
!

UNIVERSIDADE CATÓLICA PORTUGUESA

The Development of Corpus-Based Computer Assisted Composition
Program and its Application for Instrumental Music Composition

Tese apresentada à Universidade Católica Portuguesa

para obtenção do grau de Doutor em (Ramo Cientifico e Especialidade)

por

Keitaro Takahashi

ESCOLA DAS ARTES

 (December 2017)

!

UNIVERSIDADE CATÓLICA PORTUGUESA

The Development of Corpus-Based Computer Assisted Composition
Program and its Application for Instrumental Music Composition

Tese apresentada à Universidade Católica Portuguesa

para obtenção do grau de Doutor em (Ramo Cientifico e Especialidade)

Por Keitaro Takahashi

Sob orientação de Erik Oña

ESCOLA DAS ARTES

(December 2017)

Contents

I General Introduction 6

1 Background 6
1.1 Music and Technology . 7
1.2 Computer Technology and Music . 12

2 Motivation 13

3 Structure of this thesis 15

II Audio Analysis 17

4 Introduction 17
4.1 High and Low level criteria . 18

5 Fourier Transform Analysis 19
5.1 Discrete Fourier Transform(DFT) . 19
5.2 Short-Time Fourier Transform(STFT) . 20
5.3 Discrete Cosine Transform(DCT) . 21
5.4 Linear Power Spectrum . 22
5.5 Log Power Spectrum . 22
5.6 Time-Frequency Localization . 24
5.7 Overlap Method . 25
5.8 Multi-resolution FFT analysis . 26
5.9 Cepstrum Analysis . 27

5.9.1 Liftering . 29
5.10 Log-Frequency Power Spectrum . 30

5.10.1 Constant Q Transform . 32
5.11 Specmurt Analysis . 35

6 Feature Extraction 38
6.1 Linear Power Spectrum . 38
6.2 Spectral Magnitude . 39
6.3 Spectral Centroid . 39
6.4 Spectral Spread . 39
6.5 Spectral Flatness . 40
6.6 Fundamental Pitch . 41

6.6.1 Perception of Pitch . 41
6.6.2 Pitch estimation algorithms . 43
6.6.3 Pitch Estimation by Autocorrelation . 43
6.6.4 Pitch Estimation by Cepstrum . 45

6.7 Multi-resolution Pitch estimation . 46
6.8 Mel-Frequency Cepstral coefficients . 49
6.9 Deltas and Delta-Deltas . 51

6.9.1 Delta MFCCs . 52
6.10 Discussion . 52

III Audio Segmentation 54

7 Introduction 54

1

8 Delta-features based Segmentation 55
8.1 Segmentation algorithm . 57
8.2 Discussion . 59

9 Self Similarity Matrix 59
9.1 Novelty Function . 63
9.2 Discussion . 66

IV Audio Decomposition 69

10 Introduction 69

11 Specmurt analysis based multi pitch estimation 71
11.1 Iterative estimation algorithm . 72
11.2 Result . 75
11.3 The spectrum decomposition using freely defined overtone pattern 77
11.4 Experimental evaluation . 79
11.5 Discussion . 82

12 Non-Negative Matrix Factorization 83
12.1 Non-Negative Matrix Factorization for music deomposition 84
12.2 Experiments . 88
12.3 Discussion . 91

V Classification 94

13 Introduction 94

14 Feature Vectors and Feature Space 96

15 Self-Organizing Map 99
15.1 Kohonen’s learning law . 101
15.2 Categorization . 102
15.3 Self-Organizing Map for Audio data . 105

16 Scaling 106
16.1 Normalization . 106
16.2 Distance measurement . 107
16.3 Standardization . 107
16.4 Categorization process . 112

16.4.1 Self-Organizing Map with MFCCs . 112
16.4.2 Short digression on single peak distribution . 119

16.5 Parameters of the SOM . 119
16.6 The Test using the Cross-Validation method . 120
16.7 Distribution Coefficient . 122

17 Test Analysis Results and Discussion 122

18 Two steps Self-Organizing Map 127

19 Regression analysis 128

20 Discussion 129

2

VI Synthesis 132

21 Introduction 132

22 The Concatenative Sound Synthesis 133

23 Unit based Concatenative Sound Synthesis 137
23.1 Music Mosaicing . 137
23.2 Algorithm of the frame-based CSS . 138
23.3 Test of the frame-based CSS . 139
23.4 The synthesis result with different FFT frame sizes . 147

24 Advanced algorithm for creating a concatenation 147
24.1 k-NN method . 149
24.2 Three Thresholds Algorithm . 149
24.3 The demonstration of our advanced CSS technique . 151

25 Segment Based Concatenative Sound Synthesis 154
25.1 Overlapping Segmentation Algorithm . 156
25.2 Magnitude Adjustment . 157
25.3 The Demonstration of the Sequence based CSS technique 158

26 Polyphonic Synthesis Techniques 160
26.1 Subtractive Spectral Algorithm . 160
26.2 Specmurt analysis based Polyphonic CSS technique . 161
26.3 Non-Negative Matrix Factorization based Polyphonic CSS technique 163
26.4 Demonstration of the NMF based SCSS technique . 165

27 Discussion 166

VII Graphic User Interface 168

28 Introduction 168

29 Max 168
29.1 Discussion . 169
29.2 Ad-hoc Score . 169

30 Web Application 171
30.1 Introduction . 171
30.2 Development Environment . 174
30.3 Related Web Applications . 175
30.4 Implementing our synthesis program on a Web application 177
30.5 Sequencer . 179
30.6 Discussion . 180

31 Cocoa Application 180

VIII Application to Composition 182

32 Introduction 182
32.1 Short descriptions of the compositions . 182

3

33 Demonstrations 184
33.1 Database . 184
33.2 Example 1: the extraction of musical motives and elements from the re-synthesis (Brico-

lage) . 184
33.3 Example 2: subtraction method (Bricolage) . 188
33.4 Example 3: employment of musical fragments (Pentimento) 189
33.5 Example 4: Variations of re-synthesis of the same target 191

34 Discussion 193

IX Conclusion 195

X Bibliography 198

4

Abstract

In the last 20 years, we have seen the nourishing environment for the development of

music software using a corpus of audio data expanding significantly, namely that synthe-

sis techniques producing electronic sounds, and supportive tools for creative activities

are the driving forces to the growth. Some software produces a sequence of sounds by

means of synthesizing a chunk of source audio data retrieved from an audio database

according to a rule. Since the matching of sources is processed according to their de-

scriptive features extracted by FFT analysis, the quality of the result is significantly

influenced by the outcomes of the Audio Analysis, Segmentation, and Decomposition.

Also, the synthesis process often requires a considerable amount of sample data and

this can become an obstacle to establish easy, inexpensive, and user-friendly applica-

tions on various kinds of devices. Therefore, it is crucial to consider how to treat the

data and construct an efficient database for the synthesis. We aim to apply corpus-

based synthesis techniques to develop a Computer Assisted Composition program, and

to investigate the actual application of the program on ensemble pieces. The goal of

this research is to apply the program to the instrumental music composition, refine its

function, and search new avenues for innovative compositional method.

keywords

Computer Assisted Composition, Concatenative Sound Synthesis, Corpus-based Syn-

thesis, Classification, Decomposition, Labeling, Music Information Retrieval, Segmen-

tation, Self-Organizing Map, Spectral Analysis

5

Part I

General Introduction

1 Background

The progress of technology has influenced the creation of new art while the creation

of new art has demanded the innovation of technology. As the word art also means

technology, technological innovation has always stimulated the creation of new art and

has also changed life styles. Particularly the invention of the personal computer has

hugely expanded the possibilities for creative activities. As the computer technology

developed rapidly and extensively, it took over complicated tasks without utilizing a

significant number of the labor force and fully equipped environment. We have obtained

a great benefit from it to accomplish large-scale works, which were impossible a century

ago. Recent breakthroughs in technology for big data and artificial intelligence have

allowed the computer to imitate and become a resource of our creativity creating a new

artistic works without any interventions by human beings. These results can already be

seen in brand-new paintings of Rembrandt, new pieces of Bach and Chopin, or unique

hallucination artworks using a corpus of data stored on the internet. Nowadays, art

and computer technology are inseparable in terms of advancing the quality of creations.

The creation of music also has received significant benefit from the computer tech-

nology not only as a tool but also as a important factor to provoke our creative ideas.

This has happened in many areas such as electronic music (use of synthesizers), algo-

rithmic composition (applying mathematical theories), Desktop Music (DTM) (use of

sequencers or audio editing programs), and automatic composition by artificial intelli-

gence with big data. One could even say that the influence of computer technology in

music is presently remarkable.

The center of our research is the development of a music software which is capable

of producing music materials and supporting instrumental and electronic music com-

position. The software is aimed to produce any kinds of sound sources and to generate

creative ideas for users. The research covers the following areas, audio analysis, data

classification, music information retrieval, synthesis, and music composition. Although

it is extremely meaningful to study all topics at a deep level, our purpose is neither to

produce precise and correct synthesis result nor to prove the mathematics problems to

6

discover a formula. Our goal is to build a system which inspires composers to form their

artistic ideas and to support to realize them. Therefore, whenever we investigate any

algorithms, we will advance them from the aesthetic point of view as much as possible.

This task is particularly inevitable when applying these technologies to the instrumen-

tal music composition because the software needs to be flexible to satisfy diverse ideas

and the output is expected to be playable by musicians. This discussion needs to be

done for diverse topics over various research areas. Therefore, we will avoid describ-

ing concrete issues and our remedies here, but will collect them in the corresponding

sections.

Before we start discussing our topic, we will preliminarily give a short survey of

the history of the relationship between music and technology. It is essential to know

how they were interactively developed in order to design appropriate softwares. The

technology we will introduce is not only for computers but also for various devices and

instruments. The survey is written referring to the following books [1], [2], [3].

1.1 Music and Technology

The development of music is closely related to that of technology since long time ago.

The manufacturing technology led to the invention of new instruments with rich and

varied expression, which encouraged people to create new music styles. It is interesting

to mention that the development of construction technology also influenced music. For

instance, it could be argued that large architectures, such as in a church, inspired people

strong motivation to manufacture new instruments with excellent acoustics. One can

easily speculate that space and vibration in a large architectural space should have

accelerated the development of the organ not only with better acoustic quality, but also

with more powerful dynamics. This, in order to allow that an instrument placed in the

church room, could be appreciated very well and easily by the listeners. At the same

time, the number of sound colors increased by using different techniques of producing

sounds with various different pipes. It can be imagined that the divine atmosphere

of a church and an organ with much resonance, a wide range of amplitudes and a

great variety of different sound-colors must have impressed people and changed their

perceptions of music.

Printing technology also influenced the situation of music. In the 16th century,

printed scores became available and as a result, instruments designed for both use of

7

accompaniment and solo performances, such as Lute, Clavichord, and Cembalo, became

popular. Scores of suites for lute, written in tablature, were published during 1507 to

1536 by printers or musicians such as Ottaviano Petrucci (1466 - 1539) and Francesco

da Milano (1497 - 1543). The first printed score for keyboard instruments, Frottole

in tabulate per sonare organi were published by Andrea Antico in the beginning of

16th century, in Rome. These pieces were originally created for voices and arranged

for instrument solo for the publications. Since then, instruments that were originally

played for accompaniment became played independently of the voice. This development

definitely changed the function of those instruments and influenced how the music was

played. It is possible to say that these changes stimulated the creation of a repertoire

for solo instrument and ensemble and simultaneously, it encouraged the improvement

of those instruments. Many instruments were significantly developed during the Re-

naissance and Baroque musical periods, at the end of the 16th century. Register of

Recorders became wider while the sound became clearer. New strings instruments were

invented, such as the Violin, which compared to the instruments of the family of the

Gamba has more stable timbre and pitch, allows for more flexible changes in dynamics,

and has a sharper sound. In this period too, a great number of organ pieces were also

composed due in part to several important improvements such as the construction of

larger organs, which enabled to produce louder sound and the invention of the stop

function, which improved the range of registers and the variation of timbres. It should

be noted that the innovations of media and the improvements of instruments led to

create wide variety in music and eventually made it penetrate more deeply into society.

One of the most unequivocal relationships between developments of technology and

music is the influence that the innovation in the manufacturing technology of keyboard

instruments had on music composition. In the music composed for Clavichord or Cem-

balo, dynamics or articulation marks were not written and it could be assumed that the

musical expressions allowed by changes in dynamics were scarcely used. Early keyboard

instruments had no function to control dynamics and thus could not make loud and soft

sounds as modern instruments do. In the beginning of the 18th century, Bartolomeo

Cristofori di Francesco developed the Gravicembalo col piano forte, an instrument with

a function controlling change in dynamics. After the invention of this early pianoforte,

composers began to employ musical expressions using changing dynamics in their mu-

sic. For example, Haydn began to use a few dynamics and articulation marks in piano

8

sonata No.42 Hob.XVI. 27, composed in 1770s. It is also possible to find noticeable

changes in piano sonatas by Ludwig van Beethoven following the development of the

pianoforte. In earlier periods, Beethoven composed sonatas by using an instrument

whose register was 5 octaves (F1-f3). We can see how the limitation of narrow register

affected his composition of the piano sonata No.17 composed in 1801/1802. According

to History of Western Music published by Tokyo Shoseki Co. (2004), the second theme

in the exposition of the first movement has an ascending unison motion on the upper

voice and inner voice as shown in the figure 1. The theme is repeated in different key in

the recapitulation. It is noted that the upper voice does not rise as the inner voice does

but stays in d3 because the highest note of his piano forte was f3, otherwise the upper

voice should rise until b3 in figure 2. In 1803, Beethoven obtained a new pianoforte with

wider register 5 octaves and a perfect 5th (F1-c4) manufactured by Sebastian Erard

(1752 - 1831). With this pianoforte, he composed the piano sonata Op.57 with a wide

register in which he created heavier and more powerful sound as shown in the figure 3.

As mentioned above, the development of technology has improved music instruments,

what has enabled an extended musical representation.

Figure 1: L.V.Beethoven Piano Sonata No.17 in 1801/1802

9

Figure 2: L.V.Beethoven Piano Sonata No.17 in 1801/1802

Figure 3: L.V.Beethoven Piano Sonata NO.23 in 1806

Besides the development of the instruments, non-instrumental sounds have been

also employed in music over the past century due to the development of the recording

and radio systems. The first person that proposed the use non-instrumental sounds,

10

such as environmental noises, in music was Luigi Russolo (1883 - 1947) who was an

Italian futurist painter and composer. His manifesto The Art of Noises (Larte dei

rumori) was made in 1913. Russolo went on to create noise-generating instruments

called Intona rumori with which he performed noise music in public. Subsequently,

Edgard Varése (1883 - 1965) composed Ionisation (1929 - 1931), which is one of the first

pieces written using only percussion instruments. In this piece, Varése created a new

style which employed not only the sense of pitch or rhythm but also spatial position, the

characteristic timbre of percussion instruments, timbre associations created by means

of unconventional orchestration concepts, and the effective use of silence. This new

music style was truly original in those days. In the 1940s, Pierre Schaeffer(1910 - 1995)

and Pierre Henry(1927 - 2017) invented Musique concréte, a form of the electronic

music, which was made by means of cutting, looping, filtering, reversing, and changing

the speed of recorded sounds such as human voices, animal calls, variable environment

sounds, and instrumental sounds. They created musical motifs, gestures, rhythms,

or acoustics-spaces by using those recorded sounds and assembling them in a sort of

collage-art.

Electronishe Musik, a purely electronic music, employing electronic sound synthesis

and processes such as electronic filtering, frequency modulation, ring modulation, et

cetera, was developed at the studio of WDR in Cologne, Germany, around 1950. From

1953, the composer Karlheinz Stockhausen(1928 - 2007) began to be engaged in elec-

tronic music at the WDR studio and created one of the earlyst electronic music pieces

Studien I/II in 1954. In another early work of electronic music, Gesang der Jüglinge

(1955 - 1956), Stockhausen employed both electronic and recorded sounds such as a

boys voice. After this piece, the differences between Elektronishe Musik and Musique

concréte gradually faded away. Around that time, in 1947, Dennis Gabor(1900 - 1979)

developed the theory of Granular Synthesis from his research on how human beings com-

municate and hear. Dennis Gabor studied a method to treat every type of analog sound

by quantum physics and constructed a sprocketed optical recording system with which

he made some practical experiments in time compression and expansion, and pitch

shifting. Granular synthesis is a technique to modify time-stretching, pitch-shifting

and spatial organization of grains, which are audio data divided into short fragments

of 1-100ms, and synthesize sounds by assembling those modified grains. Each grain is

played individually or successively in order to create a soundscape or sound texture

11

consisting of a mass of granular sounds.

Iannis Xenakis was the first composer who employed Granular synthesis technique in

his musical work for chamber instruments such as Analogigue A-B for string orchestra

and tape. He created granular sounds using analog tone generators and tape splicing.

The composition method using such a grain of sounds are called as Micromontage

Composition[69].

The rise of the computer greatly expanded the possibility of applying these synthesis

techniques and electronic sounds on composition. The computer treats a sound as the

digital signals which can be recorded, played, manipulated, and synthesized and thus,

most of the tasks that used to be done by hand, such as, cutting and connecting tapes

and changing the rolling speed of the player became digitalized. The computers in

early era were hardly usable by composers because they were too large and expensive.

Later, with the innovation of the transistor, they became significantly compact. After

the appearance of the personal computers, the development of the electronic music has

been hugely accelerated.

1.2 Computer Technology and Music

Computers and the process of digitalization both are technologies that have, in the

last 50 years, entered in a productive feedback loop with artistic endeavors. In the

case of music, composers have been interested in applying computer technology to the

creation of new music from the early days of the computer. The research areas that usu-

ally profits from computers are, among others, those requiring the processing of great

amount of data. This generates at the same time the need for research of algorithms

for data processing. Composers are thereby able to investigate various new possibilities

in their compositional process with the support of computers, and this expands the

horizons of compositional activity. Vice versa, developments in computer technology

are stimulated by the demands that music creation makes upon it. To composer em-

ploying the support of computer s is identified under the name of Computer Assisted

Composition or Computer Aided Composition1. In this area, computers are used not

only to simulate compositional ideas, but composers also apply various algorithms in
1Computer Assisted Composition/Computer Aided Composition : OpenMusic[85] developed by IRCAM is one of the

most famous software developed for the use of Computer Assisted Composition. OpenMusic is a Visual Programming
Language which has a Graphic User Interface and creates programs by connecting each functional module together.
Another software which has a similar programming environment is Max/MSP[86] developed by Cycling74 which has
also a signal-processing and an image processing programming environments. A real-time audio synthesis software,
SuperColider[87] developed by James McCartney has been employed in varied algorithmic composition.

12

order to build new compositional systems more easily. For instance, algorithms such

as theory of progression, probability, signal processing, are possibly applied to create

musical series, fragments, structures, and timbres. Iannis Xenakis is widely known for

his use of algorithms in the composition of music. He used computers to implement,

among others, stochastic process to generate musical materials.

Later, the introduction of the personal computer and development of its performance

allowed a diversification in the forms of Computer Assisted Composition. Especially

recent progress of the personal computer with parallel processing technology by multi-

core processors2, speedy data communication, and rapid storage devices like Solid State

Drives, are making a remarkable improvement to provide higher performance for the

processing of great size of data. Due to such innovations in technology, the field of

Computer Assisted Composition has been recently granted the possibility of develop-

ment of programs demanding the process of increasing data set sizes, while at the same

time allowing for more direct and intuitive interactions with the user.

Our study of the development of Computer Assisted Composition program consists of

three main topics, that are, Audio analysis, Classification, and Synthesis. In this thesis,

these three topics are separated in distinct sections and are discussed independently.

Although the topics eventually focus on a common purpose, we will discuss the issue and

solutions of individual topics. In the subsequent section, we will suggest the application

of the program in music composition where we will discuss about the technology and

aesthetic issues.

2 Motivation

In this thesis, we will describe a program that supports music creation. The develop-

ment of our Computer Assisted Composition program demands an integration between

several theories and technologies from different fields such as signal processing, sig-

nal analysis, neural networks, database construction, information retrieval, perceptual

psychology, etc. Therefore, a comprehensive study covering those research fields is sig-

nificantly required. Furthermore, there are many problems and issues that need to be

addressed in order to employ the technology in instrumental music composition. In

order to discuss these issues, we will present how this research embodies some of the
2There are several frameworks for parallel processing such as OpenMP frameworks for multi-processing of multi-core

CPU, CUDA for GPU processing, and OpenCL frameworks which has both functions.

13

authors compositional ideas, as well as some of the solutions we have developed for

applying the technology in my chamber music composition works. The program has

been evolving by means of experimenting with it on the composition of concrete pieces,

and not on mere exercises. This means that the two activities, programming and com-

posing, have been closely intertwined. While the program might bring new ideas for

the musical composition, the composition processes require in turn new functions or

improvements of the program. Vice versa, original compositional ideas, might have

suggested new ways of using the program or of further developing it. We will also

describe some issues and problems that we confronted while using the program, and

point towards some possible solutions.

As the computer plays a larger role and produces more concrete and practical re-

sults in music composition, it might be criticized that it is the computer that creates

music and not the composer. However, computer programs are just processes gener-

ally designed to rapidly and efficiently perform a large number of tasks that normally

would demand a gigantic amount of time and endeavor if done by hand. For instance, a

tremendous amount of calculations are often required for applying mathematics theories

to the creation of music. The composition of serial music required composers to create

many different forms from each tone row, such as retrograde, inversion, and translation.

It is noteworthy that the use of computer calculates these algorithms at higher speed,

with more efficiency and with greater accuracy than handiwork. Composers also do not

have to dictate their music to scores and do not need to simulate ensemble pieces by

playing the piano or asking many musicians to play instruments if the computer can

generate their idea on a score and sound data. On the positive side, it could be argued

that the use of the computer often makes it possible to avoid personal habits or tenden-

cies of music creation and frequently can bring a new musical point of view. What we

especially expect the benefit of using the computer to be that the computer can bring

us a kind of objective sight in order to create a musical idea. Even in the case that the

computer shows concrete and practical results to composers, a piece finally depends on

how the composer develops these musical materials or fragments. The important thing

is that the musical materials produced by computer programs can widen the musical

view of the composer, and offer a chance to create the new musical materials such as

sound texture, timbres, rhythms, and gestures. However, the computer itself does not

compose music automatically.

14

3 Structure of this thesis

As our research topic covers a diverse area of research fields, we decided to discuss

them in distinct sections independently. Their introductions, related works, and dis-

cussions will be given in each section instead of presenting a comprehensive survey in

this preceding section.

This thesis consists of six sections as follows.

Audio Analysis Various audio analysis algorithms which extract the descriptive feature

of the audio data are described. Some advanced algorithms adjusting the characteristics

of the audio data to be familiar with our perception are also discussed with some

examples.

Audio Segmentation/Decomposition The Segmentation and Decomposition section can

be seen as a part of the Audio Analysis section, but here, we focus on various algo-

rithms for audio separation in time sequences and polyphonic structures. Some features

extracted by the spectral analysis are applied.

Classification The Classification or Clustering contains the theories and mathematical

models which organize a tremendous amount of data for an efficient Music Information

Retrieval including some tips dealing with the audio segments and fragments separated

in the previous section.

Synthesis We discuss the various synthesis techniques employed in our program. Here,

we will also present the survey of the related research and the synthesis techniques

to our topic including the Concatenative Sound Synthesis which is one of the most

fundamental techniques of our synthesis program. We will present basic to advanced

algorithms specified for producing particular sound results.

GUI The GUI (Graphic User Interface) section introduces the GUI of our synthesis

program developed in three different platforms, Max, Web application, and Cocoa

application for MacOS.

15

Application In this section, we will introduce the actual application of our Computer

Assisted Composition program through its use in two of the author’s works composed

using the results of our research.

16

Part II

Audio Analysis

4 Introduction

In this section, we introduce various algorithms for audio analysis, namely, FFT-based

analysis, feature extraction, audio segmentation, and audio decomposition, which will

be used throughout this thesis. Our aim here is to present a list of related algorithms

and mathematical models. We also summarize our experiences with improvements to

the algorithms, but will provide a more elaborate discussion with our conceptional ideas

of the Computer Assisted Composition in other sections such as the Classification and

Synthesis. Therefore, we will compile this section as a sort of dictionary for digital

signal processing(DSP) methods for the entire thesis.

Audio analysis is the primary topic of our study. After we collect a corpus of sounds,

we first need to analyze them in order to extract a set of features representing the char-

acteristics of the audio signals. These results influence significantly the audio identifica-

tion, classification, and eventually, the synthesis phases. Since there is no omnipotent

algorithm to extract a set of features, we will discuss both strengths and weaknesses

of diverse algorithms, and simultaneously, we will propose some possible improvements

and applications for our audio analysis program.

There are various descriptive features representing the characteristics of audio sig-

nals. For instance, the magnitude feature represents a dynamics of a sound, funda-

mental pitch represents a frequency of a note, and centroid represents a brightness of

a timbre. Since each feature describes only one aspect of a sound, we need to combine

several descriptive features in order to identify the characteristics of the audio signals.

The combinations need to be carefully considered depending on the type of sound and

our purpose. For instance, a piano sound can sufficiently be represented by a com-

bination of magnitude, centroid, and pitch, because it consists of a harmonic sound

structure and fits in a chromatic pitch system. In contrast, a percussive sound such as

cymbal or bell, comprise of inharmonic sound structure and has less sense of a pitch

and thus, it can be represented by magnitude, centroid, and noisiness. It is significant

to investigate what descriptive features can represent what kind of property of a sound

and it is important to find the effective combinations. It is also significant to analyze

17

time structures and polyphonic constituents of the audio signals in order to reveal the

sound properties.

All algorithms and graphs presented in this section were experimented and produced

by the programs we have developed in the present study. We acknowledge that we have

used the Discrete Fourier Transform(DFT) function provided by vDSP Acceleration

frameworks3 and fft1d function by T. Oura and H. Kawashima4 which is the most

primary function in the audio analysis. Besides DFT function, all other algorithms

were developed in C and Swift by ourselves. It is known that the DSP libraries such

as Matlab5, numpy(Python)6, and Julia7 enable us to develop complex FFT-based

analysis program without primal coding tasks and even without deep expertise for the

DSP analysis. However, our goal of the study includes developing the original analysis

program and adjust and implement their specific properties for our synthesis program

which is aimed to support the chamber music composition. Therefore, we did not

use the above-mentioned isolated analysis packages, but tackled diverse mathematical

problems and made the source codes from a primal level.

4.1 High and Low level criteria

There are two levels in the analysis criteria of audio data; the low-level provided by

computer algorithms and the high-level provided by human evaluation. The low-level

analysis is a sort of signal analysis to which is possible to give regular criteria that are

in a sense objective that is, not influenced by human evaluations. These analysis values

are one of the most significant criteria for the computer to appropriately organize a vast

amount of data. However, they are not always suited to human perceptions. The use of

high-level criteria can interpolate the sense of human perceptions into this drawback of

the low-level analysis. Examples of high-level criteria are: how the sound is created (id-

iophones, membranophones, chordophones, etc.), the material of the instrument (wood,

metal, paper, etc.), or personal impression of the generated sound1

Another kind of high-level criteria includes emotional expressions such as happiness,

sadness, anger, solemnity, tenderness, fear, etc. These have also been implemented in
3https://developer.apple.com/documentation/accelerate/vdsp
4http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html
5https://www.mathworks.com/products/matlab.html
6http://www.numpy.org
7https://julialang.org
1In the case of CHARTR [?], speech synthesis program, human evaluations are applied to detect the speech rhythms

and intonations.

18

the development of computer programs to control some parameters or musical events

while the music is playing [2]. The sound evaluations using emotional expressions have

great possibilities to get analysis information which is very close to human perceptions.

On the other hand, the sense of human expression differs depending on persons, na-

tionalities, genders, cultures, races, and so on. Some of the high-level criteria such as

the ways of generating sounds, rhythms or intonations have relatively universal validity.

However, the use of human expressions still presents many unsolved issues. We employ

only low-level criteria. The use of high-level criteria is part of our future research plans.

5 Fourier Transform Analysis

In the first step of the audio analysis, we transform the given audio signal to the

frequency domain by means of the Fourier transform. The Fourier Transform is the

most primal algorithm for the audio analysis we will discuss, and in fact, it is employed

in a fundamental process of the most of our analysis algorithms. The most basic purpose

of the analysis is to represent the given signal by a sum of weighted sinusoidal functions

which are called spectral components. The resulting decomposition unfolds a snapshot

of the density of spectral components whose temporal variation is averaged over time.

This frequency density is also called a spectrum. The spectrum becomes a key to

describe the various characteristics of the sound as well as to reveal its structures.

Here, we will introduce variable Fourier Transform functions and the representation

ways of the resultant spectra.

5.1 Discrete Fourier Transform(DFT)

Let kth Fourier Coefficient X(k) consisting of real and imaginary values, and then it

is calculated by Discrete Fourier Transform (DFT) with the following formula.

X(k) =
N−1∑

n=0

x(n)exp(−2πikn/N) (1)

where x(n) denotes a sequence of wave data (0 ≤ n < N) and N denotes FFT frame

size. With regard to these parameters, the Inverse FFT is given by

x(n) =
1

N

N−1∑

k=0

X(k)exp(2πikn/N) (2)

19

We describe the DFT function with the symbol F and then 1 is represented by the

following,

X(k) = F [x(n)] (0 ≤ n < N) (3)

The inverse Fourier Transform, the formula 2 is represented by following,

x(n) = iF [X(k)] (0 ≤ k < N) (4)

Where F [] is the DFT and iF [] is the iDFT function respectively.

5.2 Short-Time Fourier Transform(STFT)

The Fourier Transform yields spectral information of the signal that is averaged over the

entire time domain. While the signal represents the information across time, the Fourier

transform represents the information across frequency, and the time domain information

becomes hidden. When the given signal is perfectly periodic like a sine-wave, the hidden

time information is not problematic because the signal does not change through time.

However, the actual signal usually varies in time. To address this issue, Dennis Gabor

introduced the short-time Fourier transform (STFT) in 1946, which performs a small

section of the signal instead of the entire signal. The small section of the FFT frame is

the processing unit of the STFT, and its size is called as the FFT frame size or window

size. Because a sequence of the signal is segmented arbitrarily into the frame size, the

edges of the segments are usually nonzero. These signal discontinuities produce some

errors in the transform. Therefore, the original signal is multiplied by the window

function to yield a windowed signal whose edges fade out into zero.

The figures (4, 5, 6) illustrate the process of the windowing. The figure 4 is the

Hanning window which is calculated by the formula 6, and the figure 5 illustrates the

original signal whose edges are nonzero. The figure 6 is the windowed signal. As seen

in the figure 6, some materials near the edges are missing in the windowed signal. To

compensate for this, the STFT is performed with the overlap method described in the

section 5.7 (Overlap Method).

20

Figure 4: Hanning window function

Figure 5: Original signal

Figure 6: Windowed signal

The windowed short-Time Fourier Transform is defined as following. Let kth Fourier

Coefficient χ(m, k)(0 ≤ k < N/2), where N denotes window size, for the mth time

frame and then

χ(m, k) :=
N−1∑

n=0

x(n+mH)w(n)exp(−2πikn/N) (5)

where n is (0 ≤ n < N), k is (0 ≤ k < N) and w(n) denotes window function (in

this case, we use the hanning window function.). mth frame has K + 1 size spectral

vector. H ∈ N denotes hop size. The hanning window function w(n) is calculated as

follows.

w(n) = 0.5(1− cos(
2πn

N − 1
)) (6)

5.3 Discrete Cosine Transform(DCT)

Transforms with cosine and sine functions are also useful for the signal analysis. Here

we focus on the cosine transform which is more relevant to our research topic. The

discrete cosine transform (DCT), firstly introduced by Ahmed, Nataraja, and Rao[7],

21

uses cosine waves in order to transofrm the signal into the frequency domain by means

of summing the signal and cosine functions at different frequencies. While the DFT

uses both real and imaginary numbers, the DCT uses an only real number and extract

the periodicity of the data series. As the DCT compresses the significant information

of the signal in its lower coefficients, it is applied to data compression areas such as in

audio (e.g., MP3) and images (e.g., JPEG).

There are several version of the DCT formula, and the most common DCT function

is the one-dimensional transform of length N as follows.

C(k) =
2

N

N−1∑

x=0

x(n)cos

[
(2x+ 1)kπ

2N

]
(0 < k < N) (7)

where C(k) is the kth DCT coefficient and x(n) is the targeted signal.

As the DCT compresses the periodic information of the given signal in the lower

order cepstrum coefficients which describe the overall spectral shape. In contrast, the

pitch and detailed spectral structure are represented in higher coefficients[18]. The

zeroth coefficient is usually discarded, as it is a function of the channel gain[18].

5.4 Linear Power Spectrum

The linear power spectrum of the given signal represents a distribution of power into

frequency components. In this representation, both power and frequency components

consist of linear numbers, and which means, they are not scaled or mapped by specific

mathematical models. The STFT formula 5 yields complex value r and i, and the linear

power spectrum µ for each mth frame is represented in the formula 8 where k is the

index number of FFT bin in the linear frequency domain.

µk =
√

r2k + i2k (0 ≤ k < N/2) (8)

Where N/2 is the Nyquist frequency. The linear power spectrum yields graphs shown

in figure 7 and 9, where three sin waves consisting of 440Hz, 880Hz, and 1760Hz and a

piano sound in C3 are plotted respectively.

5.5 Log Power Spectrum

The log power spectrum is log-scaled linear power spectrum which represents the mag-

nitude of each frequency component by the following formula.

22

log(µk) = 20log10(
√
r2k + i2k) (0 ≤ k < N/2) (9)

According to the Weber-Fechner law, some of the human senses operate in a loga-

rithmic fashion. Some measurements, especially the magnitudes with a large range of

quantities are represented by the logarithmic scale such as earthquake, loudness, and

pitch. In music, the logarithmic scale is considered as a criterion which is closer to

the human auditory system than the linear one. It is also useful to extract the subtle

structure of the spectrum. In fact, the log-scaled power spectrum is more often used in

speech recognition to investigate the formant and to detect vowels and consonants(see

sections 5.9 and 6.8).

Figures 7 and 8 show the linear power spectrum and the log power spectrum for the

signal consisting of three sin waves; 440Hz, 880Hz, and 1760Hz. The figure 9 and 10

are for a piano in C3. The linear power spectrum has only a few peaks prominently

in the lower frequency bands. Other minor peaks, especially in the higher frequency

bands, are very weak and the form of the spectrum is spiky. In contrast, the log power

spectrum has more peaks in entire frequency bands, and this enables to represent the

more fine form of the spectrum which characterizes the sound.

Three sinwaves 440Hz, 880Hz, 1760Hz.

Figure 7: Linear-Power spectrum Figure 8: Log-Power Spectrum

23

Piano sound in C3.

Figure 9: Linear Power spectrum Figure 10: Log Power Spectrum

5.6 Time-Frequency Localization

The FFT analysis represents the signal in two domains; time and frequency. While

it can produce adequate results for deterministic and stationary signals, it can not

sufficiently represent time-varying signals or non-stationary signals. To realize the time

localization, the STFT uses a time-window function to segment the signal into chunks”

of small frames, and it operates the transform on those individual frames. As the FFT

frame is the smallest unit which segments the audio data, this frame size directly affects

the resolution of the time localization. The smaller size of FFT frame can follow smaller

changes of audio data through time. However, it has lower resolution in the frequency

localization and especially, a profound deficiency in the low-frequency band. On the

other hand, the longer size produces better frequency localization, but it is not capable

of tracking detailed events occurring in time. In our study, we use the FFT frame

sizes from 512 samples (ca. 11.6ms. at a sample rate of 44.1kHz) to 16384 samples

(ca.185.8ms) depending on the analysis methods and the targeted sound qualities.

The figure 11 illustrates the relationship between time and frequency localization.

The vertical line represents frequency where NF denotes the Nyquist Frequency. The

horizontal line represents time in samples. Two bars illustrate the time-frequency reso-

lutions of the STFT analysis with different frame sizes where the left bar is a frame size

of 512 samples, and the right bar is a frame size of 4096 samples. The vertical lattice

and gradation colors represent the resolution in the frequency localization.

While a certain frame size is imperative in order to obtain the sufficient frequency

resolution, it is equally important to track quick sound changes through time. To

tackle this contradictory problem, we employ overlap method where each FFT frames

24

are shifted across the signal by a fraction of the frame size (called as hop size) or another

solution would be to use the Multi-resolution FFT described in the section 5.8.

Figure 11: The relationship between time and frequency localization.

