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Abstract 

 Climate change refugia in the terrestrial biosphere are areas where species are 

protected from global environmental change and arise from natural heterogeneity in 

landscapes and climate. Within the marine realm, ocean acidification, or the global decline in 

seawater pH, remains a pervasive threat to organisms and ecosystems. Natural variability in 

seawater carbon dioxide (CO2) chemistry, however, presents an opportunity to identify ocean 

acidification refugia (OAR) for marine species. Here, we review the literature to examine the 

impacts of variable CO2 chemistry on biological responses to ocean acidification and develop 

a framework of definitions and criteria that connects current OAR research to management 

goals. Under the concept of managing vulnerability, the most likely mechanisms by which 

OAR can mitigate ocean acidification impacts are by reducing exposure to harmful 
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conditions or enhancing adaptive capacity. While local management options such as OAR 

show some promise, they present unique challenges and reducing global anthropogenic CO2 

emissions must remain a priority.  

 

Introduction  

 Climate change refugia are areas where localized environmental conditions protect 

species from the unfavorable or harmful conditions associated with broad transformations of 

Earth’s climate (Ashcroft, 2010, Keppel et al., 2012, Morelli et al., 2016). A priori 

knowledge of anthropogenic climate change trajectories and biological impacts provides 

opportunities to identify climate change refugia and invest in local management actions. The 

oceans play a critical role in regulating Earth’s climate, are of enormous socio-economical 

value, and are disproportionally affected by climate change (IPCC, 2014). The three main 

climate change phenomena expected to impact many marine ecosystems are warming, sea 

level rise, and ocean acidification (Doney et al., 2012, Gattuso et al., 2015, Hoegh-Guldberg 

&  Bruno, 2010, Poloczanska et al., 2013). Ocean acidification refers to the global changes in 

seawater carbon dioxide (CO2) chemistry associated with the absorption of anthropogenic 

CO2 emissions (Doney et al., 2009), which results in increases in pCO2 and [HCO3
-] and 

decreases in pH and calcium carbonate saturation state (Ω) (Zeebe &  Wolf-Gladrow, 2001). 

These changes in CO2 chemistry have the potential to negatively affect many marine 

organisms and ecosystems (Kroeker et al., 2013, Pörtner et al., 2014) and alter the global 

carbon cycle for millennia to come (Caldeira &  Wickett, 2003, Hönisch et al., 2012). By 

protecting sensitive species and ecosystems, refugia could help maintain valuable marine 

resources and services upon which our society depends (Billé et al., 2013, Gattuso et al., 

2015, Gattuso et al., 2018, McLeod et al., 2013). 
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 How and where to invest in ocean acidification management efforts, including the 

identification of refugia, remains largely unresolved (Albright et al., 2016, Billé et al., 2013, 

Gattuso et al., 2018), in part due to the complexity of seawater CO2 chemistry in marine 

waters (Bates et al., 2018, Hurd et al., 2018, Strong et al., 2014). Much like weather and 

climate on land, seawater conditions vary dramatically over hours to seasons (Waldbusser &  

Salisbury, 2014). Ocean weather can be thought of as the state of seawater chemistry, 

temperature, currents, etc. in a location at any given moment in time (Bates et al., 2018). 

Ocean climate, on the other hand, can be thought of as the average chemical and physical 

seawater conditions across regions, while small-scale differences within a climatology can 

create restricted areas that encapsulate ocean microclimates. Global surface ocean pH 

climatologies naturally range between pH 8.0-8.2 (Bates et al., 2014) and are predicted to 

decline by >0.4 units if CO2 emissions continue at the current rate (Pörtner et al., 2014). 

Locally, however, marine ecosystems exhibit seawater acidification rates that differ from 

what is expected based on atmospheric CO2 forcing alone (Cai et al., 2011, Cyronak et al., 

2014b, Feely et al., 2010, Kapsenberg et al., 2017a, Provoost et al., 2010, Wootton et al., 

2008). This is because many biogeochemical and physical drivers influence local seawater 

CO2 chemistry (Fig. 1, Box 1) and may themselves be influenced by changes to Earth’s 

climate (e.g., temperature, precipitation, upwelling). Natural variability and interaction of 

these drivers generates unique variations in seawater CO2 chemistry across marine 

ecosystems (Chan et al., 2017, Duarte et al., 2013, Hofmann et al., 2011, Waldbusser &  

Salisbury, 2014), such that marine species, and distinct populations, are likely to encounter 

different future trajectories depending on their location and habitat (Jury et al., 2013, 

Kapsenberg et al., 2015, Kwiatkowski &  Orr, 2018, Landschützer et al., 2018, Pacella et al., 

2018, Shaw et al., 2013). 
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 The presence of spatial and temporal variability in CO2 chemistry across marine 

ecosystems has recently raised the idea that ocean acidification refugia (OAR), or locations 

where ocean acidification impacts could be less intense, exist naturally (Manzello et al., 

2012). Proposed OAR include seagrass meadows and dense algal beds (Hendriks et al., 2014, 

Krause-Jensen et al., 2015, Manzello et al., 2012, Unsworth et al., 2012, Wahl et al., 2018, 

Young &  Gobler, 2018), algal boundary layers (Cornwall et al., 2014, Hendriks et al., 2017, 

