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Abstract

The multitude of areas in which fluid dynamics is applicable justifies further investment in order to

increase our knowledge on the behavior of fluids. In particular, fluid dynamics is of great importance in

fields that concern the welfare of the whole human population, such as medicine or climate change.

As an alternative of the classical Navier-Stokes description, the behavior of fluids can be thought of as

a consequence of the dynamics of structures such as vortices, which will generate the velocity field within

the fluid.

The 2-dimensional approximation of a vortex is what we usually call a point vortex. The n-vortex

problem in the plane is therefore the problem of finding the behavior of a system of n point vortices. This

is no easy feat, as the problem is not integrable for n ≥ 4 in the general case and therefore requires a

numerical approach. This problem has been thoroughly studied in the inviscid case, but there is yet a lack

of a consistent theory for viscous environments.

This dissertation focuses on the description of point vortices both in inviscid and viscous environments

and tries to extend the idea of quantification of chaos in inviscid vortex systems of Babiano et al. [1] to

viscous environments. In particular, we’ll see that viscosity can disrupt stable dynamics and cause initially

stable trajectories to go through chaotic behavior, before succumbing to viscosity completely. We also

find that the logarithms of the duration of this chaotic behavior and the kinematic viscosity coefficient

seem to be connected by a linear relationship.

Keywords

Fluid Dynamics, Navier-Stokes Equations, Incompressible Euler Equations, Hamiltonian Dynamics,

Point Vortices, Viscous Point Vortices, Chaos, Lyapunov Exponents, Numerical Methods
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Resumo

O grande número de área em que a dinâmica de fluídos é aplicável justifica um crescendo de investi-

mento de modo a aumentar o nosso conhecimento acerca do comportamento de fluídos. Em particular,

a dinâmica de fluídos é de extrema importância em áreas que afectam o bem-estar de toda a população,

como a medicina ou as alterações climáticas.

Como alternativa à descrição clássica das equações de Navier-Stokes, o comportamento de fluídos

pode ser pensado como consequência da dinâmica de estruturas como vórtices, que irão gerar um campo

de velocidades no fluído.

A aproximação 2-dimensional de um vórtice é aquilo a que geralmente se demonima vórtice pontual.

O problema dos n vórtices no plano é portanto o problema de encontrar o comportamento de um sistema

de n vórtices pontuais. Isto não é fácil, pois o problema é, em geral, não integrável para n ≥ 4 e requer,

portanto, uma abordagem numérica. Este problema tem sido cuidadosamente no caso não viscoso, mas

não existe ainda uma teoria consistente para ambientes viscosos.

Esta dissertação foca-se na descrição dos vórtices pontuais em ambientes viscosos e não-viscosos e

tenta extender a ideia de quantificação do caos de sistemas de vórtices não viscosos de Babiano et al.

[1] para ambientes viscosos. Em particular, ver-se-á que a viscosidade pode destruir dinâmicas estáveis e

fazer com que trajectórias inicialmente estáveis passem a ter comportamento caótico antes de sucumbir

completamente aos efeitos da viscosidade. Vê-se ainda que os logaritmos da duração deste comportamento

caótico e o coeficiente de viscosidade cinemática parecem estar ligados através de uma relação linear.

Palavras chave

Dinâmica de Fluídos, Equações de Navier-Stokes, Equações de Euler Incompressíveis, Dinâmica Hamil-

toniana, Vórtices Pontuais, Vórtices Pontuais Viscosos, Caos, Expoentes de Lyapunov, Métodos Numéricos
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Chapter 1.

Introduction

Even though we might not notice or think about it on our daily lives, we are surrounded by flows

everywhere: the flow of water all around the world in rivers and oceans; the flow of water or gas in the

pipes and canals that make their way to our homes so that we can live comfortably as we are used to; or

even the simple flow of air that enables us to breath and live.

Fluid dynamics is the field of physics dedicated to the description of flows, be them liquids or gases -

usually referred to as fluids - and therefore is a vast field of research that addresses a countless number

of phenomena, many of them crucial to human life.

The motion of fluids is critical to understanding phenomena as varied as the pumping of blood in our

body, weather forecasting or even more exotic systems like the galaxy mergers. Fluid dynamics is there, at

motion, at completely different scales. Other than its’ wide range of applications, it should be noted that

fluid dynamics is behind one of the most relevant problems of nowadays: climate change. It is impossible

to deny that our climate has been changing drastically in last few decades and that its’ affecting the living

conditions of our planet, as well as the planet itself. As such, it is imperative that we do something to

preserve our planet and the well-being of humanity itself.

In order to address this issue, it is mandatory to have a better understanding of the underlying

mechanisms that affect Earth’s climate. At the heart of that, we will always find fluid dynamics.

Fluid dynamics’ most important equations are the Navier-Stokes equations, which have no general

analytical solution and are usually very difficult equations to solve, even numerically. Therefore, further

studies in this area should always be a key priority to improve our knowledge on various kind of phenomena

1
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that may turn out crucial to our welfare.

The aim of this dissertation is to study the basic concepts of fluid dynamics and try to shed light

on an alternative description of fluids which evades the direct resolution of the Navier-Stokes equations:

the point vortices description. The idea is to describe fluids through a quantity that measures the local

rotation of the flow (the vorticity) by modeling the objects that in fact generate that rotation. The

n-vortex problem has been thoroughly studied throughout the years for inviscid environments, however,

there is yet much to be done in this alternate description when we add viscosity into the equations. We

follow the idea of Babiano et al. [1] on using Lyapunov exponents to quantify chaos on inviscid point

vortex models and extend the study to a viscous environment.

Chapter 2 gives a short review on the basic concepts of fluid dynamics, its’ vorticity formulation,

Hamiltonian dynamics and the concepts of chaos and Lyapunov exponents. Chapter 3 deals with flows

in the infinite plane and the dynamics of point vortices both in inviscid and viscous environments. These

theoretical results will then be used to validate the code developed for the numerical integration of the

equations, which is presented in Chapter 4. In Chapter 5 we tackle a non-integrable system in both inviscid

and viscous environments, compare the results and draw some conclusions in Chapter 6.

Gil Miguel Marques



Chapter 2.

Theoretical Basis

When studying fluids, as in every other science that deals with real phenomena, one needs to take

hints from Nature itself to start developing models that help understanding the mechanisms that drive the

observable consequences. One of the most important hints to construct a theory that is able to accurately

describe the dynamics of fluid motion is that the individual behavior of molecules in fluids seems to be

irrelevant in the overall behavior of the system they comprise.

2.1 THE NAVIER-STOKES EQUATION

The first natural hypothesis to make in order to develop a theory that can mathematically describe

these systems is that the fluid forms a continuum, where a point represents a small volume of the real

fluid. Such a point is called a fluid element (also sometimes denominated fluid parcel). Figure 2.1 shows

a schematic representation of a fluid element.

Figure 2.1: Schematic representation of a fluid element

3
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Let the velocity v of a fluid element be defined by the velocities of the individual particles (noted

ξi, i = 1, 2, . . . ) that constitute that same fluid element at each time t as

v (t,x (t)) = 1
N (x (t))

N(x(t))∑
i=1

ξi (x (t)) , (2.1)

where x (t) denotes the position of the fluid element at time t and N (x (t)) is the number of particles

inside the fluid element located at x (t). Using this description, one aims to describe the physical state

of the fluid elements instead of individual molecules.

Consider a fluid element of volume V , with boundary ∂V . The mass of this fluid element will depend

on the particles that constitute it at each time and, since the particles in it change in time, its’ mass

will also be time-varying. Assuming that the total mass of the system is conserved, the variation of mass

inside a fluid element will be equal to the flux of mass that goes through its’ boundary surface ∂V . Thus,

∂m

∂t
= −

∫
∂V
ρv · n dS, (2.2)

where m is the mass, ρ is the density of the fluid element and n is the unit vector normal to the surface

element dS. It is important to keep in mind that these quantities are time-dependent, but the explicit time

dependence has been dropped in order to lighten notation. Since m =
∫
V ρ dV and using the divergence

theorem, one can further write

∂

∂t

(∫
V
ρ dV

)
= −

∫
∂V
ρv · n dS = −

∫
V
∇ · (ρv) dV. (2.3)

As ρ is a continuous and differentiable function, the integral and partial derivative can be interchanged,

yielding

Gil Miguel Marques



FCUP 5
Advection of Passive Particles by Viscous Point Vortices

∫
V

[
∂ρ

∂t
+∇ · (ρv)

]
dV = 0. (2.4)

This must hold true for any volume V , therefore, in the limiting case where V → 0 the integrand must

be zero, which gives a continuity equation for the mass:

∂ρ

∂t
+∇ · (ρv) = 0. (2.5)

All fluids are compressible - their density changes due to variations in pressure and temperature -

however, in a great number of situations, the changes in density are sufficiently negligible and can be

ignored when modeling a flow in order to simplify the modeling of the system.

Definition 2.1.1 (Incompressible flow). An incompressible flow is a flow in which each fluid element

moving with the flow velocity does not expand nor compress.

From the definition of an incompressible flow, one has that the density of a fluid element moving with

the flow velocity must remain constant in time: dρ
dt

= 0. For such a fluid element, making use of the

continuity equation (2.5), it is possible to conclude easily that the divergence of the velocity field must

be zero for any incompressible flow:

dρ

dt
= ∂ρ

∂t
+ (∇ρ) · v = −∇ · (ρv) + (∇ρ) · v = −ρ (∇ · v) = 0 ⇒ ∇ · v = 0. (2.6)

Therefore, while there exist incompressible flows of compressible fluids, the reverse is not true: an

incompressible fluid (characterized by having a constant density, i.e., ∂ρ
∂t

= 0) always undergoes an incom-

pressible flow.

Consider once again the same fluid element with volume V . Since it is a part of some fluid, it should

Gil Miguel Marques
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be under the influence of both external volumetric and surface forces. Therefore, from Newton’s Second

Law of Motion, it is possible to write equations for each component of the total force as

∫
V
Fi dV︸ ︷︷ ︸

Total Volumetric Force

+
∫
∂V
Ti dS︸ ︷︷ ︸

Total Superfical Force

=
∫
V
ρ ai dV, (2.7)

where Fi represents the ith component of the total volumetric force, Ti is the ith component of the exerted

tension and ai is the ith component of the acceleration. The exerted tensions Ti can be expressed, using

the Einstein notation1, as

Ti (x0,n) = τij (x0)nj, (2.8)

where τ is the tension tensor and τij is the jth component of the tension over the direction ei.

Using once again the divergence theorem, equation (2.7) can be re-written as

∫
V
Fi dV +

∫
∂V
Ti dS =

∫
V
ρ ai dV ⇔

⇔
∫
V
Fi dV +

∫
∂V
τijnj dS =

∫
V
ρ ai dV ⇔

⇔
∫
V

[Fi + ∂jτij] dV =
∫
V
ρ ai dV ⇔

⇔
∫
V

[Fi + τij,j] dV =
∫
V
ρ ai dV,

(2.9)

where ∂i = ∂
∂xi

and τij,j = ∂jτij for a more compact notation.

This last identity must hold true for any volume V , so, making V → 0 results in Fi+τij,j = ρ ai. If the

fluid is at rest or if it is a perfect fluid2 in movement, the exerted tension always has direction perpendicular

to the fluid element, i.e., the tensions are purely normal; therefore one has τij = −pδij ⇒ τij,j = −∂ip,

resulting in the vector equation

1Repeated indices in a single term imply summation over all possible values of that index
2A perfect fluid is one that can be completely characterized by density and pressure

Gil Miguel Marques
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−∇p+ F = ρa. (2.10)

The set of equations


−∇p+ F = ρ

dv

dt

∇ · v = 0
(2.11)

is usually known as the Euler Equations and is written in a Lagrangian coordinate system, where one must

follow the movement of each particle in the fluid. This is not acceptable as there exists an enormous

amount of particles in a fluid and it is impossible to follow each and every one of them. One work-around

to this problem is to use an Eulerian coordinate system, describing the velocity of a particle at a certain

position and at a certain time, regardless of which specific particle it actually is. As such, the Euler velocity

can be defined as:

Definition 2.1.2 (Euler Velocity). The Euler velocity, u (t,x), is the the velocity of any particle in the

fluid that is located at position x at time t.

The Euler velocity can be related to the individual particle velocity v because v (t) = u (t,x (t)) and

v (t+ ∆t) = u (t+ ∆t,x (t+ ∆t)) = u (t+ ∆t,x (t) + ∆x). As such,

dv

dt
(t) = lim

∆t→0

v (t+ ∆t)− v (t)
∆t

= lim
∆t→0

u (t+ ∆t,x (t) + ∆x)− u (t,x (t))
∆t

= lim
∆t→0

u (t+ ∆t,x (t) + ∆x)− u (t+ ∆t,x (t))
∆t + u (t+ ∆t,x (t))− u (t,x (t))

∆t

= lim
∆t→0

u (t+ ∆t,x (t) + ∆x)− u (t+ ∆t,x (t))
∆t︸ ︷︷ ︸

L

+∂u
∂t

(t,x) .

(2.12)

And the ith component of L can be expressed as

Gil Miguel Marques
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Li = lim
∆t→0

ui (t+ ∆t,x) + (∇ui (t+ ∆t,x)) ·∆x+O (‖∆x‖2)− ui (t+ ∆t,x)
∆t

= lim
∆t→0

(∇ui (t+ ∆t,x)) ·∆x+O (‖∆x‖2)
∆t

= lim
∆t→0

∇ui (t+ ∆t,x) · ∆x
∆t + O (‖∆x‖2)

∆t
= ∇ui (t,x) · u (t,x) = u (t,x) · ∇ui (t,x) .

(2.13)

Therefore, L = (u · ∇)u and the Lagrangian and Eulerian velocities are related through

dv

dt
=
(
∂

∂t
+ u · ∇

)
u, (2.14)

and thus, the Eulerian description of the fluid is given by the set of equations


−∇p+ F = ρ

[
∂u

∂t
+ (u · ∇)u

]

∇ · u = 0
. (2.15)

If, however, the fluid is not at rest or if it moving but is not a perfect fluid, this description is not ideal,

as it doesn’t contemplate the existence of viscous forces. For the study of viscous fluids in movement,

Taylor formulated 3 hypothesis:

1. The fluid is homogeneous and isotropic;

2. The tensor τij depends on the deformation tensor τij = τij (Dkl), where Dkl = 1
2

(
∂vk
∂xl

+ ∂vl
∂xk

)
;

3. When ‖v‖ → 0, τij → −pδij.

Expanding τij (Dkl) in its’ Taylor series gives
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τij = −pδij + ∂τij
∂Dkl

Dkl + . . .

= −pδij + CijklDkl + . . .

(2.16)

The most general expression for a fourth order tensor in an homogeneous and isotropic medium is

given by [2] as being

Cijkl = λδijδkl + µ (δikδjl + δilδjk) , (2.17)

where λ, µ ∈ R. To compute τij notice first that

CijklDkl = [λδijδkl + µ (δikδjl + δilδjk)]Dkl

= λδijDkk + µδikδjlDkl + µδilδjkDkl

= λδijDkk + µDij + µDji,

(2.18)

Dkk = 1
2

(
∂vk
∂xk

+ ∂vk
∂xk

)
= ∂vk
∂xk

= vk,k = ∇ · v. (2.19)

Thus, since Dij is symmetric, CijklDkl = λδij∇ · v + 2µDij and since ∇ · v = 0 in an incompressible

flow, the tension tensor can be expressed as τij = −pδij + 2µDij + . . . . Truncating this series at the first

order term and calculating its’ gradient in respect to j yields
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τij,j = −∂jpδij + 2µ∂Dij,j

= −∂jpδij + µ [ vi,jj︸︷︷︸
(∇2v)i

+ vj,ij︸︷︷︸
[∇(∇·v)]i

]

= −∂jpδij + µ vi,jj.

(2.20)

Therefore, for a viscous and incompressible flow, one has

τij,j = −∂ip+ µ vi,jj

= −∂ip+ µ∇2vi,

(2.21)

which, from Newton’s Second Law of Motion, gives the equation of motion

ρ
dv

dt
= −∇p+ µ∇2v + F . (2.22)

And in Eulerian coordinates, for an incompressible flow, this results in the well known Navier-Stokes

equations:


∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ 1

ρ
F

∇ · u = 0
, (2.23)

where ν is the kinematic viscosity coefficient, which we’ll refer to simply as viscosity hereafter (higher

values of ν correspond to more viscous environments).

In 3 dimensions, any sufficiently smooth vector field that decays to zero rapidly enough at infinity

can be decomposed in a solenoidal (divergence-free) and an irrotational (curl-free) component. This

decomposition is due to Helmholtz [3] - and thereby usually called Helmholz decomposition. A proof of

the theorem that gives this decomposition and an attempt of collecting the most common techniques for

its’ computation can be found in [4].

From this decomposition, if the conditions of Helmholtz’s Theorem are met, the solution u to the
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Navier-Stokes equations can then be written as

u = ∇×ψ︸ ︷︷ ︸
divergence-less component

+ ∇ϕ︸︷︷︸
curl-less component

, (2.24)

where ψ is a solenoidal vector field and ϕ is a scalar field usually called the velocity potential. By

calculating the divergence and curl of u it is possible to find differential equations for these two fields:

∇ · u = ∇ · (∇×ψ)︸ ︷︷ ︸
0

+∇ · (∇ϕ) = 0 ⇔ ∇2ϕ = 0, (2.25)

∇× u = ∇× (∇×ψ) +∇× (∇ϕ)︸ ︷︷ ︸
0

= ∇

∇ ·ψ︸ ︷︷ ︸
0

−∇2ψ ⇔ ∇2ψ = −∇× u. (2.26)

Notice that this decomposition isn’t guaranteed to be unique. When dealing with incompressible flows

in an unbound domain, if the velocity field u decays quickly to 0 at infinity, it is possible to prove that

there exists a solenoidal vector field ψ such that the velocity field can be obtained directly from its’ curl

and therefore the curl-less component of this decomposition will be zero. Throughout the remainder of

this work, the velocity field will be assumed to satisfy these conditions.

2.2 THE VORTICITY EQUATION

Many observed phenomena in Nature are easier to model or better explained in terms of the local

rotation of the flow instead of the usual velocity field characterization. An alternate description of flows

can therefore be derived for a quantity measuring this local rotation:

Definition 2.2.1. The vorticity of a flow is ω def= ∇× u and quantifies the local rotation of the flow.

Some useful identities can be obtained by taking the divergence and curl of ω:
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∇ · ω = ∇ · (∇× u) = 0

∇× ω = ∇× (∇× u) = ∇ (∇ · u)︸ ︷︷ ︸
0

−∇2u = −∇2u
. (2.27)

The first identity arises from the fact that the curl of any vector field is divergence-less and shows that

the components of the vorticity are related in the same way as the components of the velocity of an

incompressible flow; the second identity shows that each component of the velocity satisfies a Poisson

equation.

Before deriving the equation that rules the time evolution of vorticity, it is worthy to mention another

important quantity in fluid dynamics that is closely related to vorticity: the circulation.

Definition 2.2.2. The circulation of the fluid around a simple closed curve C is Γ def=
∮
C u · ds

By Stoke’s Theorem, circulation can be directly related to vorticity:

Γ =
∮
C
u · ds =

∫
S
ω · ndS, (2.28)

where S is the surface enclosed by the curve C. The equality between the two integrals in (2.28) gives

rise to an alternative interpretation of the circulation as the flux of vorticity through the surface S. There

is also an important result related to circulation, which is due to Lord Kelvin:

Theorem 2.2.1 (Kelvin’s Circulation Theorem). In an ideal, incompressible fluid, if all forces acting on

it are conservative, the circulation Γ around any closed material curve that is moving with the fluid is

constant, i.e., dΓ
dt

= 0.

