
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Integrated production planning and
scheduling optimization

Daniel Carvalho

Mestrado Integrado em Engenharia Electrotécnica e de Computadores

Supervisor: Pedro Amorim

Co-Supervisor: Eduardo Curcio

August 14, 2019



c© Daniel Carvalho, 2019



Resumo

Este trabalho propõe um método de solução iterativa para abordar a integração do planeamento
táctico (dimensionamento de lotes) e operacional (sequenciamento) numa produção industrial com
setups dependentes da sequência. Este método decompõe o problema da integração em dois. No
primeiro sub-problema, planeamento táctico, o plano de produção é optimizado sem ter em conta
setups necessários, usando um modelo matemático. O sequenciamento dos produtos é depois
definido usando estratégias de pesquisa local. O resultado final será usado como feedback na
formulação de regras adicionais para complementarem o modelo do primeiro sub-problema. De
seguida, o planeamento táctico é repetido, considerando as novas regras definidas anteriormente.
O algoritmo continua iterativamente até que as funções objectivo dos dois níveis convirjam. Os
principais ganhos deste método são o seu procedimento intuitivo e fácil de implementar, e o pouco
tempo computacional necessário. De modo a analisar resultados obtidos, dois experimentos com-
putacionais são propostos. O primeiro para comparar o método iterativo com outros métodos
de solução encontrados na literatura para problemas similares, nomeadamente meta-heuristicas
e modelos de programação inteira. Por fim, a investigação foi focada num caso de uma indús-
tria de nutrição animal, onde o setup de produção é dependente da sequência e não-triangular. O
propósito do segundo experimento é avaliar os eventuais ganhos desta abordagem no planeamento
de produção nesta indústria, usando os dados de uma empresa real. Os respectivos resultados
demonstraram que o método iterativo é uma boa solução para problemas de produção extensivos,
nos quais um modelo MIP necessita de tempos computacionais impraticáveis, derivado ao elevado
número de variáveis binárias.

i



ii



Abstract

This work proposes an iterative solution method to address the integration of the tactical (lot-
sizing) and operational (scheduling) levels in production planning with sequence dependent setups.
This method breaks the integrated lot-sizing and scheduling problem into two. In the first sub-
problem, at the tactical level, the production plan is optimized with production setups disregarded
using a mathematical model. The production scheduling solution is then defined using local search
strategies. The final solution will serve as feedback to formulate additional rules to complement
the first sub-problem model. After that, the tactical level is again optimized, considering the rules
defined from the operational level. The algorithm continues iteratively until the objective functions
from both levels converge. The main advantages of this method are it’s intuitive and easy to
implement procedure, and the low computational time required. In order to analyze results, two
computational experiments are proposed. The first is performed to compare the solution method
proposed with mixed-integer programming models and meta-heuristics from the literature. Then
the research will focus on an animal feed industry case, in which production setup is sequence
dependent and non-triangular. The purpose of the second experiment is to evaluate the potential
gains to the production planning in this industry, using a real company dataset. The respective
results showed that the iterative method is a good solution to extensive production problems, in
which the MIP models require intractable computational times, resulting from the high number of
binary variables.

iii



iv



Acknowledgements

Firstly I want to thank both of my supervisors. Eduardo Curcio, for the constant support through-
out all the development of this work. I’m grateful for always being willing to help me to keep
this thesis on track, without which this work would not exist. His professionalism and kindness in
my guiding process will always inspire me in my professional career. I would also like to thank
professor Pedro Amorim, for helping me with important insights in the writing process and key
advice in the structure of this work.

Moreover, I express my gratitude to the all the co-authors that contributed to this work, par-
ticularly, professor Luis Guimarães, that helped me in the early stage of this work, defining the
problem addressed and the possible solution methods.

I also want to thank the institution INESC TEC, for providing me with a place for the de-
velopment of this thesis, where I always found an excellent working and friendly environment.
Additionally I have to mention FEUP, where everyday I learned to be a better person and for
making the last 5 years, the best of my life.

Lastly, I have to thank my family, especially my parents, for all the continuous patience and
support that always kept me focus in this work. I want to also thank my close friends for always
being there when I needed, in particular my college friends from FEUP, that everyday helped
keeping me in a good mood, not only during the months of this work, but throughout all my
college journey, and which friendships will continue for the last of my life.

Daniel Carvalho

v



vi



“The people who are crazy enough to think they can change the world
are the ones who do”

Steve Jobs

vii



viii



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Lot-Sizing and Scheduling in the Supply Chain . . . . . . . . . . . . . . 1
1.1.1.1 Tactical planning . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1.2 Operational planning . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Integrated planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature review 7
2.1 Mixed integer programming models . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Large-bucket problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Small-bucket problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Integrated problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Sequence-oriented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Heuristics and metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1.1 Relax-and-fix (RF) . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1.2 Fix-and-optimize (FO) . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1.3 Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2.1 Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2.2 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2.3 Genetic algorithms (GA) methods . . . . . . . . . . . . . . . . 18
2.2.2.4 Memetic algorithm . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Lot-sizing and scheduling in the animal feed industry . . . . . . . . . . . . . . . 21
2.3.1 Non-triangular setup times . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Integration problem in animal feed industries . . . . . . . . . . . . . . . 22

3 Problem Definition 23
3.1 Integrated production planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Animal feed industry problem . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Model proposed for the case studied . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Iterative method 27
4.1 Computational intractability of the GLSP model . . . . . . . . . . . . . . . . . . 27
4.2 Introduction to the ILSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



x CONTENTS

4.3 Tactical level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Operational level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 Generate initial solution . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.2 Local search heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.2.1 Non-triangular instances . . . . . . . . . . . . . . . . . . . . . 35
4.5 Feedback from operational level to tactical . . . . . . . . . . . . . . . . . . . . . 36

4.5.1 Capacity feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.2 Setup costs feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5.2.1 ILSPnR - Feedback from setup costs without resolution . . . . . 37
4.5.2.2 ILSPR - Feedback from setup costs with resolution . . . . . . . 38

5 Computational Experiment 41
5.1 Alternative methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.1.1 Solution representation . . . . . . . . . . . . . . . . . . . . . 42
5.1.1.2 First generation . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.1.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.1.4 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.1.5 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.2 Hierarchical strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Illustrative example of ILSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 First iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Feedback results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.3 Solution convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.4 Final solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Classical instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Animal feed instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1 Literature instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.2 Real animal feed company instance . . . . . . . . . . . . . . . . . . . . 55

6 Conclusion and future work 59
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A Literature animal-feed instance 61

B Real animal feed company instance 65

References 71



List of Figures

1.1 Production planning and scheduling positions in the supply chain [1]. . . . . . . 2
1.2 Tactical planning framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Operational planning framework. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Solution strategies for production planning [1]. . . . . . . . . . . . . . . . . . . 4
1.5 Integrated planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Transition between generations in BRKGA [2]. . . . . . . . . . . . . . . . . . . 20
2.2 BRKGA’s flowchart [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Triangular and non-triangular setup [3]. . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Animal feed setups matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Iterative strategy for production planning and scheduling [1]. . . . . . . . . . . . 28
4.2 ILSP method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Operational level algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Neighborhood creation strategy in Local Search. . . . . . . . . . . . . . . . . . . 35
4.5 Additional neighbor creation strategy for non-triangular instances. . . . . . . . . 35

5.1 GA mutation 1 process example. . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Cut point for crossover phase of the GA. . . . . . . . . . . . . . . . . . . . . . . 44
5.3 New solutions generated by the crossover. . . . . . . . . . . . . . . . . . . . . . 44
5.4 Hierarchical strategy framework. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 ILSP-Tactical production planning after first iteration. . . . . . . . . . . . . . . . 46
5.6 Solution structure after the first iteration. . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Solution structure after the second iteration of the ILSPnR. . . . . . . . . . . . . . 48
5.8 Solution structure after the second iteration of the ILSPR. . . . . . . . . . . . . . 48
5.9 ILSPnR convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.10 ILSPR convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.11 Final solution obtained by the ILSPR for instance Month A. . . . . . . . . . . . . 50
5.12 Gap evolution for the GLSP model. . . . . . . . . . . . . . . . . . . . . . . . . 52
5.13 Performance comparison between ILSPR and ILSPnR. . . . . . . . . . . . . . . . 53
5.14 Performance comparison for the GLSP, ILSPRand GA. . . . . . . . . . . . . . . 53
5.15 Trendline comparison for comparison for the GLSP, ILSPR and GA. . . . . . . . 54
5.16 Average results for all methods in the variable setup costs case . . . . . . . . . . 54
5.17 Average results for all methods considering the animal feed instances. . . . . . . 55
5.18 Production costs comparison between ILSPR and the company’s plan. . . . . . . 57

B.1 Company’s production plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B.2 ILSPnR solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xi



xii LIST OF FIGURES



List of Tables

2.1 Analogy between the physical system and the optimization problem. . . . . . . . 17

3.1 Example of a Production Plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Example of tactical level solution. . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Example of operational level result. . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Example of a production sequence with a cleaning. . . . . . . . . . . . . . . . . 37

5.1 GA individual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 GA mutation 2 process example. . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Results for the classic instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Results of each method for the animal feed instances. . . . . . . . . . . . . . . . 55
5.5 Group cleanings necessity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6 Atributtes cleanings necessity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.1 Capacity, overtime limit and it’s respective costs . . . . . . . . . . . . . . . . . . 61
A.2 Processing time and holding inventory cost for each product . . . . . . . . . . . 62
A.3 Demand for each product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.1 Groups and attributes for each product . . . . . . . . . . . . . . . . . . . . . . . 66
B.2 Demand for each product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xiii



xiv LIST OF TABLES



Abbreviations and symbols

ATSP Asymetric travelling salesman problem
BRKGA Biased random-key genetic algorithms
CLPS Capacitated lot-sizing problem
CSLP Continuous setup lot-sizing problem
DLSP Discrete lot-sizing and scheduling problem
FO Fix-and-Optimize
GA Genetic Algorithm
GLSP General Lot-sing and Scheduling problem
HIER Hierarchical planning strategy
ILSP Iterative Lot-Sizing and Scheduling Planning
ILSPnR Iterative Lot-Sizing and Scheduling Planning without resolution
ILSPR Iterative Lot-Sizing and Scheduling Planning with resolution
LS Local Search
MA Memetic Algorithm
MIP Mixed integer programming
PLSP Proportional lot-sizing and scheduling problem
RF Relax-and-Fix
SA Simulated Annealing
SC Supply chain
TS Tabu Search

xv





Chapter 1

Introduction

1.1 Context

Production planning is one of the most challenging subjects in operations management, with great

importance in the company’s reduction of cost. In a production planning problem, the timing and

sizes of production orders must be determined in order to fulfill the market demand and minimize

the associated costs [4]. The two main production planning problems addressed in this work are

lot-sizing and scheduling.

• Lot-sizing - determines the quantities of production necessary to satisfy deterministic prod-

uct demand over a finite planning horizon.

• Scheduling - establishes the order in which lots are produced within a time period, account-

ing for the sequence-dependent setup time and costs.

1.1.1 Lot-Sizing and Scheduling in the Supply Chain

The supply chain (SC) of a manufacturing company is a network of organizations with the fol-

lowing main functions: acquisition of raw materials, transformation of raw material into finished

products, and distribution of the products to costumers, having the goal to achieve high service

level at low costs. The planning problems that have to be solved to achieve this purposes cover a

wide range of time scales as described by [1]:

� Long-term - Determines the structure of the supply chain (e.g., facility location).

� Medium-term - Makes decisions such as the assignment of production targets to facilities

and the transportation from them to warehouses or distribution centers. In the production

stage, the lot-sizing problem is placed here.

� Short-term - Carried out on a daily or weekly basis to determine the assignment of tasks

and their sequence. In the production level, short-term planning is referred to as scheduling.

1



2 Introduction

The production planning (medium-term) and scheduling (short-term) problems positions in

the supply chain, previously described, are represented in Figure 1.1.

Figure 1.1: Production planning and scheduling positions in the supply chain [1].

1.1.1.1 Tactical planning

The medium-term planning in production is also called tactical planning, where it is decided the

products to be produced in each macro-period (e.g., days) and the amounts necessary to fulfill the

demand.

Figure 1.2: Tactical planning framework.

Decision: What products and how much should be produced in each one of the days?

Main objectives:

1. Minimize inventory costs.

2. Minimize backlog costs.

3. Minimize overtime costs.



1.1 Context 3

1.1.1.2 Operational planning

The operational planning (short-term) has the goal to find the best sequence of production for

the products defined previously in the tactical planning. This problem is called scheduling, de-

fined as the act of determine priorities and arranging activities with the purpose of minimizing the

production time and costs [5].

Figure 1.3 represents this operational phase, the previous macro-periods (days) are divided

into micro-periods (e.g., hours) to plan the production sequence.

Figure 1.3: Operational planning framework.

Decision: What is the best the production sequence in each one of the days?