5.7 Overlap Method

Figure 12 shows two different analysis methods, the first method just divides an audio

data into chunks of FFT frame size, which can be called Normal method, and it makes

a chain of FFT frames. The overlap method also divides an audio data into FFT frame

size but twice. While the lower chain of Overlap method is the same to the Normal

method, the upper chain has been shifted a fraction of half FFT frame size. In the

figure 13, the first frame of both Normal method and Overlap method have a short

musical event with high dynamics in the first half. However, only one set of analysis

values are generated for each frame, which shows an average property of musical events

happening in the frame, and therefore it is not possible to represent the change of a

fast musical event in one single frame. On the other hand, the first shifted frame in the

Overlap method does not cover the short musical event but covers most of the quiet

part following it, which holds the later half of the first frame. In this case, the half

shifted frame in the Overlap method can interpolate the short musical event by the

combination of the first frame. Now, it is possible to detect the exact place of the first

short event by using two FFT frames; the first and the first shifted. In this method,

25

each unit can keep its longer length what allows for a more natural synthesis result. In

my program, the overlap method is used. Instead of overlapping two frames as in the

previous example, four overlaps are made, the shifting fraction is a quarter of the FFT

frame size, this naturally increases, even more, the resolution in time of the analysis.

As a general rule, it is necessary to have more overlaps of FFT frames when a longer

FFT frame size is used in order to detect faster changes of a sound. The caveat is that

higher overlap numbers bring more expensive processing to computers.

Figure 12: Normal method

Figure 13: Overlap method

5.8 Multi-resolution FFT analysis

The combination of the STFT and the overlap method can realize better results for

representing both frequency and time localizations. Our experiments and practices

show that these methods are especially useful when calculating a sum or deviation of

the entire spectrum such as magnitude and centroid. However, they are still insufficient

for extracting peaks or estimating a periodicity of the peaks, such as fundamental pitch

or spectral peaks estimations.

Another solution would be the Multi-resolution FFT analysis which properly se-

lects various frame sizes depending on the frequency components. Since it analyses a

particular frequency component using the most appropriate frame sizes, the time and

frequency localizations are not consistent throughout an analysis and as a result, it can

extract better frequency information from the signal. Due to the employment of the

26

inconsistent frame sizes, this method is not suitable to produce a spectrum.

We employed the Multi-resolution FFT in the fundamental pitch(f0) estimation. It

operates the analysis with a particular size of frame to estimate a transient f0. When

the accuracy of the f0 is suspect, it repeats the process using a different frame size

which is expected to produce a better result. The detailed process is discussed in the

section 6.7 (Multi-resolution Pitch estimation).

5.9 Cepstrum Analysis

Cepstrum analysis, which was firstly introduced by Bogert et. al.[15], is a form of

spectral analysis by the Fourier transform of the log magnitude spectrum of the input

waveform. The name of Cepstrum is an analogy of the name of ”spectrum” where the

first four letters are reversed. Similarly, other related words are also derived from the

same way such as, quefrency from frequency, rahmonic from harmonic, etc. This is one

of the most useful methods to investigate the spectral constitution by the concept of

homomorphic (i.e., linear in a generalized sense) mappings between algebraic groups

and vector spaces [14]. The Cepstrum is formed by taking the FFT or iFFT of the log

magnitude spectrum of a signal. The reason of why FFT and iFFT are interchangeable

is because one will just give you a reversed version of the other and thus, both are

equally valid for yielding the Cepstrum.

The Cepstrum c(τ) is defined by the following formula.

c(τ) := iF [log(|F [x(n)]|2)] (10)

where F denotes DFT function and x(n) is the signal in the time domain. |F [x(n)]|2

denotes the power spectrum of the signal. While the FFT is given in term of frequency,

the Cepstrum is given in term of the quefrency which represents pitch lag. The que-

frency is represented by the characteristics τ and the magnitude of c(τ) which is called

the gamnitude. The cepstral coefficients c(τ) describe the periodicity of the spectrum

of F [x(n)]2. When the spectrum consists of multiple regular peaks, it is found in the

cepstrum as the number of the coefficient where the peak occurs.

Now we give an example of the Cepstrum analysis which shows how the Cepstrum

coefficient is produced depending on the signal.

27

The six figures (figure 14 - 19) illustrate both spectra and Cepstra of an audio

data Cresc A4.wav which contains a clarinet sound played crescendo in A4 pitch. The

analysis is operated within the FFT frame size of 2048 samples, the overlap number

of two. The first three figures illustrate the analysis results of the 10th frame(at the

position of ca. 107 to 128ms.) and the second three are of the 100th frame(ca.1076

to 1097ms.) respectively. The clarinet sound starts from soft and pure sound qualities

and then gradually transitions to loud and slightly distorted sound.

The figure 14 illustrates the power spectrum of the 10th frame, and it yields fewer

peaks than the power spectrum of the 100th frame shown in the figure 17. The dis-

tinction between the 10th and the 100th frames are more obvious when we see the

log-magnitude power spectrums shown in the figure 15 and 18. Compared with the

10th frame, the 100th has more peaks and those of which are standing at the particular

interval, in other words, periodically. The distinction of the spectrums is remarkable in

the form of the Cepstrums shown in the figure 16 and 19. While the 10th frame have

indistinct peaks, the 100th frame have shaper and more prominent peaks, which are

marked by the arrows. The result indicates that the 100th frame has a bigger number

of the regular harmonic structure than the 10th frame.

In the Cepstrum, when the signal has regularly-spaced frequency partials, it appears

as peaks. However, the signals such as pure tone and inharmonic sound do not provide

any clear peaks.

The result of the 10th frame

Figure 14: Power spectrum
Figure 15: Log-scaled power
spectrum

Figure 16: Cepstrum

28

The result of the 100th frame

Figure 17: Power spectrum
Figure 18: Log-scaled power
spectrum Figure 19: Cepstrum

5.9.1 Liftering

The Liftering is the linear filtering of the log spectrum which separates the various

convolutional components, such as separating the vocal tract filter response from the

periodic excitation spectrum [14]. The liftering performs similar effects to the Adaptive

or Linear predictive coding(LPC) introduced by B.S. Atal in 1967 and the liftering is

employed to extract the formants, intensity, and fundamental frequency components

from the speech signal [16]. The algorithms are employed to realize the speech com-

pression and speech synthesis for telephone systems.

By applying a low-pass lifter to the Cepstrum, the spectrum envelope which is the

slowly varying curve of the spectrum is extracted. The spectral envelope represents

the resonance structure of the vocal tract which defines the vowel of the voice. This

property of the liftering is also applied to extract the musical instrument formants

which represent the character of the instrumental timbre. Therefore, the liftering is

also employed for musical instrument identification within the Mel-Frequency Cepstral

coefficient (MFCCs) [17] described in the section 6.8.

The figure 20 illustrates the log power spectrum of a sound of a human voice a and

the figure 21 illustrates its Cepstrum. The Cepstrum is liftered into two different low

quefrency components; the one has the first 50th components(figure 22) and the second

has the first 100th components(figure 23). The results of the inverse liftered Cepstra,

which are in the spectral domain, are illustrated in figure 24 and figure 25. The figures

show that the fewer quefrency components yield a smoother curve of the spectrum

which means the vocal tract is more roughly separated from the periodic excitation

spectrum. A bigger number of quefrency components can yield more complex and

29

detailed spectrum curve which is more similar to the original log power spectrum.

Spectrum and Cepstrum of a voice sepaking ”a”.

Figure 20: Log Power Spectrum Figure 21: Cepstrum

Liftered Cepstrums

Figure 22: First 50 components Figure 23: First 100 components

Spectrum envelope

Figure 24: First 50 components Figure 25: First 100 components

5.10 Log-Frequency Power Spectrum

Until here, we have introduced the spectral analysis with various scaled magnitude; the

linear and log-scaled magnitude.

30

Now we focus on scaling the frequency domain and discuss the linear-frequency

and the log-frequency power spectrum. The DFT yields the linear-frequency power

spectrum illustrating distributions of the spectral peaks in a constant frequency domain;

in Herz. As the spectral coefficients are not mapped efficiently to musical frequencies,

which are the ratio intervals called pitches, the frequency resolution is not considered

equally by the human perception.

We have already introduced the multi-resolution FFT analysis which realizes the

multiple frequency resolutions but the algorithm is not suitable to yield a log-spectrum.

The log-frequency power spectrum is, in contrast, an algorithm to yield a spectrum

whose frequency resolution is constant in pitches. The nice feature of the log-frequency

power spectrum is its increasing time resolution towards higher frequencies and which

resembles the situation in our auditory system [11] as seen in the figure 26. Furthermore,

the relative positions of the fundamental frequency and the n-th harmonic frequency

remain constant no matter how the fundamental frequency fluctuates and are an overall

parallel shift depending on the degree of fluctuation. This characteristic is useful for

analyzing the harmonic constitutions between different pitches and for extracting the

fundamental pitches discussed in the Specmurt analysis, section 5.11.

The log-frequency power spectrum is calculated by the wavelet transform or the

Constant Q Transform. Here we would like to introduce the Constant Q Transform.

Figure 26: The relation ship between time and frequency localization in Log-frequency spectrum.
The vertical lattice and gradation colors represent the resolution in frequency localization.

31

5.10.1 Constant Q Transform

The Constant Q Transform was introduced by J. C. Brown in 1991. It is a bank of

filters which uses a constant ratio of center frequency to resolution. In the Constant Q

Transform, the frequencies sampled by the DFT should be exponentially spaced and,

when the pitch resolution is quarter tone spacing, this gives a variable resolution of

(2
1
24 −1) ≃ 0.029 times frequency [10]. According to Judith C. Brown and B. Blankertz

[10] [11], the frequency fk is defined by the following formula,

fk = f0 · 2
k
b (k = 0, ...) (11)

where b denotes the number of filters per octave. When the resolution per octave

is defined as 24, this means quarter-tone spacing of the equal tempered scale, the

frequency of the kth spectral component is calculated by the following formula.

fk = (2
k
24)fmin (12)

where f will vary from appropriately chosen (minimal center frequency) to below

the Nyquist frequency which corresponds to the lowest frequency. Now, the bandwidth

of the filter for kth cq(constant Q)-bin, which corresponds to the FFT bins in the DFT,

is,

∆cq
k = fk+1 − fk = fk(2

1
24 − 1) (13)

and this yields the constant ratio of frequency to resolution Q as following,

Q =
fk
∆cq

k

= (2
1
24 − 1)−1 (14)

With regard to these parameters, the length of the window in samples at frequency

fk is defined as following formula,

N(k) = Q(
fs
fk

) (15)

where fs denotes the sampling rate. The number of cq-bin K ∈ Z is defined with

the pitch resolution b = 24 as following,

K := b · log2(fmax

fmin
) (16)

32

With regard to these parameters, and with the frequency range parameter (fmin,

fmax = 56Hz, 7604Hz), the bandwidth filterbank is illustrated as shown in the figure

27.

Figure 27: Constant Q Filterbank

Now the constant Q transform for kth spectral component is,

X(k) =
1

N(k)

N(k)−1∑

n=0

W (k, n)x(n)exp(−2πQin/N(k)) (17)

where the digital frequency of the kth component is 2πQ/N(k) and W (k, n) denotes

window function. The calculation of the Constant Q Transform defined by the formula

17 is very expensive and time-consuming. Judith Brown and Miller Puckette devised

an efficient algorithm of transforming a DFT into a Constant Q Transform using the

sparse matrix multiplication in the spectral domain in 1992[12] .

According to the B. Blankertz [11], the constant Q transform formula 17 is trans-

formed to the matrix multiplication row vector x as following,

xcq = x · T ∗ (18)

where (T ∈ N · K) and T ∗ the complex conjugate of the temporal kernel T =

(Tnk n < N, k < K)

Tnk :=

⎧
⎪⎨

⎪⎩

1
Nk

wNk[n]e2πQin/Nk if n < Nk

0 otherwise
(19)

eliminating small enough components of S := F [T] yields a sparse matrix.

From Parseval’s equation,

N−1∑

n=0

x[n]y[n]∗ =
1

N

N−1∑

n=0

xft[n]yft[n]∗ (20)

33

where xft and yft are the discrete Fourier transform x[n] and y[n], and yft[n]∗ is the

complex conjugate of yft[n][11], the Constant Q Transform formula 17 can be written

as following,

xcq[k] =
1

N

∑

n<N

xft[n]S∗
nk (21)

Now rewrite the formula 21 in matrix notation

xcq =
1

N
xft · S∗ (22)

As derived above, S is sparse matrix and therefore, xft · S∗ eliminates much calcu-

lation from x · T ∗ in the formula 18.

In the log frequency spectrum, the frequency resolution changes towards higher

frequencies which realize the constant pitch resolution. The remarkable difference be-

tween the linear frequency spectrum and the log frequency spectrum is the distance

between fundamental frequency and the n number of harmonic frequencies. The nth

harmonic of the linear frequency spectrum located integral number multiples of the

fundamental frequency and thus the distance changes exponentially. In contrast, the

nth harmonic of the log frequency spectrum located log2, log3 logn away from the fun-

damental frequency and the distance changes linearly. The figure 28 and 29 illustrates

the log frequency spectrum produced by the Constant Q Transform. The ∆a, ∆b, ∆c

represents the distance between neighboring harmonics in the piano sound in C3 and

similarly, ∆a‘, ∆b‘, ∆c‘ in the piano sound in C4. As seen in the figure 28 and 29, the

piano sounds in C3 and C4 have similar harmonic structures and therefore, the corre-

sponding harmonic distances in different pitches are ∆a ≃ ∆a‘, ∆b ≃ ∆b‘, ∆c ≃ ∆c‘.

It indicates that the harmonic structure is changed as the parallel shift depending on

the fundamental frequency.

34

Log Frequency Spectrum

Figure 28: Spectrum of Piano sound in C3 Figure 29: Spectrum of Piano sound in C4

We have done our own implementation of this efficient algorithm in C in order to

produce the log-frequency spectrum and this is used for the specmurt analysis discussed

in the next section.

The inverse Constant Q Transform is also studied by D. Fitzgerald et al., however,

the resultant signals are not as well practical as the one produced by the Inverse Fourier

Transform. He concluded that the inverse Constant Q Transform with his algorithms

are only valid for signals containing only pitched instruments, and the signals containing

broadband noise such as drum sounds will not be inverted correctly[13]. In our study,

we have not implemented the inverse Constant Q transform because we target various

kinds of sounds including percussive sounds in our analysis process.

5.11 Specmurt Analysis

The Specmurt, which was first introduced by Sagayama et. al. in 2003[20], is aimed

at estimating the fundamental frequency(f0) distribution of polyphonic music signals

under the assumption that all tones in the polyphonic music have relatively common

harmonic structure patterns. The name Specmurt was derived from the name of Cep-

strum. While the Cepstrum is the inverse Fourier transform of a log-scaled power

spectrum with the linear frequency, the specmurt is the inverse Fourier transform of a

linear power spectrum with log-scaled frequency [20].

As discussed in the section 5.10 Log Frequency Power Spectrum, the relative location

of f0 and harmonic frequencies are constant no matter how f0 changes and the harmon-

ics are shifted in parallel depending on the modification. Since musical instruments have

regular sound quality in the same register, they have similar harmonic structure pattern

35

as seen in the piano sound examples in the figure 28 and 29. Under proper conditions,

an instrumental sound with different pitches can be represented by the convolution of

fundamental frequencies and a common harmonic structure pattern. Conversely, the

f0 distribution is calculated by the deconvolution of spectrum and common harmonic

structure pattern.

The key to the successful analysis is the definition of a common harmonic pattern

which influences the resultant pitch distribution significantly. However, all constituent

sounds of a polyphonic sound do not necessarily have a common harmonic structure

in real polyphonic music, and furthermore, the structures might be varying over time.

To address this issue, Sagayama suggests an optimization algorithm in which calcu-

lating the best compromise common harmonic pattern to minimize the amplitudes of

subharmonics after deconvolution in the specmurt domain [20]. Hence the specmurt is

usually operated with an optimization algorithm, but we found that the employment

of the erroneous harmonic/overtone pattern has a significant potential to decompose a

targeted spectrum into the particular harmonic or overtone structures. We exploit this

possibility to develop an algorithm which decomposes a corpus of audio data into spe-

cific sound characteristics. Here, we only introduce the basic algorithm of the specmurt

analysis and discuss the further applications in the section 11 Decomposition.

According to Sagayama, the specmurt is defined as following. Firstly, a harmonic

structure pattern is represented by h(x), where x is a function of log-frequency and x = 0

represents a fundamental frequency, x = 1, 2...n represents 1st, 2ed nth harmonics

respectively, and h(0) = 1. The log frequency power spectrum u(x) consisting of multi

pitch signal is represented by the convolution of h(x) and fundamental pitch components

v(x)

v(x) = h(x) ∗ u(x) (23)

Since we already have a log frequency power spectrum tildeu(x), the fundamen-

tal pitch components v(x) are calculated by the deconvolution of harmonic structure

pattern h(x) and tildeu(x),

u(x) = h(x)−1 ∗ ṽ(x) (24)

The convolution becomes multiplication in the frequency domain by Fourier trans-

36

form, the formula can be written with U(y), H(y), Ṽ (y) that are the inverse Fourier-

transformed function of u(x), h(x) and v(x) as following,

U(y) =
Ṽ (y)

H(y)
(25)

where y denotes log-Fourier transformed log-frequency. Now u(x) can be obtained

by the Fourier transform of U(y)

u(x) = F [U(y)] (26)

The figure 30, 31 and 32 illustrate a targeted log frequency spectrum representing

piano C major harmony (C3-E3-G3), harmonic pattern and the resultant specmurt

respectively. We assume that the harmonic peaks of the piano sound are located in-

tegral number multiples (1, 2, 3, ..., n), and the magnitudes are in inverse proportion

(1, 1/2, 1/3, ..., 1/n) as seen in the figure 31. With the harmonic pattern, the specmurt

declines the target harmonic components and retains firm peaks representing the fun-

damental pitches C3, E3 and G3. The result of the specmurt analysis is significantly

affected by the initially defined harmonic pattern, and therefore, when the pattern is

not the adequate to the original harmonic structure of the target, the specmurt has sig-

nificant irregular peaks which are regarded as noise. The weak peaks seen in the entire

specmurt arise from this problem. Real-world sounds including musical instruments

consist of many irregular qualities. Since the harmonic structure is slightly different

depending on the register, it is impossible to estimate an exclusive harmonic pattern

satisfying all constituting notes. To address this problem, we use a noise reduction

and optimization processes in order to produce a better result which is discussed in the

section of Audio Decomposition.

37

Specmurt Analysis

Figure 30: Target Spectrum Figure 31: Common Harmonic
pattern

Figure 32: Result

6 Feature Extraction

The features or descriptors are a set of values which describes various qualities of a unit

of a signal such as loudness, pitch, and noisiness. Some high dimensional coefficients

such as MFCCs represent the shape of a spectrum which is capable of describing var-

ious aspects of timbre. Various features are calculated by means of spectral analysis

in which a time-varying signal is transformed to a static frequency domain. Therefore,

the features are calculated per each FFT frame and the time variant characteristics are

averaged over a frame. We exploit these features to identify and label characteristics

of signals. The time variant information is interpolated by the delta features between

adjacent frames. A sequence of features is a sort of very rough discrete temporal rep-

resentation. Besides employing an overlap method for the temporal representation,

we also exploit the delta and delta-delta features between neighboring frames or dif-

ferentiate coefficient in a sequence of frames which represent the trajectories of the

features over time. Here, diverse methods of feature extractions and characteristics

representations will be introduced.

6.1 Linear Power Spectrum

The Linear Power Spectrum is the most basic feature which is employed to calculate

various advanced features. The formula 5 yields complex value r and i. The following

formula yields power spectrum µ for each mth frame where k denotes FFT bin index.

µk =
√

r2k + i2k (0 ≤ k < N/2) (1)

38

6.2 Spectral Magnitude

With the formula 1, the magnitude of one FFT frame can be written as following.

Mm =
N/2∑

k=0

µk (2)

From our experiments, the descriptors showing a sum of linear power spectrum such

as the spectral magnitude is relatively less influenced by the frequency localization

problem. It is because of that, that descriptor does not describe the property of the

frequency information but the magnitude of the entire spectrum.

6.3 Spectral Centroid

The Spectral Centroid represents the static spectral distributions and has a connection

to the brightness of the signal, which is obtained by calculating a center of spectral

gravity. John M. Grey[24] concluded that the centroid is a better numeric representation

for most static spectral distributions than the median of a spectrum. If the value of the

centroid indicates high frequency, it means the sound data consisting of mainly higher

frequencies. The sound character tends to become more metallic when it has more

high-frequency components. The frequency of each FFT bin is represented as Fn, then

the centroid of the mth frame is represented as Cm, and then the equation of centroid

is written as following,

Cm =

N/2∑

k=0

(Fk · µk)

Mm
(3)

However, in the particular cases, the centroid is not able to describe an accurate

sound brightness measure by itself. The issue and a solution are discussed in the next

section.

6.4 Spectral Spread

It is not possible to get an accurate sound brightness measure by using only the spectral

centroid. It is because the centroid represents only the center of spectral gravity but

not the spectral distribution. For instance, figures 1 and 2 show spectrums of different

sound data. Figure 1 illustrates a big energy on the center, and other places have small

energy. On the other hand, 2 illustrates big energies on both sides, and the center has

39

small energy. Although both sound data have totally different characters, the position

of the spectral gravity centers is the same. Therefore, it is not possible to obtain the

appropriate measure of brightness by using only the centroid.

The spectral spread represents the distribution of the FFT bins in the spectrum. It

is calculated by multiplying the deviations between the magnitude of each FFT bin,

which value needs to be more than 0, and the spectral centroid previously obtained with

the formula 3. Thus, FFT bins having large magnitude and being far from the centroid

add big values to the sum, and vice versa. For example, the value of the spectral spread

for the figure 1 is much smaller than the figure 2. This means the combination of the

spectral centroid and the spectral spread represent more accurate spectral distribution

in various cases.

The spectral spread S is described as follows.

Two cases for the spectal centroid.

Figure 1: Figure 2:

In the following formula 4, the spectral spread is described with S

Sm =

N/2∑

k=0

(|Fk − Cm| · µk)

Mm
(4)

where Fk denotes the frequency of each FFT bin calculated by the following formula.

Fk =
SamplingRate

N
k (5)

6.5 Spectral Flatness

The spectral flatness is a criterion of the flatness of a spectrum. It represents a sort

of noisiness. For a given spectral magnitude, if the magnitudes of all FFT bins in a

frame are the same, the spectral flatness of the frame has a value of 1. For the same

40

given spectral magnitude, if there are differences in magnitude among FFT bins, then

the value of spectral flatness gets smaller as those differences get bigger. The value of

the spectral flatness is smallest for a pure tone, such as sine wave, and largest for white

noise. The first step to obtaining the spectral flatness, shown in formula 6, provides

a product of each FFT bin magnitude. The computing of square roots is operated as

the same number of times N which denotes FFT window size so that the result always

stays the same value when the magnitude of each FFT bin is the same, and the result

either increases or decreases when the magnitude of each FFT bin is different.

Pm = N/2

√√√√
N/2∏

k=0

(µk) (6)

6.6 Fundamental Pitch

In this section, we discuss the fundamental pitch f0 extraction, also referred as pitch

estimation/detection algorithms for monophonic music signal. The multi pitch esti-

mation for polyphonic music signal is discussed in the section IV. Simply saying, the

fundamental pitch corresponds to the periodicity or repetition rate of a waveform. In

the spectrum, the fundamental pitch indicates the lowest frequency of the constituent

of a periodic waveform. While young people, pure tones with frequencies between 20Hz

and 20kHz are audible, only sounds with repetition rates between about 30Hz and 5kHz

elicit a pitch percept that can be called musical and is strong enough to carry melody

as the ranges of most of the standard orchestral instruments are between 27.5Hz and

4186Hz [28].

6.6.1 Perception of Pitch

The above discussion may mislead that the fundamental pitch is an extracted peak

which is the lowest and, in many cases, the loudest in a spectrum. However, we have

complicated phenomena in our auditory system, and hence, we need to consider a

proper fundamental pitch estimation method which follows human perception. When

we deal with a fundamental pitch, there are two aspects to be considered; the notion

of frequency and the perception of pitch[25]. The former is perceived in the signal

which is the isolated sinusoid without overtones or with very few overtones. The latter

is in the signal from Real-world sounds such as music sounds consisting of harmonic

41

structures or rich overtones. In the spectral analysis, it is easier to estimate the accurate

fundamental pitch from sin-like waveforms or synthesized waves consisting of isolated

sinusoid than the sounds which have a rich spectrum. The rich spectrum, however,

reinforces the sensation of a pitch more than the sinusoid waves. The sensation is

related to the partials of the sound, and the more harmonically related the partials of

a tone are, the more distinct the perception of pitch[25].

The human auditory system must then be considered. One of the most interesting

controversies is about how the resolved and unresolved harmonics influence the percep-

tion of pitch. The resolved harmonics indicates the low-frequency harmonics which are

exclusively represented by the single auditory filter and that means, the lower harmonics

are separated out in the cochlea. The resolved harmonics has strong excitation pattern

and those of which are clearly observed in the first few harmonics. The unresolved

harmonics indicates the high-frequency harmonics which elicit complex waveforms that

reflect the interaction between other harmonics. The unresolved harmonics are not sep-

arated out in the cochlea. The threshold between resolved and unresolved harmonics

is not clear and depends on many factors such as the frequency of the fundamental

pitch[27][29].

For the resolved harmonics, no single auditory filter has unambiguous information

about the fundamental frequency of the signal[25], and a few resolved harmonics may

be heard as separated pitches especially by the trained people such as musicians. Most

studies suggest that this phenomenon is possible for harmonics up to number five to

eight and recent research suggests ten harmonics[30]. On the other side, unresolved

harmonics are influenced more easily by phase distortions produced by room acoustics,

and they can change the waveform of complex tones. In fact, many experiments have

shown that the low-numbered resolved harmonics elicit a much more salient, robust,

and accurate pitch than do high-numbered unresolved harmonics[26]. The Moore et al

also found that the ability to hear a harmonic out from a complex, or simply detect

that it was mistuned, was better for resolved than for unresolved harmonics, although

the absolute frequency of harmonic was also found to be important [29]. While the

resolved harmonics elicit the robust perception of fundamental pitch candidates, the

unresolved harmonics enable to estimate an exclusive fundamental pitch in a complex

tone.

42

6.6.2 Pitch estimation algorithms

There are some pitch detection algorithms such as zero-crossing rate, Cepstrum, and

Autocorrelation. The zero-crossing rate is one of the most simple algorithms which

estimates the fundamental pitch by the number of times the signal crosses the zero per

unit time. The algorithm gives good results for sinusoid waveforms but provides easily

erroneous results when the improper zero-crossing caused by modulation effects by high-

frequency components. Therefore, the zero-crossing algorithm needs to operate with an

initial low-pass filter in order to remove high-frequency components. The filter cut-off

frequency should be carefully chosen depending on the quality of the targeted sound

since high-frequency components affect our pitch sensation as discussed in the previous

section. The zero-crossing rate algorithm is susceptible to noise and fluctuations in

instantaneous frequency.

In our case, the targeted sounds to be analyzed are diverse. The sounds may be

music sounds, speech sounds, environment sounds or oscillators and they may have

monophonic or polyphonic structures. It is also important to detect whether the signal

has periodic wave structure or not. For instance, some idiophonic sounds or pink noise

are not meaningfuly described a pitch but rather suitable for spectral centroid discussed

in the section 6.3. Therefore, we focus on searching the periodicity of a spectrum itself

which is formulated by the harmonic or overtone structures. When the targeted sounds

have sufficient sensation of a pitch, it should have harmonic or overtone series which are

integral number multiples of the fundamental pitch. Otherwise, with a small series, we

may hear it as multiple pitches as discussed in the section 6.6.1, and in contrast, with

a large series, we may hear it as very complex polyphonic sound, percussive sound, or

noise. We employed Cepstrum(section 5.9) and Autocorrelation algorithms. When the

target consists of multiple complex tones and is considered as a polyphonic sound, we

decompose it into multiple voices as discussed in the section IV, Decomposition.

6.6.3 Pitch Estimation by Autocorrelation

The Autocorrelation is a mathematical representation of the similarity between a time

series data and a delayed version of itself over time. The correlation is the result

of a measure of similarity between two signals calculated by a function of a time-lag

between the beginnings of the two-time series. The Autocorrelation is the correlation

43

between the same time series, but one is shifted over successive time intervals. The

Autocorrelation is also known as the sliding inner product[6]. When the time lag is

zero, the result of the Autocorrelation gives significant high peak which shows the

exact similarity and then the similarity decreases as the time lag increases. When the

signal has a regular periodic wave over the entire series, then the Autocorrelation gives

some peaks at the particular time lag index. The highest peak, except around zero

indices, is expected to indicate the fundamental pitch.

The advantage of this algorithm is its better performance in more general sound

qualities and its immunity to noise[32][34] compared with the Cepstrum. Cheveigne

and Kawahara developed the YIN system based on the Autocorrelation to prevent

errors by using several features[33].

For signal f(ω), Autocorrelation function rt(τ) is defined as following formula.

rt(τ) =

∫ ∞

−∞
f(ω)f(ω − τ)dω (−∞ < τ <∞) (7)

Where τ is a lag from the starting time t. Consequently, the above formula is

represented in the discrete domain as following.

Autocorrelation function (ACF)

For signal x, the first is infinitive discrete function and the second is finite discrete

function.

rt(τ) =
∞∑

j=−∞

xjxj+τ (8)

rt(τ) =
t+W−1∑

j=t

xjxj+τ (9)

Where τ is a lag from the starting time t, where W is the initial window size. Alan de

Chaveigne and Hideki Kawahara found the advanced formula, where the correlation is

calculated by square distance instead of convolution[33], which is named YIN as follows,

Square difference function (SDF)

dt(τ) =
t+W−1∑

j=t

(xj − xj+τ)
2 (10)

Norbert Wiener and Aleksandr Khinchin proved and formulated theWiener-Khinchin

theorem where the Autocorrelation is calculated by the inverse Fourier transform of the

power spectrum. This formula realizes an efficient calculation of the Autocorrelation.

44

Wiener-Khinchin theorem

∫ ∞

−∞
ejτωf(ω)dω (−∞ < τ <∞) (11)

and then, the above formula is represented in the discrete domain as follows.

rt = iF [F [mi]], (0 ≤ i < I) (12)

Where F [] is the forward DFT function and iF [] is the inverse DFT function. The

result of the Autocorrelation shows multiple peaks, and the first peak represents the

similarity of time-lag zero which is the magnitude of the entire data series. The funda-

mental peak is found on the coefficient index of the highest peak f except the time-lag

zero. The index number is translated to Hz by the following formula.

note = Samplingrate/f (13)

6.6.4 Pitch Estimation by Cepstrum

The Cepstrum is another option to estimate the fundamental pitch. The Cepstrum

has an advantage over the Autocorrelation for speech analysis[32]. The Autocorrela-

tion function convolves the vocal source and tract and produces multiple broad peaks

standing over several indices. Due to the formants components, the Autocorrelation

provides unnecessary peaks in the result. In contrast, the Cepstrum separates the for-

mants and frequency components by filtering effect, and thus, the obtained peaks are

spiky and not modulated by the vocal sources. It is easier to extract a particular in-

dex of the peak in the Cepstrum domain which realizes accurate fundamental pitch

estimation[32][34], and this effect appear remarkably in speech signals.

Figures 3 and 4 illustrate the comparison between the Autocorrelation and Cep-

strum. The arrows indicate the peak which corresponds to the fundamental pitch. We

can observe rougher fluctuations in the entire figure of the Autocorrelation and flatter

peaks in the Cepstrum. In the enlarged view, figure 5 and 6, the Cepstrum has more

spiky peak than the Autocorrelation. The narrower peak can point more accurate and

undeniably frequency which possibly indicates a more precise fundamental pitch.

45

Figure 3: Autocorrelation

Figure 4: Cepstrum

Enlarged view of the figure 3 and the figure 4. The arrows show the range of peaks.

Figure 5: Cepstrum Function Figure 6: Autocorrelation Function

6.7 Multi-resolution Pitch estimation

Both the Cepstrum and Autocorrelation have different strengths and weaknesses de-

pending on the quality of the targeted sound. However, they have the same issue in the

simultaneous representation of the frequency and time localizations. The Cepstrum is

calculated in a unit of the FFT frame size, and the Autocorrelation is done in a window

size or within the Wiener-Khinchin theorem, in the FFT frame size. With a short unit

size, they yield a lower frequency resolution, and the accuracy of the pitch estimation

decreases particularly in the low-frequency band. While a bigger frame size improves

the frequency resolution, it reduces the quality of the time localization significantly.

To address this problem, we employed the multi-resolution FFT(in the section5.8) to

complement the qualities of both the frequency and time localization. The figures 7 to

46

11 are the waveform of an octave progression from A-1(ca.55Hz) to A5(3,520Hz) played

by the piano tuned in an equal temperament (A=440Hz). The black lines illustrate the

sequence of the estimated fundamental pitches calculated by the Autocorrelation with

different FFT frame sizes from 1024 to 16384samples. The shorter FFT frame sizes

yield more incorrect result particularly in the lower frequency bands. The worst error

is observed in the FFT frame size of 1024 samples shown in the figure 7. In contrast, the

longer FFT frame sizes yield better results, but they involve worse time localizations.

Figure 7: Autocorrelation FFT size = 1024

Figure 8: Autocorrelation FFT size = 2048

Figure 9: Autocorrelation FFT size = 4096

Figure 10: Autocorrelation FFT size = 8192

47

Figure 11: Autocorrelation FFT size = 16384

We developed our pitch estimation system under the assumption that the longer

frame size can estimate a fundamental pitch more accurately and it can be employed

as a guideline to select the best suitable shorter frame sizes. We made a rule which

constrains the selection of a frame size in a particular frequency ranges in order to

realize an efficient pitch estimation for the given signal as shown in the table 6.7. At

first, the system estimates a rough frequency with the longest frame size. Subsequently,

it evaluates the result whether the size is adequate or not. If the frequency is beyond the

threshold, the estimation is operated again with one smaller frame size in order to gain

the resolution in the time domain as shown in the figure 12. The process is repeated

until the best efficient frame size is selected. This system is also able to detect the

sound events occurring for a short moment. At last, the system produces a sequence of

fundamental pitches estimated by different frame sizes. Figure 12 shows the process of

our pitch estimation system and figure 13 illustrates the result. We can observe better

fundamental pitch representation in both frequency and time localizations. Some errors

occur nearby pitch changing points due to the hammer noise.

Table 1: Relationship between FFT frame size and estimated frequency
FFT frame size Threshold frequency (Hz) MIDI
16384 0 ∼ 30.87 0 ∼ 23
8192 30.87 ∼ 41.20 23 ∼ 28
4096 41.20 ∼ 61.74 28 ∼ 35
2048 61.74 ∼ 110.0 35 ∼ 45
1024 110.0 ∼ 45 ∼

48

Figure 12: Multi-Resolution Pitch Estimation System

Figure 13: Pitch estimation by the multi-resolution system

6.8 Mel-Frequency Cepstral coefficients

The Mel-frequency Cepstral Coefficients (MFCCs) are rough representation of the shape

of the spectral envelope, and they capture timbral properties of the sound. The primal

idea of the MFCCs is introduced by Bridle and Brown in 1974 and is developed by Mer-

melstein in 1976[35]. The rough spectral envelope suggests the primal characteristics

of the timbre and which is represented by a small number of low quefrency components

in the cepstral domain. A small number of coefficients is easily manageable which is

able to reduce computations significantly. It is one of the most commonly used features

in the area of speech analysis, automatic speech recognition, and speech synthesis[36],

and is also applied for musical instrument identification systems[17].

The calculation process of the MFCCs consists of several phases. The first step is

to transform the given audio signal to the frequency domain using STFT(formula 5.

49

Secondly, the spectrum is transformed to the Mel-frequency spectrum by means of

N number of triangular band-pass filters whose center frequencies are calculated by

Mel-scale as following formula.

Mel(f) = 2595log10(1 +
f

700
) (14)

Where f denotes the linear frequency domain. The generated filter banks with the

channel number = 27 are illustrated in the figure 14.

The spectrum obtained in the first step is multiplied by the Mel-filter bank and

summed the values at each channel which yields the Mel frequency coefficients. The

Mel-frequency spectrum Xmeli(n) where i denotes frame index, n is sample index, h(n)

is window (i.e. hanning window in our case), and xi(n) is the signal, is calculated by

the following formula.