Proof. From the definition of the circulation and a curve moving with the fluid, one has

dΓ
dt

= d

dt

(∮
C
u · ds

)
=
∮
C

du

dt
· ds+

∮
C
u · du. (2.29)
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So, using the Navier-Stokes equation (2.23) for an inviscid3 flow (ν = 0) yields

dΓ
dt

=
∮
C

(
−1
ρ
∇p+ 1

ρ
F

)
· ds+

∮
C
u · du = 1

ρ

∮
C

(−∇p+ F ) · ds+
∮
C
u · du

= 1
ρ

∫
S

(−∇×∇p+∇× F ) · n dS + 1
2

∮
C
∇
(
|u|2

)
· ds

= 0,

(2.30)

because every term is zero: the gradient of any scalar function is always curl-less, the forces F are

conservative (i.e., they can be written as a gradient of a scalar function) and the second integral is the

integral of an exact differential over a closed loop.

�

As one may suppose, circulation is not conserved for flows of viscous fluids. In the viscous case, the

extra term −ν∇2u in the Navier-Stokes equations originates a change in circulation over time:

dΓ
dt

=
∮
C

(
−ν∇2u

)
· ds = −ν

∮
C

(
∇2u

)
· ds = −ν

∮
C

(∇× ω) · ds. (2.31)

In order to get the vorticity description of a flow, one needs to re-write the Navier-Stokes equations

in terms of the vorticity. This is readily done by taking the curl of the Navier-Stokes equations:

∇×
(
∂u

∂t
+ (u · ∇)u

)
= ∇×

(
−1
ρ
∇p+ ν∇2u+ 1

ρ
F

)
⇔

⇔ ∂

∂t
(∇× u) +∇× (u · ∇)u = −1

ρ
∇×∇p+ ν∇×∇2u+ 1

ρ
∇× F ⇔

⇔ ∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = ν∇2ω + 1

ρ
∇× F ⇔

⇔ ∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∇2ω + 1

ρ
∇× F .

(2.32)

3Viscous forces are not conservative in nature, so this result is not valid for viscous flows.
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It should also be noted that it is in fact the vorticity that appears in the right-hand side of equation

(2.26), so the solenoidal vector field ψ is directly related to the vorticity: ∇2ψ = −ω. This gives a

Poisson equation for each component of ψ that can be solved through the usual techniques; its’ solution

can be written formally in terms of the Green’s Function for the Laplacian as

ψ (r) =
∫
G (r − r0)ω (r0) dr0. (2.33)

The Green’s function G (r) will depend on the geometry of the space we are solving the equation in.

For the unbound spaces R2 and R3 one has:

G (r) =


− 1

2π log ‖r‖, in R2

1
4π‖r‖ , in R3

. (2.34)

Hence, for an incompressible flow, the velocity field at each time can be computed easily provided one

knows the vorticity field:

u (r) = ∇×ψ (r) = ∇×
∫
G (r − r0)ω (r0) dr0 =

∫
∇G (r − r0)× ω (r0) dr0. (2.35)

An alternative way to express the velocity field in matricial form is

u (r) =
∫
K (r − r0)ω (r0) dr0, (2.36)

where K (r) is the Biot-Savart Kernel, defined as usual:
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K (r) =



1
2π‖r‖2 (−y, x) , in R2

1
4π‖r‖3


0 z −y

−z 0 x

y −x 0

 , in R3
. (2.37)

2.3 POINT VORTICES

Consider some vorticity field in a 3-dimensional fluid. Any curve that is everywhere tangent to the

local vorticity vectors named vortex line. Furthermore, the vortex lines passing through any closed curve

in the fluid form a tubular surface that is called a vortex tube. Vortex tubes can therefore be defined by

the equation ω · n = 0. The strength of a vortex tube is defined as the circulation of any closed loop

on the vortex tube that circles it only once; thus, the strength of a vortex tube is the same along the

whole tube and from Kelvin’s Circulation Theorem, it is possible to conclude that for an inviscid, ideal

and incompressible fluid, vortex tubes’ strength does not change in time. Hence, these tubes must be

closed, extend into infinity or terminate at solid boundaries or fluid-fluid interfaces. In the viscous case,

however, viscosity creates changes in the strength of a vortex tube over time and therefore it may change

its’ geometric configuration. If a vortex tube is surrounded by irrotational fluid, it is usually called a vortex

filament.

A vortex filament in the 3-dimensional space, by definition, usually has a small cross section in com-

parison to it’s curvature. Making a cut in a plane that is locally orthogonal to the vortex filament, will

result in a 2-dimensional vorticity distribution that is highly concentrated in the vicinity of the centerline

of the filament. For such an object, if the centerline of the filament is localized at a point r0 in the plane,

one can usually assume that the vorticity field has radial symmetry and is of the form

ω (r) = Γ
2πφε (r − r0) , (2.38)
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where φε (r) = φ (r/ε) /ε and φ is a suitable radially symmetric function such that its’ integral over all

space equals 1.

The limiting case ε → 0 is what it is usually called a point vortex, where the vorticity is completely

concentrated in one point in space. Mathematically this corresponds to choosing φε = δ (r), the usual

Dirac-delta function.

Hence, it should be useful to investigate the the simplified 2-dimensional problem to try and understand

the dynamics of the vortex filaments and the velocity fields produced by them. The vorticity equation

(2.32) simplifies to a scalar equation because ω = ω e3 and the (ω · ∇)u term vanishes. In a system

where no external forces are applied the 2D vorticity equation becomes

∂ω

∂t
+ (u · ∇)ω = ν∇2ω. (2.39)

So, while in the inviscid case, vorticity is conserved throughout the trajectory of a fluid element(
dω
dt

= 0
)
, it is dissipated in the viscous case due to the viscosity term in the equation.

The Poisson equation (2.26) will also simplify to a scalar equation as the first and second components

of ψ will always be zero. The function ψ = ψ · e3 in the 2-dimensional case is usually called the stream

function of the flow and can be used to compute the velocity field easily because of its’ direct relation

with velocity:

u =
(
∂ψ

∂y
,−∂ψ

∂x

)
. (2.40)

Therefore, since the equation of a particle moving in the fluid is given by ṙ = (ẋ, ẏ) = u, it is possible

to see that this is an Hamiltonian system, as this is the form of Hamilton’s equations:
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ẋ = ∂H

∂y

ẏ = −∂H
∂x

. (2.41)

So, the stream function here plays the role of the Hamiltonian H in Hamiltonian dynamics, while the

coordinates x, y play the role of the canonically conjugate variables in this formalism.

Remark: In fluid dynamics it’s usual to express the equations in terms of the Reynolds Number, Re.

The Reynolds Number gives the ratio of inertial forces to viscous forces within a fluid and is defined as

Re = uL
ν
, where u and L are characteristic velocities and linear dimension of the problem in hand. It is

usual to take both of these to be 1, yielding Re = 1
ν
and allowing the equations of fluid dynamics to be

written in dimensionless form.

2.4 HAMILTONIAN DYNAMICS

This section gives a summary of some important results of Hamiltonian Dynamics that will be useful in

the subsequent analysis of the problems in hand. For an extensive discussion of Lagrangian and Hamiltonian

Dynamics one can find the works of Goldstein [5] or (for a more advanced and deeper presentation) Arnold

[6] very useful.

The Hamiltonian Dynamics approach is a reformulation of classical mechanics, making use of a different

and more powerful - yet more abstract - mathematical formalism. The predictions of classical physical

systems remain the same in this context, yet it opened way to later developing theories such as Quantum

Physics, which can not be described by a classical approach.

The original formulation of Hamiltonian Dynamics rests in two fundamental principles:

• One should try to express the state of a physical system with the minimum number of variables

possible;

• A physical system always tries to minimize its’ action at each instant.

The action of a system is a functional of a function usually called the Lagrangian: a function that
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contains the information about the dynamics of the physical system. This function is usually given in terms

of some generalized coordinates q ∈ Rn and their time derivatives; the usual notation for a Lagrangian is

L (q, q̇, t). Therefore, the action S between two time instants t1 and t2 is

S [q] def=
∫ t2

t1
L (q, q̇, t) dt. (2.42)

The second fundamental principal of Hamiltonian Dynamics, usually called Hamilton’s Principle can

therefore be expressed as

δS

δqk (t) = 0, k = 1, . . . , n. (2.43)

The Lagrangian can take many forms, depending of the system which one is trying to model; it is,

however, possible to give general expressions of the Lagrangian for a vast kind of systems that share a

set of properties. For example, for a non-relativistic system of particles, the Lagrangian can be simply

written as the difference between the kinetic and potential energy (T and V , respectively) of the system:

L = T − V .

From Hamilton’s Principle it is possible to deduce a set of equations of motion for the system, called

the Euler-Lagrange equations:

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0, k = 1, . . . , n. (2.44)

The core function of Hamiltonian dynamics is, in fact, the Hamiltonian, which is defined as the

Legendre transform of the Lagrangian. Using the generalized momenta pk = ∂L
∂q̇k

, one can write
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H (q,p, t) =
n∑
k=1

pkq̇k − L (q, q̇, t) . (2.45)

Like the Lagrangian, the Hamiltonian can have different forms depending on the physical system under

study; for a non-relativistic system of particles for which the Lagrangian does not explicitly depend on

time, however, the Hamiltonian takes again a simple form, as the sum of kinetic and potential energies:

H = T + V .

To get Hamilton’s equations one must first write the total differential of the Lagrangian and do some

manipulations:

dL =
n∑
k=1

(
∂L

∂qk
dqk + ∂L

∂q̇k
dq̇k

)
+ ∂L

∂t
dt ⇔

⇔ dL =
n∑
k=1

(
∂L

∂qk
dqk + pkdq̇k

)
+ ∂L

∂t
dt ⇔

⇔ dL =
n∑
k=1

(
∂L

∂qk
dqk + d (pkq̇k)− q̇kdpk

)
+ ∂L

∂t
dt ⇔

⇔ d

(
n∑
k=1

pkq̇k − L
)

︸ ︷︷ ︸
dH

=
n∑
k=1

(
− ∂L
∂qk

dqk + q̇kdpk

)
− ∂L

∂t
dt.

(2.46)

Comparing the coefficients from the total differential of the Hamiltonian

dH =
n∑
k=1

(
∂H

∂qk
dqk + ∂H

∂pk
dpk

)
+ ∂H

∂t
dt, (2.47)

and using the Euler-Lagrange equations (2.44), one arrives at the canonical form of Hamilton’s equations:

q̇k = ∂H

∂pk
, ṗk = −∂H

∂qk
. (2.48)
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Noether’s Theorem is a key result in Hamiltonian Dynamics that can help to classify and solve the

equations of Hamiltonian systems. This theorem states that to every continuous symmetry in a system,

there corresponds a conserved quantity of the system. Noether’s Theorem is usually given in the Lagrangian

formulation and can be formulated mathematically as follows

Theorem 2.4.1 (Noether’s Theorem). Given the infinitesimal transformations (|ε| << 1)

t→ t′ = t+ εX (q (t) , t) ,

qk → q′k = qk + εψk (q (t) , t) , k = 1, . . . , n
(2.49)

where X and ψ are some functions of q and t, if the action remains invariant, then the quantity

Q =
n∑
k=1

∂L

∂q̇k
(q̇kX − ψ)−XL (2.50)

is conserved throughout the dynamics of the system.

Proof. Suppose the system undergoes some infinitesimal transformations like the ones defined in the

statement of the theorem. From them, one has

dt′

dt
= 1 + εẊ

dq′k (t)
dt′

= dqk
dt

dt

dt′
= q̇k + εψ̇k

1 + εẊ
=
(
q̇k + εψ̇k

) (
1− εẊ +O

(
ε2
))

= q̇k + ε
(
ψ̇k − q̇kẊ

)
︸ ︷︷ ︸

ξk

+O
(
ε2
)
.

(2.51)

By keeping only the terms which are of first order in ε, one can write the change in the action due to

these infinitesimal transformation as
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δS =
∫ t′2

t′1

L (q + εψ, q̇ + εξ, t+ εX) (1 + εX) dt−
∫ t2

t1
L (q, q̇, t) dt

=
∫ t2

t1
[L (q + εψ, q̇ + εξ, t+ εX)− L (q, q̇, t)] dt+ ε

∫ t2

t1
ẊL (q + εψ, q̇ + εξ, t+ εX) dt

=
∫ t2

t1

[
L (q′, q̇′, t′)− L (q′, q̇′, t)

εX
εX +

n∑
k=1

L (q′k, q̇′k, t)− L (q′k, q̇k, t)
εξk

εξk

+
n∑
k=1

L (q′k, q̇k, t)− L (qk, q̇k, t)
εψk

εψk + εẊL (q′, q̇′, t′)
]
dt

= 0.

(2.52)

So, when ε→ 0, since this should hold true for any times t1 and t2,

X
∂L

∂t
+

n∑
k=1

∂L

∂q̇k

(
ψ̇k − q̇kẊ

)
+

n∑
k=1

∂L

∂qk
ψk + ẊL = 0 ⇔

⇔ Ẋ

(
L−

n∑
k=1

q̇k
∂L

∂q̇k

)
+X

∂L

∂t
+

n∑
k=1

[
ψk
∂L

∂qk
+ ψ̇k

∂L

∂q̇k

]
= 0 ⇔

⇔ Ẋ

(
L−

n∑
k=1

q̇k
∂L

∂q̇k

)
+X

∂L

∂t
+

n∑
k=1

[
ψk

d

dt

(
∂L

∂q̇k

)
+ ψ̇k

∂L

∂q̇k

]
= 0 ⇔

⇔ Ẋ

(
L−

n∑
k=1

q̇k
∂L

∂q̇k

)
+X

d

dt

[
L−

n∑
k=1

q̇k
∂L

∂q̇k

]
+

n∑
k=1

[
ψk

d

dt

(
∂L

∂q̇k

)
+ ψ̇k

∂L

∂q̇k

]
= 0 ⇔

⇔ d

dt

[
X

(
L−

n∑
k=1

q̇k
∂L

∂q̇k

)
−

n∑
k=1

ψk
∂L

∂q̇k

]
= 0

⇔ d

dt

[
n∑
k=1

∂L

∂q̇k
(q̇kX − ψ)−XL

]
= 0

(2.53)

and therefore Q = ∑n
k=1

∂L
∂q̇k

(q̇kX − ψ)−XL is an invariant of the system.

�

More general and complex formulations of Noether’s Theorem exist; one of them makes use of a

quantity that is fundamental in Hamiltonian Dynamics: the Poisson Bracket. This quantity can also be a

useful tool to identify conserved quantities of Hamiltonian Systems, even without making explicit use of

Noether’s Theorem.

Definition 2.4.1 (Canonical Poisson Bracket). Consider two functions of class C1: f (q,p, t) and
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g (q,p, t), defined on the 2n phase space. Their Canonical Poisson Bracket is defined as

{f, g} def=
n∑
k=1

(
∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

)
. (2.54)

The Poisson Bracket has some useful properties which have straightforward proofs (it suffices to use

the definition and properties of the derivatives):

1. {f, g} = −{g, f}

2. {f + g, h} = {f, h}+ {g, h}

3. {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi’s identity)

4. {fg, h} = f {g, h}+ g {f, h} (Leibniz identity)

Remark: The first three identities define a Lie algebra.

Definition 2.4.2. Two functions are said to be in involution with one another (or to Poisson commute)

if the Poisson bracket between them is zero.

If one takes the full time derivative of a C1 function f (q,p, t), one gets

df

dt
=

n∑
k=1

(
∂f

∂qk

∂qk
∂t

+ ∂f

∂pk

∂pk
∂t

)
+ ∂f

∂t
=

=
n∑
k=1

(
∂f

∂qk

∂H

∂pk
− ∂f

∂pk

∂H

∂qk

)
+ ∂f

∂t
=

= {f,H}+ ∂f

∂t

(2.55)

and therefore, for a system characterized by the Hamiltonian H, f is a conserved quantity if it is time-

independent and is in involution with the Hamiltonian. Furthermore, if one knows two conserved quantities

in some Hamiltonian system, it is possible to generate further conserved quantities by the following result:

Theorem 2.4.2. Given two C1 functions f and g that are conserved quantities in an Hamiltonian system,

{f, g} is also a conserved quantity.
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Proof. From Jacobi’s identity,

f, {g,H}︸ ︷︷ ︸
0

+

g, {H, f}︸ ︷︷ ︸
0

+ {H, {f, g}} = 0⇒ {H, {f, g}} = 0.

�

Remark: The above theorem does not guarantee that the conserved quantity {f, g} is a new one.

The Hamiltonian statement of Noether’s Theorem makes use of the Poisson Bracket formalism, which

seems natural, as the Poisson Bracket is closely connect to conserved quantities. However, in order to

derive Noether’s Theorem in the Hamiltonian formalism, one needs an extra definition:

Definition 2.4.3. A canonical transformation of coordinates and momenta is a transformation that

preserves the form of Hamilton’s equations.

Equivalently, one can say that a transformation from (q,p) to (Q,P ) is canonical if their Poisson

Brackets are preserved. Infinitesimal canonical transformations can be expressed in terms of a generating

function on the phase space. The details of these infinitesimal transformations and their generating

functions are out of the scope of this work; however, it should be useful to have in mind that these

generating functions are what actually links symmetries and conserved quantities in Hamiltonian systems:

Theorem 2.4.3 (Alternate form of Noether’s Theorem). Q is a conserved quantity of a system described

by the Hamiltonan H if and only if Q generates some continuous symmetry of the Hamiltonan.

Proof (sketch). The change in some observable g due to the symmetry generated by Q can be written

as δg = {g,Q}. Since the Hamiltonan is invariant under a symmetry, it holds that δH = {H,Q} = 0.

As the Poisson bracket is anti-symmetric, one must have 0 = {Q,H} = Q̇, therefore Q is a conserved

quantity of the system.

�

For a deeper analysis on the concepts of canonical transformations and their connection to Poisson

brackets and conserved quantities, refer to the already mentioned works of Goldstein [5] and Arnold [6].

Furthermore, Struckmeier’s work [7] generalizes Noether’s Theorem in the framework of Hamiltonian point

dynamics by putting the time and space variables on equal footing and extending the usual set of canonical

transformations to include transformations that also map time and energy.
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2.5 CHAOS AND LYAPUNOV EXPONENTS

A chaotic system is essentially characterized by its’ non predictability, meaning that it is impossible

to know its’ time evolution for some generic initial condition. Lyapunov exponents are quantities that

can help to quantify chaos. They measure the rates of divergence or convergence of nearby trajectories

in phase space: a negative Lyapunov exponent means that trajectories approach one another, while a

positive one indicates the divergence of the nearby orbits and therefore chaotic behavior (a zero Lyapunov

exponent means that the nearby trajectories maintain their distance).

If one considers a ball of points in the n-dimensional phase space - corresponding to nearby configu-

rations of the system - and let it evolve through the system’s dynamical equations, after some time that

ball of points will either maintain its’ form, shrink and (eventually) collapse to a single point or become

distorted in some direction(s) becoming somewhat ellipsoidal. In fact, the Lyapunov exponents measure

the expansions and contractions of this ball of points in phase space, and therefore there are n Lyapunov

exponents in a system with a n-dimensional phase space.

