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Resumen

Los nematodos son los animales pluricelulares más numerosos en la Tierra y su estudio

tiene un impacto en el desarrollo de actividades agŕıcolas. En este documento se introduce

SegNema, una estrategia para la segmentación de nematodos en imágenes de microscopia

donde se utiliza aprendizaje profundo para clasificación de ṕıxeles como nematodo o

fondo, y modelos de forma para asociar hitos que describen la posición del nematodo en

la imagen.

Para entrenar el modelo de segmentación se usan 2939 imágenes sin comprimir etiquetadas

manualmente de tamaño 1024 ⇥ 768 ṕıxeles obtenidas de 13 secuencias de imágenes de

microscopia. Por otro lado, los hitos que describen la posición de los nematodos en estas

imágenes de entrenamiento son utilizados para ajustar un modelo capaz de representar

formas correspondientes a nematodo. La disparidad entre formas de las regiones clasifi-

cadas como nematodo en la etapa de segmentación y su posible representación truncada

con el modelo de forma es usado para descartar posibles clasificaciones erróneas. Para la

validación de este modelo se usan 321 imágenes de las secuencias de microscopia que no

son utilizadas en la etapa de entrenamiento.

En cada imagen usada para entrenamiento y validación existe la información de la posición

de hitos donde se delimita un único nematodo aunque otros nematodos pueden estar

presentes.

Palabras clave: Aprendizaje profundo, Aprendizaje automático, Modelos de forma,

Diccionarios activos de forma, Segmentación de nematodos.





Abstract

Nematodes are the most numerous multicellular animals on Earth and their study has a

direct impact in the improvement and development of agricultural activities. This doc-

ument introduces SegNema, a strategy for the segmentation of nematodes in microscopy

images where deep learning is used for classification of pixels as nematode or background,

and a shape model is used to associate landmarks that describe the position of the nema-

tode in the image.

To train the segmentation model, a set of 2939 manually labeled uncompressed images of

size 1024⇥ 768 pixels obtained from 13 di↵erent sequences of microscopy images is used.

The landmarks that describe the position of the nematodes in these training images are

used to adjust a model capable of representing shapes corresponding to a nematode. The

disparity between the shapes of the regions classified as nematode in the segmentation

stage and their possible truncated representation with the shape model is used to rule

out possible erroneous classifications. The validation of this model was performed on 321

images of the microscopy sequences that were not used in the training stage.

In each image used for training and validation, there is information on the position of

landmarks where a single nematode is delimited although more nematodes may be present.

Keywords: Deep Learning, Machine Learning, Shape Models, Active Dictionary Models,

Nematode Segmentation.
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Chapter 1

Introduction

Nowadays, the economy in the developing countries of Central America still depends on

agriculture. In 2011 for example, co↵ee was an important export product in Central

America; with a value of $3.70 trillion it was higher than bananas ($1.64 trillion), sugar

($1.03 trillion) and palm oil ($0.68 trillion) combined [49]. In Costa Rica, although its

economy presents a growing diversification in services and goods, a part of the population

still depends on agricultural activities where it is estimated that there are approximately

140,000 agricultural producers [49]. In this way; it is of interest for this sector to develop

and apply technologies in order to face the demands and standards of today’s local and

international markets in areas such as pest control [30].

Nematodes are the most numerous multicellular animals on Earth [6]. Phytoparasitic

nematodes can cause from insignificant damage to the total destruction of plantations,

where the severity of the damage depends on factors ranging from the natural resistance

of the plant species to external factors such as climate, soil types and reaction time to

treat the plant biological agent. All fruit and vegetable crops are susceptible to nematodes

[34]. Most of the nematodes are microscopic, and advances in the understanding of these

organisms had to wait for the development of microtomes, and electron microscopes [6].

Figure 1.1 shows a nematode of the species C. elegans, used as a model for genetic studies.

Figure 1.1: Caenorhabditis elegans. Source: A.F. BIRD and J. BIRD, (1991) The Structure

of Nematodes (Second Edition), San Diego: Academic Press [6].

The nematodes are consistent in their anatomy; in general, they are symmetrical bilat-

1



2

eral pseudocelomata, not segmented, vermiform, with four major longitudinal epidermal

cords, a triradiated pharynx, a circumternal nerve ring and do not possess circulatory or

respiratory organs [6]. Usually, they have one or two tubular gonads, which open through

a vulva in the female and in the rectum in the male [6]. In dry conditions, some nematodes

can survive desiccation in a suspended state for long periods, and return to an awaken

state when soil water conditions are restored [34]. In the dried state, nematodes are more

resistant to high soil temperature and nematicides [34].

The search for biological control mechanisms of phytoparasitic nematodes is based on the

analysis of hundreds of thousands of samples obtained from the soil. Typically performing

the analysis of a sample image can take from 15 minutes to several hours. This time is

directly proportional to factors such as the composition of the sample, the experience of

the researcher, complexity of detection, etc. The e↵ective use of the researcher’s time,

automating tedious tasks through the analysis of images presents a clear opportunity for

improvement in the area of nematology [24].

The response of nematodes to a variety of stimuli in a given sample allows the analysis of

movement capacity, mortality, fecundity and size [58]. For instance, death in C. Elegans

is manually determined by an animal’s inability to respond to a mechanical stimulus [47]

and directional response to electrical fields can vary among nematode species [58]. Given

these factors, is of interest to determine not only the number of nematodes in a given

image, but also information for their position and edges.

The development of computational tools that provide support to biologists and nematol-

ogists is of interest since they potentially accelerate processes of identification, counting

and behavior analysis; aimed at reducing the impact of these organisms on crops. The

segmentation of nematodes in digital images is essential for a detection and identification

system of these organisms, and their success depends on the accuracy of the algorithms

used. However, the visual appearance of these biological organisms still represents an

unresolved challenge in computer vision, and therefore it is an open research topic. In

Costa Rica, particular applications of this technology include the analysis of pests as-

sociated with phytoparasitic nematodes, and the analysis of nematodes as indicators of

environmental health.

Contributions to the development of such tools have been proposed in [24] and [45] and

a recent proposal in [68] uses 1D CNN Networks. A fully developed strategy that inte-

grates a cohesive image processing pipeline has not yet been presented. This document

introduces SegNema; a proposal for the segmentation of vermiform structures in digital

images. SegNema relies on a database of 3260 manually segmented images, each image

includes only one manually segmented nematode.

Figure 1.2 shows the stages of segmentation approach in SegNema. The proposal uses

a deep network to produce pixel-wise binary classification which discriminates nematode

an background in the image. Based on that result, the method locates the corresponding

nematode edges in order to verify if the detected shape corresponds to a nematode, based

on possible deformations on vermiform structures.
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Figure 1.2: Image processing pipeline proposed in SegNema

A binary classification map for a given image is generated by means of a semantic seg-

mentation network as discussed in Section 2.3. The map is further refined by applying

closing and opening morphological operators. Contour detection for binary blobs on the

binary map is performed using connected components (Section 2.6.1). Finally, landmark

assignment and shape truncation is performed by means of ADM (Section 2.5) where

shapes that do not meet the error criteria are discarded.

The main contributions of this work are:

• Implementation of a pixel-wise classifier for nematodes in microscopy images using

deep neural networks.

• Shape analysis of the binary classifier result using manifold learning to discard

shapes that do not correspond to nematodes.

• Shape adjustment using ADM as an iterative method for landmark positioning on

nematode/background edges.

1.1 Objectives and document structure

The objective of this research is to design a computational tool capable of describing the

position of nematodes in an image using shape models. This tool acts as a first stage in

the development of a usable system in the analysis of microscopy images for the study

of possible pests. In order to achieve this, a methodology it is shown to adapt a shape

model to the image content under consideration of the information extracted via deep

neural networks and active dictionary models. Additionally, it aims to optimize the edge

detection in microscopy images between nematodes and background to identify a shape

adjustment strategy for the placement of landmarks on a microscopy image, using an

iterative process that fits a nematode shape model.

The document is structured as follows: in chapter 2 the theoretical foundations and

related works are discussed. Next, in chapter 3 the proposed solution is introduced. In

chapter 4 the accuracy of the developed system and its components are tested against

manual segmentation. The results obtained are analyzed against the theory presented
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in previous chapters. Finally, in chapter 5 the project conclusions are summarized along

with suggestions for future work.



Chapter 2

Materials and Methods

2.1 Related Works

Shape analysis has been explored in the past for nematode segmentation using active

shape models [45]. This analysis consists on a Procrustes shape alignment [64], followed

by principal components analysis (PCA) and an image adjustment process that uses the

edges in an image to position landmarks. In general terms PCA is applied in order to

reduce the dimensionality of data. This result can be used as a way to parameterize

shapes with the principal components. The deformations can be modeled with respect to

a displacement of the landmarks that fit the edges detected on the image [18]. However,

the results showed the limitation imposed by the use of PCA as a basis to create the

possible deformation space of the nematodes. PCA assumes a linear variability model of

the shapes and the vermiform structures change following a non-linear distribution [45].

The work on active dictionary models [26] was able to overcome that limitation and it is

used on the proposed strategy.

In terms of image segmentation (i.e. a semantic partitioning of the image in regions), the

use of artificial neural networks has been explored in [24][25]. In [24] the segmentation

of nematodes in digital images is proposed in two levels of abstraction, so that it serves

as a first stage of a complete automatic system for the detection and identification of

nematodes. The main objective of the first level of segmentation corresponds to find

samples of textures that are used to the train the second layer. To achieve this, a series of

segmentation strategies were evaluated, in which CWAGM obtained the best performance.

In the second level, corresponding to the object-based segmentation, the objective is to

classify the regions of an over-segmentation according to their texture, and among the

classification algorithms MLP presented the best performance. Considering the type of

images and other di�culties associated with microscopic images, the system obtained a

precision of up to 84.27 % of correct answers in the best of cases with the reference images

used [24]. This strategy had some limitations:

• The quality of the images, particularly the blurring level, a↵ects the classification.
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6 2.1 Related Works

In the first level it softens irregularities in the image and ends up giving less regions

suitable for the classification step. On the second level it destroys the texture

information by smoothing the image.

• The classifiers have problems in distinguishing which regions belong to the nema-

tode and which are background regions because many sections of the nematode are

translucent. This produces holes in the segmentation of the nematode. In order to

separate these types of regions, a high level of adjustment by the classifier seems

necessary, which disables the use of this architecture for samples of, for example,

di↵erent microscopes.

• The parameters chosen depend on the type of image content for the first segmen-

tation level. Using the same parameters, over or under segmentation results can be

expected. Small regions decrease the accuracy of the classifier as it will cause the

regions to produce similar descriptors within the nematodes and the background.

Large regions generate few training examples and regions that belong to nematodes

and background can be merged in to a single region.

The work in [25] also relies on an initial texture based detection, after which a Markov

random field model is used to refine the segmentation to infer which pixels belong to the

nematode. The approach was tested on C. elegans under various dynamic environments,

but it did not integrate a shape model to produce a static set of landmarks per nematode

on the image.