Xmeli(n) =
N∑

n=1

xi(n)h(n)e
−j2πkn/N (15)

Figure 14: Mel-frequency filter bank

Finally, the Mel frequency coefficients are scaled to logarithmic power, and then,

the log-power Mel frequency coefficients are transposed to the cepstrum domain by

means of cosine transform (see section 5.3) which yields the Mel-frequency cepstrum

coefficients(MFCCs) as follows.

MFCCsi =

√
2

L

L∑

l=1

logm(l)cos

[(
l − 1

2

)
iπ

L

]
(L = 27) (16)

Where L denotes the number of a Mel-filter bank.

The above formula produces L number of MFCCs representing the spectrum enve-

lope. We extract the first twelve MFCCs which are the most determinant coefficients

50

of the envelope. A larger number of MFCCs represents a more detailed envelope, and

less represent a rougher one. The mechanism of this algorithm has been already de-

scribed in the section 5.9.1 the Liftering. In any cases, it is important to be aware that

the lower MFCCs have more significant information of the timbral characters than the

higher ones.

In order to reveal sufficiently the spectral envelope, the high-frequency components

of the original spectrum are slightly emphasized in order to regulate the spectrum

envelope and compensate for the fast decay of sound components. The filter is defined

as follows.

x′(i) = x(i)− p · x(i− 1) (p = 0.97)(0 ≤ i < N) (17)

The figure 15 illustrates the whole process of the MFCCs calculation.

Figure 15: MFCCs process

6.9 Deltas and Delta-Deltas

The delta-feature or differential feature represents the range of how the features change

between adjacent frames. While the spectral analysis reveals a snapshot of the signal

varying in time, the delta-features can interpolate the discrete features over time. Let

a sequence of optimal features be a(n), the delta feature is calculated as follows.

∆a(n) = |a(n)− a(n+ 1)| (0 ≤ n < N) (18)

Delta of the delta features or acceleration features are calculated in the same way

but using ∆a(n) instead of a(n).

51

6.9.1 Delta MFCCs

The transitional properties of the MFCCs are calculated by summing all delta coeffi-

cients as follows,

∆MFCCs(n) =

∑L
l=1 |al(n)− al(n− 1)|

L
(0 < n < N) (19)

and the delta-delta MFCCs is also calculated by the same way using ∆MFCCs(n).

6.10 Discussion

We have just introduced various statistical spectral analysis methods. The section 5,

which is the first half of this part, was concentrated on describing the DFT functions

and the spectrum representations. These algorithms are the fundamentals of our ad-

vanced audio analysis programs which will be discussed in the further sections. We have

discussed the representation method of both frequency and time localization through-

out this section. In the spectral analysis, these two properties contradict each other,

and thus, it is significant to consider carefully selecting the best efficient algorithms

according to a given sound quality.

In section 6, a more practical audio analysis method, the feature extraction has been

discussed with various applications of the DFT functions. Some features are scaled or

interpolated by different mathematical models in order to adapt their properties to

more familiar formats to the human perception. As the extraction process operates

on the given signals in a unit of the FFT frame size, the characteristics of the signals

are averaged over a short time. Therefore, they are represented in a discrete manner,

that is, the descriptive representation is done for the individually separate and distinct

frame. We proposed some algorithms such as overlap method and delta-features in

order to interpolate the statistic features between adjacent frames and to represent

the time-varying spectral components. Nevertheless, the time-varying representation is

still limited, and this is a significant theme for developing advanced algorithms in audio

segmentation and decomposition which will be discussed in the next sections.

The extracted features are employed in a concatenation in order to describe the

signal transition in time. For instance, the series of MFCCs are assembled in a Markov

Chain or Hidden Markov Chain in order to identify words or any meaningful sentences

in the speech recognition[35]. As an individual phoneme is separated into a frame

52

or a few successive frames, its concatenation can represent a segment of speech. For

another example, N. Campbell et al. developed a speech re-sequencing synthesis system

by concatenating a chunk of short segmented recordings of human speeches in order

to produce naturally synthesized voices[4]. In the next section, we will handle the

descriptive features as a data series and explore the algorithms which reveal the sound

structures.

53

Part III

Audio Segmentation

7 Introduction

In this section, we will describe segmentation methods for audio signals in time. The

STFT itself already operates the segmentation task as it divides a given signal into a

short audio unit of FFT frame size. However, this segmentation is done expediently in

order to realize efficient computation and the segments are often too short to represent

audibly meaningful units. Real-world sounds usually comprise various temporal struc-

tures. For instance, musical fragments consist of melodies, gestures, and rhythmical

patterns. The environment sounds also comprise time variable components. While a

human being has the ability to distinguish easily the individual sound events occurring

through time, it is quite difficult to build computational models to realize this process.

The goal of segmentation in the audio analysis is to find the boundaries of individual

sound events or patterns and to extract the isolated sound sources. A sound event

or music event often shares its boundaries with the neighboring events or silence, and

thus, the resonance of their sounds is often complicatedly mixed, and are inseparable by

the algorithms introduced in this section. This problem overlaps the issue of the audio

decomposition which will be discussed later, and here, we concentrate on describing the

segmentation of the time sequences, not polyphonic structures.

In our research, sound event extraction is one of the primary subjects. The deter-

mination of sound events instead of chunks of arbitrarily segmented units is beneficial

to obtain for chamber music composition. The segments divided by the STFT involve

abrupt discontinuity because they split on the middle of sound events. In contrast, the

longer and isolated sound units have less sense of the discontinuity and it can avoid pro-

ducing noisy and mosaic-like synthesis results. This process is expected to synthesize

audibly natural and practical musical sources and also simplifies the audio representa-

tions. Moreover, it is capable to operate analysis, labeling, and manipulations phases

more efficiently than processing the original signals. We estimate the boundaries of mu-

sical events according to a criterion representing a musical change which is calculated

by the descriptive features of the signals. This is called as the novelty-based segmenta-

tion. The audio novelty can be measured by various features. For example, magnitude

54

indicates the boundary of sound changes in dynamics, MFCCs are good indicators for

changes in timbre or instrumentation, and chroma-based features such as MIDI pitch

are for changes in melody or harmony[6]. In the novelty-based segmentation, as we

employ the STFT in the process, extracting boundaries of the events is equal to finding

the frames showing significant audio novelty. While we use the same FFT frame size

over an operation for reasons of expediency, we adjust the position of boundary using

the Overlap method, or multi-resolution FFT analysis.

The FFT frame size significantly affects the quality of the result, and it needs to

be defined carefully depending on the property of a targeted sound and the synthesis

purpose. For instance, in the speech analysis/synthesis, the FFT frame size of 1024 to

2048 samples corresponding to the length ca. 20 to 30 ms. are used in order to separate

individual phonemes.[36]. In music segmentation, such a very short unit length is

sufficient for detecting musical elements such as attack or decay from an envelope of

the sound magnitude. Longer frame size results in the longer segments with rougher

boundaries and may avoid producing short mosaic-like sounds. However, the sensitivity

to the novelty is so small that it increases a risk of missing some segmentation points.

Although novelty-based segmentation is a powerful algorithm, it has a problem when

multiple segmentation points are extracted for a brief time in a musical event, as is

typically observed in a percussive sound. The resultant segments are abruptly separated

in the middle of an events, what is heard as unnatural and mosaic-like sounds. To

address this problem, we have also implemented a segmentation rule which prevents

to separate audio signals into too short units and preserves isolated sounds, gestures,

and silence. However, we admit that it is extremely difficult to develop an exclusive

algorithm which produces satisfactory results for all kinds of sounds.

Here, we will discuss the variation of the novelty-based segmentation by applying

variable feature vectors to calculate the audio novelty. The self-similarity matrix is also

a useful algorithm to extract structural properties, and represent them as a novelty

function.

8 Delta-features based Segmentation

We first describe the segmentation method using the Delta-features. The Delta-features,

which is introduced in the section 6.9, represents a range of change between adjacent

55

frames. An intense peak of a the Delta-feature is expected to indicate a novelty of the

sound. Figure 16 illustrates the waveform of a drum loop sound (Drum_Loop1.aif),

the magnitude with a black line, and the delta-magnitude with a red line respectively.

The FFT analysis is operated in the frame size of 1024 samples, overlap number of 2.

The drum loop has clear attacks on all events which are represented by intense peaks

of the delta-magnitude. These peaks show the significant dynamics change over time.

However, it can be seen that the delta-magnitude feature does not effectively represent

the pitch or timbral changes played in slur or legato as seen in figure 17.

Figure 17 illustrates the waveform of a short musical fragment played by a flute

(flute-fragment.aif). A blue line represents the delta-MFCCs(introduced in the

section 6.9.1) and the arrows indicate the significant peaks. The first two arrows indi-

cate the place where the same note is repeated with a soft articulation, and the last two

arrows indicate the smooth pitch changes played in legato. While we can observe re-

markable peaks in the blue line of the delta-MFCCs, the red line of the delta-magnitude

shows much lower peaks so that some of them are easily overwhelmed by surrounding

fluctuating noise. Similar things can be happened when analyzing Violin legato sounds,

human voices, and glissando like sounds. The delta-MFCCs, in contrast, can represent

the timbral changes and thus, they are useful to detect more diverse sound changes. In

fact, the MFCCs and the delta-MFCCs features are applied for the speech segmentation

in order to separate and identify faint phonemes[36].

In our program, we use vast amounts of audio data to be analyzed in order to con-

struct a database, and it is not realistic to manually assess whether each segmentation

task is done properly or not. The only solution we find in this moment is to employ

a robust and versatile algorithm not one which is greatly precise but specialized for

a particular case. It is also considerable to combine multiple delta-features, such as

the delta-centroid and delta-pitch. The delta-centroid is especially useful to measure

the timbral differential which can be employed in order to assess the precision of the

segmentation result operated with the delta-magnitude.

56

Figure 16: Drum Loop : Magnitude and Delta-Magnitude

Figure 17: Flute : Delta-Magnitude and Delta-MFCCs

8.1 Segmentation algorithm

Now we describe our segmentation algorithm. We calculated the delta-MFCCs with the

FFT frame size of 1024 and overlap number of 2 and then, operate the standardization

process. The standardization reduces the variance of analysis data between different

sounds and enables to create a coherent model for the segmentation. For instance,

drum loop and violin solo yield the sets of data which are significantly different, i.e.

different maximum values, medians, and deviations. The standardization can scale a set

of values in a particular converged range by using median and deviation. See the further

description about the standardization in the section of standardization. Subsequently,

we developed the Two Threshold algorithm in order to separate the given audio signals

along with a set of the standardized Delta-features.

The Two Threshold algorithm uses two different thresholds; the first threshold is

used for extracting a boundary of a segment and the second constrain the frequency

of the boundary extractions. A boundary is determined when the Delta-feature goes

beyond the first threshold as shown in figure 18. The first threshold in a red line is

usually defined larger than the second threshold in a blue line as shown in figure 19.

Only the first threshold results in detecting the multiple fluctuating peaks standing

close to each other as shown in figure 18. This occurs because the quality of an attack

sound often changes dramatically in a short time which appears as the successive intense

peaks of the Delta-features. These peaks could be recklessly regarded as boundaries

57

between new sound events, but actually, the extracted boundaries are interrupting

musically meaningful units. The second threshold is therefore employed to prevent the

first threshold from taking a new boundary of a sound event in a short time interval

until the Delta-features go down below the second threshold. After the condition of

the second threshold is satisfied, the first threshold again starts searching for a new

boundary. Figure 19 illustrates how the second threshold -blue line- works.

Figure 20 and 21 illustrates the segmentation results operated by the Two Threshold

algorithm. The segmentation is done more rigidly with smaller threshold values, and

more roughly with larger values. We can observe the different sensitivity of the segmen-

tation around the beginning of sound events. This algorithm is particularly beneficial

when analyzing a drum loop which has explosive attack sound as we can see in figure

22.

Comparison between single and double thresholds segmentation algorithms.

Figure 18: Single Threshold

Figure 19: Double Thresholds

The red line represents the first threshold which is larger than the blue line rep-
resenting the second threshold. The red or blue dots illustrate locations of the
segmentation detected by the corresponding thresholds. Inside the horizontal bars
indicating the ranges between the detected dots of the first and second thresholds,
the algorithm stops taking the next audio novelty and thus no segments are de-
tected.

The red line represents the first threshold which is larger than the blue line represent-

ing the second threshold. The red or blue dots illustrate locations of the segmentation

detected by the corresponding thresholds.

58

Figure 20: threshold1 = 0.3, threshold2 = 0.01

Figure 21: threshold1 = 1.0, threshold2 = 0.8

Figure 22: Drum Loop : Segmentation by using the Delta-MFCCs

8.2 Discussion

We have discussed the novelty based segmentation algorithm by using the Delta-features.

While the Delta-feature detects the sensitive and detailed audio novelty, they often show

the transient novelty which is not related to the sound structure or pattern. Therefore

the above-discussed algorithm can be easily influenced by random factors. Since the

audio segments are strongly related to the entire sound structure, it is significant to

consider the structural elements as well. We will now discuss the Self-Similarity Matrix

algorithm to address this issue.

9 Self Similarity Matrix

In many cases, detecting the repetition, homogeneity, and novelty of audio data can

provide a clue for tracking musically meaningful structural elements. As discussed in

the Autocorrelation section, the correlation of a feature sequence itself yields a result

59

which reveals its entire structure. Similarly, the self-similarity matrix(SSM) illustrates

the self-similarity of a feature sequence in a 2-dimensional matrix by means of comparing

each frame of a feature sequence with all other frames of the sequence. Foote Introduced

the way to calculate the novelty function from the SSM which automatically locates a

point of audio novelty by analyzing local self-similarity[37].

The SSM is capable of revealing a particular aspect of music structures according to

the employed feature sequence. For instance, the magnitude feature shows the dynamics

pattern, the MFCCs shows the timbral pattern and so on. The resultant 2-dimensional

matrix has a lattice-like pattern which separates homogeneous regions of the data series.

A boundary of each lattice describes different level of sound novelties depending on the

FFT frame size which determines the resolution of the resultant SSM. While the shorter

frame size represents individual note, short melody, and timbral patterns, the length

of seconds frame size identifies the regional patterns or boundaries between musical

segments[6].

The feature vectors, which are extracted in the spectral analysis, are embedded in a

2-dimensional representation by measuring the distance between every pair of frames in

the original sequence. According to Foote(2000 [37]), for a sequence (v0, v1, . . . , vi), the

similarity D between feature vectors vi and vj, where i and j donates frame indices(i ∈
R and j ∈ R), is calculated by the cosine distance as follows.

D(i, j) ≡ cosθ =
vi · vj

∥vi∥2∥vj∥2
(20)

The result of D = 0 means total dissimilarity, and D = 1 means complete similarity

which always occurs when (i = j). This two-dimensional representation, matrix S is

calculated for all frame combinations, where the time frames i and j are corresponding

to the coordinate i and j in the matrix. A sequence of the feature vectors is then

transformed into a 2-dimensional image, with the pixel size of the width i and the

height j respectively as shown in figure 23. A level of the similarity is visualized in the

gradation between black and white colors, and darker color represents higher similarity

and vice versa. We can obtain different SSM depending on the feature type and which

appears as a block-like structure patterns of the (dis)similarity of the feature. Figures

23, 24, and 25 are the various SSM of a Drum Loop sound calculated by the three feature

types of magnitude, delta-MFCCs, and Chroma features of MIDI pitch estimated by

60

the multi-resolution Autocorrelation algorithm. All results involve a black diagonal line

which shows the complete similarity on the place of (i = j).

The SSMs calculated by the Magnitude and MFCCs feature vectors reveal the

structure of the given signals in which, the boundaries of the block-like structures

are corresponding to the segmentation results by means of the previously discussed

Delta-MFCCs based novelty algorithm as shown in figure 29. On the other hand, the

chroma-based SSM illustrates tremendous amount of small blocks that are rather ob-

served as noise. It is presumed that the Drum loop sound has much more complicated

frequency variance over time and has produced such an intricate pattern. We also

experienced with the spectral centroid, and the resultant SSM is as well noisy as the

chroma-based SSM. In order to test our hypothesis, we subsequently analyzed a flute

fragment(flute_fragment.aif) which has more harmonic sound characters than the

Drum loop. As we can hear, the fragment consists of a short phrase which starts with

a fast descending gesture which reaches to a long sustained note. This short phrase is

repeated twice in the fragment. This fragment yields unique patterns in the resultant

SSMs in various feature vectors and all of them indicate the repeating structure. The

Chroma-based SSM illustrates the symmetrical structure as well as the boundaries be-

tween the fast and sustained phrases (see the figure 30). The flute sound has harmonic

structure, and the fragment consists of the twelve note system in the equal temper-

ament, and therefore, we obtained more meaningful chroma-based SSM than the one

generated from the Drum loop.

Self Similarity Matrices from a Drum Loop sound(Drum_loop1.aif).

Figure 23: Magnitude Figure 24: Delta-MFCCs Figure 25: Chroma (MIDI Pitch)

61

Self Similarity Matrices from a Flute fragment sound(flute_fragment.aif).

Figure 26: Magnitude Figure 27: Delta-MFCCs Figure 28: Chroma (MIDI Pitch)

Figure 29: Comparison between the segmentation results by the SSM and the previously discussed
Delta-features of Drum loop sound.

The top and bottom figures are the enlarged version of the parts of the Magnitude and Chroma-based
SSMs contained by red squares in the figure 23 and 25. The middle figure is the segmentation result
by the Delta-MFCCs based algorithm discussed in the previous section.

62

Figure 30: Comparison between the segmentation results by the SSM and the previously discussed
Delta-features of Flute fragment sound.

The top and bottom figures are the enlarged version of the parts of the Magnitude and Chroma-based
SSMs encompassed by red squares in the figure 26 and 28. The middle figure is the segmentation
result by the Delta-MFCCs based algorithm discussed in the previous section. We can observe that the
location of extracted boundaries are corresponding each other among three algorithms.

9.1 Novelty Function

As discussed above, the two-dimensional matrix S reveals block-like structures in the

case that a sequence of the employed feature contains structural patterns in entire

audio signals. However, the obtained matrix consists of two homogeneous structures,

which appears in both horizontal and vertical directions and which makes it complicated

to extract the Novelty function representing the self-similarity over the matrix. The

primal idea in novelty detection is to identify the boundary between two homogeneous

but contrasting segments by correlating a checkerboard-like kernel function along the

main diagonal of the SSM[6]. The kernel function with the size L = 2 which measures

the cross-similarity of two regions is defined as follows[38].

C =

⎡

⎣ 1 −1
−1 1

⎤

⎦ (21)

The first term of the kernel matrix measures the self-similarity and the second term

measures the cross similarity between two regions. The inner product of C with the

2x2 area of the matrix S, whose center is shifted along with the diagonal center of

63

the matrix S where the (i = j), gives a measure of the cross-similarity of the matrix

S. A larger size of the kernel matrix measures the novelty over a greater number of

frames[38] which is capable of detecting major sections and conversely, a smaller detects

more detailed sections. The larger kernels can be constructed by the Kronecker product

of C as follows,

⎡

⎣ 1 −1
−1 1

⎤

⎦⊗

⎡

⎣1 1

1 1

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎣

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1

−1 −1 1 1

⎤

⎥⎥⎥⎥⎥⎦
(22)

The above shown matrix is for the case of even number L = 2M , and M. Müller sug-

gested odd size of the kernel matrix, L = 2(M+1) for more flexible kernel construction[6]

which is defined as follows

C = sgn(k) · sgn(l) (23)

where −M ≤ k, l ≤ M , and the center column and line is zero-padded. Eventually,

this formula yields the following matrix.

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 −1 −1
1 1 0 −1 −1
0 0 0 0 0

−1 −1 0 1 1

−1 −1 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

The edge of kernels can be smoothed using a window function which tapper towards

zero at edges. We use a radially-symmetric Gaussian function G defined by follows

G(s, t) = exp(−ξ2(s2 + t2)) (25)

where ξ(ξ > 0) controls the degree of tapering(Figure 31). Then, the kernel matrix

C is tapered by the Gaussian function as following

CGauss(s, t) = G(s, t) · C(s, t) (26)

Finally, we calculate a correlation between the windowed kernel matrix GGauss and

the given SSM S. The correlation of each frames in the index N(i) is calculated by

64

accumulating the product of CGauss and the corresponding area of the matrix S, where

the CGauss is shifted along with the diagonal line of the S.

N(i) =
L/2∑

s=−L/2

L/2∑

t=−L/2

C(s, t)S(i+ s, i+ t) (27)

where −L/2 < s, t < L/2. For the concise calculation, the width of the kernel is

defined as L whose center is on (0, 0). In our Pseudo code shown below, the zero-padding

is operated when computing the edge of the matrix S in order to avoid calculating

undefined values. Below is of our implementation written in Swift.

Algorithm 1 Computing correlation of S and C

1: for i = 0 to I Step 1 do
2: for s = 0 to L Step 1 do
3: for t = 0 to L Step 1 do
4: x = (i− L/2) + s
5: y = (i− L/2) + t
6: if 0 <= x < I then
7: if 0 <= y < I then
8: N [i]+ = CGauss[s][t] · S[x][y]
9: end if

10: end if
11: end for
12: end for
13: end for

As we can see in both formulas and codes, the size of a kernel matrix has a significant

impact on the resultant novelty function N(i). Figure 32 and Figure 33 illustrates the

filtering results of the matrix S with different size of the Gaussian windows (figure 31).

Figure 34 to 36 illustrates the novelty function calculated by different kernel sizes. The

kernel of the smaller size yields more sensitive peaks which have good time-localization.

In contrast, the kernel of the larger size, which captures a larger number of adjacent

frames, yields more smoothed and averaged fluctuations of the sound. While a small

kernel is better suitable for detecting a short time scale, such as musical gestures or

events, a large one is better for extracting boundaries and transitions between coarse

structural sections[6].

65

Figure 31: Gaussian window Figure 32: small kernel matrix Figure 33: Large kernel matrix

Comparing the resultant novelty functions calculated with different kernel size and gaussian parameter
ξ.

Figure 34: kernel size = 32, ξ = 0.05

Figure 35: kernel size = 15, ξ = 0.1

Figure 36: kernel size = 4, ξ = 0.3

9.2 Discussion

The novelty function derived from the delta-features is employed to extract the bound-

aries of the sound changes, which is a criterion of separating individual sound events.

66

The Delta-features based segmentation method is satisfactory for sensitive sound changes

and is particularly effective to extract one short event or independent tone from melodies

or rhythmic patterns. However, the boundaries are determined without any regard for

the musical structure or pattern, and sometimes the resultant segments are separated

haphazardly. This weakness is typically seen when processing a complex sound event

such as sweeping musical gestures and fluttering sound effects. Although the delta-

feature based segmentation is good at splitting adjacent sound sources, it is not capable

of grouping a sequence of frames to preserve an independent sound event.

On the other hand, the novelty function derived from the SSM represents a structural

pattern of the sound, and thus, it is more immune to the transient fluctuation of the

sound property than the one based on the Delta-features. Figures 37 and 38 show the

segmentation results of a short fragment played by a recorder. The fragment comprises

the combination of flutter and pizzicato sounds. These figures show the difference in

qualities between the Delta-feature and the SSM based segmentation. As the Delta-

features detect detailed and sensitive sound changes, some very fast successive sounds

are separated into distinct segments. The reason for the irregular segmentation is

because the individual fluttering sound is much shorter than the FFT frame size and

the properties of successive attack sounds are averaged in a unit. In contrast, the

SSM based segmentation clearly separate individual sound structures, that is, a flutter,

two pizzicati, and again, a flutter. Although the SSM based novelty function has less

sensitivity for faint sound changes, it produces more efficient results for such sound

examples than that from the Delta-features.

Figure 37: Segmentation result by the Delta-features

67

Figure 38: Segmentation result by the Self-Similarity Matrix

Upon consideration of the strengths and weaknesses of the two above-mentioned

methods, it leaded us to consider dividing the segmentation method into two phases.

In the first phase, the SSM method separates major sound events according to the

structural pattern of the entire signal, which is the pre-segmentation. The resultant

segments have better-isolated sound within a musically meaningful unit, but they may

consist of multiple sound events and which is still complicated to reveal the time-varying

components. Therefore, the Delta-feature method operates the second phase to separate

the obtained major segments into more detailed sound components. In this thesis, we

only use either the Delta-feature or the SMM based method in the analysis process and

did not combine them. The further study of this collaborative segmentation method

will be our next research interest.

68

Part IV

Audio Decomposition

10 Introduction

The audio signal often consists of different sound sources. For instance, a polyphonic

music is comprised of multiple voices and rhythmic patterns played by various mu-

sical instruments together, and environmental sounds consist of multiple layers. The

individual sources constituting the polyphonic structure may also consist of sound com-

ponents of harmonic-inharmonic sound, variable timbre, percussive sound, and back-

ground noise. Once sound sources are mixed in the audio signal, the conventional spec-

tral analysis is incapable of extracting the characteristics of individual components.

The spectral analysis produces an exclusive feature, which describes an averaged char-

acteristics of the assembled sound sources and in which, the original properties of each

sources are hidden. This representation manner of a polyphonic sound is not appropri-

ate for our system, particularly in the Music Information Retrieval(MIR) and Synthesis.

When the targeted sound has multiple independent layers, it will be more difficult to

search sufficiently matching sound units representing an entire structure of the target

from a database. If the characteristic of the retrieved sound unit does not match ade-

quately to the characteristic of the corresponding segments of the target, the quality of

the synthesis result is reduced. Accordingly, it is more important to decompose a poly-

phonic sound into simpler and more isolated units before retrieving the best matching

units of sound from a database. In this manner, segments of a polyphonic sound can

be reconstructed with multiple sources.

In our synthesis system, we operate the temporal audio segmentation task for both

the targeted audio signals and the source signals stored in a database in order to

separate the complex sound structures into simple and readily usable units. However,

we only operate the audio decomposition task for the targeted signals because the

decomposition algorithms we will discuss in this section are not capable of reversing

the decomposed components to the audible signals very well. The algorithm can reveal

the polyphonic structure of the targeted sound and extract some features representing

the characteristics of the decomposed components. However, the algorithms can only

reproduce the audio signals of significantly low quality, which directly influences the

69

quality of the synthesis result. In our system, the targeted sound only provides a plan of

the reconstruction structure, and the signal itself does not appear in the synthesis result.

On the other hand, the sources retrieved from a database are practically synthesized,

and thus they are present in the result. Therefore, we decided not to apply the audio

decomposition for the sources. The study of a better reproduction of the decomposed

audio signals is our future subject.

In order to decompose the polyphonic sound, we need to find boundaries of individual

sound components. However, due to the complexity of the sounds, the boundaries are

ambiguous, and they have different meanings depending on which levels we decompose

the targeted sound. For instance, estimating a multiple fundamental frequencies from

harmony or chord, and separating different sound components such as percussion-like

sound, harmonic components, and background noises are another problems. Further-

more, the sound components are independently variable through time with or without

correlations and they are complicatedly overlapping each other. A human being can

distinguish such complicated sounds from each other, and well-trained people can even

discriminate the different sound sources in their auditory system. However, it is an

arduous task for a computer and thus, the audio decomposition is one of the most

complicated subjects in the digital signal processing.

We apply decomposition task not only for separating the spectral information in the

frequency domain, but also segmenting a sequence of individual components varying in

time. In this section, we will first discuss the specmurt analysis for the multiple funda-

mental pitches estimation, which has already been introduced in the section 5.11, but

here, we focus on its further applications. As the specmurt analysis employs a harmonic

structure pattern, this algorithm is suitable for a polyphonic sound played by chamber

instruments which have regular harmonic structures. However, we employ various over-

tone structure patterns instead of a single harmonic pattern in order to decompose a

spectrum into diverse components. Secondly, we discuss the Non-negative Matrix Fac-

torization which is a mathematical model factorizing a two-dimensional non-negative

matrix into two different matrices. We apply this algorithm for decomposing a sequence

of spectrums, which is the spectrogram, into its static spectra and variable magnitudes.

This algorithm operates two tasks simultaneously, the spectrum decomposition and the

temporal segmentation in a stochastic optimization manner.

70

11 Specmurt analysis based multi pitch estimation

As we discussed in the section 5.11, the specmurt analysis operates the deconvolution

of the original spectrum by an overtone pattern8, and as a result, it produces the

fundamental pitch distributions. The idea of this algorithm is based on the assumption

that the pattern of the sound source is constant and the overtone depends on the sound

sources and the fundamental frequency. We have already shown some examples of the

primary use of the specmurt analysis for polyphonic sound using the simple integral

multiple overtone patterns. In the resultant spectra9, which are shown in the section

5.11, the overtones of the original signal are successfully suppressed and the expected

fundamental pitches remain. However, the resultant spectrum still has considerable

amount of fluctuating peaks which are unwanted components for the multiple pitch

estimation. These noise components derive from the dissimilarity between the model

pattern and the analyzed overtone structure.

The cause of this issue is seen in the initially defined overtone pattern. It is rarely

possible to define the exact pattern for a given sound source because each sound

sources consisting a polyphonic sound has slightly different overtone structures de-

pending on its fundamental frequency. Therefore, the specmurt analysis requires the

best-compromised overtone pattern which satisfies the structures of all constituent com-

ponents in order to produce the sufficiently satisfactory. However, it is not realistic

to manually adjust the pattern by trial and error, and thus, Saito et al. suggested

an optimization algorithm to find the best optimal overtone pattern to produce the

best-compromised results[19]. This algorithm operates an adaptive estimation of the

common overtone structure for each frame of the given signals which maximizes the reso-

lution between significant fundamentals and other unnecessary components in specmurt

analysis through interactive nonlinear mapping[19].

As described in section 5.11, the log-frequency spectrums of the pitch distribution

u(x), the original spectrum v(x), and the overtone pattern h(x) are represented in the

specmurt domain U(y), V (y), and H(y). The U(y) is obtained by dividing V (y) by

H(y).
8Sagayama et al. call the harmonic structure pattern but we here call it as the overtone pattern because we use

versatile sound sources consisting of both harmonic and inharmonic structures.
9The resultant spectra are obtained by the inverse specmurt of the deconvolution result

71

U(y) =
V (y)

H(y)
(28)

The resultant pitch distribution U(y) is then transformed to the spectrum domain

u(x) by the DFT.

The h(x) is the manually defined overtone pattern. The adaptive estimation algo-

rithm generates quasi-optimal h(x) through iterations.

In the first step of the optimization process, we suppress the fluctuating erroneous

peaks in the obtained pitch distribution u(x) by means of the nonlinear mapping which

is based on the sigmoid function as follows.

u(x) =
u(x)

1 + exp{−α(u(x)
umax

− β)}
(29)

where u(x)
umax

is the normalization of u(x) into a range 0 ≤ (x) ≤ 1. This nonlinear

mapping function suppresses the values around β and does not change values signifi-

cantly larger than β. The inclination of a suppression curve is constrained by alpha as

shown in the Figure 39. Through the nonlinear mapping process, the weak fluctuating

peaks in the pitch distribution u(x) are suppressed according to their magnitude and

the thresholding function. As a result, the updated u(x) has less unwanted peaks and

preserves the expected fundamental pitches.

Sigmoid Function

Figure 39: α=100, β =
100

Figure 40: α=100, β =
0.5

Figure 41: α=15, β =
0.5

Figure 42: α=100, β =
0.7

11.1 Iterative estimation algorithm

According to Saito, the iterative estimation algorithm operates as the following pro-

cess [21]. First calculating u(x) from v(x) with an initially defined overtone pattern

h(x) as described above and then, obtaining u(x) by applying a nonlinear mapping.

72

Subsequently, finding a better optimal overtone pattern h(x) and update h(x) with it.

Eventually go back to the first step, and repeat this process with the new h(x) until

we obtain the best optimized h(x). The goal of this algorithm is to find a set of the

adequate amplitude ratios corresponding to the n number of initially defined overtones.

For the calculation, we define an updating function with a parameter θ which is the

amplitude ratio of the nth overtone relative to fundamental pitch.

With regard to these parameters, the h(x) is defined as follows.

h(x, θ) =
N∑

n=1

θnδ(x− Ωn) (1 ≤ n ≤ N : N ∈ N) (30)

where Ωn is the x-coordinate of the nth harmonic overtone on the log-frequency scale

which is calculated by Ωn = logn · 1200/r. r represents the log-frequency resolution

of the constantQ transform, and is calculated by r = cent/bin. N is a number of

overtones and Ω1 = 0, θ1 = 1 because the first frequency corresponds to the fundamental

frequency located on the first bin in the overtone pattern and has a magnitude value

of 1.

Now, we calculate new overtone pattern by optimizing the parameter θ. As we

assume v(x) = h(x) ∗ u(x), the temporal v(x) which is calculated by the updated h(x)

is described as v(x) = h(x, θ) ∗ u(x). We want to have a set of θ which minimize the

integral square error ∆ = {v(x)− v(x, θ)}2. The square distance of all overtone is then
described as follows.

E(θ) =
I−1∑

i=0

{v(xi)− h(xi, θ) ∗ u(xi)}2 (31)

where I donates the number of log-frequency samples. We will estimate the param-

eter θ by minimizing E(θ).

Since we only focus on the parameter θ, the quasi-optimal solution can be obtained

by partial differential equations by the parameter θ.

∂E(θ)

∂θn
= 0 (2 ≤ n ≤ N) (32)

This cost function is only valid for the range of the overtone which is the higher than

2ed harmonics which is therefore, represented by n : ((2 ≤ n ≤ N)). We can re-write

the above equation as the following matrix equations:

73

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 ... a1,n ... a1,N
...

...
...

an,1 ... an,n ... an,N
...

...
...

aN,1 ... aN,n ... aN,N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1
...

θn
...

θN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
...

bn
...

bN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

The calculation of each cell is described as follows.

aj,k =
I−1∑

i=0

u(xi − Ωj)u(xi − Ωk) (34)

bj =
I−1∑

i=0

{v(xi)− u(xi)}u(xi − Ωj) (35)

The matrix θ is then obtained by the convolution of the matrix a by the inverse of

the matrix b. Below, we show the simplified C source code written by us which updates

the overtone pattern according to the above algorithm.
1

2

3 i n t s i z e = 10 ; // overtone number
4 i n t N = 56 ; // log−f r equency r e s o l u t i o n (bin number o f the ConstantQ Transform)
5 i n t over tone x [s i z e] ; // x−coo rd ina te o f n−th overtone
6 double de l t a [s i z e] ; // de l t a v−u
7

8 // c a l c u l a t i n g the matrix a
9 f o r (j =0; j<N; j++){

10 f o r (k=0;k<N; k++){
11 f o r (i =0; i<s i z e ; i++){
12 i n d ex j = i − over tone x [j] ;
13 index k = i − over tone x [k] ;
14 i f (i ndex j>=0 && index k >=0){
15 a [j ∗N + k] += u [i nd ex j]∗u [index k] ;
16 }
17 }
18 }
19 }
20

21 // c a l c u l a t i n g the f i r s t term o f the matrix b
22 f o r (i =0; i<s i z e ; i++){
23 de l t a [i] = (v [i]−u s igmoid [i]) ;
24 }
25

26 // c a l c u l a t i n g the matrix b
27 f o r (j =0; j<N; j++){
28 f o r (i =0; i<s i z e ; i++){
29 i n d ex j = i − bLog [j] ;
30 i f (i nd ex j >= 0) {
31 b [j] += de l t a [i]∗u [i nd ex j] ;
32 }
33 }
34 }
35

36 // i nv e r s e matrix b
37 b = m inv (N, N, b) ;
38

74

39 // updating the overtone pattern .
40 long mc = N;
41 long nc = 1 ;
42 double amplitude [N] ; // bu f f e r f o r the updated overtone pattern
43 memset (amplitude , 0 , N∗ s i z e o f (double)) ;
44 // inner product o f the matrix a and the inve r s ed matrix b
45 m mul(N, N, N, 1 , &mc,&nc , N, a , b , amplitude) ;
46

47 amplitude [0] = 1 . 0 ; // the f i r s t overtone equal to the fundamental p i t ch

Listing 1: Updating overtone pattern in C code

11.2 Result

Figure 44 shows the progress of the iterative estimation. Each line has the original spec-

trum, the initially defined overtone pattern, deconvolve spectrum, and the nonlinear

mapping result. The second to fourth lines show the iterative estimation process; the

updated overtone pattern, deconvolve spectrum, and a nonlinear mapping result. We

used piano tetrad of C-major C3-E3-G3-C4(C3E3G3C4.wav), and 10 number of integral

multiples overtone pattern whose amplitude ratios are (1.0, 1/2, 1/3, . . . , 1/10). The

first deconvolution result, which is shown in the first line, involves many strong un-

wanted peaks on the entire spectrum due to the dissimilarity of the overtone structure.