Consider a system ruled by some equation ẋ = f (x), where xk, k = 1, . . . , n are the state-space

variables and a trajectory x (t) of this system. Furthermore, consider a second trajectory, x̃ (t), close to

the latter, such that δ = x̃−x at some point in time, with |δ| << 1. The dynamics of the separation δ

should then follow

δ̇ = f (x̃)− f (x)

= f (x) +Df (x) δ − f (x) +O
(
|δ|2

)
= Df (x) δ +O

(
|δ|2

)
.

(2.56)

Letting δ → 0 and denoting Jf (x) = Df (x) δ for the Jacobian matrix, one finds the dynamical

equation for the separation δ:
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δ̇ = Jf (x) δ. (2.57)

Thus, integrating this equation throughout the trajectory x (t) yields the time evolution of the sepa-

ration vector,

δ (t) = M (t) δ (0) , (2.58)

for some matrix M (t). It is also possible to get the dynamical equation that describes the time

evolution of M by differentiating (2.58) and using (2.57):

Ṁ = Jf (x)M. (2.59)

Computing M requires, therefore, the joint integration of ẋ = f (x) and Ṁ = Jf (x)M , which is

usually a difficult analytical task.

Now, consider a small ball of points in state-space such that |δ (0) |2 = δ2
0 ∈ R+ around the initial

point x (0) of some trajectory x (t). After some time t, each of the initial separations on the small ball

will have evolved into δ (t) = M (t) δ (0). If M is invertible, from the identity δT (0) δ (0) = δ2
0, one can

write

δT (t)M−T (t)M−1 (t) δ (t) = δ2
0 ⇔

⇔ δT (t)G(t)δ (t) = 1,
(2.60)

where G (t) = δ−2
0 M−T (t)M−1 (t) is a positive definite matrix. This equation defines the surface of an
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ellipsoid with principal axes given by the eigenvectors of G, each of them with semi-axis length g−1/2
k ,

where gk is the eigenvalue associated to the kth eigenvector of G. One can consider the singular value

decomposition of M to gain more insight on how its’ eigenvalues are connected with the eigenvalues of

G. Let M = USV T , where U and V are orthogonal matrices (UUT = V V T = id) and S is a diagonal

matrix with elements sk, k = 1, . . . , n on the diagonal. One can easily compute that MTM = V S2V T

and MMT = US2UT . Therefore MTM and MMT have the same set of eigenvalues which are the

squares of the entries of the diagonal of S. Furthermore, one can write

G = δ−2
0 M−TM−1 = δ−2

0

(
MMT

)−1
= δ−2

0

(
US2UT

)−1
= δ−2

0

(
US−2UT

)
. (2.61)

So, the spectrum of G is
{
δ−2

0 s−2
k , k = 1, . . . , n

}
and one can conclude that M transforms the ball of

points of radius δ0 into an ellipsoid with semi-axis of lengths g−1/2
k = δ0sk, k = 1, . . . , n.

From the eigenvalues of MTM one can define mathematically the Lyapunov exponents:

Definition 2.5.1 (Lyapunov Exponents). Given a system ruled by an equation ẋ = f (x), a trajectory

x (t) and a matrix M as defined above such that the spectrum of MTM is {s2
k, k = 1, . . . , n}, the

Lyapunov exponents of x (t) are the quantities

λk = lim
t→∞

1
t

log |sk|. (2.62)

Remark: Lyapunov exponents are usually ordered from the largest to the smallest: λ1 ≥ λ2 ≥ · · · ≥

λn.

In order to connect the definition of the Lyapunov exponents to their physical meaning, consider the

quantity 1
t

log |δ(t)|
|δ(0)| :

1
t

log |δ (t) |
|δ (0) | = 1

t
log

(
δT (t) δ (t)

)1/2

δ0
= 1

2t log δ
T
0 M

TMδ0

δ2
0

, (2.63)

since MTM and MMT have the same eigenvalues, one can conclude that the eigenvalues of MTM are
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g−1
k δ−2

0 , k = 1, . . . , n
}
from the fact that G−1 = δ2

0MMT . Therefore, for a separation vector δ0 in the

direction of the kth eigenvector of MTM , one has

1
t

log |δ (t) |
|δ (0) | = 1

2t log δ
T
0 g
−1
k δ−2

0 δ0

δ2
0

= 1
2t log s2

k = 1
t

log |sk|. (2.64)

Taking the limit t → ∞, one retrieves the definition of the kth Lyapunov exponent. So, Lyapunov

exponents should be related to the time evolution of the separations between close trajectories. The

largest Lyapunov exponent, λ1, is the easiest to interpret: one has that for an initial separation δ0 in the

direction of largest growth, λ1 = lim
t→∞

1
t

log |δ(t)|
|δ(0)| . This is equivalent to assuming that nearby trajectories

diverge (or converge) at an exponential rate |δ (t) | ∼ |δ (0) |eλ1t. Similarly, if one takes three nearby

trajectories and applies the same thought, one can see that the sum λ1 + λ2 is the exponential growth

rate of small areas between the three trajectories. So, for k nearby trajectories, the sum λ1 + · · · + λk

gives the exponential growth rate of the k-volume between the k trajectories.

The complexity of computing Lyapunov exponents analytically grows with the complexity of the dy-

namical equations of the system, as the equations forM can get be highly complex and, usually, impossible

to solve analytically. In fact, even the numeric computation of Lyapunov exponent is no easy task, as

the matrices M can become highly ill-conditioned in the case that the ball of points in phase space is

transformed into highly elongated ellipsoids.

There are various methods that can be used to calculate these Lyapunov exponents, such as Benettin’s

[8, 9], Wolf’s [10], Rosenstein’s [11] or Kantz’s [12]. Each of them has some advantages or disadgvantages

over the others. Awrejcewicz’s [13] paper has a nice description and comparison between these methods

and some others.

Usually, only the largest Lyapunov exponent is studied, because it is the one that gives the information

about the largest expansion direction - yielding the most insight into the system’s behavior - and it is the

easiest one to calculate numerically. This work will focus only on the largest Lyapunov exponent λ1, which

can be calculated through the simple algorithm developed by Benettin et al. [8, 9]. One first considers

two nearby trajectories starting at x (0) and x (0) + δ0 separated by a distance |δ0| = δ0 << 1. These

two trajectories are integrated for some time T , after which one evaluates the separation |δ (T ) | = δ (T ).
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At this point, one renormalizes the separation vector to its’ original length δ0 and repeats the process.

After doing so N times, this will result in a set of separation vectors {δ (kT ) , k = 1, . . . , N} that will, for

a sufficient total integration time, point in the direction of largest growth and therefore give information

about λ1. The numerical estimator of λ1 is then

λ1 ≈
1
NT

N∑
k=1

log |δ (kT ) |
δ0

. (2.65)

There are, however, two major problems with this method: first, what should be a good value for the

initial separation δ0? Second, what should be a good value for the normalization time T? The initial

separation should be small enough so that the approximation of exponential divergence/convergence of

the trajectories holds valid, but it can’t be too small or numerical errors may arise in the computations.

The normalization time T should also not be too big as to not get out of the exponential regime, but

should also not be too small, or the separation of the two trajectories will not be noticeable. Unfortunately,

there appears that no simple answer exists for these questions, as every system is different and behaves

in distinct ways. Therefore, for each problem, one should always try to first run some simpler tests for

different pairs of values of δ0 and T in order to try to guarantee the validity of most complex studies.
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Chapter 3.

Vortices in 2D Flows

3.1 INVISCID POINT VORTICES

Consider a 2-dimensional inviscid flow extending to infinity, inhabited by some number of point vortices.

What are the dynamics of this system? Answering this question corresponds, mathematically, to solving

the vorticity equation in the unbound plane for some initial condition describing the desired point vortices.

In the unbound plane, if the system is composed by only one point vortex located in r0, the stream

function at point r can be written as

ψ (r) = − Γ
2π log ‖r − r0‖. (3.1)

Since the relation between velocity and vorticity is linear, the velocity field created by n point vortices

can be written as the linear superposition of the velocity field created by each point vortex. In fact if each

vortex has a circulation of Γα and is located in the position rα, it can be shown that the Hamiltonian of

the system can be written as

29
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H = − 1
4π

∑
α 6=β

ΓαΓβ log ‖rα − rβ‖. (3.2)

Therefore, using Hamilton’s equations, the movement equations for the point vortices can be written

as


Γαẋα = ∂H

∂yα
= −Γα

2π
∑
β 6=α

Γβ
yα − yβ
r2
αβ

Γαẏα = − ∂H
∂xα

= Γα
2π

∑
β 6=α

Γβ
xα − xβ
r2
αβ

, (3.3)

where r2
αβ = (xα − xβ)2 +(yα − yβ)2. These equations can be re-written in Hamilton’s canonical form

(2.48) by taking, for instance, the choice of qα = xα and pα = Γαyα for the generalized position and

momentum. There are other choices that can be made for these generalized coordinates; the results that

arise from the analysis, however, are independent of this choice as they follow from the intrinsic behavior

of the system.

Thus, it is easy to see that, for this model, one can choose a phase space that only differs from the

physical configuration space by a rescaling of the y-axis. This is a feature that has profound consequences

in the statistical physics and chaotic advection of the system, as noted by Aref [14].

By using complex variables zα (t) = xα (t) + iyα (t) it is possible to express the movement equations

(3.3) in a more compact form (which will be useful in some future analysis):

ż∗α = 1
2πi

n∑
β 6=α

Γβ
zα − zβ

. (3.4)
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3.1.1 Conserved Quantities and Symmetries

One of the main interests of the Hamiltonian description of the problem in hand is that the Pois-

son bracket defined in (2.4.1) provides an easy way to check for invariants of the system. Other than

the Hamiltonian, which is invariant by definition, the n-vortex system also has the following conserved

quantities:

1. Q = ∑n
α=1 Γαxα;

2. P = ∑n
α=1 Γαyα;

3. I = ∑n
α=1 Γα|zα|2;

4. I0 = 1
2i
∑n
α=1 Γα (z∗αżα − zαż∗α) = 1

2π
∑n
α=1

∑
β<α ΓαΓβ

Q+ iP is called the linear impulse and, when divided by the total circulation Γ = ∑n
α=1 Γα, gives the

vorticity center of the system; I is called the angular impulse.

The time invariance of the first three quantities can be easily checked through their Poisson bracket

with the Hamiltonan, as none of them has an explicit dependence on time:

{Q,H} =
n∑

α=1
Γα {xα, H} =

n∑
α=1

Γα {qα, H} =
n∑

α=1
Γαq̇α =

n∑
α=1

Γαẋα

= − 1
2π

n∑
α=1

∑
β 6=α

ΓαΓβ
yα − yβ
r2
αβ︸ ︷︷ ︸

ξαβ

= 0, (3.5)

because ξαβ = −ξβα and thus every term of the sum cancels with its’ symmetric. The conservation of P

follows in a analogous fashion:

{P,H} =
n∑

α=1
{Γαyα, H} =

n∑
α=1
{pα, H} =

n∑
α=1

q̇α =
n∑

α=1
Γαẏα

= 1
2π

n∑
α=1

∑
β 6=α

ΓαΓβ
xα − xβ
r2
αβ︸ ︷︷ ︸

ηαβ

= 0, (3.6)
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again, because ηαβ = −ηβα.

The angular impulse I also stays constant in time:

{I,H} =
n∑

α=1

{
Γα
(
x2
α + y2

α

)
, H

}
=

n∑
α=1

Γα
[{
x2
α, H

}
+
{
y2
α, H

}]
=

= 2
n∑

α=1
Γα [xα {xα, H}+ yα {yα, H}] = 2

n∑
α=1

Γα [xαẋα + yαẏα] =

= 1
π

n∑
α=1

∑
β 6=α

ΓαΓβ
r2
αβ

[xα (yβ − yα) + yα (xα − xβ)] = 1
π

n∑
α=1

∑
β 6=α

ΓαΓβ
r2
αβ

[xαyβ − yαxβ]︸ ︷︷ ︸
καβ

= 0,

(3.7)

once more, because καβ = −κβα and every term in the sum cancels with a symmetric one.

I0 is obviously a conserved quantity as it is the sum of constant quantities. One just needs to prove

that the definition of I0 is equal to the sum 1
2π
∑n
α=1

∑
β<α ΓαΓβ:

I0 = 1
2i

n∑
α=1

Γα (z∗αżα − zαż∗α) = 1
2i

n∑
α=1

∑
β 6=α

[
−ΓαΓβ

2πi
z∗α

z∗α − z∗β
− ΓαΓβ

2πi
zα

zα − zβ

]
=

= 1
4π

n∑
α=1

∑
β 6=α

ΓαΓβ
(

zα
zα − zβ

+ z∗α
z∗α − z∗β

)
= 1

2π

n∑
α=1

∑
β 6=α

ΓαΓβRe
(

zα
zα − zβ

)
=

= 1
2π

n∑
α=1

∑
β 6=α

ΓαΓβ
|zα − zβ|2

[
|zα|2 −Re

(
zαz

∗
β

)]
=

= 1
2π

n∑
α=1

∑
β 6=α

ΓαΓβ
|zα − zβ|2

(
x2
α + y2

α − xαxβ − yαyβ
)

= 1
2π

n∑
α=1

∑
β<α

ΓαΓβ
|zα − zβ|2

(
x2
α + y2

α − 2xαxβ − 2yαyβ + x2
β + y2

β

)
︸ ︷︷ ︸

|zα−zβ |2

= 1
2π

n∑
α=1

∑
β<α

ΓαΓβ.

(3.8)

Though Noether’s Theorem it is possible to associate each of these conserved quantities to a symmetry

of the system. The conservation of the Hamiltonian is connected to a time translation symmetry, the

conservation of the linear impulse gives a space translation symmetries, while rotational symmetry is linked

to the conservation of angular impulse. Finally, the conservation of I0 is related to scale transformation

symmetry. Chapman’s paper [15] gives a detailed description of these conserved quantities and symmetries.

Discrete symmetries do not generate conserved quantities, but nevertheless they can be useful to have

in mind when studying or solving a complex problem. In particular, the n-vortex system has some discrete

symmetries:
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1. t→ −t, Γα → −Γα;

2. z → −z;

3. Γα → −Γα, z → z∗;

4. Cyclic permutations of indices.

3.1.2 Integrability of the System

A common strategy to address the question of integrability of some system of differential equations is

to look for first integrals of the system, or, equivalently, quantities that are conserved, mutually involutive

and functionally independent. For the n-vortex system this is also a valid method. One can find easily

a couple of useful Poisson bracket identities by just using their properties and the fundamental brackets

{xα, xβ} = 0 = {yα, yβ} and {xα, yβ} = −{yβ, xα} = Γ−1
β δαβ:

1. {Q,P} =
n∑

α=1

n∑
β=1

ΓαΓβ {xα, yβ} =
n∑

α=1

n∑
β=1

Γαδαβ =
n∑

α=1
Γα = Γ

2. {Q, I} =
n∑

α=1

n∑
β=1

ΓαΓβ
{
xα, x

2
β + y2

β

}
= 2

n∑
α=1

n∑
β=1

ΓαΓβ [xβ {xα, xβ}+ yβ {xα, yβ}] =

= 2
n∑

α=1

n∑
β=1

Γαyβδαβ = 2
n∑

α=1
Γαyα = 2P

3. {P, I} =
n∑

α=1

n∑
β=1

ΓαΓβ
{
yα, x

2
β + y2

β

}
= 2

n∑
α=1

n∑
β=1

ΓαΓβ [xβ {yα, xβ}+ yβ {yα, yβ}] =

= −2
n∑

α=1

n∑
β=1

Γβxβδαβ = −2
n∑
β=1

Γβxβ = −2Q

4. {P 2 +Q2, H} = 2P {P,H}+ 2Q {Q,H} = 0

5. {P 2 +Q2, I} = 2P {P, I}+ 2Q {Q, I} = 2P (−2Q) + 2Q (2P ) = 0

In an Hamiltonian system with n degrees of freedom (equivalently, a phase space of dimension 2n), if

there are k conserved quantities that are in involution with one another and are functionally independent,

one can reduce the phase space dimension by 2k.

Definition 3.1.1 (Integrability). If there are n conserved quantities that are in involution with one another

and are functionally independent in the n-vortex system, the system is said to be integrable.
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Theorem 3.1.1. For n ≤ 3, the n-vortex problem is integrable for any Γα (α = 1, . . . , n). If Γ = 0, the

4-vortex system is also integrable.

Proof. For n = 1 and n = 2, the system is trivially integrable (the integration for n = 2 will be explicitly

made in section 3.1.3). For n = 3, the quantities H, P 2 +Q2 and I are functionally independent and are

in involution with one another for all combinations of circulations of the 3 vortices [16, 17, 18], hence the

system is integrable. If Γ = 0, the quantities H, P , Q and I are mutually involutive since it is possible

to change the origin of the system of coordinates to a point such that P = 0 = Q. This change of

coordinates does not affect the Poisson brackets since it only adds constant values to P and Q, thus, the

problem for n = 4 is integrable if Γ = 0.

�

Remark: In fact, the non-integrability for n = 4 in the case Γ 6= 0 has been proven by various authors

such as Ziglin [19], Koiller & Carvalho [20, 21] or Castilla et al. [22].

In order to study the solutions of the n-vortex system in the integrable cases, one can take any of the

descriptions formulated to tackle the problem. Let’s use the complex description to do so:

ż∗k = 1
2πi

n∑
j 6=k

Γj
zk − zj

. (3.9)

For a system comprised of only one point vortex, the integration of (3.9) is trivial, and the point vortex

will remain in its’ initial position at all times, since it doesn’t feel its’ own vorticity field (and therefore

the velocity field created by it) and there are no other sources of vorticity in the system.

3.1.3 Dynamics of 2 Point Vortices

For a system formed by two point vortices of circulations Γ1 and Γ2, we have the following system of

differential equations
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ż∗1 = 1

2πi
Γ2

z1 − z2

ż∗2 = 1
2πi

Γ1

z2 − z1

. (3.10)

One can first notice that the distance between the two vortices, D =
√

(z1 − z2) (z1 − z2)∗, is a

conserved quantity:

{
D2, H

}
= (z1 − z2) {(z1 − z2)∗ , H}+ {z1 − z2, H} (z1 − z2)∗

= (z1 − z2) (ż1 − ż2)∗ + (ż1 − ż2) (z1 − z2)∗

= 1
2πi

[
(z1 − z2)

(
Γ2

z1 − z2
+ Γ1

z2 − z1

)
−
(

Γ2

(z1 − z2)∗ + Γ1

(z2 − z1)∗
)

(z1 − z2)∗
]

= 1
2πi [(Γ2 − Γ1)− (Γ2 − Γ1)]

= 0.

(3.11)

Therefore the system (3.10) can be re-written as


ż1 = iΓ2

2πD2 (z1 − z2)

ż2 = iΓ1

2πD2 (z2 − z1)
. (3.12)

As such, it’s easy to see that Γ1ż1 + Γ2ż2 = 0, and the linear impulse is conserved, as expected.