In [68] deep learning is used for the classification and detection of nematode edges as a

two stage task; first a classification model is used to determine if a 1D vector contains

nematode information and then a regressor model is used to determine which pixels

correspond to a nematode or to the background. The obtained models are able to classify

1D vectors in nematode or non-nematode and estimate in which direction there is a

nematode edge. During the CNN training, dropout layers were used to avoid overfitting.

In addition, the use of ReLU activation features in all layers improves the convergence

speed of the training without sacrificing precision and recall. Figure 2.1 shows the results

obtained by the two tasks evaluating horizontal vectors of 37 pixels (in 1D). The network

was trained with nematode data and background information close to the nematode. This

caused that objects without a nematode shape could be wrongly classified and no method

was proposed to discard those shapes. In cases where there is a nematode in the vector,

it was well distinguished between nematode and background.

Deep learning frameworks have also been used to discern and count microscopic nematode

eggs [1]. Similarly to what is proposed in this work, the architecture is trained with labeled

data from microscopy images and used to build a machine learning model. The result of

the segmentation performed was used to quantify via image analysis the number of eggs

in the image.

Recently, other methods have been proposed with good results. A method for detect-

ing rice root knot nematodes on microscopy images is presented in [67]. It is based on
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(a) Original microscopy image
(b) Output of performing a classification and a

regression task using deep learning

Figure 2.1: Nematode segmentation result, as obtained in the combination of a classification

task and a regression task using 1D CNN. Source: M. Taylor, Adjustment strategy

of explicit shapes to images with vermiform structures, ITCR (2017) [59].

mathematical morphology, where a binary image is obtained and the microscope lines

are removed. The detected nematodes are counted after applying a threshold for the

non-nematode particles. The method described in [44] relies on movement detection to

discard objects in microscopy images that do not correspond to living organisms. A

more recent area of deep learning, called Geometric Deep Learning [48][21][8][46], aims

to transfer the high performance of CNN to structures that can be represented with no

linear transformations by defining convolution operations for deep neural networks that

can handle irregular input data. A way to limit the possible values learned by the weights

of the convolutional networks so that filters are not able to learn representations outside

a particular manifold is presented in [48]. On the other hand in [21] structured irregular

data was received and mapped to a directed graph in order to being able to only represent

data described by B-Splines.

At the time of this work, no proposal has been found that integrates a shape model stage

with a segmentation stage using deep learning applied in microscopy images with one

labeled nematode.

2.2 Metrics

This section describes the metrics used throughout this document for the validation of

the di↵erent stages of SegNema. Categorical cross entropy loss and mean absolute error

are used to measure the accuracy of the semantic segmentation model. The Jaccard index

is used as a second stage accuracy measurement to compare binary masks generated by

the segmentation model and ground truth reference values. The root mean squared error

is used as a criterion to determine the convergence of the landmark adjustment strategy.

Finally, the euclidean distance is used to measure distance between an arbitrary coordinate

in a space of given dimensionality and a manifold in that space (more on section 2.5).
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2.2.1 Cross entropy loss

In information theory [57], entropy refers to the average rate at which information is

produced by a random source of data. Given a set of labels I, each with a given probability

of being produced pi with i 2 I, provided by a classification distribution p, the entropy

H is given by:

H(p) := �
X

i2I

pi log(pi) (2.1)

The more uncertain the setup is, the higher the entropy, since the average data will

increase. The cross entropy for two probability distributions is used to quantify the rate

of correct assignment of values from estimated predictions to a true set of predictions.

The cross entropy between two probability distributions ŷ and y over the same underlying

set of event measurements, being ŷ the predicted probabilities and y the ground-truth

distribution, is given by:

H(ŷ,y) := �
X

i2I

ŷi log(yi) (2.2)

In a model for probabilistic classification using supervised learning, the aim is to map

the model inputs to probabilistic predictions, and the model is trained by incrementally

adjusting the model parameters so that the predictions get closer and closer to ground-

truth probabilities. This means that for a given classification model, the better the

strategy is, the lower the cross entropy is. Hence, minimizing cross entropy will move the

model configuration closer to ground-truth distribution. The cross-entropy can be used

as a loss function when performing gradient descent.

2.2.2 Jaccard index

The Jaccard index (also known as intersection over union (IoU) and the Jaccard similarity

coe�cient) [54] measures similarity between finite sample sets. Is defined as the size of

the intersection divided by the size of the union of the sample sets. Given two sample

sets A and B, the Jaccard index is calculated as:

J(A,B) =
|A \B|
|A [B| (2.3)

Where 0  J(A,B)  1. In a binary pixelwise segmentation task, the Jaccard index is

used as a measurement for the similarity between a ground truth classification mask and

the predicted mask .
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2.2.3 Mean absolute error

The mean absolute error (MAE) [29], is used to perform a measure of the average magni-

tude of the absolute errors in a set of predictions. In machine learning, it is the average

over the test sample of the absolute di↵erences between predictions and reference values.

Given a set of n predictions ŷ for the set of ground truth values y, the MAE is given by:

MAE =

Pn
i=1 |yi � ŷi|

n
(2.4)

This value can be used as the prediction error for the di↵erence between the reference

value and the predicted value for a given set.

2.2.4 Root mean squared error

Root mean squared error (RMSE) [10] is the square root of the average of squared di↵er-

ences between predictions and reference values. Given a set of n predictions ŷ for set of

ground truth values y, the RMSE is given by:

RMSE =

vuut 1

n

nX

i=1

(yi � ŷi)2 (2.5)

The RMSE is a measure that allows to compare how the residuals spread around between

the ground truth.

2.2.5 Euclidean distance

The Euclidean distance between points p and q of n dimensions, is the length of the line

segment connecting them (pq):

d(p,q) =

vuut
nX

i=1

(pi � qi)2 (2.6)

2.3 Semantic image segmentation

Semantic segmentation is the task of clustering image regions together which belong to

the same object class [70]. Let k 2 N be the number of classes and m the total number

of pixels, ni 2 N with i 2 1,..., k the number of pixels which belong to class i. The idea

of semantic segmentation it to obtain ni pixels correctly assigned to each of the k classes.

In order to do so, semantic segmentation algorithms store information about the classes
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they were trained to segment, while non-semantic segmentation algorithms try to detect

consistent regions or region boundaries. This concept is associated as a step towards the

high-level task of complete scene understanding [22].

The set of labels with which the algorithm is trained to classify is a central design de-

cision. Most algorithms work with a fixed set of classes, which includes binary classes

like foreground and background, or the object of interest and everything else. From a

general perspective in the training of a deep learning based segmentation pipeline, data

augmentation techniques such as image rotation or translation, among others, can be

applied to raw data (see Section 2.4.1). There are two general strategies for training:

using patches of the image, called windows, which are extracted from the labeled data,

and downscaling input data to reduce dimensionality. The resulting semantic segmenta-

tion of an image typically can be refined by applying morphologic operations or by more

complex approaches such as Markov Random Fields (MRFs) and Conditional Random

Fields (CRF) [22].

2.3.1 Morphology

In order to soften edges in the binary predictions performed, dilation and erosion opera-

tions are perform on binary masks. As per morphological operation concepts, dilation is

an operation that grows or thickens objects in a binary image. The dilation of an image f

by a structuring element s (typically referred to as kernel) is denoted as f � s. The result

of this operation is a new binary image g = f � s with ones in all locations (x,y) of a

kernel origin on which that kernel hits the input image f . This means that g(x,y) = 1 if s

hits f and 0 otherwise, repeating for all pixel coordinates (x,y) [61]. Erosion on the other

hand, shrinks or thins objects in a binary image. The extend of shrinking is controlled

by the structuring element. The erosion of a binary image f by a structuring element s,

denoted by f  s produces a new binary image g = f  s with 1 in all locations (x,y) of

the kernel element origin on which that kernel fits the input image f . This means that

g(x,y) = 1 is s fits f and 0 otherwise, repeating for all pixel coordinates (x,y) [61].

Typical morphologic operations in refining the result of a semantic segmentation include

opening and closing [52]. The opening operation is an erosion followed by an dilation; this

removes small segments of the image. The closing operation is an dilation followed by an

erosion. This removes gaps in otherwise filled regions [61].

2.3.2 Markov Random Fields

On the other hand, the overall idea of Markov Random Fields (MRF) is to assign a random

variable to each feature and another random variable to each pixel which gets labeled.

For instance, as proposed in [70], in computer vision segmentation problems where MRFs

are applied, a random variable y 2 {1, ..., k} represents the class of a single pixel, while a

random variable x represents pixel values and edges represent pixel neighborhoods. The
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join probability of x, y is expressed as

P (x,y) =
1

Z
e
�E(x,y) (2.7)

where Z =
P

x,y e
�E(x,y) corresponds to the partition function which is a normalization

term and E is the energy function. Similarly, CRFs are MRFs where instead of learning

the distribution P (x,y), the problem is reformulated to learn the conditional distribution

P (y | x). The main advantage of this reformulation is that CRFs need less parameters

since the distribution of x does not have to be estimated. On the other hand CRFs make

no distribution assumption about x as opposed to what is proposed by MRFs [70][39].

2.4 Deep learning

Deep learning allows the generation of computational models that are trained to learn data

representations with multiple levels of abstraction. Using these layers of representation,

models are able to learn aspects for the interpretation of data making use of the underlying

structure in the data through the parameters of each intermediate layer. Each layer

is used to calculate a new representation from the representation of the previous layer

[41]. While the classical methods require that the data must be preprocessed to obtain

an intermediate representation, deep learning approaches learn during training the best

intermediate representations for the data and generates a model. This technique has two

main limitations that prevented popularization of its use in the past [42]:

1. It requires data for training that considers most of the variations of the input space.

The ability of deep networks to learn intermediate representations comes at the

price of having to increase the number of model parameters. A greater number of

parameters implies that more data is required to train.

2. The training of a deep network requires computational resources that grow with

respect to the number of training parameters. Each training data must be passed

through a series of convolutions and linear calculations, to then use some optimiza-

tion technique that modifies the parameters of the model.

These problems have been solved in recent years [22]. The Internet has allowed the

exchange of huge amounts of images tagged in di↵erent areas; nevertheless images of

microscopy of nematodes are not included among the available databases. On the other

hand, advances in processing capacity, due to the rise of high-performance computing,

have considerably reduced the time required to train this type of networks.

With the good performance obtained by a particular implementation with the ImageNet

database, since 2012 progress in the area has grown exponentially [3]. In that year convo-

lutional neural networks were applied in the recognition of objects, considerably reducing
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the error obtained by solutions involving more complex synthesis operations. Since then,

the computer vision community quickly adopted deep learning and is now widely used.

The CNN model is made up of a series of parameter layers adjusted during training that

synthesizes information on the data that should cause the highest activation. The trained

model computes an output from an input. Table 2.1 summarizes some the most common

layer architectures used in deep learning approaches.

Table 2.1: Deep learning common layers

Architecture Description References

Convolutional Convolutional layers filter the input data, with filters

learned during the training stage in order to highlight

characteristics that allow the upper layers to classify the

data. It generally learns an intermediate representation

of the data. For each filter on the layer, it generates a

mask that is the result of the convolution with the filter.

