
Nova Southeastern University
NSUWorks

Marine & Environmental Sciences Faculty Articles Department of Marine and Environmental Sciences

7-16-2019

An Index to Better Estimate Tropical Cyclone
Intensity Change in the Western North Pacific
Woojeong Lee
Korean Meteorological Administration - South Korea

Sung-Hun Kim
Jeju National University - South Korea; University of Hawaii - Manoa

Pao-Shin Chu
University of Hawaii - Manoa

Il-Ju Moon
Jeju National University - South Korea

Alexander Soloviev
Nova Southeastern University, soloviev@nova.edu
Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences
and Oceanography.

Follow this and additional works at: https://nsuworks.nova.edu/occ_facarticles

Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and
Meteorology Commons

This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted
for inclusion in Marine & Environmental Sciences Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact
nsuworks@nova.edu.

NSUWorks Citation
Woojeong Lee, Sung-Hun Kim, Pao-Shin Chu, Il-Ju Moon, and Alexander Soloviev. 2019. An Index to Better Estimate Tropical
Cyclone Intensity Change in the Western North Pacific .Geophysical Research Letters : 1 -23. https://nsuworks.nova.edu/
occ_facarticles/1016.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NSU Works

https://core.ac.uk/display/227080532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/occ_facarticles?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cnso_mes?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.nova.edu/
https://cnso.nova.edu
https://cnso.nova.edu
https://nsuworks.nova.edu/occ_facarticles?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=nsuworks.nova.edu%2Focc_facarticles%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nsuworks@nova.edu


 

This article has been accepted for publication and undergone full peer review but has not been 

through the copyediting, typesetting, pagination and proofreading process which may lead to 

differences between this version and the Version of Record. Please cite this article as doi: 

10.1029/2019GL083273 

 

© 2019 American Geophysical Union. All rights reserved. 

 

Kim Sunghun (Orcid ID: 0000-0002-3955-0486) 

Moon Il-Ju (Orcid ID: 0000-0001-9370-0900) 

 

 

 

An index to better estimate tropical cyclone intensity change in the western 

North Pacific 

 

Woojeong Lee1, Sung-Hun Kim2,3, Pao-Shin Chu3, Il-Ju Moon2, and Alexander V. 

Soloviev4 

 

1National Typhoon Center, Korea Meteorological Administration, Namwon-eup, Seoseong-ro, 

810beon-gil 2, Seogwipo, Jeju, 63614, Republic of Korea 

2Graduate Program in Marine Meteorology/Typhoon Research Center, Jeju National University, 

102 Jejudaehak-ro, Jeju, 63243, Republic of Korea  

3Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, 

University of Hawai‘i at Manoa, Honolulu, Hawaii  

4Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Dania 

Beach, FL, USA 

 

 



 

 

© 2019 American Geophysical Union. All rights reserved. 

Corresponding author: Sung-Hun Kim (yah13@hanmail.net) 

Key Points: 

 The depth-averaged temperature more realistically characterizes ocean response than 

pre-TC sea surface temperature 

 The parameterization of the air-sea exchange process is important in computing the 

thermodynamic energy budget for TCs 

 A revised predictor including two key factors shows significant improvement in the 

TC intensity change prediction 

Abstract 

 

A revised predictor called the net energy gain rate (NGR) is suggested by considering wind 

dependent drag coefficient based on the existing maximum potential intensity theory. A series 

of wind speed dependent NGR, known as NGR-w, is calculated based on pre-tropical cyclone 

(TC) averaged ocean temperatures from the surface down to 120 m (at 10-m intervals) to 

include the TC-induced vertical mixing for 13 years (2004–2016) in the western North Pacific. 