Main objectives:

1. Minimize the setup costs.

In sequence-based manufacturing, a changeover from one product to another usually causes

setup costs as well as setup times which are sequence-dependent. If those those setups are not

well managed it may result in significant losses in production capacity, which may lead to unmet

demands and costumer dissatisfaction. This problem is frequently found in distinct industries like

animal feed, automobile, chemical and electronics.

This work will later focus on a case of an animal feed company, in which it is frequent to

have the possibility of contamination in the production of two consecutive products from different

families, requiring a cleaning batch in between those products.

1.1.2 Integrated planning

Primarily most commercial production planning and control systems tried to construct feasible

production plans in a step-wise manner, so the manufacturing resource planning (MRP II) logic

was implemented. It can be divided in 3 main phases, as described by [6].



4 Introduction

∗ Phase I: Starting with the final products, lot sizes are computed level by level, ignoring

capacity constraints.

∗ Phase II: The results of the first phase usually exceeds the capacity in some periods. In this

phase some lots are shifted to find a plan that meets the capacity limits.

∗ Phase III: The plan sequence decisions are made and the orders sent to the shop floor.

The MRP II concept, by having Phase I, II and III disconnected, may present some problems:

long lead times, high work-in-progress, and unfulfilled orders. So sophisticated approaches are

necessary to solve production planning and scheduling problems.

Strategies to solve this problem can be classified in 3 categories, illustrated in the Figure 1.4.

Having one master and one slave, the communication can be unidirectional from the master to

the slave (Hierarchical), or with feedback (Iterative). In the case that this division does not exist,

and the problem formulation refers to all working periods, the solution will have all the necessary

information to both the lot-sizing and scheduling problem (Full-space).

Figure 1.4: Solution strategies for production planning [1].

This study reviews these three approaches for the integration of medium-term production plan-

ning and short-term scheduling that enable the creation of better production plans than those ob-

tained when solving the two problems independently by introducing the solution of the lot-sizing

problem in the scheduling planning level.

The goal of this integration is to construct the production plan for all the planning horizon.

Production plans are created with the objective of minimizing the overall costs consisting mainly

of inventory holding, setup, overtime and backlog, while satisfying the available capacity and

meeting the demand in each time period.

In the Figure 1.5 we can see a representation of an integrated planning solution that will be

explored in this work.



1.2 Motivation 5

Figure 1.5: Integrated planning.

1.2 Motivation

Several companies face the problem of integrating lot-sizing and scheduling in their production

planning over a given planning horizon, and the constant complexity growth in the industry’s

productions has urged a research from the scientific community to create new methods, more

sophisticated, to attend the needs of the companies and keep competitiveness. In many of these

production environments, switching between production lots triggers operations with costs for the

company, such as machine adjustments and cleansing procedures.

The decisions of lot-sizing and scheduling are often made separately, which can cause opera-

tional costs and compromise the response to the demand deadlines their quality taking into account

the operational costs and demand deadlines. So there is an urge in companies to integrate these

phases. Therefore the two main motivations of this study are the following:

Scientific: Development of efficient solution methods to the lot-sizing and scheduling integration

problems, found in the literature.

Practical: Obtain good solutions to the production planning that consider tactical and operational

planning, that are aligned with the corporate objectives of the company.



6 Introduction

1.3 Objectives

This work conducts a series of studies on mathematical models and other solution methods for

integrated lot-sizing and scheduling problem and apply them in a real case of a company of animal

feed. The ultimate goal is to optimize the production planning in order to reduce the company

costs. Summarily our objectives are the following:

• Mathematically modeling a real optimization problem of production planning and schedul-

ing.

• Developing and comparing different solution methods in terms of solution quality and com-

putational complexity.

• Assessing the value of integration and the solution quality obtained over the current planning

performed by an animal feed company.

1.4 Thesis structure

This thesis is organized as following. Chapter 2 presents a literature review on the subject that

studies the current state of the art. The study initially focuses on the mathematical models used

to represent this problem and then explores other solution methods based on heuristics and meta-

heuristics. In Chapter 3, the problem addressed and its mathematical model are defined. The pro-

posed iterative solution method is presented and detailed in Chapter 4. Chapter 5 firstly describes

other solution methods commonly used for this planning problem that are used to benchmark the

iterative method proposed. All methods are then assessed with the instances found in the literature

and their results are compared, both in quality and computing power. Still in Chapter 5, a real

case of an animal feed company in Brazil is studied, having a dataset and their planning results,

the solutions and gains from the various method proposed are analyzed. In the last chapter, the

conclusion of the work is presented as well as proposals for future work.



Chapter 2

Literature review

This chapter is divided in 3 sections. Firstly, a literature review on lot-sizing and scheduling

problems is made, comparing the various mathematical models used to represent it, particularly

the large and small bucket models, focusing then on the hybrid models that will be used on this

study. Secondly, it presents a study on other solution methods using heuristics and meta-heuristics.

The chapter concludes with an investigation on these solutions methods applied in the case of

animal feed industry.

2.1 Mixed integer programming models

Linear programming is a mathematical optimization used to maximize (or minimize) a linear ob-

jective function subject to one or more constraints. An MIP model adds one additional condition

that at least one of the decision variables can only take on integer values. The use of integer vari-

ables greatly expands the scope of useful optimization problems that you can define and solve. An

important special case is a decision variable that must be either 0 or 1 at the optimal solution. Such

variables are called binary integer variables and can be used to model yes/no decisions. However,

integer variables make an optimization problem non-convex, and therefore far more difficult to

solve. Memory and solution time may rise exponentially as more integer variables are added.

This literature review specifies the main lot-sizing and scheduling MIP models and their vari-

ants. It was based on [6] that summarizes the work in the field and details the differences of

the lot-sizing and scheduling problems. They can be classified into 2 major categories [7], some

based on micro-periods for short-term planning (small-bucket problems), and models which use

macro-periods for medium-term planning (large-bucket problems).

2.1.1 Large-bucket problems

To represent the tactical planning level, [6] present the capacitated lot-sizing problem (CLSP)

which determines the lot sizes of production but not the sequence of the lots. Several items may

be produced per period, that represents a big time slot, typically one week in the real world. The

planning horizon is usually less than six months. Next we present the MIP model for this problem:

7



8 Literature review

Data:

j = 1, .....,J Number of products

t = 1, .....,T Number of periods

Ct Capacity (in time units) available in period t.

p j Time required to produce one unit of product j.

h j Non-negative holding costs of product j

s j Setup costs for product j

d jt Demand of product j in period t

I j0 Initial inventory of product j at the beginning of the planning horizon.

Decision variables:

I jt ≥ 0 Inventory quantity of product j at the end of period t.

q jt ≥ 0 Production quantity of item j produced in period t.

x jt ∈ {0,1} 1, if a setup for item j occurs in period t( = 0 otherwise).

min
J

∑
j=1

T

∑
t=1

(h jI jt + s jx jt) (2.1)

Subject to:

I jt = I j,t−1 +q jt −d jt ∀t, j (2.2)

p jq jt ≤Ctx jt ∀t, j (2.3)
J

∑
j=1

p jq jt ≤Ct ∀t (2.4)

Objective function (2.1) minimizes the sum of setup and holding costs. Since this model

doesn’t take into account sequence-dependent setups, it assumes that a fixed setup cost always oc-

curs for a new product. Constraints (2.2) represent the inventory balances and, due to Constraints

(2.3), production of an item can only take place if the machine is set up for that particular product.

Finally Constraints (2.4) ensure that the production capacity is respected.



2.1 Mixed integer programming models 9

2.1.2 Small-bucket problems

Subdividing the macro-periods of the CLSP into several micro-periods, that become the new vari-

able t, leads to the small-bucket models. Therefore, they only optimize the production plan for

one macro-period. The name small-bucket comes from the fact that, in this models, at most one

item can be produced per period, hence they usually correspond to small time slots such as hours

or shifts.

Firstly it is presented the discrete lot-sizing and scheduling problem (DLSP), first mentioned

by [8]. Here is introduced the ’all-or-nothing’ assumption: only one item may be produced per

period, and, if so, production has to use the full capacity. The advantage over the CLSP is that

minimum lead times, such as transportation time or time for cooling, can easily be taken into

account, having short time periods in mind.

The decision variables and the parameters for the DLSP are the same as for the CLPS presented

before. Although since we consider short periods, the setups costs should only be incurred if the

production of a new lot begins. To model this, we need a new parameter and a new decision

variable:

Data:

y j0 ∈{0,1} 1, if the machine is set up for item j at the beginning of period 1( = 0 otherwise).

Decision variables (Model’s output):

y jt ∈ {0,1} 1, if the machine is set up for item j in period t( = 0 otherwise).

Mathematically, the DLSP can now be specified as a mixed-integer programming model [6]:

min
J

∑
j=1

T

∑
t=1

(h jI jt + s jx jt) (2.5)

Subject to:

(2.2)

p jq jt =Ctx jt ∀t, j (2.6)
J

∑
j=1

y jt ≤ 1 ∀t (2.7)

x jt ≥ y jt − y jt−1 ∀t, j (2.8)



10 Literature review

The objective function and inventory balance constraints are equal to the CLSP. The ’all-or-

nothing’ assumption comes in via Constraints (2.6), where in contrast to the CLSP the left and the

right-hand side must be equal, so only the full capacity can be produced. Constraints (2.7) make

sure that at most one item can be produced per period. The beginning of a new lot is spotted by

the inequalities (2.8).

A step towards more realistic situations comes with the continuous setup lot-sizing problem

(CSLP) proposed by [9]. In this model the ’all-or-nothing’ assumption is given up and production

quantities can now be of any continuous size. As a result, Constraints (2.7) are modified to allow

production quantities smaller than the micro-period capacity:

p jq jt ≤Ctx jt ∀t, j (2.9)

A weakness of the CSLP model is that if the capacity is not used in full, the remaining is left

unused. An attempt to avoid this is a variation of the model called the proportional lot-sizing and

scheduling problem (PLSP) described by [10]. The basic idea of the PLSP is to use the remaining

capacity for scheduling a second item. If it decides to have 2 items produced in a period, it must

be clear in which order they are produced. To accomplish this, the setup state variables y jt is now

the state at the end of the period t. Production in a period may take place if the machine is properly

set up for the product either at the beginning or at the end of the period, therefore only two items

can be produced per period, expressed in Constraints (2.10).

p jq jt ≤Ct(y j,t−1 + y jt) ∀t, j (2.10)

Since more than one product can be produced in one micro-period, the capacity restriction

(2.2) need to be replaced by:

∑
j

p jq jt ≤Ctx jt ∀t, j (2.11)

2.1.3 Integrated problem

[11] presents different approaches to model the integration of lot-sizing and scheduling decisions.

Here we present the most standard model, called the general lot-sizing and scheduling problem

(GLSP).



2.1 Mixed integer programming models 11

The GLSP combines macro-periods and an approach to sequence the lots using micro-periods.

The term General is based on the fact that several well-known models for lot-sizing and scheduling

integration differ from GLSP only by some additional constraints. Despite allowing for a very

accurate modeling of the problem, this model is computationally hard to solve, whereas the big

and small bucket models are much easier to tackle as pointed by [4]. The standard GLSP mixed-

integer programming model [12] is shown next:

Data:

j = 1, .....,J Number of products.

t = 1, .....,T Number of macro-periods.

St Set of micro-periods s belonging to macro-period t.

p j Production time of product j.

Capt Production capacity (time units) available in macro-period t.

m j Minimum lot-size of product j.

M j Maximum lot-size of product j.

h j holding costs of product j.

sci j Setup costs of changeover from product i to j.

sti j Setup times of changeover from product i to j.

d jt Demand of product j in macro-period t.

I j0 Initial inventory of product j at the beginning of the planning horizon.

y j0 equal 1, if the machine is set up for product j at the beginning of the planning horizon.

(otherwise=0).

Variables (Model’s output):

I jt ≥ 0 Inventory of product j at the end of macro-period t.

x js ≥ 0 Quantity of item j produced in micro-period s.

y js ∈ {0,1} 1, if the machine is setup for product j in micro-period s ( = 0 otherwise).

Ti js ∈ {0,1} 1, if a changeover from product i to product j takes place at the beginning of micro-period s

(otherwise=0).



12 Literature review

min
J

∑
j=1

T

∑
t=1

h jI jt +
J

∑
i=1

J

∑
j=1

T

∑
t=1

∑
s∈St

sci jTi js (2.12)

Subject to:

I jt = I j,t−1 + ∑
s∈St

x js−d jt ∀t, j (2.13)

J

∑
j=1

∑
s∈St

p jx js +
J

∑
j=1

J

∑
i=1

∑
s∈St

sti jTi js ≤Capt ∀t (2.14)

x js ≤Mity js ∀t, j,s ∈ St (2.15)
J

∑
j=1

y js = 1 ∀t,s ∈ St (2.16)

x js ≥ m j(y js− y j,s−1) ∀t, j,s ∈ St (2.17)

Ti js ≥ yi,s−1 + y js−1 ∀t, j, i,s ∈ St (2.18)

The objective function (2.12) minimizes holding and change-over costs. Constraints (2.13) give

the inventory balances and ensure that the demand is met. Capacity constraints are given by (2.14),

and (2.15) express that production can only take place if the machine is set up for the respective

product. Constraints (2.16) assure that one and only one setup state is defined in each micro-period.