This layer is parametrized by the amount of filters used

and the size of the filter mask.

[3] [17]

Recurrent As the name suggests; it is used when a model needs

context to provide the output based on the present and

past inputs. RNNs can use an internal state to process

sequences of inputs.

[32][75]

[23][11]

Batch Nor-

malization

It reduces the amount by which the hidden unit values

spread and allows each layer of a network to learn by

itself more independently from other layers. It works by

normalizing the output of a previous activation layer by

subtracting the batch mean and dividing by the batch

standard deviation.

[33][31]

Pooling It progressively reduces the spatial size of the represen-

tation to reduce the amount of parameters. It also pre-

vents overfitting. The Pooling Layer operates indepen-

dently on every depth slice of the input and resizes it

spatially, using the MAX operation.

[65][40]

[56]

Dropout It is a way to avoid overfitting through a method dif-

ferent than regularization. The idea is that during each

step forward some neurons are deactivated. The per-

centage of these neurons is predefined in each layer and

their selection is random. This prevents neurons from

adapting too much.

[63]

Activation It is a function applied to produce the output of a neu-

ron. Possible activations include ReLu, Softmax, Soft-

plus, Softsign, Sigmoid.

[53][19] [2]
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Deep Learned Segmentation

Successful deep learning techniques for semantic segmentation are inspired from the

approach taken by the Fully Convolutional Network (FCN) [59]. The Fully Convolu-

tional Network (FCN) is a normal CNN, such as AlexNet [3], VGG (16-layer net) [60],

GoogLeNet [66], and ResNet [27] where the last fully connected layer is substituted by

another convolutional layer with a large receptive field, as shown in Figure 2.2. The idea is

to capture the global context of the scene as output spatial maps instead of just obtaining

classification scores. Those maps are upsampled using fractionally strided convolutions

[76] to produce dense per-pixel labeled outputs. The success of this approach showed how

CNNs can be trained to learn how to make dense predictions for semantic segmentation

with inputs of arbitrary sizes.

Figure 2.2: Fully Convolutional Network. Source: E. Shelhamer, J. Long, and T. Darrell,

Fully convolutional networks for semantic segmentation, IEEE Trans on Pattern

Analysis and Machine Intelligence. (2017) [59].

The FCN model has several limitations since its inherent spatial invariance does not use

the global context information to refine the classification and there is no instance aware-

ness, which means that the information obtained from the inference can not determine the

amount of objects in the scene. Due to these limitations, a series of variations emerged

that exploit the qualities of the FCN but at the same time take advantage of the char-

acteristic information at the local level in each prediction, in order to make it suitable

for segmentation. SegNet [4] is a clear example of this divergence and follows a di↵erent

architecture to perform semantic pixel-wise labelling. It consists of an encoder network

and a corresponding decoder followed by a pixel-wise classification layer used to map

low resolution features obtained by the encoder stage to the input resolution, in order to

obtain a pixel-wise classification result. The mapping produced by the network provides

features which are useful for accurate boundary localization, since by obtaining a pixel

by pixel classification in an inference result, it is possible to determine the relationship
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where an edge can be located. A representation of this network, as proposed in [4], is

showed in Figure 2.3.

Figure 2.3: SegNet architecture. Source: V. Badrinarayanan, A. Kendall, and R. Cipolla,

Segnet: A deep convolutional encoder-decoder architecture for image segmentation,

CoRR (2015) [4].

In the SegNet architecture, encoder-decoder pairs are used to create feature maps for

classifications of di↵erent resolutions. A collapsed view of this architecture is shown in

Figure 2.4. Since the model decomposes the image at di↵erent resolutions it has the ability

to delineate objects based on their shape, despite their small size. On the original proposal

the pooling indices where shared between the subsampling and upsampling layers of the

encoder and decoder, respectively, but the entire architecture can be trained end-to-end

using stochastic gradient descent.

Figure 2.4: Simplified SegNet architecture

Each encoder on the model is constructed as the one depicted on Figure 2.5. Each one

performs a convolution with a filter bank to produce a set of feature maps, which are

then batch normalized. Batch normalization reduces the amount by what the hidden

unit values spread (also known as covariance shift) in order to generate the feature maps

created at each layer [31]. Then an element-wise rectified linear unit (ReLU) activation is

added. Finally, max-pooling with a 2⇥2 window and stride 2 is applied. This causes that

the resulting output after each encoder stage is a feature map subsampled by a factor of 2

from its input. The idea of using a max-pooling layer is to achieve translation invariance

over small spatial shifts in the input image.

Combining translation invariance over small spatial shifts and subsampling leads to each

pixel governing a larger input image context. This means that, at the end of the encoder

stage, the network is able to classify the input pixels but in a reduced feature map size,
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Figure 2.5: Segnet encoder architecture Adapted from: V. Badrinarayanan, A. Kendall, and

R. Cipolla, Segnet: A deep convolutional encoder-decoder architecture for image

segmentation, CoRR (2015) [4].

which can be translated as a lossy image representation with blurred boundaries, which

is not ideal for segmentation purposes. The decoder section is added to overcome that

limitation, since it is desired that the output image resolution is the same as in the input

image. To achieve this SegNet applies upsampling in its decoder. For that, it stores

the max-pooling indices from the encoding stage and provides them to the decoding

upsampling layer. The sparse maps created by each upsampling layer are fed through

a trainable filter bank to produce dense feature maps. The last decoder in the decoder

network is connected to a softmax classifier which classifies each pixel to its corresponding

class.

One of the advantages of the SegNet network is that it is smaller and easier to train than

many other recent architectures to perform segmentation, while it is able to retain bound-

ary information in the extracted image representation. Other approaches like Google

DeepLab [14] which apply depth-wise separable convolution [13][12] and uses Atrous Spa-

tial Pyramid as the pooling mechanism, needs to be trained using a multi-staged approach.

Recently, a SegNet based architecture was successfully applied in ear detection [20]. The

detection problem was formulated as a two-class segmentation problem to distinguish

between image-pixels belonging to either the ear or the non-ear class. The output of the

network was refined using post-processing in order to not simply return a bounding box

around the detected ear but also a detailed pixel-wise information about the location of

the ears in the image. In this way the result of the pixelwise classification can be directly

studied by shape models since it not only provides information on which pixels belong to

a particular class, but also where the edge can be found.

The next step in pixelwise semantic segmentation is object detection where not only

pixels of a particular class needs to be detected but also distinguish di↵erent instances of

the same object. Pixelwise semantic segmentation is considered a first step in instance

segmentation since that information is required while trying to get object instances, but

further processing is required since neighboring pixels of a particular class might belong

to di↵erent object instances and regions which are not connected might belong to the

same object instance. For example, the intersection of two pencils will be classified all

in a class but there are still two instances of the same object that without further shape

analysis can be interpreted as being the same pencil [70][22]. The task of object detection

in semantic segmentation is known as instance segmentation[22] and at the same time

it is a challenging problem that is still under research with several applications in the
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computer vision field. The main purpose is to separate objects that are represented with

the same class label into di↵erent instances since the prediction obtained pixelwise does

not contain information over the number of instances. Instance labeling provides extra

information for reasoning about occlusion situations.

2.4.1 Data Augmentation

When training CNN based models data augmentation is a common technique that has

been proven to benefit the performance in deep architectures in particular. A CNN deep

learning network requires a large amount of data to compensate for the inherent high

variance of the system. In other works, given that it has a high amount of parameters

to train, the system has high capacity and to avoid overfitting the learning theory pre-

dicts higher requirements in the number of samples used as training data [22] [77] [51].

The reasoning behind this augmentation lies in applying transformations to a dataset to

generate more samples and so decrease the chance of possible biases. If the capacity of

the system fits the generalization requirements for the task, a large dataset allows the

prevention of overfitting while training the model. The data augmentation techniques

should be targeted at balancing the classes within that database, and synthetically pro-

duce new samples that are more representative than a small original dataset. Common

data augmentation techniques include perform operations such as translations, rotations,

cropping, noise addition (for instance, adding Gaussian noise) and optical distortions.

Examples can be found where data augmentation techniques allowed the model to reach

better results in classification tasks. For instance, [79] showed that using a subset of the

training data and applying a transformation has better e↵ects later in the prediction that

with the unaltered complete original set. On the other hand, in [35] 200 ⇥ 200 images

were divided into smaller chunks in a segmentation task and applied data augmentation,

which allowed to reach a 28% increase in the classification accuracy.

2.5 Active Dictionary Models

In order to generate landmarks that describe a shape in a manifold constituted by repre-

sentations of nematodes, Active Dictionary Models (ADM) was used. ADM is based on

a dictionary learning stage and a shape truncation step called geodesic projection both

of which will be further explained in this chapter.

2.5.1 Geodesic Projection

A set of l two-dimensional landmarks that describe a particular shape can be mathe-

matically interpreted as a point in a d-dimensional space with d = 2l [43]. Since high-

dimensional datasets can be di�cult to represent, manifold learning techniques propose
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that within a d -dimensional set S 2 IRd there is an embedded k dimensional manifold

M which holds all shapes described in the d dimensional space, so that the condition M
2 IRk

, k < d is fulfilled. The typical manifold learning problem is unsupervised and aims

to learn the structure of the data from the data itself, without the use of predetermined

classifications.

One of the techniques in manifold learning is Isomap [69] which stands for isometric

mapping. Isomap is proposed as a non-linear dimensionality reduction method which

tries to preserve the geodesic distances between points in spaces of lower dimension than

the original set of points. In non-linear manifolds, the Euclidean metric for distance is a

valid metric if the local neighborhood structure can be approximated as linear but it falls

short for larger neighborhoods. This is depicted in the 2D projection onto a 1D space

example shown in Figure 2.6; depending on the distribution of the points in the space,

the Euclidean distances can be misleading, whereas if the distance between two points is

calculated moving on the manifold, an alternative definition of the distance between two

points in a lower dimensional space can be established.

Figure 2.6: Example of the mapping for the geodesic distance that rely on the distance between

the neighbors of points instead of the Euclidean distance between points

The first step in the Isomap method starts by creating a neighborhood network of the

points in the higher dimensional space. After that, it uses the graph distance to approxi-

mate the geodesic distance between all pairs of points using the k-nearest-neighbors [69].

Then through the eigenvalue decomposition of the geodesic distance matrix, it finds the

low dimensional embedding of the dataset [69].

The geodesic projection (GP), algorithm borrows the principle of projecting a shape from

a higher dimension space into a subspace described by a discrete subset of points in

a manifold [26] and interpolating using approximate geodesics. The GP procedure is

described as algorithm 1 where y is the original point and yGP the projected result.

