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Abstract: Hydroxyapatite (HAp) is a ceramic material composing the inorganic portion of bones.
Ionic substitutions enhance characteristics of HAp, for example, calcium ions (Ca2+) by cerium ions
(Ce3+). The use of HAp is potentialized through biopolymers, cashew gum (CG), and gellan gum
(GG), since CG/GG is structuring agents in the modeling of structured biocomposites, scaffolds.
Ce-HApCG biocomposite was synthesized using a chemical precipitation method. The obtained
material was frozen (–20 ◦C for 24 h), and then vacuum dried for 24 h. The Ce-HApCG was
characterized by X-Ray diffractograms (XRD), X-ray photoemission spectra (XPS), Fourier transform
infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy
dispersive spectroscopy (EDS). XRD and FTIR showed that Ce-HApCG was successfully synthesized.
XRD showed characteristic peaks at 2θ = 25.87 and 32.05, corresponding to the crystalline planes
(0 0 2) and (2 1 1), respectively, while phosphate bands were present at 1050 cm−1 and 1098 cm−1,
indicating the success of composite synthesis. FESEM showed pores and incorporated nanostructured
granules of Ce-HApCG. The mechanical test identified that Ce-HApCG has a compressive strength
similar to the cancellous bone’s strength and some allografts used in surgical procedures. In vitro
tests (MTT assay and hemolysis) showed that scaffold was non-toxic and exhibited low hemolytic
activity. Thus, the Ce-HApCG has potential for application in bone tissue engineering.

Keywords: calcium phosphate; doping; scaffold

1. Introduction

Hydroxyapatite (HAP), Ca10(PO4)6(OH)2, is a bioceramic that is widely studied today.
The motivational factor is based on the compatibility and chemical similarity between hydroxyapatite
and various parts of the human body, including bone and dental tissues [1]. Albbe began the studies
of these materials in 1920 with the use of tricalcium phosphate. However, it was only in 1974 that
Levitt [2] and Monroe et al. [3] published the application of this phosphate in dentistry. Currently,
among the motivating factors of interest in these biomaterials is the fact that calcium phosphates
are osteogenic, osteoconductive, and osteoinductive materials [4–7], added to excellent results when
used as materials for orthopedic implant coatings and as substitute materials for parts of the human
body [1,4,8]. However, pure HAp may present low reabsorption by the organism [9], which affects
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its bioactivity. For example, the low toughness that this bioceramic presents makes the HAp easily
fracture in the face of possible efforts [4,10,11].

Faced with these challenges, ionic substitutions are shown as an alternative to improve the
mechanical and biological properties of HAp. Calcium ions (Ca2+) present in the structure of HAp can
be replaced by divalent and trivalent ions, such as Sr2+, Mg2+, Zn2+, Ce3+, La3+, and so on [9,12–16].
Cerium ions (Ce3+) have been widely used as an enhancement agent for the chemical and biological
properties of some materials. For example, drugs containing cerium are used because of the need for a
low concentration of the ions that add up to the long duration of the biocidal action. Biocompatibility
and reabsorption are other characteristics that the incorporation of cerium provides to materials [17–19].

Cerium can also act in a manner similar to calcium in the human organism, because it accumulates
in organisms in small quantities, thus providing biocompatibility and reabsorption of the material in
the tissue region [20,21]. Periodic trends such as electronegativity and ionic radius (1.01 and 0.100 nm
to Ca2+, and 1.06 and 0.107 nm to Ce3+, respectively) are quite similar for both ions [17]. This similarity
of properties allows an ionic substitution of the present calcium of the HAp structure by cerium [22].

The development of new composites has been through the use of various biopolymers, which due to
their natural origin, are abundant in nature, non-toxic, and add characteristics such as biodegradability
and biocompatibility to new materials [23,24]. Among the biopolymers, cashew gum (CG) has gained
prominence in recent years. CG is a polysaccharide composed of galactose (72%), D-glucose (14%),
glucuronic acid (4.7%), arabinose (4.6%), and rhamnose (3.2%) [25–27].

Among the properties of the biopolymers already mentioned, CG may act as the coating agent,
in addition to possessing property of anti-inflammatory agent, healing agent [28], antimicrobial [29],
binding agent or adhesive, and so on [30,31]. CG is obtained from the bark of the cashew tree
(Anacardium occidentale L., family: Anacardiaceae) and is produced in the epithelial cells of the plant
(exudate) [31–33]. Currently, Anacardium occidentale L. has about 1.12 million hectares planted around
the world, with Brazil and India accounting for 91% of the commercial exports of products obtained
from Anacardium occidentale L. [34,35].