Since the length of the micro-period s is determined by the time consumption of the production

quantity x js (where j is the product whose state indicator y js is set to 1), micro-periods with zero

length are allowed. Therefore, in Constraints (2.17), minimum lotsizes are introduced in order to

avoid setup state changes without production. Constraints (2.18) establish the connection between

setup state and changeover indicators indicating that a setup is not needed if the same product is

to be produced in consecutive micro-periods.



2.1 Mixed integer programming models 13

[11] also present a small variation to the GLSP, a model designed by [13] (CC), in which

decision variables y are dropped and the variables T are imposed to account for the changeovers

and setup state in each micro-period. [11] show that the CC formulation is stronger than the

original GLSP formulation. The CC model is then represented as the following:

min
J

∑
j=1

T

∑
t=1

h jI jt +
J

∑
i=1

J

∑
j=1

T

∑
t=1

∑
s∈St

sci jTi js (2.19)

Subject to:

(2.12)− (2.13)
J

∑
j=1

J

∑
i=1

Tji0 = 1 (2.20)

xis ≤M j

J

∑
j=1

Tjis ∀t, i,s ∈ St (2.21)

J

∑
j=1

Tji,s−1 =
J

∑
j=1

Ti js ∀t, i,s ∈ St (2.22)

xis ≥ m j

J

∑
j 6=i

Tjis ∀t, i,s ∈ St (2.23)

In this formulation, the objective function is the same as the GLSP, as well as constraints

(2.13) and (2.14) for inventory balances and capacity restrictions. Constraint (2.20) defines the

initial setup state of the machine. (2.21) guarantee that production of a given product only occurs

if the machine is set up at the micro-period. Flow constraints (2.22) keep track of changeovers and

machine configuration state. Minimum lot-sizes Constraints (2.23) are again imposed.

2.1.4 Sequence-oriented

A different approach to model the sequencing of the production, proposed by [14], is to use a

collection of predefined sequences that establish the items and sequences to be produced. Some

extra parameters are then needed for a given sequence s:

St Set of available sequences to schedule products on the machine in period t

ŝcs ≥ 0 setup cost incurred if sequence s is selected.

ŝts ≥ 0 setup time incurred if sequence s is selected.

gis ∈ {0,1} = 1 if product i is present in sequence s.

fis ∈ {0,1} = 1 if product i is first in sequence s.

lis ∈ {0,1} = 1 if product i is last in sequence s.



14 Literature review

It is also necessary to have another decision variable to decide if sequence s is selected for

production:

Ws ∈ {0,1} = 1 if sequence s is selected for production.

The subproblem relative to the formulation of the predefined sequences can be solved with a

metaheuristic method using local search strategies. Another solution method is proposed by [11],

solving the subproblem as a price collecting traveling salesman [15]. A network is created that

consist of a set of nodes, each representing a product, and arc sets representing the production

sequence of this products. This method is described with more detail by [11] in Appendix B.

The model proposed by [14] is then represented as the following:

min
J

∑
j=1

T

∑
t=1

h jI jt + ∑
s∈St

ŝcsWs (2.24)

Subject to:

(2.13)
J

∑
j=1

p jx jt + ∑
s∈St

ŝtsWs ≤Capt ∀t (2.25)

∑
s∈St

Ws = 1 ∀t (2.26)

∑
s∈St

f jsWs = ∑
s∈St

l jsWs ∀ j, t (2.27)

x jt ≤M j ∑
s∈St

g jsWs ∀ j, t (2.28)

Objective function (2.24) minimizes the total expenditure in holding costs and setup costs

incurred from sequence selection. Constraints (2.13) represent the classical inventory balances.

Capacity constraints are expressed in (2.25). The use of one sequence in each macro-period is en-

sured by (2.26). Constraints (2.27) guarantee setup carry-over by linking the first and last products

of consecutive time periods. Lastly, Constraints (2.28) only allows production for products in the

sequence selected in period t.

2.2 Heuristics and metaheuristics

In this section, solution methods based on heuristics and metaheuristics are reviewed. This meth-

ods can be applied in the integrated lot-sizing and scheduling problem. We present their function-

ality and how they can be applied.



2.2 Heuristics and metaheuristics 15

2.2.1 Heuristics

Here firstly we describe two heuristics, Relax-and-fix (RF) with Fix-and-Optimize(FO), and how

they can be employed to solve MIP models. Then it is presented the local search heuristic that

works as base to some metaheuristics that will be shown next.

2.2.1.1 Relax-and-fix (RF)

The Relax-and-fix method is a construction heuristic used in the resolution of mixed-integer prob-

lems, which defines an initial solution by solving several small MIP models. Initially, all binary

variables in the RF solution are relaxed which means they can take any value between 0 and 1.

Then a set of variables X , according to a window size Ws defined, are forced to be integer, while

the others are kept relaxed, and the resulting MIP is then solved. Next, the X variables are fixed

with the results and another set of integer variables are optimized. This process is repeated until

all variables are fixed [16].

This method was applied in a animal feed industry by [17], mentioned before, where the

results are discussed and compared with the classic MIP solvers and with the current company’s

planning strategy.

2.2.1.2 Fix-and-optimize (FO)

The fix-and-optimize heuristic uses another approach to resolve MIP models. It also operates in

an iterative fashion to solve a series of sub-problems that are derived from the main MIP model.

In each iteration, most binary variables are set to a fix value and the resulting sub-problem is then

solved by a MIP solver. A different set of binary variables are left "free" to optimize in every

iteration until all the variables are optimized [18].

2.2.1.3 Local search

Local Search (LS) is one of the oldest and simplest heuristics method. It starts at a given initial

solution and at each iteration the algorithm replaces the current solution by a neighbor solution. A

neighbor is generated by the application of an operator that performs a small perturbation to the

current solution. Three methods can be used to choose the next solution:

• Best improvement (Steepest ascent): All the neighbors are calculated and the best solution

is chosen to replace the current one.

• First improvement: Neighbors solutions are generated until one is better than the current

solution that then replaces it.

• Random Selection: A random neighbor is selected from those improving the current selec-

tion.



16 Literature review

This search stops when all candidate neighbors are worse than the current solution, so a local

optimum is reached. In the case that the objective function is a minimizing one, LS may be seen

as a descent walk in the graph representing the search space. Next it is presented the pseudo-code

for the steepest ascent LS variant.

Algorithm 1: LS (steepest ascent) pseudo-code.
Data: s = s0;/∗ InitialSolution∗/

1 while (Termination Criteria no satisfied) do
2 Generate (N(s)); /*Generation of candidate neighbors*/

3 if (No better neighbor) then
4 Stop;

5 else
6 s = s’; /* Best neighbor s’ */

7 end
8 end
9 Output: Final solution, local optima

In general, LS is an easy method to design and implement, but one of its main disadvantages

is that it normally converges toward local optimal solutions. Therefore more complex methods,

presented below, are needed to avoid that the algorithm gets trapped in local optima.

2.2.2 Metaheuristics

Metaheuristics are a higher-level procedure designed as strategies to guide a search process that

may provide a sufficiently good solution to an optimization problem. Metaheuristics work with a

set of solutions which is usually too large to be completely sampled.

An analysis on the various methods was made by [19], among the metaheuristics discussed

are Tabu Search; Simulated Annealing; Genetic Algorithms; Memetic Algorithms that will be

described below in more detail. The review of the metaheuristics in this section is based on [9].

2.2.2.1 Tabu search

Tabu search (TS) is a method to solve optimization problems, firstly proposed by [20]. It works

as a steepest ascent LS algorithm but it uses a list to store past solutions, it also accepts non-

improving solutions to escape from local optima when all the neighbors are worse than the current

solution.

To avoid cycles, TS discards the neighbors that have been previously visited, managing a

memory of the solutions recently applied, which is called tabu list. The tabu list may be too re-

strictive so an aspiration criteria is created in a way that tabu solutions can eventually be accepted.



2.2 Heuristics and metaheuristics 17

Then the admissible solutions are the non-tabu ones or that hold the aspiration criteria. The TS

pseudo-code is presented next:

Algorithm 2: TS pseudo-code.
Data: s = s0;/∗ InitialSolution∗/

1 Initialize the tabu list;

2 while (Stopping criteria not satisfied) do
3 Find best admissible neighbor s’;

4 s = s’;

5 Update tabu list, aspiration conditions;

6 end
7 Output: Best solution found

2.2.2.2 Simulated annealing

The simulated annealing (SA) concept, applied to optimization problems, was first introduced by

[21]. SA is based on the principles of statistical mechanics, where the annealing process requires

heating and then slowly cooling to obtain a strong crystalline structure. This analogy is represented

in the Table 2.1.

Table 2.1: Analogy between the physical system and the optimization problem.

Physical System Optimization Problem
System state Solution

Molecular positions Decision variables
Energy Objective function

Ground state Global optimal solution
Metastable state Local optimum
Rapid quenching Local search

Temperature Control parameter
Careful annealing Simulated annealing

The algorithms works using an random LS strategy. At each iteration a random neighbor is

generated, and moves that improve the actual solution are always accepted. However in SA, if the

neighbor is not better it can be selected with a given probability (2.29) that depends on the current

temperature (T) and the difference to the actual solution (∆E). If the starting temperature (T0) is

very high the search will be like a random LS. Otherwise, if it is very low, it will behave like a first

improvement variant LS. Hence, a balance is needed between these two extreme procedures.

P(∆E,T ) = e−
∆E
T (2.29)

Acceptance probability function: Main element of SA that enables non-improving neigh-

bors to be selected.



18 Literature review

The cooling schedule: Defines the temperature at each step of the algorithm. Essential to the

efficiency and effectiveness of the algorithm.

The following algorithm describes the SA search process:

Algorithm 3: SA pseudo-code.
Data: s = s0 /* Initial Solution*/

T = Tmax /* Start temperature*/

1 while (stopping criteria not satisfied ( T < Tmin)) do
2 while (Equilibrium condition not satisfied (fixed temperature)) do
3 Generate random neighbor s’;

4 ∆E = f(s’) - f(s);

5 if (∆E < 0) then
6 s = s’ /*accept the neighbor solution*/

7 else
8 Accept s’ with probability (e−

∆E
T );

9 end
10 end
11 T = g(T); /*Temperature update*/

12 end
13 Output: Best solution found

2.2.2.3 Genetic algorithms (GA) methods

Genetic algorithms are a family of computational methods inspired by the evolution theory. These

algorithms encode a potential solution to a specific problem on a simple chromosome-like data

structure, and apply recombination operators to these structures in order to optimize the solution.

Five main phases are considered in a standard genetic algorithm [22]:

Initial Population: The process begins with a set of individuals which is called a population.

Each individual represents a solution to the problem and it is generated randomly.

Fitness score: The fitness function determines how good a solution is. It gives a fitness score

to each individual. The probability that an individual will be selected for reproduction is based on

its fitness score.

Selection: The idea of selection phase is to select the fittest individuals and let them pass their

genes to the next generation. Two pairs of individuals (parents) are selected based on their fitness

scores. Individuals with high fitness have more chance to be selected for the crossover.

Crossover: Crossover is the most significant phase in a genetic algorithm. For each pair of

parents to be mated, a crossover point is chosen at random from within the genes. The individual

is created by exchanging the genes of the parents among themselves using a crossover point. That

new solution is then added to the population.



2.2 Heuristics and metaheuristics 19

Mutation: In certain new individuals formed, some of their genes can be subjected to a mu-

tation with a low probability. Mutation occurs to maintain diversity within the population and

prevent premature convergence.

The pseudo-code algorithm with all this phases is presented below:
Algorithm 4: GA pseudo-code [23].

Data: Set pop-size, max-gen, gen = 0, cross-rate, mutate-rate

1 initialize population;

2 while maxgen≥ gen do
3 evaluate fitness;

4 for i← 1 to pop-size by 1 do
5 select(parent1, parent2);

6 if (random(0,1) ≤ cross-rate) then
7 child = crossover(parent1, parent2);

8 end
9 if (random(0,1) ≤ mutate-rate) then

10 child = mutation();

11 end
12 end
13 end
14 Output: Best solution found.

A variant of the GA are biased random-key genetic algorithms (BRKGA), introduced by [2],

where one of the parents used for mating is biased to be of higher fitness, called the elite indi-

viduals, a pe fraction of the population with the best solutions. The transition process from the

previous generation to next in the BRKGA method is represented in the Figure 2.1. BRKGA also

uses an parameterized uniform crossover, in which for each gene has the probability (1 - pe) of

inheriting the value from the elite parent instead of the non-elite one. In this way, the offspring is

more likely to inherit characteristics of the best parent.