Barycentric matching pursuit (BMP) as proposed in [26] is a modification of the classical

matching pursuit algorithm [50] where the projection of the sample to be represented

is confined into the interior of a simplex. In order to represent points in barycentric

coordinates, let t be the finite place in a simplex of k vertices x1, · · · ,xk. We can represent
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Algorithm 1 Geodesic Projection
Input: Signal to project y, representative manifold S

Output: Projected signal yGP

1: Let S 2 IRd be a representative set of samples from the manifold M
2: Get the k -nearest-neighbors of y in S

Sk = k-nearest-neighbors(y,S)

3: Find the closest neighbor of y in Sk

ynn = nearest-neighbor(y,Sk)

y0 = y � ynn

4: Project y0 into a simplex spanned by Sk = {p � ynn | p 2 Sk} using Barycentric

matching pursuit. The vectors in the columns of Sk conform a matrix that makes it

suitable for BMP.

yM = BMP(y0,Sk)

5: Return to the original coordinate space

yGP =yM + ynn

any point p with the barycentric coordinates t with

p =
⇥
x1 x2 · · · xk

⇤
t = t1 x1 + · · ·+ tk xk (2.8)

with the restriction that all ti � 0 and ktk1 = 1. The coe�cients (t1, . . . , tk) are the

barycentric coordinates of p with respect to x1, . . . ,xk. Algorithm 2 shows the confine-

ment process of the point y into the simplex S of k faces. The columns of S span a

subspace of k � 1 dimensions.

2.5.2 Dictionary Learning

A shape model is a mathematical description of a shape that allows deformations accord-

ing to a set of previously defined constraints. The shape models have diverse applications

in industrial and scientific areas, and it is a basic element in tasks such as segmentation,

elimination of noise, tracking and classification [16].

Classical algorithms such as PCA are based on linear methods and unimodal normal

distributions that are not appropriate for modeling deformations present in natural sig-

nals, such as the vermiform structures associated with the nematodes. As opossed to

these methods, dictionary learning is capable of representing deformations of non-linear

signals, such as those present in natural signals [26]. Matching a shape and its possible

deformations from a previously learned representation to image contents is a problem

studied in the area of computer vision and the tendency in recent years has been to solve
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Algorithm 2 Barycentric matching pursuit, adapted from [26]

Input: Signal to truncate y0, Simplex to project the image S of k faces

Output: Signal projected inside the simplex after the j iteration y
j

1: Set

j = 1

r
j = y0

y
j =

⇥
0 0 · · · 0

⇤
S

where j is the iteration step, rj is the residual of the projection of y0 inside S at

iteration j, and y
j the approximation of y0 inside S at iteration j.

2: Compute the product

v
T = r

jT
S

3: Find the n-th vertex of S, such that

|vn| � ↵sup
i
|vi|

where 0 < ↵  1.

4: Truncate so that 0  vn  1

5: Update

y
j+1 = y

j + vnSn

where Sn is the n-th column of S.

6: Confine the hypertriangle

y
j+1 = y

j+1
/kyj+1k1

7: Update the residual

r
j+1 = r

j � y
j+1

8: Increment j and repeat 2-7 until some convergence criterion has been satisfied
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it for three-dimensional images [5]. However, a generalized method to represent all pos-

sible deformations in space has not yet been reached, particularly when they can not be

represented in a linear manner.

Signals can often be represented in a simpler way than that provided by the acquisition

process. For example, when a pure tone is described, it is not necessary to list all the

samples with their respective values to understand the nature underlying the signal, but it

is su�cient to indicate the frequency of the tone and its sampling frequency. This provides

a compact description of the measurement, that highlights the useful information of the

signal and facilitates its storage, transport and consumption. The same principle applies

when the example of pure tone extends to a more complex signal, such as that produced

by a musical instrument [38].

It is said that natural signals are sparse. Sparsity is a characteristic that states that by

using the appropriate base vectors, the signals can be described with a reduced set of

components. For instance, in the pure tone example, all frequency coe�cients are zero,

except those corresponding to the tone [26]. The signal over time is dense, but it is sparse

when it is described in the frequency domain. This means that in the process of generating

a representation of a sparse signal, less significant components are zeroed and an accurate

approximation of the original signal is still recovered. In other words, a natural signal

in the frequency can be represented as as sparse combination of several components, and

dictionary learning aims to create the frame vectors from which these components can

be gathered to represent the natural signals [38]. Mathematically a signal y of n discrete

components is sinthesized with a dictionary � of m atoms with:

y = �a+ � =
mX

k=1

ak�k + � (2.9)

where� 2 Rn⇥m is known as the dictionary (the frame vectors, �k as its columns), a 2 Rn

is the sparse vector that ponders the dictionary, y 2 Rn is the reconstructed signal and

� represents the error from the dictionary representation. For � to induce dispersion, it

has to hold a number of m of words or codes larger than the dimension of the original

signal; then, when n < m it is said that � represents an overcomplete dictionary [71].

K-SVD [55] is a dictionary learning algorithm for creating a dictionary for sparse rep-

resentation of signals. K-SVD uses singular value decomposition approach for creating

a dictionary, this method consists of a generalization of the k-means clustering method.

It works by alternating between sparse coding the input data based on the current dic-

tionary using orthogonal matching pursuit (OMP) [50], and updating the atoms in the

dictionary to fit the data.

2.5.3 ADM

ADM, or active dictionary model, is an iterative algorithm for image segmentation using

shape models [26]. It is especially useful when delineating objects with non-linear shape
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models. It is also useful for scenarios where noise components are present. These may

include measurement noise, overlaps with other objects and auto-occlusions. The working

principle of the ADM is summarized in Algorithm 3.

Algorithm 3 Active Dictionary Models

Input: Initial image-level approximation for signal y1, representative manifold S,

acceptance criterion ✏

Output: Truncated signal after i-th iteration y
i

1: Assign i = 1

2: Learn the � dictionary using KSVD and OMP.

3: Adjust yi using image-level information.

4: Minimize mina{kyi��ak2+kak0} using OMP. The vector a induce both the minimal

error and the highest sparsity.

5: Assign y
i = �a

6: Project yi on the manifold using GP

7: if kyi � y
i�1k2 < ✏ then

8: exit

9: else

10: Assign i = i+ 1

11: repeat from 3

12: end if

This process is repeated until the established convergence criterion is reached [26]. An

example result of the adjustment of a shape model fitted to a vermiform structure is

presented in Figure 2.7. After 19 iterations, a model adjusted to a vermiform structure

is obtained, even though it is superimposed with another shape with the same character-

istics.

2.6 Image processing

In order to position landmarks under the consideration of information extracted from

deep neural networks, the operations of skeletonization and oriented Gaussian derivatives

(OGD) are used. The skeletonization process is useful to determine endpoints on binary

blobs and OGD can be used in landmark adjustment based on the edge strength in the

original image.

2.6.1 Skeletonization

Skeletonization is the process of extracting skeletons from an object in a digital image.

This process is usually applied to binary images with black and white pixels, which

represent foreground and background pixels [62]. This morphological operation deletes
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Figure 2.7: Modeling example of ADM to vermiform structures. The blue lines in a), b) and

c) correspond to the shape adjustment result by means of ADM to the vermiform

structure in red. Below is the error in terms of the iteration number. Source:

M. Grüner, Active dictionary models: A framework for non-linear shape modeling,

ITCR (2015) [26].

black foreground pixels iteratively until a one-pixel width structure, known as skeleton, is

obtained. Skeletonization is essentially a pre-processing step used in image analysis [62].

The Zhang-Suen thinning algorithm [78] is frequently used to aproximate the skeleton

of an image. The algorithm is a two-pass algorithm, meaning that for each iteration it

performs two sets of checks to remove pixels from the image. The process is iterative and

it continues until no more pixels can be removed. One example of a pixel in the evaluation

process of the algorithm is showed in Figure 2.8.

Figure 2.8: Example of grid of pixels on a binary image. In this particular case Pixel1 corre-

sponds to one pixel on the evaluation process
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The Zhang-Suen algorithm operates on pixels within an 8-neighborhood. This means

that pixels found at the border and corners of the image are not analyzed. We first de-

fine A(Pixel1) as the number of transitions from black to white (0 to 1). Following the

sequence Pixel2 ! Pixel3 ! Pixel4 ! Pixel5 ! Pixel6 ! Pixel7 ! Pixel8 !
Pixel9 ! Pixel2 (in the example of Figure 2.8, A(Pixel1) = 1). We then define

B(Pixel1) as the number of white pixel neighbours of Pixel1 (in the example of Fig-

ure 2.8, B(Pixel1) = 4).

Pixels are tested using the two-pass tests. At the first stage pixels satisfying five conditions

simultaneously are set to black (Pixel1 = 0). Pixels are set to black after all the qualified

pixel are determined.

1. The pixel analyzed is white (Pixel1 == 1) and has eight neighbours (is not a pixel

on the border or corner).

2. 2 <= B(Pixel1) <= 6

3. A(Pixel1) == 1

4. Pixel2 _ Pixel4 _ Pixel6 == 0 (at least one is black)

5. Pixel4 _ Pixel6 _ Pixel8 == 0 (at least one is black)

Once the first stage is completed, at the second stage all pixels satisfying five conditions

simultaneously are set to black (Pixel1 = 0). Pixels are set to black after all the qualified

pixel are determined.

1. The pixel analyzed is white (Pixel1 == 1) and has eight neighbours (is not a pixel

on the border or corner).

2. 2 <= B(Pixel1) <= 6

3. A(Pixel1) == 1

4. Pixel2 _ Pixel4 _ Pixel8 == 0 (at least one is black)

5. Pixel2 _ Pixel6 _ Pixel8 == 0 (at least one is black)

If a pixel is chosen for removal by either pass, then it is removed. These stages are both

repeated until there is no pixel chosen for removal by either step. It is to notice that this

algorithm is suitable for parallel processing.
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2.6.2 Oriented Gaussian Derivatives

The main objective of applying Oriented Gaussian Derivatives or OGD filtering on a

image relies on the need of obtaining a scalar value that determines the strength of an

edge with a controllable radius of action. It arises from mixing the properties of two

filters. The Gaussian filter acts as a low-pass filter to eliminate noise and to build a

scale space [37] [74] and the derivative filters allow to find edges by means of the gradient

[9]. Applying this type of filters allows not only to get a rough estimate of the edgeness

but also properly discriminate the elements of the image depending on the scale. The

multidimensional Gaussian filter can be separated into multiple one-dimensional filters

oriented to the main axes [72]: one for the horizontal direction, and one for the vertical

direction. The one-dimensional Gaussian filter is defined by the Gaussian function:

G(x; �,µ) =
1

�
p
2⇡

e
�(x�µ)2

2�2 (2.10)

In order to create a Gaussian filter, the mean µ is taken as 0 and the normalization

constants can be ignored to simplify the expression. Normalization can be done once the

filter is calculated by dividing the obtained matrix between its algebraic norm:

Ĝ(x; �) = e
�x2

2�2 (2.11)

The first derivative of (2.11) corresponds to :

@Ĝ(x; �)

@x
= � x

�2
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✓
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2

2�2

◆
= � x

�2
Ĝ(x; �) (2.12)

where the scale in which it is filtered is defined by �
2. Normally this scale is selected with

the approximation:

�
2 =

s+ 1

6
(2.13)

where s is the scale (in pixels) that acts as the cuto↵ limit of the filter mask. To obtain the

gradient on a particular direction, OGD can be applied using a perpendicular Gaussian

filter with the same variance �
2.