The composition of scaffold is completed with the use of gellan gum (GG), a biopolymer that has
gained prominence for its application in the pharmaceutical and food industry. The insertion into the
scaffold formulation of GG is essential, since the gum has a unique characteristic in forming a gel when
in aqueous solution or when it is in the presence of metallic ions [36].

GG is an extracellular anionic polysaccharide which is a product of the excretion of bacteria of
the type Sphingonomas elodea (ATCC 31,461), produced by aerobic fermentation. GG is constituted
from monosaccharides of repeating units with a linear chemical structure consisting of 1,3β-D-glucose,
1,4β-D-glucuronic acid, 1,4β-D-glucose, and 1,4α-rhamnose [36–39].

In this way, the present research aims to synthesize and characterize scaffold based on cerium-doped
hydroxyapatite, cashew gum, and gellan gum for biomedical applications in bone grafts. The evaluation
of its mechanical and biological properties by the MTT and hemolysis assays results are carried on
to enhance the in vivo assays, hoping to obtain a material that can replace small bone parts that are
already in the body. The material provides anti-inflammatory action, and healing action added to the
antibacterial action.

2. Results and Discussion

2.1. Characterizations

The scaffold was obtained by means of a cylindrical mold with physical characteristics
corresponding to the mold used in the synthesis with a slightly yellowish coloration and a cylindrical
area of 13.48 mm in diameter and 13.54 mm in height. The scaffolds were homogeneous in the
macroscopic level, without cracks, presenting a spongy aspect with a certain degree of tension and
compression. Figure 1 shows the image of the scaffold obtained.
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Figure 1. Scaffold obtained in this study. 

Figure 2 shows the X-Ray diffractograms for HAp, Ce-HAp, Ce-HApCG, the scaffold based on 

Ce-HApCG+GG (SHG), cashew gum, and gellan gum. The obtained diffractograms for the HAp and 

Ce-HAp were compared with the database available in the X’Pert HighScorePlus software and all 

peaks were indexed with JCPDS data (JCPDS Card number: 00-003-0747). Finally, it was also 

observed that Ce-HAp showed no changes in its lattice parameter in relation to pure hydroxyapatite 

The comparison between the XRD patterns show the presence of the plans (0 0 2), (2 1 1), (1 1 2), (3 0 

0), (3 1 0), (1 3 0), (2 2 1), (2 2 2), (2 3 1), (3 2 1), (4 1 1) and (0 0 4) [9,40–44]. 

The gum’s diffractograms were quite similar, with a broad diffused peak at 2θ = 20°. This 

characteristic is commonly observed in amorphous materials, meaning, this result indicates a low 

degree of crystallinity and low structural organization, commonly attributed to polymers. 
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Figure 2. X-Ray diffractograms (XRD) patterns of powders hydroxyapatite (HAp), cerium (Ce)-HAp, 

Ce-HAp cashew gum (CG), the scaffold based on Ce-HApCG+gellan gum (GG) (SHG), cashew gum, 

and gellan gum. 

An important information is that the diffractogram shown refers to the presence of CG and GG 

in the scaffold composition, since the SHG diffractogram showed no changes in the peaks of the doped-

HAp, as can be observed when the diffractograms of Ce-HApCG and SHG are compared. In fact, it is 

observed that there is only a subtle alteration in the baseline, especially in the region between 15 to 

30° in which the main information of the gums in the diffractogram appears. The modification at the 

baseline is shown in Figure 3. The SHG diffractogram confirms the continuity of the crystalline and 

organized structure [43,44]. 

Figure 1. Scaffold obtained in this study.

Figure 2 shows the X-Ray diffractograms for HAp, Ce-HAp, Ce-HApCG, the scaffold based on
Ce-HApCG+GG (SHG), cashew gum, and gellan gum. The obtained diffractograms for the HAp and
Ce-HAp were compared with the database available in the X’Pert HighScorePlus software and all peaks
were indexed with JCPDS data (JCPDS Card number: 00-003-0747). Finally, it was also observed that
Ce-HAp showed no changes in its lattice parameter in relation to pure hydroxyapatite The comparison
between the XRD patterns show the presence of the plans (0 0 2), (2 1 1), (1 1 2), (3 0 0), (3 1 0), (1 3 0),
(2 2 1), (2 2 2), (2 3 1), (3 2 1), (4 1 1) and (0 0 4) [9,40–44].
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Figure 2. X-Ray diffractograms (XRD) patterns of powders hydroxyapatite (HAp), cerium (Ce)-HAp,
Ce-HAp cashew gum (CG), the scaffold based on Ce-HApCG+gellan gum (GG) (SHG), cashew gum,
and gellan gum.