A BRKGA heuristic was presented by [24] for the production scheduling problem. The meth-

ods shown good results getting the best-known solution for 73 % of the instances. The BRKGA’s

flowchart is represented in the Figure 2.2, which is very similar to the standard GA.



20 Literature review

Figure 2.1: Transition between generations in BRKGA [2].

Figure 2.2: BRKGA’s flowchart [2].

2.2.2.4 Memetic algorithm

The term ‘memetic algorithms’(MAs) was introduced in the late 80s to define a family of meta-

heuristics that have as central theme the hybridization of different algorithmic approaches for a

given problem. The memetic algorithms can be viewed as a merge between a population-based

global algorithm and a local search made by each of the individuals. They are a special kind of

genetic algorithms with a local hill climbing.

In a memetic algorithm the population is initialized at random or using a constructive heuristic.

Then, each individual makes a local search to improve its fitness. Like generic GA’s, individuals

with higher fitness are more likely to be selected to pass their genes to the next generation. The



2.3 Lot-sizing and scheduling in the animal feed industry 21

role of the local search in memetic algorithms is to locate the local optimum more efficiently then

genetic algorithms, using less randomness.
Algorithm 5: Memetic algorithm pseudo-code [23].

Data: Set pop-size, max-gen, gen = 0, cross-rate, mutate-rate

1 initialize population; while max-gen > gen do
2 apply GA;

3 apply local search;

4 gen = gen + 1;

5 end
6 apply final local search to best chromosome;

2.3 Lot-sizing and scheduling in the animal feed industry

This work also addresses the production planning of an animal feed company, in the studied case,

the optimization problem occurs in planning the schedule for a mixer’s use.

Product changes are frequent in this industry, typically about 30–40 per week, and can be

grouped into several families. Products within the same family do not contaminate each other

and have negligible changeover times and identical processing times. A complicating feature

of the animal feed industry is that some product families can contaminate others if produced in

successive batches so the production line must be cleaned, resulting in substantial setup time.

Thus, the production scheduling in this industry, has the objective of minimizing the amount of

cleanings necessary in the production plan.

2.3.1 Non-triangular setup times

Triangular sequence-dependent setup times occurs when it is always faster to perform the se-

quence from product p to r directly than via a third product q. However, in the animal feed and

other industries, typically such cleanings can sometimes be avoided by introducing a single lot

of an intermediate product from other family, between the two problematic products, since the

triangular inequality does not hold. which is called non-triangular setup times [3]. This concept

is represented in the Figure 2.3.

Figure 2.3: Triangular and non-triangular setup [3].



22 Literature review

2.3.2 Integration problem in animal feed industries

[17] conducted a research on the production planning of a Brazilian animal feed compound com-

pany, that works with one mixer. To decide lot sizes and sequences in each period, two MIP

models were designed based on the GLSP. The first for independent sequences, where a cleaning

is made during non-productive time between periods, therefore not requiring initial setup in the

beginning of the period. The second for depedent sequences where the production is active 24h

a day, eliminating the non-productive time between periods. This last one being more complex

since the sequence has to be optimized over multiple periods rather than over a single period.

Another approach was made by [25], where the production system studied was constituted by

one mixer in the first stage, a pelletizer, an extruder and a bulk machine, with each one having one

or more silos. The production planning sequences the batches on the mixer and also assigns each

product to a silo. Here a MIP model is formulated as an extension of the GLSP.

A more extensive study on the integrated lot sizing and scheduling problem in the animal feed

compound industry is presented by [26]. Using a case study in a company of the sector, two ap-

proaches are proposed to model and solve the problem. The first is based on GLSP with sequence

dependent setup times. The other consists of modeling the lot sequencing problem as an asy-

metric travelling salesman problem (ATSP). For each method is proposed two company strategies

related to the cleaning of the production line already mentioned before, the first for Independent

Sequences, and the second with Dependent Sequences (setup carryover). The instances presented

in the appendix of [26] will be used in a computational experiment later and their respective results

compared to the method proposed.



Chapter 3

Problem Definition

The objective of this chapter is to provide a clear definition on the problem that is addressed by

this thesis. First, all the parameters needed for the lot-sizing and scheduling integration problem

are presented, focusing then on the specific case of an animal feed industry.

3.1 Integrated production planning

The integrated production planning considered in this work consists of a set of N products, and

a planning horizon of T macro-periods, each one containing N micro-periods. Every product has

a production time that, alongside the setup times calculated, have to respect the capacity(time) of

each macro-period. The main decision of the planning is to decide the production quantities X js

for each micro-period s, in order to answer the demand that is represented with a matrix N×T that

has the needs d jt for every product j in macro-period t. The setup costs and time values, between

each product, are represented by a matrix N×N.

Table 3.1 presents an example of a production plan solution for a timespan of 5 days, consid-

ering 5 distinct families (Fam) of products and showing the quantity (Quant) to be produced for

each product.

Table 3.1: Example of a Production Plan.

Order
Period 1 Period 2 Period 3 Period 4 Period 5

Fam Quant Fam Quant Fam Quant Fam Quant Fam Quant
1 2 10 4 8 1 4 4 5 5 6
2 5 3 2 4 3 12 2 8 4 1
3 3 8 5 6 2 5 1 5 2 1
4 1 5 3 2 5 1 3 1 3 10
5 4 7 1 9 4 2 5 8 1 7

23



24 Problem Definition

3.1.1 Animal feed industry problem

As mentioned before, in the case of an animal feed industry the setups are constant since they

always represent a cleaning that is necessary if two products produced consecutively can contami-

nate each other. The following figure represents this setups costs in a framework with 11 different

family products:

Figure 3.1: Animal feed setups matrix.

The animal feed industry contacted during the development of this thesis, works with an addi-

tional parameter where each product, in addition to being part of a family with possible setup costs

with others, also has a set of 9 attributes. This attributes can lead to cleanings as well, according to

a matrix 9×9. So both setups sources need to be combined to produce the full setup costs matrix

for all the production products.

3.2 Model proposed for the case studied

The model proposed to represent the problem addressed in this study is based on the GLSP. How-

ever, it brings additional features not considered in the standard GLSP.

In the scenario studied the following additional costs are take into account, that are not pre-

sented in the GLSP models presented before:

• Backlog costs: possibility of having backlog, if the demand could only be answered after

the deadline date.

• Overtime costs: the production capacity can be exceeded with additional costs associated

When the demand surpasses the production capacity the model has the objecive to find the

right balance between overtime and backlog costs.

Adding this new properties to the original GLSP, a new version of the model was constructed,

presented below. This will serve as a reference to test the data used and compare the results with

the algorithms that were developed in this thesis.



3.2 Model proposed for the case studied 25

Data:

Sets :

i, j = 1, .....,P Number of products

t = 1, .....,T Number of macro-periods

r = 1, .....,R Number of raw-materials

St Set of micro-periods s belonging to macro-period t.

InitialState :

I0 j Initial inventory of product j

B0 j Initial backlog of product j

Time :

Ct Production capacity of period t

Pj Production time of product j

si j Setup time in a changeover from product i to product j

ot Overtime limit in period t

Quantity :

m j Minimum lot size of product j

M jt Maximum lot size of product j in period t

d jt Demand of product j in period t

Costs :

sci j Costs of setup change from product i to product j

h j Holding costs of product j

bc j Backlog costs of product j

oct Overtime costs on period t

Decision variables:

x js ≥ 0 Production of product j in micro-period s

Ot ≥ 0 Overtime used in period t

I jt ≥ 0 Inventory of product j in the final of period t

B jt ≥ 0 Backlog of product j in the final of period t

zi js ∈ {0,1} Changeover from product i to product j in micro-period s

y js ∈ {0,1} Setup ready for product j in micro-period s



26 Problem Definition

min
J

∑
j=1

T

∑
t=1

h jI jt +
J

∑
j=1

T

∑
t=1

B jtbc j +
T

∑
t=1

Otoct +
J

∑
i=1

J

∑
j=1

T

∑
t=1

St

∑
s=1

sci jzi js (3.1)

Subject to:

I jt−1 +B jt +
St

∑
s=1

x js = I jt +B jt−1 +d jt ∀ j, t (3.2)

B j0 = B0 j ∀ j (3.3)

I j0 = I0 j ∀ j (3.4)
J

∑
j=1

St

∑
s=1

x jsPj +
J

∑
i=1

J

∑
j=1

St

∑
s=1

zi jssi j ≤Ct +Ot ∀t (3.5)

Ot ≤ ot ∀t (3.6)

x js ≤M jty js ∀t,s, j (3.7)
J

∑
j=1

y js = 1 ∀t,s ∈ St (3.8)

J

∑
j=1

zi js = yis−1 ∀t,s ∈ St , j (3.9)

J

∑
i=1

zi js = y js ∀t,s ∈ St , j (3.10)

x js ≥ m j(y js− y js−1) ∀t,s ∈ St , j (3.11)

The objective function (3.1) consists in minimizing the holding costs of the products, the back-

log of the demands, the overtime and the setup costs for the changeover between products. Inven-

tory balances are made in Constraints (3.2). Initial inventory and backlog are set in Constraints

(3.3) and (3.4) respectively. Production capacity constraints are represented in Constraints (3.5).

The limit of overtime are defined in Constraints (3.6) and in (3.7) it is ensured that the setup is in

the right state to produce a product. Constraints (3.8) establishes that the mixer can only have one

setup state. Constraints (3.9) and (3.10) are needed establish changeovers between micro-periods.

Lastly, Constraints (3.11) force that something is produced when a change of products is made.



Chapter 4

Iterative method

In this chapter a novel iterative solution method is detailed. Firstly, we show why the GLSP model

is intractable to solve large scale instances. Then the iterative algorithm conceived is detailed.

It consists of two phases, the tactical level and the operational level. In each iteration, feedback

based on the past solutions is used from the previous iterations to construct new constraints. These

new constraints are added to the tactical level model and are based on capacity used and setup

costs, later in the chapter these restrictions formulation is detailed.

4.1 Computational intractability of the GLSP model

The GLSP variant model presented in Chapter 3 is able to solve integrated lot-sizing and schedul-

ing problem, however if it has a significant number of macro-periods and different families of

products, the amount of constraints and variables of the MIP model increases exponentially. As

pointed by [6], this problem is NP-hard, since it cannot be solved in polynomial time. The

amount of binary variables zi js necessary to represent the changeover from one product to another

in a micro-period, is equal to N×T ×N×N, leading to 2N×T×N×N possible solutions, hence the

number of solutions increases exponentially with the number of different products and periods.

To portray this issue we present three different examples with low, medium and high number

of parameters (N products and T macro-periods) and the respective number of integer values (V)

and constraints(C) for the standard GLSP represented in Section 6.2. The resulting running time

for each example is then showed, using the same computational power conditions.

• N = 5, T = 3→ Constraints = 558 Variables = 540⇒ Running time = 0.66 sec

• N = 10, T = 3→ Constraints = 3663 Variables = 3630⇒ Running time = 111.87 sec

• N = 15, T = 5→ Constraints = 19280 Variables = 19200⇒ Running time = 1091.48 sec

The exponential number of constraints and variables of the GLSP model, makes it highly

intractable, which becomes impractical for the companies to use this model for cases with several

products and long planning horizons.

27



28 Iterative method

This comes from the fact that integrating the scheduling with the lot-sizing problem substantial

increases the complexity of the problem. It is easy to see that if you only take into account the

lot-sizing problem, the running time and the number of binary variables decrease substantially as

showed below:

• N = 5, T = 3→ Constraints = 33 Variables = 45⇒ Running time = 0.05 sec

• N = 10, T = 3→ Constraints = 63 Variables = 90⇒ Running time = 0.18 sec

• N = 15, T = 5→ Constraints = 155 Variables = 225⇒ Running time = 0.58 sec

This will be the base for the idea of the iterative algorithm.

4.2 Introduction to the ILSP

The solution method proposed to solve the integrated lot-sizing and scheduling problem consists

on an iterative lot-sizing and scheduling planning (ILSP). This approach is based on the iterative

strategy, represented in Figure 4.1, already discussed in Section 1.1.2.

Figure 4.1: Iterative strategy for production planning and scheduling [1].

We consider that this intuitive phased algorithm would be easy to implement in large produc-

tion company’s with significant sequence-dependent setups costs.



4.2 Introduction to the ILSP 29

The method consists on solving both lot-sizing and scheduling separately and, with the addi-

tional information of the solution found, start a new iteration. This is repeated until the solution

converges or can no longer be improved.

Following the conclusions made before, only the tactical level is solved first, since it requires

far less computational time, using a big-bucket linear programming model. The lot-sizes to be pro-

duced are then transmitted to the operational level, where a scheduling optimization is executed,

for this, phase local search strategies are used, since, having the products to be produced and their

respective setup costs defined, it becomes a simple optimization problem. The solution found will

result in feedback for the next iteration of the tactical level.

This feedback is made using two parameters. Adding the setup times, the new capacity used

is analyzed and, if it now surpasses the company’s limit, that information is saved for the next

tactical level iteration. If expensive setup costs are inevitable after the operational level, a new

cost to the products creating them are added to next tactical level iteration.