Noisette &  Hurd, 2018), mangroves (Sippo et al., 2016, Yates et al., 2014), slow-flow 

habitats (Hurd, 2015), deep-sea mounts (Tittensor et al., 2010), areas isolated from upwelling 

(Chan et al., 2017, Kapsenberg & Hofmann, 2016), and productive high latitude 

environments (Hendriks et al., 2017, Krause-Jensen et al., 2016). These examples vary 

dramatically across spatial scales (e.g., a few millimeters in an algal boundary layer to a 100 

m2 seagrass bed), with no clear criteria as to what makes each area a potential OAR other 

than observed transient increases in seawater pH relative to surrounding waters. The lack of a 

clear, agreed-upon definition for OAR and criteria for how they must function in the context 

of climate change makes it difficult for managers, legislators, and scientists to assess where 

to invest management efforts. In this perspective, we critically evaluate the concept of OAR 

in the context of organismal exposures to variable CO2 chemistry and propose target refugia 

for research and management. 

 

Defining Ocean Acidification Refugia 

To build a framework for OAR, we turned to the recent interest in phytoremediation as a 

means for the local mitigation of ocean acidification through photosynthesis (Washington 

State Blue Ribbon Panel on Ocean Acidification, 2012, Nielsen et al., 2018). Unlike many 

other global change stressors, the intensity of ocean acidification exposures is directly 

modified by the metabolism of marine organisms (e.g., respiration and/or photosynthesis), 
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which can add or remove CO2. For example, daytime photosynthesis by seagrass meadows 

can radically elevate seawater pH across spatial scales of a few millimeters to hundreds of 

meters (Guilini et al., 2017, Hendriks et al., 2014, Manzello et al., 2012). For this reason, the 

idea of seagrass ecosystems, and phytoremediation in general, acting as OAR has garnered 

considerable attention within the scientific community (Hendriks et al., 2014, Manzello et al., 

2012, Young & Gobler, 2018), governments (Washington State Blue Ribbon Panel on Ocean 

Acidification, 2012, Nielsen et al., 2018), and the media (OA-ICC, 2018). One issue with the 

concept of seagrass ecosystems acting as OAR is that times of net photosynthesis are 

accompanied by periods of net respiration on daily and seasonal timescales (Duarte et al., 

2010, Unsworth et al., 2012). Therefore, any benefits of periodic relief from ocean 

acidification exposures due to pH increases during times of net seagrass photosynthesis (e.g., 

Semesi et al., 2009) must be critically evaluated against any potential harmful effects due to 

intensifying exposures that occur in these habitats during times of net respiration (Cyronak et 

al., 2018, Pacella et al., 2018, Unsworth et al., 2012). Furthermore, the CO2 chemistry in 

seagrass habitats is influenced by other biogeochemical and physical processes that act over 

timescales ranging from hours to seasons (Box 1) (Duarte et al., 2013). Consequently, the 

presence of seagrass alone does not guarantee reduced exposure to harmful conditions 

(Cyronak et al., 2018, Koweek et al., 2018), nor does it necessarily translate to a biological 

benefit (Greiner et al., 2018). This disconnect between seawater chemistry and biological 

impacts highlights the need to create a defining set of criteria that will allow the scientific and 

management communities to critically evaluate the effectiveness of potential OAR. 

 

 We define Ocean Acidification Refugia as any area of the coastal or open ocean that 

exhibits persistent environmental conditions such that a species’ vulnerability to 

anthropogenic ocean acidification is reduced, where vulnerability is the combination of 
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sensitivity, exposure, and adaptive capacity (Dawson et al., 2011, McLeod et al., 2013, 

Williams et al., 2008). Inherent to this definition is that the local environmental conditions 

that define the refugium must, (1) provide a significant biological benefit, and, (2) persist 

through time, such that a species can outlast anthropogenic ocean acidification across 

generations. Based on the definition of climate change refugia by Morelli et al. (2016), we 

reiterate that the size of a refugium must be large enough to manage a small 

(meta)population. Therefore, we do not consider potential micro-refugia wherein seawater 

chemistry is modified within the boundary layers of photosynthesizing organisms (Flynn et 

al., 2012, Hendriks et al., 2017, Noisette & Hurd, 2018), even though this could benefit small 

epiphyte communities (Cox et al., 2017). 

 

Our definition of OAR purposefully allows for environmental factors other than seawater 

CO2 chemistry to mitigate the harmful impacts of ocean acidification. For example, food 

supply has been shown to reduce species sensitivity to ocean acidification (Ramajo et al., 

2016). In some cases, environmental or ecological interactions, such as competition for light 

or space,  might be more important in driving biological responses rather than CO2 exposures 

(Barry et al., 2013, Connell et al., 2017, Garrard et al., 2014). However, as natural variability 

in seawater CO2 chemistry ultimately drives the severity of ocean acidification exposure and 

is expected to increase in the future (e.g., Flynn et al., 2012, Jury et al., 2013, Pacella et al., 

2018, Shaw et al., 2013), we focus this perspective on the biological impacts of exposure to 

variable CO2 chemistry. The ocean acidification research community has, over the last few 

years, made significant progress on this topic (Fig. S1) (Boyd et al., 2016, Hurd et al., 2018, 

Rivest et al., 2017), and the emerging trends could help inform target refugia and 

management strategies.  
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Biological Impacts of Variable CO2 Chemistry  

 Throughout this paper, we use the term ‘variable CO2 chemistry’ to refer to spatial and 

temporal changes in the seawater carbon dioxide system (e.g., pCO2, pH, [HCO3
-], Ω, see 

Box 1). In order to examine how variable CO2 chemistry influences the effectiveness of 

OAR, we reviewed all studies published through 2018 that assessed the impact of natural 

CO2 variability on marine species in the context of ocean acidification (see Supplemental 

Material for details). Across a total of 61 studies (Fig. S1, Table S1) and 172 observed 

biological responses, 62% of biological responses exhibited no sensitivity to variability 

treatments. These studies, however, can be divided into two categories: environmental history 

or direct exposure, and have different implications for the assessment of OAR.  