The gum’s diffractograms were quite similar, with a broad diffused peak at 2θ = 20◦. This
characteristic is commonly observed in amorphous materials, meaning, this result indicates a low
degree of crystallinity and low structural organization, commonly attributed to polymers.

An important information is that the diffractogram shown refers to the presence of CG and
GG in the scaffold composition, since the SHG diffractogram showed no changes in the peaks of the
doped-HAp, as can be observed when the diffractograms of Ce-HApCG and SHG are compared. In fact,
it is observed that there is only a subtle alteration in the baseline, especially in the region between 15 to
30◦ in which the main information of the gums in the diffractogram appears. The modification at the
baseline is shown in Figure 3. The SHG diffractogram confirms the continuity of the crystalline and
organized structure [43,44].
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The Rietveld method was performed for the diffractogram of the SHG sample. The Rietveld
refinement, performed in the EXPGUI/GSAS software, revealed the presence of a hexagonal crystal
system with a P63/m space group and Laue group 6/m, with the following lattice parameters: A =

b = 9.447481, and c = 6.897580 Å, and unit cell volume of 533.162328 Å3 [45]. Figure 3 shows the
result of the Rietveld refinement. Rietveld refinement is qualified as satisfactory as to the empirically
obtained value of χ2 and values equal 2.00 or less are satisfactory. The obtained χ2 value was relatively
low: 1.471.
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Figure 3. Rietveld refinement of SHG scaffold.

Figure 4 shows a schematic representative of the Ce-HAp unit cell synthesized in this research.
The unit cell was simulated using the VESTA (Visualization for Electronic and Structural Analysis)
software [46] and also using the lattice parameter that were obtained by Rietveld method. The simulation
performed in the software did not allow the inclusion of parts of the substituent ion, so the doping ion,
i.e., the cerium, is represented by dark blue parts present in the Ca1 and Ca2 atoms.
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The presence of cerium in Ce-HAp was confirmed by XPS. Thus, the elements that constitute
Ce-HAp were detected: Peaks at 440 eV (Ca2s), 348 eV (Ca2p), 188 eV (P2s), 132 eV (P2p), and
530 eV (O1s). It was also possible to detect discrete emission lines (875–925 eV) related to the electron
doublets ejected from the Ce 3d orbital (Figure 5b). The electronic state assigned to position v and u
revealed excitations in binding energy (B.E) corresponding to the 3d5/2 and 3d3/2 pairs of spin-orbit
doublets. This type of spin-orbit coupling corroborates with existence of the cerium in the structure of
Ce-HAp [47].
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3d3/2 pairs of spin-orbit doublets.

FTIR spectra of the precursor materials used in the synthesis of scaffold and SHG material are
shown in Figure 6. When analyzing the spectrum of Ce-HAp, it is possible to observe a band at
3400 cm−1 corresponding to the stretching of OH groups from the Ce-doped hydroxyapatite structure,
as well as the hydroxyl groups of water molecules adsorbed on the surface of the material. Another
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band is shown at 1649 cm−1, this band corresponds to a deformation also of OH groups. In the
Ce-HAp spectrum, the asymmetric deformation of the phosphate groups (PO4

3−) is observed in the
region at 1098 cm−1 and 1050 cm−1. The presence of phosphate groups is also shown at 611 cm−1.
This band is related to P–O asymmetric deformation. Finally, the P–O (H) group presents a band at
566 cm−1 referring to the asymmetric deformation of the HPO4

2− group that chemically compose the
hydroxyapatite structure [48].
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cashew gum.

In the CG spectrum, the band at 3300 cm−1 attributing to the stretching of OH groups was observed.
A band at 2920 cm−1 refers to the stretching of C–H groups from the carbonic chains of the monomers
that chemically constitute the CG. The band at 1649 cm−1 refers to deformation vibrations of OH
groups [49] and bands at 1150, 1074 and 1035 cm−1 refer to glycosidic bonds of type C–O–C [48–50].

The spectrum of the GG showed stretching of the OH group in the region at 3300 cm−1. In the
region at 2920 cm−1 a peak was observed for the stretching of C–H groups. The band for the drawing
of COO− groups was observed at 1592 cm−1 and a peak at 1035 cm−1 corresponds to the stretching of
the C–O–C group of the glycosidic bonds pertaining to the biopolymer [51,52].