This cycle was defined to be stopped when 5 consecutive iterations fail to improve the current

best solution.

The ILSP algorithm is represented in Figure 4.2:

Figure 4.2: ILSP method.



30 Iterative method

4.3 Tactical level

Firstly, the ILSP uses a simple linear programming model, represented below, to solve the tactical

planning sub-problem. This tactical model (ILSP-Tactical) is based on the CLSP model previously

mentioned in section 4.3. In the model it is considered the possibility of having backlog and

overtime.

Data:

j = 1, .....,J Number of products

t = 1, .....,T Number of periods

Ct Capacity (time) available in period t.

Ot Overtime (time) available in period t.

p j Capacity consumption (time) needed to produce one unit of product j.

h j Non-negative holding costs of product j.

oct Overtime costs for product family j.

bc j Backlog costs for product family j.

d jt Demand of product j in period t.

I j0 Initial inventory of product j at the beginning of the planning horizon.

Decision variables (Model’s output):

I jt ≥ 0 Inventory of product j at the end of period t.

B jt ≥ 0 Backlog of product j at the end of period t.

Ott ≥ 0 Overtime used in period t.

q jt ≥ 0 Production quantity of item j produced in period t.



4.4 Operational level 31

min
J

∑
j=1

T

∑
t=1

(I jth j +B jtbc j)+
T

∑
t=1

Ottoct (4.1)

Subject to:

I jt−1 +B jt +q js = I jt +B jt−1 +d jt ∀ j, t (4.2)
J

∑
j=1

p jq jt ≤Ct +Ott ∀t (4.3)

Ott ≤ Ot ∀t (4.4)

For the ILSP-Tactical, the objective function (4.1) takes into account the three possible costs in

the production studied: holding Inventory, backlog and overtime. Constraints (4.2) represent the

typical inventory balances combined with the backlog possibility. Capacity of each macro-period

is controlled by constraints (4.3) and the maximum overtime is limited in Constraints (4.4).

For a simple production planning of 5 families of products and 3 macro-periods, a tactical

level solution can be represented as:

Table 4.1: Example of tactical level solution.

Period 1 Period 2 Period 3
Fam Quant Fam Quant Fam Quant

1 10 1 8 1 4
2 3 2 4 2 12
3 8 3 6 3 5
4 5 4 2 4 1
5 7 5 9 5 2

4.4 Operational level

After obtaining an tactical solution, the next step of the ILSP is to optimize the production se-

quence. First, a good initial solution is generated and then local search techniques are used to

improve the solution. This process is represented in Figure 4.3.



32 Iterative method

Figure 4.3: Operational level algorithm.

4.4.1 Generate initial solution

Firstly, the algorithm 6 generates initial solutions for each macro period, considering a new pa-

rameter, setups2 j, that represents the sum of the setup costs of a product when it is the second

in every setup pair. This parameter will be important to choose the products in the making of an

initial good sequence solution.

The concept of the algorithm is that the product from the first period in the tactical level

solution that requires the most setups, setups2 j, is chosen as the initial one, then the next product

to be placed in the sequence is always the one that creates the less setup costs. This is repeated

until the total production sequence is defined. Since in the cases addressed it is possible that two

products can not ever be produced consecutively, a new restriction is necessary where, in the case

that the last products in a period have this condition, the sequence creation is stopped. Then a

different product from the tactical solution is chosen as the initial one to again start the algorithm.

This strategy was chosen in order to reduce the running time in the local search phase since it

represents an already good starting solution to it and requires low running time.



4.4 Operational level 33

Algorithm 6: Generate an operational solution pseudo-code.
Data:

1 sci j; /*Matrix of setup costs from product i to j*/

2 setups2 j = sum(sci j); /* Sum of setup cost for product j*/

3 plant ; /*Tactical plan with products for each period t*/

4 opt,s; /*Operational plan with the sequence of the products for each period t */

5 ptried ; /*list of products already tried as the initial product*/

6 while (size(ptried) < total number of products do
7 op0,0 = j ∈plant with max(setups2 j) if j not in ptried ; /* Choose the product that

needs the more setups for the initial one in the first macro-period, that has not been

tried yet*/

8 for t← 0 to T by 1 do
9 for s← 0 to length(plant) by 1 do

10 if (Every product left can’t be produced after ops−1) then
11 ptried .add(op0,0);

12 break; /* Go the next iteration of the while cycle*/

13 else
14 opt,s = j in min(scps−1 j) if j ∈plant with plant and not in the solution

yet; /* the next product to be chosen is the one that creates the less

amount of setup costs for the previous product*/
15 end
16 end
17 end
18 break; /* The whole plan has been defined*/

19 end
20 Output: op /* Sequence of production*/

For the special case of an animal feed industry addressed in this work, one part of the algorithm

is modified. As mentioned before, in this production sector the setup costs represent cleanings,

that are needed in the mixer if a product is produced after another specific type that contaminates

it.

Therefore in line 14, instead of choosing the minimum setup cost, we choose one product

that doesn’t require cleaning if possible. However there may be various situations where there are

several products still to place in the sequence that does not force a cleaning in the mixer. In order

to better optimize the sequence, a strategy around the setup costs was chosen to decide which

one of the products is to be placed. This is done using another parameter, setups1 j, that now

represents the sum of the setup costs of a product when it is the first in every setup pair. The

product chosen is the one that creates the necessity of cleaning in the less amount of products still

to produce, min(setups1 j). The goal is that more problematic types of products are placed at the



34 Iterative method

end of the sequence, so less cleanings are needed and those products become easier to identify

later to create the feedback information. Also being dependent sequences with setup carryover for

the next period, the last mixer state, for a problematic product, can be passed by to the next period

and avoid a cleaning, if that same product is to be produced in that period.

So line 14, used to decide the next product after a product i, is changed to:

opt,s = j ∈ plant ,with min(setups1 j) ∀ j that scopt,s−1, j = 0

4.4.2 Local search heuristic

After that, to optimize the initial solution, a local search (LS) heuristic is used for each macro-

period with the following characteristics:

• Neighborhood: For each iteration the neighbors of the current solution are evaluated. To

create each one of the neighbors, two products positions in the sequence are swapped,

demonstrated in Figure 4.4.

• First improvement: In each iteration the first neighbor that improves the best solution is

chose as the new solution. This first improving technique was chosen, instead of the steepest

descent one, since for extensive production problems, creating all the neighborhood for each

iteration quickly becomes intractable.

• Stopping criteria: The local search ends when all the neighborhood solutions are worst

than the current one so a local optimum was reached.

In Figure 4.4, it is demonstrated how the neighbours are defined. Each arrow represents a

switch between the two products that originates a different scheduling solution. Using a simple

example of a sequence with four products, the first one is swapped with every subsequent product

after it, then the second is placed in every position ahead of it and so on consecutively. Therefore

there is no duplicated position swaps in the neighborhood.



4.4 Operational level 35

Figure 4.4: Neighborhood creation strategy in Local Search.

4.4.2.1 Non-triangular instances

In the case of non-triangular instances, an additional type of neighbor solutions are formulated in

the local search heuristic. For each product, a single lot with the minimum production quantity

allowed is placed in a different position in order to test if it is able to reduce the setup costs. This

is possible in the case of non-triangular production setups, since high setup costs can be avoided

by producing an intermediate product. This process is represented in Figure 4.5.

Figure 4.5: Additional neighbor creation strategy for non-triangular instances.



36 Iterative method

Having the example in Table 4.1 as input for operational level, the output of the algorithm is

represented in Table 4.2.

Table 4.2: Example of operational level result.

Order
Period 1 Period 2 Period 3

Fam Quant Fam Quant Fam Quant
1 2 10 4 8 1 4
2 5 3 2 4 3 12
3 3 8 5 6 2 5
4 1 5 3 2 5 1
5 4 7 1 9 4 2

4.5 Feedback from operational level to tactical

As mentioned before, the integration of both levels of the ILSP comes with a feedback given

from the operational phase to the next iteration of the tactical phase. After the optimization of the

sequence it is registered the capacity used and where in the plan still are found significant setup

costs. This information are incorporated in the tactical level of the next iteration.

The operational level, at the end of the scheduling optimization, sends two type of feedback

back:

• Capacity: Adding the setup times in the operational level, the amount of capacity time used

above the limit or free time in each period is sent to the next tactical level iteration.

• Setup costs: The products that created significant setup costs, unavoidable during the oper-

ational level, have an additional cost in the next tactical level iteration.

The formulation of this tactical level inputs are described in detail in the next subsections.

4.5.1 Capacity feedback

Although the ILSP-tactical model presented in section 4.3 takes into account the capacity limits

presented in constraints 4.3, it does not acknowledge the setup times needed since the sequence is

not being defined. Therefore it is common that the model estimates that the capacity is respected

but after the sequence is optimized, adding the setup times, that can no longer be true.

The capacity feedback is accomplished by changing the capt and ott limits in the ILSP-tactical

model. Having the optimized sequence, initially the capacity time used for each period is calcu-

lated with the following formulation:

usedt = ∑
j

p jq jt +∑
i

∑
j

sti jzi jt ∀t (4.5)



4.5 Feedback from operational level to tactical 37

Then it is registered where usedt is in the capacity limits. There are 2 possible situations that

could take place in each macro-period t:

• usedt < capt:

If the capacity used is less than the limit in macro-period t, the new capacity in the next

iteration of the tactical level is increased and the overtime boundary is decreased by the

same amount.

new capt = capt + (capt - usedt)

new ott = ott - (capt - usedt)

• usedt > capt:

If the capacity used exceeds the limit and requires overtime, the inverse of the previous case

happens, with the new capacity and overtime being adjusted.

new capt = capt - (usedt -capt)

new ott = ott + (usedt - capt)

The goal of this approach is to adjust the capacity and overtime limits according to the results

of the scheduling phase. The total time available in the tactical level doesn’t change but as the

portions of the standard capacity and the overtime vary, the model tends to put more products in

periods with less overtime in order to avoid overtime costs.

4.5.2 Setup costs feedback

For the setup costs feedback two different approaches were developed. The first, ILSPnR, allows

the tactical phase to choose when to produce the products that were resulting in high setup costs.

The second, ILSPR determines the macro-periods for the problematic products that reduce the

setup costs and forces them to be produced at these periods in the tactical level.

4.5.2.1 ILSPnR - Feedback from setup costs without resolution

As mentioned before, at the end of the sequence optimization in the operational level it is possible

setup costs could not be avoided. The Table 4.3 shows an example of an optimized sequence that

still presents a cleaning between product 8 and 1.

Table 4.3: Example of a production sequence with a cleaning.

Day Order
2 4 7 1 9 4 2 5 8 cleaning 1 7

For this first proposed method, ILSPnR, it is only analyzed in which periods t an inevitable

expensive setup costs will occur for a product j. In productions where all changeovers require a



38 Iterative method

setup cost, to determine this expensive setup costs after the scheduling optimization, all the setup

costs are sorted and the biggest hsc are considered, where hsc is a small portion of the total number

of setup costs. In productions with constant setup costs, as it is in the animal feed case analyzed

with the cleanings process, all the setups costs after the operational level are considered.

To incorporate this information in the tactical level, a new production cost pc jt is added to the

ILSP-Tactical model for products j that present the considered hsc setups or cleaning in period t.

This new parameter is updated at the end of every iteration if this big setup costs are found:

pc jt = sci j (4.6)

An additional variable y jt is created that determines if product j is being produced in period t

and the objective function is also updated to add this new costs:

y jt ∈ {0,1} 1, if product j is produced in period t( = 0 otherwise).

min∑
j
∑

t
(I jth j +B jtbc j)+∑

t
Ottoct +∑

t
∑

j
y jt pc jt (4.7)

Therefore the ILSP-Tactical model can still place the problematic product in the same period if

putting it in any one of the others creates more costs than the setup ones. But this strategy enables

the model to acknowledge inevitable setup costs.

4.5.2.2 ILSPR - Feedback from setup costs with resolution

The previous method only determines where the inevitable hsc setups are and gets that information

to the Tactical Level in order for the model to have that costs into consideration.

One step forward for this strategy is the second method proposed, ILSPR. It locates in which

different macro-period the problematic product can be placed that will create the less costs and

then forces the tactical level to follow that solution.

This is accomplished by using the local search based algorithm 7. The idea is that for every

hsc setup or cleaning considered, the products that are causing the setup cost are moved to every

possible position in other macro-periods sequences, creating new solutions. The evaluation of

the solution also takes into account the capacity, holding inventory and backlog costs, since the

products are being moved to new macro-periods and the ones that improve the initial sequence is

stored in a list. Then a steepest ascent approach is employed, in which the best solution of the

list replaces the initial solution, and the parameters of the setup avoided: product type, old macro-

period and new macro-period are stored. This process is repeated for all the remaining hsc setup

costs, considering the new best solution as reference, until all of them are resolved or no better

solution is found.