 

 Environmental history studies used the CO2 variability observed in an organisms’ habitat 

to interpret their sensitivity to ocean acidification at a species level. Organisms of the same 

species, or closely related species, were collected from at least two sites with contrasting 

variability regimes and were exposed to elevated and stable CO2 conditions simulating future 

ocean acidification. Environmental history comparisons tested the hypothesis that long-term 

exposure (≥ one generation) to variable CO2 conditions enhances the physiological tolerance 

of populations to ocean acidification. These studies provide information on sensitivity, 

adaptive capacity, and the potential for evolution on timescales greater than one generation 

(Dawson et al., 2011, Kelly & Hofmann, 2013, Williams et al., 2008). Studies testing an 

organism’s environmental history demonstrated a positive effect of variability in 47% of the 

observations, with few observed negative effects (7%, Fig. 2a). 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 The direct exposure approach used experimental treatments wherein organisms were 

exposed to varying CO2 conditions directly (e.g., growing organisms under stable and 

fluctuating CO2 conditions with present-day and future mean pH conditions). In contrast to 

the environmental history approach, direct exposure studies used organisms collected from a 

single population and tested the hypothesis that biological sensitivity to ocean acidification is 

altered when the organism is directly exposed to fluctuating conditions under simulated 

ocean acidification. Such studies provide insight on sensitivity to ocean acidification in the 

context of local environmental variability. In studies testing direct exposures, a near-equal 

and low percentage of positive (16%) and negative (14%) effects were observed (Fig. 2a).  

 

 Combined, these results indicate that an organism’s long-term (at least one generation) 

exposure to harmful conditions has some potential to boost adaptive capacity to ocean 

acidification, while direct exposure to variability will, in the majority of cases, not alter 

biological responses. When direct exposure to variability did alter ocean acidification 

sensitivity, the responses were highly mixed across organisms and biological processes (Fig. 

S2-3). Therefore, it is not expected that direct effects of variability will influence biological 

responses to ocean acidification as much as changes in mean conditions will. 

 

 To further explore these trends, we grouped organisms into 4 categories based on their 

mode of life (photosynthesizing, calcifying, both, or neither). In environmental history 

studies, non-photosynthesizing calcifiers (NP-C) exhibited an overwhelmingly positive 

effect, wherein a variable environmental history reduced sensitivity to ocean acidification in 

76% of observed biological responses (Fig. 2b). Organisms in this category consisted of 

echinoderms, mollusks, crustaceans, and bryozoans and were predominantly collected from 

temperate upwelling or riverine-influenced sites. Echinoderms were the most studied taxa 
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within the environmental history approach (7 papers), with consistent independent 

observations across species, regions, habitats, and life stages. For example, sea urchin 

fertilization exhibited increased ocean acidification tolerance associated with CO2 variability 

in tidepools and upwelling habitats (Kapsenberg et al., 2017b, Moulin et al., 2011). Likewise, 

sea urchin larval growth exhibited reduced ocean acidification sensitivity when parents 

originated from sites with high and variable CO2 levels (Gaitán-Espitia et al., 2017, Kelly et 

al., 2013). Similar observations have been made for mollusks, where differences in 

sensitivities to ocean acidification were correlated to CO2 exposure history (Thomsen et al., 

2017, Vargas et al., 2017). Food supply and nutritional status likely play into population-

specific pH sensitivities, but sites of high pH variability with frequent low pH events are not 

always coupled to high food supply (Kroeker et al., 2016). Taken together, these results 

provide strong evidence that exposure to CO2 variability has the potential to modulate non-

photosynthesizing calcifiers’ sensitivity to ocean acidification and enhance their adaptive 

capacity (Kelly & Hofmann, 2013).  

 

The observed benefit of variable CO2 history for NP-C type organisms is in stark contrast 

to photosynthesizing-calcifiers (P-C). The P-C group, comprised mostly of temperate and 

tropical corals and coralline algae, largely exhibited indifference to variability (81% no 

effect), with a near equal and low number of positive and negative effects (Fig. 2b). It may be 

that P-C organisms are less influenced by CO2 variability at the habitat scale due to 

acclimation to large daily CO2 fluctuations that, depending on flow regimes, can occur within 

their diffusive boundary layers due to the interactive effects of photosynthesis, respiration, 

and calcification (Gattuso et al., 1999, Hurd et al., 2011). The contrasting responses to ocean 

acidification sensitivity based on environmental history across different modes of life (i.e., 

NP-C compared to P-C) highlights the need to develop a better mechanistic understanding of 
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how CO2 chemistry is regulated at the cellular level and how changes in environmental 

conditions alter biological processes. 