By analyzing the scaffold spectrum, it was possible to perceive characteristics of the precursor
materials in the material composition. The band at 3400 cm−1 refers to a stretching vibration of OH
groups present in the chemical composition of Ce-HAp and the monomers constituting the CG and GG.
A band at 1649 cm−1 was also observed, resulting from a deformation of the OH groups. The bands
that appeared in the spectrum of SHG in the region at 1098 cm−1 and 1051 cm−1 refers to the asymmetric
deformation of the phosphate (PO4

3−) groups. The phosphate groups also appeared at 611 cm−1.
These bands are related to the asymmetric deformation of the P–O type. Such bands are characteristic
of Ce-HAp [48]. The discrete band at 2920 cm−1 refers to the C–H groups of carbonic chains of the
monomers constituting the CG and GG.

The band on the scaffold spectrum at 1149 cm−1 is derived from the C–O type bonds present in
the monomers of both gums, as well as the bands present at 1627 and 1409 cm−1, which are related to
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the COO– group [48–52], and finally, in the region at 1035 cm−1 was observed presence of the band
referring to the glycosidic bonds present in both gums [48–52].

Analysis of the materials in relation to thermal stability occurred by TG/DTG. Figure 7 shows TG
curves of the precursor materials and the scaffold. Analyzing the thermogravimetric curve of the CG,
it was observed the occurrence of two events. The first thermal event occurred at approximately 35 ◦C,
ending at 129 ◦C. This event is caused by the loss of water in the sample, resulting in about 1.78% mass
loss of the CG. The second thermal event occurred at 286 ◦C. This event is related to the breakdown
of the polysaccharide structure, resulting in its decomposition, besides the decomposition of some
residues present in the gums, with 73.05% mass loss [53]. In the region between 29 to 130 ◦C, the first
mass loss of SHG was found. This loss can be attributed to water found adsorbed on the scaffold, with
6.15% mass loss.
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Figure 7. TG curves of precursors materials and SHG.

For the TG curve of the Ce-doped hydroxyapatite, only one thermal event related to mass loss
was observed at a temperature of approximately 100 ◦C. This loss of mass can be attributed to the exit
of water adsorbed on the surface of Ce-HAp. The value of mass loss in this event was 2.7% [54,55].
The TG analysis of the GG showed two thermal events with the first event occurring in the range of 27
to 124 ◦C, corresponding to 5.87% of the mass loss attributed to water [56,57]. The second thermal event
occurs between 195 to 353 ◦C, referring to the degradation of the polymer, with the mass variation to
54.54% [56,57]. The TG curve of the SHG showed that the scaffold presented the same thermal events
of the precursors materials. When comparing the value, in percentage of mass of the Ce-HAp, an
increase in the value of the mass was noticed. The addition is attributed to the sum of the water
mass adsorbed on the hydroxyapatite to the mass of the two gums present in the scaffold structure.
The second thermal event appeared in the range of 200 to 572 ◦C with a mass loss of 27.44%. This loss
of mass is attributed to the decomposition of the polysaccharide structure of CG and GG present in
scaffold [53,56,57].

Figure 8 shows the DTG curves of cashew gum, Ce-HAp, SHG, and gellan gum. By means of
the data obtained from the DTG curves it was possible to elucidate the number of thermal events
mentioned and discussed previously. From the thermal degradation curve of the scaffold, a probable
characteristic of the material was observed. In other words, it was noted that there may be a possibility
of sterilizing the material in an autoclave, since the thermal event that occurred around 120 ◦C refers to
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the loss of water mass. This fact is cited in this study because the scaffold is a material that can be
applied in the biomedical area, and this information is highlighted by the fact that sterilization via an
autoclave is one of the most common methods practiced in biomedical laboratories [58].
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Figure 8. DTG of (a) Ce-HAp, (b) SHG, (c) cashew gum, and (d) gellan gum.

The investigation morphology and porosity of the scaffolds was performed by FESEM. Figure 9
shows a smooth and translucent surface with aggregates of Ce-HAp particles distributed along
the material as well as in the inner layers of the scaffold. The smooth layer is attributed to
the polymer network of GG, this assertion is proven when comparing with the micrograph
of GG (Figure 9a). Figure 9b shows white-colored agromellated microparticles, attributed to
hydroxyapatite that is dispersed over the polymer network. It is also possible to notice a distribution
of Ce-HApCG microparticles.
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With the aid of ImageJ software and tool measures [59], it was possible to observe the distribution
of the Ce-HApCG granules along the polymer network. The green points highlighted in Figure 10a
refer to this distribution. The highlight shown by the staining allowed to observe the different size that
the Ce-HAp is dispensed on the surface of the composite. It was observed that the great majority of the
particles distributed were in the form of small medium-sized granules (~2 µm). However, it is possible
to observe the existence of some larger granules. Figure 10b shows the labeling of the Ce-HApCG
granules which was performed by ImageJ software.
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Through 600 points selected in the micrograph, it was possible to prepare a histogram with the
frequency of the size of the granules in the composite. The histogram is shown in Figure 11. From the
histogram data, it can be observed that 89.5% of the measured granules have an average length of
about 2.5 µm. However, when looking at Figure 12, the presence of granules at the nanoscale is noted.Materials 2019, 12, x FOR PEER REVIEW 10 of 21 
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Figure 11. Frequency of distribution of pore size of Ce-HApCG biocomposite. 