These unwanted peaks are not sufficiently suppressed because their amplitudes are still

higher than the threshold of the mapping function. The first optimal result, which is

in the second line, shows optimized overtone pattern which produces slightly better

deconvolution result and a better mapping result. The updating weight of the over-

tone pattern is calculated by the calculation of the square distance {v(x)− v(x, θ)}2 =
{v(x)−h(x, θ)∗u(x)}2 where the u(x) is the suppressed pitch distribution by the nonlin-

ear mapping. Therefore, the parameters of α and β for the sigmoid function indirectly

constrain the updating weight.

The overtone pattern is modified step by step according to the update rule, and

it improves the deconvolution result. The third optimal result shows an adequate

fundamental pitch distribution which has four high peaks corresponding to the given

tetrad. However, the 5th optimal result shows only three peaks corresponding to C3-

E3-G3 and C4 is missing which is an octave higher than the lowest pitch C3. As

we can see the overtone pattern in the 5th optimal result, the second overtone is the

highest of all, and which corresponds to the same frequency of C4. Therefore, the

optimization process regarded C4 as a strong second overtone of C3, and suppressed it

throughout the iterative estimation process. This problem can be solved by giving a

75

softer suppression weight for the nonlinear mapping or controlling the number of the

iterative estimation. However, when the suppression weight is too soft, the unwanted

peaks are not sufficiently suppressed, and the optimization has never been convergent

to the expected result. Similarly, the number of iteration is also important to obtain a

reliable result. Saito investigated the relationship between iteration times and updating

weight, and he found that the weight decreases logarithmically and becomes very small

at around third to fourth iterations, and then, it is almost vanishingly small at fifth

iteration[21].

The iterative estimation is a useful algorithm for estimating the multiple fundamen-

tal pitch distributions of polyphonic music. The specmurt analysis resolves the given

spectrum into a constituent spectral component and its fundamental frequencies. How-

ever, the result is significantly influenced by the initially defined overtone pattern. The

algorithm optimizes the amplitude ratio of each overtone, but it does not control the

number of overtones and their x-coordinates in the frequency domain. The approximate

overtone pattern of the targeted audio signals needs to be known in order to obtain

precise results. Furthermore, the components comprising the polyphonic sound need to

have a common overtone pattern. Therefore, the specmurt analysis is valid only when

separating a given audio signals into voices of the same sound qualities.

76

Figure 43: The result of the specmurt analysis with the iterative estimating algorithm.

11.3 The spectrum decomposition using freely defined overtone pattern

We found another possibility to apply the specmurt analysis to the audio decomposition.

As already described, the concept of the specmurt analysis is based on the assumption

that the all tones in a polyphonic sound have a common overtone pattern, and its

spectrum can be described as a sum of linearly stretched common overtone structures

alongside the loge-scaled frequency[21]. Conversely, this assumption suggests that the

targeted spectrum can be resolved into any combinations of the fundamental frequen-

cies and optionally defined overtone patterns. Now, our aim is not to estimate a proper

fundamental pitch distribution from the given spectrums but to decompose the spec-

77

trums into a set of particular sound characteristics, such as clarinet, bell, Formant, and

piano by defining variable harmonic or overtone patterns. In this idea, the specmurt

analysis results in a set of notes or a chord of the indicated overtone pattern.

The figure 44 and 45 illustrate the specmurt analysis using the odd multiple overtone

pattern(frequency ratio: 1, 3, 5, . . . , 2n− 1, amplitude ratio 1, 1/3, 1/5, . . . , 1/(2n− 1))

and the bell overtone pattern respectively (see figure 46). The odd-multiple overtone

structure models upon the clarinet harmonic pattern, and the bell overtone structure is

taken from the FFT analysis result by Jonathan Harvey. The notes of the overtone pat-

terns are shown in the figure 46. We again used a piano tetrad C3-E3-G3-C4 as the tar-

geted polyphonic sound and operated five-time iterative estimation process in order to

optimize the initially defined overtone pattern. The unsuitable overtone pattern possi-

bly yields a frequency distribution which satisfies the condition of u(x)← arg min
u(x)

D(x).

With the odd-multiple overtone, a larger number of the fundamental frequencies are

observed than the integral multiples because the fewer overtone peaks in the pattern can

deconvolve less corresponding peaks in the original spectrum. Since the odd-multiples

do not comprise the octave relatives, the second overtones of all fundamental frequencies

are not suppressed through the deconvolution. As a result, the frequency distribution is

relatively close to the original spectrum. On the other hand, we obtained a contrasting

result with the bell overtone pattern which comprises the irregular frequency ratio. The

resultant fundamental frequencies are disordered compared with those of the integer-

and odd-multiple overtone patterns. A significant dissimilarity between the original

and bell overtone patterns are observed in the high-frequency band, which provokes the

small suppression rate in the high registers of the fundamental frequencies.

Figure 44: The specmurt analysis using the odd multiple overtone pattern.

78

Figure 45: The specmurt analysis using the bell overtone pattern.

Figure 46: The overtone pattern.

11.4 Experimental evaluation

As we can see in the results, the specmurt analysis using an optionally defined overtone

pattern seems to have properly decomposed the spectral structure into several voices.

The resultant frequency distribution gives sufficient quality in appearance. However,

because we intentionally apply the erroneous operations of the specmurt analysis by

using unfitting overtone patterns, its result is not always reliable. In fact, more fluctu-

ating peaks are obtained in the resultant deconvolution due to the dissimilarity problem

than the one using the appropriate overtone pattern. We can suspect that the resultant

fundamental frequency distribution is only sufficient due to the suppression of the non-

linear mapping. From this point of view, we assessed the analysis result by measuring

the correlation between the result and the original spectrum in order to inspect the

quality of the decomposition. The correlation is calculated by measuring the distance

D between the original spectrum and the reversed spectrum obtained by the convolu-

tion of the resultant fundamental frequencies by the optimized overtone pattern. The

distance D is a sum of the delta magnitude of each corresponding coefficients between

two spectra, which represents its dissimilarity. Let the reversed spectrum in the x the

frame v(x) = h(x) ∗ u(x), where h(x) donates the optimized overtone pattern and u(x)

donates the resultant pitch distribution, hence D is calculated as follows,

79

D(x) =
i=I−1∑

i=0

|vi(x)− vi(x)| (0 ≤ i < I) (36)

where i donates the FFT index in the log-frequency domain. We determine that the

result is reliable when the D(x) is small enough.

Figures 47 and 48 illustrate the reversed spectrums in the different optimization

levels, and its corresponding distances D. The original spectrum is shown in figure 44.

The successful iterative estimation produces a reverse spectrum which is apparently

similar to the original, and indeed, it has a smaller distance. Table 11.4 shows how

the distances change throughout the iterative estimation process in the three overtone

patterns.

Table 2: The changes of the distances D throughout the iterative estimation using three overtone
patterns.

Iteration D of integer multiple D of odd multiple D of bell

1 0.322415 0.295136 0.303621

2 0.209612 0.289617 0.202987

3 0.197715 0.230458 0.216729

4 0.208607 0.252578 0.195380

5 0.220370 0.264129 0.192255

Figure 47: The reversed result of the bell overtone pattern in the 15th frame.

80

Figure 48: The reversed result of the odd overtone pattern in the 15th frame.

The dissimilarity usually gets smaller as the iteration advances, but some exceptions

are observed depending on the progress rate of the optimization. For instance, in the

cases of the integral and odd-multiple overtone, the optimization resulted in the mini-

mum distances at the third iteration but the distances again increase from the fourth

iterations. One reason would be that a parameter of an extremely rigid threshold for

the nonlinear mapping can cause superfluous suppressions on the peaks of fundamental

frequencies and which produces erroneous optimizations. Another reason to be noted

is that the fundamental frequency is regarded as one of a constituent overtone of its

lower fundamentals, which is why it is suppressed in the iterative process as discussed

in the section 11.1. When the suppressed fundamentals are lower than the threshold of

the non-linear mapping, they are even more suppressed and eventually disappear from

the resultant pitch distribution. As a result, the distance between the original and the

reverse spectrums increase more than the previous estimation.

To avoid the erroneous optimization, we constrain the iteration process according

to the optimization progress. As we have already introduced the evaluation carried

out by Saito [21], the iterative estimation has significant update weight in the first

few iterations, and then it vanishes abruptly around the fifth iteration. We define the

condition of the iteration where the estimation repeats when Dθ(x) < Dθ+1(x), where

the θ donates the iterative time. The best optimized overtone pattern is then extracted

by interrupting the iterative estimation process when Dθ(x) < Dθ+1(x), where the θ

donates the iterative time.

81

11.5 Discussion

We have introduced the advanced specmurt analysis using the iterative overtone es-

timation algorithm. Our study also suggests that the analysis using various overtone

patterns is capable of separating the given spectrum into a particular sound quality.

However, further study is still required to represent a time varying structure between

frames. A crucial issue of the specmurt analysis is that the fundamental frequency

distribution is estimated from an individual spectrum, which has no necessary correla-

tions with the adjacent frames. The iterative estimation algorithm is operated for each

frame independently, and the overtone pattern is not optimized for the whole sound.

Therefore, the specmurt analysis does not represent a sequence of polyphonic structure

varying in time.

There are some studies applying the specmurt analysis for the temporal music rep-

resentation such as automatic transcription system. For instance, Sagayama et al. used

a piece of music played by a Piano or Guitar solo and they simply translated the resul-

tant frequency distribution to a piano-roll representation[19]. Azuma et al. employed a

Hidden Markov Chain in order to treat the extracted frequencies as a melody or voice

part[22]. In all cases, the resultant fundamental frequencies are translated to MIDI

or similar format and represented in the classical notation system and are not utilized

as spectral information of the decomposed sound components. Since their study aims

to capture the fundamental pitches, the process is relatively simple compare with our

needs.

For the temporal representation, we have already suggested various techniques which

interpolate descriptive features varying in time, but they do not always bring a satis-

factory result in the decomposition. The polyphonic audio signals can have more com-

plicated structures where, each constituent voice varies individually over time, and it

is very difficult to track each of them independently. We operated the specmurt analy-

sis under the assumption that the overtone pattern remained constant throughout the

different fundamental pitches, and now we assume that the pattern is also constant in

time sequence. Therefore, the polyphonic structure is decomposed into multiple sets

of an overtone pattern and its variate amplitude in time. This idea led us to atoner

mathematic model which is the Non-Negative Matrix Factorization discussed in the

next section.

82

12 Non-Negative Matrix Factorization

After a discussion of the decomposition of both frequency and temporal information,

we will now introduce the Non-Negative Matrix Factorization(NMF) which is a useful

decomposition technique applying unsupervised statistical analysis. In order to decom-

pose the spectral structures into multiple vectors and their magnitude over time, we

need to handle the Spectrogram instead of an individual spectrum. The spectrogram

is a representation of a sequence of spectra produced by the STFT, which illustrates

frequency information and time variance in a 2D image as shown in figure 49. The

vertical line represents the frequencies, the horizontal line represents the frame index in

time, and the colors illustrate the magnitude of the corresponding frequency. The red

and the blue color indicate the high dynamics and the low dynamics. While a spectrum

represents a snapshot of the audio signal, the spectrogram illustrates an entire state of

it.

Figure 49: Spectrogram of Piano sound playing C major and c minor successively.

The NMF represents a multivariate data as a product of two specific properties,

which is applied for decomposing a spectrogram into a product of multiple spectrum

profiles and their magnitudes varying over time. While the spectrum profile is static

over the entire signals, the magnitude represents its temporal information. A set of the

static spectrum and its time-variant magnitude information is called as a vector, and

the NMF operates a factorization of the targeted spectrogram into a particular number

of vectors.

The basic idea of this factorization algorithm was introduced by P. Paatero in

1994[43], and the advanced version was developed by D. Lee and H.Seung in 1999[41].

Since the optimization algorithm was suggested by Lee et al. in 2001[42], and since

then, this has actively been explored for further application[44]. According to D. Lee

83

and H.Seung[41], the NMF is defined to solve the following problem. We consider a

non-negative matrix V to find non-negative matrix factors W and H that are defined

as follows.

V ≈ WH (37)

V is a set of multivariate n-dimensional data vectors of the size n×m, where the m

donates the number of samples in the data set. Each vector is placed in the columns of

an n×m in the matrix. This matrix is approximately factorized into two representative

matrices, W the size of n × r, and H the size of r × m. The parameter r, which is

referred to as the vector number of the factorization, is usually smaller than m or n

and thus, the matrix sizes W and H are smaller than the original matrix V . Therefore,

the product WH is a compressed version of the original data matrix.

Since only the original matrix V is definite, the two matrices W and H are found

through the unsupervised statistical optimization process using a cost function. At the

beginning of the process, W and H are initialized with non-negative random numbers.

The goal of this algorithm is to find a pair ofW,H which minimizes the cost function, for

example, when we use a Euclidean distance, we find a pair which satisfies the following

condition.

find (W,H) minimize∥V −WH∥2 (38)

The above formula qualifies the Euclidean distance between V and WH. Lee et

al. also suggested qualifying the divergence of V from WH, which reduces to the

Kullback-Leibler divergence[42]. H. Kameoka mentioned that the Itakura-saito distance

is also beneficial for the NMF[44]. Their discussions suggest that the cost function is a

significant factor for the statistic optimization process. Although it is very interesting

to investigate more deeply about the differences of the results depending on the cost

function, we here employed only the most simple cost function, which is Euclidean

distance.

12.1 Non-Negative Matrix Factorization for music deomposition

We have described the basic idea of the NMF and now, we will discuss more details of

the NMF applied for music decomposition according to the algorithm introduced by H.

84

Kameyama 2012[44].

As described above, we consider a set of multivariate data vectors Y ∈ RK×N
≥0 ,

and now, we determine Y as a spectrogram of the audio signal, where K donates

frequency index, which is a FFT frame size, and N donates the time, which is a frame

number. With the factorized vector number R, the spectrum vectors are represented as

H ∈ RN×R
≥0 , and the magnitude vectors as U ∈ RM×R

≥0 . The problem to be solved is to

find a pair of factorized vectors U and H from Y and therefore, represented as follows.

Y ≈ UH (39)

As previously described, three cost functions are introduced; Euclidean distance,

I-divergence, and Itakura-saito distance, that are defined with y, x ∈ Ras follows.

DEU(y|x) = (y − x)2 (40)

DKL(y|x) = ylog
y

x
− y + x (41)

DIS(y|x) =
y

x
− log

y

x
− 1 (42)

All functions become 0 when x = y and get lager when bigger distance between

x and y is observed. The I-divergence and Itakura-saito distance are not symmetric

and have greater increment when x < y. The distance between matrices Y (yk,n) and

U(um,n) ·H(hk,m) are calculated by summing the distances of all sample data.

D(HU |Y) =
∑

k,n

D(yk,n|
∑

m

hk,mum,n) (43)

Here, we employ Euclidean distance which is the most simple cost function.

DEU(Y |HU) =
∑

k,n

∥yk,n −
∑

m

hk,mum,n∥2 (44)

(45)

and when we define

xk,n =
∑

m

hk,mum,n (46)

85

The formula 44 is represented as follows.

DEU (H,U) =
∑

k,n

(−2yk,nxk,n + x2
k,n) (47)

The update rules of H,U is then described as follows.

H,U = arg min
H,U

D(HU |Y) (hk,m, um,n ≥ 0) (48)

Since only Y is known, and two matrices H,U are unknown. This mathematic model

is usually called the optimization problem and the problem to be solved is to find the

best optimized pair which approximately represent the original spectrogram Y .

An Auxiliary function is employed for the optimization. The function uses repre-

sentative function Q which is iteratively updated to minimize the cost function and

it is the generalized version of the EM algorithm [45]. Kameoka introduced Jensens

Inequality which is defined as follows.

g(
∑

i

λizi) ≤
∑

i

λig(zi) (1 ≤ i ≤ I) (49)

When g is a quadratic equation of a downward convex, and the weight coefficients λ

satisfies
∑

i λi = 1, the inequality shows that a downward convex parabola g(
∑

i λizi) is

always smaller than the parabola λig(zi). Since the cost function also yields a downward

convex, the Jensens Inequality is valid for finding the variables which minimize the cost

function.

In the case of the Euclidean distance shown in the formula 47, we only need to

minimize the item of x2 and thus, the Jensons Inequality can be written with the

parameter λk,m,n as follows.

(
∑

m

λk,m,nxk,n)
2 ≤

∑

m

λk,m,nx
2
k,n (50)

∑

m

λ2
k,m,nx

2
k,n ≤

∑

m

λk,m,nx
2
k,n (51)

x2
k,n ≤

∑

m

λk,m,nx2
k,n

λ2
k,m,n

=
∑

m

λk,m,n(
xk,n

λk,m,n
)2 (52)

as we defined xk,n =
∑

m hk,mum,n, the Auxiliary function is eventually defined as

follows.

86

x2
k,n ≤

∑

m

λk,m,n(
hk,mum,n

λk,m,n
)2 (λ > 0,

∑

m

λk,m,n = 1,λk,m,n =
hk,mum,n

xk,n
) (53)

where λk,m,n = hk,mum,n

xk,n
is a normalization of the hk,mum,n.

Finally, we operate the iterative optimization to find the matrixes H,U,λ which

minimize the cost function. The best approximate H,U is calculated by repeated

iteration in the following order with the above described Auxiliary function GEU .

λ← arg min
λ

GEU(H,U,λ) (54)

H ← arg min
H

GEU(H,U,λ) (55)

U ← arg min
U

GEU(H,U,λ) (56)

Lee et al. found a multiplicative update rules which are good compromise between

speed and case of implementation for solving the above formulas.

The update rules of the Euclidean distance ∥Y −HU∥.

Hk,m = Hk,m
[UTY]k,m
[UUTH] k,m

(57)

Um,n = Um,n
[HTY]m,n

[UHHT] m,n

(58)

The update rules of the I-divergence distance D(Y |HU).

Hk,m = Hk,m

∑
n Um,nYn,k/(UH)n,k∑

i Um,i
(59)

Um,n = Um,n

∑
n Hm,kYn,m/(UH)n,k∑

j Hk,j
(60)

We give a parameter which constrains a number of factorizing vectors. The vector

number significantly influences the quality of factorization result. For instance, with a

vector number of two, the NMF factories the targeted spectrogram into two sets of a

spectrum profile and its magnitude. Since the spectrum is static in a vector, the time

varying frequency information is significantly reduced. In contrast, a large number

of vector number is capable of interpolating more detailed variation of the frequency

information.

87

12.2 Experiments

We will discuss three different examples of various sound qualities and structures. For

the first experiment, we analyzed a short music fragment played by piano. It consists

of four notes of C4, D4, E4, and F4, and which comprises a simple monophonic melody

whose score is presented in figure 50 and it is audible in (doremi.wav). Although the

music structure is monophonic, the resonances of the neighboring notes are overlapped

to each other, which means that the fragment has a polyphonic sound structure. We

considered decomposing the targeted audio signals into four vectors as the fragment

consist of four notes. The NMF has been operated under the condition of the FFT

size of 1024 and the overlap number of 2. Figure 50 illustrates the resultant NMF

where the signal is decomposed into four sets of the spectral profile and its temporal

information. The left column shows the reversed signals of the factorized results and

the right column shows their corresponding spectral profiles. The reversed signals are

reproduced by the convolution of the spectrum profile and its magnitude information

in time. Since the spectrum profiles are static in a vector, the reproduced audio signals

preserve the same sound quality and they are only variable in their magnitudes. The

audio data of the factorized vectors are audible in (doremi_1.wav) to (doremi_4.wav).

The signals corresponding to the four notes are sufficiently separated into individual

vectors, and noteworthy, the overlapped resonances, which are the polyphonic compo-

nents, are also separated together. The piano sound has very similar spectrum structure

typically in the same registers as we can see in the right column of the figure. These

spectra are however, regarded as different profiles even a half step changes in the linear-

frequency domain and therefore, the different notes are classified into separate vectors.

The vector1 undertakes note of the pitch D3, and the vector2 of E3, the vector3 of F3,

and the vector4 of C3. In this example, we focus on separating each note including its

resonance, and we were able to obtain an adequate result. In this example, the simple

monophonic music sound is used and the number of voices are know. We will use more

complex sound samples in the next experiments.

88

Figure 50: The NMF result of a piano fragment.

The targeted sound file is doremi.wav and the factorized vectors are audible in doremi_1.wav ,
doremi_2.wav, doremi_3.wav, and doremi_4.wav where the index numbers represent the correspond-
ing vector indices.

We have tested more complex sound samples and this time, we rather focused on de-

composing different sound qualities and separating individual notes. The first is a drum

loop which we have already used in the several analysis examples. The process is oper-

ated under the condition of the vector number of 4, the FFT frame size of 1024, and the

overlap number of 2. Figure 51 shows the target waveform, and the factorized results.

The decomposition result is audible in (drumLoop_1.wav) to (drumLoop_4.wav). The

magnitude information is also illustrated on the corresponding waveforms by black lines.

The factorized audio signals can be segmented in time by means of delta-Magnitude

feature. In this example, the different sound qualities are factorized into individual

vectors, for instance, the very high frequency and low-frequency components, metallic-

like sound, and snare-like sound are separated. The decomposition is concentrated on

around the bass drum sounds. Indeed, the three vectors represent the separated sound

components around bass drums and only one vector is for another component. It is

assumed that the various percussions such as hi-hat and bells are played together on the

bass drum and therefore, the sound has wide range frequency and is easily decomposed

into multiple vectors.

89

Figure 51: The NMF result of a drum loop.

The targeted sound file is Drum_Loop1.aif and the factorized vectors are audible in drumLoop_1.wav
, drumLoop_2.wav, drumLoop_3.wav, and drumLoop_4.wav where the index numbers represent the
corresponding vector indices.

In the next example, we used a flute fragment of (flute-fragment.aif). The FFT

analysis is operated under the same condition to the previous test, but this time, the

NMF decomposed the targeted signals into six vectors. The result is shown in figure

52 and is audible in (flute_1.wav) to (flute_6.wav). The flute fragment consists of

two contrasting sections; a fast descending gesture involves with strong articulations

and a sustained and stable tone, this phrase is played twice. The descending gesture

is decomposed more finely into four vectors than the sustained tone into two vectors.

It is presumed that the fast descending section has more pitch variations which yields

different spectrum envelope than the sustained tone. Therefore, each sound event is

separated into its respective vectors. We evaluated the quality of the decomposition by

mixing all resultant vectors into an audio data of (flute_NMF_Mix.wav). The mixed

vectors represent sufficiently the original audio data in its timbre, dynamics, and pitch

information. With a small number of vectors, the mix of the resultant vectors repre-

sent the rough characteristics of the original signals, and the quality of the descending

gesture is significantly reduced as we can hear in (flute_NMF_2Vector_Mix.wav). This

decomposition process can be applied for the synthesis process in which each vector

is independently reconstructed by sound sources retrieved from a database, and subse-

quently, all synthesis results are mixed. Although an insufficient vector number does not

90

produce an ideal decomposition result, it gives some degree of freedom for controlling

the audio representation.

Figure 52: The NMF result of a flute fragment.

The targeted sound file is flute-fragment.aif and the factorized vectors are audible in flute_1.wav
, flute_2.wav, flute_3.wav, flute_4.wav, flute_5.wav, and flute_6.wav where the index numbers
represent the corresponding vector indices.

12.3 Discussion

The NMF is one of the most important algorithms for our synthesis program in order

to represent the polyphonic structure of a sound. The NMF we have introduced here

operates unsupervised statistical optimization which decomposes audio signals mechan-

ically into the best-compromised combinations of the frequency and temporal informa-

tion. Due to the unsupervised optimization, the result is significantly influenced by the

initially defined random numbers. Due to that, this approach may cause unintended

results because the algorithm is based on a mathematical analysis without using any

perceptual models[49].

There is also the supervised-based NMF. For instance, Nakashika et al. employed a

common spectral envelop of a particular instruments[49]. Nakashika collected variable

isolated sound data of a particular instrument, for instance, piano, played in different

pitches individually. The collected sound data are analyzed in order to extract their

91

spectral envelopes and those of which are trained in the learning process in order to pro-

duce a probability distribution of the spectral envelope. The distribution is utilized for

initializing vector matrices instead of using random numbers, and the most appropriate

envelope is selected according to the targeted sound quality. M. N. Schmidt developed a

speech separation algorithm using a training data of a speech corpus[48]. These speech

data are analyzed into their phonemes and are employed to separate speech signals into

their components. These methods are expected to produce better results as the vectors

initialized with a particular spectral models, and which is somehow similar to what we

have discussed in the specmurt analysis using the optionally defined overtone patterns.

The log-scaled frequency spectrogram is also interesting approach especially for

tracking the pitch variant musical gestures such as glissando and chromatic movement.

The log-frequency based NMF algorithm is studied by E. Benetos and S. Dixon[47]

where the pitch templates of an instrument is prepared for initializing the vectors and

the templates are shifted in order to adopt the pitch of the targeted sound components.

The conventional NMF algorithm requires a vector number as a parameter, and we

need to estimate the correct number of sources consisting the targeted audio signals

in order to obtain precise decomposition results, which is not ideal for a practical

system. Hoffman et al. and Kameoka et al. developed the Bayesian Nonparametric

Matrix Factorization, which is operated for blind source separation where the number of

sources is unknown. Since these methods employ iterative estimation methods in order

to estimate the vector number, it demands very expensive computation. Although we

consider that the vector number is one of the most significant parameters which enable

us to control decomposition process creatively for the subsequent synthesis process, the

automatic source number estimation is also beneficial to improve the quality of the

decomposition result and to enhance the usability of the system.

As we have already mentioned, audio decomposition is one of the most difficult

and complicated subjects in signal processing. There are various mathematical models

which can be applied for the decomposition methods, but further study is required to re-

alize a practical and versatile system. Indeed, it is important to develop a mathematical

model which produces physically precise result, however we rather focus on developing

a program which provokes us to create a new music sources. The decomposition task is

significantly useful for our synthesis process. Because the targeted sound often consists

of complex sound components, and it is difficult to find an adequate matching sound

92

source from a database in order to reconstruct it. The decomposition makes it much

easier to do so because the decomposed components are more simple and isolated.

Future work includes more robust and versatile decomposition algorithms which

cover variable creative purposes. The combination of the NMF and specmurt analysis

are also to be considered. Once the spectrum is transformed into the specmurt do-

main, only the spectral structure is considered because the pitch information is hidden.

Therefore, it is capable of grouping the same sound qualities into the same vector re-

gardless its fundamental frequency. It is an advanced version of the specmurt analysis

which represents also the time-varying components. It is also beneficial to pre-segment

the audio signals by means of previously discussed segmentation algorithms before op-

erating the NMF based decomposition. Since the NMF utilizes statistical analysis, the

targeted audio signals are better segmented into more isolated units in order to reduce

the complexity of the sound quality, and which makes it easier to find the best spectral

profiles.

93

Part V

Classification

13 Introduction

The classification is a data mining technique which automatically assigns an individual

unit of audio data to a number of categories or classes according to its descriptive

features extracted by the FFT-based analysis. This process aims to extract common

characteristics from a data set and sort them in a straightforward and concise format.

The classification is one of the most essential operations to increase the efficiency of

Pattern matching and the Music Information Retrieval (MIR).

Firstly, we define several related terms to avoid confusions and misunderstanding as

some have almost the same meanings but slightly different concepts in some particular

contexts. For instance, three terms, Pattern matching, finding the Best Matching Unit

(BMU), and the MIR are the almost equivalent in our synthesis process. These words

indicate tasks to search a unit or a unit sequence, which has the most similar structure

or characters to that of a target, in a data set. Accordingly, we describe the pattern

matching as a process to find the BMU retrieved from a database, which corresponds

to the MIR. The BMU is selected by calculating dissimilarity between a candidate unit

and a corresponding target unit. Similarly, the classification operates a categorization,

and its consequence is designated as classification model, feature space or learning map.

The classification model indicates simply the result of this process and other equivalent

words, the feature space represents a classified features by audio analysis which is often

used in the audio analysis or electronic music, and the learning map focuses on the

machine learning or neural network.

The classification enhances the efficiency of pattern matching by building a model or

learning space of characteristic patterns or structures of a data set and sorting data in

a particular order. This process avoids searching superfluous area of a data set, and as

a result, it reduces a computation time significantly. Also the classification model can

illustrate a distribution of a data set, and it gives a weight of each member of datum

which represents a degree of the presence of its data property. This aspect of the model

becomes a criterion for evaluating whether a datum belongs to a group of majority or

minority of a set. When it belongs to the majority group, we may have more candidates

94

to be matched to the target unit and have a higher expectation to obtain a good results

than the one assigned to a minority group. Therefore, this criterion is appropriate to

measure the adequateness of the matching between the selected target and database.

The classification model and the above-introduced criterion are also available to

compare the patterns of units sequences. When the successive units are sorted in the

same or similar categories, the categorization result suggests that no significant audio

novelties occurred in the sequence. On the other hand, when units are assigned to

diverse categories, we can expect a wide variety of sound events in the sequence. A

chain of categories itself becomes a criterion to identify characteristics of a sequence of

units which is known as the Markov Chain. We can find the Best Matching Sequence by

calculating the distances between chains of categories to which each constituent units

belong.

There are various ways to operate the classification to build a learning space. We

will here discuss the Self-Organizing Map (SOM) which is a neural network employing

unsupervised learning introduced by Kohonen in 1981. Although the SOM is one of

a primitive neural network under existing algorithms, it has been actively studied and

extended for long years due to its straightforward structure and easy implementability.

There are many studies proving its usability and efficiency particularly for building a

small scale model[54]. The SOM we have developed is capable of operating the data

retrieval task on the main memory of the computer, which is called In-Memory Database

or Memory resident database system, and it realizes fast database management. The

speedy data retrieval is one of the most significant issue for our synthesis system, since

it requires quick and easy access to the large amount of data.

The SOM based classification takes three steps; firstly, we operate a learning process

in order to build a classification model or a learning map of a data set. The model illus-

trates the typical characteristic patterns of units in a set and their topological mapping.

Secondly, each unit of sources is categorized into a model according to its descriptive

features. A result obtained by the categorization illustrates a distribution of the source

units and gives a relative weight to each unit which represents a (dis)similarity to its

assigned category. Finally, we apply the model for associating the characteristic pattern

of a target with sources. Throughout the process, the target units are labeled category

index and the weights which represents a distance between the unit and its categorized

characteristics pattern of a data set.

95

The Labeling re-identifies the characteristics of target units by lower dimensional

criteria which are the coordinates of the learning space as shown in figure 53. The

original features are preserved and are employed to evaluate the detail characters. Since

the low dimensional criteria are relative to the character of the data set, the accuracy

of the labeling becomes rough or rigid depending on the distance between a target and

a source data set. For instance, the Labeling result is more reliable when a target has

similar characteristics to a mass of the sources in a data set, and vice versa. In any case,

the criteria are specialized for the sources but not for the target and thus, the labeling

method is not the best efficient way to realize theoretically precise identification to the

target, but it is valid for our reconstruction process. This is to be discussed profoundly

later in the Labeling section.

The property of the classification is significantly influenced by the employed features

and in other words, the selected features determine how the database is categorized. For

instance, the magnitude feature is employed to categorize a database into distinct dy-

namics and the Mel-Frequency Cepstrum Coefficients (MFCCs)10 is for timbres. When

we combine multiple features, the database is categorized into complex characteristics.

The smaller number of features tends to produce higher reliable classification model,

and in contrast, those of the larger number reduces its reliability due to the curse of

multidimensionality as we can see in the poor generalization11. According to the Neural

network Design[59], for the network to be able to generalize, it should have fewer fea-

tures than there are data points in the training set (a concept advocated by Ockhams

Razor). For our case, a more versatile network is desirable for our synthesis, and the

design of the highly generalized network is the highly prioritized task.

14 Feature Vectors and Feature Space

As discussed in the Audio Analysis section, we employ several descriptive features in

order to identify the characteristics of audio data. In the classification, we represent a

set of features as a vector in order to simplify the further processes. The n-dimensional

features are represented by a vector X as follows,
10MFCCs discussed in the Audio Analysis section.
11The generalization problem is also related to the number of training data. More features demand more training data

to have a well-trained network and otherwise, the resultant network can not adequately represent the training set and
thus, it is less reliable.

96

Figure 53: Reduction in criteria by categorization.

The original features consists of several criteria (left). The categorization process reduces the number
of criteria into two or three features (right).

X = (x1, x2, . . . , xn)
t (61)

where t means transposition of the matrix[60]. Considering a n-dimensional feature

space which shows a distribution of the feature vectors, each vector is located at a

certain position according to the member values, and it is represented by a dot in the

space. A distance between two vectors corresponds to a distance between two dots,

and it can be calculated by Euclidean distance or inner product. Figure 54 illustrates

a n-dimensional feature space and two distinct vectors X and X ′. A dotted line with

D shows the distance between them.

Figure 54: n-dimensional feature space

The vector representation is useful to apply to the descriptive features because of

97

its capability of handling a data chain. In the case of the audio analysis, each member

of a vector corresponds to distinct features such as Magnitude, Centroid, Pitch, and

MFCCs. The number of features and their combinations vary depending on the purpose,

e.g., what characteristics to describe. The feature space represents the distribution of

the audio data according to the employed features, and thus, the distance between two

vectors on the space represents the (dis)similarity of two audio units.

There are two problems to be addressed regarding the application of the feature

space in the audio analysis.

The first problem is that the features are not described in the same measurement

unit but are represented in various scales which have different ranges of values[61]. For

instance, the linear magnitude is represented by a linear scale of 16bit data which is

variable between 0 to 65,536. The centroid and pitch are represented by frequency

(Hz) between 0 to ca. 22kHz at the sampling rate of 44.1kHz. The ranges of values

are not coherent among distinct features, and thus, the distance of each feature is not

compatible and has different property. Furthermore, the human auditory system does

not perceive sounds in the linear scale but the exponential scales such as decibels and

pitches which is generally represented as MIDI-pitch numbers. The different scales

vary the balance of a feature space, and as a consequence, they change the distances

between vectors. While analyzing the features, we cannot assume that all of them have

the same weight in the perception. This problem prevents building a reliable pattern

model illustrating the static relationships between vectors.

Rescaling all features to a straightforward value range is one of the easiest solutions

to organize a static feature space. For example, Normalization (section 16.1) is ca-

pable of simplifying values and typically, it rescales any values between 0 to 1. This

method is beneficial when rescaling an exclusive feature or sets of values represented

in the same measurement unit. However, when applying it to feature vectors, it can

change the original weights among distinct features because the normalization ignores

the distribution of entire values in a feature space, and it homogenizes them regardless

of their actual weights. In contrast, the Standardization rescales all member features

in a coherent scale while preserving their wights in a space which will be introduced in

the section 16.3. One smart solution focuses on calculating the distance between two

vectors without rescaling values (section 16.2). This way, we can ignore the distribution

weights of features because the distance is represented by a ratio between two vectors

98

as long as representing them in the linear scale.

Another problem is considered when a dataset has a strong bias in its features. For

instance, when a dataset consists of audio data which have very low magnitudes and

in contrast, a rich variety of pitches, the resultant space has a large distribution in

pitch and a small one in magnitude. However, this distribution bias does not tell us

why it occurs e.g., whether it comes from the difference between measurement scales

or merely from the characteristics of the dataset. In the former case, we need to

adjust the weights to the appropriate balance, but the latter, we should evaluate as

it is. The two features; dynamics and brightness, are relatively perceptible by our

audible system which enable us to estimate the regular value ranges. Therefore, we can

conclude that the result shows low magnitude trend and can give some parameters to

adjust the distribution balance manually. However, when handling abstract features

such as spectral flatness and MFCCs, it is hardly possible to estimate how each feature

take values under particular conditions. Especially, the MFCCs are multidimensional

in themselves, since each MF-band could be considered as a component of a vector,

and each coefficient may take different value range. The lower coefficients tend to

take much larger values than those of higher because they hold more crucial properties

determining the spectral envelope. However, we cannot define what extent they are

significant compared to others.

Some studies related to the pattern matching of pictures and speeches apply the

standardization in order to adjust the balance of significance among distant features

according to deviations of the features[60]. Before discussing these rescaling algorithms,

we will show the basic algorithm of the Self-Organizing Map (SOM) and how the feature

vectors are employed there.

15 Self-Organizing Map

Self-Organizing Map (SOM) or Kohonen network is an artificial neural network which

performs classification where It clusters the corpus data into distinct groups. Sine the

SOM is introduced by Kohonen in 1981[50], various advanced algorithms have been

studied[54]. The algorithm is inspired by the structure of the human cerebral cortex

which manages recognition and perception. The SOM operates unsupervised learning

to represent the topological properties of the input multi-dimensional data series into

99

two or three-dimensional feature maps after a training process.