Thus, {Γ1z1 + Γ2z2, H} = 0. To solve the system (3.12) we introduce a simple change of variables

z+ = z1 + z2, z− = z1 − z2 and we get


ż+ = i

2πD2 (Γ2 − Γ1) z−

ż− = i

2πD2 (Γ1 + Γ2) z−
. (3.13)
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We need to distinguish between two cases here: Γ1 + Γ2 = 0 and Γ1 + Γ2 6= 0.

a) Γ1 + Γ2 = 0

The integration is trivial and yields

z+ = i

2πD2 (Γ2 − Γ1)At+B,

z− = A

, (3.14)

where A,B ∈ C can be easily determined provided one knows the initial positions of the point vortices:

A = z1 (0) − z2 (0), B = z1 (0) + z2 (0). Therefore, the positions of the point vortices at all times are

given by


z1 (t) = z1 (0) + iΓ1

2πD [z2 (0)− z1 (0)] t

z2 (t) = z2 (0)− iΓ2

2πD [z2 (0)− z1 (0)] t
, (3.15)

and they move in straight lines, parallel to one another and with constant velocity Γ1/ (2πD2).

b) Γ1 + Γ2 6= 0:

While not as straightforward as in the previous case, the integration is also simple and it gives

z+ = Γ2 − Γ1

Γ1 + Γ2
A exp (iθt) +B,

z− = A exp (iθt)
, (3.16)

where θ = (Γ1 + Γ2) / (2πD2) and A,B ∈ C can be easily determined provided we know the initial

positions of the point vortices as


A = z1 (0)− z2 (0)

B = 2Γ1z1 (0) + Γ2z2 (0)
Γ1 + Γ2

. (3.17)

Therefore, after a little bit of algebra, one arrives at expressions for the point vortices’ position at all

times:
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z1 (t) = 1

Γ1 + Γ2

[
Γ1z1 (0) + Γ2z2 (0) + Γ2 [z1 (0)− z2 (0)] eiθt

]
z2 (t) = 1

Γ1 + Γ2

[
Γ1z1 (0) + Γ2z2 (0)− Γ1 [z1 (0)− z2 (0)] eiθt

] , (3.18)

and the vortices rotate around a common point - the center of vorticity of the system - at a velocity that

is in inverse proportion to their separation distance.

3.1.4 Dynamics of 3 Point Vortices

For a system comprised of 3 or more vortices, integration is not as trivial even if one knows all the

conserved quantities of the system. In fact, if the system is integrable, odds are that carrying out the

explicit integration will require knowledge of transformation and reduction theory (the works of Lichtenberg

and Lieberman [23] or Goldstein [5] cover the basics, for example), which enables one to find a special set

of coordinates, called the action-angle coordinates, (I,θ), defined in subregions of the phase space and

an Hamiltonian, H̃ (I), independent of the θ variables such that the equations of motion simplify to


İk = −∂H̃

∂θk
= 0

θ̇k = ∂H̃

∂Ik
= ωk (I)

, k = 1, . . . , n. (3.19)

So, the first n equations give us the n conserved quantities of the system, while the remaining n are

the angles - θk ∈ [0, 2π] - that increase as some linear combination of the invariants Ik.

For analysis of systems with n ≥ 3, it is usually useful to rewrite the equations for the n-vortex system

for the distance between pairs of vortices, usually called the intervortex separations. Let `αβ = |zα − zβ|.

There are two invariant quantities that can be written directly from the intervortex separations and,

therefore, are independent of the specific coordinates of each vortex. One is the Hamiltonian,
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H = − 1
4π

∑
α 6=β

ΓαΓβ log (`αβ) , (3.20)

and the other is a combination of the integrals P , Q and I defined in Section 3.1.1:

M = 1
2

n∑
α=1

∑
β 6=α

ΓαΓβ`αβ = Γ
n∑

α=1
Γα
(
x2
α + y2

α

)
−
(

n∑
α=1

Γαxα
)2

−
(

n∑
α=1

Γαyα
)2

= ΓI −
(
Q2 + P 2

) (3.21)

Even without the advanced techniques of transformation and reduction theory, it is still possible to

characterize the equilibria and collapse states of the 3 vortices problem.

Definition 3.1.2 (Vortex Configuration). The geometrical object formed by the set of vortices in a system

at any given time is called a vortex configuration. If this geometrical object does not rotate or suffers

translations in time, one says that it is a fixed equilibrium of the system. Otherwise, one calls it a relative

equilibrium.

Remark: It is straightforward to notice that for n = 2, there are no fixed equilibria, whichever may

be the initial conditions or the circulations of the vortices. All solutions of the 2-vortices system are,

therefore, relative equilibria.

Due to the discreet symmetries of the n-vortex described in section 3.1.1, one can reduce the 3-vortex

problem to the case where Γ1 ≥ Γ2 ≥ 0 and Γ3 ∈ R, as all the other cases can be obtained from these

symmetries. From here on, the analysis will be performed in a system assuming these vortex circulations.

In order to simplify notation, for a system of 3 vortices, one can write s1 = `23, s2 = `31 and s3 = `12.

With this, the Hamiltonian and the M integral have pretty straightforward expressions:

H = − 1
4π

[
Γ2Γ3 log

(
s2

1

)
+ Γ1Γ3 log

(
s2

2

)
+ Γ1Γ2 log

(
s2

3

)]
, (3.22)
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M = Γ2Γ3s
2
1 + Γ1Γ3s

2
2 + Γ1Γ2s

2
3. (3.23)

Notice that it is possible to easily compute the fundamental Poisson brackets between pairs of the

squares of these new variables, such as s2
1 and s2

2:

{
s2

1, s
2
2

}
=
{

(x2 − x3)2 + (y2 − y3)2 , (x3 − x1)2 + (y3 − y1)2
}

=

= 4 [(x2 − x3) (y3 − y1) {x2 − x3, y3 − y1}+ (y2 − y3) (x3 − x1) {y2 − y3, x3 − x1}] =

= 4
[
− (x2 − x3) (y3 − y1) Γ−1

3 + (y2 − y3) (x3 − x1) Γ−1
3

]
=

= − 8
Γ3

x1y2 + x2y3 + x3y1 − x1y3 − x3y2 − x2y1

2

= − 8
Γ3

∆,

(3.24)

where ∆ is the area of the triangle defined by the positions of the vortices z1, z2 and z3, affected by the

sign of the permutation of the indices, i.e., it is positive if the triangle has vertices 123 counterclockwise

and negative if the vertices appear clockwise. The other two fundamental Poisson brackets can be obtain

analogously:

{
s2

1, s
2
2

}
= − 8

Γ3
∆,

{
s2

2, s
2
3

}
= − 8

Γ1
∆,

{
s2

3, s
2
1

}
= − 8

Γ2
∆. (3.25)

With these brackets, it becomes straightforward to derive the differential equations for the squares of

the intervortex separations, since these quantities do not explicitly depend on time:
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d (s2
1)

dt
=
{
s2

1, H
}

= − 1
4π

[
Γ2Γ3

{
s2

1, log
(
s2

1

)}
+ Γ1Γ3

{
s2

1, log
(
s2

2

)}
+ Γ1Γ2

{
s2

1, log
(
s2

3

)}]
= − 1

4π

[
Γ2Γ3

s2
1

{
s2

1, s
2
1

}
+ Γ1Γ3

s2
2

{
s2

1, s
2
2

}
+ Γ1Γ2

s2
3

{
s2

1, s
2
3

}]

= 2
π

Γ1∆
(

1
s2

2
− 1
s2

3

)
.

(3.26)

The remaining two equations can be found through similar computations, forming together the system

of ordinary differential equations



d (s2
1)

dt
= 2
π

Γ1∆
(

1
s2

2
− 1
s2

3

)
d (s2

2)
dt

= 2
π

Γ2∆
(

1
s2

3
− 1
s2

1

)
d (s2

3)
dt

= 2
π

Γ3∆
(

1
s2

1
− 1
s2

2

) . (3.27)

Remark: The area of the triangle formed by the positions of the 3 vortices, |∆|, can also be

expressed in a more desirable way when working with equations (3.27) by Heron’s formula |∆| =√
p (p− s1) (p− s2) (p− s3), where p = 0.5 (s1 + s2 + s3) is the semi-perimeter of the triangle. This

equation and (3.27) form therefore a closed system provided that the 3 vortices don’t go through collinear

states, where ∆ changes sign. To analyze what happens when the three vortices go through a collinear

state, one requires a dynamical equation for ∆.

Theorem 3.1.2 (Fixed equilibria of the 3 vortex system). The necessary and sufficient conditions for a

fixed equilibria configuration of 3 vortices in the plane are

(i) The vortices must be collinear and their positions be such that Γ3 (z2 − z1) = Γ2 (z1 − z3)

(ii) ∑α 6=β ΓαΓβ = 0

Proof. From the dynamical equations

ż∗α = 1
2πi

∑
β 6=α

Γβ
zα − zβ

, (3.28)
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the necessary condition for a fixed equilibrium is ż∗α = 0, so, for α = 1 one gets

Γ2

z1 − z2
+ Γ3

z1 − z3
= 0, (3.29)

which is equivalent to Γ3 (z2 − z1) = Γ2 (z1 − z3). This also shows that the vectors in the complex plane

that connect z2 to z1 and z3 to z1 must be scalar multiples of one another and therefore the three vortices

must present a collinear configuration.

From the dynamical equations for the 3 vortices, the conditions ż∗α = 0, α ∈ {1, 2, 3} give rise to



Γ2

z1 − z2
+ Γ3

z1 − z3
= 0

Γ3

z2 − z3
+ Γ1

z2 − z1
= 0

Γ1

z3 − z1
+ Γ2

z3 − z2
= 0

. (3.30)

Multiplying each of these three equations by Γ1z1, Γ2z2 and Γ3z3 respectively and summing them gives

Γ2Γ1z1

z1 − z2
+ Γ3Γ1z1

z1 − z3
+ Γ3Γ3z2

z2 − z3
+ Γ1Γ2z2

z2 − z1
+ Γ1Γ3z3

z3 − z1
+ Γ2Γ3z3

z3 − z2
= 0⇔

⇔ Γ1Γ1 (z1 − z2)
z1 − z2

+ Γ2Γ3 (z2 − z3)
z2 − z3

+ Γ3Γ1 (z1 − z3)
z1 − z3

= 0⇔

⇔ Γ1Γ2 + Γ2Γ3 + Γ3Γ1 = 0.

(3.31)

To prove the sufficiency of these conditions, one starts with ∑α 6=β ΓαΓβ = 0. It is possible to write

expressions for Γ2 and Γ3 in terms of the other two circulations:

Γ2 = − Γ1Γ3

Γ1 + Γ3
, Γ3 = − Γ1Γ2

Γ1 + Γ2
. (3.32)

With these two identities and the condition Γ3 (z2 − z1) = Γ2 (z1 − z3) it is possible to use derive
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similar expressions for each pair of Γα’s, yielding



Γ3 (z2 − z1) = Γ2 (z1 − z3)

Γ1 (z3 − z2) = Γ2 (z1 − z3)

Γ3 (z2 − z1) = Γ1 (z3 − z2)

. (3.33)

And using these three identities in the dynamical equations, it is straightforward to see that ż∗α = 0

for α ∈ {1, 2, 3}.

�

Theorem 3.1.3 (Relative equilibria of the 3 vortex system). The only relative equilibria configurations

for a system of 3 vortices in the plane are collinear configurations and equilateral triangles. Furthermore,

(i) all equilateral triangles with side s constitute relative equilibria rotating rigidly around their center

of vorticity with frequency Γ
2πs2 . In the limiting case where Γ = 0, the center of vorticity is located

at infinity and all vortices travel in parallel to one another with velocity
√

Γ2
1+Γ2

2+Γ2
3

8π2s2
.

(ii) Collinear states can form relative equilibria if and only if

s23−s
2
2

s21
(Γ2 + Γ3) + s21−s

2
3

s22
(Γ3 + Γ1) + s22−s

2
1

s23
(Γ1 + Γ2) = 0.

Proof. For the system to be in relative equilibrium, the time derivatives of s1, s2 and s3 must go to

zero at all times. As it can be seen from the equations (3.27), this only happens when either ∆ = 0,

which corresponds to a collinear configuration, or when s1 = s2 = s3, which corresponds to an equilateral

triangle configuration.

Now, let the system be in a equilateral triangle configuration of side s and Γ = ∑3
α=1 Γα 6= 0. The

center of vorticity of the system is defined as

zcv =
∑3
α=1 Γαzα

Γ . (3.34)

Therefore one can write the equations of motion for the three vortices as
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żα = − 1
2πi

∑
β 6=α

Γβ
(zα − zβ)∗ = − 1

2πi
∑
β 6=α

Γβ (zα − zβ)
(zα − zβ)∗ (zα − zβ) =

= − 1
2πis2

∑
β 6=α

[Γβ (zα − zβ)] = − 1
2πis2

∑
β 6=α

[Γβzα − Γβzβ + Γαzα − Γαzα]

= − 1
2πis2

 3∑
β=1

Γβzα −
3∑

β=1
Γβzβ

 = iΓ
2πs2 [zα − zcv] .

(3.35)

Since zcv is defined only by conserved quantities of the equations of motion, it is a fixed point in space

(żcv = 0), these equations can be easily integrated:

zα − zcv = Kαe
i Γ
2πs2

t, Kα ∈ C, (3.36)

where Kα = zα (t = 0) − zcv for each vortex. Thus, each of the vortices rotates around the center of

vorticity with an angular frequency of Γ
2πs2 .

Now, if Γ = 0, equations (3.35) become

żα = 1
2πis2

3∑
β=1

Γβzβ, ∀α ∈ {1, 2, 3} , (3.37)

so each of the three vortices moves with the same velocity; the three of them move like a rigid body with

velocity such that

|żα|2 = 1
4π2s4 |Γ1z1 + Γ2z2 + Γ3z3| =

1
4π2s4 |Q+ iP | = Q2 + P 2

4π2s4 . (3.38)

From the definition of the M invariant (3.21), it is possible to see that, for a system under these
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conditions, Q2 +P 2 = − (Γ1Γ2 + Γ2Γ3 + Γ3Γ1) s2 and from Γ = 0 it is easy to conclude that Q2 +P 2 =
1
2 (Γ2

1 + Γ2
2 + Γ2

3) s2. Therefore, the three vortices travel in parallel, as a rigid body, with linear velocity√
Γ2

1+Γ2
2+Γ2

3
8π2s2

.

To prove the second point of the theorem it is necessary to first derive an equation for the dynamics of

∆. Using the fundamental brackets {xα, xβ} = 0 = {yα, yβ}, {xα, yβ} = −{yβ, xα} = Γ−1
β δαβ and the

fact that 2∆ = x1y2 + x2y3 + x3y1− x1y3− x3y2− x2y1, it is possible to calculate the following Poisson

brackets:



{
s2

1, 2∆
}

=
( 1

Γ2
− 1

Γ3

)
s2

1 +
( 1

Γ2
+ 1

Γ3

) (
s2

2 − s2
3

)
{
s2

2, 2∆
}

=
( 1

Γ3
− 1

Γ1

)
s2

2 +
( 1

Γ3
+ 1

Γ1

) (
s2

3 − s2
1

)
{
s2

3, 2∆
}

=
( 1

Γ1
− 1

Γ2

)
s2

3 +
( 1

Γ1
+ 1

Γ2

) (
s2

1 − s2
2

)
. (3.39)

With these it becomes easy to deduce a dynamical equation for ∆,

d∆
dt

= {∆, H} = − 1
4π

[
Γ2Γ3

s2
1

{
∆, s2

1

}
+ Γ3Γ1

s2
2

{
∆, s2

2

}
+ Γ1Γ2

s2
3

{
∆, s2

3

}]

= − 1
8π

[
s2

3 − s2
2

s2
1

(Γ2 + Γ3) + s2
1 − s2

3
s2

2
(Γ3 + Γ1) + s2

2 − s2
1

s2
3

(Γ1 + Γ2)
]
,

(3.40)

which should vanish for any collinear configuration in relative equilibrium.

�

The stability of these equilibria is a much more sensitive subject, and depends mostly on the values of

the circulations of the vortices. Aref [17] developed an extensive study of the stability of all the possible

equilibria of the 3-vortex problem.

There is yet another interesting solution for the 3 vortices system that one can analyze with the

formalism here used: the self-similar collapse of the vortices. First, however, one needs to mathematically

define the concept of self-similar motion:

Definition 3.1.3 (Self-similar motion). A system of vortices is said to evolve self-similarly if zα (t) =

λαf (t) for all α = 1, . . . , n, where λ ∈ C are complex-valued scale factors and f (t) is a complex-valued
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function of time.

The self-similar collapse of 3 vortices is easily analyzed in terms of the intervortical distances s2
1, s2

2

and s2
3. If the collapse is self-similar, the ratios between the sides of the triangle formed by the positions

of the vortices must remain constant. Therefore, one can define the constant ratios

λ1 = s2
3
s2

2
, λ2 = s2

1
s2

2
. (3.41)

The Hamiltonian (3.22) for the system can be re-written as

H̃ = exp
(
− 4πH

Γ1Γ2Γ3

)
=
(
s2

1

)1/Γ1 (
s2

2

)1/Γ2 (
s2

3

)1/Γ3 = λ
1/Γ3
1 λ

1/Γ1
2

(
s2

2

) 1
Γ1

+ 1
Γ2

+ 1
Γ3 , (3.42)

and since Ḣ = 0⇒ ˙̃H = 0, one has that

˙̃H = 0⇔ λ
1/Γ3
1 λ

1/Γ1
2

(
s2

2

) 1
Γ1

+ 1
Γ2

+ 1
Γ3
−1
( 1

Γ1
+ 1

Γ2
+ 1

Γ3

)
d (s2

2)
dt

= 0. (3.43)

Therefore, for the Hamiltonian to be conserved, one must have 1
Γ1

+ 1
Γ2

+ 1
Γ3

= 0, since all the other

multiplicative terms of the equation must be non-zero for some time in the evolution of the system.

The other invariant of the system, M (3.23), yields, for a self-similar motion of the system,

M = Γ2Γ3s
2
1 + Γ1Γ3s

2
2 + Γ1Γ2s

2
3 = (Γ2Γ3λ2 + Γ1Γ3 + Γ1Γ2λ1) s2

2. (3.44)

Since in the moment of collapse one has s2
2 = 0, M must be zero at that time, and thus M must be

zero during the whole time evolution of the system.
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Using the ratios (3.41), the dynamical equations for the intervortical distances can be re-written as



d (s2
2)

dt
= 2
π

Γ1∆
(
λ1 − 1
λ1λ2

)
1
s2

2

d (s2
2)

dt
= 2
π

Γ2∆
(
λ2 − λ1

λ1λ2

)
1
s2

2

d (s2
2)

dt
= 2
π

Γ3∆
(

1− λ2

λ1λ2

)
1
s2

2

, (3.45)

which give the following relations

Γ1 (λ1 − 1) = Γ2 (λ2 − λ1) = Γ3 (1− λ2) . (3.46)

Writing ∆ = sgn (∆) |∆| and making use of one of Henon’s formulas for the area of the triangle,

4|∆| =
√

4 (s2
1s

2
2 + s2

1s
2
3 + s2

2s
3
3)−

(
s2

1 + s+
2 s

2
3

)2
=

=
√

4 (λ2 + λ1λ2 + λ1) s4
2 − (λ1 + 1 + λ2)2 s4

2

= s2
2

√
2 (λ1 + λ2)− (λ1 − λ2)2 − 1 = γs2

2,

(3.47)

if one defines Λ = Γ2
2π

(
λ1−λ2
λ1λ2

)
γ, the dynamical equation for s2

2 can be written as

d (s2
2)

dt
= −sgn (∆) Λ. (3.48)

This equation has the simple solution
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s2 (t) =
√
−sgn (∆) Λt+ s2

2 (0). (3.49)

So, if sgn (∆) Λ > 0, the self-similar collapse should happen at time t∗ = s2
2 (0) /Λ; if sgn (∆) Λ < 0,

then the configuration expands indefinitely.