 

Contrary to environmental history studies, when organisms were directly exposed to 

variable CO2 chemistry, no mode of life showed an obvious advantage or disadvantage under 

simulated ocean acidification (Fig. 2c). Direct effects were few (N≤10, combined positive 

and negative), with the vast majority of biological processes unresponsive to fluctuating CO2 

conditions. This indicates that transient increases in pH are unlikely to protect organisms 

from ocean acidification if there are also transient decreases in pH, especially if the mean pH 

is no different from the mean pH of the source waters (although there may be exceptions, 

e.g., Jarrold et al., 2017).  

 

Based on this literature review, we can make three broad conclusions. First, in the 

majority of observations, directly exposing marine organisms to short-term fluctuations in 

CO2 chemistry (e.g., hours) does not appear to modulate their biological response to ocean 

acidification. Therefore, to mitigate ocean acidification impacts via reduced exposures, a 

substantial increase in mean pH will be necessary independent of local variability regimes. 

Second, exposure to variable CO2 conditions over the course of at least one generation may 

expand a species’ adaptive capacity and CO2 tolerance window. Currently, this effect is most 

apparent in NP-C organisms from temperate environments. Third, while few, the presence of 

both positive and negative effects of CO2 variability indicate that ocean acidification impacts 

could vary from predicted responses in dynamic environments (Fig. S2-3).  
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Ocean Acidification Refugia Management 

Our best hope for maintaining biodiversity in a changing climate is by exploiting natural 

variations in vulnerability, defined as the combination of a species sensitivity, exposure, and 

adaptive capacity (Dawson et al., 2011, Williams et al., 2008). In this vein, recent proposed 

ocean management strategies consider management of both environmental exposures, such as 

reducing CO2 emissions, and biological responses, such as ecosystem restoration or assisted 

evolution, as potential solutions to mitigate climate change impacts (Gattuso et al., 2018). For 

ocean acidification impacts, most biological responses were unchanged in the presence of 

temporal variability in CO2 chemistry (Fig. 2c), indicating that responses to mean changes in 

environmental conditions remain highly relevant (Kroeker et al., 2013). Therefore, temporary 

pH increases without a substantial change in mean pH (e.g., pH increases associated with 

primary production over tidal or diel cycles) should not be an identifying criterion for OAR, 

and reducing global CO2 emissions must remain the primary management activity (Gattuso et 

al., 2015). However, exposure to variability in CO2 chemistry, specifically low pH events 

(e.g., days to weeks of low pH exposure driven by upwelling), does seem to reduce 

vulnerability to ocean acidification by enhancing adaptive capacity. This was most 

consistently observed for non-photosynthesizing calcifiers (Fig. 2). Based on these results, 

OAR could help protect species from ocean acidification via one of two mechanisms: (1) 

modulating exposure to harmful conditions (e.g., areas with sustained high mean pH), or, (2) 

enhancing adaptive capacity (e.g., areas with frequent low pH exposures) (Box 2). Because 

OAR based on mitigating exposures require an increase in mean pH and OAR based on 

stimulating adaptive capacity require frequent low pH events, these two classes of OAR are 

mutually exclusive in terms of CO2 variability regimes. However, other mechanisms that 

reduce a population’s vulnerability to ocean acidification (e.g., food supply) could potentially 

occur in either class of OAR.  
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Ocean acidification refugia based on mitigating exposures 

Management of CO2 chemistry exposure (Fig. 1) is currently the most common strategy 

for recently proposed OAR and falls under two categories: spatial refugia and small-scale 

operative refugia (Box 2). Based on our literature review and previous biological response 

studies (Kroeker et al., 2013), any region with a sustained increase in mean seawater pH or 

that is consistently isolated from corrosive high CO2 conditions has the potential to function 

as a spatial refugium, regardless of local CO2 variability regimes. While spatial refugia are 

not isolated from ocean acidification per se, organisms living in these refugia will face better 

environmental conditions relative to their sister populations that encounter more corrosive 

conditions, whilst maintaining connectivity and the potential for genetic exchange. Spatial 

refugia based on physical characteristics are likely to persist through time. Examples include 

microclimates such as areas shielded from corrosive upwelling events (Chan et al., 2017, 

Kapsenberg & Hofmann, 2016) and deep-sea mounts which isolate organisms from deeper 

CO2-rich waters (Tittensor et al., 2010). Spatial refugia based on the biological removal of 

CO2 potentially exist in hotspots of primary production. For example, in high-latitude 

environments the extended photoperiod and high nutrient levels maintain primary production 

and high pH for several months in summer (Duarte & Krause-Jensen, 2018, Havenhand et 

al., 2018, Kapsenberg et al., 2015, Krause-Jensen et al., 2016). Like other spatial refugia, 

high latitude environments are not isolated from ocean acidification and are actually 

considered one of the most vulnerable ecosystems due to naturally cold, CO2-rich waters (Orr 

et al., 2005). So far, we are unaware of studies that have tested the hypothesis that 

seasonally-restricted high pH benefits an organism’s sensitivity to ocean acidification. 

Nonetheless, primary production hotspots could function as spatial refugia if high pH levels 

are sustainable for a period of biological significance relative to areas with lower primary 

productivity. 
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 Exposure can also be managed directly in small-scale operative refugia (Box 2). 