The SOM has two phases; the first is the learning of the map using the training

dataset and the second is the prediction in which the new data are given their location

on the converged map according to their vectors. Through the entire process, the

SOM performs in the basic unit of a neuron or node which is characterized by a vector

consisting of the features equivalent to that of the input dataset. A vector of a node

is adjusted throughout the learning process, and conclusively it represents one of a

characteristic pattern of a training dataset. Therefore, the output map illustrates a list

of the statistic pattern of the dataset.

Now we will shortly describe some steps of the learning. Initially, the output map

is filled up with random numbers, snd subsequently, a training dataset is selected from

the input dataset and presented on the map12. The node which has the most similar

vector is called the Best Matching Unit (BMU), and the updating weight is propagated

around the BMU towards neighboring neurons. The bigger weight of modification is

given to the nodes close to the BMU and vice versa. There are some other parameters

such as the update radius which determines the area propagating the update weights,

and the update ratio constrains the extent of the modification. This learning process

is repeated many times, and as a result, the nodes of a map gradually get closer to the

statistic pattern of the training dataset and thus, the updating weight declines. The

iteration ends when the weight becomes sufficiently small.

After the learning process, we obtain a converged map which represents relative dis-

tance in the space of the training dataset. Units of whole input dataset are categorized

on the map where each unit is given a pair of x-y coordinates on the map, and there-

fore, they are clustered according to their vectors. Units with similar characteristics

are positioned in the same or close place on the map.

Figure 55 shows the categorization process using the SOM. We first divide a database

into two groups of data; the training data and others. The training data is separated

when using a large size of database and otherwise, all input data is used for the training.

When we inspect the quality of the learning map, we operate a test and then, we also

obtain the third group which is the test data. The training data and the test data need

to be separated in order to obtain a precise test result.
12The input dataset is divided into a training and test datasets in order to inspect the learning quality which will be

discussed in the further section.

100

Figure 55: The categorization process using the Self-Organizing Map

The input data set (database) is divided into training data and others, or all input data are used as
training data. The training data, which corresponds to the input layer, is trained and results in a

map corresponding to the output layer. Eventually, both the training data and others are categorized
according to the obtained map, and hence we obtain the categorized data set.

15.1 Kohonen’s learning law

We will describe the basic algorithm of the Kohonen’s self-organizing map according to

[53].

Let one-dimensional network of the Kohonen self-organizing map (w1, w2, . . . , wm),

m ∈ R and an input vector space v1, v2, . . . , vn.

We define an initial update radius r which constrains how furthest nodes the update

weights propagate from the BMU, a learning constant η, and a neighborhood function

φ. The neighborhood function φ(i, k), where i is the index of the input vector, and k

is the index of the BMU, represents the strength of the coupling between unit i and k

during the training process.

We select an input vector ξ from the input space and find the BMU wi from the

map in which the distance between wi and ξ is minimal and thus, i← arg min
i

|wi− ξ|.
The each weight vector of the map w is updated using the neighborhood function and

the update rule as follows.

wi = wi + ηφ(i, k)(ξ − wi) (1 ≤ i ≤ m) (62)

101

This process is repeated until the number of iterations has been reached to the

initially defined iteration time. Figure 56 illustrates an initialized map and the trained

map where each node has 8-bit data which is 0 to 255 values (0 is black, and 255 is white)

as a feature. After an iterative learning, random grayscale colors are organized according

to its color information, and the result appears as a gradation which interpolates white

and black colors.

Figure 56: The result of the SOM.

An initialized map (left) with random values between 0 to 255 (8 bit) and a trained map (right)
where the random grayscale is organized in the order from dark to bright.

We give a demonstration of the SOM using simple pictures of various shapes as shown

in figure 57. The picture consists of approx. 320x320pixels and each pixel has 8bit data

size (0 to 256) which represented a grayscale color. In order to extract feature vectors,

the pictures are compressed into 16x16 pixels, and each of them has 256 data series.

We utilized a two-dimensional SOM with 64 number of nodes which is eight nodes per

side, and each of them has 256 values. The program operates an unsupervised learning

thereby organizing the pictures in distinct regions in which similar shapes are adjacent

to each other. Figure 58 shows the resultant map visualizing its nodes as grayscale

pictures. We can observe topological relationships and their shape gradations between

shapes. The horizontal line of the map is represented as (x1, x2, . . . , x8) and the vertical

line is (y1, y2, . . . , y8) and thus, a node is identified as (xi, yj).

15.2 Categorization

After the map is trained, each picture is stored in the node which has the closest feature

vector, and the node is called BMU for the picture. The BMU is found by calculating

the distance between the vector weights of the input picture and the vector weights

of each node. This distance is calculated in an assumed Euclidean Space in which

102

Figure 57: Pictures of the Twelve Shapes

it is possible to map or calculate multi-dimensional information into a single vector

value based on the Pythagorean theorem. For instance, a distance of two dimensional

coordinates (x1, y1) and (x1, y2) is calculated by the following equation,

d =
√

(x1 − x2)2 + (y1 − y2)2 (63)

With the above equation, the distance between between n-dimensional coordinates

f(t) = (x1, y1, z1, . . .), g(t) = (x2, y2, z2, . . .) is calculated by follows,

dn =

√√√√
n∑

1

(f(t)− g(t))2 (64)

The node whose distance dn to the input vector is smallest becomes the BMU.

Through this process, similar pictures are stored in the same or in adjacent nodes.

For instance, categorizing some new input pictures which do not belong to the trading

data, may be assigned to nodes which are not sufficiently similar but the nearest on

the map. This matching method finding the most similar unit is called as Nearest

Neighbor algorithm (NN algorithm). The quality of the categorization is significantly

reduced when using a deficit number of training data, or when training data have poor

variations. A larger number of training data is capable of build more relatable learning

map, and vice versa[61].

The table 1 shows the result of the categorization and counts of the input data

each node has. The 18,333 numbers of randomly generated pictures are used, and the

average of counts in each node is 286.

103

Figure 58: Trained map consists of 8x8 nodes

Figure shows the trained map of the shape pictures shown in figure 57. We can see how adjacent
nodes are related to the original pictures. Between the nodes which illustrate nearly the original
pictures, there are some other nodes which interpolate these topological characters appearing as

gradations.

104

Table 3: Data distribution.

(xi, yj) 1 2 3 4 5 6 7 8

1 200 142 87 175 216 156 478 503
2 15 327 156 289 109 78 407 69
3 482 667 262 731 414 561 191 328
4 288 436 250 385 449 191 331 121
5 281 720 347 80 86 408 222 557
6 119 269 1335 194 111 199 95 117
7 160 449 122 279 70 132 118 254
8 321 96 585 360 136 25 310 282

The table shows the distribution of the input data in the categorization result. The vertical line
represents x-coordinate of the map, and the horizontal line represents that of y-coordinate. The

number represents the number of data assigned to the corresponding node.

Figure 59: Data distribution in 3D graph

15.3 Self-Organizing Map for Audio data

In the previous example using picture data, data of a small area of a picture is stored

in a node. In the case of audio data, a sound file is divided into multiple smaller units

which are then individually stored in different coordinates of the map corresponding to

their characteristics. The calculation method for measuring the distance between and

unit and a node is also different. In the case of the picture, the Euclidean distance

was calculated with subtraction. All feature vectors of picture data represent the same

property in 8bit data. In the case of audio data, however, each criteria represents

totally different perceptual aspects of sound data as discussed in the feature vector

105

section. There are several methods to solve this problem as we will introduce in the

next sections.

16 Scaling

16.1 Normalization

Normalization is a way to adjust values measured on different scales to a common

scale. A feature vector which identifies a single frame, consists of a set of features

and each of them is measured in different units. The normalization transforms these

values into equally compatible format whose range is between 0 to 1. The most simple

normalization is defined as follows.

Considering a set of feature x = (x1, x2, . . . , xi), where i denotes a frame index, the

normalization of each value is calculated by the following formula.

z(i) =
x(i)−min(x)

max(x)−min(x)
(65)

The normalization scales a data set in simple and concise representation and it is

particularly beneficial when building a model for an exclusive feature set. indeed, the

normalization is applied for some analysis algorithms we have already discussed. For

instance, the Specmurt analysis employs a sigmoid function which is the nonlinear

mapping function and where the normalized input values are employed in order to

assess the suppressed weights efficiently throughout the iterative estimation. The Non-

Negative Matrix Factorization also uses normalized parameters when calculating the

Auxiliary function in the optimization process.

While the normalization is useful method to simplify some processes, it is problematic

when comparing multiple feature sets. The reason is that the scale is operated to a data

set without considering its variance. The variance is one of the most significant criteria

to know the character of the data set. When the variance is small, the data members

are close together and they are similar to each other and vice versa. This principle is

not related to the measurement unit but to the statistic character of the data set.

For instance, defining two feature sets, A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn),

and assuming that one has small variance and other has large variance. In the nor-

malization, both feature sets are scaled equally from 0 to 1 which means, it enlarges

ones weights and reduces others. Let normalized vectors A′ = (a′1, a
′
2, . . . , a

′
n) and

106

B′ = (b′1, b
′
2, . . . , b

′
n). The distance between two vectors v1 = (a′i, b

′
i)
t and v2 = (a′j, b

′
j)

t

can be calculated by Euclidean distance as D =
√

(a′i − a′j)
2 + (b′i − b′j)

2. Although the

members of A′ and B′ are assumed to be compatible with each other, they are actually

scaled arbitrarily from 0 to 1 and thus, the original weights are lost. The obtained dis-

tance does not represent the appropriate result. The error is worse when the variations

of two data sets are more different, and smaller when they are closer.

16.2 Distance measurement

The above discussed problem can be solved by applying some methods of distance

measurement. One solution will be calculating the Dissimilarity ratio between two

vectors. The dissimilarity ratio is calculated by dividing corresponding features as

follows.

Let the original feature set A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn), the dissimi-

larity ratio between two vectors v1 = (ai, bi)t and v2 = (aj, bj)t is

Dratio =
min(ai, aj)

max(ai, aj)
+

min(bi, bj)

max(bi, bj)
(min(ai, aj) > 0), (min(bi, bj) > 0) (66)

When both of corresponding members are 0, then the result is 1 which means the

two vectors are the same and when the result gets close to 0, the difference between two

vectors is large. One restriction of using this method is that it requires non-negative

inputed values.

Cosine Distance or Similarity is also the one which measures distance between dis-

tinct vectors. It is also called as dot product. We have already introduced this method

when calculating the Self-Similarity Matrix. The Cosine Distance is calculated by the

following formula.

Dcos = cos(θ) =
A · B

∥A∥2∥B∥2 =

∑n
i=1 Ai · Bi√∑n

i=1 A
2
i

√∑n
i=1B

2
i

(67)

The resultant distance of -1 meaning exactly opposite correlation, a distance 1 mean-

ing exactly the same, and a distance of 0 meaning total decorrelation.

16.3 Standardization

Let a set of N number of values x : N ∈ R, its mean which we denote x̄ is

107

x̄ =

∑N
n=1 x(n)

N
(68)

The variance of a set of values which is represented as σ2 is defined as

σ2 =

∑N
n=1(x(n)− x̄)2

N
(69)

A root of the variance gives a Standard Deviation σ which is a measure of how the

member of the data set spread out as follows.

σ =

√∑N
n=1(x(n)− x̄)2

N
(70)

Eventually, each member of the data set is standardized by the following formula.

z(n) =
x(n)− x̄

σ
(71)

The standardized data set Z has its mean of 0 and distribution of 1 which is known

as the standard normal distribution. The standard deviation lets us know the character

of a data set since the variance suggests the datas spread size compared to the mean

value. The variance is bigger when the data set has wider variations where the member

data have bigger distances to each other. On the other hand, when less variation occurs,

they have smaller variances and hence smaller distances among them. The standardized

values indicate measures of the dispersion from their mean and we can predict from

the weights of each values whether it belongs to the majority or not. For instance,

we applied standardization in order to build the universal segmentation model which

detects audio novelties as discussed in the Segmentation section. In the segmentation

algorithm, it is more favorable to detect the exclusive peaks to avoid noisy peaks.

Figures 61 and 62 show the distribution of the feature vectors of a drum loop

(Drum_Loop1.aif) and a flute fragment (flute-fragment.aif). Each dot represents a

vector of a frame which consists of two features; Magnitude and Centroid. The thicker

lines indicate the averages of corresponding features. As shown in the original data

distribution, the vectors of the drum loop sound are distributed over broader frequency

bands as it consists of the low sounds produced by bass drum and the high sounds

by hi-hats as well as the broader range of dynamics compared with the flute fragment

sound. The difference between the characteristics of two sounds is apparent in their

108

original data distributions. Note that the measurements of both Magnitude and Cen-

troid are defined in order to capture all vectors, but they are not scaled to represent

any relationships between two features. Although we can see the Magnitude vectors

spreading out in twice broader than that of the Centroid in the flute fragment, it does

not describe that the Magnitude is more variable than the Centroid. Similarly, the nor-

malized data distributions, which are shown in the middle line in figure, are the result

of mechanically rescaling all features from 0 to 1 and thus, they have the same distance

in appearance. However, this method loses the actual proportions of the Magnitude to

Centroid, and therefore, the normalized values are not adequate to represent the real

distances of vectors.

In contrast, the standardization rescales a data set according to how the members

are far from its mean and therefore, it is capable of preserving the actual proportion

of distinct features[60][61]. Observing the original data distribution, the Centroid of

the drum loop equally spreads out over broader frequency bands, while the majority

of the Magnitude concentrate on lower dynamics area hence it has a strong bias. The

mean of the Centroid is located at the position close to the middle of entire data, but

that of the Magnitude is located at a much lower position. Since the vectors in the

higher dynamics area are sparse whose number ratio corresponds to only 2% of the

population, we can assume that these vectors are categorized in the irregular members.

The normalization tends to represent the majority dataset with smaller distances as

the irregular members farther from the mean. This aspect loses the actual weights of

distance between data. On the other hand, the standardized data distribution shows a

higher range in the Magnitude than in the Centroid since the Magnitude has broader

distribution. Therefore, it preserves the actual proportions in both the majority and

the minority groups and as well as those of the two features. A degree of how a feature

spreads can be measured by the Coefficient of variation (CV) which is calculated by

dividing standard deviation by mean[62]. Since both parameters, standard deviation

and mean are calculated in the same measurement unit, the obtained CV shows the

same values regardless of their value ranges. Therefore, we can know how the values

actually spread out between distinct features.

Figure 60 illustrates the typical case of how irregular data gives a detrimental effect

on the majority data set in the normalization. Figure shows two data sets of the original

and the normalized data; one is without any irregular data (left), and another is with a

109

few irregular data (right). The arrows indicate the distribution ranges of the majority

data sets. While the original data sets have absolute distances between data no matter

how they contain the irregular datasets, the normalized one has a rescaled distance

where the majority datasets are significantly compressed in small areas when having

some irregulars. This example shows the case of only one feature having irregular data,

but imagine several features having unpredictable number of irregulars. The obtained

feature space gives unnecessarily large weights on the distances between the irregulars

and the majorities, and it cannot represent adequate ranges in the majority of the data.

As shown in figures 61 and 62, the CVs of the drum loop sound are the Magnitude

CV = 1.1313472, and the Centroid CV = 0.3161678 which show the high variations

of the Magnitude and the low of the Centroid in their distributions. Indeed, many

vectors take much higher values in the Magnitude than the average, and in contrast,

those of the Centroid concentrate around the average. The normalization modifies the

actual weights between features. While the Centroid values preserve relatively the same

weights to the original, the majority of the Magnitude is significantly compressed in

much lower weights. Therefore, the distance of the Magnitude between vectors are now

underestimated, and it brings a bias in the feature space. In the standardized data

distribution (left), both features are now rescaled according to their distributions and

the feature space is coordinated properly as only majorities fit into an area enclosed by

a regular square. Note that the graph takes now the same value ranges in its vertical

and horizontal axis which are minus three to six.

Comparing with the drum loop example, the features of the flute fragment spread out

similarly which are a consequence of the moderate CVs. In that case, the normalized

data and standardized data does not differ dramatically. That is the reason why the

flute sound does not have high variations in its timbre and dynamics in the phrase. The

CV feature is an useful criterion to assess the bias of a feature space and therefore, this

feature informs us of the characteristics of the dataset.

110

Figure 60: The detrimental effect of the irregular data.

The data distributions of the original datasets (above) and the normalized datasets (bottom). The
sets without irregular data (left) and the one with irregular data (right). The circles with a thicker
line mark the irregular datasets. The distributions of the majorities are indicated by arrows with the

values which represent its ranges in the scales.

111

Figure 61: Drum loop sound : Comparison between the original (left), normalized (middle), and
standardized data distribution (right) of two features; Magnitude and Centroid.The coefficient of
Variation; Magnitude = 1.313472 and Centroid = 0.3161678

The analysis condition is the FFT frame size of 1024, hopsize of 512. The drum loop audio data has
302 frames. The graphs illustrate the distribution of frames in two features; the Magnitude

(horizontal line) and Centroid (vertical line), and their vector is shown as a dot on the feature space.
The top figures illustrate the original data distribution, and the middle illustrates the normalized

data, the bottom illustrates the standardized data respectively.

Figure 62: Flute fragment : Comparison between the original (left), normalized (middle), and standard-
ized data distribution (right) of two features; Magnitude and Centroid. The coefficient of Variation;
Magnitude = 0.507432 and Centroid = 0.466657

The analysis condition is the FFT frame size of 1024, hopsize of 2. The flute fragment audio data has
343 frames.

16.4 Categorization process

16.4.1 Self-Organizing Map with MFCCs

We give a demonstration of building a classification model by using the Self-Organizing

Map. Here, we will use MFCCs as the feature vector.

In the audio analysis, we extracted 27 MF-bands and employed the first thirteen

112

MFCCs. The first coefficient is discarded as it represents the entire power of the spec-

trum and therefore, the 2nd to 13th coefficients are ultimately preserved. We defined

the number of coefficients in an adequate compromise between a good representation

of the spectrum envelope and a decline of the impact of the multi-dimensionality prob-

lems for the feature vector. Although it is meaningful to employ other features such as

Magnitude, Centroid, etc., we focus on only MFCCs in order to simplify the process.

We have prepared three kinds of databases for the demonstration as follows. The

piano database which focuses on similar sound qualities but a vast range of register.

The percussion database containing various percussion sounds with or without a sense

of pitch. The Violoncello database containing the Arco, Pizzicato, and various extended

techniques, which focuses on similar sound qualities with rich variations. Secondly, we

operate the spectral analysis by using FFT under the condition of a frame size of 1024

and the hopsize of the FFT half size. The detailed properties of the database and

analysis are shown in the table 16.4.1.

Table 4: Database Property

Database Files Data size FFT frames Segments FFT size Overlap

Violoncello 2418 2.93GB 1411500 190759 1024 2
Percussion 689 0.45GB 183395 19697 1024 2

Piano 260 1.5GB 690870 91933 1024 2

The table shows the contents of a database, the number of files, its data size, the number of the
obtained FFT frames, segments obtained by the segmentation algorithms using Delta-MFCCs, and

the analysis FFT size, and overlap number respectively.

After operating the analysis, each MFCC is standardized according to its deviation

and mean which are then utilized to standardize new input units or target units in order

to unify the measurement and preserve the compatibility between target and sources.

The input units are rescaled regardless of their deviations but by those of the sources.

Figure 63 illustrates the structures of the classification and the MIR in the synthesis

process. The standardized source dataset is divided into three sets; a training dataset,

a test dataset, and others. All datasets are eventually categorized into the model after

the training process is complete and the learning test is done. The features of the target

dataset is standardized according to the deviation and mean calculated from those of

the source dataset and then, the target dataset is examined in the pattern matching

process. The retrieved BMU is employed in the synthesis process, and finally, we obtain

113

a synthesis result.

Figure 63: The Categorization and MIR processes in our system

Figure 64 to 68 illustrate the resultant SOM of the three database introduced in

the table 2. The vector of each node, which consists of twelve MFCCs, is visualized

by a black line and a white number represent a count of assigned units. We employed

larger map sizes when classifying a larger size of database and vice versa. As shown

in figures, the neighboring nodes have similar MFCCs patterns and the farthest have

different one.

The counts of the assigned units are projected on 3D graphs as shown in figure 65, 67,

and 69. The units are not assigned evenly over the map, but a considerable number of

units are concentrated in a few nodes. This bias implies the character of the database

or otherwise, the map is too small to represent another variation of characteristics

patterns.

Another aspect of the bias arises from silence in audio data. As the SOM represent

the topological relationships between distinct patterns, the map has only one or a few

nodes which represent silence. The audio data often contain empty or quiet parts at the

beginning and end of the data or between each musical event, and therefore, a plenty of

114

empty units are assigned to a small area of the map, and as a result, it yields a strong

bias in the distribution of the assigned units. In order to prove this hypothesis, we

tested the SOM training with a Magnitude threshold which is used to assess the input

units whether it contains signals or silence.

Figure 64: The SOM (5x5 size) of the Piano database.

The black lines represent the eleven MFCCs of each node, and the numbers show the units
categorized in the node. The MFCCs patterns of the piano database have gentle curves and are

relatively similar each other.

115

Figure 65: The distribution map of the categorization result of the Piano database.

The z-axis represents the count of units assigned to the corresponding node located on the (x,y)
coordinate of the map, which is also illustrated by color, where the red color represents a higher

number, and the blue color represents a lower number of units. Note that the angle of the graph is
appropriately rotated in order to show all undulation of the entire graph.

116

Figure 66: The SOM (6x6 size) of the Percussion database.

The black lines represent the eleven MFCCs of each node, and the numbers show the units
categorized in the node. The MFCCs patterns of the percussion database are diverse, spiky to gentle,

and flat to rough curves due to their variable sound characters.

Figure 67: The distribution map of the categorization result of the Percussion database.

117

Figure 68: The SOM (8x8 size) of the Violoncello database.

Due to its large database size, we made a large map size (8x8). The Violoncello database is comprised
of a large size of similar sounds and their variations, and also large number of unique sounds.

Figure 69: The distribution map of the categorization result of the Violoncello database.

118

16.4.2 Short digression on single peak distribution

Figure 70 shows two 3D graphs representing the categorization results operated un-

der different Magnitude thresholds. The left case excluded ca. 5.15% of units whose

Magnitudes are under 0.0001, and the right case excluded ca. 53.5% of units whose

Magnitudes are under 0.01. While the left map has a peak in which plenty a number

of units are assigned, the right one has multiple moderate peaks which proves that the

units disperse in a broad area of the map. This result suggests that the most of the

silence or quiet units tend to concentrate on a few nodes, and others spread out in the

entire map. We can easily explain what is happening throughout the learning process.

The silence or sufficiently quiet units have similar vectors which are always presented on

the same BMU on the map through the iterations. Since both learning rate and radius

become smaller as progressing the learning, the vector representing silence converges to

a narrow area of the large map, or an exclusive node in a small map. The silence units

do not have many variations, and thus, they are categorized to the same place.

Figure 70: Comparison of the distributions of assigned units between Magnitude threshold 0.0001 and
0.01

The categorization result with the Magnitude Threshold of 0.0001 (right) and with 0.01 (left). While
the right graph has an exclusive peak which indicates around 1600 units, the peaks of the left one
disperse over the entire map. Note that the maximum units count is now around 600 which is

approximately one third to that of the right.

16.5 Parameters of the SOM

As previously discussed, we give some parameters in order to constrain the learning

process of the SOM. There are four crucial parameters which influence the quality of

119

learning result, which are the map size, learning radius, initial learning rate, and learn-

ing iteration number. Appropriate values should be given depending on the properties

of the database.

For instance, the learning rate and iteration affect the rate of learning progression,

a high learning rate accelerates the learning progress but it may result in a rough or

erroneous map. The negative side of the high learning rate would be improved by giving

more learning iterations. However, the problem is still significant. Since the learning

rate slowly decreases as progresses the learning, the units selected at the beginning

give larger impact on the initial map and thus, they are superior to the laters. This

phenomenon is called a winner-takes-all competition[59]. Therefore, we need to balance

the learning rate and iterative number appropriately in order to avoid this adverse effect

on the unsupervised iterative learning.

The trained map is expected to cover whole characteristics patterns of the units

constituting the database, and the ideal categorization lets the units distribute evenly

over the map. However, in a practical situation, it is hardly possible to obtain such

a categorization result due to variable factors. For instance, we can consider a case

when the units of a database can be divided into major groups in their characteristics

patterns, and the two are very different to each other. The resultant map attempts

to represent their major patterns as well as a considerable number of complemental

patterns which represent the transitions between them. However, there are only a few

units that match to the complemental nodes, and as a result, the assigned units are

dense in some nodes and are sparse in others. This consideration suggests that the bias

against the distribution of the assigned units over the map is inevitable. However, we

can improve it by adjusting the appropriate parameters of the SOM and removing some

silent units as previously discussed.

16.6 The Test using the Cross-Validation method

In order to adjust the parameters, we need to reveal the process of learning and as-

sess the quality of the resultant map. We operate a test against the trained map to

evaluate its accuracy and generalization levels. We have employed the Cross-Validation

(CV) method which has been developed as a remedy to prevent a learning space from

progressing an overfitting[58]. The result of the CV describes the adequateness of the

trained map for the same dataset from the input. We have also extracted some features

120

throughout the test process, which represents the distribution of the units categorized

in the map, the distance between the inputs and map, and the generalization level of

the trained map.

In the CV, we first separate an input set into a test and training. The test set is

organized by picking up a unit every two to several continuous units from the input. The

continuous units correspond to a sequence of a musical event, and thus, the neighboring

units may have similar feature vectors. The interval of each test unit should be defined

according to the hopsize13 used in the audio analysis because the ideal test set should

have different but similar set of vectors to those of the training. Therefore, the small

hopsize requires more interval to extract the test units in order to avoid equaling the

two sets.

Figure 71 illustrates the process of the CV where it picks up a test unit every two

inputs.

Figure 71: Cross Validation test algorithm.

This figure illustrates dividing the database into two sets which are the training data and the test
data. The Cross Validation chose the test data every one to several data and thus, it can make a

separated data set which can cover the characteristics of the entire data set.

Since the CV is a method to divide test and training data, we need to analyze the

learning result and extract some features representing the quality in order to know the

adequateness of the parameters.

We investigated the distribution of the assigned units over a map in order to assess

how the resultant map covers the characteristic pattern of the training set. Furthermore,

we process the test dataset consisting of another sound units which has no relations

with the training set in order to measure the generalization level towards unpredicted
13The hopsize constrains the extent of shifting the FFT frame on the time axis, and thus, the small hopsize will

produce units that contain more common signals in its neighboring units, and vice versa.

121

sound type. The test dataset covers various sound characteristics patterns, from noisy

to timbral tone, human voice, instrumental sound, percussive to resonated tone, and so

on.

16.7 Distribution Coefficient

In order to know the distribution of the units, we simply counted the number of units

assigned to each node and calculated the deviation. For instance, the table 1, which is

shown in the Categorization section, illustrates the list of units corresponding to each

node. Firstly, we calculate a mean count M which is shown as following formula.

M =
TotalUnitsCount

MapSize
(72)

The distribution coefficient T represents the deviation between the mean count M

and the actual count of each node xi,j where i, j represents a pair of indices of a node

as follows.

T =
(
∑i

1

∑j
1

√
(M − xi,j)2)/MapSize

M
(73)

When the units concentrate on a small area of the map, T gets higher value, and

in contrast, it gets close to 0 when they spread evenly over a map. For instance,

when a total 1000 units are categorized in a map whose size is 10x10, then M is

1000/100 = 10 which means, each node should have ten units in average. If all nodes get

10 units as a result of the categorization, then the T becomes 0 as seen in the equation
√
(10− (xi,j = 10))2, and otherwise, T takes a larger value as higher deviations.

We also calculated the average distance and the deviation of units for a node. The

average is calculated by summing all distances between each unit and its BMU. The

deviation represents how the units vary in a node. Both features represent the catego-

rization quality of each node, and we unified them by calculating means of two features

in order to describe the quality of the map.

17 Test Analysis Results and Discussion

We will focus on the Percussion database for the test because it is expected to have

various sound qualities of all. Figures 75, 76, 75, and 76 illustrate the test results of the

Map size, Learning Radius, Iteration, and Learning Radius respectively. Please note

122

that the horizontal axes of the iteration and the radius are described in the logarithmic

scales. For each test, we determined six features consisting of two main groups which

are the self-test and the other-test. The self-test uses the test dataset extracted from the

input according to the CV method, and the other-test uses another dataset consisting

various sounds. Figure 72 instructs how the features are identified by distinct marks,

and the Self-test and the Other-test are identified black or white colors.

First of all, we describe our interpretation of the features as follows; the combination

of the high distance and deviation suggest that most of the units do not fit their BMUs.

The low distance but the high deviation indicate that some units fit their BMUs very

well, but some are significantly far. The high distance but the low deviation suggest that

the most units equally have considerable distances to their BMUs. The low distance

and deviation suggest that the most units fit their BMUs sufficiently.

The distribution coefficient is also one of the most significant features to evaluate

the categorization quality. A low coefficient shows that the units are evenly distributed

over the map, which is expected to be an ideal map, and the high coefficient shows

that some units concentrate on a small area of the map which implies a high learning

bias. This feature should be carefully assessed by referring to the map size because the

small map size can easily yield a low coefficient. Therefore, the low coefficient does not

always indicate a satisfactory result.

Figure 72: Test result instruction

123

Figure 73: Test results for Map size (Percussion)

Initial Learning Rate = 0.1, Radius = Map size,
Iteration = optional

Figure 74: Test results for Learning Radius (Per-
cussion)

Initial Learning Rate = 0.1, Map size = 10x10, It-
eration = 2000

Figure 75: Test results for Iteration (Percussion)

Initial Learning Rate = 0.1, Radius = Map size =
10x10, Iteration = optional

Figure 76: Test results for Initial Learning Rate
(Percussion)

Map Radius = Map size = 10x10, Iteration = 5000.
The numbers on the horizontal axis

Figure 75 illustrates that the larger map sizes have lower distances and deviations in

both self and other-test. The decrement is exponential and then becomes moderate for

sizes bigger than 20x20. In contrast, the distribution coefficients increase significantly

in the larger map sizes. For instance, the self-distribution coefficient takes about 3.43

at the 2x2 map size, 0.59 at the 5x5, 0.77 at 15x15, and 1.09 at the 30x30. The result

of the 30x30 map size gets about twice larger than that of the 5x5. We have assumed

the case for the increment as a result of an excessive subdivision of the characteristics

pattern on the map. In the case of the Percussion database, the sound qualities are so

various that they have significant contrasts in their characters. Since a map attempts

124

to represent all statistic patterns and their transitions within the restricted number of

nodes, the extreme patterns are moderated, and they are adjusted to be closer to the

averaged characteristics of the entire dataset. While the average units fit sufficiently

the pattern of a map, the unique units, which have contrastive patterns to the average,

are not assigned to the satisfactory BMU, but they concentrate on the nodes which are

the boundary of another patterns. The typical example is silent units, which tend to

concentrate on a node which has the lowest Magnitude, and therefore, their influences

on the distribution coefficients are crucial. As evidence for our hypothesis, the test

for the map size of the piano database has a flat self-distribution coefficient whereases

it has an ascending other-distribution coefficient. The piano database consists of a

tremendous number of isolated piano samples that capturing whole piano resonances

until they reach the silence so that all sounds have similar sound structures which vary

smoothly through time. For this kind of dataset, it is easier to build a statistic models

that fit the set, and thus, the test result yields better self-distance and deviation results

than those of the other-test. The supremacy of the self-dataset is getting higher in a

larger map size, and ultimately, it is recognized as an overfitting because the resultant

map fits very well for the self-dataset and gets far for the others. In the percussion

database, on the other hand, the overfitting problem seems not to occur due to its

variety of sound qualities.

According to the above discussion, we have concluded that the appropriate map size

stands around the boundary where both distances and deviations get flattened for the

self and other-test, and simultaneously the distribution coefficients are moderate. The

satisfactory result is seen at the 10x10 or 15x15 sizes in the percussion database test

result. For the piano database, it corresponds to the 10x10 map size.

125

Figure 77: Test results for Map size (Piano)

Initial Learning Rate = 0.1, Radius = Map size,
Iteration = 3000

Figure 78: Test results for Map size (Violoncello)

Initial Learning Rate = 0.1, Radius = Map size,
Iteration = 3000

Figure 79: Magnitude Threshold Test

Initial Learning Rate = 0.1, Radius = 10, Map size
= 10x10, Iteration = 3000

Figure 80: Magnitude Threshold Test : The em-
ployed data rate

Initial Learning Rate = 0.1, Radius = 10, Map size
= 10x10, Iteration = 3000

In most cases, the silent or extremely quiet units make a negative impact on the

distribution of the units because they tend to concentrate on a small area of the map

regardless of the map size as discussed in the section 16.4.2. Thats the reason why we

employed the Magnitude threshold to ignore these units from the test process. While

the strict threshold can show us the actual distribution of the meaningful units, it

gives us a risk to discard too many quest units which may be a majority of the input

dataset. For the previous test, we have employed the threshold value of 0.001 which is

126

the moderate value where the 20% to 30% of units are determined as a silent or enough

quiet units, and they are excluded from the learning test.

Figures 79 and 80 illustrate the learning test results for the different Magnitude

Thresholds and the employed units rate calculated by (100 - (removed silent or quiet

units rate))% respectively. This test was operated not by the CV method but by using

the whole input and other-dataset. Since the higher Magnitude threshold removes a

large number of units, we need to use as many units as possible to obtain more accurate

results. The threshold made a significant impact on the units removal and the quality

of the learning results. While the deviations do not change actively, the distances of

both self and other dataset decreases significantly as giving a higher threshold. The

self-distribution coefficient stays flat but the other-distribution increases moderately.

Eventually, more than 80% of the input units are removed when the Magnitude thresh-

old is 0.1.

We need to consider the crucial impact of the noise on the MFCCs features under

the low magnitude. When the audio signal is weak, the envelope of the spectral is

influenced significantly by the background noises, and as a result, it can not represent

the accurate timbral characteristics of the target. We can assume that this problem

declines the quality of the resultant map featuring the MFCCs. Araki who is a Japanese

researcher developing the speech recognition system described the difficulty of the noise

canceling when extracting the accurate MFCCs [61].

18 Two steps Self-Organizing Map

We will shortly introduce the two steps self-organizing map which consists of two cate-

gorization phases. In this method, we have built two maps by using different vectors of

descriptive features. The first map, which is called a parent map, has superior features

such as MFCCs. Each node of the parent map has its own inferior SOM called a child

map, which is trained by means of another combination of the features such as Magni-

tude, Centroid, and Pitches. In this case, the units are firstly categorized into different

timbral characters, and subsequently, the similar units are again categorized according

to their Magnitude, Centroid, or Pitch into smaller categories. Since the parent map de-

termines the major categorization of the units, this process can prioritize the features

whereases the conventional SOM equally employs all features. Generally, we utilize

127

larger size of SOM for the parent map and smaller for the child map because the num-

ber of units gets exponentially smaller throughout the categorization. The advantage

of this method is to avoid making complicated neural network due to a large number

of features and is expected to enhance the generalization level. Furthermore, it is easy

to understand how the units are categorized in each SOM because each categorization

phase is focused on particular features.

19 Regression analysis

Until here, we have discussed the classification method using the SOM for units. The

units hold their features extracted by FFT based spectral analysis. They are mechan-

ically separated into FFT frame size and do not correspond to any musical event. In

reality, we have implemented segments of musical events that are separated by our

algorithm discussed in the Segmentation section. The length of a units sequence is dif-

ferent depending on the contained musical event, and it gains a number of features as

it gets longer in order to represent the time-varying information. The concise features

are ideal to build a straightforward and reliable classification model, and thus, we need

to reduce the dimension of features before processing the learning.

We have operated regression analysis to extract a new feature which represents a

statistic tendency of the variation of features through time. For instance, the structure

of an isolated piano sound forms a decrescendo gesture in its magnitude, and it is

represented as a chain of descending features. Assume a chain as a linear function

f(x), we can estimate its inclination by means of differential calculus which yields a

Differential Coefficient (DC) representing a statistic tendency of the function. Figure 81

illustrates the model of regression analysis, where some number of features distributed

on a space are represented by dots, and a line shows their statistic tendency which is

estimated by the analysis. Figure 82 illustrates an application example of the analysis

of the audio signal in which, we employ the first frame in order to define the beginning

feature of the segment and then interpolate its time-varying gradient by the DC. In

this method, we can reduce the number of features to two.