It turns out that the NGR50-w (NGR-w based on temperature averaged over top 50 m) has the 

highest correlation with 24-h TC intensity change compared with the commonly used sea 

surface temperature-based intensification potential (POT), depth-averaged temperature-based 

POT (POTDAT), and constant drag coefficient in the NGR. To demonstrate the effectiveness of 

the NGR50-w, we designed and conducted experiments for training (2004–2014) and testing 

(2015–2016). The model with the NGR50-w shows greater skill than the model with POTDAT or 

POT by reducing prediction errors by about 16%. 
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1. Introduction 

 

While track prediction of tropical cyclones (TCs) has improved steadily over the last three 

decades (Rappaport et al., 2012), there has been comparatively little advancement in intensity 

prediction due to the complicated physical mechanisms involved in internal TC dynamics and 

their interaction with upper-ocean and atmospheric circulation (Elsberry et al., 2013). It is of 

utmost importance to accurately predict the rapid intensifying and weakening of TCs at the 

shorter range (within 24-h) because landfalling TCs can undergo significant and quick intensity 

changes, which could cause huge economic losses and casualties (Lin et al., 2009). Moreover, 

landfalling typhoons over the East Asian coast, including China, Japan, Korea, and Taiwan, 

have shown increased intensity since the late 1970s (Mei and Xie, 2016). Improving rapid 

intensification (RI) forecasts is one of the highest priorities for TC forecasters among many 

nations and a central focus area of the National Oceanic and Atmospheric Administration’s 

Hurricane Forecast Improvement Project (Gall et al., 2013).  

Numerous attempts have been made to predict the 24-h intensity change, especially for 

the RI cases, based on a statistical-dynamical model (Kaplan et al., 2010; Rozoff and Kossin, 

2011; DeMaria et al., 2012; Gao et al., 2016) as well as numerical modeling perspectives (Chen 

and Gopalakrishnan, 2014; Tallarpragada and Kieu, 2014). According to recent studies, the 

statistical-dynamical model still shows more skill at all forecast times compared to dynamical 

models (DeMaria et al., 2014; Kim et al., 2018). Much effort has gone into improving the TC 

intensity forecast using new predictors (Kaplan et al., 2015), optimizing predictors (Balaguru 

et al., 2018; Rozoff and Kossin 2011; Goni et al., 2009), or applying a nonlinear approach (Lin 

et al., 2017) instead of using the multiple-linear regression method. In other words, finding and 

utilizing a new predictor that accurately represents TC intensity change holds promise for 

improving forecast performance in statistical-dynamical models.  

In exploring the ocean’s role in TC intensity changes, it is important to understand the 

upper ocean thermal structure (UOTS) because of its interaction with TCs (Shay et al., 2000; 

Emanuel et al., 2004; Pun et al., 2007; Lin et al., 2008; Wada and Usui, 2007; Goni et al., 2009; 

Kaplan et al., 2010). To estimate the ocean thermal field accounting for the sea surface cooling 

effect by TC-induced vertical mixing, Price (2009) suggested the depth-averaged temperature 

(DAT), 
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𝐷𝐴𝑇𝑑 =
1

𝑑
∫ 𝑇𝑑𝑧

0

−𝑑
,                               (1) 

 

where d is the depth of vertical mixing induced by TCs. DAT is a more direct and robust metric 

of the ocean thermal field reflecting interaction between TCs and the ocean than the widely 

used tropical cyclone heat potential (TCHP), because the latter may misrepresent oceanic 

conditions in shallow waters.  

Maximum potential intensity (MPI) is widely used to estimate the maximum surface 

wind speed given atmospheric and oceanic environment (Emanuel, 1988, 1995). Lin et al. 

(2013) modified MPI, which is determined by the thermodynamic conditions of sea surface 

temperature (SST) and the atmospheric environment for steady state TCs (Emanuel 1988; 

Holland, 1997), and used DAT to form a new Ocean Coupling Potential Intensity (OC_PI) 

index  

 

𝑂𝐶_𝑃𝐼2 =
𝐷𝐴𝑇−𝑇0

𝑇0

𝐶𝑘

𝐶𝑑
(𝑘∗ − 𝑘),                          (2) 

 

where To is the TC outflow temperature determined by the atmospheric vertical profile, Ck is 

the enthalpy exchange coefficient, Cd is the drag coefficient, k* is the saturation enthalpy of the 

sea surface, and k is the surface enthalpy in the TC environment. It has been shown that OC_PI 

reduces overestimation of maximum intensity relative to SST-based MPI (Lin et al., 2013). In 

recent years, OC_PI has been frequently used to predict intensity and rapid intensification (Gao 

et al., 2016; Balaguru et al., 2015). 