4.5 Feedback from operational level to tactical 39

Algorithm 7: Find solutions for high setup costs pseudo-code.
Data:

1 Nhsc← number of hsc setup costs found from i to j in macro-period t;

2 sc setup cost with the parameters: t period, i first product and j second product;

3 osolutiont,s; /*optimized sequence solution for each macro-period t*/

4 nsolutiont,s; /*new solution for each macro-period t*/

5 Lsolutions← empty list of new solutions, with the product and position changed;

6 St Production sequence for macro-period t;

7 while Nhsc > 0 do
8 for sc← 0 to Nhsc by 1 do
9 for t← 0 6=sct to T by 1 do

10 for s← 0 to St by 1 do
11 nsolution = osolution

12 delete nsolutionsct ,scs /* Take out product j from the period sct where he is

creating a hsc setup cost */

13 nsolutiont,s = sc j; /* Put product j from period sct in period t and position s

*/

14 if (nsolution. f itness < osolution. f itness) then
15 Add [nsolution, j,sct ,t] to Lsolutions;

16 end
17 end
18 end
19 if lenght(Lsolutions) = 0 then
20 break; /*None of the products position movements improved the solution */

21 Store j,sct and t for the best solution in Lsolutions;

22 osolution = best solution in Lsolutions; /* the new solution where the remaining hsc

setup costs are going to be analysed is the best from the previous iteration*/
23 end
24 Output: Setup costs resolved.

In the end of the algorithm, the information stored for each product position moved is passed

on to the tactical level. For this it is introduced two new variables in the ILSP-Tactical model:

maxq jt maximum quantity of product j that can be produced in period t.

minq jt minimum quantity of product j that needs to be produced in period t.

And an additional constraint that controls the production quantities:



40 Iterative method

minq jt ≤ q jt ≤ maxq jt ∀ j, t (4.8)

The first variable, maxq jt , is used to prevent the ILSP-Tactical model to produce the product j

in period t, by setting it to 0. Therefore if algorithm 7 determines that the plan can be improved by

moving product j, that is creating a hsc setup cost in period sct , to another period, the assignment

in 4.9 and 4.10 is made, in which min jt is also set to 0 to assure feasibility if previous assignments

where made for the same product.

maxq j,bst = 0 (4.9)

min j,bst = 0 (4.10)

The new variable min jt forces the tactical model to produce a minimum quantity of product

j defined by algorithm 7. To ensure that this product j is produced in period t, the quantities of

that product from periods sct and t have to be taken into account. Again to ensure feasibility, the

maxq j,bst is set to the maximum lot-size M j. Thus the next formulation is used:

min j,bst = q jt +q jbst (4.11)

maxq j,bst = M j (4.12)

It is important to notice that in this case, unlike method ILSPnR, it is possible to force the model

to produce in certain periods, since the algorithm 7 already considered the additional costs caused

from moving the product to an other macro-period and determined that it improves the solution.

This method can obtain a good solution faster but it reduces the solution space of the ILSP-Tactical

model, which may lead to a local optimum solution.



Chapter 5

Computational Experiment

In this chapter it is presented the results of the computational experiment, necessary to evaluate and

validate the performance of the method proposed. It also serves as study on the various methods

chosen to solve the integration of lot-sing and scheduling. This methods are presented in the

first section, among them are a GA adapted to this problem and a hierarchical approach method

that were developed to serve as a reference to the model proposed. Then in the second section

a demonstration and validation of the ILSP method is featured, using an example dataset. Lastly

the three main computational studies are detailed, first using instances found in the literature that

were decided as references to this research and then using data from a real animal feed company,

who was approached in the making of this work.

All the solution method’s algorithms were implemented using the programming language

Python 3.6. To solve the mixed integer programming models we used IBM ILOG CPLEX 12.6

Python API, that solves mathematical models using a algorithm based on branch cut. Every com-

putational experiment were performed on a Intel i7 @ 2.70 GHz processing unit with 16 GB of

RAM.

5.1 Alternative methods

In this section we detail the methods that will be used in the computational experiment in compar-

ison with the iterative method. First a GA developed for the lot-sizing and scheduling integration

problem is presented. Then a hierarchical strategy algorithm is explained.

5.1.1 Genetic algorithm

To represent the meta-heuristics solution methods, a GA was developed. This method was chosen

based on the approaches found in the literature, in which several authors successfully applied

genetic algorithms for the integrated lot-sizing and scheduling problem.

41



42 Computational Experiment

5.1.1.1 Solution representation

To represent the individuals of the GA population, a similar representation made in the ILSP was

adopted. Each gene represents the amount of production decided for a certain product so it has

two integer variables:

• Product family: Type of product to be produced

• Quantity: Number of lots to be produced

Therefore for a production with N products and T macro-periods, an individual consists of a

list of T sequences representing the production scheduling for each period t. In Table 5.1 it is

presented an example of an individual solution:

Table 5.1: GA individual.

Fam Quant Fam Quant Fam Quant Fam Quant Fam Quant
Period 1 1 4 3 3 4 5
Period 2 4 5 3 1 5 2 1 4 2 6
Period 3 2 3 4 1 1 5 5 6

To determine the fitness of each individual, the decoder designed uses a similar equation to

the objective function (3.1). According to the production quantities of each product, and the se-

quence decided for each period, the respective costs of backlog, holding inventory, setup changes,

overtime and raw material, are calculated.

5.1.1.2 First generation

To initialize the genetic algorithm is necessary to generate a first generation of individuals. In this

problem using completely random generated solutions leads to entirely infeasible solutions that

would cause the GA to take a long time to evolve to near optimal solutions. To avoid this and

have a good starting point, the ILSP-Tactical model, previously mentioned in Chapter 4, is used to

provide good estimates for the quantities that each product requires.

Afterwards, to create each individual, those production quantities are randomly sequenced in

each period.

5.1.1.3 Selection

The first step of each new generation is to select the best individuals according to their fitness

determined by the decoder mentioned before.

The GA developed uses an elitist strategy, therefore the population with size P is divided into

two groups of individuals: a smaller group of pe elite individuals, the ones with a best fitness, and

the remaining P - pe non-elite individuals. In this strategy all of the elite individuals are copied

unchanged to the next generation, this way the best solution of each generation never gets worst

than the one from the previous generation, creating a monotonically improving heuristic.



5.1 Alternative methods 43

5.1.1.4 Mutation

Mutation is an essential part of GA’s evolution, used to enable the algorithm to escape from lo-

cal optimums. Mutation is implemented by introducing mutant solutions in the next generation.

Each one of the previous generation solutions can produce a mutant solution with a predefined

probability. Two types of mutation were designed that can occur with the same probability.

The first consists on swapping two random lots from the whole production sequence as repre-

sented in the next figure:

Figure 5.1: GA mutation 1 process example.

The second is more simple where one random gene gets its quantity increased or decreased by

1. Represented in the Table 5.2.

Table 5.2: GA mutation 2 process example.

Fam Quant
Individual 1 4

Mutant 1 5

5.1.1.5 Crossover

With only the pe elite and pm mutant individuals in the next generation, it is necessary to produce

additional new individuals to complete the population size. This is accomplished by mating the

solutions from the previous generation.

To select the parents for mating it is used a technique from the BRKGA presented in Chapter 2.

Each new individual is generated combining one randomly selected element from the elite portion

and one from the non-elite portion. Repetition in the selection process is allowed and therefore

an individual can serve as a parent multiple times. To select the parents, both from the elitist and

non-elitist, each individual x is assigned with a probability of being selected, using its fitness and

the sum of all the individuals fitness ( f sum) according to the equation: x. f itness
f sum . Hence the best

solutions are more likely to be chosen and pass their characteristics to future generations.

Having both parents selected, the crossover is done by choosing one cut point from the whole

production plan of both parents as represented in Figure 5.2:



44 Computational Experiment

Figure 5.2: Cut point for crossover phase of the GA.

Using this cut point as a reference, two offspring solutions are created, by combining the two

sequences into one. For the first offspring, the beginning of the sequence is the same as the first

parent, and the rest of the products to be produced are placed in the same order in which they are

in the sequence of the second parent. For the second offspring the inverse happens. This crossover

process is represented in Figure 5.3, assuming the parents in Figure 5.2.

Figure 5.3: New solutions generated by the crossover.

5.1.2 Hierarchical strategy

Hierarchical production planning is one of the most common strategy used by companies to link

tactical production planning with operational scheduling. In this method tactical production plan-

ning is defined first and then production schedule is determined for each macro-period. This

method, presented in Figure 5.4, is the third type of solution strategy for integrating product plan-

ning and scheduling presented in Figure 1.4.



5.2 Illustrative example of ILSP 45

Figure 5.4: Hierarchical strategy framework.

To implement this strategy, the ILSP algorithm is applied but only with one iteration is con-

sidered. In order to estimate setup times spent in the tactical level, a reduced production capacity

is considered in the tactical level. Therefore, the new capacity is calculated as follows:

newcapt = limiter× capt ∀t

This limiter parameter is calculated for each specific production case.

5.2 Illustrative example of ILSP

To demonstrate how the ILSP method works, the evolution of a solution throughout the algorithm

iterations is presented. For this example, we consider the instance "month A" presented in [26]

and later in the appendix A. It consists of a production planning of 4 periods, of 26 different types

of products. The setup times are structured as a sparse matrix with two possible values (X or 0),

meaning that setup times and costs are constant so a pair of products either requires a setup or not.

5.2.1 First iteration

As explained in Chapter 4, in the first iteration a simple big-bucket model, ILSP-Tactical, is used to

estimate the productions quantities necessary for each product in every period, without considering

sequence setups. Figure 5.5 shows the production quantities for the tactical level after the first

iteration.



46 Computational Experiment

Figure 5.5: ILSP-Tactical production planning after first iteration.

The production quantities obtained by solving the tactical level are used in the operational

level to obtain the best production sequence. Figure 5.6 presents the solution structure for the

operational level considering cleaning setups, production capacity and its fitness.

The next table represent its output for this first iteration. It is also possible to see where

cleanings are necessary, the capacity limit and the one used in each period. Lastly it is also

presented the fitness of the solution, the total costs produced by the represented production plan.



5.2 Illustrative example of ILSP 47

Figure 5.6: Solution structure after the first iteration.

5.2.2 Feedback results

At the end of each iteration, feedback from the final solution of operational level is used in the

next iteration. As described in Chapter 4, this feedback has two type of information. The first is

related to capacity, so in the example shown in Figure 5.6, the feedback will have information that

both periods 3 and 4 after the scheduling optimization exceeded the capacity limit and required

overtime, and, on the other hand, period 1 had a lot of free time. The second feedback are on the

products that caused high setup costs in the previous iteration. The first method proposed, ILSPnR,

gives freedom to the tactical level to decide where to move those products and ILSPR forces these

problematic products to be produced in the best period found in the operational level.

The results of each method are shown next, for the sequence in Figure 5.6. The solution of

ILSPnR in Figure 5.7 shows that the capacity used in the periods have changed from the previous

iteration, and also that product 19 and 20 were moved from periods 3 and 4, where they were

causing cleanings, to period 2 since the production in these periods now had an associated setup

cost.



48 Computational Experiment

Figure 5.7: Solution structure after the second iteration of the ILSPnR.

For the ILSPR, a new strategy is employed to address problematic products in a sequence. This

strategy applies local search to find the best period to place a problematic product. For instance,

Figure 5.8 shows that product 20 was creating setup cleanings in both periods 3 and 4 and the

search algorithm concluded that the plan could be improved if that product is placed in period 1.

Figure 5.8: Solution structure after the second iteration of the ILSPR.



5.2 Illustrative example of ILSP 49

5.2.3 Solution convergence

Considering that the tactical level does not account for setup costs and times, its first solution

can be considered as a lower bound for the integrated problem. With the feedbacks from the

operational phase, new information related to production scheduling (capacity and setup costs) are

added to the tactical level at the end of each iteration. The new information aim at evaluating the

real costs of the "relaxed" tactical production planning and it is expected that at one point both

tactical and operations solutions converge.

The solution convergence of both ILSPnR and ILSPR for the instance "month A" is depicted in

Figures 5.9 and 5.10.

Figure 5.9: ILSPnR convergence. Figure 5.10: ILSPR convergence.

Both models reach similar solutions, but the ILSPnR converges slower than the ILSPR since it

evaluates more possible solutions to avoid setup costs.



50 Computational Experiment

5.2.4 Final solution

For the instance presented, the best solution found by the ILSPR method is depicted in Figure 5.11

Figure 5.11: Final solution obtained by the ILSPR for instance Month A.

5.3 Classical instances

For the first computational experiment, the instances presented in [11] were used.

For all the instances, the parameters values are generated randomly using an uniform distri-

bution. The parameters presented next are created in the same way for each instance, using this

limits:

• Demand: U[40-59] units

• Holding costs: U[2-9] units

• Setup times: U[5-10] units

• Processing time: 1 time unit

The setup costs are made proportional to setup times by using a cost factor θ . To define

the machine capacity, two parameters Cut and CutVar were created. Cut establishes the target

utilization over the entire planning horizon and CutVar the maximum deviation from the target

capacity utilization in each period, this last one was defined as 0.5. It is ensured that the cumulative

capacity utilization in any period does not exceed Cut to unsure problem feasibility.