128

Figure 81: The regression analysis model

Figure 82: The regression analysis for a audio seg-
ment

We calculated the regression analysis by using the least squares method first intro-

duced by Adrien-Marie Legendre in 1805. As we only need to estimate the gradient of

the time-varying features, and thus, it is simply obtained by following formula.

a =
n
∑n

k=1 xkyk −
∑n

k=1 xk

∑n
k=1 yk

n
∑n

k=1 x
2
k − (

∑n
k=1 xk)2

(74)

In the case of Magnitude, we give a ramp function which yields (1,2,3,. . . ,n) to x(k)

and the Magnitude features to y(k).

A weak point of the regression analysis is that, when the features fluctuate through-

out the segment, regression analysis does not represent the moves but merely yields

a flat gradient. This problem will be improved by subdividing the audio signals into

smaller chunks of segments, or otherwise, by employing the deviations representing the

distances between the member units and the resultant gradient line in order to measure

the fluctuation bands.

20 Discussion

In this section, we have discussed the audio classification method by using the SOM. The

SOM produces a map representing the statistic characteristics patterns of the source

dataset, and it is utilized for the pattern matching between sources and target audio

data. In MIR, it is beneficial to use a categorized database to improve the performance

of our data retrieval task significantly because it only needs to search particular patterns

to find the BMU instead of searching the entire dataset. Since we use a small database,

129

whose sizes are at maximum several GB, the concise and straightforward classification

model is adequate for building our retrieval system. In such a simple model, sufficient

generalization levels are maintainable[59].

When using a tremendous size of a database, such as TB of data, these characteristics

are not efficiently represented by a map. In this case, the idea of the two steps SOM

is applicable. When an enormous amount of units concentrate on a node of the map,

the node should have a stepwise map which represents variations of its characteristics

pattern. While the previously discussed two-step SOM utilizes different features in a

parent and child SOMs to prioritize the characteristics, this version of the SOM applies

the same features in both maps to subdivide the patterns and refine the categorization.

This SOM may improve the concentration problem of the units categorization.

As the conventional 2D SOM forms a grid structure, the edge or corner of the map

does not have neighbor relationships on their one or two sides. These nodes on the

boundaries of the map have fewer chances to be updated due to their fewer neighbors.

This is called border effect which interrupts the topological mapping and it causes a less

accurate result. There are some studies in which developing another shape of SOM to

preserve the continuity of the topological characteristics by permuting the edge of the

map. Oyabu et al. have developed a spherical SOM based on the latitude and longitude

grid system. Each node is shaped in a square as the conventional SOM is, and thus, it is

easier to represent the position of the node and the distance between nodes. However,

the constituent squares positioned around the equator are much larger than those of

around the polar regions, and thus, the distances between nodes are exponentially

significantly changed depending on the position on the sphere. Therefore, Wu et. at.

suggested a geodesic SOM [55] [56] whose node is shaped in a triangle and the sphere

consists of the tessellation, and therefore, the small size of the geodesic SOM becomes a

regular octahedron, icosahedron, and so on. The geodesic SOM is more time-consuming

than the conventional SOM, due to its shapes and map size. The map size is given by

the equation (10 ∗ f 2 + 2) where f denotes the frequency number, which can easily

become much larger than the simple SOM (its size corresponds to (f 2)) we used in our

system.

Deep learning is a novel neural network algorithm which is overtaking other network

models, and it is catching a great deal of attention in the wide area of the engineering.

While a conventional neural network requires features, which are extracted by the

130

FFT analysis in our case, to build a statistic patterns in the learning process, the deep

learning does not utilize this way, but it automatically estimates the features which may

be the best efficient to identify the input data characteristics. The neurons construct

multi-layer neural networks, where each node is complicatedly connected to each other

to represent a particular characteristics pattern. An interesting aspect of deep learning

is that the features and the patterns automatically extracted throughout the learning

process are unknown to us. This anonymity of the features is one of a problem in the

deep learning because we can not assess how and why the network gives us an output.

There are some studies to interpret a deep neural network model and to explain its

predictions[57]. The further study of the deep learning is one of our most significant

subjects in the future.

131

Part VI

Synthesis

21 Introduction

In this section, we will discuss the various synthesis techniques which are the core of

our Computer Assisted Composition (CAC) Program. Our program is designed to

synthesize all kinds of audio data provided as a target by using a database of freely

definable source audio data. Multiple source audio data are assembled according to

the characteristics of the target extracted by the FFT based spectral analysis, and

therefore, it is possible to simulate or orchestrate the target with different source data.

The program can produce musical examples containing sound textures, gestures, and

instrumentations by outputting an audio file.

Our synthesis technique originates from the Concatenative Sound Synthesis (CSS)

technique which was formerly studied in speech synthesis[69] and then advanced by

Diemo Schwarz[65]. The synthesis allows for the production of sound sequences by

means of chaining multiple segmented sound data together[]. It requires a large database

of source sounds segmented into units with the units selection algorithm that finds

the best matched sounds to the segments of the target. The strength of the CSS

technique for instrumental music composition is the versatility of the synthesis results.

The source audio data can be flexibly collected according to users purposes whereby

the target sound is possibly reconstructed with any kinds of audio data . This means

that, the program does not restrict the genre or style of music once users make their

own database. Another advantage is that the algorithm is expected to produce natural

and practical synthesis result because it uses actual audio data and the quality of the

audio data is not declined through the synthesis process. Our idea is to extend the

synthesis technique to realize the advanced musical representations to be applied to the

instrumental music composition, which can be achieved by focusing on the following

two main subjects.

The first is to synthesize a target using musically meaningful segments instead of

mechanically segmented FFT frames. This way, there should be a great probability

of enhancing the quality of the synthesis result which are reproducible by musicians.

This also implies the representation of longer sequences of the target units, where the

132

pattern matching is operated for the musical events not for the FFT frames.

The second is the polyphonic reconstruction of a target structure. For instrumental

music composition, it is desired that the program is designed to generate polyphonic

synthesis results that are accomplished by combining different source data in order

to enhance the results similarity to the target data. This function enables users to

simulate not only single similar sound data, but also to simulate the combinations of

different instruments or playing techniques. Our synthesis program estimates the best

combination of the units or segments from database according to the decomposition

results carried out by the Non-Negative Matrix Factorization (NMF) and the Specmurt

analysis.

We will show the algorithms of segments and polyphonic representations individu-

ally and subsequently, demonstrating the synthesis process integrating both of them.

We will also discuss a Graphic User Interface (GUI) which can precisely control various

parameters aiming to restrict the synthesis result and an ad-hoc score which illustrates

the structure of the synthesis result to be used for the analysis of the result or the tran-

scription. The synthesis programs and GUIs have been implemented on the different

platforms in order to investigate the availability of the system in different environments

and also to find the advantages and disadvantages of the platforms. We have built three

programs for MaxMSP, Web application, and Cocoa Application for MacOS.

22 The Concatenative Sound Synthesis

The CSS uses the similar basic method of granular synthesis : longer sounds are pro-

duced by the superposition and synchronization of short grains (a sort of sound-quanta).

The basic methods of time-stretching and pitch-shifting developed for granular synthe-

sis are also employed in many concatenative synthesis program which can be seen in

the Adaptive CSS[69].

The CSS technique produces a sound sequence by concatenating multiple short

length audio units following a certain rule. The rule is different depending on the pur-

poses: for instance, the speech synthesis utilizes texts which illustrate the combinations

of vowels and consonants for generating artificial voices. Cambell et al. developed a

generic speech synthesis system called CHARTR (1994) which reproduce the artificial

human utterances by constructing the chains with previously recorded and analyzed

133

phonemes[4]. This system uses a database consisting of a great amount of recorded

human speech data with which it synthesizes a concatenation of speech sounds. This

system analyzes not only a configuration of phonemes such as combinations of vowel

and consonants but also various intonations and speech speed in a human speech by

combining both computer analysis and perceptional evaluation by humans. With the

information obtained by computer analysis and human evaluation, CHATR generates

an artificial speech sounds from a line of text by retrieving the most similar fragments

from the recorded speech data. Although CHATR is implemented with a database

of a tremendous amount of speech sound, it is so conceived that it can significantly

reduce the computational effort and simultaneously can realize a more natural synthe-

sis result than other programs. One reason for this is due to the fact that the speech

sound database also includes intonation and tempo information. With this information,

CHATR can retrieve optimal sound data to create more natural speech sound in line

with the specific context. It is thus, concluded that the larger the size of the database,

the higher the quality of speech that can be synthesized using CHATR algorithms.

Some sampler softwares utilize MIDI data as a rule to produce appropriate sounds by

combining attack and resonance samples recorded separately. These softwares load pre-

sets which contain the information of audio samples linked to the corresponding MIDI

commands.

Schwarz has developed the data-driven concatenative sound synthesis (2003) which

operates with a large database of source audio data segmented into units. In his ap-

proach, a sound file, which is called as target, is employed as a rule of reconstruction.

The target is separated into units and each unit is analyzed to extract its features

(which are called descriptors) identifying the characteristics. The synthesis result is

assembled from other sounds based on a measure of similarity between the target and

sources [63]. Similar synthesis program calledMATConcat was also developed by Strum

in 2004[64]. He applied MATLAB library to build the CSS system. The CSS technique

was also applied for the real-time live performance tool called CataRT developed by

Schwarz et al. in 2007[66] and has been updated frequently. In this software, a large

amount of grains is placed in specific positions of an analysis space, called descriptor

space, according to various characteristics of the sound. This software enables users to

access directly similar sounds, and it easily generates a type of gradation effect between

two different characteristics of granular sounds.

134

Strum introduced Adaptive Concatenative Sound Synthesis (ACSS) (2006) which

is an advanced version of the CSS. While the CSS merely concatenate the units ac-

cording to the descriptors of the target, the ACSS transforms the units to adapt the

corresponding units of the target by means of frequency modulation or other digital

audio effects[69]. Strum described that a one side of the ACSS is similar to the granular

synthesis or multiple-wavetable synthesis, but it operates rather a sound scrambling or

a sophisticated version of remixing. His approach targets to the Micromontage compo-

sition which is one way to create music by concatenating small chunks of audio data.

Further development for the CSS is seen in the AudioGuide by B. Hackbarth and

Schwarz [67] in 2011 to 2013. The AudioGuide has a unique matching system where the

source units in a database are normalized in order to facilitate similarity measurements

before matching the target units. The normalization is operated according to the max-

imum and minimum or median and standard deviation. Since the target and source

units are separately normalized by different criteria, their values are not anymore com-

patible each other, so that it is not for reproducing melody or harmony. However, the

AudioGuide aims to represent the variability of the target units and eventually repro-

duces its sound transition or gesture efficiently even though using the limited sources

in a database[68]. We also applied normalization or standardization as discussed in

the Classification section, but our case utilizes the same criteria through the scaling

of both target and source units, in order to realize the compatibility between distinct

features. Therefore, our system has less probability to get an appropriate result when

employing a database consisting of significantly limited sources. Hackbarth aims to re-

alize both time-varying representation and polyphonic reconstruction by means of the

subtractive spectral algorithm which will be discussed in the further section. The Con-

catenative Sound Texture Synthesis by Schwarz and Yeh in 2016[70] aims to produce

sound textures by concatenating chunks of audio signals smoothly by applying macro

event cross-fade algorithm which is similar to PSOLA (Pitch-Synchronous Overlap-

Add) algorithms. This algorithm suggested a way to produce a sequence of natural

sound timbral texture.

There are various applications employing similar techniques of the CSS.

Sonote beat re-mix synthesis software developed by YAMAHA [80] is also one of the

interesting examples of the synthesis techniques. This software remixes a beat sound in

a drum loop by extracting and replacing it with similar samples from other audio files.

135

Users can easily create their own database by adding optional audio files in the program,

thus producing complicated combinations of different beats. Another example of the ap-

plication of these techniques on a computer-aided orchestration program is Orchidee or

Orchids developed by IRCAM[82]. Orchidee produces orchestration examples or makes

suggestions to composers by reconstructing a one frame spectral structure of target

sound data with different instruments. Orchidee is not able to represent the transition

between different timbres in a target sound following the time axis, as it only simulates

an acoustic structure of a short frame with selected instruments. Its advanced software

Orchids employs temporal representations by tracking adequate peaks of spectrogram

and transport them to pairs of pitch and energy envelope and compose isolated instru-

mental sounds according to them. This approach is rather related to the Spectralismic

composition than Micromontage composition compared with the Strum case. Synful , a

software synthesizer, generates instrument sounds by using its database which includes

analyzed data of short phrases played by different instruments[81]. The database of

Synful consists of analysis data of short phrases played by various instruments, and it

contains how the property of instrumental sounds including attack, sustain, release, and

these transitions, change depending on performance situations such as specific melody,

dynamics, articulation, etc. Synful does not obtain a target data from sound data but

from the conversion of inserted MIDI files which contains the information of instru-

mentation, concrete melody, gesture, pitch, velocity, rhythm, and so on. It receives

musical information from an inserted MIDI file and reconstitutes with the closest units

retrieved from the database. Thus, Synful can generate very natural and high-quality

instrumental sounds from a MIDI file as long as it can find the adequate phrase pattern

from the database.

Synful obtains a MIDI data as an input and includes the following information:

instruments, melody, pitch, velocity, etc. The software then retrieves the most appro-

priate phrases from the database and synthesize them together.

As introduced above, the basic concept of the CSS is advanced with additional al-

gorithms to apply to the different purposes in diverse research areas. Basically, the

CSS is a synthesis technique covering the following three syntheses: Sample-based syn-

thesis which operates with sampled audio data, an Example-based synthesis which

operates according to various example data, and Corpus-based synthesis which runs

with a prepared source database. For all techniques, the organization of the corpus

136

sound database is a common key to enhance the quality of the result, which should be

done before the synthesis process.

23 Unit based Concatenative Sound Synthesis

Firstly, we will describe the most simple synthesis technique, which is the frame-based

CSS. This technique only focuses on finding the BMU from the database without consid-

ering any relationships between adjacent units. The synthesis result is strongly related

to the Music Mosaicing which is one of a Micromontage sound art.

23.1 Music Mosaicing

Music Mosaicing is one easy example that can produce a similar result of CSS. Re-

search has been done on a Music Mosaic that can be generated with a creative intent

by means of aggregating multiple small chunks of sound data. The term Music Mosaic-

ing is identified by François Patchet as being analogous to similar applications in Image

Mosaicing[71]. Image or Photo Mosaicing is a process in which a picture (or part of

picture) is represented by using multiple trimmed down or segmented pictures, which

are referred to as the units in a type of micro collage. There are several examples of

Photo Mosaicing pictures (figure 83) on the web site of Robert Silvers, who created an

algorithm for generating Photo Mosaicing with a computer[72]. As in Photo Mosaicing,

Music Mosaicing creates a musical sound data by means of synthesizing multiple small

segments of a possibly different audio data source. In CSS, some algorithms are em-

ployed in order to produce sequences of multiple segmented sound data for the purpose

of generating longer musical transitions rather than generating mosaic sound.

137

Figure 83: Photo Mosaicing

Robert Silvers presents a Photo mosaicing example on his web site. There is an example using a
famous paint Girl with a Pearl Earring by Johannes Vermeer. The picture is used as a target and
segmented into small fragments, and they are analyzed by computer. The target picture (right
picture) is assembled according to the analysis information with samples from a corpus of source

pictures shown in the middle, and then, the generated result is as shown in the left.

23.2 Algorithm of the frame-based CSS

The frame-based CSS is intended to use FFT frame sizes from 512 samples (11.6ms. at

a sample rate of 44.1kHz) to 8192 samples (185ms.), and the frame size coheres through

one sound synthesis process to realize an efficient operation.

The process of the synthesis is executed in the following order: target audio data

analysis, data retrieval, concatenative synthesis and production of the audio data. The

input target data is segmented into units, in this case, into FFT frames, and analyzed

to extract the descriptive features in the same way as the source data was treated.

For each corresponding target units, the program retrieves a source unit called as the

BMU, which has the most similar characteristics from the database. The neighboring

target unit is also examined to retrieve the BMU from the source database, and the

retrieved units are concatenated successively. The neighboring units have an overlap of

a hopsize and the signals are convoluted with a cross-faded effect by a window function

to avoid clip noise throughout the synthesis process (see the overlap method in the

Audio Analysis Section).

Figure 84 illustrates the process of the basic CSS technique. The target audio data

is segmented into units (v0, v1,) where v represents its feature vector, and their BMUs

138

(v0, v1,) are retrieved from the database. The retrieved units are then concatenated

at the same position of their corresponding target units, and eventually, all units of

the target is replaced by the sources. Figure 85 illustrates the comparison between the

normal and overlap methods where the hopsize is half of the unit length.

Figure 84: Basics of the Concatenative Sound Synthesis technique

Figure 85: Comparison between normal and overlap method

23.3 Test of the frame-based CSS

The number of employed features significantly influence the quality of the synthesis

results because they become criteria for the unit selection. For instance, when using

only the MFCCs, the synthesis reproduces the timbral characteristics of a target, and

it omits the Magnitude or Pitch information. An insufficient number of features may

result in a reduced representation of the target. However, the employment of a larger

number of features may cause erroneous unit selection in consequence of inefficient audio

139

identification. In order to tune the synthesis system, we need to know the associations

between criteria and results. In this section, we will discuss the evaluation of the

synthesis results in order to reveal the impact of features on the results.

In order to apply the CSS technique to creative purposes, the synthesis result needs

to be both mathematically precise and perceptively adequate. For this reason, we

examined the quality of the resultant sound from two different perspectives; computer-

based analysis, and analysis by our perception. Yet, these two methods need to be

carefully conducted as they are not always compatible with each other, and sometimes

they come up with different conclusions. Particularly in the perceptive analysis, we

need to observe the result knowing that the frame-based CSS is the most primitive

and limited technique which is capable of reproducing a monophonic representation by

using small chunks of audio data which is often heard as mosaic sounds.

We have tested the synthesis under several conditions using different descriptive

features as shown in figure 86. We employed MFCCs, Magnitude, Centroid, Spread,

Pitch, and their delta-features. From here, when we say Magnitude always means a

set of the Magnitude and its delta-feature. The frequency and time structure of the

results are visualized as the spectrograms and are also audible by the provided sound

files. In the panel A14, some regular overtones are observed on the metallic sound as

pointed by the arrows, and intense peaks appear on the simultaneities of the snare, and

bass drum sounds at around 1 and 3 seconds. The musical events consisting of sole

instrumental sound has sparse spectrum, and in contrast, the mixed sounds have dense

spectrums. Although these visual characteristics are vague in the synthesis results, we

can still detect slight regularity in the panel B which utilized only MFCCs. Listening to

the audio file of B15, the original rhythmical pattern is hardly perceptible because the

MFCCs does not effectively represent the dynamics and pitch information. In fact, the

result of C16 using both MFCCs and Magnitude presents clearer rhythmical structure

which is also visible in the panel C. The representation of the pitch and brightness are

improved in D17 but it contains discordant sounds at the beginning, at around 1 sec,

and at the end. These erroneous matchings are improved when adding MFCCs as heard

in E 18 which employs all features.
14Drum Loop1.aif
15audio/SynthesisResult/Unit/PercussionDatabase/B MFCCs/DrumLoop 2048 1024.aif
16audio/SynthesisResult/Unit/PercussionDatabase/C MFCCs Mag/DrumLoop 2048 1024ȧif
17audio/SynthesisResult/Unit/PercussionDatabase/D MagCentSprPitch/DrumLoop 2048 1024ȧif
18audio/SynthesisResult/Unit/PercussionDatabase/E MFCCsMagCentSprPitch/DrumLoop 2048 1024ȧif

140

Figure 86: Spectrograms of the frame-based CSS results using Percussion Database

The panel A illustrates the spectrogram representing the frequency and time information of the
target audio data and the B to E illustrate those of the synthesis results operated by using different
descriptive features. The arrays shown in A indicate the metallic sounds which have some regular
overtones. The analysis and synthesis are executed in the FFT frame size of 2048, the hopsize of

1024, and 10x10 SOM.

We discerned that the MFCCs enhance the low-frequency representations to a con-

siderable extent by combining with other features. While the panel B contains a lot

of erroneous events in the low-frequency bands which make the rhythmic structure un-

clear, panel C which is accompanied with Magnitude feature, significantly improved

the distinction between low and high-frequency events (listen to the audio samples).

The panel D, which does not employ the MFCCs, again contains unnecessary heavy

sounds, and the panel E using all features realizes satisfactory source selection in which

we observed metallic, snare, and bass drum sounds.

The similar tendency is observed in the result acquired by using another database

consisting of various human voices with rhythmical accents as shown in figure 87. The

B’ 19 shows unclear rhythmical structure though it is improved by adding the Magnitude
19audio/SynthesisResult/Unit/DanceVoiceDatabase/B MFCCs/DrumLoop 2048 1024.aif

141

as shown in the C’20. The rhythmical structure is sufficiently represented in the D’21

and the E’22 which has the most stable timbral character of all.

The synthesis results of the human voice database suggest other interesting aspects

of the descriptive features. In most cases, the consonant segments play a significant

role representing the percussive sounds, and the vowels give a sense of pitch. The vowel

is seldom used independently but often accompanied by the consonants. Although the

Magnitude is the most significant feature to determine the rhythmic patterns, other

features are as important to enhance its quality by imitating the accents and intonations

of the target. For instance, the unit selection of voice phenomena is strongly constrained

by MFCCs because they are capable of identifying the consonants and vowels as applied

in the speech analysis. The results of C’ and E’, which employed MFCCs, have closer

timbral qualities to the target particularly in the high-frequency events such as hi-hat

than the result D’ which does not employ MFCCs. Especially in E’, the hi-hat, snare,

and bass drum sound colors are adequately imitated by voices, and thus, the rhythmic

structure is apparently perceptible. Although D’ have less similar timbral qualities, the

selected units still remind us of the original sound characters due to its analogy of the

pitch and brightness. These pitch fluctuations give us a sense of intonation and accent

that also contribute to the construction of the rhythmical structure. This result suggests

that these features also have significant impact on representing the target sound units

for the human perception.

In contrast, the Violoncello database does not yield satisfactory results in any com-

bination of the features due to the lack of matching sound. Figure 88 presents the

resultant spectrograms produced by using different features. Compared with other

databases, the quality of the high-frequency events are inferior to all others. Some

hi-hat sounds are imitated by a col legno battuto, but they are not sufficiently present.

Remarkably, B”23 shows that it is too rough to find any associations with the target.

The Magnitude feature contributes significantly resembling the rhythmic patterns as

seen in C”24, and frequency related features organized the low to middle-frequency

events as shown in the D”25 and E”26.
20audio/SynthesisResult/Unit/DanceVoiceDatabase/C MFCCs Mag/DrumLoop 2048 1024.aif
21audio/SynthesisResult/Unit/DanceVoiceDatabase/D MagCentSprPitch/DrumLoop 2048 1024.aif
22audio/SynthesisResult/Unit/DanceVoiceDatabase/E MFCCsMagCentSprPitch/DrumLoop 2048 1024.aif
23audio/SynthesisResult/Unit/VioloncelloDatabase/B MFCCs/DrumLoop 2048 1024.aif
24audio/SynthesisResult/Unit/VioloncelloDatabase/C MFCCs Mag/DrumLoop 2048 1024.aif
25audio/SynthesisResult/Unit/VioloncelloDatabase/D MagCentSprPitch/DrumLoop 2048 1024.aif
26audio/SynthesisResult/Unit/VioloncelloDatabase/E MFCCsMagCentSprPitch/DrumLoop 2048 1024.aif

142

Figure 87: Spectrograms of the frame-based CSS results using Voice database

The panel B to E illustrate the spectrogram of the synthesis results operated by using different
descriptive features. The analysis and synthesis are executed in the FFT frame size of 2048, the

hopsize of 1024, and 10x10 SOM.

Figure 88: Spectrograms of the frame-based CSS results using Violoncello database

For further investigation of the synthesis results, we have processed the spectral

analysis of the resultant audio data to extract the features which suggest us objective

measurements of the quality. As our databases have limited samples, it is not realistic

to expect all features to match rigidly. Therefore, we focus on observing the rough

envelopes of the fluctuation through time instead.

143

Figure 89: Analysis of the synthesis results

In figure 89, the panel A illus-

trates the analysis results of the tar-

get, the panel B, B’, and B” are for

the synthesis results acquired by us-

ing the MFCCs, and the panel E,

E’, and E” by the combination of

the MFCCs, Magnitude, Centroid,

Spread, and Pitch(MIDI). The cap-

ital letters identify the correspond-

ing synthesis results shown in figure

86 and 85. The colored lines repre-

sent the descriptive features varying

in time, and their remarkable varia-

tions are marked by dotted squares

identified by small letters a to e ,

which indicate major sound events

with high dynamics. We examined

three databases consisting of sam-

ples from Percussion, Voice, and Vi-

oloncello samples.

The analysis suggests that the

synthesis results of the Percussion

and Voice databases successfully

represent the characteristics of the

target. The panels B and B’ show

proper features taking the similar

trajectory to those of A, though

some irregular fluctuations are still

observed in Magnitude. The re-

sults suggest that the MFCCs are

not sufficient to represent complete

characteristics of the target and

that the other additional features

144

are required for further improve-

ment. The panel E and E’ which employ more features illustrate more appropriate

results compared with B and B’. Some peaks of the Magnitude witnessed around cru-

cial sound events marked by a to e are adequately reproduced, and the fluctuations in

the Pitch and Centroid are approximated too. These two databases are prospective to

produce satisfactory results because the Percussion database contains the samples from

the similar category of the target, and the Voice database has a wide variety of conso-

nant sounds with various accents which adequately match percussive sounds. Further

investigation of the feature transitions enclosed by dotted squares reveals the detailed

quality of the representations. For instance, the feature transitions marked by b to e in

the panel E’ illustrates similar tracks to those of target. We can also audibly perceive

the similarity by listening to the audio result27.

On the other hand, the Violoncello database yields a lot of inappropriate fluctuations

in all features. The quality of the panel B” is too rough to be recognized as producing

any associations with the A. Although E” improves in Magnitude, hence better rhythmic

structure, it does not yet represent sufficiently the character of the target. We have

also tested this database with different target sound consisting of low-frequency events

to check whether its poor representations are certainly caused by the lack of matching

source units.

Figure 90: The analysis of the synthesis results using Voice database

The panel A illustrates the spectrogram of the target and E”’ illustrates the synthesis results
operated by using MFCCs, Magnitude, Centroid, Spread, Pitch(MIDI), and their delta-features. The
analysis and synthesis are executed in the FFT frame size of 2048, the hopsize of 1024, and 10x10

SOM.

27audio/SynthesisResult/Unit/DanceVoiceDatabase/E MFCCsMagCentSprPitch/DrumLoop 2048 1024.aif

145

Figure 90 illustrates the waveform and analysis results of the target sound ComplexSound.wav

which has a sweep electronic sound gestures from the low to middle frequencies, and its

synthesis result E”’ with the Violoncello database. We detected significant similarity

in the trajectories of all features between A and E”’, and as well sufficient resemblance

in the waveforms and spectrograms. However, the resultant sound28 does not represent

the target very well as proved by the analysis results. Since the result focuses on rep-

resenting only the low-frequency event, it does not adequately reproduce high overtone

gradually emphasized throughout the sweeping effect in the target.

Although the frequency information of the sweep effect is one of the most impressive

factors from our perception, it was not considered as well serious by the computer

analysis, which is why we observed an estrangement between two analysis methods.

This problem is also overlapped with a polyphonic representation issue since the sweep

sound can be divided into a low bass sound and a sweeping high frequency. We will go

into details in later sections.

Figure 91: Spectrograms of the frame-based CSS results using Voice database

The spectrograms of the synthesis results by the FFT size of 2048 with different hopsize in left, and
the FFT size of 4096 in the upper right, and the FFT size of 8192 in the bottom right.

28audio/SynthesisResult/Unit/VioloncelloDatabase/E MFCCsMagCentSprPitch/ComplexSound 2048 1024.aif

146

23.4 The synthesis result with different FFT frame sizes

The FFT frame size and hopsize constrain the time-localization of the synthesis results.

Since a larger FFT frame size holds more extended audio signals, it is capable of pro-

ducing more natural synthesis results than that of the smaller one. However, it declines

the time-localization of musical events, so that it is not suitable for a sound which has a

detailed rhythmical structure. The smaller hopsize is more likely to improve the prob-

lem, but it does not deal with it at a fundamental level. We will present the association

between these parameters and synthesis results.

Figure 91 presents the spectrograms of the target and synthesis results acquired by

different FFT frame size and hopesize. With a small hopsize, the spectrum of each

event got thicker and more dense because many signals are overlapped. The rhythmical

structure is present and hence stable, but the character of each event is unified into full

spectral sounds which cause a strong sense of mosaic” texture. While a bigger FFT

frame size improved the timbral representations but results in an inaccurate rhythm, it

is prospective to reproduce longer musical gestures as shown in complexSound.wav. The

synthesis result29 is produced by the FFT frame size of 8192 and hopsize of 2048, which

is comprised of the combination of tremolo and strong bowing sounds. Compared with

the synthesis results by the FFT frame size of 2048 and hopsize of 102430, it presents

clearer characteristics of each unit. However, it is still perceptible as mosaic texture

because the selected units are segmented mechanically into the FFT frame size, and

there is no connection between the adjacent frames.

For further improvement, we need to advance the unit selection system to extract

successive units from a source data instead of selecting individual unit which will be

discussed in the next section.

24 Advanced algorithm for creating a concatenation

The process just described, that is, simply synthesizing segmented sound data retrieved

from a database, is not useful to generate a practical synthesis result for a chamber

music composition due to its mosaic textures. As mentioned earlier, the length of each

unit is between 11 and 200ms and consequently barely reproducible with instruments,

besides very short segments of audio data are heard as a clipping noise, and their sound
29audio/SynthesisResult/Unit/VioloncelloDatabase/E MFCCsMagCentSprPitch/ComplexSound 8192 2048.aif
30audio/SynthesisResult/Unit/VioloncelloDatabase/E MFCCsMagCentSprPitch/ComplexSound 2048 1024.aif

147

character is hardly recognizable. To tackle this issue, and in order to construct a proper

concatenation, we developed an advanced algorithm to retrieve as many continuous

successive units from the source data as possible. When the program finds the BMU

for the nth unit of the target data to be the mth unit in the source data, it also refers

to (m+ 1)th and (m− 1)th units in the source data and (n+ 1)th and (n− 1)th units

in the target data in order to measure their similarities. If the (m+ 1)th or (m− 1)th

units and (n + 1)th or (n − 1)th are similar enough, the program employs (m + 1)th

or (m − 1)th units together with the mth unit as one sequence in the creation of a

concatenation. Subsequently, the program also refers (m± 2)th, (m± 3)th, and so on.

As long as the adjacent units keep a certain level of similarity to the corresponding

target units, the program continues to refer to the next or previous units, and as a

result, it is possible to obtain a more natural sounding synthesis. Figure 92 illustrates

the process of units retrieval and the matching process of the neighbor units.

Figure 92: The neighbor units concatenation

The BMU, which is a unit of a selected source data, is retrieved from the database, and subsequently,
the neighbor units of both the target and source are assessed whether they satisfy the condition. If

they satisfy the condition, the source units are employed to create a concatenation, and the
similarities of their neighbor units are again assessed. The concatenation tends to be longer when the

target and the retrieved source consist of similar units.

148

24.1 k-NN method

Figure 93: k-NN algorithm

Retrieving a sequence of successive units from the same source data does not only

generate better recognizability of the source sound file in the synthesis result but also

produces, in the sense of its playability by musical instruments, a more realistic musical

idea. When the characteristics of a target file and multiple source files are much dif-

ferent, it is hardly possible to obtain a long sequence. This program evaluates several

candidates for each target unit in order to increase the possibility of obtaining a longer

sequence from the same source data. Firstly, k most similar units (one of them is the

BMU) are retrieved as candidates from the database and a sequence of n-neighbors

are assembled for each of them. Secondly, the program compares the k numbers of

candidates and find out the candidate which has the longest n-sequence and employs it

in the concatenative synthesis as shown in figure 93. This Nearest Neighbor algorithm

is especially called as k-Nearest Neighbor (k-NN) algorithm. If two candidates having

the longest sequence are obtained, the candidate which has the most similar vector of

weights is selected.

24.2 Three Thresholds Algorithm

Throughout the process of k-NN algorithm, the program uses three thresholds in order

to constrain the generation of sequences. Figure 94 illustrates how these thresholds

function in the process. The vertical line represents the similarity between target and

source units where the top shows the highest similarity and vice versa. The horizontal

line represents the number of units in a sequence.

The first threshold constrains the BMU retrieval. If the program can not find a

149

BMU whose similarity is lower than the threshold, then it does not retrieve the BMU

and leaves the frame empty. This threshold prevents to take a source unit whose

characteristic is much further from the equivalent target unit, what would interfere

with a good reproduction of the target file.

The second threshold constrains the length of sequences. It is not possible to expect

to obtain a long sequence of successive units having high similarity to the target units

if strict constraints are used. Therefore, the second threshold should be set softer than

the first one. As long as the similarity does not become lower than the second threshold,

the program continues to construct a sequence.

The third threshold is a trigger which decides whether or not the program should

retrieve a new BMU. When the unit similarity is higher than the threshold, a new BMU,

it just will not be retrieved, and the program just keeps on constructing the sequence.

If the similarity gets lower than the threshold, the program tries to retrieve a new BMU

from the database; if one is found, the program then re-starts the building of a new

sequence. In the case the similarity remains higher than the second threshold but lower

than the third threshold, the program retrieves another BMU and begins to construct

another sequence. Therefore, multiple concatenations are simultaneously built and

often overlapped to each other, and as a result, the program performs the synthesis

polyphonically as shown in figure 94. The softer constrain of the second threshold

produces more extended sequences what allows higher recognizability of the source and

practicality for actual performance, however, the reproducibility of the target becomes

compromised due to the lower similarity in each unit. It is therefore, significant to

control these three thresholds appropriately according to the database and the intended

purpose of the synthesis.

150

Figure 94: Three Thresholds algorithm

Knots of the poly lines are marked by circle, triangle, and square shapes which represent the BMU, a
trigger of the new BMU retrieval, the end of the concatenation respectively.

24.3 The demonstration of our advanced CSS technique

We will introduce some synthesis results produced by our advanced CSS technique.

The system allows changing weightings of the employed features so as to modify the

criterion for the BMU retrieval and to constrain the construction of sequences by giving

some parameters. For instance, in order to reproduce changes in dynamics in the target

data more rigidly, we need to give more weightings to the Magnitude when calculating

the distance between units. Should the pitch information of the target data be more

important than other features, then giving more weightings to the Centroid and Pitch.

In the two threshold algorithm, the lower value of the first threshold restricts the

BMU retrieval and the second threshold constrains the probability of generating a more

extended sequence of units. As the impacts of the descriptive features were already

discussed in the previous sections, we will here focus only on the threshold parameters

which constrain the concatenation of the unit sequences. These criteria can be easily

controlled by the Automation interface which will be described in the Graphic User

Interface section.

We have used a sound file of Drum_loop.aif for the demonstration because it has

151

various characteristics which should make them easy to follow when re-synthesized. It

includes clear dynamic changes, wide frequency range, clear rhythmic structure, and a

combination of percussive attack and long resonance. Here, we have selected the Voice

database which produced positive results in the previous test.

Figure 95: Analysis of the synthesis results

Figure 95 presents six panels

which illustrate the test results ac-

quired by different combinations of

three thresholds. The list of values

we have set for three thresholds in

this test is described in the table 1.

The horizontal axis represents

the frame index of the result which

is corresponding to the waveforms

attached to the background of the

graphs. The left vertical axis for

the polyline represents the length

of unit concatenation constrained

by the second threshold, and the

right vertical axis for the solid sticks

in dark gray color is for the frame

density which shows a number of

overlapped sequences on the cor-

responding frame. The sequence

overlap occurs due to different tim-

ings of the start and end positions of

the sequence controlled by the third

threshold.

The synthesis result A31 was ac-

quired by a higher value of the sec-

ond threshold which resulted in the

extended unit sequences. We ob-

served heavy simultaneities of var-
31audio/SynthesisResult/Unit/TwoThreshold/A.aif

152

ious voices for every corresponding target sound event. This effect blurred the original

rhythmical structure and timbral characters. In the panel A, a polyline constantly stays

in high values over ten to twenty frames which means that many successive frames be-

came the starting points of generating the long sequence. In fact, the high frame density

is detected over the entire panel which shows significant accumulations of sequences.

We assessed that the second threshold in A is too soft to reproduce a satisfactory result.