The air-sea exchange processes control the evolution of TCs (Emanuel, 2003). The TC 

intensity depends on the coefficients of the transfers of momentum (Cd) and enthalpy (Ck) 

between the ocean and the atmospheric boundary layer (Ooyama, 1969; Emanuel, 1986). The 

effects of wind speed-dependent exchange coefficients on TCs have been demonstrated in 

several previous studies (Braun and Tao, 2000; Jenkins, 2002; Bao et al., 2012; Moon et al., 

2007; Nolan et al., 2009a, b; Green and Zhang, 2013), and the parameterizations of Cd were 

deemed a key determinant of TC intensity simulation. The general consensus is that the Cd 

increases with wind speed until it reaches approximately 60 kt and does not increase above 70 

kt (Powell et al., 2003; Donelan et al., 2004; Jarosz et al., 2007; Bell et al., 2012). However, 

there are still conflicting results and unresolved issues concerning Cd at very high wind speeds 
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above 120 kt due to limited observations and experiments (Bell et al., 2012; Rotunno and 

Emanuel, 1987; Montgomery et al., 2010). At extremely high wind speeds above 

approximately 120 kt, Soloviev et al. (2014) showed that the Cd increases using the unified 

waveform and two-phase parameterization schemes, whereas Takagaki et al. (2012) showed 

the value of Cd approaches to constant based on their laboratory measurements. A proper value 

of Cd at high wind speeds is important to know because the incidence of categories 4 and 5 

storms in the northwest Pacific have increased over the last 37 years (Mei and Xie, 2016).  

The objective of this study is to improve intensity prediction, especially in a short temporal 

range of 24-h. We develop a synoptic predictor for intensity change, a net energy gain rate 

(NGR), which is based on MPI theory (Emanuel 1988). This predictor is derived from DAT and 

a new parameterization scheme of Cd depending on wind speed. A verification of NGR is 

conducted using a perfect-prognosis based multiple linear regression model for the training and 

test period. The data and methodology are described in section 2. Section 3 presents an 

improvement in NGR for TC intensity change. Section 4 compares NGR with two other 

comparable new indices suggested by others. Discussion and conclusion are given in section 5. 

 

2. Data and methodology 

 

2.1 TC best-track, atmospheric and oceanic data 

 

In this study, TC statistics over the western North Pacific (WNP) during 2004–2016 are 

obtained from the best track data archived by the Joint Typhoon Warning Center (JTWC). 

Statistics for analysis are calculated only for TCs that had a wind speed at or above 34 kt. The 

SST and DAT were calculated using the Hybrid Coordinate Ocean Model (HyCOM) Navy 

Coupled Ocean Data Assimilation (NCODA) nowcast/forecast system data provided by the 

Naval Research Laboratory (NRL). These oceanic variables were averaged within a radius of 

200 km from the storm center using pre-storm conditions (three days before). The DAT was 

calculated at various d (10–120 m, at 10 m interval 𝐷𝐴𝑇10 − 𝐷𝐴𝑇120; 𝐷𝐴𝑇10 − 𝐷𝐴𝑇120) and 

used to calculate the ocean component of OC_PI (𝑂𝐶_𝑃𝐼10 − 𝑂𝐶_𝑃𝐼120 ; hereafter named 

OC_PIs). The OC_PIs are calculated based on Emanuel’s ‘pcmin.m’ MATLAB function, 

which is available online (ftp://texmex.mit.edu/pub/emanuel/TCMAX/pcmin.m). Atmospheric 

variables were calculated using Global Forecasting System (GFS) analysis data with 1°x1° 

ftp://texmex.mit.edu/pub/emanuel/TCMAX/pcmin.m
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spatial and 6-h temporal resolution provided by the National Centers for Environmental 

Prediction (NCEP).  