 

Figure 11. Frequency of distribution of pore size of Ce-HApCG biocomposite.

It is possible to notice the existence of pores in the SHG structure (Figure 12a) with average of
19.5 ± 2.5 µm. The studies indicate a great diversity in pore size in the scaffolds synthesized with
the size variation occurring in the range of 10 to 1000 µm. This variation of pore size occurs due
to the different bone morphologies found in the human body, as well as in the scaffold application
sites [60–63].

The energy dispersive spectroscopy (EDS) spectrum of scaffold, shown in Figure 12b, revealed
the qualitative composition of the material. It was possible to identify Ca, P, O atoms from the
hydroxyapatite composition. It was also possible to identify the presence of cerium that is incorporated
in the HAp. Finally, the identified Na, Cl, Mg, and K atoms are derived from the GG composition.
The gold identified in the EDS comes from the sample preparation process by FESEM.

Data provided by EDS relative to the atomic percentage were used to calculate the Ca/P ratio of
synthesized hydroxyapatite [64–66]. The results show that the Ca/P ratio for Ce-HA ((Ca + Ce)/P)
present in SHG was 1.87. This result is in agreement with values already reported for hydroxyapatite
found in the human organism when comparing crystallinity and calcium content. The hydroxyapatite
synthesized in this study does not have a high crystallinity when compared to hydroxyapatites with a
Ca/P ratio = 1.67 [67]. Thus, because it does not have a high stability, it is believed that Ce-HAp has
greater interaction effects with living organisms.
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Figure 12. (a) Identification and measurement of granules of Ce-HApCG and pores of scaffolds and
(b) energy-dispersive X-ray spectroscopy patterns of SHG.

2.2. In Vitro Studies

2.2.1. In Vitro Degradation Study in simulated body fluid (PBS)

In vitro degradation studies were performed by immersing the SHG in PBS. Figure 13 shows the
results obtained during the degradation study. The results showed that scaffold has the ability to absorb
the ions from the PBS solution in its spongy structure; thus, it is believed that the scaffold synthesized in
this study may interact with body fluids [68,69] and that considering the standard deviation, a constant
variation in mass is observed, regardless of immersion days in PBS. This information was obtained by
comparing the values of the Wini with the Wfin (Equation (1)). The amount of hydroxyapatite in the
scaffold structure is fundamental for weight gain, as reported by Deb et al. [70], since the crystalline
structure of the Ce-HAp can influence the scaffold not to weight loss during the degradation test,
besides adding an ability to absorb the PBS in the crystal structure of the Ce-HAp [70]. Figure 14 shows
the FESEM of the scaffold after soaking in PBS. It is possible to observe a thin-film incorporated on
SHG, this result shows that the incorporation of Ce-HAp provides a weight increase to the biomaterial.
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Figure 13. Weight variation of SHG scaffold during periods of 1, 7, 14, 21, and 28 days. The differences
between the groups were analyzed by analysis of variance (ANOVA), followed by the Tukey test,
comparing the groups with the value of 1 day, * represents statistically difference with 1 day.
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2.2.2. MTT Assay and Hemolytic Activity

The determination of cell viability occurred by MTT assay. MTT assay was performed to observe
the cytotoxicity of scaffold at serial concentrations against CTM (CC50). The positive control was
given with 100% cell viability. The study showed that the number of cells cultured was significantly
greater than the positive control. Among the several concentrations of scaffolds evaluated, it was
noticed that none of the scaffolds presented toxic characteristics, meaning, the cell growth was not
affected. The results showed that SHG scaffold presented cell growth stimulating characteristics, thus,
it is believed that scaffold has a promising use in bone regeneration, since the cellular viability of the
material reached values greater than 75%. The obtained values are represented as mean and standard
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deviation represented in the form of graphs. The results were evaluated through analysis of variance
(ANOVA) with the Tukey test. The differences were considered statistically up to p < 0.05 (Figure 15).
Therefore, the scaffold can be classified as being a non-toxic material [71,72].Materials 2019, 12, x FOR PEER REVIEW 13 of 21 

 

C 25 50 100 200 400 800 1600 3200
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

S
HG

 (g.mL
-1
)

 

C
e

ll 
V

ia
b

ili
ty

 (
%

)

S
HG

 (g.mL
-1
)

C 25 50 100 200 400 800 1600 3200
0

25

50

75

100

125

H
e

m
o

ly
s
is

 (
%

)

 

Figure 15. MTT assay and hemolytic activity for SHG scaffolds. 
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Figure 15. MTT assay and hemolytic activity for SHG scaffolds.