The instances are generated considering the following values for each parameter:

• N = 15



5.3 Classical instances 51

• T ∈ {5,10,15}

• Cut ∈ {0.6,0.8}

• θ ∈ {50,100}

Combining this parameters, 12 different problem types were formulated with the following

designation: N−T −Cut−θ .

The solutions methods compared in this computational experiment are:

• Full-space models: GLSP

• Hierarchical method: HIER

• Metaheuristic: GA

• Iterative Methods: ILSPnR and ILSPR

Table 5.3 presents the results of the computational experiment for each one of the methods,

the production costs for the best solution found and the respective running time(s). The GLSP

model used is a variant of the one presented in Section 3.2, where neither backlog or overtime

is considered. For the capacity limit in the HIER method, the capacity reduction is calculated

considering the average setup time AVG and the number of products N, so the new capacity is

calculated as follows: capt−AV G− stime×N. For all the methods, the running time was limited

to 1 hour.



52 Computational Experiment

Table 5.3: Results for the classic instances

Instances
ILSP-nR ILSP-R HIER GA GLSP Literature

solutionCost Time Cost Time Cost Time Cost Time Cost Time Gap
15-5-0.6-50 15874 8 15687 16 15874 8 15399 83 14.605 3600 21% 17839
15-5-0.6-100 28192 77 28052 34 31872 13 27511 80 24586 3600 29% 29517
15-5-0.8-50 16024 28 15347 30 15926 11 17012 82 15.318 3600 19% 17814
15-5-0.8-100 27477 34 26734 54 29521 18 28823 80 24.210 3600 31% 30635
15-10-0.6-50 30534 199 31758 203 32625 53 33844 167 32.545 3600 41% 35270
15-10-0.6-100 60036 156 60739 156 63479 34 61993 148 52229 3600 52% 58268
15-10-0.8-50 30103 164 29968 244 30808 51 33510 143 32.002 3600 52% 35475
15-10-0.8-100 60856 97 54121 237 62657 21 61224 143 54.107 3600 63% 59197
15-15-0.6-50 48245 433 47420 670 48419 57 55427 202 53525 3600 60% 53061
15-15-0.6-100 83954 1096 86579 1604 93405 72 96774 210 76564 3600 58% 87509
15-15-0.8-50 46358 175 45299 559 46331 66 54881 217 47.946 3600 48% 53393
15-15-0.8-100 83644 703 79904 2275 91871 64 100486,1 212 79.625 3600 60% 88468

For the smaller instances, with less periods, the GLSP model reaches better solutions but re-

quires higher computational times. However, once the instances get more extensive, with more

products and periods, the solutions of the GLSP models get worst for the limited time, as demon-

strated by the gap evolution throughout the instances presented in Figure 5.12.

Figure 5.12: Gap evolution for the GLSP model.

Comparing the solutions of ILSPR and ILSPnR, the predicted results are confirmed, with the

first reaching better solutions but taking more computational time. This comparison is represented

in Figure 5.13.



5.3 Classical instances 53

Figure 5.13: Performance comparison between ILSPR and ILSPnR.

Figure 5.14 depicts the performance evolution across all instances for the ILSPR, GLSP, and the

GA, using the deviation to the best solution found in all the methods for each one. The respective

trend line is then shown in Figure 5.15. The results show that the iterative method solutions get

better for the instances with more products and periods.

Figure 5.14: Performance comparison for the GLSP, ILSPRand GA.



54 Computational Experiment

Figure 5.15: Trendline comparison for comparison for the GLSP, ILSPR and GA.

Figure 5.16 presents the average deviation to the best solution found for all the methods tested,

and the average running time.

Figure 5.16: Average results for all methods in the variable setup costs case

5.4 Animal feed instances

For the second experimental test, instances from [26] and from a real company case were used.

The instances represent problems of an animal feed company. In these problems, setup times are

calculated based on cleaning necessity, which consists of two values: cleaning required (setup

time = 1.67) and no cleaning required (setup time = 0).



5.4 Animal feed instances 55

5.4.1 Literature instances

The instances considered in this section, consist of 26 product types, and a planning horizon of

4 weeks. with a less filled demand, where some products do not have requests in various macro-

periods.

The same methods were used in this experiment, apart from the full space MIP model GLSP.

Instead, the results from the GLSP model proposed by [26] are presented. For this case, the capac-

ity reduction for the HIER method is calculated as follows: the capacity time limit is decreased by

2 cleanings, capt−2× stime, in the Tactical Level.

Table 5.4: Results of each method for the animal feed instances.

Instances
ILSP-nR ILSP-R HIER GA GLSP

Result Time Result Time Result Time Result Time Result Time
Month A 3521 10 3707 7 6276 2 5255 89 3519 360
Month B 17288 6 16870 17 18669 1 16875 79 16616 157

Figure 5.17 presents the average results and running time of each solution method for the

animal feed instances.

Figure 5.17: Average results for all methods considering the animal feed instances.

The GLSP model is able to converge and find better solutions than the iterative method but it

is exponentially slower. For these instances, both ILSPR and ILSPnR produced similar solutions,

with an significant improvement to the HIER and GA methods.

5.4.2 Real animal feed company instance

A real animal feed company was contacted in order to understand how this production planning

problems are solved in the industry. The company is based in Brazil, and has a extensive variety



56 Computational Experiment

of orders, since they produce to both large costumers, that request large quantities of products, and

local customers with smaller orders.

The company provided the data related to demand for one week, production and setup time/costs,

production capacity, minimum and maximum lot sizes and inventory costs. The demand consists

of 51 different product types, each one belonging to a group from a set of 8, each product is also

characterized by 9 attributes. Both the groups and the attributes have a matrix of cleaning neces-

sity presented in Tables 5.5 and 5.6, respectively, that are used to combine each pair of products

and create a new matrix 51 × 51 of setup costs and time for each pair of products. Some prod-

ucts can not be produced consecutively even with a cleaning between them so their setup cost is

represented by 999999.

Table 5.5: Group cleanings necessity.

Groups 1 2 3 4 5 6 7 8
1 0 0 1 0 0 1 1 0
2 1 0 999999 1 0 999999 999999 1
3 1 1 0 0 0 0 0 0
4 1 1 1 0 0 1 1 0
5 1 1 999999 1 0 999999 999999 1
6 1 1 1 0 0 0 1 0
7 1 1 0 0 0 0 0 0
8 1 1 1 0 0 1 1 0

Table 5.6: Atributtes cleanings necessity.

Atributtes 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 9999999
2 0 0 0 0 0 0 1 0 0
3 0 0 0 0 0 0 1 0 0
4 1 1 1 1 1 1 1 1 1
5 0 0 0 0 0 0 1 0 0
6 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 1 0 0
8 1 1 1 1 1 1 1 1 1
9 0 0 0 0 0 0 1 0 0

In addition to those data, the company also provided its production planning for that one week

period. Through a discussion with the company, the production planning process was concluded

to be similar to a hierarchical strategy.

In this experiment only the iterative method and the GA was used to compare the solutions,

since for the GLSP model, having 51 different product types, only for the changeover Zi js, orig-

inates 4× 51× 51× 51 binary variables, that leads to an unreasonable running time. In Figure

5.18 we compare the company’s production plan to the one obtained by the ILSPR, presenting the

respective productions costs for setups and holding inventory.



5.4 Animal feed instances 57

Both the ILSPR and the GA methods present better results than the company’s plan for the data

considered. The three method solutions are presented in this work’s appendix.

Figure 5.18: Production costs comparison between ILSPR and the company’s plan.



58 Computational Experiment



Chapter 6

Conclusion and future work

In this work a novel iterative solution ILSP method with two phases was proposed for the lot-sizing

and scheduling integration problem. The first is called the tactical level, in which a MIP model is

used to calculate the production lot sizes for each macro-period of the planning horizon. Then, in

the operational level, local search heuristic is applied to sequence the production lots obtained in

the tactical level.

These two phases are executed in consecutive iterations. At the end of each iteration, a feed-

back to the tactical level is formulated using the best solution found in the operational level. This

feedback consists on analyzing the capacity used for each macro-period after the scheduling op-

timization and balancing the next iteration capacity according to it. An additional feedback about

significant setup costs found at the end of the operational level. Two approaches were designed

for the formulation of this feedback information. The first, ILSPnR, only adds costs, for the next

tactical level, to the products in the period where they are causing the high setup costs, so it can

decide in which new period to place it. The other approach, ILSPR, involves an algorithm that uses

a search heuristic to find if the solution can be improved by moving this problematic products.

This switches are taken into account in the next iteration tactical level.

We consider that this intuitive phased algorithm would be easy to implement in large produc-

tion company’s with significant sequence-dependent setups costs.

6.1 Conclusions

Several computational experiments were performed to compare the performance of the iterative

methods proposed with other solutions methods found in the literature. Among them are a full-

space strategy using an MIP model called the GLSP, an genetic algorithm and an hierarchical

strategy algorithm (HIER). Firstly a set of classic instances were used, with different production

planning dataset ranges. For the small instances, with the less amount of products and macro-

periods, the GLSP was able to find better solutions than the other methods, but taking more com-

putational time. For the large instances the solutions found by the GLSP in a feasible time start to

get worst than the others methods, since a lot of computational power is needed to solve the MIP

59



60 Conclusion and future work

model. For these more extensive instances, the iterative methods are able to find better solutions

than the GA, but taking more computational time, with the HIER being the faster to solve but get-

ting the worst solutions. Comparing the iterative methods, the ILSPR is able to find better results

than the ILSPnR but with more time required, resulting from the search algorithm.

6.2 Future work

Although it can be concluded that the iterative method provided good solutions for large instances

of the lot-sizing and scheduling integration problem, we believe that the algorithm can still be

improved.

The local search algorithm used in the operational phase can still be largely improved in order

to reduce the computational time in larger problems. Other strategies can also be employed in

the operational level to improve the solutions and the computational time. Predefined sequences

methods like the one mentioned in Section 2.1.4 may improve the results compared with the local

search strategies used. Another possible approach is the use of a second MIP model for the op-

erational level. Therefore, the iterative method method would be composed of two MIP models,

where feedback from the second one would change the next iteration tactical level results. This

approach may reduce the running time needed in a full-space MIP model.

The simple genetic algorithm developed in this work, presented in Section 5.1.1, showed good

results for the integration problem addressed. We believe that the algorithm could however be

vastly upgraded, using more complex mutation and crossover phases, that could lead to an im-

provement in the solutions found. The GLSP method could also be improved, using different

models, such as the CC model presented in that could reduce the computational power needed.

The computational experiment carried with the animal feed company only used the data from

one week of production. A more extensive comparison, with more insight from the production

management department and a larger planning horizon should be conducted to validate the poten-

tial gains from the iterative method to the current planning procedures used by the company.



Appendix A

Literature animal-feed instance

Table A.1: Capacity, overtime limit and it’s respective costs

Period Capacity Overtime limit Overtime costs
1 64 16 859,2
2 64 16 859,2
3 64 16 859,2
4 64 16 859,2

61



62 Literature animal-feed instance

Table A.2: Processing time and holding inventory cost for each product

Product Holding cost Processing time
fam1 0,4 660
fam2 0,4 170
fam3 0,4 85,1
fam4 0,4 151,2
fam5 0,2 103,4
fam6 0,4 110
fam7 0,2 42,1
fam8 0,2 44,3
fam9 0,2 39,2
fam10 0,2 48,8
fam11 0,2 77,5
fam12 0,2 59,1
fam13 0,3 84,9
fam14 0,3 92,2
fam15 0,2 31,2
fam16 0,2 43,2
fam17 0,2 62,1
fam18 0,4 59,2
fam19 0,6 137,1
fam20 0,6 102,6
fam21 0,3 44,6
fam22 0,2 44,3
fam23 0,2 50,1
fam24 0,2 52,5
fam25 0,3 98,6
fam26 0,2 69,2



Literature animal-feed instance 63

Table A.3: Demand for each product

Product
Month A Month B

t = 1 t = 2 t = 3 t = 4 t = 1 t = 2 t = 3 t = 4
fam1 0 0 0 0 0 0 0 0
fam2 2 3 9 1 1 6 7 5
fam3 9 16 9 25 12 41 20 16
fam4 0 0 1 0 0 0 0 0
fam5 25 15 2 5 6 6 12 10
fam6 0 0 0 0 0 0 0 0
fam7 15 16 12 11 43 44 52 51
fam8 29 29 32 52 32 32 48 32
fam9 40 32 32 52 32 40 48 32
fam10 58 57 65 79 56 31 57 58
fam11 2 6 6 5 0 0 0 0
fam12 2 1 1 0 4 4 0 0
fam13 0 1 1 1 0 0 0 0
fam14 12 15 20 19 8 8 9 6
fam15 1 1 0 0 0 0 0 0
fam16 1 0 0 0 0 0 0 0
fam17 10 3 3 3 11 11 4 0
fam18 0 0 0 0 0 0 0 0
fam19 0 1 1 4 0 0 0 0
fam20 4 0 4 1 1 1 2 1
fam21 35 38 46 47 56 38 73 36
fam22 0 0 0 0 0 0 0 0
fam23 0 0 0 0 0 0 0 0
fam24 0 0 0 0 0 0 0 0
fam25 0 0 0 0 0 0 0 0
fam26 0 0 0 0 0 0 0 0