Theorem 3.1.4 (Self-similar collapse of the 3 vortices system). The self-similar collapse of the 3 vortices

system happens if and only if

(i) 1
Γ1

+ 1
Γ2

+ 1
Γ3

= 0;

(ii) M = 0;

(iii) the initial vortex configuration is not an equilibrium;

(iv) sgn (∆) Λ > 0

Proof. The necessity of these conditions has been shown beforehand, while analyzing what happens in

a situation where the three vortices collide self-similarly. One now needs to show that these conditions

are also sufficient to guarantee the collapse. In fact, (i) and (ii) are just the conditions for self-similar

motion, while (iii) guarantees that the intervortical distances change in time.

Using the triangle inequalities and trilinear coordinates

bα = sα
Γα
, α = 1, 2, 3, (3.50)

it is possible to show that regions in the (b1, b2, b3) space corresponding to physical acceptable solutions

are bounded by conic sections satisfying

(Γ1b1)2 + (Γ2b2)2 + (Γ3b3)2 ≤ 2 (Γ1Γ2b1b2 + Γ2Γ3b2b3 + Γ3Γ1b3b1) . (3.51)
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From (i), one finds that Γ3 < 0. Furthermore, (ii) gives the identity b1 + b2 + b3 = 0 and therefore

the phase trajectories can be analyzed in the (b1, b2) plane, with b3 = − (b1 + b2). Using this in (3.51)

yields a standard equation for a degenerate conic section defining a wedge-shaped region.

In fact, from the Hamiltonian, it is possible to write a function

f̃ (b1, b2) = b
1/Γ1
1 b

1/Γ2
2 (b1 + b2)1/Γ3 = b

1/Γ1
1 b

1/Γ2
2 (b1 + b2)−1/Γ1−1/Γ2 , (3.52)

such that each level curve of f̃ is a phase trajectory of the vortex system. One can notice that any line of

positive slope in the (b1, b2) that goes through the origin is a phase curve of f̃ . Thus, all level curves of

f̃ satisfy b2 = λb1 for some λ > 0, corresponding to a level 1/θ such that θ = (1 + λ)1/Γ1 (1 + λ−1)1/Γ2 .

The minimum value of θ is obtained for λ = Γ1
Γ2

and each point on this trajectory actually corresponds

to a triangular configuration that is rotating rigidly. The lines that form the boundary of the wedge-like

region of physical acceptable solutions are also formed by equilibrium points of the system, each of them

relating to some collinear configuration of vortices that is rotating rigidly.

All of these are, as seen before, relative equilibria of the system and therefore the initial configuration

will not lie on any of these lines if the system collapses. Therefore, the collapsing states should lie in the

remaining phase trajectories. Since b2 = λb1 and b3 = − (1 + λ) b1, s2 and s3 must be proportional to s1

and the right-hand sides of equations (3.27) are all constant. If sgn (∆) Λ > 0, the collapse occurs as it

was shown beforehand.

�

3.2 VISCOUS VORTICES

While the inviscid case has been thoroughly studied throughout the years, the study of point vortices

in a viscous environment still has a long way to go. By considering fluids with non-zero viscosity the

complexity of the problem grows, nevertheless, one expects the results to come much closer to what we

find in Nature, as most fluids exhibit viscous properties.
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3.2.1 Lamb-Oseen Vortex

In a viscous environment, the dynamics are described by the Navier-Stokes equation, which was deduced

in Section 2.1. By formulating the problem through the vorticity description in the unbound 2-dimensional

plane, for a single point vortex of circulation Γ located at z0 one arrives at


∂ω

∂t
+ (u · ∇)ω = ν∇2ω

ω (z, t = 0) = Γδ (z − z0)
. (3.53)

Solving this problems corresponds to finding the vorticity field caused by the point vortex described

above. The exact solution is well-known and usually called the Lamb-Oseen vortex:

ω (z, t) = Γ
4πνt exp

(
−|z − z0|2

4νt

)
, (3.54)

which generates a velocity field

ż∗ (z, t) = Γ
2πi

1
z

[
1− exp

(
−|z − z0|2

4νt

)]
. (3.55)

As these vorticity and velocity profiles make clear, the time evolution of the Lamb-Oseen vortex is such

that the vorticity is diffused radially outward with a Gaussian profile. This vorticity diffusion can also be

quantified by the radius of the vortex core r =
√

4νt. Even though the Lamb-Oseen vortex is an exact

and simple solution of the vorticity equation, explicit analytical solutions for a general initial condition are

still not available.

One important result on the Lamb-Oseen vortex is that it is an asymptotically stable attracting solution

of the vorticity equation for any integrable initial vorticity configuration, as was proven by Gallay & Wayne

[24]. The superposition of n point vortices - ω (z, t = 0) = ∑n
α=1 Γαδ (z − zα) - is one such configuration.
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3.2.2 Multi-Gaussian Model

This idea gave rise to the multi-Gaussian model of point vortices, that assumes that the vorticity

field is a superposition of Lamb-Oseen vortices at all times: each of the initial point vortices spread

axisymmetrically as if it they were isolated, modeling the diffusive term in the vorticity equation (ν∇2ω);

the center position of each vortex, however, is affected by all the other vortices and moves according to

the velocity field created by them, as it is expected due to the convective term (u · ∇)ω.

Gallay showed, in a more recent work [25], that under certain conditions, the solution of the Navier-

Stokes equation in the inviscid limit ν → 0 for δ-Dirac initial conditions converges to a superposition of

Lamb-Oseen vortices. This provides yet another reason for the viability of the multi-Gaussian model in

the description of fluids.

Thus, for the study of viscous point vortices, we will use the multi-Gaussian model. The vorticity field

for a system of n vortices located at zα, α = 1, 2, . . . , n is therefore

ω (z, t) = 1
4πνt

n∑
α=1

Γα exp
(
−|z − zα|

2

4νt

)
, (3.56)

and gives rise to a velocity field

ż∗ (z, t) = 1
2πi

n∑
α=1

Γα
z − zα

[
1− exp

(
−|z − zα|

2

4νt

)]
. (3.57)

Hence, the equations of motion for the vortex α are

ż∗α = 1
2πi

n∑
β 6=α

Γβ
zα − zβ

[
1− exp

(
−|zα − zβ|

2

4νt

)]
. (3.58)

One can also write a kind of generalized Hamiltonian, a function G such that Hamilton’s equations

hold. Such function should coincide with the classical Hamiltonian (3.2) in the limit ν → 0. Suppose G

is of the form

Gil Miguel Marques



FCUP 51
Advection of Passive Particles by Viscous Point Vortices

G = 1
2π

n∑
α=1

∑
β>α

ΓαΓβF (χ, t) , (3.59)

where χ (zα, zβ) =
√

(xα − xβ)2 + (yα − yβ)2.

Therefore G shall satisfy

Γαż∗α = Γαẋα − iΓαẏα = ∂G

∂yα
+ i

∂G

∂xα
= 2i ∂G

∂zα
. (3.60)

On the other hand, differentiating (3.59),

∂G

∂zγ
= − 1

2π

n∑
α=1

∑
β>α

ΓαΓβ
∂F

∂χ

∂χ

∂zα

∂zα
∂zγ

= − 1
2π

n∑
α=1

∑
β>α

ΓαΓβ
∂F

∂χ

∂χ

∂zα
δαγ

= − 1
2π

n∑
α=1

∑
β>α

ΓαΓβ
∂F

∂χ

[
( 1
2χ

(
z∗α − z∗β

)]
δαγ

= − 1
4π

∑
β 6=γ

ΓγΓβ
χ

(
z∗γ − z∗β

) ∂F
∂χ

.

(3.61)

Finally, by comparing this expression with ∂G
∂zα

= Γαz∗α
2i and using the equations of motion (3.58), it is

possible to see that F must satisfy the differential equation

∂F

∂χ
= 1
χ

[
1− exp

(
− χ2

4νt

)]
, (3.62)

and in the limit ν → 0, one can retrieve the classical Hamiltonian for a system of inviscid vortices. Solving

this equation for F and plugging it in on G, one obtains the analytical expression for the generalized

Hamiltonian, which will be a measure of the energy of the system:
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G = 1
2π

n∑
α=1

∑
β>α

ΓαΓβ
[
log (`αβ)−

∫ `αβ

0

1
s

exp
(
− s2

4νt

)
ds

]
, (3.63)

which will now vary in time, and therefore is not conserved due to the viscous dissipation of energy:

dG

dt
= ∂G

∂t
= − 1

2π

n∑
α=1

∑
β>α

ΓαΓβ
∫ `αβ

0

1
s

exp
(
− s2

4νt

)
ds. (3.64)

3.2.3 Conserved Quantities

The viscous n-vortex at hand problem cannot be analyzed via classical Hamiltonian methods: since

viscosity dissipates energy, it isn’t possible to write a classical Hamiltonian for the system. However, some

of the conservation laws analyzed in the inviscid environment (in Section 3.1.1) still hold for viscous flows.

In particular, the linear impulse, Q+ iP , and angular impulse, I, are conserved:

d

dt
(Q+ iP ) = d

dt

(
n∑

α=1
Γαzα

)
=

n∑
α=1

Γαżα =

= 1
2πi

n∑
α=1

∑
β 6=α

ΓαΓβ
z∗α − z∗β

[
1− exp

(
−|zα − zβ|

2

4νt

)]
= 0,

(3.65)

since
(
z∗α − z∗β

)−1
= −

(
z∗β − z∗α

)−1
and therefore each term of the sum will cancel with its’ symmetric.

Gil Miguel Marques



FCUP 53
Advection of Passive Particles by Viscous Point Vortices

dI

dt
= d

dt

(
n∑

α=1
Γα|zα|2

)
= d

dt

(
n∑

α=1
Γαzαz∗α

)
=

n∑
α=1

Γα (żαz∗α + zαż
∗
α) =

= 1
2πi

n∑
α=1

∑
β 6=α

ΓαΓβ
[
− z∗α
z∗α − z∗β

+ zα
zα − zβ

] [
1− exp

(
−|zα − zβ|

2

4νt

)]
=

= 1
π

n∑
α=1

∑
β 6=α

ΓαΓβIm
(

zα
zα − zβ

)[
1− exp

(
−|zα − zβ|

2

4νt

)]
=

= 1
π

n∑
α=1

∑
β 6=α

ΓαΓβ
|zα − zβ|2

Im
(
zα
(
z∗α − z∗β

)) [
1− exp

(
−|zα − zβ|

2

4νt

)]
=

= − 1
π

n∑
α=1

∑
β 6=α

ΓαΓβ
|zα − zβ|2

Im
(
zαz

∗
β

) [
1− exp

(
−|zα − zβ|

2

4νt

)]
=

= 0,

(3.66)

since Im
(
zαz

∗
β

)
= −Im (zβz∗α) and thus each term of the sum will cancel with its’ symmetric.

Remark: The quantityM defined in (3.21) is also conserved since it is a combination of the conserved

quantities Q, P and I.

3.2.4 Dynamics of 2 Vortices

Consider now a system comprised of two Lamb-Oseen vortices evolving according to (3.58). First, one

can notice that the distance D = |z1 − z2| between the two vortices remains constant, as in the inviscid

case. To condensate the discussion hereafter, define h (z1, z2, t) = 1− exp
(
− |z1−z2|

2

4νt

)
.

d (D2)
dt

= d

dt
[(z1 − z2) (z1 − z2)∗] = (ż1 − ż2) (z1 − z2)∗ + (z1 − z2) (ż1 − ż2)∗

= h (z1, z2, t)
2πi

[
−
(

Γ2

(z1 − z2)∗ + Γ1

(z2 − z1)∗
)

(z1 − z2)∗ + (z1 − z2)
(

Γ2

z1 − z2
+ Γ1

z2 − z1

)]

= h (z1, z2, t)
2πi [− (Γ2 − Γ1) + (Γ2 − Γ1)]

= 0.
(3.67)

So, in fact, since D2 is constant, h depends only on time and the initial positions of the vortices. For

some set of initial positions z1 (0) , z2 (0), one can therefore write h (t) = h (z1, z2, t).

Using these facts, specifying the motion equations for the two vortices yields
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ż1 = iΓ2

2πD2 (z1 − z2)h (t)

ż2 = iΓ1

2πD2 (z2 − z1)h (t)
. (3.68)

From the conservation of the linear impulse one has Γ1ż1 + Γ2ż2 = 0 and therefore

Γ1z1 (t) + Γ2z2 (t) = Γ1z1 (0) + Γ2z2 (0) , ∀t ∈ R (3.69)

As in the inviscid case, one defines new variables z+ = z1 +z2, z− = z1−z2. The differential equations

for z+ and z− are


ż+ = i (Γ2 − Γ1)

2πD2 h (t) z−

ż− = i (Γ1 + Γ2)
2πD2 h (t) z−

. (3.70)

Once again, there are two possible cases depending on the values of Γ1 and Γ2.

a) Γ1 + Γ2 = 0

The integration on the variables z+ and z− is easy, yielding

z+ = z1 (0) + z2 (0) + i (Γ2 − Γ1)

2πD2 [z1 (0)− z2 (0)]
∫
h (t) dt,

z− = z1 (0)− z2 (0)
, (3.71)

where
∫
h (t) dt = t−

∫
exp

(
−D2

4νt

)
dt. This integral cannot be expressed in terms of analytical functions,

however it can be related to the well-known Exponential integral function. The positions of the vortices

at all times are given by
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z1 (t) = z1 (0) + iΓ1

2πD2 [z2 (0)− z1 (0)]
[
t−

∫
exp

(
−D

2

4νt

)
dt

]

z2 (t) = z2 (0)− iΓ2

2πD2 [z2 (0)− z1 (0)]
[
t−

∫
exp

(
−D

2

4νt

)
dt

] , (3.72)

and as in the inviscid case, the vortices travel in straight lines, parallel to one another; however their

velocity is not constant and decreases with time because dh
dt

= − D2

4νt2 exp
(
−D2

4νt

)
.

b) Γ1 + Γ2 6= 0

Although the solution is a little bit more complicated than in the previous case, one can also find the

solution in terms of the integral
∫
h (t) dt. Integrating for z− yields

z− = [z1 (0)− z2 (0)] exp
(
i (Γ1 + Γ2)

2πD2

∫
h (t) dt

)
. (3.73)

Writing θ = (Γ1 + Γ2) / (2πD2) and using the conservation of linear impulse, it is possible to write

explicit expressions for the positions of both vortices:


z1 (t) = 1

Γ1 + Γ2

[
Γ1z1 (0) + Γ2z2 (0) + Γ2 [z1 (0)− z2 (0)] eiθte−iθ

∫
exp
(
−D

2
4νt

)
dt
]

z2 (t) = 1
Γ1 + Γ2

[
Γ1z1 (0) + Γ2z2 (0)− Γ1 [z1 (0)− z2 (0)] eiθte−iθ

∫
exp
(
−D

2
4νt

)
dt
] . (3.74)

Once again, the vortices rotate around the center of vorticity of the system, but this time with a velocity

that decreases with time.

3.2.5 Dynamics of 3 Vortices

The dynamics of a system of three vortices in a viscous environment is a much more difficult problem

to analyze than the inviscid case. Thus, the aim of this section is just to provide some intuition on how

the dynamics are distinct from those in an environment with no viscosity at all.

As in the inviscid case, one can write the equations of motion for each individual vortex from (3.58) or
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write the differential equations for the intervortex separations. Once again, to condensate the discussion,

one can write s2
1 = |z2−z3|2, s2

2 = |z1−z3|2, s2
3 = |z1−z2|2 and h (s2

α, t) = 1−exp
(
− s2α

4νt

)
, α ∈ {1, 2, 3}.

This yields, after extensive calculations, the following system of differential equations:



d (s2
1)

dt
= 2Γ1

π
∆
[

1
s2

2
h
(
s2

3, t
)
− 1
s2

3
h
(
s2

2, t
)]

d (s2
2)

dt
= 2Γ2

π
∆
[

1
s2

3
h
(
s2

1, t
)
− 1
s2

1
h
(
s2

3, t
)]

d (s2
3)

dt
= 2Γ3

π
∆
[

1
s2

1
h
(
s2

2, t
)
− 1
s2

2
h
(
s2

1, t
)]
, (3.75)

where ∆ is, once again, the area of the triangle defined by the positions of the three vortices, affected by

the sign of the permutation of the indices.

In the inviscid case, the only fixed equilibrium configurations were collinear states. On an viscous

environment, one can see, from the same arguments, that if fixed equilibria exist, they must also correspond

to collinear configurations of the vortices. It suffices to analyze the equation for one of the vortices, for

example, for α = 1, the equation of motion reads

ż∗1 = 1
2πi

[
Γ2

z1 − z2
h
(
s2

3, t
)

+ Γ3

z1 − z3
h
(
s2

2, t
)]
, (3.76)

and therefore, since for any fixed equilibrium one has to have żα = 0 for all α and all times, the following

expression must hold true for all times:

Γ2

z1 − z2
h
(
s2

3, t
)

+ Γ3

z1 − z3
h
(
s2

2, t
)

= 0⇔

⇔ Γ2 (z1 − z3)h
(
s2

3, t
)

+ Γ3 (z1 − z2)h
(
s2

2, t
)

= 0.
(3.77)

Excluding the unphysical case of infinite viscosity (which would obviously correspond to a fixed equilib-

rium for any vortex configuration, as the vorticity would be 0 everywhere), this expression implies that for
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a fixed equilibrium, z1− z2 and z1− z3 must be scalar multiples of one another at all times, and therefore

the vortices have to be in a collinear configuration at all times.

While in an inviscid environment there are some collinear configurations which correspond to fixed

equilibria, the same does not hold true in the viscous case. In fact, these configurations constitute

unstable equilibria of the inviscid problem and the presence of viscosity triggers the instability of the

system and the vortices start rotating unsteadily. This was shown in the recent work of Jing et al. [26],

where they give the full details of the problem.

Relative equilibria are, however, permitted in viscous environments. If one allows the vortex configura-

tion to rotate or suffer translations in time, while maintaining its’ geometrical shape, the only constraints

are that the intervortex separations remain constant for all times. From this condition, the equations

(3.75) give two possibilities for characterizing relative equilibria: either ∆ = 0 or the three expressions

between square brackets should go to zero at all times.

The first case, ∆ = 0, corresponds to collinear configurations. For these configurations, one can only

have a relative equilibrium configuration if the three vortices remain collinear at all times. To analyze

that, one needs first to find an equation for the dynamics of ∆ and check if it is possible to have ∆̇ = 0

for all times for collinear configurations.

The second case, gives the conditions



1
s2

2
h
(
s2

3, t
)
− 1
s2

3
h
(
s2

2, t
)

= 0

1
s2

3
h
(
s2

1, t
)
− 1
s2

1
h
(
s2

3, t
)

= 0

1
s2

1
h
(
s2

2, t
)
− 1
s2

2
h
(
s2

1, t
)

= 0

, (3.78)

which should be verified for all t. In particular, these should hold at t = 0, there h goes to 1 whichever

may the sα be. Therefore, if non-collinear relative equilibria exist, they must be equilateral triangles such

that s2
1 = s2

2 = s2
3 = s2 and one can write h(s2

α, t) = h (t) = 1− exp
(
− s2

4νt

)
.