Purposeful modification of seawater CO2 chemistry will be most feasible in easily accessible 

coastal locations and for target economic purposes, such as aquaculture or small-scale reef 

management (Mongin et al., 2016). Phytoremediation, or modification of seawater CO2 

chemistry by seagrass, kelp, or algae cultivated alongside ocean acidification sensitive 

organisms is an active area of research (Young & Gobler, 2018). However, its effectiveness 

in the field has significant limitations (Greiner et al., 2018, Mongin et al., 2016), and 

additional bubble-stripping of high nighttime CO2 levels in macrophyte beds may be 

necessary to ensure that the overall mean pH is significantly elevated to compared to that of 

surrounding waters (Koweek et al., 2016). Nighttime bubbling with air may be particularly 

effective in slow flow environments where diel pH cycles can be large (Hurd, 2015). Even if 

a substantial increase in mean pH is achieved, use of marine vegetation as the basis of small-

scale operative refugia must be evaluated in the context of seasonal changes in primary 

production (Duarte et al., 2010, Unsworth et al., 2012). Artificial ocean alkalization is 

another method currently under evaluation aimed at directly modifying exposures (Gattuso et 

al., 2018, Ilyina et al., 2013, Renforth &  Henderson, 2017). Increasing total alkalinity may 

be achieved by adding crushed shells or concrete to key habitats, which then through 

dissolution causes an increase in seawater calcium carbonate saturation state (Green et al., 

2013, Green et al., 2009, Greiner et al., 2018, Mos et al., 2019). The effectiveness of passive 

calcium carbonate dissolution in mitigating biological impacts in the field will be highly 

dependent on local hydrology and is potentially restricted to specific biological processes in 

small boundary layers or shallow sediments (Green et al., 2013, Green et al., 2009, Mos et 

al., 2019). 
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 Regardless of the exact method, management of small-scale operative refugia will 

require intense resource investment in the form of engineering, maintenance, restoration, 

monitoring, and funding. A priori knowledge of the local environment will be necessary to 

choose where to implement such efforts so that other coastal drivers, such as groundwater, 

terrestrial run-off, or high flow rates (Fig. 1) do not wash-away or neutralize the expected 

benefits of the management approach. Watershed inputs, including surface runoff, 

groundwater, excess nutrients and other materials, may need to be included in the 

management plan in order to achieve the management goals of the refugium. The long-term 

persistence of small-scale operative refugia will largely depend on the duration of resource 

investments. For phytoremediation specifically, additional management costs may be 

required to protect macrophytes from other climate change impacts such as marine heat 

waves (Arias-Ortiz et al., 2018, Filbee-Dexter et al., 2016). While purposeful local 

management of CO2 chemistry to protect target marine resources, such as aquaculture or 

small reefs, could offer short-term benefits for a few years (Mongin et al., 2016), OAR based 

on physical features (e.g., some spatial refugia) may function for a much longer time period. 

 

Ocean acidification refugia based on enhancing adaptive capacity 

Intense variability in CO2 chemistry, specifically exposure to frequent low pH events 

(e.g., days to weeks), can enhance adaptive capacity, suggesting that OAR may also exist as 

adaptive refugia in ‘exposure hotspots’ (Chan et al., 2017) (Box 2). Rather than managing 

exposures, adaptive refugia reduce a species’ vulnerability to ocean acidification by 

enhancing their potential to adapt to changing conditions (Dawson et al., 2011). Based on our 

literature review, enhancing adaptive capacity is currently the most likely means by which 

variable seawater CO2 chemistry can mitigate ocean acidification impacts. So far, this 

appears most effective for NP-C type organisms in temperate ecosystems (Fig. 2b), although 
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research for other biomes is lacking. Adaptive capacity can potentially accrue via changes in 

physiological plasticity, epigenetics, genetics, or a combination thereof (Hoffmann & Sgrò, 

2011, Hofmann, 2017). The benefit of intermittent exposure to low pH, such as that 

associated with upwelling, is likely influenced by frequency and duration of the low pH 

events, generation time, and life history of the organism (Boyd et al., 2016). For 

management, marine protected areas encompassing adaptive refugia could help protect and 

maximize the genetic diversity necessary for adaptation and dispersal thereof, while reducing 

other local stressors (Bernhardt & Leslie, 2013, Roberts et al., 2017). 

 

Like spatial refugia, adaptive refugia are not isolated from ocean acidification and local 

adaptation is unlikely to provide complete resistance to ocean acidification (Gaitán-Espitia et 

al., 2017, Kelly et al., 2013). The increasingly harmful low pH and calcium carbonate 

undersaturation associated with ocean acidification at exposure hotspots may ultimately 

challenge the persistence of a local population (Hauri et al., 2009). Thus, adaptive refugia 

must last long enough to generate and disperse adaptive geno- or pheno-types elsewhere. 