 

2.2 The new Net energy Gain Rate 

 

The energy cycle of a mature TC is one of isothermal expansion, adiabatic expansion, 

isothermal compression, and adiabatic compression (Bister and Emanuel, 1998). Based on 

Emanuel’s MPI theory, the energy generation rate (G) into the TCs from the sea surface for 

each square meter of sea surface covered by the storm and the surface frictional dissipation rate 

(D) in the system for each square meter of ocean are given by 

 

𝐺 =  
𝑇𝑠−𝑇0

𝑇0
𝐶𝑘𝜌𝑉𝑠(𝑘∗ − 𝑘),    (3) 

𝐷 = 𝐶𝑑𝜌𝑉𝑠
3,      (4) 

 

where Ck is constant value 1.2 × 10-4, Ts is SST and Vs is the surface wind speed. The MPI is 

reached at the wind speed where the G becomes equal to D. Thus, setting G equal to D and 

solving for Vs, an expression for the maximum possible sustained surface wind speed of a TC 

is obtained. 

 

𝑀𝑃𝐼2 =
𝑇𝑠−𝑇0

𝑇0

𝐶𝑘

𝐶𝑑
(𝑘∗ − 𝑘)                          (5) 

 

An NGR for the western North Pacific basin is developed by incorporating OC_PI and wind 

dependent drag coefficient based on the MPI framework. The NGR expresses the realistic 

response of the sea surface cooling and wave states by TC defined as the difference between 

DAT based G (𝐺𝐷𝐴𝑇) and wind dependent Cd based D (𝐷𝑤) at the “current intensity” resulting 

from the given thermodynamic environment. 

 

NGR= 𝐺𝐷𝐴𝑇 – 𝐷𝑤 = 
𝐷𝐴𝑇−𝑇0

𝑇0
𝐶𝑘𝜌𝑉𝑠(𝑘0

∗ − 𝑘) − 𝐶𝑑(𝑉𝑠)𝜌𝑉𝑠
3   (6) 

 

Larger (smaller) NGR implies that the more (less) energy will be used for TC intensification. 
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Note that while NGR is the difference between G and D at the current intensity, when G = D 

and therefore NGR = 0, the TC reaches a steady state and MPI can be derived by solving for 

Vs. The NGR was computed and formulated in two ways to conduct a sensitivity test to evaluate 

the impact of Cd dependence on wind speed for parameterization of the air-sea exchange 

process. The first one is a default where Cd is set to be a constant (1.33 × 10-3) in equation (6) 

using the ‘pcmin.m’ program, hereafter referred to as the “traditional set of NGR (NGR-t)”. The 

second is derived from equation (6) but Cd fitting depending on wind speed is applied instead 

of the traditionally used constant Cd. For winds below 120 kt, we utilize the unified Cd 

parameterization scheme interpolated from available field and laboratory data (Soloviev et al., 

2014). For winds above 120 kt, Cd is assumed to be constant (2.0 × 10-3). This will be referred 

to as the “wind dependency set of NGR (NGR-w)”. The MPI is averaged along the track of the 

storm using the best track data positions at 6-h intervals excluding current forecast time. 

 

3. Results 

The intensification potential (POT) is defined as the difference between MPI and the 

current intensity. The POT is considered the most important predictor in the statistical-

dynamical TC intensity prediction models (DeMaria and Kaplan, 1994, 1999; Chen et al., 2011). 

In particular, DAT-based POT shows the highest correlation coefficient with intensity change 

(Kim et al., 2018). We note that, like POT, our new predictor NGR is also related to the 

difference between MPI and current intensity but the relationship takes a different functional 

form. Figure 1 presents the correlation coefficients between 24-h TC intensity change and 

various mixing depths for three groups—POT, NGR-t, and NGR-w—during 2004–2016. Note 

that the correlation is also carried out for SST alone, which is shown at the leftmost margin of 

the abscissa.  