The analysis is similar to the inviscid case once again:
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żα = − 1
2πi

∑
β 6=α

Γβ
(zα − zβ)∗h (t) = − 1

2πi
∑
β 6=α

Γβ (zα − zβ)
(zα − zβ)∗ (zα − zβ)h (t) =

= − 1
2πis2

∑
β 6=α

[Γβ (zα − zβ)]h (t) = − 1
2πis2

∑
β 6=α

[Γβzα − Γβzβ + Γαzα − Γαzα]h (t)

= − 1
2πis2

 3∑
β=1

Γβzα −
3∑

β=1
Γβzβ

h (t) .

(3.79)

So, if Γ = ∑3
β=1 Γβ = 0, one gets żα = − ih(t)

2πs2
∑3
β=1 Γβzβ, so the three vortices suffer a translation in

time with the same velocity:

|żα|2 = h2 (t)
4π2s4 |Γ1z1 + Γ2z2 + Γ3z3| =

h2 (t)
4π2s4 |Q+ iP | = Q2 + P 2

4π2s4 h2 (t) . (3.80)

As in the inviscid case, Q2 + P 2 = 1
2 (Γ2

1 + Γ2
2 + Γ2

3) s2 and therefore, the three vortices travel in

parallel, as a rigid body, with a linear velocity that decreases in time |żα| =
√

Γ2
1+Γ2

2+Γ2
3

8π2s2

[
1− exp

(
− s2

4νt

)]
.

If Γ 6= 0, one can define the center of vorticity of the system as before and get

żα = −iΓh (t)
2πs2

3∑
β=1

Γβzβ [zα − zcv] . (3.81)

Once again, these equations can be easily integrated to yield

zα − zcv = Kαe
i Γ
2πs2

∫ [
1−exp

(
− s2

4νt

)]
dt
, Kα ∈ C, (3.82)

where Kα = zα (t = 0)− zcv for each vortex. Therefore, each of the vortices rotates around the center of

vorticity with an angular frequency of Γ
2πs2

[
1− exp

(
− s2

4νt

)]
, stopping completely at infinity.

These dynamics of the system are all self-similar, since the trajectory of each vortex evolves according

to the same function. However, one can wonder if there are other self-similar motions of the 3-vortices

systems, such as a the self-similar collapse, analogous to the inviscid case.

Suppose that the vortices have a self-similar motion and write zα (t) = λαg (t) , α ∈ {1, 2, 3} for
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some function g (t) such that g (0) = 1. Therefore, λα are simply the initial positions of the vortices and

differentiating with respect to time żα (t) = λαġ (t) yields

λαġ (t) = − 1
2πi

∑
β 6=α

Γβ
z∗α − z∗β

[
1− exp

(
−|zα − zβ|

2

4νt

)]
⇔

⇔ ġ (t) g∗ (t) = − 1
2πi

∑
β 6=α

Γβ
λα
(
λ∗α − λ∗β

) [1− exp
(
−|λα − λβ|

2|g (t) |2
4νt

)]
.

(3.83)

This expression should hold true for all t. Also, since the left side is independent of α, the right side

should also be independent of α. One can write down this expression for any pair of α’s and, for example,

equating this for α = 1, 2 one arrives at the identity

Γ2

λ1 (λ∗1 − λ∗2)

[
1− exp

(
−|λ1 − λ2|2|g (t) |2

4νt

)]
+

Γ3

λ1 (λ∗1 − λ∗3)

[
1− exp

(
−|λ1 − λ3|2|g (t) |2

4νt

)]
=

= Γ1

λ2 (λ∗2 − λ∗1)

[
1− exp

(
−|λ2 − λ1|2|g (t) |2

4νt

)]
+

Γ3

λ2 (λ∗2 − λ∗3)

[
1− exp

(
−|λ2 − λ3|2|g (t) |2

4νt

)]
,

(3.84)

which should hold for all t. Since the exponential functions form an orthonormal basis, this can only

happen if |λ1 − λ2|2 = |λ1 − λ3|2 = |λ2 − λ3|2 and therefore the initial configuration has to be an

equilateral triangle.

From the expression of the invariant M (3.23) for a system of 3 vortices, one can also write

M = Γ1Γ2|z1 − z2|2 + Γ2Γ3|z2 − z3|2 + Γ3Γ1|z3 − z1|2 ⇔

⇔ M =
(
Γ1Γ2|λ1 − λ2|2 + Γ2Γ3|λ2 − λ3|2 + Γ3Γ1|λ3 − λ1|2

)
|g (t) |2 ⇔

⇔ M

Γ1Γ2Γ3
=
(
Γ−1

3 |λ1 − λ2|2 + Γ−1
1 |λ2 − λ3|2 + Γ−1

2 |λ3 − λ1|2
)
|g (t) |2.

(3.85)
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Since M
Γ1Γ2Γ3

is constant for all t, the right side of the above equation must also be constant for all t.

There are two possibilities for this to hold true: either |g (t) |2 is constant, which corresponds to the rigid

motions analyzed beforehand, or Γ−1
3 |λ1− λ2|2 + Γ−1

1 |λ2− λ3|2 + Γ−1
2 |λ3− λ1|2 = 0. From the fact that

self-similar motions must begin as equilateral triangles, one has that, in particular, Γ−1
1 + Γ−1

2 + Γ−1
3 = 0.

So, if there exist other types of self-similar motions other than the rigid motion, those must satisfy this

condition while having a non-constant |g (t) |2.

From the conservation of the linear impulse, one can also write:

d

dt
(Q+ iP ) = Γ1λ1ġ (t) + Γ2λ2ġ (t) + Γ3λ3ġ (t)

= (Γ1λ1 + Γ2λ2 + Γ3λ3) ġ (t) = 0,
(3.86)

hence, Γ1λ1 + Γ2λ2 + Γ3λ3 = 0. Analogously, from the conservation of angular impulse, one has

dI

dt
= Γ1|λ1|2

d

dt

(
|g (t) |2

)
+ Γ2|λ2|2

d

dt

(
|g (t) |2

)
+ Γ3|λ3|2

d

dt

(
|g (t) |2

)
=
(
Γ1|λ1|2 + Γ2|λ2|2 + Γ3|λ3|2

) d
dt

(
|g (t) |2

)
= 0,

(3.87)

and therefore Γ1|λ1|2 + Γ2|λ2|2 + Γ3|λ3|2 = 0 because we are looking for non rigid self-similar motions.

But these two last conditions only hold for Γ1 = Γ2 = Γ3 = 0, which is not possible as this is the

same as if there were no vortices in the system. Therefore there are no other self-similar motions for the

three-vortices problem other than rigid motions with an equilateral triangular configuration.

This excludes, in particular, the self-similar collapse that was possible in inviscid environments. In fact,

it is possible to show that one never has a finite-time collapse in this viscous model. For that one first

defines inter-vortical vectors for each pair of vortices:

q1 = z2 − z3, q2 = z3 − z1, q3 = z1 − z2 (3.88)
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And the differential equations for these quantities are



q̇∗1 = 1
2πi

[
Γ2 + Γ3

q1

(
1− e−

|q1|
2

4νt

)
− Γ1

q2

(
1− e−

|q2|
4νt

)
− Γ1

q3

(
1− e−

|q3|
4νt

)]

q̇∗2 = 1
2πi

[
Γ1 + Γ3

q2

(
1− e−

|q2|
2

4νt

)
− Γ2

q3

(
1− e−

|q3|
4νt

)
− Γ2

q1

(
1− e−

|q1|
4νt

)]

q̇∗3 = 1
2πi

[
Γ1 + Γ2

q3

(
1− e−

|q3|
2

4νt

)
− Γ3

q1

(
1− e−

|q1|
4νt

)
− Γ3

q2

(
1− e−

|q2|
4νt

)]
. (3.89)

Suppose now that there is a total collapse of the vortices at time t = tc > 0 at the origin. Then one

can write qk = (tc − t)γk ξk (t) with γk > 0 and ξk (tc) 6= 0 for k ∈ {1, 2, 3}. The functions ξk and the

exponents γk may be different for each k. Let γ1 be the minimum of the exponents. Near t ≈ tc, the

exponential terms in equations (3.89) can be approximated by the first terms in their Taylor series. For

example,

1− exp
(
−|q1|2

4νt

)
≈ |q1|2

4νt ≈
|t− tc|2|ξ1 (t) |2

4νt . (3.90)

Therefore, the dynamical equation for q1 near t ≈ tc becomes (asymptotically)

γ1 (tc − t)γ1−1 ξ∗1 (t) + (tc − t)γ1 ξ̇∗1 (t) =

= 1
2πi

[
(Γ2 + Γ3) (tc − t)γ1 |ξ1 (t) |2

4νt ξ1 (t) − Γ1 (tc − t)γ2 |ξ2 (t) |2
4νt ξ2 (t) − Γ1 (tc − t)γ3 |ξ3 (t) |2

4νt ξ3 (t)

]
.

(3.91)

If one divides this equation by (tc − t)γ1 and let t→ tc, one gets the equation that describes asymp-

totically the dynamics near tc:

γ1ξ
∗
1 + (tc − t) ξ̇∗1 = 0, (3.92)
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which has the solution ξ1 (t) = A (tc − t)γ1 , A ∈ C. However, this contradicts the assumption that

ξ1 (tc) 6= 0 and therefore there is no total collapse of the three vortices system in a viscous environment

in a finite time.
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Chapter 4.

Numerical Method and Validation of the Code

4.1 THE RUNGE-KUTTA-FEHLBERG METHOD

As mentioned before, for n ≥ 4, in general, the system

ż∗α = 1
2πi

n∑
β 6=α

Γβ
zα − zβ

[
1− exp

(
−|zα − zβ|

2

4νt

)]
(4.1)

is not integrable, even for ν = 0. Therefore, in order to analyze the behaviour of these systems, one needs

to resort to numerical methods, which will give an approximation of the solution of the problem. One

such method is the Runge-Kutta-Fehlberg method, which is a combination of Runge-Kutta methods of

orders 4 and 5.

The aim is to find an approximation of the solution of some (system of) differential equation(s)

y′ (t) = f (t, y (t)), where y : [t0, T ] → Cn and f : [t0, T ] × Cn → Cn, given some initial condition

y (t0) = y0 ∈ Cn.

First, one needs to discretize the interval [t0, T ] inN+1 points t0, t1, . . . , tN = T such that tk = t0+kh

with h = T−to
N

. Then, if one knows the (approximate) solution yk ≈ y (tk), the objective is to find the

approximate solution at yk+1 ≈ y (tk+1).

The Runge-Kutta-Fehlberg method constructs the approximation of the solution at time tk+1 as
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yk+1 = yk+ 16
135K1 (tk, yk)+ 6656

12825K3 (tk, yk)+ 28561
56430K4 (tk, yk)−

9
50K5 (tk, yk)+ 2

55K6 (tk, yk) , (4.2)

where the functions Kα, α ∈ {1, 2, 3, 4, 5, 6} are the following:

K1 (t, y) = h f (t, y)

K2 (t, y) = h f
(
t+ 1

4h, y + 1
4K1 (t, y)

)
K3 (t, y) = h f

(
t+ 3

8h, y + 3
32K1 (t, y) + 9

32K2 (t, y)
)

K4 (t, y) = h f
(
t+ 12

13h, y + 1932
2197K1 (t, y)− 7200

2197K2 (t, y) + 7296
2197K3 (t, y)

)
K5 (t, y) = h f

(
t+ h, y + 439

216K1 (t, y)− 8K2 (t, y) + 3680
513 K3 (t, y)− 845

4104K4 (t, y)
)

K6 (t, y) = h f
(
t+ 1

2h, y −
8
27K1 (t, y) + 2K2 (t, y)− 3544

2565K3 (t, y) + 1859
4104K4 (t, y) +

−11
40K5 (t, y)

)
.

(4.3)

For more details on the method and how it compares computationally to other Runge-Kutta methods,

refer to the original paper of Fehlberg [27]. Using this integration method, it is possible to obtain

approximate solutions for the n-vortex problem with relatively good accuracy.

Since the problem is complex and non-integrable for n ≥ 4, it is important to first check if the

developed code against the few cases for which the analytical solution is available and for those where

one at least knows the behavior of the solutions. The code was developed in FORTRAN90 and can be

found in Appendix A.

4.2 NUMERICAL CALCULATION OF THE LARGEST LYAPUNOV EXPONENT

The largest Lyapunov exponent was calculated through the algorithm developed by Bennetin et al.

[8, 9] which was explained in Section 2.5. In fact, the algorithm calculates the estimator of λ1 at the end

of some integration period T , yielding a quantity λ (t) = 1
t

log |δ(t)|
|δ0| which should approach λ1 as t→∞.

After validating the integration algorithm, we ran some other test runs to fine-tune the parameters of

this algorithm and found consistent results for a period T = 1 and an initial perturbation of |δ0| = 10−5.
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These values were used for all simulations hereafter, even though they are not guaranteed to be optimal.

4.3 INVISCID VORTICES

The simplest case that one can test is the system composed by two inviscid point vortices. The code

should be able to simulate the well-known dynamics of this system both if the total circulation of the

system is zero or not.

4.3.1 Case I: Two inviscid point vortices with non-zero total circulation

The simulation was made using two inviscid point vortices of circulations Γ1 = 2 and Γ2 = −1,

initially placed at positions z1 = 2 and z2 = −1 − i in the complex plane. The integration step was

set at h = 2 × 10−3 and the integration ran up until t = 106. The quantities P,Q, I and H were

indeed conserved during the whole run, as can be seen from the left panel of Figure 4.1. There are little

oscillations in these four quantities, but the relative variations never exceed ∼ 10−11 and are therefore

purely numerical artifacts. Comparing with the analytical solution for z1 and z2, one finds that the relative

error never exceeds numbers of the order of ∼ 10−7, even for the largest integration times.
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Figure 4.1: Numerical results for the simulation of the system of two inviscid point vortices
of circulations Γ1 = 2 and Γ2 = −1, placed initially at z1 = 2 and z2 = −1 − i. The left
panel shows the conserved quantities P,Q, I and H for the whole run of 106 units of time.
The right panel shows the trajectories of the two vortices: two closed loops with the same
center (the center of vorticity of the system).
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Figure 4.2: Numerical results for λ (t) = 1
t

log |δ(t)|
|δ0|

for the simulation of the system of two
inviscid point vortices of circulations Γ1 = 2 and Γ2 = −1, placed initially at z1 = 2 and
z2 = −1− i. This suggests λ1 = 0.

The right panel of Figure 4.1 shows the trajectories described by these point vortices: two closed loops

with a common center. This is the expected behavior, as the two vortices should orbit their center of

vorticity in a closed, simple trajectory.

As can be seen from the explicit solutions of this problem, presented in Section 3.1.3, any small

perturbation δ0 in the initial conditions will keep the perturbed trajectory close to the unperturbed one.

As such, one expects to measure zero for the largest Lyapunov Exponent, λ1. In Figure 4.2 one can see

the behavior of the quantity λ (t) for an initial perturbation of |δ0| = 10−5. As expected, the rapidly

decreasing λ (t) suggests that λ1 = 0.

4.3.2 Case II: Two inviscid point vortices with zero total circulation

Similar results arise for the analysis of two vortices with circulations Γ1 = 1 and Γ2 = −1, initially

placed at positions z1 = 2 and z2 = −1 − i in the complex plane: the four invariant quantities remain

constant in the whole run (of 106 units of time, with integration step set at h = 2× 10−3) as can be seen

in the left panel of Figure 4.3, presenting only small oscillations that never exceed ∼ 10−8 which are the
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usual numerical artifacts. Comparing with the analytical solution for z1 and z2, ir is possible to observe

that the relative error never exceeds ∼ 10−8 even for the largest integration times.
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Figure 4.3: Numerical results for the simulation of the system of two inviscid point vortices
of circulations Γ1 = 1 and Γ2 = −1, placed initially at z1 = 2 and z2 = −1 − i. The left
panel shows the conserved quantities P,Q, I and H for the whole run of 106 units of time.
The right panel shows the trajectories of the two vortices: two parallel lines.

The right panel of Figure 4.3 shows the trajectory of the two point vortices in the time interval [0, 600].

Depicting the full trajectory for the vortices would only extend the parallel lines, yielding the same behavior

as one found analytically in Section 3.1.3.

Any small perturbation on the initial conditions of this problem will result in a similar trajectory for the

two vortices. In fact, the distance for the perturbed trajectory to the one presented would be the same

at all times and therefore, theoretically, one would have a Lyapunov exponent λ1 = 0. Figure 4.4 shows

a fast decay of the quantity λ (t) that is coherent with what we expect..

4.3.3 Case III: Three inviscid point vortices in an equilateral triangular configuration

For systems with three vortices, while we don’t have any explicit solutions available, it is still possible

to qualitatively compare the numerical solutions for some configurations. First we show a system with

vortices of circulations Γ1 = 2, Γ2 = 1 and Γ3 = 2, initially placed in z1 = −1, z2 = 1 and z3 =
√

3i,

forming an equilateral triangle of side s = 2. The integration step was set at h = 2 × 10−3 and the

integration ran up until t = 106. In the left panel of Figure 4.5, we show the conserved quantities of the

system, which diverge from their true value due to small numerical oscillations with a relative amplitude of
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Figure 4.4: Numerical results for λ (t) = 1
t

log |δ(t)|
|δ0|

for the simulation of the system of two
inviscid point vortices of circulations Γ1 = 1 and Γ2 = −1, placed initially at z1 = 2 and
z2 = −1− i. This suggests λ1 = 0.

at most ∼ 10−12. In the right panel of the same Figure, we present the trajectories of the three vortices.

Vortices 1 and 3 actually describe the same trajectory (the smallest of the two circumferences), so the plot

only depicts two lines instead of three. In Figure 4.6 we plotted the solution at only 8 times in order to see

more clearly the equilateral triangle configuration rotating. Numerically, we found that the length of the

sides of the triangle stays unchanged up to ∼ 10−12 throughout the whole run. These errors correspond

solely to numerical artifacts.

Figure 4.7 shows a different behavior for λ (t) than the two previous cases. This happens because

equilateral triangles are, in fact, unstable equilibria of the three vortex system and therefore, any small

perturbation will be amplified, giving rise to a completely different solution. Using only values of λ (t)

for t > 104 we estimated λ1 ≈ 7.25 × 10−3 for this trajectory. We don’t include the points of λ (t) for

t < 104 in the estimation of λ1 as the algorithm needs some time to converge and the initial behavior of

λ (t) is usually not representative of the true value of λ1.
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Figure 4.5: Numerical results for the simulation of the system of three inviscid point vortices
of circulations Γ1 = 2, Γ2 = 1 and Γ3 = 2, placed initially at z1 = −1, z2 = 1 and z3 =

√
3i.

The left panel shows the conserved quantities P,Q, I and H for the whole run of 106 units of
time. The right panel shows the trajectories of the three vortices: two closed loops with the
same center (the center of vorticity of the system).

Figure 4.6: Explicit portrait of the equilateral triangular configuration for a system of three
inviscid point vortices of circulations Γ1 = 2, Γ2 = 1 and Γ3 = 2, placed initially at z1 = −1,
z2 = 1 and z3 =

√
3i.

Gil Miguel Marques



FCUP 70
Advection of Passive Particles by Viscous Point Vortices

10
1

10
2

10
3

10
4

10
5

10
-4

10
-3

10
-2

Figure 4.7: Numerical results for λ (t) = 1
t

log |δ(t)|
|δ0|

for the simulation of the system of three
inviscid point vortices of circulations Γ1 = 2, Γ2 = 1 and Γ3 = 2, placed initially at z1 = −1,
z2 = 1 and z3 =

√
3i. This suggests λ1 ≈ 7.25× 10−3.