This duration will be influenced by species-specific characteristics such as life history and 

rates of adaptation. Ideally, adaptive refugia should encompass source populations that 

disperse to spatial refugia where ocean acidification effects are less intense. Understanding 

population connectivity, and how it might be altered by global change, will be an important 

aspect of deciding where to invest climate change management efforts (Magris et al., 2014, 

Palumbi, 2003). For example, resource investment at sites with sink populations, where the 

persistence of the population depends on immigration from reproductive populations 

elsewhere, could be futile. Ocean acidification itself could alter a species’ ability to 

successfully disperse to new habitats. For example, the ability for larval clownfish to detect 

settlement cues is diminished under simulated ocean acidification (Munday et al., 2009, but 
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see also Jarrold et al., 2017). While dispersal of adapted genotypes to a favorable new 

location may happen naturally by chance, management of key species could help facilitate 

this process in a controlled manner via assisted evolution or migration (Hoegh-Guldberg et 

al., 2008, van Oppen et al., 2017, van Oppen et al., 2015). As a conservation strategy, 

assisted migration has been debated due to difficulties in predicting unintended consequences 

of introducing species to new habitats outside of their natural range (Ricciardi & Simberloff, 

2009). In the ocean, however, there is a high chance of finding spatial refugia within the 

existing biogeographic range of a species due to the vast spatio-temporal heterogeneity of 

seawater CO2 chemistry within ocean microclimates (Chan et al., 2017, Kapsenberg &  

Hofmann, 2016, Vargas et al., 2017). Assisted migration across OAR combines management 

actions addressing both adaptive capacity and exposure, and may be particularly beneficial to 

sensitive species with a large biogeographic range but small dispersal distance. 

 

Management guidelines  

Management guidelines for land-based climate change refugia can readily be applied to 

the marine realm. A step-by-step workflow, developed by Morelli et al. (2016) and adapted 

for OAR is as follows: (1) Identify clear management goals, which includes pinpointing the 

organism and biological process of interest for conservation. (2) Assess vulnerability of the 

target resource as a function of sensitivity, exposure, and adaptive capacity. This will require 

knowledge and integration of environmental variability in biological experiments either by 

using the existing literature or designing new studies, which will be ambitious beyond the 

scope of an individual species or marine resource. (3) Revise management goals based on the 

vulnerability assessment in Step 2. (4) Identify locations of potential refugia based on 

historical, environmental, modeling, and biological data. Evaluate if these conditions support 

the management goals and are likely to persist through the expected duration of 
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anthropogenic ocean acidification or need of the target marine resource. (5) Prioritize refugia 

for management by evaluating other benefits of its location, such as overlap with other 

vulnerable resources, existing marine protected areas, and site accessibility. (6) Identify and 

implement management actions. (7) Monitor refugia and adjust management actions to 

maintain management goals. 

 

For OAR, spatial and adaptive refugia have the potential to target multiple species at 

once. From a practical perspective, priority locations for OAR research could therefore be 

chosen based on existing marine protected areas that exhibit the right environmental 

characteristics. Inter- and intra-specific vulnerability assessments will be necessary to assess 

management goals. For example, the environmental conditions that shape adaptive refugia 

for sea urchins can be harmful to the early development and aquaculture production of 

oysters (Barton et al., 2012). Small-scale operative refugia will most likely benefit a target 

marine resource or species. As some biological responses showed negative responses to CO2 

variability regimes (14%), inclusion of CO2 variability remains an important aspect of 

vulnerability assessments, especially for refugia targeting a single species. Temporal 

variability in seawater CO2 chemistry can differentially affect biological processes even 

within the same life history stage (Kapsenberg et al., 2018), and an understanding of 

vulnerability through life stages may also be necessary. Organisms are likely to encounter a 

range of stressors within their environments, and CO2 chemistry may not be the predominant 

one. For example, mortality in shellfish aquaculture is driven by ocean acidification in the 

Northeast Pacific upwelling system (Barton et al., 2015), summer heat stress in the Ebro 

Delta on the Spanish Mediterranean coast (M. Fernández pers. comm.), and salinity stress 

associated with extreme events (Cheng et al., 2016). Therefore, if a refugium is targeting 

ocean acidification impacts, it is important to determine that changes in CO2 chemistry 
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represent a primary stressor. Once an OAR has been identified, several ocean management 

actions can be implemented to improve overall ecosystem health (Gattuso et al., 2018), 

regardless if one is managing for exposure or adaptive capacity. Effective OAR management 

will require a holistic view of ecosystems, encompassing the diverse array of processes that 

alter CO2 chemistry (Fig. 1, Box 1) and may often require the coordination of several 

management actions operating across disciplines.  

 

Considerations for future research 

 As research will play a large role in identifying OAR, we briefly highlight two general 

knowledge gaps in ocean acidification biology. First, identifying OAR in a specific area 

requires knowing to which aspect of CO2 chemistry (e.g., pH, pCO2, Ω) the target organism 

and biological process are sensitive and how those parameters are expected to change over 

time. The latter can be achieved with high spatio-temporal resolution of oceanographic 

measurements and modeling (Chan et al., 2017, Cyronak et al., 2018, Koweek et al., 2018, 

Krause-Jensen et al., 2015). However, for most all biological processes, the mechanism and 

reaction norm (i.e., sensitivity measured across a wide range of exposures) by which a 

specific parameter of CO2 chemistry affects an organism remains unclear (Bach, 2015, 

Cyronak et al., 2016, Hendriks et al., 2015). Different CO2 parameters can differentially 

influence various biological processes, even within a single species (Waldbusser et al., 2015). 