For each individual group, DAT-based variables generally exhibit higher correlation 

coefficients than SST-based variables, which are denoted by an open circle in Fig. 1, revealing 

the importance of using DAT. For example, for SST based variables the correlation is 0.48 but 

it reaches as high as 0.64 at DAT90 for NGR-t (blue curve). For shallow and moderate DAT (≤ 

60 m), the NGR-t has lower correlations than POT. The value of constant Cd (0.0013) used to 

calculate of NGR-t is much lower than the observed Cd in the range from 35–63 kt, shown from 
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previous studies, where probability density of observed TC intensity covers 47.7% of the total 

(not shown). When constant Cd, is used the D for NGR-t is underestimated, which results in 

lower correlation with 24-h TC intensity change than POT for DAT ≤ 60 m. The DAT-based 

POT (black curve) correlates significantly with the intensity change at the 1% test level as 

reported in a previous study (Kim et al., 2018). Note that an even higher correlation coefficient 

(0.69) is found between the TC intensity change and DAT-based NGR-w (red curve). This 

implies that the dependence of the wind speed on Cd in many studies is important because Cd 

plays an important role in contributing to the energy budget for TC intensity. Because NGR-w 

using a wind speed dependent Cd represents the TC energy budget more realistically than NGR-

t using a traditional constant Cd, this new predictor is likely to exhibit the highest correlation 

to 24-h TC intensity change.  

It is somewhat surprising that the correlations between NGR-w and intensity change drop 

dramatically for DAT ≥ 80. It is well known that the strength of maximum wind speed is the 

dominant factor in TC-induced vertical mixing and the typical vertical mixing depth for a major 

TC (category 3 to 5) is about 100 m (Price, 2009). The deep mixing depth (≥ 80 m) based on 

DAT is suited for strong TCs, but can cause underestimation of G in equation (3) for relatively 

weak TCs. Therefore, the correlation coefficient of deep DAT based-NGR is lower because the 

DAT used is too deep (or too cold) for weak TCs and the frequency of strong TC events is very 

low. 

The correlation coefficient of DAT-based POT for the longer lead times after 42-h tends 

to be higher than NGR-w (Fig. S1). This is due to the use of the TC current intensity when the 

G and D are calculated in equation (6). Consequently, the TC intensity uncertainty increases 

with increasing forecast lead time.  According to the Fisher’s z test (Wilks, 2011), the 

difference in the correlation coefficient between NGR-w and other predictors is significantly 

different within 42-h forecast lead times as denoted by the dashed lines in Fig. S1 at the 5% 

test level (e.g., the p-value is smaller than 0.05). Note that DAT based NGR-w attains the 

maximum correlation coefficient with 24-h TC intensity changes at 50 m (Fig. 1). In Fig. 2, we 

compare the spatial distribution of the composite of 24-h observed TC intensity change, NGR50-

w, POT, and POT at DAT50 (POT50) for the period 2004–2016. The areas of observed positive 

TC intensity changes span the main TC development region (MDR; 5°–20°N, 110°–160°E) in 

the warm pool of the Philippine Sea and the South China Sea before making landfall or 
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undergoing extratropical transition (Fig. 2a). The regions of negative TC intensity changes are 

found from the Yellow Sea extending northeastward through the Kuroshio extension region. 

The POT and POT50 have patterns similar to the observations but show TC intensity changes 

that are too strong throughout the MDR and too weak or rare at higher latitudes (Figs. 2c and 

2d). On the other hand, the NGR50-w has a distribution closest to the observations in both 

positive and negative TC intensity change regions (Fig. 2b). The pattern correlations between 

the observed 24-h TC intensity change and the corresponding POT, POT50, and NGR50-w are 

computed over a 1° latitude-longitude box centered at each grid point for the period of 2004–

2016. The correlations are 0.66, 0.68, and 0.77 for the aforementioned three predictors, 

respectively, and the correlation between NGR50-w and intensity change is statistically 

significant at the 1% level (Chu and Zhao, 2007) when Quenouille’s (1952) method is used to 

account for the reduction in the effective number of degrees of freedom due to persistence. This 

result lends support that the NGR50-w, which has the highest pattern correlation coefficient and 

captures most of the observations for a 24-h TC intensity change. To compare the prediction 

skill of the main predictors (POT, POT50, NGR90-t and NGR50-w), perfect prognosis-based 

multiple linear regression models are developed for 24-h intensity change based on a 

combination of each of the aforementioned main predictors, together with previous 12-h 

intensity change (PER) and 850–200 hPa vertical wind shear (SHRD). The last two predictors 

are widely used for intensity prediction and are always included as two additional predictors 