Table 5: The list of the three thresholds
File name Threshold1 Threshold2 Threshold3

A.aif 1.0 2.0 1.2
B.aif 1.0 1.5 1.2
C.aif 1.0 1.2 1.2
D.aif 1.0 0.9 1.2
E.aif 0.6 1.2 1.2
F.aif 1.0 1.2 0.5

The result B32 was reproduced by the rigid second threshold in order to constrain

the length of the sequence. We can hear tighter rhythms and more explicit contrasts

between different sound events than A. This consequence gets more obvious as decreases

the threshold.

The second threshold in C33 reproduced an adequate result by constructing an appro-

priate length of sequences. The result D34 made rhythms more rigidly, but it presented

less clear timbral characters of the selected units as a consequence of the discontinu-

ity of source sound. The panel D illustrates that most of all chosen units are merely

synthesized without generating any sequences.

The panel E illustrates a result by a rigid value of the first threshold which discarded

a considerable number of BMUs due to unsatisfied similarity to the corresponding unit

of the target. As shown in both panel and audio sample35, we observed sparse units

and the reproduction failed obviously.

F is examined with a low value of the third threshold which provokes more frequent

BMU retrieval and its sequence construction, whereas other thresholds are the same

with C which produced a moderate length of unit sequences and their overlaps. Panel

F shows longer sequences than those of C, and they are overlapped around the crucial

sound events.
32audio/SynthesisResult/Unit/TwoThreshold/B.aif
33audio/SynthesisResult/Unit/TwoThreshold/C.aif
34audio/SynthesisResult/Unit/TwoThreshold/D.aif
35audio/SynthesisResult/Unit/TwoThreshold/E.aif

153

While the excess sequence accumulations produce a full spectral timbre which de-

clines the contrast between distinct sound events, its adequate amount can contribute

to gaining the quality of the timbral representation.

The quality of the unit sequence is strongly influenced by the characteristics of the

selected BMU more than its adjacent units. When the corresponding unit of the target

contains a dramatic change of the sound in a short period or consists of polyphonic

sound events, its features tend to fluctuate significantly. Since the FFT analysis only

reveals the averaged character of the short signal, it tends to give priority to a superior

component. However, throughout the time sequence, the presence of the sound events

often alternates with each others depending on the duration of their decay and sustain

properties. As a result, the features of adjacent frames possibly correspond to the

distinct sound events. For instance, in the drum loop example, we hear at least three

different events simultaneously at the beginning, that are, the bass, snare, and hi-hat

sounds and their domination change in short time. In the analysis result in figure

89, we observed that the snare and hi-hat sounds are taken over by the those of bass

drum at the beginning, however in the subsequent frames, they are dominant in the

analysis result even the resonance of bass drum is present. In this case, the third

threshold should start constructing another sequence corresponding to the snare and

hi-hat sounds once there are superior BMUs available, and the sequence of the bass

drum should stay due to the soft second threshold. Therefore, the other sequences

generated from the neighbor units can interpolate the character having been omitted

by the previously constructed sequences.

25 Segment Based Concatenative Sound Synthesis

For another solution to enhance the recognizability of the selected source units, we

have developed an advanced synthesis technique. The Segments or Sequence-based

CSS (SCSS) processes a sequence of FFT frames as a minimum unit instead of individ-

ual frame retrieved from a database. The SCSS is considered prospective to produce

more natural synthesis results, particularly its capability of avoiding the mosaic tex-

ture is what should be noted because it employs audio sequences which are expected

to be separated into individual musical events. In the SCSS, it is more complicated to

find the Best Matching Sequence (BMS) than the BMU because a sequence has more

154

information to be identified by features than a FFT frame. Since a sequence consists of

multiple frames, the database will have fewer candidates compared with the one for the

frame-based CSS and thus, the database for the segmented sources has less probability

of finding a satisfactory MIR result.

When dealing with a sequence of frames as a minimum unit of synthesis, we need

to describe its time-varying information. One of the easiest ways would be to apply a

Markov Chain consisting of a set of features of each constituent component. However,

a long sequence becomes a critical obstacle to establish an efficient classification model

and the straightforward pattern matching system because it requires a tremendous

number of features. As already suggested in the Classification section, operating a

regression analysis extracting the differential coefficient (DC) can be a solution. The

DC can represent a statistic transition of the features over a segmented period instead

of using a chain of features as the Markov Chain does. We can significantly reduce

the number of features by labelling a set of feature of its head frame and the gradients

which represent how each feature varies over the segmented area. With this method,

we can represent a sequence with at least as twice as many numbers of features that the

frame-based CSS used for each unit regardless of its length. Figure 96 and 97 illustrate

the BMS retrieval process by means of the Markov Chain and the DC respectively.

Our SCSS technique also assesses the length of sequence between target and source

candidates besides considering the similarity of their features, and it attempts to retrieve

an adequate length of the sequence to the corresponding target sequence as well as a

satisfactory feature similarity. The length of the source sequence is most likely to

become shorter or longer than that of the target when it does not correspond, and it

produces overlapping or empty frames in the result.

155

Figure 96: A SCSS using a sequence labelled by Markov Chain

The number of features of a sequence corresponds to the number of units multiplied by the number
of features each unit has.

Figure 97: A SCSS using a sequence labelled by the Differential Coefficient (DC)

The number of features of a sequence corresponds to the number of features the head frame, the
same number of DC, and the sequence length. The number of total features are significantly reduced

for a longer sequence.

25.1 Overlapping Segmentation Algorithm

In this synthesis technique, the segmentation manner is the most significant key to

reconstruct target segments because it determines the resolution of the synthesis in the

time axis. The segmentation algorithm we have already discussed in the Segmentation

section employs two thresholds which constrain the separation of each musical event

from its adjacent events without any overlaps. In this algorithm, the beginning position

of a new segment corresponds to the end position of the previous segment.

156

As discussed in our advanced CSS technique, the real world sounds contain multiple

sound events overlapped to each other, and the beginning and end points of the events

are seldom simultaneous. It is almost impossible to separate those of overlapped sound

components and isolate every single event by the segmentation algorithm, and it may

easily omit the events coinciding or at a slightly different timing to the detected one.

Not to omit the intensive sound variations, we need to make the segmentation algorithm

sensitive for small changes. However, a too sensitive algorithm may separate a sound

into too small segments, which will be eventually similar to the frame-based CSS.

Therefore, we need to design an algorithm which separates a sound into detail events

as well as extracting them in long sequences.

In our advanced CSS algorithm, we have suggested the k-NN method and three

thresholds algorithm which detect the onset of a segment independently on the off-set

of its previous segment. Therefore, the unit concatenations are overlapped with their

neighbor units which can interpolate missing characteristics of the target and thus, it

is expected to reproduce a perceptively satisfactory result. Expecting a similar benefit,

we have also applied the same idea to the sequence based CSS algorithm.

Our advanced segmentation algorithm is operated for the target only, and the source

segmentation is done by the conventional algorithm discussed in the Segmentation

section. The advanced algorithm has different criteria to detect the sound events and

to define their length by referring different features. We defined three rules. The first

constrains the sensitivity of detecting the onset of segments in which, a high value avoids

detecting too frequent segment onsets and thus, it is immune to noise-like fluctuations.

The second controls the detection of the segments cut-off. These two rules refer the

delta-MFCCs. However, the delta-MFCCs is not adequate for detecting the segment

cut-off when the sound decays into silence because it gives an enormous number of peaks

due to its no immunity against noise. We have, therefore, employed the Magnitude to

prevent detecting erroneous segmentation cut-off and to keep segments when a sound

is sufficiently quiet because it does not produce a negative impacts on the synthesis

result.

25.2 Magnitude Adjustment

Compared with the frame-based CSS, the SCSS is expected to realize less similar char-

acter to the target because it uses a longer sequence of frames without evaluating the

157

similarity of the individual frame. The Magnitude is a significant feature that declines

the quality of the synthesis results among others, and thus, we have employed the

Magnitude of the target to adjust the synthesis result. After producing the synthesis

result, its Magnitude gets extracted by the spectral analysis, and the calculation of the

dissimilarity ratio with that of the target is done. Let the Magnitude of the target

Mn, and of the synthesis result Mn where the n represents the frame index, and the

dissimilarity ratio ration is calculated by the following formula.

ration =
Mn

M ′
n

(75)

The ratio is calculated for each FFT frame, and the same ratio is applied to a number of

examples corresponding to the hopsize. The powers of a bunch of samples in synthesis

result Si where i is the sample index is then adapted as follows.

S ′
i = Si · ration (76)

25.3 The Demonstration of the Sequence based CSS technique

Figure 98 represents the structures of the SCSS results on top and the analysis of the

target, the SCSS results and the frame-based CSS of two targets; the complex gesture

complexSound.wav and Drum_loop1.aif respectively.

158

Figure 98: The SCSS results

In the segment-based result structure panels, the horizontal axis represents the frame index of the
result. The left vertical axis for the polyline represents the length of unit concatenation constrained
by the second threshold, and the right vertical axis for the solid sticks in dark gray color is for the

frame density which shows a number of overlapped sequences on the corresponding frame.

Figure 98 represents the structures of the SCSS results(top), the analysis of the tar-

get, the SCSS results, and the advanced frame-based CSS of two targets; the complex

gesture complexSound.wav(left) and Drum_loop1.aif(right) respectively. The left line

shows the result using the Violoncello database and the right is for the Piano database.

In both the frame-based and sequence-based CSS by the Violoncello database, we ob-

served sufficient representations in the Magnitude and Centroid features and the mod-

erate similarities in the Pitch. In the SCSS, some combinations of low and high pitch

sounds are adequately reconstructed. The structure of the SCSS result(top) illustrates

that the sufficiently long segments whose lengths are over 100 frames (the hopsize is 512

samples, and thus, a length of five frames corresponds to a length of double of the FFT

frame size(2048 samples)) are successfully selected around crucial sound events, and the

frame density increased as more segments selected. However, the high frame density

does not directly show the intensive accumulation of sounds because some of the long

sequences contain resonance in low dynamics which are not present in the result.

The audio result ComplexSound_2048_512.aif36 shows consistent sound charac-
36audio/SynthesisResult/Segment/VioloncelloDatabase/ComplexSound 2048 512.aif

159

ters over an entire sound which presents tremolo and strong bowing in low and high

pitches. Compared with the result by the frame-based CSS37, the SCSS produced more

natural reconstruction presenting clear characters of the sources.

Similarly in the results by the Piano database(right), the frame-based CSS38 pro-

duced mosaic-like sounds whereas the SCSS39 reconstructed the isolated piano sounds

which can be easily reproducible by musicians. Remarkably, the SCSS did not discard

the most of piano resonances declining to the silence due to the third segmentation

rule referring the Magnitude feature. While the frame density increases over the entire

result, the accumulation of the resonance is not perceptively significant, and it merely

sounds like an effect of the sustain pedal.

26 Polyphonic Synthesis Techniques

The previously discussed CSS algorithms are based on the monophonic representation

of the target, and they do not utilize the features derived from the decomposition

analysis. Some algorithms resulted in polyphonic reconstruction but they are basically

as a consequence of the sequence representation, and there is no theoretical evidence.

There are some studies to represent the polyphonic structure of the target as dis-

cussed in the section 22, but a prominent solution is not yet found. Our system follows

the analysis result by the decomposition algorithms of the Specmurt and Non-Negative

Matrix Factorization(NMF). However, these algorithms are not sufficient for all kinds

of sound, and therefore, we need to adjust them with additional algorithms to a specific

type of sound.

Here we will introduce three algorithms which are the Subtractive Spectral algo-

rithm suggested by Hackbarth and the Specmurt based algorithm and the NMF based

algorithm. We will only demonstrate the NMF based algorithm as others are our future

works.

26.1 Subtractive Spectral Algorithm

The subtractive spectral algorithm uses Mel-frequency spectrum to represent the char-

acteristics of a target and a corpus of sources[67]. It describes the time-varying infor-

mation by chaining the spectrum, and some length of a chain is separated to extract a
37audio/SynthesisResult/Unit/VioloncelloDatabase/E MFCCsMagCentSprPitch/ComplexSound 2048 1024.aif
38audio/SynthesisResult/Unit/PianoDatabase/DrumLoop 2048 512.aif
39audio/SynthesisResult/Segment/PianoDatabase/DrumLoop 2048 512.aif

160

sound segment by the onset detection. In each of segment, the algorithm retrieves the

BMU, and its time-varying Mel-spectra magnitudes are subtracted from the relevant

region of the target’s spectra. When the subtraction remains a considerable surplus

of the targets Mel-spectra, the algorithm searches another BMU for the residual Mel-

spectra. This process is repeated until the subtracted targets Mel-spectra is sufficiently

suppressed. In this strategy, the first selected BMU has the most significant impact on

the target representation as it matches the original targets Mel-spectra. On the other

hand, the subsequent units are chosen to account for spectral energy which is not yet

satisfactory represented and therefore, they tend to become softer as the energy of the

Mel-spectra is reduced from the original one. This algorithm carries a complemental

role to the frame-based or sequence based CSS technique as it adjusts the quality of the

target representation by accumulating multiple segments polyphonically. This aspect

of the algorithm is also similar to the winner-takes-all algorithm as the first retrieved

BMU defines the quality of synthesis result dominantly. We can hear some examples

generated by the Audio Guide software on Hackbarths web site[84].

Although the subtractive spectral algorithm is straightforward, it has a great per-

spective to enhance the quality of the frame-based CSS. However, this algorithm does

not find the best combination of the source segments from a database. One solution

would be to estimate the statistically best combination of the spectra and its time-

varying amplitude and then operate the retrieval process for each decomposed compo-

nent. Since the combination is calculated as a probability problem, it is expected to

output a mathematically sophisticated decomposition result.

26.2 Specmurt analysis based Polyphonic CSS technique

The Specmurt analysis estimates multiple fundamental pitches by calculating a de-

convolution between the spectrum and an optionally defined overtone pattern. The

analysis is processed only for the target audio data in order to reveal its polyphonic

structure, and then the BMU is retrieved for each decomposed component.

The Specmurt analysis estimates multiple fundamental pitches by calculating a de-

convolution between the spectrum and an optionally defined overtone pattern. The

analysis is processed only for the target audio data in order to reveal its polyphonic

structure, and then the BMU is retrieved for each decomposed component.

Since the Specmurt operates is for an individual FFT frame, the resultant pitch

161

distribution needs to be dealt with a Markov chain so as to represent time-varying

information. Some studies have suggested the transformation of the Specmurt result to

MIDI number[22][23] which is an appropriate format to be chained. In the Specmurt

analysis based polyphonic CSS, some sets of the MIDI pitch, overtone pattern, and the

Magnitude become criteria to identify a target frame. When a target frame has more

voices to be decomposed, then the number of set increases. Therefore, the number of

features do not cohere throughout the entire target frames but varies depending on the

character.

The extraction of the multi-pitches and the Magnitude from the target is also used

in Orchids developed by IRCAM for automatic orchestration. We can see an enormous

amount of notes in the figure 99 which illustrates the UI of the Orchids presenting the

constituent partials of the targets spectrum information. These partials are utilized for

retrieving the source segment from a database and reconstruct the target polyphonically.

Figure 99: The UI of Orchids developed by IRCAM

The picture is quoted from the Orchids documentation[83].

Figure 100 illustrates the synthesis process using the Specmurt analysis. The anal-

ysis separates a frame of the target into multiple voices and yields the fundamental

pitches and their magnitudes. Subsequently, the pitch distribution is separated into

individual pitches and each pitch constituents a feature vector with its Magnitude and

an overtone pattern. The analysis does not present any correlations between adjacent

fundamental pitch distributions, and thus, the extracted voices are independent of each

162

other. We first need to associate the voices in order to create their sequences with an

use of the Markov Chain. As discussed above, it is convenient to convert the pitches to

MIDI number because it follows equal temperament which makes pitches easily grouped

systematically. After the chain of feature vectors are made, we operate the same syn-

thesis process as previously discussed. The synthesis results of each voice are mixed in

the final process to realize a polyphonic representation.

Figure 100: The process of the Specmurt analysis based polyphonic CSS technique

Each frame of the target is separated into multiple voices where, each of them is represented by the
fundamental pitch, its Magnitude, and an overtone pattern. Some voices which have similar pitches

are associated with adjacent frames to concatenate a sequence. The CSS or SCSS synthesis is
operated for each concatenated sequence, and then all results are eventually mixed.

26.3 Non-Negative Matrix Factorization based Polyphonic CSS technique

The polyphonic CSS technique based on the NMF analysis follows a process similar

to the one using the Specmurt analysis in the sense that both operate synthesis to

individual voices independently. Unlike the Specmurt, the NMF can previously define

a number of vectors to decompose, and it reproduces the resultant vectors as audio

signals. Assuming that the vector signals are appropriate representations of the con-

stituent components of the target signal, the conventional CSS technique can be directly

applicable to vectors without extra algorithms. Figure 101 illustrates the process of the

NMF based CSS technique where we operate the Sequence-based CSS technique for

each vector. Since the vectors are already decomposed into smaller components, they

can be separated more efficiently into the isolated sound events than the original target

sound.

163

Figure 101: The process of the NMF based polyphonic CSS technique

Until here, it appears that the NMF based CSS can be easily implemented in our

synthesis. However, in fact, the conventional NMF does not generate appropriate vec-

tors to be applied to the CSS technique. One of the most significant problems is that

the NMF re-synthesizes the vectors by a static spectral pattern and its time-varying

amplitude calculated through the optimization process, and thus, the reproduced vec-

tors lose their frequency information varying in time, but only show constituent statistic

patterns satisfying the given probability problem. For this reason, the spectral analysis

does not extract sufficient information from the reproduced vector signals, and thus,

we do not obtain adequate features of the Centroid, Spread, Pitch, MFCCs, and their

delta-features. Therefore, it is not so meaningful to process the conventional spectral

analysis towards the vector signals, but we can only extract an exclusive feature from

the static spectral pattern of vectors.

Furthermore, the optimization process often causes unintended results because the

method is based on mathematical analysis, not perceptual coding. Therefore, the spec-

tral pattern of the vectors is not necessarily practical to those of the real-world sounds,

which becomes a significant obstacle to match the vectors and sources. The problem

of this inconsistency of the optimized spectral patterns is discussed by Nakashima et

al. [49]. In his approach, a statistic spectrum envelope pattern of the sources, which is

called a probabilistic spectrum envelope (PSE), is previously trained before operating

the NMF. Subsequently, the NMF performs the optimization of the vectors using the

PSE instead of the conventional unsupervised optimization. Therefore, the target is de-

composed to the vectors which have more likely similar spectral pattern to the sources

that could adequately match each other.

164

There is another issue to be solved to obtain an adequate result. The conventional

NMF algorithm is immune to small variations of the amplitudes, but it is very delicate

to variations of frequency. When a sound sequence contains small pitch changes or

smooth glissandi effect, the NMF intends to separate them into the distinct vectors

regardless of their timbral character. This problem yields inefficient decomposition and,

in consequence of producing an inappropriate synthesis result. The employment of the

log-frequency spectrum is one possible solution as suggested in the Shift-invariant latent

variable Model by Benetos and Dixon[47], and the Specmurt analysis. Implementing

those of the advanced algorithms is yet to be done, and we need to address further study

for more efficient and practical decomposition analysis, labeling method, and synthesis

techniques in order to make the results satisfactory.

We will examine the synthesis by means of the present algorithms we have developed,

and verify the above-discussed issues.

26.4 Demonstration of the NMF based SCSS technique

We will present two synthesis results using a Piano database and a Drum loop sound

as a target decomposed into different numbers of vectors.

First, we separated the target into two vectors which are audible in two audio files,

vector140, and vector241, and subsequently, we operated SCSS for each vector. The

vector1 presents only the low and short bass drum sounds, and the vector2 represents

hi-hat and snare sounds occurring in the high-frequency band. Remarkably, the vector2

contains also low-frequency components simultaneously with the high components. The

SCSS result for vector1 consists of muted piano sounds which have fast decay, and the

result for vector2 consists of various piano sounds from low to high registers. The mixed

synthesis result is audible in the audio file42. In this result, the target was not sufficiently

decomposed, and vector1 barely has signals, and vector2 has almost of all components

of the original. We did not observe any significant differences from the conventional

SCSS result. Therefore, the second test, we decomposed the target into four vectors;

vector143, vector244, vector345, and vector446. We could obtain the meaningful results
40audio/SynthesisResult/Polyphonic/test1/DrumLoopVector1.wav
41audio/SynthesisResult/Polyphonic/test1/DrumLoopVector2.wav
42audio/SynthesisResult/Polyphonic/test1/Mixed 2048 512.wav
43audio/SynthesisResult/Polyphonic/test2/VectorWave 1.wav
44audio/SynthesisResult/Polyphonic/test2/VectorWave 2.wav
45audio/SynthesisResult/Polyphonic/test2/VectorWave 3.wav
46audio/SynthesisResult/Polyphonic/test2/VectorWave 4.wav

165

only for the first47, third48, and the fourth49 vectors, and no adequate sources were found

for the second vector. Compared with the first test decomposing to the two vectors,

we can hear more specific sound characters in each vector. The synthesis result for

the first vector has low piano sounds corresponding to the bass drum, and the one for

the second vector has high piano string scratching sounds for hi-hat, and high-register

chords for the snare sounds. The result for the fourth vector represents some rhythms

in the middle to low register. The mixed result is audible in the file50.

When we used the percussion sounds as a target, we obtained an apparently satisfac-

tory result, but when using harmonic or gestural sounds, we only obtained an erroneous

result. Only when we use a percussion database, we could ostensibly obtain a slightly

proper result. We here present a result using a short double stop fragment played by

violin as a target51, and a percussion database52. We concluded that these problems

caused due to the previously discussed reasons.

27 Discussion

We have discussed how advanced CSS techniques were developed by combining with

the additional algorithms. It is also noteworthy that we could add more varieties to

the result by controlling the parameters for the creative purpose. While the simple

frame-based CSS algorithm produced the mosaic-like sound result, the employment of

longer sequences improved it more naturally and practically. However, the spectral

analysis shows lower similarity as the length of a sequence gets longer and thus, the

accuracy and the adequateness of the synthesis s result may contradict each other.

The use of longer sequences is a significant factor to produce a practical result to be

playable by musicians. Here, we have advanced our segmentation algorithm by referring

the Magnitude feature, which let a sequence stay when it is sufficiently quiet. While

this rule avoids the unnatural interruptions of the employed source sounds, it possibly

generates excessive overlaps of the sources. Therefore, it is also important to control the

redundant length of the sequence in order to avoid a huge accumulation of the sequence

overlaps in the synthesis result.
47audio/SynthesisResult/Polyphonic/test2/DrumLoopVector1.wav
48audio/SynthesisResult/Polyphonic/test2/DrumLoopVector3.wav
49audio/SynthesisResult/Polyphonic/test2/DrumLoopVector4.wav
50audio/SynthesisResult/Polyphonic/test2/Mix 2048 512.wav
51audio/SynthesisResult/Polyphonic/test3/Violin Fragment.wav
52audio/SynthesisResult/Polyphonic/test3/Mixed 2048 512.wav

166

We have observed polyphonic constructions in both the advanced frame-based and

the sequence-based CSS techniques, but they have not been produced as a result of poly-

phonic representations but of the simultaneous sequences supplementary constructed

in order to represent the omitted characteristics of the target.

We have also presented different polyphonic synthesis techniques. The NMF based

CSS technique has a great potential to reconstruct the polyphonic structure of the

target, it is yet off from practical use. The current algorithms are not sufficient to

realize the versatile and effective polyphonic representations, and the further studies

are awaited. There are indeed some issues and their potential solutions for the lack

of the practicality which are worth examining, which will be the subject of our future

work.

167

Part VII

Graphic User Interface

28 Introduction

A Graphic User Interface(GUI) is provided in order to enhance the user-friendliness

and to obtain both flexible and rigid synthesis results. The GUI is designed for the

following purposes: displaying the waveform of the target file and the synthesis result,

automation of functions for controlling the balance (weighting) of the feature vectors,

and automation functions for controlling the threefold parameters for the BMU retrieval

and sequence concatenation.

Our GUIs have been developed on three different platforms, which are, Max in C,

Web application written in HTML5, Javascript, and PHP, and the Cocoa application

written in C and Swift. The Cocoa application version of the synthesis program is still

under the development and therefore, we will just introduce it shortly.

29 Max

The first version of our synthesis system has been implemented on Max6 which has

been developed by Cycling74[86]. The advantage of Max is that it provides a lot of

efficient and robust UIs and bundles of programs such s waveform viewer, automation,

and DSP functions which are applicable to our synthesis system.

As shown in figure 102, the GUI for max consists of a waveform of target data,

a waveform of synthesis result, the first automation parameters for Magnitude, Cen-

troid, Spread, Flatness, Pitch, and the second automation parameter for the threshold

constraining the BMU retrieval, the second Threshold for constraining the sequence

concatenation, and the third threshold is a trigger of the new sequence. The forth

threshold defines the minimum length of the obtained sequence to be employed for the

synthesis result. The Density sets the interval of a BMU, which prevents to retrieve a

BMU in every frame. The Similarity changes the priority of the synthesis which decides

to employ the BMU of a higher similarity or longer sequence.

168

29.1 Discussion

Besides its significant advantages, Max is not suitable to develop a heavy computing

program which could analyze a tremendous number of audio data and implement a MIR

system organizing a large size of the database. Therefore, we anyway had to develop

another software which could operate the audio analysis and database constructions

by means of multi-core processing which maximizes the performance of the computer.

Concerning the compatibility between different environment, the Max is an adequate

platform because it works on both Mac and Windows OS as long as the Max is installed.

One obstacle will be that both developers and users need to purchase a full license of

Max to modify the programs and save changes.

Figure 102: The GUI for Max6

29.2 Ad-hoc Score

In order to create the conditions that would allow the program to be used for cham-

ber music composition, we designed this program with the following specifications: a

169

flexibility-modified database, the use of polyphonic synthesis, the use of multiple al-

gorithms that produce the longest possible sequences in order to increase the chances

of the sequences being used for the final product, the use of multiple parameters that

allow the user to precisely control the synthesis results, a Graphic User Interface to

improve the user-friendliness, and an ad-hoc score which enables composers to analyze

the synthesis result and to translate it to a musical score.

It is particularly important to provide an ad-hoc score which represents the com-

plicated structure synthesis result. The score is similar to a piano roll representation

common in sequencers shown in figure 103. The horizontal line represents the time

axis divided into cells, each reprinting a unit which is equal to the smallest segment of

audio data. The vertical line represents the number of voices that indicate how each

sequence is polyphonically generated and employed in the synthesis result. Each rect-

angle colored with alternative colors of dark and light greens which indicate a sequence

constructed with successive units from the same source unit. When the rectangle ob-

jects are selected with the mouse cursor, a pop-up window displays information about

the sequence shown in figure 104. This information includes the number of frames

which represent the position of the source data, the beginning time and length which

represent the position of the synthesis result, and the address of the source file. When

a rectangle object is clicked, the corresponding audio data is played. It is also possible

to select multiple objects and to play their audio data simultaneously.

Figure 103: The ad-hoc score

170

Figure 104: The ad-hoc score

30 Web Application

30.1 Introduction

Due to recent progress in building mass storage devices for computers, there has been

an increase in the development of application software that uses large quantities of data.

In particular, as large size databases are becoming more common, and some software

requires such large quantities of data that the average personal computer lacks sufficient

storage space for such programs. Our synthesis system also uses a large size database

(minimum of several gigabytes), in order to yield a higher quality of synthesis result.

In this section, we will discuss the design of this program to be used on various devices

including smartphones or tablet computers, as we would like to make the program as

user-friendly and practical as possible for computers. However, we must be aware of

the risks of using such large quantities of data, as this could become an obstacle for

distribution of the application software and restrict the audience.

Today, many services that employ large quantities of data are provided mainly

through internet technology. Their databases are placed on a server, and the users

can simply access and retrieve data they need. Here, we will discuss the possibilities

presented by these kinds of software focusing in particular on Web applications for mu-

sic. In consequence, we will report on the pros and cons of applying these applications

to our synthesis system.

Our synthesis system can be primarily divided into two parts; a synthesis engine,

and a database of source sound data and their analysis information. In the synthesis

program, it has been found that the greater the size of a database, then the greater

the versatility and the higher the quality of synthesis result. This is the most impor-

171

tant criteria because the synthesis program is designed to target Computer-Assisted

Composition for instrumental music, and this requires natural and physically playable

synthesis result. Furthermore, higher user-friendliness and easier usability are required

(in contrast to purely electronic music) because the synthesis results are often trans-

lated to a traditional musical score. However, a large volume of data could require a

high-capacity storage of the device, thus making installation much more complex. This

factor makes the database more difficult to organize. The database is huge (several

gigabytes) and is distributed through the internet. The size of this database limits the

types of devices that can access it, as it is then limited to being downloaded on desktop

or laptop computers, thus excluding mobile devices such as smartphones and tablet

computers.

Our synthesis program has additional complicating factors, as its database is de-

signed to be flexibly modified by the user. This is one of the most unique aspects

of our synthesizer. Thereby it is assumed that the database is constructed not only

using individual instrument samples., but also with short musical fragments such as

extended techniques or musical gestures. While the fragment data could generate more

natural synthesis results, this data can also easily require much greater storage space.

In addition, as we intend to design the software to be used on mobile computers in

order to enhance the user-friendliness for actual composition work, it is therefore our

top priority to address this storage problem.

A Web application is an application software which runs on the web. It consists of

two main parts; the Client-side, which indicates the device or software that receives

service, and the server or Host-side, which indicates the device or software which offer

service. A Web application uses a web browser as a client to execute any programs

provided by the server. A Web application can be used as a mere extension of a web

page, or it can be used as an advanced software.

The Client-side is developed by both markup and script languages such as HTML,

Javascript, flash, etc. that help to create dynamic and animated web pages. Server-

side programs are developed by using programming languages such as PHP, CGI, Ruby,

etc. and database constructions by MySQL among others. In short, a Web application

runs through the interactions between both sides. However, as a Web application runs

on a browser, the programs are not entirely dependent on the Client-side devices or

operation systems. This is one of the most unique qualities of a Web application. In

172

addition, any user with a browser and internet access can use the application without

having to download a complicated installation on their devices.

The most familiar examples of the Web application that employ large databases are

Google search, Facebook social network service, Youtube video sharing service and so

on. All of these have large databases on their servers, and clients can receive services

by retrieving only the necessary contents.

Here are the possible benefits and issues associated with implementing our synthesis

program on a Web application.

Benefits :

• The Client does not need to install any program and only requires a browser to

access the program/application. This solves the potential compatibility issues with

the clients computer.

• Web applications require minimum disc space on the Client-side, thus enabling the

use of mobile computers.

• Web applications can divide the computing process into Host and Client-sides,

thus the server with its high spec computer and a higher efficiency can carry out

high-performance computing.

• Web applications do not require the client to perform any special software upgrade

procedure.

Issues :

• Web applications require an internet connection to provide the services, and the

speed of internet access can significantly influence the performance of Web appli-

cations.

• Different browsers support APIs in slightly different ways, and thus it is important

to develop programs that are sufficiently general and that are constantly updated.

• The copyright issues involved in uploading and distributing audio contents must

be resolved.

• Servers are at risk of being hacked. It is therefore very important to maintain high

security for the programs.

173

Most of these technical issues can be solved by making robust programs. It is

also important to adequately consider all copyrights issues such as Digital Rights

Management[73]53.

30.2 Development Environment

There are several programming languages and environments used in developing Web

applications. Our synthesis program requires a comfortable GUI, audio processing

functions which work on a browser, and proper database management.

Flash Player Adobe Flash player is one of the most popular platforms for Web appli-

cations. There are various web pages and Web applications developed by using Flash

player on the internet. Flash can create dynamic and interactive animations and mul-

timedia on a browser. However, due to the controversy between Apple and Adobe[95],

Apple has stopped supporting the use of the Adobe Flash player on Apple mobile

computers due to Adobes closed system, security issues, and high demand for device

performance. Since Flash cannot be properly installed on Apple mobile computers,

Adobe has also stopped developing it for later models scubas Android 4.1 and has been

promoting its new programs which translate Flash web sites to HTML5. These devel-

opments have resulted in HTML5 becoming one of the most promising new platforms

for developing Web applications for different devices.

HTML5/canvas HTML5 is the fifth major revision of the core language, and it is de-

veloped by the World Wide Web Consortium(W3C) and WHATWG. HTML5 subsumes

HTML4 and provides enhanced functionality in new elements, attributes and APIs[91].

The language is able to describe clearer sentence constructions, simpler movie/sound

implementations, and many other functions which were previously engaged by Adobe

Flash player. The first plot type was distributed in 2004, and the full specifications

were completed in 2014.

The canvas is one of the most important elements in HTML5, and this allows it to

render 2D graphics and bitmap images on web pages. This canvas originated in an

Apple Webkit component in 2004. This technology has been employed by Dashboard
53According to the [73], Digital Rights Management is an access-control technology used by manufacturers, publishers,

and copy-right holders to limit the usage of digital devices or information. It describes the technology that prevents
unauthorized distribution and usage of content, media, or devices.

174

applications and Safari browsers in Mac OSX. The canvas provides many opportunities

to create GUI and animations on web browsers without using Flash player. Although

HTML5 has rich functions to develop advanced programs, it does not handle APIs

which would enable it to use complicated audio processing. This issue can be solved by

using Web Audio API, which is described in the next section.

Web Audio API Web Audio API is high-level Javascript API developed by W3C

for the purpose of processing and synthesizing audio data in Web applications. The

first working draft was distributed on December 15, 2011, and the latest version was

published on October 10, 2013, on the W3C website[96]. The API has two main goals:

the first is to fully utilize the capabilities provided by modern game audio engines.

The second is to manipulate and play sample data using some mixing, processing,

and filtering tasks that are found in modern audio production/editing applications

such as sequence software, Audacity, Logic Pro, ProTools, etc. Web Audio API has

an advanced audio processing library which generates, manipulates, and plays diverse

signals, obtained from oscillators or various kinds of audio files. The library includes

multiple functions such as filters, compressors, delay, FFT, oscillators, etc.

30.3 Related Web Applications

Web Audio Editor The HTML5 Audio Editor[90], or audio tool web app, was devel-

oped with HTML5 and Web Audio API by Rainer Heinke. Parts of the audio editing

functions were taken from the Audacity project[89]. With this audio editor, the user

can simply drag-and-drop an audio file(WAVE, OGG, and MP3) into its interface, and

the program will plot the waveform and spectrogram obtained by Web Audio API

functions. The GUI is made with the HTML5 canvas element. A particular audio

region can be selected by mouse click and manipulated in diverse ways such as chang-

ing volume, normalizing, silencing, and fading in/out. Following these manipulations,

the audio data is rendered and exported as WAVE format data. This Web application

demonstrates how Web Audio API can manipulate and play audio data in a flexible

way.

Recorderology The Recorderology is a research project using recorder instruments

which has been carried out by Mayer-Spohn and Author (Takahashi) since 2013. This

175

project aims to analyze and provide various sound samples and extended techniques

of recorder instruments primarily for contemporary music. The research results are

published on the projects Recorder Map web site[93] and in a paper[94]. One of the

unique aspects of the project is that some of the contents are provided by using a Web

application.

For example, figure 105 shows a type of sampler which presents various kinds of

playing techniques played by eight different size recorders. This sample can play any

possible combinations of the following sound characteristics for any size instruments,

articulations, dynamics, air pressures for blowing, registers, bisbigliando, and extended

techniques.

The user can select a particular instrument and playing technique in the menu above

the sampler, and he or she can then play the sound result by clicking on a corresponding

note and a dynamic.

This example shows how the Web application can vastly increase the scope of in-

strumentation research. This software has been designed so that users can listen to

the different instruments, notes, and articulations very easily and so that they can in-

tuitively compare any possible combinations of sound. This is particularly impossible

using a normal web site or a paper-based media. As demonstrated in this example,

maximizing user-friendliness is one of our top priorities for our synthesis program.

176

Figure 105: The GUI of the Recorderology

This figure illustrates the layout of the web-application recorderology on Google Chrome browser. In
the main page, two players are installed in parallel on the same window, and the user is able to
assign a set of samples of different playing techniques or instruments to each player in order to

investigate the sensitive differences between them. The playing technique menus appear on the top of
the player colored by orange and green. When the user selects one specific note, the program shows
its possible variations of the playing technique which appears in a circle around the note, which

increases the visual focus to the standard notation. Simultaneously, the user can navigate around it
to access different options of its timbre. Figure and the description are quoted from the paper[94].