Identifying mechanisms of biological sensitivity to changes in CO2 chemistry is especially 

important for coastal areas where various CO2 parameters can decouple due to changes in 

temperature and salinity driven by watershed inputs (Box 1) (Fassbender et al., 2016, 

Waldbusser & Salisbury, 2014). 
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Second, once the driver of ocean acidification sensitivity is known for a given species it 

will be easier to design and interpret experiments assessing impacts of multiple stressors 

(Boyd et al., 2018). This research should be conducted in a way that complements the 

environmental variability that is observed in an organism’s environment. Parameters such as 

salinity, oxygen, and temperature can exhibit large natural spatial and temporal variability, 

and multiple stressors do not necessarily occur synchronously in time (Gunderson et al., 

2016). For example, seasonal changes in diel processes can result in asynchronous warming 

and acidification stress on coral reefs (Kline et al., 2015). Exposure to multiple stressors is 

not always a simple scenario of warming and acidification, and local variability regimes may 

be more important than changes in global means (Boch et al., 2018, Boyd et al., 2018, Reum 

et al., 2016). For instance, some studies show negative effects of pH variability only when 

low pH coincides with instances of hypoxia (Gobler et al., 2017, Lifavi et al., 2017). 

Successful research in the area of OAR will require multidisciplinary approaches that aim to 

not only determine functional relationships, but create mechanistic understandings of how 

biological processes respond to local environmental conditions in the context of ocean 

acidification. 

 

Conclusions 

In the marine realm, dynamic CO2 variability in marine ecosystems provides the 

opportunity for local ocean acidification management by taking advantage of natural 

heterogeneity in species vulnerability. Specifically, OAR based on seawater CO2 chemistry 

can either; (1) reduce exposure to harmful conditions via sustained elevated mean pH, or, (2) 

boost adaptive capacity via frequent exposure to low and variable pH. While rapid and 

sweeping international reduction of CO2 emissions should remain the primary goal, local 

management of ocean acidification may be necessary to ensure the persistence of marine 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

ecosystem services and resources. With this in mind we outline some of the most important 

considerations moving forward:  

• When assessing the effectiveness of OAR, environmental conditions must be 

connected to a biological benefit such that a species overall vulnerability to ocean 

acidification is reduced.  

• OAR based on exposure, whether natural (spatial refugia) or purposeful (small-scale 

operative refugia), must exhibit a significant and sustained increase in mean pH 

compared to surrounding waters, regardless of temporal variability regimes. 

• OAR that boost adaptive capacity (adaptive refugia) are most likely to be found at 

areas with frequent low pH events and intense CO2 variability (i.e., exposure 

hotspots). As of now, the potential of adaptive refugia is largely based on evidence 

from non-photosynthesizing calcifiers from temperate marine ecosystems. 

• Conservation of an OAR is only relevant if the characteristics of the refugia persist 

through time, such that the target species can endure for the duration of anthropogenic 

ocean acidification or necessity of the marine resource (e.g., aquaculture). This is 

particularly important in the assessment of OAR based on primary production as a 

means to mitigate ocean acidification exposures.  

• Marine protected areas will likely support the effectiveness of any OAR by reducing 

other local stressors (e.g., pollution, habitat destruction) and maximizing genetic 

diversity and healthy, large populations (Roberts et al., 2017).  

• Future research on the mechanistic understanding of ocean acidification sensitivity 

and variability in multi-stressor exposures will advance the assessment and 

implementation of OAR. This may require consideration of an organism’s full life 

history.  
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This perspective is not meant to provide a definitive list of local ocean acidification 

management options. Rather, the ideas outlined here are intended to apply the current 

research to management actions. There will be a finite source of time, funding, and effort to 

implement any local management action, and it is important to develop clear goals and assess 

the potential return on investment. For example, while phytoremediation may seem like a ‘no 

regrets’ investment due to other ecological benefits (Nielsen et al., 2018), resources that go 

into these efforts with the intention of combatting ocean acidification may fall short of 

desired objectives. Research on OAR remains a hot topic, but an effective way forward 

requires the synthesis of multidisciplinary research that integrates interdisciplinary 

perspectives from the organism to the ecosystem, alongside targeted and goal-oriented 

management planning. Ultimately, the local management of global change represents an 

immensely challenging endeavor, and successful enterprises will require synergy between 

interdisciplinary science and feasible management actions. 
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Box 1. Seawater CO2 chemistry dynamics in marine ecosystems 
An organism’s exposure to seawater CO2 chemistry is driven by a hierarchy of 

biogeochemical and physical processes extending from the open ocean to the organism’s 
boundary layer (Fig 1). The magnitude of contemporary variability in CO2 chemistry is often 
greater than the end-century predictions for ocean acidification, which can either amplify or 
alleviate the harmful exposures associated with anthropogenic ocean acidification (Hofmann 
et al., 2011). Increasing seawater CO2 concentrations shift chemical equilibria to induce a 
suite of changes in biologically important parameters such as pH, pCO2, saturation state (Ω), 
and bicarbonate concentrations ([HCO3

-]), among others (Waldbusser & Salisbury, 2014, 
Zeebe & Wolf-Gladrow, 2001). Depending on the driver, CO2 parameters can decouple, 
complicating estimates of ocean acidification impacts in some ecosystems. For the purposes 
of this paper, we collectively refer to spatio-temporal variability in one or all of these 
parameters as variations in seawater ‘CO2 chemistry.’  