Chapter 3

SegNema : A novel strategy for

nematode segmentation

Figure 3.1 shows the strategy used for the proposed stages in SegNema. A binary map gen-

erated by a deep learning network is used to classify each pixel as nematode or background

in an image, and opening and closing operations are performed to smooth irregularities

out on the result. A structural analysis of binary blobs (regions) is then performed in order

to separate and locate the connected regions with possible nematode information. Next,

landmarks are assigned using the information of the endpoints of the regions (obtained by

a thinning process). The contour information and the endpoints are used to approximate

the closest nematode shape performing a geodesic projection. Finally ADM is used to

adjust landmarks into a valid vermiform shape in an iterative process. Landmarks are

adjusted to the image using information extracted from the image and truncated until a

rejection or convergence criterion is met.

Figure 3.1: SegNema processing pipeline

The following sections specify the operations performed in each of the SegNema stages.

In the case of the pixel-wise classification stage, the training strategy and the network

structure are specified. The contour detection stage relies on the detection of connected

components [28]. For the landmark adjustment stage two strategies were proposed: a

one-dimensional classification using CNN, and an edge detection strategy using OGD.

SegNema associates a shape model with the CNN prediction instead of just generating a

bounding box. Hence, the shape of the nematode and the enclosed image region can be

25
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further processed to extract information about species, size or orientation. Furthermore

the use of shape models allows to discard predictions based on CNNs.

3.1 Pixel-Wise Image Classification

The object detection stage has to determine if a nematode exists in a certain region

or not. The result is a binary mask with the same size as the input image with blobs

that correspond to regions with a high probability of being part of a nematode. 1D

CNNs are used in [68] to classify nematode and the results suggest that training a deep

learning model with convolutional layers using 2D patches should improve the results

of the classification since more contextual data can improve the results of the regressor

model. To achieve this task, a pixel-wise segmentation architecture similar to SegNet

(Section 2.3) is selected, where the coe�cients of the upsampling layer in the decoder

section are learned in the training process. The decision is made according to what is

described in Table 3.1: the SegNet architecture is implementable and trainable on most

8 deep learning frameworks and can perform pixel-wise classifications.

Table 3.1: Comparison of requirements for the deep network structure for object seg-

mentation

Architecture Training requirements Classification Result

SegNet [4] Fully trained using gradient

descent

Pixel-wise classifica-

tion

FCN [59] Fully trained using gradient

descent

Downsampled classifi-

cation

DeepLab V2 [12] Layers need to be trained

separately. Training not

currently supported by all

frameworks.

Pixel-wise classifica-

tion

On [68] the length of the 1D patches used was 37, and the results suggests that 37 ⇥ 37

2D patches should improve the pixel classification results. Since this is a odd number and

given that the selected architecture has downsampling stages performed by max pooling

layers, the input size is increased to 40 ⇥ 40 pixels to keep the same size at the output

layer for the pixelwise prediction, to avoid adding stride and to allow the use of up to

three encoders in the arquitecture. In each convolutional layer the size for the filters is

3 ⇥ 3. The number of parameters for the encoder and decoder sections for 4 decoders is

shown in Tables 3.2 and 3.3, respectively. The number of encoder/decoder units can be

modified to tune the model.

In order to generate training data for the proposed model, a binary mask is generated

from the inner area of a polygon delimited by the landmarks that indicate the nematode

position on an image, as shown in Figure 3.2. The model proposed is trained using patches
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Table 3.2: Parameters of 4 encoders for pixelwise segmentation

Layer Output #Param

Input (40,40, 1) 0

Conv2D (40,40,64) 640

Batch Normalization (40,40,64) 256

Activation (ReLU) (40,40,64) 0

Max Pooling2D (20,20,64) 0

Conv2D (20,20,128) 73856

Batch Normalization (20,20,128) 512

Activation (ReLU) (20,20,128) 0

Max Pooling2D (10,10,128) 0

Conv2D (10,10,256) 295168

Batch Normalization (10,10,256) 1024

Activation (ReLU) (10,10,256) 0

Max Pooling2D (5,5,256) 0

Conv2D (5,5,512) 1180160

Batch Normalization (5,5,512) 2048

Activation (ReLU) (5,5,512) 0

Total - 1552761

of 40⇥ 40 pixels from the original image and the mask identifying the pixels belonging to

nematode and the background.

Figure 3.2: Example of a nematode and the mask generated using the landmark information

on the training data. (a) An example of a nematode in Sequence 1, with blue

landmarks provided for that nematode (b) Mask generated using the information

provided by the landmarks

For the class that corresponds to nematode information, the 40⇥40 pixel section is selected

perpendicular to the spline for each landmark at the right or left side of the nematode on

the original image and its corresponding place on the binary map using di↵erent o↵sets.
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Table 3.3: Parameters of 4 decoders for pixelwise segmentation

Layer Output #Param

Input (5,5,512) 0

Conv2D (5,5,512) 2359808

Batch Normalization (5,5,512) 2048

Activation (ReLU) (5,5,512) 0

Upscaling2D (10,10,512) 0

Conv2D (10,10,256) 1179904

Batch Normalization (10,10,256) 1024

Activation (ReLU) (10,10,256) 0

Upscaling2D (20,20,256) 0

Conv2D (20,20,128) 295040

Batch Normalization (20,20,128) 512

Activation (ReLU) (20,20,128) 0

Upscaling2D (40,40,128) 0

Conv2D (40,40,64) 73792

Batch Normalization (40,40,64) 256

Activation (ReLU) (40,40,64) 0

Upscaling2D (40,40,64) 0

Conv2D (40,40,2) 130

Activation (SoftMax) (40,40,2) 0

Total - 3912514
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In order to create the perpendicular section for a given landmark l, a line between the

landmarks l+1 and l�1 is drawn and a perpendicular segment to this line and landmark

l is calculated. This second segment corresponds to a possible o↵set for a position of the

center of the 40⇥ 40 pixel patch. The length of the o↵set is given by the average width

of the nematodes. An example of such training data example is shown in Figure 3.3.

(a) (b)

Figure 3.3: Example of a nematode and the mask using a window of 40 ⇥ 40 pixels. (a)

Information from the original image on Sequence 1, on grey o↵set posible values

for a given point in l (b) Mask generated using the information provided by the

the landmarks at the given o↵set

For the class that corresponds to the background the image is first preprocessed with a

OGD filter such as the one introduced in Section 2.6.2. The width and standard deviation

of the Gaussian function used to create the kernel linearly depend on a scale term, which

is calculated using the landmarks as shown on Figure 3.4. The landmarks for the head

and the tail are discarded, and the width and standard deviation are calculated using the

euclidean distance between the corresponding landmarks on each side of the nematode.

Figure 3.4: Example of the width calculated using landmarks for a given nematode

The rationale of this step is to take into consideration information of non-nematode areas

near a tagged nematode. After applying a mask that removes the nematode information

enclosed by the landmark polygon, the OGD allows gradients near the nematode to be

accentuated and gradients distant from the nematode to be attenuated. Data augmenta-

tion techniques: rotations and translations are applied to both, nematode and background

samples, in order to avoid overfitting and improve the generalization of the network.
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In order to evaluate an image and generate a binary mask of the same size Algorithm 4

is proposed. An image must be divided into regions of 40 ⇥ 40 pixels to perform the

evaluation; so the height and width must be multiple of 40. For example, in image of size

of 1024⇥ 768 pixels the nearest multiple is 1000⇥ 760 pixels, leaving a region of 24 pixels

of height and 8 pixels width without evaluation, if the evaluation is performed only once.

The proposed algorithm allows to define a height and a width stride, which acts as an

o↵set for the starting point to divide the image into sections of 1000⇥760. The maximum

stride is given by the di↵erence between the size of the image and the nearest multiple,

so it is 24 for width and 8 for height in the example mentioned previously. This allows to

evaluate the image for a given number of times and include predictions at o↵sets at the

interval 0 to stride� 1 to increase accuracy.

Algorithm 4 Image evaluation using 40⇥ 40 model
Input: Image to evaluate image

Output: Binary mask result

1: set base = 40

2: set iteration = 0

3: set width = image.width, height = image.height

4: width max = round(int(float(width)
base ) ⇤ base

5: height max = round(int(float(width)
base ) ⇤ base

6: width stride max = width� width max

7: height stride max = height� height max

8: Assign width stride 2 [0,width stride max]

9: Assign height stride 2 [0,height stride max]

10: Image window = image[width stride : width max + width stride,height stride :

height max+ height stride]

11: partial result= predict(Image window)

12: result[width stride : width max + width stride,height stride : height max +

height stride]+ = partial result

13: iteration+ = 1

14: if iteration < iteration max

15: repeat from 8

16: else

17: result = result/iteration max

18: end if

Finally, morphological operations are carried out to refine the result of the pixel-wise

classification; using a disk-shaped structuring element, as shown in the Figure 3.5. The

idea of this step is to smooth out possible irregularities in the detected edges for sections

that are detected as nematode.
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Figure 3.5: Example of the type of kernel used during morphological opening and closing

3.2 Contour detection

The object detection stage produces regions (blobs) that may contain nematodes in the

image and also regions erroneously classified as nematodes. Adding an analysis stage of

the blobs detected in the prediction mask should improve the accuracy of the results.

Each blob is separated using pixel 8-connectivity, and the number of pixels for each blob

is counted. If the number of pixels is beneath a threshold then the blob is discarded.

This is done to avoid analyzing the shape of a blob for which it does not exist enough

information to generate a reliable shape model. The remaining blobs are analyzed to

get their contour. This corresponds to the pixels at the edges of the region classified as

nematode, and these are used to generate a shape model associated with the blob on the

landmark assignment stage. Figure 3.6 summarizes the contour detection in a flow chart

process diagram.

3.3 Landmark assignment

The contour provides an approximation of the nematode edge but alone it is not re-

stricted to follow any particular shape. Therefore, the contour can include components

of the prediction mask which correspond to other microorganisms or biological material

present in the image, that are erroneously classified as nematode. In order to associate

a shape model to these blobs an initial assignment of landmarks is performed, based on

the skeleton approximation constructed using the Zhang-Suen thinning algorithm (Sec-

tion 2.6.1). The skeleton is a one-pixel-wide structure associated to a binary blob an it

allows to determine the possible tail and head landmarks of a nematode by checking for

endpoints. An example of such a skeleton is depicted on Figure 3.7. It is shown that

irregularities on a binary blob can cause more than two endpoints in the same skeleton,

so in order to avoid possible conflicts, the skeleton is interpreted as a non-directed graph

where the nodes correspond to the endpoints and intersections between branches of the

skeleton. To select the position of the head and tail, the shortest path with largest weight

is selected, where the weight is determined from the geodesic distance between nodes of

the graph.
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Figure 3.6: Flowchart for the process proposed to obtain the contour of binary blobs in a

binary image

Figure 3.7: Skeleton constructed from a region predicted as nematode that has irregularities

at the edges. The skeleton is marked in red, its endpoints in green, and the contour

of the binary region that is classified as nematode is showed in blue.
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Once the possible head and tail points of the skeleton have been obtained, the closest

point on the previously obtained contour is searched for. The points of the contour are

divided into two sections between the head and the tail in order to obtain a spline for

each side of the nematode as shown in Figure 3.8. These two cubic degree splines are

sampled to have 40 landmarks. Hence, each shape is represented by a point in an 80-

dimensional space (since each landmark has two coordinates). Finally, these shapes are

projected onto a 79-dimensional manifold embedded in the shape space and approximated

with training shape samples using the geodesic projection algorithm (Section 2.5). The

euclidean distance between a shape in the 80 dimensional space and the nearest neighbor

on the manifold is proposed as a first rejection mechanism.