(Knaff et al., 2005; Kaplan et al., 2015; Gao et al., 2016). As listed in Table 1, four sets of 

experiments are designed: (1) a run with the use of POT (hereafter referred to as the EXP1); 

(2) a run with the use of DAT50-based POT (POT50) (hereafter referred to as the EXP2); (3) a 

run with the use of DAT90 based NGR-t (NGR90-t) (hereafter referred to as the EXP3); and (4) 

an experiment using the NGR50-w (hereafter referred to as the EXP4). The four experiments 

are conducted to predict the 24-h TC intensity change over the WNP during 2004–2016. The 

SHRD is averaged within a 200 km radius after vortex removal. 

The performance of four models in terms of mean absolute error (MAE) and R-squared 

(coefficient of determination) is estimated from the training (2004–2014) and test (2015–2016) 

periods. For the training period, MAE and R-squared were compared among the four models. 

Results show that EXP1 (using POT) is comparable to EXP2 (using POT50) and EXP3 (using 

NGR90-t), while EXP4 (using NGR50-w) shows the best performance (Table 1). EXP4 explains 
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the highest R-squared (55%) and has the lowest error (11.42 kt). For the independent period, 

the NGR50-w is, again, the best predictor with the lowest error and highest R-squared among 

four experiments (Table 1). Relative to EXP1, the 24-h intensity change error decreases by up 

to 16% when the predictor NGR50-w is used. These improvements in the EXP4 for the training 

(test) period are statistically significant at the 5% (1%) level. Because the NGR50-w more 

realistically characterizes the interaction between TCs and the ocean using Cd depending on 

wind speed compared with NGR90-t that uses a constant Cd, it serves as an effective predictor 

in improving prediction of TC intensity change at the shorter lead times (within 24-h). 

A comparison of the correlation coefficients between 24-h TC intensity change and each 

of three groups (POT, NGR-t, and NGR-w) are also examined by classifying TCs into seven 

intensity categories according to initial maximum wind speed: tropical storm (TS; 34–47 kt); 

severe tropical storm (STS; 48–63 kt); category-1 (CAT1; 64–82 kt); category-2 (CAT2; 83–

95 kt); category-3 (CAT3; 96–112 kt); category-4 (CAT4; 113–136 kt); and category-5 (CAT5; 

above 137 kt). Figure 3a shows the maximum correlation coefficients from SST to DAT120 for 

24-h TC intensity changes for three groups. Figure 3b displays the mixing depth with the 

highest correlations for the seven TC categories and all three groups. When storms are in the 

weakest stage (TS), the highest correlations are almost identical for all three groups and occur 

at a very shallow mixing depth (~10 m) as shown in Fig. 3b. Intense TCs tend to have higher 

correlations with a deeper DAT for all groups and intensity categories. It also appears that the 

average mixing depth for NGR-w is ~50 m (Fig. 3b). As expected, the NGR-w exhibits a higher 

correlation with 24-h TC intensity change than POT for intensities below CAT3 (Fig. 3a), while 

NGR-w does not perform as well for the intensities above CAT4. In fact, the NGR-w has the 

lowest correlation coefficient among these three groups, especially for the intensities above 

CAT5. This implies that constant Cd (2.0 × 10-3) at extreme winds may not be optimal and 

one may parameterize Cd with an increasing or a decreasing value or a constant but different 

value. The behavior of the air-sea exchange coefficient is controversial and still unclear at 

extreme wind speeds. We will return to this point later. 

 

4. A comparison with predictors from other recent studies 

 

This study also examined the effect of the use of TC-induced mixing depth varying with 

an individual TC state (Tdy). This is motivated by recent studies (Balaguru et al., 2015; 
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Balaguru et al., 2018) that suggest using Tdy yields a better prediction of TC intensification 

based on the National Hurricane Center’s Statistical Hurricane Intensity Prediction Scheme. 