4.3.4 Case IV: Self-similar collapse of three inviscid point vortices

Setting three point vortices with circulations Γ1 = −3 × 10−3, Γ2 = 2 × 10−3 and Γ3 = −6 × 10−3

in the positions z1 = −4, z2 = −9
2 + i3

√
3

2 and z3 = 1
2 + i

√
3

2 yields a configuration that satisfies all the

conditions of Theorem 3.1.4 and thus will result in a self-similar collapse of the three vortices, as can be

seen by their trajectories in the right panel of Figure 4.8. This collapse happens approximately at time

t ≈ 2.54 × 104 at the center of vorticity of the system. The invariants of the system remain unchanged

during the whole process, as can be seen in the left panel of the same Figure. There are small numerical

oscillations of magnitude at most ∼ 10−11 in this quantities and thus they are only numerical artifacts.

Figure 4.9 depicts the configuration of the system at some time instants of the evolution leading

to collapse. It can be seen that the triangular configuration of vortices rotates around the origin while

shrinking, originating spiral trajectories for the vortices. The shrinking is self-similar, as the ratios between

the lengths of the sides of the triangle do not change in time.

Any slight deviation from the conditions of collapse will result in a configuration that does not collapse,

as such, we expect to have λ1 > 0 for this trajectory. Indeed we find results that suggest a positive
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Figure 4.8: Numerical results for the simulation of the system of three inviscid point vortices
of circulations Γ1 = −3 × 10−3, Γ2 = 2 × 10−3 and Γ3 = −6 × 10−3, placed initially at
z1 = −4, z2 = − 9

2 + i 3
√

3
2 and z3 = 1

2 + i
√

3
2 . The left panel shows the conserved quantities

P,Q, I and H for the whole run of 106 units of time. The right panel shows the trajectories of
the three vortices: spirals converging to the same point, the center of vorticity of the system.

Lyapunov exponent, but the method of Benettin does not provide a reasonable estimate for it (see Figure

4.10). This could be explained due to the fact that, as the solution get closer to collapse - a singular

point for the equations of motion - it becomes difficult for the numerical integration to proceed with a

sufficient precision due to its’ resolution being limited by the integration step-size. Also, near the point of

collapse, vortices are much closer to one another than the magnitude of the perturbation we impose and

thus the assumption of exponential divergence of trajectories might not hold.
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Figure 4.9: Explicit portrait of the evolution of the triangular configuration for a system of
three inviscid point vortices undergoing self-similar collapse. Vortex circulations are Γ1 =
−3×10−3, Γ2 = 2×10−3 and Γ3 = −6×10−3, with the vortices placed initially at z1 = −4,
z2 = − 9

2 + i 3
√

3
2 and z3 = 1

2 + i
√

3
2 . Collapse occurs at t ≈ 2.53× 104.
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Figure 4.10: Numerical results for λ (t) = 1
t

log |δ(t)|
|δ0|

for the simulation of the system of two
inviscid point vortices of circulations Γ1 = −3× 10−3, Γ2 = 2× 10−3 and Γ3 = −6× 10−3,
placed initially at z1 = −4, z2 = − 9

2 + i 3
√

3
2 and z3 = 1

2 + i
√

3
2 . This suggests λ1 = 0.
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4.4 VISCOUS VORTICES

In a viscous environment it is not possible to write analytical expressions for the solutions of the n-

vortex problem, however, one knows the behaviour of some simple systems and can compare the results

qualitatively. Other than that, some of the conserved quantities in the inviscid case are also invariant of

the viscous equations and therefore may be used to check the behavior of the developed code.

4.4.1 Cases I and II: Two viscous point vortices

The simulation was made with the exact same circulations and initial positions for the vortices as the

inviscid one, documented in Section 4.3.1, but now introducing a viscosity of ν = 10−4 (Re = 104).

Results are similar to the inviscid case: the conserved quantities only present oscillations due to numerical

artifacts and are of the same order of magnitude as before; the trajectories describe the exact same

loops, but now the velocity of the vortices decays with time due to the dissipation of energy caused by the

presence of viscosity. This can be seen in the left panel of Figure 4.11, depicting the intervortex separation

D and the velocities of the two vortices. D/D (0) is shifted up by 0.1 for a clearer presentation.
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Figure 4.11: Numerical results for the simulation of the system of two viscous point vortices
of circulations Γ1 = 2 and Γ2 = −1, placed initially at z1 = 2 and z2 = −1− i. The left panel
shows that the intervortex separation does not change with time, but velocity does decay due
to the presence of viscous forces. The right panel shows the behavior of the quantity λ (t) for
this system, which decays slightly faster than in the inviscid case (dashed line, for comparison),
suggesting λ1 = 0 once again.

Changing only the circulation Γ1 to Γ1 = 1, one gets the system described in Section 4.3.2. Here,
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for a viscous environment, the results are also pretty similar to the inviscid case: all conserved quantities

maintain their values throughout the simulation, barring small numerical oscillations, the vortices describe

trajectories parallel to one another while maintaining their distance between one another with a velocity

decaying in time, as can be seen in the left panel of Figure 4.12. On the right panel of the same Figure,

it is possible to notice that viscosity doesn’t seem to affect much the computation of λ (t). This probably

due to the regularity of the straight trajectories themselves.
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Figure 4.12: Numerical results for the simulation of the system of two viscous point vortices
of circulations Γ1 = 1 and Γ2 = −1, placed initially at z1 = 2 and z2 = −1− i. The left panel
shows that the intervortex separation does not change with time, but velocity does decay due
to the presence of viscous forces. The right panel shows the behavior of the quantity λ (t)
for this system, which decays in a similar fashion as in the inviscid case (dashed line, for
comparison), suggesting λ1 = 0 once again.

4.4.2 Case III: Two viscous point vortices in an equilateral triangular configuration

As before, we simulate the exact same starting conditions as in the inviscid case described in Section

4.3.3. The results are coincident with the expectations and all the numerical discrepancies seem to be

purely artifacts from the computer’s limitations. The trajectories of the vortices are still closed loops and

the configuration of the vortices forms an equilateral triangle at all times through the whole run of 106

units of time. The shape of trajectories are exactly the same as the inviscid case, but with a decaying

velocity for all vortices. However, λ (t) suggests a different behavior for the maximum Lyapunov Exponent,

as can be seen in Figure 4.13. If viscosity has enough time to act and become the ruling force on the

system, this suggests that perturbed trajectories won’t be able to separate from the original trajectory.
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This behavior is expected, as viscosity will make the velocity field approach zero.

10
1

10
2

10
3

10
4

10
5

10
-4

10
-3

10
-2

Figure 4.13: Numerical results for λ (t) = 1
t

log |δ(t)|
|δ0|

for the simulation of the system of
three inviscid point vortices of circulations Γ1 = 2, Γ2 = 1 and Γ3 = 2, placed initially at
z1 = −1, z2 = 1 and z3 =

√
3i. This suggests λ1 → 0 if viscosity has enough time to act on

the system.

4.4.3 Case IV: Comparison with the inviscid collapse

The initial configuration for the inviscid self-similar collapse, however, must evolve in a completely

different way, since there is no finite time self-similar collapse for a system of three vortices in a viscous

environment. We first noticed that the conserved quantities showed, once more, no signs of variability

other than the typical numerical artifacts. The decaying velocity for the vortices prevents the collapse, as

they aren’t able to progress with their usual motion (i.e., the motion one would expect from the inviscid

case) after viscosity starts dominating the system. In fact, while in the inviscid case the trajectories would

spiral to the center of viscosity of the system, in the viscous case each of the trajectories of the vortices

seems to start accumulating on some loop centered on the center of viscosity of the system. This can be

seen in the right panel of Figure 4.14, where we show the viscous trajectories and the inviscid behavior

(in dashed lines). On the left panel of the same Figure, one can see that λ (t) also presents a distinct

behavior: in the viscous case, this seems to suggest λ1 → 0, which agrees with the possibility that the
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trajectories of the vortices accumulate on some stable loop.
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Figure 4.14: Numerical results for the simulation of the inviscid self-similar collapse in a
viscous environment. The circulations are Γ1 = −3 × 10−3, Γ2 = 2 × 10−3 and Γ3 =
−6×10−3, and the vortices are placed initially at z1 = −4, z2 = − 9
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On the left panel we compare the different behavior of λ (t) in the viscous and inviscid cases.
On the right panel we see the difference in the viscous trajectories when compared to the
inviscid ones (dashed lines).
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Chapter 5.

Results

After being confident that the developed code was properly solving the equations of motion for the

vortices in a efficient way and the parameters for the computation of the Lyapunov Exponent seemed to

return results that matched the expectations, we were able to proceed to more complex studies.

As seen before, a system of n point vortices in a fluid gives rise to a velocity field in that same fluid.

This is an alternate modeling of fluid dynamics where the velocity field is commanded by the system of

point vortices, avoiding direct integration of the Navier-Stokes equations. Therefore, one would naturally

want to know what would happen to some particle of the fluid whose velocity field is governed by those n

point vortices. These are usually called test particles or passive particles (because they not interfere with

the velocity field).

In systems of n ≥ 4 inviscid vortices, it is known that the movement of test particles within the flow is

chaotic. However, point vortices create regions of stability around them; i.e., while they move chaotically

within the fluid, the movement of particles within those regions of stability is predictable with respect to

the vortex center [1]. These are usually called stability islands. Furthermore, particles within these islands

cannot be ejected from them and particles outside them cannot enter the stability regions.

5.1 PASSIVE PARTICLES IN A SYSTEM OF 4 INVISCID VORTICES

We first considered the inviscid case and a system composed by 4 point vortices of circulations Γα =

1, α ∈ {1, 2, 3, 4} initially located at z1 = 2, z2 = −1 − i, z3 = 1
2 + 1

2i and z4 = −2 + 3i. This system
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was integrated together with a cloud of 104 passive particles through the Runge-Kutta-Fehlberg method

with a step size of h = 2 × 10−3 during 104 units of time. We did two runs with two square clouds of

particles: one centered in the vortex initially located at z4 = −2 + 3i with a side of length 1 and one in

the background between the vortices with a side of length 0.1.

For the cloud of particles surrounding the vortex located at z4 = −2 + 3i, we observed that indeed

there exists a region of regularity surrouding the vortex, from which particles cannot escape. We also

observed that even though the particles aren’t able to exit the region, their radial movement (with respect

to the vortex) seems to be restricted to some intervals that depend on their initial distance from the

vortex. This can be seen from Figure 5.1, where we plot the initial distance from the vortex versus the

final distance from the vortex (i.e., at the end of the simulation). In fact, the regularity region appears

to be approximately a circular region of radius ∼ 0.459 centered on the vortex. A smaller initial distance

from the vortex appears to give less freedom of radial movement to a particle. This fact, together with

visual observations of the dynamics of the system, point towards the possibility that the shape of these

regularity islands changes in time due to the vortex-vortex interactions. This had also already been pointed

out by Babiano et al. [1], but without any explicit reasoning. Notice that the discrepancy of this behavior

for the particles closer to the vortex is due to the limited resolution of the simulations.
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Figure 5.1: Distances between each passive particle and the vortex initially located at z4 =
−2 + 3i at simulation start and end in the inviscid case.

In Figure 5.2 we illustrate the time-evolution of the cloud of passive particles. Red dots correspond to

Gil Miguel Marques



FCUP 79
Advection of Passive Particles by Viscous Point Vortices

vortex centers and pink lines represent an estimate of the regularity region (a loop centered in vortex z4

with a radius of ∼ 0.459). Blue dots correspond to particles starting within the estimated radius of the

regularity island, while black dots represent the particles starting from a distance greater than ∼ 0.459

from the vortex z4 (other similar figures in the next sections will have the same color scheme). Particles

outside of the regularity region appear to move chaotically in the fluid. Given enough time, they seem to

permeate space with a homogeneous distribution.

If we place the cloud of particles far from the vortices, we see that all particles remain outside the

regularity islands of the vortices at all times. This is illustrated in Figure 5.3. The mixing of particles in the

background between the vortices appears to be happen quickly and it looks like particles that were nearby

at t = 0 will be as further apart as the system permits for some point in time. This suggests chaotic

mixing of the particles, whichever their initial position might have been (outside of regularity islands).

In the left panel of Figure 5.4 we plot a part of the trajectories of the vortex z4 (red) and of two

passive particles: one located inside the regularity island (blue) and one located outside of it (black). This

illustrates the typical behavior of particles in these two situations. In the right panel, we show λ (t) for

the system of 4 vortices and for the two passive particles considered. While for the particle inside the

regularity island this suggests λ1 = 0, for the system of vortices we estimated λ1 ' 1.58× 10−2 and for

the particle outside the island of regularity we found λ1 ' 7.62× 10−3.
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Figure 5.2: Time evolution of a system comprised of 4 inviscid vortices and 104 test particles
initially located near the vortex at z4 = −2 + 3i.
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Figure 5.3: Time evolution of a system composed by 4 inviscid vortices and 104 passive
particles initially located on the background between the vortices.
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Figure 5.4: Trajectories (left panel) and λ (t) (right panel) for the system of 4 inviscid vortices
and for one of each kind of passive particles. This suggests λ1 = 0 for the particle inside the
regularity island, while for the system of vortices and the particle outside of the island we
found λ1 ' 1.58× 10−2 and λ1 ' 7.62× 10−3, respectively.
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5.2 PASSIVE PARTICLES IN A SYSTEM OF 4 VISCOUS VORTICES

We then moved to a viscous environment with a viscosity of ν = 10−4 (Re = 104). The physical

system is composed by the same 4 point vortices of the inviscid case, i.e., vortices with circulations

Γα = 1, α ∈ {1, 2, 3, 4} initially located at z1 = 2, z2 = −1 − i, z3 = 1
2 + 1

2i and z4 = −2 + 3i. We

also left all the other parameters and conditions unchanged from the inviscid simulations: a step size of

h = 2× 10−3 during 104 units of time and two runs with the same two square clouds of particles.

For the cloud of particles surrounding the vortex located at z4 = −2 + 3i, we observed a similar

behavior to the inviscid case for small times. However, due to viscosity, the size of the regularity islands

starts shrinking and particles that were once inside the stable region find themselves out of the region

of influence of the vortex and start moving chaotically within the fluid. Given enough time, all particles

will eventually be ejected from the vortex’s island of influence as its’ strength goes to zero. This can be

seen from Figure 5.5, where we plot the initial distance from the vortex versus the final distance from the

vortex (i.e., at the end of the simulation): the distribution of points presents no apparent pattern and

doesn’t seem to hint on any relation between d (t = 104) and d (t = 0). This is typical in chaotic mixing.
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Figure 5.5: Distances between each passive particle and the vortex initially located at z4 =
−2 + 3i at simulation start and end in the viscous case.

Figure 5.6 illustrates this mixing quite well, as in the last panel the distribution of blue and black dots
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in the background between the vortices appears to be more or less the same. In fact, at later times this

distinction between the two groups of particles will be even less obvious.

Placing the cloud of passive particles far from the vortex centers yields a evolution as the one illustrated

in Figure 5.7. The difference from the inviscid case is that, as the vortices lose their strength, the regularity

islands shrink and particles will eventually be able to get closer to the vortices. As t → ∞, the vortices

would disappear and the velocity field would go to zero everywhere.

Figure 5.8’s left panel shows a part of the trajectories of the vortex z4 (red) and of two passive particles:

one located inside the regularity island (blue) and one located outside of it (black). This illustrates the

typical behavior of particles in these two situations. We notice that the particle inside the regularity island

follows the vortex during the depicted time, albeit its’ trajectory isn’t as periodic and repetitive as in the

inviscid case. Eventually, this particle will be ejected from the regularity island and describe a chaotic

trajectory. This claim is verified by the behavior of λ (t) that can be seen in the right panel of the figure.

Here, we show λ (t) for the system of 4 vortices and for the two passive particles considered. This time,

all λ (t) go to 0, as it is expected from the effects of viscosity. However, one can notice that around

t ∼ 103, the particle that was initially inside the regularity island started describing a chaotic trajectory,

before almost stopping completely due to the effect of viscosity.
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Figure 5.6: Time evolution of a system comprised of 4 viscous vortices and 104 test particles
initially located near the vortex at z4 = −2 + 3i.
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Figure 5.7: Time evolution of a system composed by 4 viscous vortices and 104 passive
particles initially located on the background between the vortices.
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Figure 5.8: Trajectories (left panel) and λ (t) (right panel) for the system of 4 viscous vortices
and for one of each kind of passive particles.

5.3 CONNECTION BETWEEN VISCOSITY AND DURATION OF CHAOTIC MOTION

A natural question that arises from the behavior we just saw is whether there is any connection between

the viscosity coefficient ν and the time period during which a particle (initially located inside a regularity

island) can travel chaotically before succumbing to the effects of viscosity.

For that, we considered the exact same system of vortices and a particle located at z = −2 + 3.2i,

inside the regularity island of vortex z4, and simulated the system for viscosities log10 ν = −1,−2,−3,−4,

−5,−6,−7 during 106 units of time. Figure 5.9 shows the results for λ (t) for the different viscosities

we considered. While it is clear that there exists some period during which chaotic movement occurs for

ν ≤ 10−3, for ν = 10−1, 10−2 it is difficult to see any indication of chaotic movement. This may be due to

the effects of viscosity itself or due to the fact that the computation algorithm for λ needs some time to

converge and yield significant results. Figure 5.10 gives clearer visual evidence for the chaotic movement:

horizontal lines should correspond to true regularity in the particle’s trajectory, while the regions of these

curves that highly non-horizontal correspond to time intervals of chaotic movement. As such, from the

data of these simulations, one can estimate these time intervals, ∆t, for each of the considered viscosities.

This yields Figure 5.11, where we left out ν = 10−1, 10−2 because we could not see clear hints of chaotic

movement and ν = 10−7 because our simulations were not long enough to sample the times where

viscosity starts dominating the system. The point corresponding to ν = 10−6 could also have a higher
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position on this plot: while the corresponding curve in 5.10 seems to arrive at a plateau near the end of

the simulation, we can’t be sure that it’s a true plateau without running longer simulations. There seems

to be some kind of linear relationship between log10 ν and log10 ∆t, where environments with smaller

viscosities giving rise to longer time periods of chaotic movement for particles initially inside regularity

regions. In fact, we estimated log10 ∆t = 1.036− 0.845 log10 ν, which corresponds to the dashed line in

Figure 5.11. Of course, viscosity shouldn’t be the only variable affecting these times and further studies

can be made to check how the initial distance from the vortex or the circulation of the vortex affect the

periods of chaotic motion.
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Figure 5.9: λ (t) for a particle initially inside a regularity island of the system of 4 viscous
vortices for log10 ν = −1,−2,−3,−4,−5,−6,−7
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Figure 5.10: tλ (t) for a particle initially inside a regularity island of the system of 4 viscous
vortices for log10 ν = −1,−2,−3,−4,−5,−6,−7
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Figure 5.11: Evidence of a linear relationship between the logarithms of the viscosity log10 ν
and the duration of chaotic motion log10 ∆t. The dashed line corresponds to log10 ∆t =
1.036 − 0.845 log10 ν. The point corresponding to log10 ν = −6 could be higher up on the
plot due to uncertainties at what is happening near the end of the simulation.
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Chapter 6.