30.4 Implementing our synthesis program on a Web application

Figure 107 shows the structure of our synthesis program on the Web application. It

has two sides; 1. the Host-side, which is the server side and consists of audio analysis

engine, synthesis engine, and database, and 2. the Client-side, which consists of the

users device and browser, in which GUIs such as waveform, automation functions,

menus, and sequence for the synthesis are provided. The process of synthesis is divided

into three steps. In the first step, a target audio file is uploaded from the Client to the

Host-side, and the audio data is loaded into the AudioAnalyzer software which analyzes

its characteristics. The analysis result is outputted as a CSV(Comma-Separated Values)

file and stored in the Host disc storage. In the second step, the Host-side provides audio

information(audio length, data size, etc.) to the Client. In turn, the Client generates

the waveform of the audio data, the automation functions which are adopted to the

obtained audio length, and multiple menus. The user can also modify parameters by

using the automation function and multiple menus at this step. Three parameters are

then sent to the Synthesis Engine program. In the third and final step, the Host-side

177

synthesis executes a synthesis process. The synthesis result is generated with multiple

source audio data retrieved from the database located in the Host storage, and this

result is then provided to Client. Following the completion of the synthesis process, the

waveform of the synthesis result is plotted on the waveform display. The second and

third steps can be repeated as necessary for the re-synthesis using different parameters.

In this system, each task is assigned to the most appropriate side. In particular,

the Synthesis Engine, which is the main program and the most expensive process, is

assigned to the Host-side. Therefore, low spec computers such as mobile computers can

use this software just as effectively as desktop or laptop computers.

Figure 106 represent the GUI launched on a Google Chrome browser. The waveform

display plots a target audio data in violet and the synthesis result in black. This

representation of the waveforms enables the user to compare the target and the result

visually. The four automation functions that control the synthesis result are placed

directly on top of each other. Each function can be switched with another by selecting

particular parameters using the HTML5 selection element which is opened in figure

106. The user can download the synthesis result as a WAV data and the analysis data

as a CSV file.

Figure 106: The GUI fo the Web application

178

Figure 107: Synthesis process

The step 3 can be repeated multiple times until the satisfied synthesis result is obtained.

30.5 Sequencer

The Sequencer is the new version of an ad-hoc score, and its appearance is similar to a

piano-roll. The previous version of the ad-hoc score was developed using HTML tags

and Javascript exclusively, which did not yield good usability. This new version was

developed using an HTML5 canvas element and Web Audio API that could create much

better usability, better synchronization of playing multiple audio data and modifications

of the synthesis result. Figure 108 presents the Sequencer, in which the vertical line

represents the number of voices, and the horizontal line represents the time axis, and

each black square represents a sequence which constitutes a synthesis result. The user

can now listen to the individual or multiple sequences and obtain information such as

source data name, sequence positions, length, etc. The synthesis result is also modified

by dragging each sequence square in the time axis, and extending (should the sequence

179

audio data have more length) or shortening the sequence by dragging the edge or the

sequence.

Figure 108: The sequencer on the Web Application

30.6 Discussion

In our research, we are still addressing some issues in the Web applications and in the

software development. At the current stage, the software is not yet ready to be dis-

tributed or thoroughly tested. Some of the issues we are facing include the stability and

security of the program, the volume of data communication between Client and Host,

and database organization. For the stability and security issues, the most important

factor is the Host-side security in order to prevent any fatal crashes.

The data communication issue would be partially addressed by relying on lossy

compressed audio data such as MP3. It is also important to limit the maximum amount

of data communication for one execution which can be accomplished by restricting the

length of a target sound file. At present, our database does not use a public database

management system, and this is the biggest obstacle to developing the efficient and

robust database system that we are striving to build. Further research will be required

in order to overcome this obstacle.

31 Cocoa Application

The development of the Cocoa application version of the synthesis program is one

of our future works. The software will cover all UI functions implemented on the

Max and Web applications and will improve the issues we have previously faced on

in other platforms. Cocoa is a framework for developing software for MacOS which

allows us to utilize various UIs and APIs called NSObjects provided by Apple. In

180

this program, we have employed two programming languages, Swift and C, depending

on the tasks. For instance, expensive and time-consuming processes are written in C

in order to optimize the processing, and the UI part is written by Swift which can

communicate with NSObjects. Some of the GPU based APIs such as SceneKit and

OpenGL, are utilized to accelerate the drawing of the waveforms, spectrograms, and

graphs showing the analysis results. The parallel processing is applied to the tasks

requiring the expensive computations like constructing a database and thus, this version

of software requires the full performance of the computer.

Figure 109 illustrates the GUIs of the software currently under development. We

still need to work on designing an efficient and user-friendly GUI which allows us to

intuitively control the synthesis engine and have access to the database.

Figure 109: The GUI of the Cocoa Application

The UIs are merely designed for the test of synthesis, and thus, it is not yet sophisticated for the use
in the creation.

181

Part VIII

Application to Composition

32 Introduction

In this section, we will describe the actual applications of our Computer Assisted Com-

position program on two different types of compositions: Bricolage for a percussion

ensemble and Pentimento for a small ensemble consisting of Flute, Violin, Viola, and

Violoncello. Although the synthesis program is designed for both electronic music and

instrumental music composition, we focus on the ensemble piece which demands a lot

of restrictions because we need to transcribe the synthesis result to the actual music

played by musicians. We will suggest some applications for this program, including

constructing a database for particular compositions, controlling the synthesis program,

and compositional and instrumentation methods.

32.1 Short descriptions of the compositions

Bricolage The piece Bricolage was written for a percussion ensemble, consisting of six

players, and live-electronics. This was the first piece I composed with the assistance

of the program. Bricolage is a term used to describe an artistic genre, especially for

architecture or craft works, in which a diverse range of materials whatever available,

including various kinds of garbage or scrap, are employed. It is sometimes also denom-

inated junk art. Swiss painter and sculptor, Jean Tinguely, is one of the most famous

artists making different uses of Bricolage in his art. Tinguely assembled scrapped indus-

trial materials such as gears, wheels, broken machines, and furniture, and used them to

create sculptures or installation art. In the realm of music, there are some musics that

employ the idea of Bricolage such as generating sounds by playing housewares or tools,

sampling various kinds of sounds existing in the environment and creating with them a

kind of electronic music. While composing this piece, I payed great attention and make

a special effort to listen to environmental sounds existing around me, carefully observing

them from a musical point of view, and investigating how these musical materials were

possibly combined or concatenated in fragments or passages in the piece. The instru-

mentation consists of only percussion instruments, this was in order to apply dissonant

and inharmonic sound qualities for the creation of complex timbre associations. The

182

employment of the program generated many unexpected musical ideas and highlighted

new aspects of the sound by generating various combinations of instruments, gestures,

and rhythms from banal sound materials. In their turn, they became triggers to find

new musical ideas of my own. I used the program in order to create not only timbre

associations, sound textures, and gestures, but also to create a compositional system,

such as musical scales, with which I constructed motifs in the piece.

Pentimento Pentimento was composed for Quartet Flute, Violin, Viola, and Violon-

cello after Bricolage for percussion ensemble, I focused on writing a piece for instruments

that have harmonic spectra as the next step. I selected a traditional ensemble forma-

tion in order to investigate new possibilities of this program thereby defining totally

different conditions as I had for Bricolage. Pentimento is a term used in traditional

painting. It defines the painting of a new picture on top of a different pre-existent one,

or the tracing of a previous work. The technique is used as a compositional technique

or for a special painting effect. It was not unusual in earlier times to re-use the canvas

of a pre-existing picture. The previous picture, in whole or in part, was then sometimes

incorporated into the new one. Also a pre- existing painting would be covered with

base-color and, later, this base would be erased in some areas in order to let details

of the previous painting raise to the surface of the new picture. The technique was

employed both intentionally, to create new expressions, and sometimes unintentionally

when a new picture was painted on an old canvas due to financial reasons, or just for

study, etc. For my piece Pentimento, I constituted a database with fragments of a

previous work of mine written for solo flute. I did this in order to generate new mu-

sical ideas based on the old work. This was my way of incorporating the concept of

Pentimento into my own compositional process. For example, some re-synthesis results

were decomposed into small musical materials. With those small elements, new musical

events such as motifs, fragments, rhythms, etc. were generated by recombination. The

re-synthesis potentially includes many kinds of musical elements and some of them are

represented neither completely nor clearly, they are often hidden behind other musical

aspects. The process of seeking those hidden musical elements and bringing them out

to generate new musical elements made me conjure up the idea of pentimento.

183

33 Demonstrations

33.1 Database

The databases employed throughout the compositions of these pieces consist of two

types of sound data: samples of individual instrumental sounds and recordings of short

phrases or rhythmic patterns. Samples of the first type were created by recording the

sound of an individual tone played on each instrument using different techniques, mal-

lets, and so on. Samples of the second type were created by recording the performance

of short musical gestures and extended techniques played by either individual instru-

ments or sometimes combinations of different instruments. Additional samples were

obtained from sound materials provided on the website of the University of Iowa Elec-

tronic Music Studio and from Prosamples PS41 Solo Strings sampling library produced

and published by Crypton Co. These libraries provided a sufficient variety of sounds,

techniques, and transpositions for our purposes; it is possible that this richness of sound

material allowed for the high-quality reconstruction of target files.

33.2 Example 1: the extraction of musical motives and elements from the
re-synthesis (Bricolage)

The first section of Bricolage was composed by using a type of scale system derived

from a portion of the synthesis results, and a motif was then made using this scale. The

re-synthesis was created with the target file shown in Bricolage A.aif, and the sound

was generated by rubbing a wooden snare stick on the surface of a wooden table. The

synthesis result can be heard inBricolage A Result.aif.

There are three main steps in the synthesis process of Bricolage A. The first step

is to organize the parameters and the database by focusing on generating the specific

sound texture constructed by the ascending and descending gestures produced by the

gongs; this texture is then alternated with low sounds played by the timpani and the

bass drums. In the second step, the synthesis result and its ad hoc score are translated

into the rough sketch of the piece using the listed instruments. In this process, only

some specific timbre associations and musical gestures are extracted (see figure 110 and

figure 111). This step depends entirely on the composer’s intentions. In the third step,

the rough score is analyzed in order to reveal more concrete musical elements. This

process requires a more traditional compositional technique. Figure 110 shows five

184

adjunct note pairs extracted from the rough score. They are defined as the minimum-

unit musical element in this re-synthesis, and these are some of the most significant

elements to construct further timbre associations and musical gestures.

Figure 110: The minimum-unit musical element Figure 111: The minimum-unit musical element

Figure 112: Bricolage, bar 38 to 43

These note pairs are played by different instruments and form arpeggios, as shown

in figure 111. The first bar of figure 111 shows an arpeggio found in the first seven

bars in the rough score, and the second bar shows an arpeggio found in the last six

bars of the same score. Figure 112 shows a part of Bricolage in which the ascending

motives are originally created by the synthesis results described above. In this short

fragment, different note pairs and arpeggios are partially combined to develop the

musical sequences.

Another important musical structure, which is heard as an alternation between low

sounds and the ascending motives, is represented by the combinations of the bass drum

the timpani, and the low register gongs. Figure 114 represents the alternating structure,

in which the low register sounds are marked with circled black lines. There are arpeggio

motives formed by the different low sounds, and these motives consist of note pair played

by different instruments. The marimba plays a complete arpeggio (clearly marked with

185

square black line) throughout the fragments.

186

Figure 113: sketch of Bricolage

187

Figure 114: Alternating structure in Bricolage

33.3 Example 2: subtraction method (Bricolage)

Another way to apply the synthesis to this piece is by using the subtraction method.

In figure 115 (Bricolage from bar 63), the musical gesture was produced based on a

synthesis whose target file was created by tearing up a piece of paper. The target file

is Bricolage B.aif, the synthesis is Bricolage B Result.aif. In the final score, the gran-

ulated sounds are represented by tremolos in the cymbals and the snare instruments.

This is done in order to reduce chaotic noises and to produce a more coherent timbre

association. The density of sounds in the re-synthesis is reduced and the sound color

is made more coherent by using less instruments and by employing the tremolo tech-

188

nique. This method can be said to be a subtraction method : this is a practical way to

re-interpret the synthesis by filtering out its result in order to enhance the possibility of

the true performance and thereby filtering out more significant musical gestures from

the piece. This subtraction method is also used in Pentimento as described further

examples.

33.4 Example 3: employment of musical fragments (Pentimento)

The following example shows one of the strongest findings of this research project. The

database of Pentimento includes many fragments of flute sounds and consists in the

combination of whistle tones, keyclicks with voice (figure 116), pitched sounds with

sweeping breath gestures (117), a fast passage played with breath noise and tongue

ram (figure 118) and fragments of cello harmonics (figure 119), among other sounds.

These fragments are mainly used in the re-synthesis of fluorescent and bulb lamp

sounds, and these are the most significant fragments used to generate new musical ideas.

In the re-synthesis of Pentimento A (Pentimento A.aif and Pentimento A Result.aif),

the target file begins with the flickering noise of a fluorescent lamp followed by a buzzing

sound. In the re-synthesis, the flickering noise is represented by a high register staccato

in the violin, and the buzzing sound is represented by a sweeping breath noise in

the flute in addition to a tremolo harmonic in the violoncello. Figure 119 shows the

beginning of the piece which features a musical motif derived from the re-synthesis. In

the next subsection (Example 4), other fragments are used in re-synthesis, thus creating

variations of the synthesis result. Example 3 and example 4 show one of the most unique

approaches used in this research project. This program not only makes it possible to

find the best solution in relation to the full orchestra and to all instrumental techniques,

but it also allows the different source and target materials to be re-combined in an ad

hoc search for the most suitable solutions within the constraints of the material. This

process is entirely dependent on the creative intentions of the composer.

189

Figure 115: Bricolage from bar 63
190

Figure 116: whistle tone and keyclicks with voice

Figure 117: sweeping breath gestures

Figure 118: breath noise and tongue ram

Figure 119: Pentimento, bar 1 and 2

33.5 Example 4: Variations of re-synthesis of the same target

The synthesis result of Pentimento B can be perceived as an evolved version of Penti-

mento A as it generates a more complex rhythm, sound texture, and also many granu-

lated noises. It consists of additional diverse sound variations such as pizzicato, noisy

string rubbing sounds generated by high pressure bowing, and whistle tones in the

flute. Such a re-synthesis, which contains many varied sounds, is then modified by the

subtraction method in order to extract specific musical materials and to employ them

as fragments in the piece. In this piece, however, the re-synthesis is not simply adjusted

to become a part of the piece. Instead, much smaller musical events or even individual

notes are extracted from the result and are then utilized to build new musical events.

For example, figures 10 and 11 show the score displaying the fragments in the piece

derived from the combinations of the re-synthesis Pentimento A and Pentimento B.

191

While the musical fragments shown in figures 119 to 120 were all created based on

the same kind of target sounds, the re-synthesis was produced with different parameters

in order to develop the musical fragments.

Figure 122 shows the development process of the flickering noise motif originally

derived from the re-synthesis Pentimento A,Pentimento B(Pentimento B.aif : Penti-

mento B Result.aif),Pentimento B2(Pentimento B2.aif : Pentimento B2 Result.aif), and-

Pentimento C (Pentimento C.aif, Pentimento C Result.aif). The motif is gradually de-

veloped, thus creating more complex rhythms and timbres.

Figure 120: measure13 to measure15

Sweeping breath gestures by flute and harmonics
by cello

Figure 121: measures 21 and 22

The flickering noise is now also played by the flute
and the harmonics are now played by the violin,
viola, and viononcello

192

Figure 122: The development of the flickering noise motif

34 Discussion

Bricolage In Bricolage, specific rhythm, melody, and chords are not to be heard clearly,

rather all musical events were created based on the idea of timbre associations and

musical gestures were constructed with complex combinations of different instruments.

These musical gestures generated by the program were often modified for a specific

purpose and, at the same time, many unpredictable elements generated by the re-

synthesis, such as granulated noises, sporadic sounds, et cetera. were also employed as

accurately as possible. The character of these complex musical events was often abstract

and heard as a sort of ornament found concrete elements, such as scales, motifs, et

cetera. In Bricolage, all musical elements generated by the program enabled to produce

a heterophonic result. The short fragments played by each instrument contain irregular

rhythms, tremolo, and articulation effects, and it is the addition of those individual

fragments which create a big modulation of the acoustic space, and the variations of

the resulting musical gestures.

193

Pentimento The re-synthesis was decomposed into small musical events such as stac-

cato, pizzicato, or a small gesture and reconstructed in slightly different ways in order

to guide the musical progress. Music fragments created from the same sound idea, the

same target file, or one or more re-synthesis, were often recapitulated with a develop-

ment throughout the piece. Furthermore, each decomposed musical material was often

independently developed and combined with further different materials in order to cre-

ate a new fragment. The procedure could be so described: each re-synthesis becomes

a sort of dot which represents a concrete musical idea created by specific combinations

of musical materials. Multiple dots are then connected to form new fragments con-

structed by freely combining modified musical materials. Many concrete musical ideas

were created by using the program, but the basic compositional idea was developed in

a more traditional way. The composition examples were able to show that, due to the

flexibility of the programs design, the program holds great potential for developing new

musical materials.

194

Part IX

Conclusion

In this thesis, we have described different topics across the various research fields and

eventually, we have integrated them to achieve our goal which is the development of a

Computer Assisted Composition (CAC) program and its application to the instrumental

music composition. The program is useful to create various musical ideas and the results

have a great potential to provoke new musical ideas. We have only introduced the case

of the instrumental music, but we see a lot of potential in this program of applying

to other types of creation, such as electronic music, sound art, and installation. The

advanced algorithms developed throughout the research can be also applicable to other

research fields as the concatenative sound synthesis is employed in divers areas.

In the development phase, the potential of diverse algorithms was investigated and

improved to be adapted to particular situations by combining with additional algo-

rithms. In the Audio analysis, we investigated the various analysis methods, and at-

tempted to define the most appropriate one to extract each descriptive features. These

analysis methods are often advanced accompanied with novel algorithms we have devel-

oped, and when possible, their results are scaled to the perceptively adequate values.

The employment of the high-level feature vectors is also an interesting factor to im-

prove the re-synthesis especially because we gave a priority to produce a perceptively

convincible result. The source separation algorithms, which are the Segmentation and

Decomposition, were also discussed as a key of an advanced synthesis technique. Subse-

quently, we have looked closely the labeling and classification methods for an individual

audio unit, and for a sequence or decomposed unit. In this process, a large number

of data units are mapped into the lower-dimensional space called Self-Organizing Map

which creates a straightforward and concise data retrieval system, and this system

also contributes reducing the searching time significantly. Based on these fundamen-

tal research, we have developed a synthesis program. We presented various synthesis

techniques and their synthesis results on different conditions, parameters, and creative

purposes. The results were inspected by applying the spectral analysis and also the

perceptional interpretation, which is one of a unique aspect of this research. We believe

that it is significant to assess the quality of the result from both subjective and objective

point of views because the design of the synthesis system is a core work to make our

195

CAC program efficient for the creative use. We found that there are still some issues to

be solved to realize the versatile polyphonic representation particularly when using the

pitched and harmonic target sound. All of those examinations were eventually tested

in the actual instrumental music composition by the author. Although we are aware

that the program needs to be tested by various composers, the first step in a larger

project provided interesting and prospective results for the future work. We have also

experimentally implemented the CAC program on three different platforms, Max, Web

application, and Cocoa Application for macOS. Most of all, Internet technology is one

of the most prospective platforms to broaden the range of possibility and to promote

users to access the program. However, there are a lot of issues to be clear to realize the

efficient and speedy system due to the data communication limits. The further develop-

ment of the GUI is also the significant work in the future. The ideal GUI should enable

users to access the synthesis system more intuitively, and easily control the result in

more creative way as it is usually the case in sequencer software such as Logic Pro,

Cubase, and Pro Tools.

The program is able to objectivize a musical idea by outputting audible and visible

results of its analysis. It can possibly discover unpredictable aspects of a target sound,

aspects which are otherwise hardly noticeable. One of the most profitable advantages

of the program is that the database can be customized freely by the user. This can

expand the application of this program for many purposes. We still have issues that the

program enables to always produce reliable results for any kinds of sounds, however, the

quality of the result is strongly influenced by the target and sources. Even so, the use of

this program in its present stage of development has already significantly expanded and

influenced the computer assisted composition and the traditional composition realms.

The program users could often avoid personal habits or usual tendencies in the creation

of music, and it has frequently brought a new musical point of view. It is like establishing

a dialog with a partner who is quite savvy in the area of instrumentation. On the other

hand, sometimes the re-synthesis produces results that are too strong, and from this,

a form of prejudice for the creation of musical materials could arise. This can restrict

ones imagination in the production of original ideas. It is therefore important not to

persist in a blind employment of the re-synthesis, it is important to assume the results

as a little part of a musical element that can be interpolated and developed with other

ideas.

196

As discussed in the actual compositions, many compositional methods were used

in order to employ the re-synthesis and, for instance, the re-synthesis often required

some special compositional method, and in its turn, that new compositional method

stimulated the re-synthesis of sound data in a different way. In our experience, this

mural relationship between digital and analog processes can possibly change the musical

point of view and help in the creation of new musical ideas. Needless to say, it is

therefore important to seek out the target data and observe it from various perspectives

in order to try and conceive what kinds of musical materials can be obtained from it,

and those of which could be employed in our own music.

Finally, I believe that there is still some space for growth and development of the

program in two directions: enhancing its quality and expanding its areas of applica-

tion. The first is planned for relatively close future, and the goal is to distribute the

program implemented on Cocoa application and apps for more practical devices such as

smartphones and tablets. These portable devices would make the program available to

divers types of composers. The second development would become a larger term project

which demands the intersection of further fields research. In the next generation, the

deep neural network is an essential technology which will take over many algorithms

we discussed in this thesis. The deep learning is expected to realize the efficient iden-

tification system of the audio segments than ever. It can also be applied to the source

separations system. I believe that this has so much potential for the application of the

concatenative synthesis with a corpus audio data in many fields that restricting the

destination, and to incorporate further fields of research will be absolutely meaningless.

This, at the same time, is an essential part of the research on how could the program

help to innovate in the creation of new music.

197

Part X

Bibliography

References

[1] Curtis Roads, ”The Computer Music Tutorial”, The MIT Press, Cambridge, Mas-

sachusetts, London, England, 1996

[2] Kubota K., ”The music history”, Tokyo Ongaku no tomo sha co., Tokyo Japan,

2002

[3] Takahashi H., Nakamura, T. ”The history of the classical music”, Tokyo publication

Co. Japan, Tokyo Japan, 2004

[4] Black A. W.. and Paul T. CHATR : a generic speech synthesis system, 1994

[5] Roberto B., Anders F. ”Emotion rendering in music : Range and characteristic

values of seven musical variables”, CORTEX A Journal Devoted to the Study of the

Nervous System and Behavior Volume 47 October 2011 p1068 - 1081.

[6] Meinard M. ”Fundamentals of Music Processing”, Springer International Publishing

Switzerland, 2015.

[7] N.Ahmed, T.Natarajan, and K.R.Rao, ”Discrete cosine transform”, IEEE Transac-

tions on Computers, vol. C-32, pp.90-93, January 1974.

[8] David G. ”Pitch Extraction and Fundamental Frequency: History and Current Tech-

niques” Department of Computer Science Univeristy of Regina, CANADA, Novem-

ber, 2003

[9] Philip M., Geoff W., ”A Smater Way to Find Pitch”, Department of Computer

Science University of Otago, 2005

[10] Brown J. C. , ”Calculation of a constant Q spectral transform”, J. Acoust. Soc.

Am, 89(1):425-434, 1991.

[11] Benjamin B., ”The Constant Q Transform”, 1999.

[12] Brown J. C. , Puckette M. S. , ”An efficient algorithm for the calculation of a

constant Q transform”, J. Acoust Soc. Am., Vol 92, No. 5 November 1992.

198

[13] FitzGerald D. , Granitch M. , Cychowski M. T., ”Towards an Inverse Constant

Q Transform”, Dublin Institute of Technology, 120th Convension 2006 May, Paris

France, 2006

[14] Oppenheim V. A., Shafer,W. R. ”From Frequency to Quefrency: A History of the

Cepstrum”, IEEE Signal Processing Magnizine, 2004.

[15] Bogert P. B., Healy M.J.R. , and Tukey J.W., ”The quefrency analysis of time series

for echoes: Cepstrum, pseudo-autocovariance, cross-Cepstrum, and saphe cracking”

in Time Series Analysis, M. Rosenblatt, Ed., 1963, ch. 15, pp.209-243.

[16] Atal S. B., ”The History of Linear Prediction”, IEEE Signal Processing Magnizine,

2006.

[17] Sturm L .B., Morvidone M. , Daudet L. , ”Musical Instrument Identification us-

ing Multiscale Mel-Frequency Cepstral Coefficients”, IEEE Signal Processing Mag-

nizine, 2006.

[18] EronenA. , ”Automatic Musical Instrument Recognition”, Tampere University of

Technology, Finland, April 2001.

[19] Saito S. , TakahashiK. , KameokaH. , NishimotoT., and SagayamaS. , ”SPEC-

MURT ANALYSIS OF MULTI-PITCH MUSIC SIGNALS WITH ADAPTIVE ES-

TIMATION OF COMMON HARMONIC STRUCTURE”, ISMIR, 2005.

[20] Takahashi K. , Nishimoto T. , and Sagayama S., ”Multi - Pitch Analysis Using

Deconvolution of Log-Frequency Spectrum”, 2003-MUS-53-13pp.6166 (2003).

[21] Saito S., Kameoka H. , Takahashi K. , Nishimoto T., and Sagayama S. ”Specmurt

Analysis of Polyphonic Music Signals”, IEEE Transactions on Audio Speech and

Language Processing 16, 2008.

[22] Azuma M. , Mitsuhashi W. ”Automated Transcription for Polyphonic Piano Music

with a focus on Harmonics in Log-Frequency Domain”, IPSJ SIG Technical Report,

Information Processing Society in Japan, 2011

[23] Kayeyama H., Saito S. Nishimoto T., Sagayama S., ”Recursive Estimation

of QUasi-Optimal Common Harmonic Structure Pattern for Specmurt Analysis:

Piano-Roll Display Visualization and MIDI Conversion of Polyphonic Music Sig-

nal”, IPSJ SIG Technical Report 2004-MUS-56 (7), 2004

199

[24] Grey M. J. and John W. Gordon, ”Perceptual effects of spectral modifications on

musical timbres”, J. Acoust. Soc. Am., Vol.63, No.5, May 1978.

[25] Gerhard D., ”Pitch Extraction and Fundamental Frequency: History and Current

Techniques”, Technical Report TR-CS 2003-06, June 2003.

[26] Oxenham J. A., ”Pitch Perception”, Jornal of Neurosceience 26 September 2012,

32(39).

[27] Trevor M. Shackleton and Robert P. Carlyon, ”The role of resolved and unresolved

harmonics in pitch perception and frequency modulation discrimination”, J. Acoust

Soc. Am. Vol. 95, No.6 June 1994.

[28] Oxenham A. J. , ”The Perception of Musical Tones”,The Psychology of Music

Third edition p.1-p.33, 2013.

[29] Oxenham A. J., ”Pitch perception”,J Neurosci. 2012:32(39):1333513338, 2012.

[30] Banes P. , ”Resolved and Unresolved Harmonics 341 Defining Resolvabil-

ity”, European Medical Alliance : http://www.europeanmedical.info/auditory-

nerves/resolved-and-unresolved-harmonics-341-defining-resolvability.html, 2012.

[31] McLeod P. , Wyvill G. , ”A SMATER WAY TO FIND PITCH”, Proceedings of

International Computer Music Conference, ICMC, 2005.

[32] Verteletskaya E. , Simak B. , ”Performance Evaluation of Pitch Detection Algo-

rithms”, Ceske vysoke uceni technicke v Praze, FEL, 2009

[33] Alain de Cheveign e, Kawahara H.. ”Yin, a fundamental frequency estimator for

speech and music.” Journal of the Acoustical Society of America, 111(4), 2002.

[34] Hess J. W., ”Pitch Determination of Speech Signals” New York: Springer, 1993.

[35] Lutter M. , ”Mel-Frequency Cepstral Coefficients” : http://recognize-

speech.com/feature-extraction/mfcc : 2014

[36] Furui S. , ” : We are creating a computer which has dialogue with a human being.”

Kadogawa Gakugei Public. Tokyo Japan, 2009

[37] Foote J. , ”Automatic Audio Segmentation Using A Measure of Audio Novelty”,

FX Palo Alto Laboratory, Inc., Multimedia and Expo, 2000. ICME 2000. IEEE

International Conference, July-August 2000.

200

[38] Robertson H. , ”MIR tools: Self-similarity matrices and dynamic time warping”,

MUMT621 winter 2012, March 2012

[39] Finkelstein P. , ”Music Segmentation Using Markov Chain Methods”, March 2011

[40] Jothilakshmi S. , Palaniel S. , Ramalingam V. , ”Unsupervised Speaker Segmen-

tation using Autoassociative Neural Network”, International Journal of Computer

Applications (0975 - 8887) Volume 1 - No.7, 2010

[41] Lee DD. and Seung HS., ”Learning the parts of objects by non-negative matrix

factorization”, Nature 401, pp.788-791, 1999.

[42] Lee DD. and Seung HS., ”Algorithms for nonnegative matrix factorization”, in

Adv. NIPS, pp.556-562, 2000.

[43] Paatero P. and Tapper U. , ”Positive matrix factorization : A non-negative factor

model with optimal utilization of error estimates of data values”, Environmetrics,

vol.5 pp.111-126, 1994

[44] Kameoka H. , ”The applciation of the Non-Negative Matrix Factorization in digital

signal processing”, The Acoustical Society of Japan, a bulletin Vo. 68-11,pp.559-565,

2012.

[45] Ono J. , ”TFast Blind Source Separation with Auxiliary-function-based Indepen-

dent Vector Analysis”, The institute of electronics, information and communication

engineers, IEICE Technical Report EA2013-5, 2013.

[46] Yamamoto R. , ”Resolution of the NMF algorithm”, http://r9y9.github.io/

blog/2013/07/27/nmf-euclid/, 2013

[47] Benetos E. and Dixion S. , ”A Shift-Invariant Latent Variable Model for Automatic

Music Transcription” Computer Music Journal, 36(4) pp. 81-94, 2012

[48] Schmidt M. and Olsson R., ”Single-Channel Speech Separation using Sparse Non-

Negative Matrix Factorization”, In International Conference on Spoken Language

Processing (INTERSPEECH), 2006

[49] Nakashika T., Takiguchi T., Ariki Y. ”NMF Matrix Generation Using Probabilis-

tic Spectrum Envelope for Mixed Music Analysis”, IPSJ SIG Technical Report

Vol.2011-MUS-89 No.18, 2011

201

[50] Kohonen. T., Honkela, T., ”Kohonen Network”, Scholarpedia, http://www.

scholarpedia.org/article/Kohonen_network, 2007

[51] Kohonen. T., ”Self-organized formation of topologically correct feature maps”,

Biological Cybernetics, Springer-Verlog, 43:59-69, 1982

[52] Horowitz R., Alvarez L. ”Self-organizing Neural Networks: convergence proper-

ties”, IEEE International Conference Washington DC USA, 1996

[53] Rojas R., ”Neural Networks A Systematic introduction”, Springer Berlin, 1996

[54] Oja M. Kaski S., Kohonen T., ”Bibliography of Self-Organizing Map (SOM) 1998-

2001 Addendum”, Neural Computing Surveys 3, 1-156, 2002

[55] Wu. Y., Takatsuka M., ”The Geodesic Self-Organizing Map and Its Error Analy-

sis”, Computer Science 2005, Twenty-Eighth Australasian Computer Science, Aus-

tralia, 2005

[56] Wu. Y., Takatsuka M., ”Fast Spherical Self Organizing Map - Use of Indexed

Geodesic Data Structure -”, 5th Workshop On Self-Organizing Maps, Paris, 2005

[57] Montavon G., Samek W., Mueller K., ”Methods for Interpreting and Understand-

ing Deep Neural Networks”, Berlin Germany, 2017

[58] Sarle W. S. ”Stopped Training and Other Remedies for Overfitting”, Proceedings

of the 27th Symposium on the Interface, USA, 1995

[59] Hagan T. M., Demuth H. B., Beale M. H., Jesus D. O. ”Neural Network Design

2ed Edition”, USA, 2014

[60] Ishii K., Ueda S., Maeda E., Murase H, Takebu S., ””, Ohmsha Public., Tokyo

Japan, 2012

[61] Araki M. ”The development of a Speech Recognition System”, Morishita Public.,

Tokyo, Japan, 2013

[62] Everitt B., ”The Cambridge Dictionary of Statistics”, Cambridge, UK, New York,

Cambridge University Press, 1998

[63] Schwarz D., ”The Caterpillar System For Data-Driven Concatenative Sound Syn-

thesis”, Proc. of the 6th int. Conference on Digital Audio Effects (DAFx-3), London,

UK, 2003.

202

[64] Strum L. B. ”MATConcat : An Application for exploring concatenative sound

synthesis using MATLAB”, Proceedings ICMC 2004, 2004

[65] Schwarz D., ”Concatenative Sound Synthesis: The Early Years”,

[66] Schwarz D., Beller, G., Verbruggh, B., Britton, S., ”Real-Time Corpus-Based Con-

catenative Synthesis With CATART”, Expanded version 1.1 of submission to the 9

Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada.

[67] Hackbarth B., Schwarz D., ”AudioGuide: A Framework for Creative Exploration

of Concatenative Sound Synthesis”, 2011

[68] Hackbarth B., Schwarz D., ”Composing Morphology: Concatenative Synthesis as

an Intuitive Medium for Prescribing Sound in Time”, Contemporary Music Review,

Vol.32, No. 1, 49-59,2013

[69] Sturm L. B., ”Adaptive Concatenative Sound Synthesis and Its Application to

Micromontage Composition”, Computer Music Journal, 30:4, pp. 46-66, Winter

2006, 2006

[70] Schwarz D., Robel A., Yeh C., LaBurthe A., ”Concatenative Sound Texture Syn-

thesis Methods and Evaluation”, Proceedings of the 19th International Conference

on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5-9, 2016

[71] Zils A., Patchet F., ”MUSICAL MOSAICING”, Proceedings of the COST G-6

Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-

8,2001

[72] Robert Silvers :

http: // www. photomosaic. com

[73] EC-Council, ”Investigating Networking Intrusions and Cybercrime”, Ec-council

press Series: Computer Forensics, Cengage Learning, 2009

[74] Apple Inc. ”vDSP” Web https://developer.apple.com/documentation/

accelerate/vdsp

[75] Apple Inc. ”Accelerate Frameworks” Web https://developer.apple.com/

documentation/accelerate

203

[76] T. Oura ”General Purpose FFT (Fast Fourier/Cosine/Sine Transform) Package”

Web http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html¿December 2016

[77] MathWorks ”MATLAB” Web https://www.mathworks.com/products/matlab.

html 1994 - 2017

[78] Num Focus ”Numpy” Web http://www.numpy.org 2017

[79] Num Focus ”Julia” Web https://julialang.org 2017

[80] Sonote http://www.y2lab.com/project/sonote/ 2017

[81] Synful http://www.synful.com/SynfulOrchestra.htm 2017

[82] Orchidee http://repmus.ircam.fr/orchidee 2017

[83] Orchids http://repmus.ircam.fr/_media/esling/orchids-documentation.

pdf 2014

[84] AudioGuide http://www.benhackbarth.com/audioGuide/index.html 2017

[85] OpenMusic http://repmus.ircam.fr/openmusic/home 2015

[86] Max https://cycling74.com 2017

[87] SuperColider http://supercollider.github.io 2017

[88] Adobe won’t support Flash on Android 4.1 https://www.engadget.com/2012/

06/28/adobe-confirms-it-wont-support-flash-on-android-4-1/ 2012

[89] Audacity http://www.audacityteam.org 2017

[90] The HTML5 Audio Editor http://audioeditor.wikiaudio.org 2017

[91] The HTML5 differences from HTML4 https://www.w3.org/TR/html5-diff/

2014

[92] Real-Time Audio Mosaicing http://imtr.ircam.fr/imtr/Real-Time_Audio_

Mosaicing 2011

[93] Recorderology http://recorderology.com 2015

[94] Mayer-Spohn U., Takahashi K., ”Recorderology - development of a web based in-

strumentation tool concerning recorder instruments” International Computer Music

Conference 2016, Utrecht The Netherland, 2016

204

[95] Thoughts on Flash https://www.apple.com/hotnews/thoughts-on-flash/

2010

[96] World Wide Web Consortium https://www.w3.org/TR/webaudio/ 2015

205

Acknowledgements

I would like to express my greatest appreciation to Professor Erik Oña for his

continuous support throughout my Ph.D. studies from 2014 to 2017 and all the

related research. He has constantly encouraged me to gain access to a wide variety

of scientific and artistic topics.

I would also like to give special thanks to the Foundation Christoph Delz which

awarded me a special grant for my both artistic and research activities in 2014.