64 Literature animal-feed instance



Appendix B

Real animal feed company instance

65



66 Real animal feed company instance

Table B.1: Groups and attributes for each product

Product Group
Atributes

1 2 3 4 5 6 7 8 9
82289 11 0 0 3 0 0 0 0 0 9
82286 11 0 0 3 0 0 0 0 0 0
82266 11 0 0 3 0 0 0 0 0 9
75356 11 0 0 3 0 0 0 0 0 0
82163 11 0 0 3 0 0 0 0 0 0
71443 12 0 0 3 0 0 0 0 0 0
71447 12 0 0 3 0 0 0 0 0 0
71473 12 0 0 3 0 0 0 0 0 0
82263 12 0 0 3 0 0 0 0 0 0
81811MD 15 1 0 3 0 0 6 0 0 0
81812ME 15 1 0 3 0 0 6 0 0 0
81811ME 15 1 0 3 0 0 6 0 0 0
81561MD 15 1 0 3 0 0 6 0 0 0
82174 10 0 0 0 0 0 0 0 0 0
82175 10 0 0 0 0 0 0 0 0 0
81812LN 15 0 0 3 0 0 0 0 0 9
71449 10 0 0 3 0 0 0 0 0 9
71479 10 0 0 3 0 0 0 0 0 9
82275-35 10 0 0 3 0 0 0 0 0 0
82275-17.5 10 0 0 3 0 0 0 0 0 0
82286PN 10 0 0 3 0 0 0 0 0 0
82981 14 0 0 3 0 0 6 0 0 0
82243 11 0 0 3 0 0 0 0 0 0
81811NR 15 0 0 3 0 0 6 0 0 0
81611CA 15 0 0 3 0 0 0 0 0 0
81861CA 15 0 0 3 0 0 6 0 0 0
82115 10 0 0 3 0 0 0 0 0 0
75356VG 10 0 0 0 0 0 0 0 0 0
82243MD 11 1 0 3 0 0 0 0 0 0
82051 14 0 0 0 0 0 6 0 0 0
82163PR 11 0 0 3 0 0 0 0 0 0
82326 11 0 0 3 0 0 0 0 0 0
82329-15 11 0 0 3 0 0 0 0 0 9
82329-30 11 0 0 3 0 0 0 0 0 9
71457DZ 12 0 0 0 0 0 0 0 0 0
82391 8 0 0 0 0 0 0 0 0 0
81812 15 0 0 3 0 0 6 0 0 0
81561CA 15 0 0 3 0 0 6 0 0 0
81711CA 15 0 0 3 0 0 6 0 0 0
82135 10 0 0 3 0 0 0 0 0 0
82138 10 0 0 3 0 0 0 0 0 0
82147PL 10 0 0 0 0 0 0 0 0 0
82176 10 0 0 0 0 0 0 0 0 0
82326AL 11 0 0 3 0 0 0 0 0 0
82263MD 12 1 0 3 0 0 0 0 0 0
81711ME 15 1 0 3 0 0 6 0 0 0
82021SL 14 0 0 0 0 0 0 0 0 0
82263AL 11 0 0 3 0 0 0 0 0 0
81531CA 15 0 0 3 0 0 6 0 0 0
81861ME 15 1 0 3 0 0 6 0 0 0
81611ME 15 1 0 3 0 0 6 0 0 0



Real animal feed company instance 67

Table B.2: Demand for each product

Product Day 1 Day 2 Day 3 Day 4 Day 5
82289 0 0 500 0 475
82286 0 0 1500 1500 800
82266 2700 1800 0 0 33025
75356 240 0 0 200 1700
82163 0 0 660 0 0
71443 0 600 300 0 150
71447 0 2250 0 150 0
71473 0 650 0 0 0
82263 0 0 600 0 6450
81811MD 0 0 600 0 1100
81812ME 0 0 600 0 2725
81811ME 0 0 0 0 14150
81561MD 0 0 300 0 3300
82174 0 0 0 0 1300
82175 0 0 0 0 700
81812LN 950 0 0 0 0
71449 0 1840 0 0 0
71479 0 0 0 0 1220
82275-35 0 0 0 0 3255
82275-17.5 0 612 875 0 808
82286PN 0 0 0 0 1950
82981 0 0 0 0 450
82243 0 0 0 0 200
81811NR 0 0 0 0 8150
81611CA 0 0 0 0 600
81861CA 0 0 0 0 3900
82115 0 0 0 0 2360
75356VG 0 0 0 0 1180
82243MD 0 0 0 0 880
82051 0 0 0 0 7340
82163PR 0 0 0 0 300
82326 0 0 0 0 760
82329-15 0 0 0 0 2010
82329-30 0 0 0 0 1260
71457DZ 0 0 0 0 1200
82391 0 0 0 0 750
81812 0 0 0 0 500
81561CA 0 0 0 0 600
81711CA 0 0 0 0 5275
82135 0 0 0 0 600
82138 0 0 0 0 900
82147PL 0 0 0 1540 0
82176 0 0 0 0 280
82289 0 0 0 0 15380
82326AL 0 0 0 0 3500
82263MD 0 0 0 0 4150
81711ME 0 0 0 0 925
82021SL 0 0 0 0 150
82263AL 0 0 0 0 1675
81531CA 0 0 0 0 600



68 Real animal feed company instance

Figure B.1: Company’s production plan



Real animal feed company instance 69

Figure B.2: ILSPnR solution



70 Real animal feed company instance



References

[1] Christos T Maravelias and Charles Sung. Integration of production planning and scheduling:
Overview, challenges and opportunities. Computers & Chemical Engineering, 33(12):1919–
1930, 2009.

[2] José Fernando Gonçalves and Mauricio GC Resende. Biased random-key genetic algorithms
for combinatorial optimization. Journal of Heuristics, 17(5):487–525, 2011.

[3] Alistair Clark, Masoumeh Mahdieh, and Socorro Rangel. Production lot sizing and schedul-
ing with non-triangular sequence-dependent setup times. International Journal of Production
Research, 52(8):2490–2503, 2014.

[4] António Aroso Menezes, Alistair Clark, and Bernardo Almada-Lobo. Capacitated lot-
sizing and scheduling with sequence-dependent, period-overlapping and non-triangular se-
tups. Journal of Scheduling, 14(2):209–219, 2011.

[5] Dileep R Sule. Production planning and industrial scheduling: examples, case studies and
applications. CRC press, 2007.

[6] Andreas Drexl and Alf Kimms. Lot sizing and scheduling—survey and extensions. European
Journal of operational research, 99(2):221–235, 1997.

[7] Karina Copil, Martin Wörbelauer, Herbert Meyr, and Horst Tempelmeier. Simultaneous
lotsizing and scheduling problems: a classification and review of models. OR spectrum,
39(1):1–64, 2017.

[8] Bernhard Fleischmann. The vehicle routing problem with multiple use of vehicles.
Forschungsbericht Fachbereich Wirtschaftswissenschaften, Universität Hamburg, 1990.

[9] Uday S Karmarkar and Linus Schrage. The deterministic dynamic product cycling problem.
Operations Research, 33(2):326–345, 1985.

[10] Andreas Drexl and Knut Haase. Proportional lotsizing and scheduling. International Journal
of Production Economics, 40(1):73–87, 1995.

[11] Luis Guimarães, Diego Klabjan, and Bernardo Almada-Lobo. Modeling lotsizing and
scheduling problems with sequence dependent setups. European Journal of Operational
Research, 239(3):644–662, 2014.

[12] Bernhard Fleischmann and Herbert Meyr. The general lotsizing and scheduling problem.
Operations-Research-Spektrum, 19(1):11–21, 1997.

[13] Alistair R Clark and Simon J Clark. Rolling-horizon lot-sizing when set-up times are
sequence-dependent. International Journal of Production Research, 38(10):2287–2307,
2000.

71



72 REFERENCES

[14] Knut Haase and Alf Kimms. Lot sizing and scheduling with sequence-dependent setup
costs and times and efficient rescheduling opportunities. International Journal of Production
Economics, 66(2):159–169, 2000.

[15] Egon Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636,
1989.

[16] Claudio Fabiano Motta Toledo, Márcio da Silva Arantes, Marcelo Yukio Bressan Hossomi,
Paulo Morelato França, and Kerem Akartunalı. A relax-and-fix with fix-and-optimize heuris-
tic applied to multi-level lot-sizing problems. Journal of heuristics, 21(5):687–717, 2015.

[17] Eli AV Toso, Reinaldo Morabito, and Alistair R Clark. Lot sizing and sequencing optimisa-
tion at an animal-feed plant. Computers & Industrial Engineering, 57(3):813–821, 2009.

[18] Stefan Helber and Florian Sahling. A fix-and-optimize approach for the multi-level capac-
itated lot sizing problem. International Journal of Production Economics, 123(2):247–256,
2010.

[19] Andrea T Staggemeier and Alistair R Clark. A survey of lot-sizing and scheduling models.
In 23rd annual symposium of the Brazilian operational research society (SOBRAPO), pages
938–947. Citeseer, 2001.

[20] Fred Glover. Tabu search—part i. ORSA Journal on Computing, 1(3):190–206, 1989.

[21] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated anneal-
ing. science, 220(4598):671–680, 1983.

[22] Vijini Mallawaarachchi. Introduction to genetic algorithms - including example code, Jul
2017.

[23] Poonam Garg. A comparison between memetic algorithm and genetic algorithm for
the cryptanalysis of simplified data encryption standard algorithm. arXiv preprint
arXiv:1004.0574, 2010.

[24] Yuping Wang et al. A new hybrid genetic algorithm for job shop scheduling problem. Com-
puters & Operations Research, 39(10):2291–2299, 2012.

[25] Ana Sofia Figueirdo, Eduardo Curcio, and Pedro Amorim. Lot-sizing and scheduling op-
timization in animal feed industry. Technical report, Faculty of Engineering, University of
Porto, 2018.

[26] Eli Angela Vitor Toso et al. Dimensionamento e seqüenciamento de lotes de produção na
indústria de suplementos para nutrição animal. 2008.


	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.1.1 Lot-Sizing and Scheduling in the Supply Chain
	1.1.1.1 Tactical planning
	1.1.1.2 Operational planning

	1.1.2 Integrated planning

	1.2 Motivation
	1.3 Objectives
	1.4 Thesis structure

	2 Literature review
	2.1 Mixed integer programming models
	2.1.1 Large-bucket problems
	2.1.2 Small-bucket problems
	2.1.3 Integrated problem
	2.1.4 Sequence-oriented

	2.2 Heuristics and metaheuristics
	2.2.1 Heuristics
	2.2.1.1 Relax-and-fix (RF)
	2.2.1.2 Fix-and-optimize (FO)
	2.2.1.3 Local search

	2.2.2 Metaheuristics
	2.2.2.1 Tabu search
	2.2.2.2 Simulated annealing
	2.2.2.3 Genetic algorithms (GA) methods
	2.2.2.4 Memetic algorithm


	2.3 Lot-sizing and scheduling in the animal feed industry
	2.3.1 Non-triangular setup times
	2.3.2 Integration problem in animal feed industries


	3 Problem Definition
	3.1 Integrated production planning
	3.1.1 Animal feed industry problem

	3.2 Model proposed for the case studied

	4 Iterative method
	4.1 Computational intractability of the GLSP model
	4.2 Introduction to the ILSP
	4.3 Tactical level
	4.4 Operational level
	4.4.1 Generate initial solution
	4.4.2 Local search heuristic
	4.4.2.1 Non-triangular instances


	4.5 Feedback from operational level to tactical
	4.5.1 Capacity feedback
	4.5.2 Setup costs feedback
	4.5.2.1 ILSPnR - Feedback from setup costs without resolution
	4.5.2.2 ILSPR - Feedback from setup costs with resolution



	5 Computational Experiment
	5.1 Alternative methods
	5.1.1 Genetic algorithm
	5.1.1.1 Solution representation
	5.1.1.2 First generation
	5.1.1.3 Selection
	5.1.1.4 Mutation
	5.1.1.5 Crossover

	5.1.2 Hierarchical strategy

	5.2 Illustrative example of ILSP
	5.2.1 First iteration
	5.2.2 Feedback results
	5.2.3 Solution convergence
	5.2.4 Final solution

	5.3 Classical instances
	5.4 Animal feed instances
	5.4.1 Literature instances
	5.4.2 Real animal feed company instance


	6 Conclusion and future work
	6.1 Conclusions
	6.2 Future work

	A Literature animal-feed instance
	B Real animal feed company instance
	References