Figure 3.8: Example of the first shape approximation obtained at the landmark assignment

stage.

(a) Example of the a binary mask where in white are sections classified as nematode

and in black background , (b) Spline nematode division for one of the blobs using

the head and tail approximated using the skeleton (c) Geodesic projection using

40 landmarks obtained by spline interpolation.
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3.4 Shape truncation

The shape adjustment stage is done by means of ADM as described in Section 2.5. In order

to train the dictionary all available nematode shapes on a training set are aligned using

Procrustes analysis [64] where a horizontal shape is used as a reference. No distinction

is made between the head and the tail in the available landmarks, so the number of

shapes available is increased by building synthetic shapes considering the cases were the

first landmark describes the tail or the head. The shapes corresponding to the mirror

of the shapes available are also considered. The shapes are normalized and the average

nematode is computed, which is then used as the reference for aligning nematode shapes

using Procrustes analysis. An example of the average nematode computed from the

normalized shapes is shown in Figure 3.9.

Figure 3.9: Example of an average nematode shape computed from normalized shape data.

Using this information, the dictionary is trained using KSVD with 160 atoms which is

enough to represent nematode shapes [26]. Next, the manifold is built to carry out the

geodesic projection. In principle, because the first iteration is obtained directly from a

geodesic projection, it is not expected that the landmarks su↵er any alteration, but once

the landmarks are adjusted this stage serves to eliminate noise and ensures that the shape

does not deviate from a valid nematode.

3.5 Landmark adjustment

The strategy of adjusting points to the image, seeks a match of the landmarks detected

with the deep neural network to the actual image, using information such as edges, which

might correspond to nematodes. Two strategies are evaluated to drive the adjustment.

The first one relies on the information extracted by applying OGD filters to the image.
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Using the previously located landmarks, the width of the possible nematode in that section

is determined and a line segment half that size is obtained in a direction perpendicular to

the spline, as shown in Figure 3.10. Then the landmark is moved towards to the position

where the gradient is higher. Any noise around the nematode that takes the point too

far will be corrected by the shape truncation step.

Figure 3.10: Oriented gradient derivative based landmark adjustment. In blue the line seg-

ment perpendicular to the spline from which the landmark is adjusted.

The second strategy is based on a process that reuses 1D CNN regressor developed in [68].

A line segment of 37 pixels perpendicular to the spline in every landmark is computed.

All pixels in the line segment are classified and an derivative of Gaussian filter is applied

to determine the point of highest variation between regions classified as nematode or as

background and the landmark is moved to that point. As in the pure OGD method, noise

around the nematode that misplaces a landmark will be corrected by the shape truncation

step. An example of this is shown on Figure 3.11 where the landmarks are moved to the

strongest edge in the clasification result made by the 1D CNN network.

This stage is also used for discarding structures that do not correspond to nematodes.

Two main discarding criteria where used on the error computation step:

1. In each iteration i the resulting shape after the landmark adjustment and confine-

ment to a valid shape with ADM (yi), is compared with the landmark positions at

the previous iteration (yi�1). Taking yi�1 as a reference and yi as the predicted



36 3.5 Landmark adjustment

Figure 3.11: 1D nematode edge regressor strategy for point adjustment. The result of the

1D CNN network is passed to a 1D derivative of Gaussian and then the point is

moved to the position of maximum response
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value, the first discard criteria is fullfiled if the root mean square error (RMS) be-

tween those shapes does not decrease after 20 iterations.

2. Let y0 be the localization of landmarks using the geodesic projection and yi the

shape obtained at the i-th iteration for which the convergence criterion was met.

The shape is discarted if the root mean square error between y0 and yi is higher

than 30%.
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Chapter 4

Experimental Results and Analysis

The validation experiments for the SegNema stages have two main objectives: first, to

determine the accuracy of the segmentation of nematodes using the proposed deep neural

network over a validation set of microscopy images; second, to determine the accuracy of

the landmark adjustment as well a comparison of the two landmark adjustment strategies

proposed.

4.1 Test and training data

The data set used for training and testing this system encompasses 3260 manually labeled

uncompressed images of size 1024 ⇥ 768 pixels obtained from 13 di↵erent sequences of

microscopy images. Figure 4.1 shows an example of the training data used. Each im-

age has a single nematode marked with landmarks set by a human operator; however

there might be more than one nematode depicted in one image. This implies that no as-

sumptions can be made regarding the complementary regions of the labeled nematode as

being non-nematode, such as the case showed in the example. The number of manually

placed landmarks varies between samples within each sequence, so spline interpolation

[36] is used to produce 40 landmarks per nematode on each sample image. This allows

the landmark data to be suitable for training and testing in the shape truncation stage.

A fraction of 10% of the data is randomly selected and reserved for validation and testing.

The rest of the data is used for training the stages of SegNema. One example for each

image sequence is shown on Figure 4.2. Each sequence varies on factors such as the number

of nematodes present, the size of the nematodes, the configuration of the microscope, the

organic material on the sample, among others. The partition of the data is performed per

sequence. Table 4.1 shows the total number of images available in each of the sequences

as well as the partition used for testing and training. For the case of the deep neural

network, the sequences are partitioned in 40⇥40 patches as described in Section 3.1, 80%

of which is used to train the network. The remaining 20% is used as the validation set in

order to verify that any increase in accuracy over the training data set yields an increase

39
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(a) (b)

Figure 4.1: Example of one manually labeled image on the training and test set. (a) Nema-

tode with landmarks set by a human operator (b) Nematode with 40 landmarks

interpolated from the original data using splines

in accuracy over a data set.

Table 4.1: Partition of available data for use in SegNema. 10% of the data is reserved

for testing. The data is selected proportional to the total number of images

per sequence

Sequence Total of images # Used for training # Used for testing

1 581 523 58

2 158 143 15

3 415 374 41

4 160 144 16

5 59 54 5

6 435 392 43

7 113 102 11

8 579 522 57

9 135 122 13

10 15 13 2

11 135 122 13

12 373 336 37

13 102 92 10

4.2 Pixel-Wise Classification

The Keras framework [15] is used for implementation, training and evaluation of the

selected deep learning model architecture. Figure 4.3 shows the metrics for the cross

entropy loss computed for the train and validation sets during the training process using
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Figure 4.2: Examples from each of the 13 image sequences available for training, test and

validation



42 4.2 Pixel-Wise Classification

4, 3 and 2 SegNet encoders/decoders respectively. In the case of Figure 4.3 (a), the diver-

gence between train and validation errors indicate that the model overfits; however, the

loss stabilizes at 0.08. This means that there is not enough data to train the parameters

using 4 encoders. In case of Figure 4.3 (b) the model is able to reach a similar accuracy

with the training and testing sets and avoids overfitting by using less parameters. Fig-

ure 4.3 (c) shows a higher loss than the previous cases. Given these results, the model

with 3 encoders and 3 decoders is selected.

Figure 4.3: Metrics for cross entropy loss on validation and train sets during SegNet training

process for the selected model configurations. (a) Model loss for SegNet config-

uration using 4 encoders and 4 decoders (b) Model loss for SegNet configuration

using 3 encoders and 3 decoders (c) Model loss for SegNet configuration using 2

encoders and 2 decoders.

The accuracy of the network is also evaluated using the 321 images of the test set on the

selected model configuration, and generating 40⇥ 40 patches following the same strategy

used to generate training data. The loss and mean absolute error (MAE) were computed

using the prediction of the network and compared to the expected binary result. This

information is detailed in Table 4.2.

The network performed worst on sequences 9 and 12. An example of these sequences is

shown in Figure 4.4. In these sequences there are overlaps between nematodes and on
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Table 4.2: Loss computed for SegNet using patches from the test set

Sequence Eval data samples Loss Mean absolute error

1 30479 0.1108 0.0450

2 8010 0.1171 0.0673

3 20996 0.1104 0.0567

4 7860 0.1628 0.0649

5 2400 0.1558 0.0662

6 21390 0.1152 0.0584

7 5457 0.1844 0.0673

8 28060 0.1927 0.0706

9 6570 0.4857 0.1292

10 510 0.1488 0.0708

11 6845 0.1696 0.0656

12 18626 0.3391 0.1037

13 5476 0.2100 0.0718

each case a di↵erent individual is tagged. This causes a loss penalty since the score for

these cases has to be lowered to keep the total loss at a minimum. The other sequences

show a loss that ranges from 0.11 to 0.21 with the trained model. This indicates that the

model achieved an acceptable degree of generalization over the whole data range. These

results are an indicator on the expectations on the performance of the subsequent stages.

In terms of accuracy, the model obtained from 12.9% to 4.5% of mean absolute error.

(a) (b)

Figure 4.4: Worse case scenario for the training data on the segmentation task using deep

learning with only one labeled nematode (a) Example of sequence 9 ; several ne-

matodes overlap during the sequence and only one per image is manually seg-

mented as ground truth (b) Example of sequence 12 ; nematodes overlap during

the sequence and there are occlusions with other objects

Figure 4.5 shows a result of the binary pixel-wise classification map for an image, using

Algorithm 4 with a certainly of 97% accuracy for the nematode prediction as used in
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[68]. This means that only predictions with a score above 0.97 are classified as nematode

and pixels with scores below are assigned to the background. The 0.97 threshold is

applied on every test sequence. The criteria for selecting the training data for background

information fails to generalize all non-nematode information, since some regions in the

image background are classified as nematode even when the shape is not vermiform.

(a) (b)

Figure 4.5: Binary classification mask generated from a test image sample without applying

any morphology operations (a) Original image of the test sequence (b) Binary

mask generated using proposed algorithm without any morphology operations

Figure 4.6 shows the same binary pixel-wise classification map for the image in Fig-

ure 4.5(a) but after applying opening and closing operations. Blobs close to each other

are joined and edges are smoothed out for the contour analysis. Also, disturbances such

as overlaps with objects or wrongly classified background regions caused unwanted de-

formations in the nematode binary blobs (see for instance the head of the nematode in

figure Figure 4.6(b))

(a) (b)

Figure 4.6: Binary classification mask generated from a test image sample applying morphol-

ogy operations (a) Original image of the test sequence (b) Binary mask reconstruc-

tion generated using proposed algorithm with morphology operations
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4.3 Contour detection and landmark assignment

The binary mask generated by means of the pixel-wise classification stage can be evaluated

against the mask generated from the polygon enclosed by the landmarks of the test data.