Conclusion and Future Work

In this work we presented a short review on the main theoretical results on general fluid dynamics

and on the inviscid n-vortex problem. Furthermore, we studied the multi-gaussian model for a viscous

description of point vortices based on the Lamb-Oseen solution and tried to make a parallel with the

well-known results of the inviscid vortices. We also developed a code in FORTRAN90 to perform the

numerical integration of these systems of vortices and validated the code by comparing the numerical and

the theoretical results.

The dynamics of passively advected particles by point vortices in the inviscid case has been thoroughly

studied over the years. It is known that these systems are characterised by the existence of regularity

islands around the vortices, where the particles exhibit regular, non-chaotic, trajectories; in contrast, if the

system is composed by more than three vortices, any particle outside of the regularity islands exhibits a

chaotic behaviour. The assumption of zero viscosity is, however, questionable in a lot of physical systems

and therefore it is important to gain further insight on the dynamics of viscous systems.

We study the dynamics of particles both inside and outside these regularity islands in both inviscid and

viscous environments, finding evidence that points towards the fact that these islands change in shape

overtime due to the dynamics of the system, even in the inviscid case. There is, however, a barrier that

prohibits the exchange of fluid from the inside and outside of these islands. In a viscous environment,

the strength of the vortices is diminished by the dissipation of energy through viscosity and these islands

shrink in size over time.

We found that, in inviscid environments, Lyapunov exponents seem to predict quite well whether the
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movement of vortices and test particles is chaotic or not. In the viscous case, however, some problems

arise due to the presence of viscous forces: when trying to identify chaotic motion, if viscosity is too

strong, the time interval during which chaotic movement occurs may happen before the algorithm for the

computation of Lyapunov exponents converges and yield significant results.

Viscosity makes the dynamics tend towards stability, yet it can also disrupt stable dynamics in the

process. In fact, trajectories that initially seem to be stable may start behaving chaotically for some time

interval. We found that, in a viscous environment, the time interval of chaotic motion for a passive particle

starting inside a regularity island and the coefficient of kinematic viscosity seem to be connected through

a linear relationship between their logarithms. In fact, we estimated log10 ∆t = 1.036 − 0.845 log10 ν.

However, further studies are necessary in order to fine-tune this dependency, as this was estimated though

a small data set.

Other than fine-tuning the relationship between viscosity and the time length of the chaotic motion,

future work on this field could include research on the link between the duration of the chaotic movement

and other quantities such as the initial distance of the test particle to the vortex center ou the circulation

of the vortex. Another question that could be addressed in future works would be the the dynamics of

the regularity islands: in inviscid environments, how does the shape change? Does the area of the islands

remain constant? In viscous environments, how does the size or area of the region change with time and

viscosity?
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Appendix A.

Code for the Simulations

A.1 MAIN PROGRAM

program vortex_v0

implicit none

!! Declaração de Parâmetros !!

integer NVORT, NPART

integer LYAPUNOV, TRAJ

integer out_sim, out_z, out_lyap

real*8 PI2

real*8 VISC

!! Inicialização de Parâmetros !!

parameter (NVORT = 2)

parameter (NPART = 0)

parameter (VISC = 0)
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parameter (LYAPUNOV = 1)

parameter (TRAJ = 1)

parameter (out_sim = 20)

parameter (out_z = 40)

parameter (out_lyap = 60)

parameter (PI2 = 8.D0*DATAN(1.D0)) ! 2*pi

!! Declaração de Variáveis !!

complex*16 z(NVORT+NPART), z_perturbed_vort(NVORT+NPART), z_perturbed_part(NVORT+NPART)

real*8 T_final, T, T_out

real*8 h, time

real*8 perturbacao

real*8 gamma(NVORT+NPART)

real*8 dist, somadist

real*8 dist_part(NPART), somadist_part(NPART)

real*8 lyap_vort, lyap_part(NPART)

real*8 P, Q, R, Ham

real*8 hamilt

real*8 start, finish

integer k, s, k_final, k_out, k_int

integer options

!! Inicialização de Variáveis !!

h = 2.D-3 ! Passo de integração

perturbacao = 1.D-5 ! Perturbação inicial
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T_final = 1.D6 ! Tempo final de integração do sistema

T = 1.D0 ! Período de integração para cálculo do expoente de Lyaponov

T_out = 4.D0*T ! Tempo de output

k_out = int(T_out/T) ! iteração de output

k_final = int(T_final/T) ! numero de iterações

k_int = int(T/h) ! iterações por período de integração para cálculo do expoente de

! Lyaponov

options = LYAPUNOV + 2*TRAJ

print*, k_out, k_final, k_int

!! Abertura dos ficheiros de output !!

open (unit=out_sim,file="out_sim_n_vort.txt",action="write",status="replace")

write(out_sim,*) ’SIMULATION START’

write(out_sim,*) ’’

write(out_sim,*) ’This simulation was run with ’, NVORT, ’ vortices and ’, NPART,&

’ particles.’

write(out_sim,*) ’Viscosity: ’, VISC

write(out_sim,*) ’Integration Step: ’, h

write(out_sim,*) ’Total time of integration: ’, T_final

write(out_sim,*) ’Period for Lyapunov Exponent computation: ’, T

write(out_sim,*) ’Period for outputs: ’, T_out

write(out_sim,*) ’Initial perturbation: ’, perturbacao

call cpu_time(start)
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select case( options )

case( 1 )

open (unit=out_lyap,file="out_lyap.txt",action="write",status="replace")

!! Inicialização dos 2 sistemas de vórtices !!

call InitialConditions (z, gamma, CENTRO, LADO, NVORT, NPART)

call Perturb_vort(z, z_perturbed_vort, perturbacao, NVORT, NPART, 1)

call Perturb_part(z, z_perturbed_part, perturbacao, NVORT, NPART, 1)

!! Inicialização das variáveis do cíclo !!

k = 0

somadist = 0.D0

somadist_part = 0.D0

time = 0.D0

lyap_vort = 0.D0

lyap_part = 0.D0

!! Invariantes iniciais !!

P = sum(gamma*dreal(z))

Q = sum(gamma*dimag(z))

R = sum(gamma*cdabs(z)**2)

Ham = hamilt(z, gamma, NVORT, NPART, PI2)

write(out_lyap,*) k, time, P, Q, R, Ham, lyap_vort, lyap_part

!! Cíclo de integração e output !!

do k = 1, k_final
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do s = 1, k_int

! Integração dos três sistemas

call RKF45(h, time, z, gamma, NVORT, NPART, VISC, PI2)

call RKF45(h, time, z_perturbed_vort, gamma, NVORT, &

NPART, VISC, PI2)

call RKF45(h, time, z_perturbed_part, gamma, NVORT, &

NPART, VISC, PI2)

time = time + h

end do

!! Cálculo do Expoente de Lyapunov instantâneo !!

dist = dsqrt( sum( cdabs(z(1:NVORT) - &

z_perturbed_vort(1:NVORT))**2 ) )

somadist = somadist + dlog(dist)

dist_part = cdabs(z(NVORT+1:NVORT+NPART) - &

z_perturbed_part(NVORT+1:NVORT+NPART))

somadist_part = somadist_part + dlog(dist_part)

!! Escrita de outputs !!

if (k - (k/k_out)*k_out.EQ.0) then

lyap_vort = (somadist/float(k) - dlog(perturbacao))

lyap_part = (somadist_part/float(k) - dlog(perturbacao))

!! Invariantes !!
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P = sum(gamma*dreal(z))

Q = sum(gamma*dimag(z))

R = sum(gamma*cdabs(z)**2)

Ham = hamilt(z, gamma, NVORT, NPART, PI2)

write(out_lyap,*) k, time, P, Q, R, Ham, lyap_vort, &

lyap_part

end if

! Re-perturbar os sistemas

call Perturb_vort(z, z_perturbed_vort, perturbacao, NVORT, &

NPART, 2)

call Perturb_part(z, z_perturbed_part, perturbacao, NVORT, &

NPART, 2)

end do

close(out_lyap)

case( 2 )

open (unit=out_z,file="out_z.txt",action="write",status="replace")

!! Inicialização do sistema de vórtices !!

call InitialConditions (z, gamma, CENTRO, LADO, NVORT, NPART)

!! Inicialização das variáveis do cíclo !!

k = 0
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write(out_z,*) k, time, z

!! Cíclo de integração e output !!

do k = 1, k_final

do s = 1, k_int

! Integração dos dois sistema de vórtices

call RKF45(h, time, z, gamma, NVORT, NPART, VISC, PI2)

time = time + h

end do

!! Escrita de outputs !!

if (k - (k/k_out)*k_out.EQ.0) then

write(out_z,*) k, time, z

! print*, k, ’/’, k_final

end if

end do

close(out_z)

case ( 3 )

open (unit=out_lyap,file="out_lyap.txt",action="write",status="replace")

open (unit=out_z,file="out_z.txt",action="write",status="replace")
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!! Inicialização dos 3 sistemas !!

call InitialConditions (z, gamma, CENTRO, LADO, NVORT, NPART)

call Perturb_vort(z, z_perturbed_vort, perturbacao, NVORT, NPART, 1)

call Perturb_part(z, z_perturbed_part, perturbacao, NVORT, NPART, 1)

!! Inicialização das variáveis do cíclo !!

k = 0

somadist = 0.D0

somadist_part = 0.D0

time = 0.D0

lyap_vort = 0.D0

lyap_part = 0.D0

!! Invariantes e escrita das condições iniciais !!

P = sum(gamma*dreal(z))

Q = sum(gamma*dimag(z))

R = sum(gamma*cdabs(z)**2)

Ham = hamilt(z, gamma, NVORT, NPART, PI2)

write(out_lyap,*) k, time, P, Q, R, Ham, lyap_vort, lyap_part

write(out_z,*) k, time, z

!! Cíclo de integração e output !!

do k = 1, k_final

do s = 1, k_int

! Integração dos dois sistema de vórtices

call RKF45(h, time, z, gamma, NVORT, NPART, VISC, PI2)
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call RKF45(h, time, z_perturbed_vort, gamma, NVORT, &

NPART, VISC, PI2)

call RKF45(h, time, z_perturbed_part, gamma, NVORT, &

NPART, VISC, PI2)

time = time + h

end do

!! Cálculo do Expoente de Lyapunov instantâneo !!

dist = dsqrt( sum( cdabs(z(1:NVORT)- &

z_perturbed_vort(1:NVORT))**2 ) )

somadist = somadist + dlog(dist)

dist_part = cdabs(z(NVORT+1:NVORT+NPART)- &

z_perturbed_part(NVORT+1:NVORT+NPART))

somadist_part = somadist_part + dlog(dist_part)

!! Escrita de outputs !!

if (k - (k/k_out)*k_out.EQ.0) then

!! Invariantes !!

P = sum(gamma*dreal(z))

Q = sum(gamma*dimag(z))

R = sum(gamma*cdabs(z)**2)

Ham = hamilt(z, gamma, NVORT, NPART, PI2)

lyap_vort = (somadist/float(k) - dlog(perturbacao))

lyap_part = (somadist_part/float(k) - dlog(perturbacao))
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write(out_lyap,*) k, time, P, Q, R, Ham, lyap_vort, &

lyap_part

write(out_z,*) k, time, z

! print*, k, ’/’, k_final

end if

! Re-perturbar os sistemas

call Perturb_vort(z, z_perturbed_vort, perturbacao, NVORT, &

NPART, 2)

call Perturb_part(z, z_perturbed_part, perturbacao, NVORT, &

NPART, 2)

end do

close (out_z)

close (out_lyap)

case default

write(out_sim,*) ’Não foi pedido nenhum output.’

end select

call cpu_time(finish)

write(out_sim,*) ’’

write(out_sim,*) ’Time of simulation: ’, finish - start, ’seconds’

write(out_sim,*) ’’
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write(out_sim,*) ’SIMULATION END’

close (out_sim)

end program vortex_v0

A.2 SUBROUTINE TO PERTURBATE THE VORTICES

subroutine Perturb_vort(z, z_perturbed, perturbacao, NVORT, NPART, opt)

implicit none

integer, parameter :: out_unit=20

integer NVORT, NPART, opt

complex*16 z(NVORT + NPART), z_perturbed(NVORT + NPART)

real*8 x, y, perturbacao

integer seed(121)

complex*16 aux(NVORT)

select case (opt)

! Perturbação inicial

case (1)

!! Seed para RNG !!

seed = 121

call RANDOM_SEED(PUT = seed)

call RANDOM_NUMBER(x)

call RANDOM_NUMBER(y)
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z_perturbed = z

z_perturbed(1) = z(1) + perturbacao*complex(0.0697565D0,0.997564D0)

! Re-perturbações na direcção de maior crescimento

case(2)

aux = z_perturbed(1:NVORT) - z(1:NVORT)

z_perturbed(1:NVORT) = z(1:NVORT) + &

perturbacao/dsqrt(dfloat(NVORT)) * aux/cdabs(aux)

end select

return

end

A.3 SUBROUTINE TO PERTURBATE THE PARTICLES

subroutine Perturb_part(z, z_perturbed, perturbacao, NVORT, NPART, opt)

implicit none

integer, parameter :: out_unit=20

integer NVORT, NPART, opt

complex*16 z(NVORT + NPART), z_perturbed(NVORT + NPART)

real*8 x, y, perturbacao

integer seed(121)

complex*16 aux(NPART)

select case (opt)
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! Perturbação inicial

case (1)

!! Seed para RNG !!

seed = 121

call RANDOM_SEED(PUT = seed)

call RANDOM_NUMBER(x)

call RANDOM_NUMBER(y)

z_perturbed = z

z_perturbed(NVORT+1:NVORT+NPART) = z(NVORT+1:NVORT+NPART) + &

perturbacao*complex(0.0697565D0,0.997564D0)

! Re-perturbações na direcção de maior crescimento

case(2)

aux = z_perturbed(NVORT+1:NVORT+NPART) - z(NVORT+1:NVORT+NPART)

z_perturbed(NVORT+1:NVORT+NPART) = z(NVORT+1:NVORT+NPART) + &

perturbacao * aux/cdabs(aux)

end select

return

end

A.4 SUBROUTINE FOR RUNGE-KUTTA-FEHLBERG INTEGRATION

subroutine RKF45(h, time, z, gamma, NVORT, NPART, VISC, PI2)

implicit none
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interface !! Declare function

function modelo(t, z, gamma, NVORT, NPART, VISC, PI2) result(dz)

integer :: NVORT, NPART

real*8 :: VISC

real*8 :: Pi2

real*8 :: t

real*8, dimension(NVORT+NPART) :: gamma

complex*16, dimension(NVORT+NPART) :: z

complex*16, dimension(NVORT+NPART) :: dz

end function

end interface

real*8 PI2

real*8 VISC

real*8 time

integer NVORT, NPART

complex*16 z(NVORT+NPART)

real*8 gamma(NVORT+NPART)

real*8 h, h2, h4, h38, h1213

complex*16 K1(NVORT+NPART), K2(NVORT+NPART), K3(NVORT+NPART), K4(NVORT+NPART), &

K5(NVORT+NPART), K6(NVORT+NPART)

h2 = h/2.D0

h4 = h/4.D0

h38 = 3.D0*h/8.D0

h1213 = 12.D0*h/13.D0

K1 = h * modelo(time, z, gamma, NVORT, NPART, VISC, PI2)
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K2 = h * modelo(time + h4, z + K1/4.D0, gamma, NVORT, NPART, VISC, PI2)

K3 = h * modelo(time + h38, z + 3.D0*K1/32.D0 + 9.D0*K2/32.D0, &

gamma, NVORT, NPART, VISC, PI2)

K4 = h * modelo(time + h1213, z + 1932.D0*K1/2197.D0 - 7200.D0*K2/2197.D0 + &

7296.D0*K3/2197.D0 , gamma, NVORT, NPART, VISC, PI2)

K5 = h * modelo(time + h, z + 439.D0*K1/216.D0 - 8.D0*K2 + 3680.D0*K3/513.D0 - &

845.D0*K4/4104.D0 , gamma, NVORT, NPART, VISC, PI2)

K6 = h * modelo(time + h2, z - 8.D0*K1/27.D0 + 2.D0*K2 - 3544.D0*K3/2565.D0 + &

1859.D0*K4/4104.D0 - 11.D0*K5/40.D0 , gamma, NVORT, NPART, VISC, PI2)

z = z + 16.D0*K1/135.D0 + 6656.D0*K3/12825.D0 + 28561.D0*K4/56430.D0 - &

9.D0*K5/50.D0 + 2.D0*K6/55.D0

return

end

A.5 FUNCTION TO COMPUTE THE DYNAMICAL EQUATIONS

FUNCTION modelo(t, z, gamma, Nvort, Npart, VISC, PI2) result(dz)

implicit none

integer Nvort, Npart

real*8 PI2

real*8 VISC

complex*16 z(Nvort+Npart)

real*8 gamma(Nvort+Npart), t

complex*16 aux

complex*16 aux2
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complex*16, dimension(Nvort+Npart) :: dz

integer k, j

dz(1:Nvort+Npart) = (0.D0,0.D0)

aux = (0.D0,0.D0)

if (VISC.EQ.0) then

! Vórtices

do k = 1, Nvort, 1

do j = k+1, Nvort, 1

aux = (1.D0,0.D0)/(z(k)-z(j))

aux = dconjg(aux)

dz(k) = dz(k) + gamma(j)*aux

dz(j) = dz(j) - gamma(k)*aux

end do

end do

! Partículas

do k = Nvort+1, Nvort+Npart, 1

do j = 1, Nvort, 1

aux = (1.D0,0.D0)/(z(k)-z(j))

aux = dconjg(aux)
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dz(k) = dz(k) + gamma(j)*aux

end do

end do

else

! Vórtices

do k = 1, Nvort, 1

do j = k+1, Nvort, 1

aux = z(k)-z(j)

aux2 = 1 - dexp( - cdabs(aux)**2/(4.D0*VISC*t))

aux = (1.D0,0.D0)/(z(k)-z(j))

aux = dconjg(aux) * aux2

dz(k) = dz(k) + gamma(j) * aux

dz(j) = dz(j) - gamma(k) * aux

end do

end do

! Partículas

do k = Nvort+1, Nvort+Npart, 1

do j = 1, Nvort, 1

aux = z(k)-z(j)

aux2 = 1 - dexp( - cdabs(aux)**2/(4.D0*VISC*t))
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aux = (1.D0,0.D0)/(z(k)-z(j))

aux = dconjg(aux) * aux2

dz(k) = dz(k) + gamma(j) * aux

end do

end do

end if

dz = -dz/complex(0.D0, PI2)

return

end

A.6 SUBROUTINE TO DEFINE INITIAL CONDITIONS (EXAMPLE)

subroutine InitialConditions(z, gamma, NVORT, NPART)

implicit none

integer NVORT, NPART

complex*16 z(NVORT + NPART)

real*8 gamma(NVORT + NPART)

integer k

real*8 x, y

!! Seed para RNG !!
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integer seed(101)

seed = 101

call RANDOM_SEED(PUT = seed)

do k = 1, NVORT, 1

call RANDOM_NUMBER(x)

call RANDOM_NUMBER(y)

z(k) = complex(x, y)

gamma(k) = 1.D0

end do

do k = NVORT+1, NVORT+NPART, 1

call RANDOM_NUMBER(x)

call RANDOM_NUMBER(y)

z(k) = complex(x, y)

gamma(k) = 0.D0

end do

! z(1) = complex(2.D0, 0.D0)

! z(2) = complex(-1.D0, -1.D0)

! gamma(1) = 1.D0

! gamma(2) = -1.D0

return

end
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