Seawater CO2 chemistry is modified seasonally and latitudinally due to differences in 
solar irradiance and temperature, which can influence the duration of primary production 
(Racault et al., 2012, Takahashi et al., 2002). For example, seasonal decoupling of pH and 
aragonite saturation state (Ωar) occurs in the Mediterranean Sea and North Atlantic due to 
summertime warming (Courtney et al., 2017, Kapsenberg et al., 2017a). In contrast, 
summertime primary production in the Southern Ocean causes significant increases in both 
pH and Ωar during seasonal phytoplankton blooms (Kapsenberg et al., 2015, McNeil et al., 
2011). 

Regional event-scale processes (few days to a few months) such as phytoplankton blooms 
(Kapsenberg & Hofmann, 2016), upwelling (Chan et al., 2017), and freshwater contributions 
from precipitation, runoff, and groundwater (Fassbender et al., 2016) further modify CO2 
exposures. Upwelling off of the California coast frequently results in pH exposures below pH 
7.8 (Chan et al., 2017, Feely et al., 2008), while phytoplankton blooms and overall 
community production can increase pH by 0.1 – 0.2 units (Frieder et al., 2012, Kapsenberg & 
Hofmann, 2016). Freshwater sources themselves vary drastically in carbonate chemistry, 
thereby disparately influencing CO2 chemistry dynamics across salinity gradients 
(Fassbender et al., 2016). For example, freshwater total alkalinity can be either lower or 
higher than seawater, which can change how watershed inputs impact the surface water CO2 
chemistry of nearshore ecosystems (Cyronak et al., 2014a, Millero et al., 2001).  

At the habitat scale (1 m – 1 km), benthic community metabolism drives diel pH 
variability via shifts in photosynthesis and respiration (Hendriks et al., 2014, Kapsenberg & 
Hofmann, 2016). Seabed composition (e.g., calcium carbonate and silicate sediments, hard 
bottom, etc.) and local hydrology (e.g., tides, currents, residence times, and groundwater) can 
also influence CO2 chemistry at these scales (Burdige et al., 2010, Santos et al., 2011, Zhang 
et al., 2012). At the smallest spatial scale (mm’s to cm’s), seawater may be modified within 
an organism’s diffusive boundary layer due to the metabolism of the organism itself (and the 
host organism for epibionts) along with physical properties that determine the size of the 
boundary layer, such as benthic structure and flow rates (Hurd et al., 2011, Noisette &  Hurd, 
2018).  

Drivers of CO2 chemistry can interact over frequencies, such that multiple drivers can act 
together at any given location. The importance of each driver of seawater CO2 chemistry, in 
terms of exposure, may change through time. For instance, the magnitude of diel variability 
can vary seasonally (Kapsenberg & Hofmann, 2016, Murray et al., 2014) and an upwelling 
event could have overwhelmingly harmful effects on organisms (Barton et al., 2012, 
Bednaršek et al., 2012). Taken together, the dynamic nature of CO2 chemistry in marine 
ecosystems creates unique palettes of exposure in time and space.  
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Box 2. Ocean acidification refugia definitions and potential examples 
 
Ocean Acidification Refugia - Any area of the coastal or open ocean that exhibits persistent environmental 
conditions such that a species’ vulnerability to anthropogenic ocean acidification is reduced, where vulnerability 
is the combination of sensitivity, exposure, and adaptive capacity 

EXPOSURE ADAPTIVE CAPACITY 
 

Spatial refugium 
 

An area within a species biogeographic 
range that experiences less intense 
ocean acidification exposure relative to 
sister populations 
 

� Upwelling-shielded microclimates 
� Shallow deep-sea mounts 
� Primary production hotspots (!) 
 

Small-scale operative refugium 
 

An area that experiences less 
intense ocean acidification 
exposure due to purposeful CO2 
management 
 

� Phytoremediation (!) 
� Bubble stripping (!) 
� Alkalization 

 

Adaptive refugium 
  

An area that enhances a species’ 
adaptive capacity to ocean 
acidification, often an exposure 
hotspot 
 

� Upwelling zones 
� Estuaries 
� Tidepools 

(!) Refugia dependent on primary producers 
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Figure 1. Processes modifying ocean acidification exposures over a range of temporal 

frequencies and spatial scales. (a) Seasonal pH regimes driven by warming in a temperate 

ecosystem and primary production in a polar ecosystem (Kapsenberg et al., 2017a, 

Kapsenberg et al., 2015). (b) Event-scale pH variability over a period of 5 weeks. Primary 

production by a phytoplankton bloom increases pH which decreases upon succession of the 

bloom, while periodic upwelling events cause strong decreases in pH (Kapsenberg, 2015, 

Kapsenberg &  Hofmann, 2016). (c) Intense diel pH fluctuations in a coral reef ecosystem 

driven by benthic photosynthesis and respiration (Cyronak et al., 2014a). See Box 1 for more 

details. 

 

Figure 2. Biological responses to CO2 variability in the context of ocean acidification.  

(a) Responses grouped by experimental design. (b) Responses from environmental history 

studies only, grouped by mode of life (not shown: one positive observation each for P-NC 

and NP-NC). (c) Responses from direct exposure studies, grouped by mode of life. 

Responses are either positive (green, variability mitigates ocean acidification effect), negative 

(pink, variability exacerbates ocean acidification effect), or neutral (white, variability has no 

effect). Numbers within bars denote the number of observations.  
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