-derived
cells

Preventive immunosuppression May reverse cells aging Understanding better the molecular
mechanisms of partial
reprogramming and aging markers

Differentiation protocols must be
optimized to obtain iPSC-derived
cells of interest

Many protocols have already been
tested and published

Originate immune cells and use iPSC
as vaccines to develop
immunotherapies against cancer

Increase the variety of immune cells
that can be reprogrammed

Potential tumorigenic hazard Use differentiated and purified cells Pluripotent cells Prepare functional organs

iPSC: Induced pluripotent stem cells.
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