The test against erythrocytes of blood of goats showed the ability of scaffold to cause hemolysis in
the blood cells through lysis or cellular eruptions. Ultra pure water caused 100% hemolysis (negative
control). It was observed that the scaffold presented low hemolytic action. The hemolysis induction
value was 12.03%. Ramya et al. reports that according to the ASTM standard [73], materials with
hemolysis <5% are considered materials that have a high level of hemocompability, and materials
containing hemolysis >20% are classified as hemocompatable [74]. The results generated in this study
(Figure 14) show that SHG scaffold can be classified as being hemocompatible.

2.3. Mechanical Testing

Being aware of the scaffold compressive strength values is important in guiding the development
of the material. This property is important because it will define how the material will be applied
and show the possible loads that the scaffold will support. Thus, the inverse proportionality between
porosity and rigidity requires an adequate choice of which property is desired [75]. The mechanical
test of the scaffold occurred by compressive strength. The SHG presented compressive strength of
19.19 MPa and modulus of elasticity of 0.24 GPa.

The obtained values classify the scaffold as being a material that has promising mechanical
behavior for application as a substitute of cancellous bone, because the compressive strength found has
value close to the maximum compressive strength of the cancellous bone and the modulus of elasticity
found remains in the range found in the literature [73,74]. A comparison between the values obtained
in this study and the values found in the literature is shown in Table 1. It is important to note that a
cancellous allograft bone presents as the best option in bone surgery, being called a golden standard by
specialists [60]—a finding that corroborates the results found in this study for the SHG scaffold.
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Table 1. Comparison between compressive strength and modulus of elasticity of SHG, cancellous bone
and cortical bone.

Sample Compressive Strength (MPa) Modulus of Elasticity (GPa)

SHG 19.19 0.24
cancellous bone [73,74] 4–12 0.1–0.5

cortical bone [73,74] 130–180 12–18

3. Materials and Methods

3.1. Materials

For the development of the research, the following reagents were used: Calcium
hydroxide—Ca(OH)2 (ENSURE®, Duque de Caxias, Rio de Janeiro, Brazil); dibasic ammonium
phosphate—(NH4)2HPO4 (Sigma-Aldrich, St. Louis, MI, USA); and cerium nitrate—Ce(NO3)3·6H2O
(Sigma-Aldrich); sodium hydroxide—NaOH (ISOFAR, Duque de Caxias, Rio de Janeiro, Brazil);
nutrient mixture F-12 (DMEM/F-12) (Sigma-Aldrich); 3-4,5 dimethylthiazol-2,5-diphenyl tetrazolium
bromide (MTT) (Sigma-Aldrich); dimethylsulfoxide (DMSO) (Mallinckrodt Chemicals, Phillipsburg,
NJ, USA); cashew gum isolated; deionized water and gellan gum, kindly provided by KelcoGel®,
Limeira, São Paulo, Brazil.

3.2. Cashew Gum Production

The isolation of CG occurred with the collection of the exudate present in fissures of the cashew
tree (Anacardium occidentale L.), popularly known as cajueiro. The trees that were collected are located
at the Federal University of Piauí-UFPI, SISGEN: ABD61DA. After collection, the exudate was ground
by mortar and pistil, causing an initial separation between exudate and impurities. The exudate was
then dissolved in distilled water in the proportion of 10.0 g per 100.0 mL of water. Dissolution of
the exudate occurred by mechanical shaking for 24 h. The solution obtained was vacuum filtered to
remove the remaining impurities. Next, the pH was adjusted (pH 7.0) with addition of NaOH and,
finally, CG was obtained by precipitating the solution with ethanol addition. The proportion of ethanol
added to the exudate solution was 3:1. After the precipitation process, the CG was centrifuged and
washed with acetone three times. The gum isolation process was terminated by oven drying (24 h at
50 ◦C).

3.3. Synthesis of the Composite Based on Cerium-Doped HAp and CG

The composite synthesis was initiated by dissolving 1.0 g of the isolated CG in 20.0 mL of deionized
water. After the dissolution of the CG, the synthesis of cerium-doped HAp into a CG suspension
occurred. The synthesis of HAp occurred through the precipitation reaction between the precursor
reagents of calcium ions (Ca2+—Ca(OH)2) and phosphate ions (PO4

3−—(NH4)2HPO4). The doping of
HAp with cerium (Ce3+—Ce(NO3)3·6H2O) occurred simultaneously in the precipitation reaction.