However, as shown previously, the pixel-wise classification mask may contain regions that

do not belong to nematode information or contain information of another nematode that

was not labeled in the image. In a first step, the final result of the pixel-wise segmentation

generated in the object detection stage has to be compared with the binary mask obtained

from the test data, discarding all binary sections or blobs that do not correspond to

the ground truth (i.e. the one manually labeled in the image). This analysis allows to

estimate the score of the smoothed prediction without penalizing the network for detecting

more than one nematode. The proposed criterion for discarding the blobs that do not

correspond to nematodes is evaluated in a subsequent test.

Table 4.3 shows the distribution shift of the Jaccard index (Section 2.2) for the 321 test

samples, as a way to validate the operation of SegNema. The Jaccard index is able to

summarize the overlap of the binary blob obtained by pixelwise classification and ground

truth achieved for the nematode class per image. The rows in the table represent the IoU

score computed from the comparison of the ground truth binary mask with the pixel-wise

classification mask generated directly from the object detection stage without discarding

any blob in the image. The columns in the table represent the IoU score computed with

the ground truth and only the binary blob closer to the reference mask, discarding all

remaining elements in the classification mask. Only one connected region is taken into

account for this measurement, meaning that if a mask is composed of more than one piece,

only one is taken for reference. The regions were separated using an 8-pixel connectivity

check available on the scikit-image library [73].

Table 4.3: Distribution shift for the intersection over union (Jaccard index) from the

raw pixel-wise classification and after discarding all but the region closest to

the ground truth. Highlighted the highest shift of the test samples

Best component vs. Ground truth

IoU 0-

0.09

0.1-

0.19

0.2-

0.29

0.3-

0.39

0.4-

0.49

0.5-

0.59

0.6-

0.69

0.7-

0.79

0.8-

0.89

0.9-

0.99

All

compo-

nents

vs.

Ground

truth

0-0.09 2 7 12 8 2

0.1-0.19 1 3 7 17 27 8 3

0.2-0.29 1 9 13 13 32

0.3-0.39 1 1 1 3 10 16 3

0.4-0.49 5 48 29

0.5-0.59 6 27

0.6-0.69 3 3

0.7-0.79

0.8-0.89

0.9-0.99
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The results show a bias were 92.8% of the blobs generated by the sementation stage have

a Jaccard index between 0.50 and 0.99 once the ground truth polygon is compared with

the matching blob in the prediction mask. In 100% of the test cases the Jaccard index

increased or stayed under the same range once discarding all but the corresponding mask.

A low score can be attributed to occlusions in the image or overlaps of nematodes that

split one nematode blob into several non-connected sections; discarding one or more of

those sections decreases the area for the Jaccard index calculation. Tables 4.4 and 4.5

show the information normalized by rows and columns, respectively.

On Table 4.4, the results show that the largest sample for the data whose Jaccard index is

between 0.8 and 0.9 comes from an image where an index was originally between 0.2 and

0.3, for the nematodes for which there are landmarks available. This increase of around

0.5 is found in most cases coming from scores below 0.4 to 0.7; for instance, most 0.5 to

0.6 scores were obtained from 0 to 0.1 cases. The mask with all components evaluated in

a score between 0.4 to 0.5 and 0.5 to 0.6 show an increase of 0.4 on the Jaccard index.

Table 4.5, shows that most components with a index of 0.2 to 0.29 were given by already

low scores. Also it shows that in the range of 0.3 to 0.69 most cases are given by an low

scoring case from 0.1 to 0.19. This changes on scores 0.7 to 0.79, for which most cases

had an original score between 0.4 to 0.49.

Table 4.4: Distribution shift for the intersection over union (Jaccard index) from the

raw pixel-wise classification and after discarding all but the region closest to

the ground truth normalized by rows. Highlighted the most common drifts

given an initial score.

Best component vs. Ground truth

IoU 0-

0.09

0.1-

0.19

0.2-

0.29

0.3-

0.39

0.4-

0.49

0.5-

0.59

0.6-

0.69

0.7-

0.79

0.8-

0.89

0.9-

0.99

All

compo-

nents

vs.

Ground

truth

0-.09 0.06 0.23 0.38 0.26 0.06

0.1-0.19 0.02 0.04 0.11 0.26 0.40 0.12 0.04

0.2-0.29 0.01 0.13 0.19 0.19 0.47

0.3-0.39 0.03 0.03 0.03 0.08 0.29 0.45 0.08

0.4-0.49 0.06 0.58 0.35

0.5-0.59 0.18 0.82

0.6-0.69 0.5 0.5

0.7-0.79

0.8-0.89

0.9-0.99

The geodesic projection is used to discard blobs that do not contain a shape corresponding

to a nematode in the landmark assignment stage. For each blob in the image, thinning

and contour detection is performed using methods in the OpenCV [7] and scikit-image

[73] libraries, respectively. As explained in Section 3.3, an initial landmark assignment

relies on a projection onto a manifold embedded in an 80 dimensional shape space. To

build the training data for ADM, all 2839 shapes from the training data were used. The
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Table 4.5: Distribution shift for the intersection over union (Jaccard index) from the

raw pixel-wise classification and after discarding all but the region closest

to the ground truth normalized by columns. Highlighted the highest value,

which represent the most representative initial score per final comparison.

Best component vs. Ground truth

IoU 0-

0.09

0.1-

0.19

0.2-

0.29

0.3-

0.39

0.4-

0.49

0.5-

0.59

0.6-

0.69

0.7-

0.79

0.8-

0.89

0.9-

0.99

All

compo-

nents

vs.

Ground

truth

0-.09 0.5 0.47 0.30 0.13 0.02

0.1-0.19 0.25 0.75 0.47 0.43 0.45 0.09 0.5

0.2-0.29 0.25 0.23 0.22 0.14 0.30

0.3-0.39 0.25 0.06 0.03 0.05 0.11 0.15 0.5

0.4-0.49 0.08 0.55 0.27

0.5-0.59 0.07 0.25

0.6-0.69 0.05 0.03

0.7-0.79

0.8-0.89

0.9-0.99

final count for the shapes used to create the manifold and train the dictionary is 11729

when applying the data augmentation operations described in Section 3.4.

The 11729 nematode shapes are randomly partitioned in 10 di↵erent subsets in order

to perform a cross-validation analysis. For each set, the euclidean distance in the 80

dimensional shape space is calculated to the closest neighbor in the remaining 9 subsets,

i.e. between each of the 1172 shapes belonging to one subset and the 10557 samples

of the 9 remaining subsets. A histogram with the bins of width 0.05 is computed with

all 11729 distance (Figure 4.7). The probability distribution of distances is estimated

with normalized histogram, and with it the cumulative distribution is derived. Figure 4.7

shows that with a probability of 0.99 all valid nematodes shapes will have an euclidean

distance in the shape space to the manifold equal or less than 0.07. This distance is used

as a threshold to discard non-vermiform shapes in the pixel-wise classification stage. An

example of the separation of the data is shown in Figure 4.8.

Table 4.6 shows the evaluation of this criterion using the manually labeled 321 images

of the test set as ground truth. The error percentage is shown for the cases were the

labeled nematode was detected (true positive) and the cases were the nematode was not

detected (false negative). The worst performing sequences are 9 and 12 since occlusions

and overlaps are present during most of the sequence and cause pixel-wise classification

mask include shapes that depart from the learned distribution. On the remaining se-

quences the error is contained within 10% and this can be attributed to irregularities on

the classification map, occlusions and overlaps.

The behaviour of the images in sequences 9 and 12, for which the error is 70% and 32%

respectively, matches the results expected, given the loss obtained in the model evaluation
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Figure 4.7: Histogram of distances to the closest neighbor in the manifold for validation sam-

ples of nematodes shapes using all distances in the cross validation analysis. In

red the cumulative distribution function shows that 99% (shown as a dashed green

line) of the samples are with a distance below 0.07 (shown as a dashed blue line)

(a) (b)

Figure 4.8: Example of binary blob selection using the distance to the closest neighbor in the

manifold after performing the geodesic projection. Shapes with a distance to the

manifold (a) below the threshold (b) exceeding the threshold.
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Table 4.6: Evaluation of the shape selection method based on shapes using as ground-

truth the manually labeled data of the validation set

Sequence Number of Samples True Positives (TP) False Negatives (FN) Error

1 58 52 6 10%

2 15 14 1 6.6%

3 41 37 4 10%

4 16 15 1 6.6%

5 5 5 0 0%

6 43 43 0 0%

7 11 7 0 0%

8 57 51 6 10%

9 13 4 9 70%

10 2 2 0 0%

11 13 13 0 0%

12 37 25 12 32%

13 10 9 1 10%

stage. These results show a limitation of the system in detecting overlapping nematodes,

given the training data used for the pixel-wise classification stage.

4.4 Landmark adjustment

The measurement of the deviation between predicted and ground-truth landmarks is

performed as shown in Figure 4.9. In principle, the aim is to determine the deviation

between the points assigned to the nematode and the manually labeled and interpolated

data.

The measurement of the distance d between a landmark of the projected nematode and the

ground truth is handled as a point-to-line-segment distance. Let pi be the i-th landmark

of the nematode described by p positioned by SegNema, and let rj be the closest landmark

of the reference nematode r to pi. Note that pi,rj 2 IR2 while r,p 2 IR80. The shortest

distance from pi to the reference r is taken as the shortest distance to either segment

rjrj+1 or rjrj�1. An example of this distance is shown in Figure 4.10

In each sequence there are nematodes of di↵erent width. This information is taken into

account to determine the most suitable adjustment strategy with respect of the nematode

dimensions. The average width for each of the nematodes is shown in Table 4.7.

For each image in the 13 sequences, the statistics of the distance between each landmark

and the closest line segment are computed for three cases:

1. After the landmark generation from the binary mask contour and the geodesic

projection described in the previous section.
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Figure 4.9: Landmark evaluation strategy to measure distance between landmarks predicted

made by SegNema and landmarks set by an operator. The distance d is calculated

from the projected landmarks (in green) and the segment generated from the

reference nematode (in black)

Figure 4.10: Point to line segment shortest distance. (a) and (c) are outside their respective

starting and ending perpendiculars and consequently the shortest distance must

be calculated from either the start or the end of the line segment. (b) pi r is

closest to a point within the segment.
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Table 4.7: In each sequence there are nematodes of di↵erent width. In the measurements

made for the assignment of points this information must be taken into account

to determine the possible variations in the assignment of landmarks.

Sequence Average width (pixels)

1 43.63

2 40.77

3 26.22

4 9.71

5 15.98

6 17.89

7 7.99

8 9.58

9 23.64

10 9.65

11 9.47

12 23.40

13 9.68

2. After performing the landmark adjustment by means of the OGD applied on the

image.

3. After performing a landmark adjustment by means of the result of a 1D CNN

nematode/background regressor of 37 pixels width.