Following Balaguru et al. (2015) we calculate Tdy from the JTWC archive and HyCOM data 

for the same period and use the wind dependent Cd as applied to NGR-w as described in section 

2.2 (NGR_Tdy). Our results show that NGR_Tdy has a lower correlation (r = 0.64) with 24-h TC 

intensity than NGR50-w (r = 0.69), which is contrary to our expectations. However, the 

difference in correlations between Balaguru et al. (2015, 2018) and our study is not statistically 

significant.  

A possible reason for this result could be the TC-wave-ocean coupling effect on 

momentum flux. Fan et al. (2009, 2010) showed that momentum flux is significantly reduced 

because of the strong dependence on the wave-induced processes near the ocean subsurface in 

a fully coupled wind-wave-ocean model. This reduction can be as large as 25% depending on 

the choice of the Cd parameterization. The parameterization of TC-induced mixing depth is 

therefore recommended to include the effect of wave-current interaction. Further studies are 

needed to find out more realistic drag coefficients when waves are incorporated in the 

parameterization scheme. 

As mentioned previously, the behavior of Cd under very high wind speed conditions is 

uncertain although the NGR-w used here is wind dependent up to 120 kt. It might be possible 

for Cd to increase (Soloviev et al., 2014) or not change significantly at extreme wind speeds 

(Bell et al., 2012). It would be interesting to compare the results of NGR-w to an NGR using an 

increasing Cd above 120 kt (NGR-i). A series of NGR-i is calculated (Soloviev et al., 2014) and 

we find that NGR-i also has a high correlation with 24-h TC intensity change for all DAT. The 

maximum correlation coefficient of NGR-i is 0.68 at DAT50, which is slightly lower than the 

NGR50-w (r=0.69). Therefore, in cases where Cd at very high wind speed is not known, a 

constant Cd may be used. 

 

5. Discussion and Conclusion 

 

A statistical-dynamical technique for TC intensity prediction combining statistical 

methodology with environmental predictors derived from numerical weather prediction system 

has been widely used over the last 25 years (DeMaria and Kaplan, 1994; DeMaria and Kaplan, 

1999; DeMaria et al., 2005). The development of a new predictor, which has a high correlation 
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with TC intensity, is directly connected to the improvement in prediction skill for a statistical-

dynamical model.  

The DAT-based POT shows higher correlation with 24-h intensity change than SST-based 

POT. However, for all the DAT (10–120 m) including SST, NGR-w has higher correlations than 

DAT-based POT (Fig. 1) and improved 24-h TC intensity prediction using NGR50-w is achieved 

during both the training and independent periods (Table 1). The addition of a wind dependent 

Cd to the dissipation term in NGR-w thus led to better prediction results for 24-h intensity 

change. The findings in this study indicate that the best performance in predicting 24-h TC 

intensity change was by the model at depth of 50 m (DAT50). This is somewhat different from 

the results of Price (2009) and Lin et al. (2013), who suggested that the best results for the 

ocean thermal field representing TC-ocean interaction are obtained from DAT100 and DAT80, 

respectively. This difference may be attributed to the fact that all TC cases are used in this 

study while the two previous studies only focused on stronger TCs. 

To improve TC intensity change or rapid intensity change forecasts, this study suggests 

that POT predictors may be replaced by NGR50-w because the latter more realistically 

represents the ocean contribution to 24-h TC intensity change. In addition, the NGR50-w can be 

used to analyze the 24-h TC intensity changes in the currently best-performing intensity 

prediction models such as the Statistical Hurricane Intensity Prediction Scheme and Statistical-

dynamical Typhoon Intensity Prediction Scheme, because both models show little 

improvement at the shorter ranges (24–48 h) (DeMaria et al., 2014). 