For the synthesis of 2.0 g of doped-hydroxyapatite containing 5% (w/w) cerium, we used 0.4342 g
of Ce(NO3)3·6H2O), 1.4077 g of Ca(OH)2, and 1.5788 g of (NH4)2HPO4, individually dissolving each
chemical reagent in about 10.0 mL of deionized water. After dissolution, the dibasic ammonium
phosphate was transferred, and then the solutions of calcium hydroxide and cerium nitrate were
added at the same time. The mixture was kept under stirring for 4 h at room temperature, where it
remained standing for 12 h. The procedure followed with centrifugation of the solution and discarding
the supernatant. The material obtained was oven dried at 100 ◦C for 24 h, then the composite was
obtained. Finally, the composite was dried (100 ◦C for 24 h) and macerated with mortar and pestle.
The weight ratio of Ce-HAp to CG is about 2:1. The composite was named Ce-HApCG.
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3.4. Synthesis of Scaffolds

The production of the scaffolds started by mixing 1.0 g of composite Ce-HApCG powder with
0.2 g of GG powder. The homogenization of the mixture occurred under mechanical stirring for about
10 min in aqueous medium. A hydrogel was obtained, and then about 2000 µL of the hydrogel was
placed in a 24-well plate, followed by freezing (−20 ◦C for 24 h). The scaffolds were obtained by the
freeze-dried process for about 24 h. The scaffold based on Ce-HApCG+GG was named SHG.

3.5. Characterization of Materials

The characterization of Ce-HAp, composite and scaffold, occurred with the following specifications:

3.5.1. Characterization of the Ce-HAp

The synthesized Ce-HAp powders were characterized by the X-ray diffraction (XRD) technique
(Shimadzu (LABX-XDR 600, Shimadzu, Kyoto, Japan) with Cu-Kα (λ = 1.5406 Å)). The scanning ranges
from 10 to 75◦ at a speed of 2◦ min−1 and exposure time of 40 min. Phase composition identification
was performed by the Rietveld refinement using GSAS EXPGUI 2012 software. The scanning range for
Rietveld refinement was from 10 to 110◦ at a speed of 1◦ min−1. The X-ray photoemission spectra (XPS)
was performed with a spectrometer system (ESCA+, Scienta-Omicron) equipped with a hemispherical
analyzer (EA125) and a monochromatic radiation source in Al Kα (Xm1000, 1486.7 eV). The X-ray
source was used with a power of 280 W as the spectrometer worked in a constant pass energy mode of
50 eV.

3.5.2. Characterization of Scaffolds

The scaffolds were analyzed by Attenuated total reflectance/Fourier transform infrared
spectroscopy (ATR/FTIR) using a Spectrometer (Brucker Optics—Vertex 70, Brucker, Billerica, MA,
USA) in a scanning range from 400–4000 cm−1. Thermogravimetric analysis (TGA) was performed
on an SDT Q600 (V20.9 Build 20, TA Instruments, New Castle, DE, USA) instrument using 5 mg of
sample with a heating rate of 10 ◦C min−1 (25 to 1000 ◦C), under argon atmosphere, with 100 mL
min−1 in an alumina sample port. The morphological analysis of the materials was investigated
using a field emission scanning electron microscopy (FESEM) (QUANTA 250 FEI, FEI Company,
Eindhoven, The Netherlands)coupled with elemental analysis by energy dispersive spectroscopy (EDS)
(EDAX Apollo X, FEI Company, Eindhoven, The Netherlands). The images were analyzed with the
imageJ software (National Institures of Health, Bethesda, MD, USA), observing particle size as well
as promoting the highlighting of particles by means of the change of coloration. The mechanical test
was performed on scaffolds with a cylindrical area of 13.48 mm in diameter and 13.54 mm in height,
at a speed of 5 mm min−1. The tests were performed on SHIMADZU: AG-X 250 kN servo-hydraulic
equipment for mechanical testing (ASTM Standards D 2990-01).