The average, standard deviation (STD), median, maximum and minimum of the 80 dis-

tances from the estimated landmarks to the closest ground-truth line segment are gathered

for each image in the validation set. Table 4.8 shows the summary of these statistics for

sequence 1 using the alignment in case 1. Meta-statistics (average, STD, median, mini-

mum and maximum) are calculated from average, STD, median, minimum and maximum

statistics of all images in the first sequence.

Table 4.8: Meta-statistics of the distances from the estimated landmark positions to the

closest ground-truth line segments computed for each image on sequence 1.

Data Statistics

Average STD (�) Median Max Min

Meta

Statistics

Average 6.21 6.15 4.68 26.21 0.17

STD (�) 3.60 4.63 2.65 19.87 0.20

Median 5.05 5.00 3.97 21.42 0.09

Max 19.64 27.01 11.18 107.86 0.93

Min 1.80 1.78 1.34 7.04 0.01

From the computed meta-statistics, the average of average, the median of average, the
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average of standard deviation, the median of maxima and median of minima are selected

as a criteria to determine the performance of the adjustment strategies. The average

of the averages is selected for the estimation of how far the landmarks are from the line

segments. As estimate of the deviation of the average distance the average of the standard

deviation is used. The average of the median is useful to detect if there are any peaks

a↵ecting the average measurement. The median of the maxima indicates a value of the

highest distances in the worst case for the landmark assignment prediction. Finally the

median of minima allows to compare if the evaluated approach decreases the accuracy on

the sequences between adjustment strategies. This information is synthesized on Tables

4.9, 4.10 and 4.11 for the landmark assignment using GP, OGD and 1D CNN approach

as a criteria for adjustment respectively.

Table 4.9: Results of pixel distance of landmarks assigned using GP to border segment

Sequence Average of

Average

Median of

Average

Average of

STD

Median of

Max

Median of

Min

1 6.21 5.05 6.15 21.42 0.09

2 6.51 6.40 4.95 19.91 0.28

3 3.07 3.11 2.21 8.97 0.09

4 1.90 1.74 1.45 4.16 0.06

5 2.92 3.02 2.08 7.78 0.18

6 2.34 2.32 1.66 6.57 0.07

7 1.64 1.58 1.08 4.26 0.07

8 2.03 2.07 1.33 4.84 0.04

9 4.38 4.20 3.25 10.80 0.11

10 2.15 1.84 4.68 5.19 0.11

11 1.68 1.70 1.05 3.90 0.03

12 4.69 3.98 2.80 10.53 0.20

13 1.97 1.86 1.32 4.86 0.05

Table 4.12 summarizes the best adjustment strategies per sequence given the selected

criteria. In most sequences, for both adjustment strategies, the improvement from a

first approximation of landmarks based on binary regions and GP is below one pixel

in the selected meta statistics. The results are further summarized given the average

nematode width per sequence in Table 4.13. It is showed that in the cases were the

average nematode width is between 45 and 40 pixels, the 1D CNN adjustment stragegy

has the better performance. In sequences were the average nematode width is 26 to 15

pixels, the best adjustment strategy is OGD and between 15 to 9 pixels the aproximation

using GP has the best performance. According to the information obtained, in the 13

sequences analized both OGD and GP scored better in 5 sequences, and 1D-CNN scored

better in 4.

Figure 4.11 shows examples of the final segmentation results of SegNema. Figures 4.11 (b)

and 4.11(c) show the capability of SegNema of detecting nematode of various sizes on the
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Table 4.10: Results of distance of landmarks assigned using gradients as an adjustment

criteria to border segment

Sequence Average of

Average

Median of

Average

Average of

STD

Median of

Max

Median of

Min

1 6.22 5.32 6.24 22.17 0.10

2 6.34 6.21 4.98 19.11 0.26

3 2.97 2.92 2.27 8.79 0.07

4 1.88 1.77 1.46 3.99 0.08

5 2.87 3.04 2.13 7.86 0.03

6 2.38 2.40 1.72 6.52 0.04

7 1.66 1.57 1.10 4.08 0.07

8 1.95 2.02 1.30 4.74 0.04

9 4.38 4.17 3.40 10.83 0.12

10 2.17 1.39 1.77 5.26 0.12

11 1.77 1.78 1.08 4.27 0.06

12 4.53 3.75 2.79 10.46 0.21

13 1.98 1.91 1.37 5.33 0.04

Table 4.11: Results of distance of landmarks assigned using 1D CNN regressor as an

adjustment criteria to border segment

Sequence Average of

Average

Median of

Average

Average of

STD

Median of

Max

Median of

Min

1 5.34 4.31 6.03 20.20 0.11

2 6.12 5.93 4.71 16.62 0.19

3 3.20 3.27 2.51 9.63 0.04

4 3.51 2.36 2.85 5.94 0.07

5 3.36 3.16 2.41 8.30 0.05

6 3.21 3.20 2.27 8.51 0.06

7 2.17 2.08 1.42 4.75 0.12

8 2.21 2.16 1.61 5.20 0.04

9 4.57 4.62 2.80 10.77 0.23

10 2.08 1.37 1.80 5.20 0.03

11 2.20 2.13 1.38 4.72 0.10

12 4.06 4.07 2.86 11.65 0.07

13 3.21 2.35 2.34 5.30 0.10
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Table 4.12: Best performance adjustment strategy per sequence for the selected criteria.

The lowest value for distance in the criteria is selected. If a tie happens more

decimal values are used.

Sequence Best strat-

egy for

average of

average

Best strat-

egy for me-

dian of av-

erage

Best strat-

egy for

average of

STD

Best strat-

egy for

Median of

Max

Best strat-

egy for

Median of

Min

1 1D CNN 1D CNN 1D CNN 1D CNN 1D CNN

2 1D CNN 1D CNN 1D CNN 1D CNN 1D CNN

3 OGD OGD GP OGD 1D CNN

4 OGD GP GP OGD GP

5 OGD GP GP GP OGD

6 GP OGD GP OGD OGD

7 GP OGD OGD OGD OGD

8 OGD OGD OGD OGD 1D CNN

9 GP OGD 1D CNN 1D CNN GP

10 1D CNN 1D CNN OGD GP 1D CNN

11 GP GP GP GP GP

12 1D CNN OGD OGD OGD 1D CNN

13 GP GP GP GP OGD

Table 4.13: Summary of best performance adjustment strategy per sequence for the

selected criteria given the width of nematodes in the sequences

Sequence Average

nematode

width

Best adjustment strategy

1 43.63 1D CNN

2 40.77 1D CNN

3 26.22 OGD

4 9.71 GP

5 15.98 GP

6 17.89 OGD

7 7.99 OGD

8 9.58 OGD

9 23.64 GP or 1D-CNN

10 9.65 1D CNN

11 9.47 GP

12 23.40 OGD

13 9.68 GP
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same execution using the adjustment strategies proposed. Also, it is shown that in some

cases such as the red example on Figure 4.11(c), the nematode is partially segmented.

Figure 4.11: SegNema results when evaluating a series of images from the test set. Nematodes

shapes found are highlighted. (a) nematode detection using 1D-CNN adjustment

strategy. (b) nematode detection using OGD adjustment strategy. (b) nematode

detection using GD adjustment strategy.
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Chapter 5

Conclusions

This work proposes a novel strategy for the segmentation of nematodes in microscopy

images, which combines the result of convolutional neural networks with shape models.

Landmarks that describe the location of a nematode are positioned based on the network

prediction and adjusted to the image contents. They are also restricted to follow a nema-

tode shape. The major challenges of the problem reside in creating a nematode semantic

segmentation stage and an initial landmark positioning. In SegNema, a SegNet based

network is used for the segmentation stage, and ADM is used for landmark positioning.

With this approach the system was able to detect 87.5% of nematodes marked by an

operator on a test set of 321 images taken from 13 microscopy video sequences.

The training strategy, for pixel-wise nematode segmentation consists of using patches of

40 ⇥ 40 pixels taken from the images and binary masks generated from landmarks set

by an human operator. This strategy allows to train deep neural networks having under

consideration the limited size of the data set available for training. Results shows that

in 98% of the 321 images in the test set, the Jaccard index increased after incorporating

shape models to discard blobs in the binary classification mask that do not correspond

to a nematode shape. In the remaining 2% the Jaccard index remains the same. This

is a clear improvement over an segmentation approach consisting only of deep learning

encoder/decoder pixel-wise classification stage.

Once the inference results are processed by the shape model stages, on 92.8% of classifica-

tion results the blobs generated by the segmentation stage have a Jaccard index between

0.50 and 0.99 once the ground truth polygon created by landmarks added by a human

operator is compared with the matching blob on the prediction mask. This means that

in 92.8% of the cases the classification stage had a similarity score of over 50% with the

mask created by a human operator.

The system was able to associate a shape model with the information of an image from

a mask generated by means of a deep learning model using sections of the image. This

process can be applied to detect other objects besides nematodes. Using an approximation

of the skeleton from a thinning process on binary regions, the system was able to assign
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a shape model to 87.5% of the nematodes on the test image set. The main causes of

error were conditions such as occlusions and overlaps. This limitation seems to be a

consequence of the training strategy used and could be resolved if su�cient training data

were available that are capable of representing nematodes at additional conditions.

In the cases where the width of the nematode was between 45 and 40 pixels, the best

adjustment strategy for ADM corresponds to a 1D CNN. In sequences where the average

nematode width is 26 to 15 pixels, the best adjustment strategy is the oriented gradient

derivative approach; and between 15 to 9 pixels an approximation using the GP has

the best performance. ADM’s adjustment strategy was able to maintain shapes within

the nematode domain. This is visible in the results obtained in the 1D CNN evaluation

where each landmark is given the freedom to move 37 pixels. The landmark adjustment

strategies proposed did not improve considerably the nematode classification. Once those

landmarks were positioned in the image, in most sequences the improvements oscillate

around 1 and 3 pixels. This behavior seems to occur because the geodesic projection

makes a truncation that limits the possible representations of nematodes outside the

sample taken as a representative manifold. It is recommended to use other truncation

strategies that are capable of performing wider representations of the landmark data. The

system was not able to detect nematodes in conditions such as occlusions and overlaps.

This limitation seems to be a consequence of the training strategy used, and could be

resolved with additional training data. The system was able to detect 87.5% of the

nematodes marked by an operator on a test image set over 13 di↵erent sequences.

Future work

The system was able to detect more than one nematode in images despite their di↵erent

sizes. This classification information could not be quantitatively evaluated due to the

absence of segmented ground truth data of all the nematodes in the images and it is

recommended to carry out an evaluation with corresponding additional ground data with

the necessary technical criteria.

Due to the modular approach of SegNema it is possible to use other networks for the

pixel-wise segmentation. Geometric deep learning should be evaluated as a replacement

of ADM, in order to explore alternative approaches of the shape generalization. In the

proposed approach, the use of morphology operations was prone to cause that nematode

pixels were combined with erroneous classifications, which caused the shapes represented

by the binary blobs to fall outside the shape manifold. It is recommended to replace

morphology operations by MRF or CRF as an alternative strategy that could improve

the resolution of the classification edges.
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[26] M. Grüner, “Active dictionary models: A framework for non-linear shape modeling”,
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