Many studies have shown that TC intensity change is closely related to DAT and the 

parameterization of the air-sea exchange processes. We propose NGR, a new variant of an 

intensity change predictor related to Emanuel’s MPI that uses the DAT, which includes 

information from TC-induced vertical mixing, and Cd dependent on wind speed (instead of a 

traditional constant Cd). We show that the new index, NGR50-w, improves the hindcasts of 24-

h TC intensity change and anticipate that this new index will contribute to improvements in 

real-time TC intensity forecasts, not only for the western North Pacific but also for other basins.  

The NGR50-w showed an overall positive bias (Fig. S2) for a steady-state condition. 

This implies that in addition to frictional dissipation, other environmental factors such as 

vertical wind shear might be considered with TC intensity changes in real time forecasts. Lin 

et al. (2013) reported that OC_PI is overestimated by about 10–20% because the atmospheric 

portion of the MPI equation is calculated under the assumption that the atmospheric profile 
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does not have sufficient time to quickly adjust to the DAT. In this study, the G is also calculated 

in the same manner, which results in positive bias of NGR50-w for a steady state. In addition, it 

should be noted that the correlation of NGR50-w with intensity change is higher than the other 

predictors at shorter ranges (within 42-h). Indeed, this result was statistically significant based 

on the Fisher’s z test, at the 5% test level from 6 to 36 h, 6 to 30h and 12 to 42 h compared 

with the correlation of POT, POT50, NGR90-t, respectively, while after 48 h the correlation 

coefficient does not reach 95% significance (Table S1). This is because the value of intensity 

dependent NGR is calculated by the TC current intensity. Therefore, the TC intensity 

uncertainty increases with increasing forecast lead time and inconsistency between initial wind 

strength and TC intensities at the forecast lead times also increases. 

We showed that the NGR index better estimates TC intensity change in the western North 

Pacific. Future work will apply the NGR index to other TC basins and verify that DAT50 shows 

the best performance in predicting 24-h TC intensity change in this study with other years and 

other basins. 
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Table 1. Experimental designs for investigating the effect of using the NGR50-w on 24-h TC 

intensity change. The correlation coefficients between the predictors and 24-h TC intensity 

change during 2004–2016 are indicated in parentheses. The numbers in the subscript of POT 

and NGR refer to the depth of the ocean (in meters). The PER and SHRD indicate previous 12-

h intensity change and 850–200 hPa vertical wind shear. Mean absolute error (MAE) and R-

squared of 24-h TC intensity changes for four experiments are also compared during the 

training period (2004–2014) and test period (2015–2016). 

Experiment Predictor 1 Predictor 2 Predictor 3 

Training period  

(2004–2014) 

Test period  

(2015–2016) 

MAE (kt) R2 MAE (kt) R2 

EXP1 
POT 

(0.62) 

PER 

(0.39) 

SHRD 

(-0.36) 

12.04 0.51 13.18 0.38 

EXP2 
POT50 

(0.63) 
12.02 0.51 13.07 0.40 

EXP3 
NGR90-t 

(0.64) 
12.26 0.48 12.40 0.43 

EXP4 
NGR50-w  

(0.69) 
11.42 0.55 11.33 0.51 
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Figure 1. The comparison of the correlation coefficients between a series of POT, NGR-t, and 

NGR-w from SST to DAT120 by computed ocean temperature averaged over surface to 120 m 

depth (at 10 m interval) and the 24-h changes in TC intensity during 2004–2016. Pentagrams 

represent the location of maximum value for each group (POT, the intensification potential; 

NGR-t, net energy gain rate using constant drag coefficient; NGR-w, same as NGR-t but for 

changing drag coefficient). 
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Figure 2. Composite (a) 6-hourly observed 24-h TC intensity change (kt), (b) NGR50-w 

(𝑊𝑚−2), (c) POT (kt), and (d) POT50 (kt) in the 1°x 1° grid boxes during the period 2004–

2016. The numbers in the top-right corner of (b)–(d) panel denote the correlation coefficient 

with (a). 
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Figure 3. A comparison of the (a) maximum correlation coefficients from SST to DAT120 

between 24-h TC intensity change for three groups and (b) the mixing depth with the highest 

correlations by classifying TCs into seven intensity categories. 
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