3.6. In Vitro Studies

3.6.1. In Vitro Degradation Studies

In vitro degradation studies were performed by immersing the scaffolds in simulated body fluid
(PBS). The scaffolds were weighed on an analytical balance, and then samples were immersed in PBS
at 37 ◦C in a drying oven. The period of the degradation studies occurred in the following intervals:
1, 7, 14, 21, and 28 days, replacing PBS each 7 days. The calculation of the degradation studies was
performed by Equation (1) [76]:

W =
(Wini −W f in)

Wini
, (1)

where Wini was the initial weight of scaffolds and Wfin was the final weight of scaffold after soaking.
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3.6.2. MTT study

Cell viability was analyzed by the MTT colorimetric assay (3-(4.5-dimethylthiazol-2yl))-2.5
diphenyl tetrazolium bromide. The SHG scaffold was diluted in dimethylsulfoxide (DMSO) to provide
a stock solution (80 mg mL−1). In each assay, the stock solution was diluted in DMEM/F12 culture
medium to the desired concentrations with a maximum concentration of DMSO of about 0.2% v/v.
The cells used in the MTT assay were mesenchymal stem cells of rabbits (MSCs). The study was
approved by the Ethics Committee on Animal Use (CEUA/UFPI), n◦ 021/14.

In the sequence, 100 µL of DMEM/F12 medium supplemented and about 2 × 103 CTM were added
in 96-well plates. The plates were incubated at 37 ◦C in a humidified atmosphere containing 5% CO2

and 95% air atmospheric for 24 h. After cell adhesion occurred, washes (2×) were performed with
DMEM/F12 medium supplemented to remove non-adherent cells. Subsequently, in each well, 100 µL
of DMEM/F12 medium supplemented with different concentrations of the separately tested solutions
(25, 50, 100, 200, 400, 800, 1600, and 3200 µg mL−1) were added. Then the cells were incubated for 48 h,
after that time, 10 µL of MTT diluted in DMEM/F12 medium (5 mg mL−1) was added.

The plates were incubated in an oven at 37 ◦C in a humidified atmosphere containing 5% CO2

and 95% air atmospheric for 4 h, the supernatant was discarded and 100 µL of DMSO was added to all
wells. The 96-well plates were under constant stirring (Kline agitator, model AK 0506) for about 30 min
at room temperature for complete dissolution of the formazan. Optical density (OD) values obtained
at a wavelength (λ = 550 nm) in a spectrophotometer were converted into percentages of cell viability
relative. The procedure was performed in triplicate and the 50% cytotoxic concentration (CC50) was
defined as the dose of the material required for the reduction of cell viability by 50%. The positive
control group was converted in percentages in relation to the control group, considered to be 100%,
and the negative control was performed with DMEM/F12 medium at 0.2% (v/v) DMSO [77].

3.6.3. Hemolytic Activity

For its evaluation, hemolytic activity was performed on erythrocytes of blood of goats.
The erythrocytes were collected with anticoagulant (EDTA). The study was approved by the Ethics
Committee on Animal Use (CEUA/UFPI), n◦ 117/15. After collection, the erythrocytes were diluted
in 80 µL of PBS and the blood concentration was adjusted (5% red blood cells). Next, SHG scaffold
was diluted with the addition of PBS (20 µL). Immediately after, the erythrocytes were incubated (1 h
at 37 ◦C) and the reaction was stopped to re-add of PBS (200 µL). The suspension was centrifuged
(1000 G, 10 min) at room temperature. After centrifugation, the supernatant was measured at 550 nm to
quantify the hemolytic activity. The absence (negative control) and 100% hemolysis (positive control)
were determined, replacing the sample solution tested with equal volume of PBS and ultrapure water,
respectively. The procedure was performed in triplicate and the results were expressed as percentage
and hemolytic concentration (CH50) for 50% of erythrocytes considering the positive control as 100%
hemolysis [78].

4. Conclusions

The study provided the synthesis of an innovative scaffold with promising potential for application
in bone grafts obtained by combining a modified inorganic material (Ce-HAp) with non-toxic, low-cost
renewable biopolymers. The structural characterizations, XRD and FTIR, show the success of obtaining
Ce-HAp by chemical precipitation method, forming a composite constituted of cashew gum and
Ce-HAp. The XPS shows the presence of cerium in the composite, as well as EDS, which in addition
to the presence of cerium, showed the semi-quantitative ratio (Ca + Ce)/P = 1.87. Thermal analysis
complemented with the identification of cashew gum and Ce-HAp in the biocomposite. Microscopies
revealed the morphology of the scaffold, showing the dispersion of the nanometric granules of
Ce-HApCG in the GG polymer matrix. The micrographs also showed the existence of pores, necessary
in the osteoinduction process. The degradation study showed that the scaffold interacted with the PBS
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ions, a fact evidenced by scaffold weight gain and by the observation of a thin-film on the surface of
the scaffold. The scaffold showed that it has adequate compression strength and that it has properties
that can be used to replace the cancellous bone. MTT assay and hemolysis activity revealed that the
material is non-toxic and is apt to be evaluated in some in vivo studies.
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