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Summary 

In Portugal, and to a certain extent, farmers keep growing 

traditional maize populations known for their bread quality, conserving 

simultaneously their high genetic diversity. Maize populations, 

genetically more heterogeneous than commercial hybrid varieties, 

can evolve and better adapt to a changing broader range of edaphic-

climatic conditions. Unfortunately, these maize populations suffer 

from a real risk of disappearing, due to their characteristic low yields. 

It is, therefore, desirable to improve their agronomic performance 

while maintaining their valuable diversity levels. 

Important quality parameters, such as nutritional, organoleptic, 

and technological traits directly related to bread making ability, are 

generally characterized by a continuous variation and are highly 

influenced by the environment. This continuous variation suggests the 

influence of several genes, making them difficult to grasp by farmers 

and breeders. 

The work settled in this thesis aimed to optimize selection 

approaches and develop molecular tools to assist on the 

implementation of participatory breeding programs focused on maize 

quality improvement, as a way to promote the on-farm conservation 

and improvement of the Portuguese maize populations. 

To attain these objectives, the evolution of the genetic diversity 

during the improvement of two historical maize populations, Amiúdo 

and Castro Verde, was evaluated using microsatellites molecular 

markers. These populations have been subjected to on-farm stratified 

mass selection methodology for improving mainly agronomic traits, in 

the context of the Portuguese long-term participatory maize breeding 

program – VASO program. These molecular markers were also used 

to access the genetic diversity level present on other traditional maize 
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populations still under cultivation. These last populations were 

collected in the last decade from farmers located in a Portuguese 

region known to produce broa, a renowned maize-based bread. The 

molecular evaluation of all maize populations was further 

complemented by agronomic evaluations in multi-location field trials 

and by the evaluation of several quality-related parameters. Quality 

data - kernel color and composition (protein, fat, fiber), flour's pasting 

behavior, bioactive compound levels (carotenoids, tocopherols, 

phenolic compounds), and volatile aldehydes content - was assessed 

on flour of each population harvested from a common-garden 

experiment. 

The results of the assessment of the effect of on-farm stratified 

mass selection in Amiúdo and Castro Verde populations revealed that 

this participatory program was able to improve or maintain 

populations’ yield while preserving their genetic diversity. 

Nonetheless, it was also observed that the majority of the quality 

traits evaluated progressed erratically over selection time.  

Agronomic, quality and molecular data allowed to evaluate the 

potential of traditional maize populations still under cultivation to be 

included in a quality-oriented participatory breeding program.  

The quality characterization of Portuguese farmers’ maize 

populations showed that these populations mainly presented high 

levels of protein and fiber content, low levels of carotenoids, volatile 

aldehydes, α- and δ-tocopherols content, and breakdown viscosity 

values. Regarding the agronomic performance, farmers’ maize 

populations had low but considerably stable grain yields across the 

tested environments. As for their genetic diversity, each farmers’ 

population was genetically heterogeneous. Nonetheless, all farmers’ 

populations were molecularly distinct from each other’s. The results 

from molecular, agronomic and quality evaluation were used to 
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generate a valuable tool to support an efficient and effective 

management of the available genetic resources in future breeding 

activities. 

The difficulty to visually select for the majority of the quality 

traits considered in this work and the environmental influence in the 

resulting phenotype can be ameliorated by developing molecular 

markers linked to the trait of interest to support marker-assisted 

selection approaches. Through a genome-wide association study 

based on a collection of maize inbred lines partially derived from 

Portuguese maize populations, and using the phenotypic data 

obtained from 2 years of field trials and the genotypic information of 

48,772 single nucleotide polymorphism markers from the 

MaizeSNP50 BeadChip array, it was possible to identify several 

genomic regions associated with quality-related traits. In the future, 

user-friendly molecular markers will be developed for the interesting 

genetic variants and these will be validated on a different genetic 

background in order for them to be useful for marker-assisted 

selection. 

Concluding, the work developed under this Ph.D. thesis opened 

ways in the field of participatory maize breeding in Portugal, improved 

the knowledge on the quality characterization of traditional maize 

populations, postulating future paths for breeding these materials, 

and increased the basic and applied knowledge on the genetic control 

of quality-related traits in maize. 

 

  



Summary 

xxii 

 

 



Sumário 

xxiii 

Sumário 

Em Portugal, populações tradicionais de milho com grande 

qualidade para a produção de broa são ainda cultivadas por alguns 

agricultores, permitindo que a sua diversidade genética seja 

conservada. Estas populações de milho, geneticamente mais 

heterogéneas do que as variedades híbridas comerciais, adaptam-se 

mais facilmente a alterações edafo-climáticas. Encontram-se, 

contudo, em risco de desaparecerem devido aos seus baixos níveis 

de rendimento. Para reverter esta situação, é necessário melhorar o 

desempenho produtivo destas populações tradicionais sem 

comprometer os níveis de diversidade responsáveis pela resiliência 

geralmente associada a estes materiais. 

As características de qualidade com influência direta na 

produção de broa, como por exemplo as características nutricionais, 

organoléticas e tecnológicas, apresentam geralmente uma variação 

contínua e são influenciadas por fatores ambientais. Essa variação 

contínua sugere que existem vários genes envolvidos responsáveis 

por essas características de qualidade, dificultando a tarefa de 

seleção a melhoradores e produtores. 

Esta tese de doutoramento teve como objetivo otimizar os 

métodos de seleção e desenvolver ferramentas moleculares que 

facilitem a implementação de programas de melhoramento 

participativo direcionados para a melhoria da qualidade do milho, 

como forma de promover a conservação e desenvolvimento de 

populações portuguesas com melhor desempenho agronómico nos 

campos dos agricultores. 

Para alcançar esses objetivos, foi primeiramente avaliada a 

evolução da diversidade genética de duas populações tradicionais 

portuguesas de milho, o Amiúdo e o Castro Verde, durante o 



Sumário 

xxiv 

processo de melhoramento, utilizando marcadores moleculares do 

tipo microssatélite. Essas populações foram submetidas a uma 

metodologia de seleção massal estratificada, realizada in-situ com a 

participação de agricultores da região do Vale do Sousa, para 

melhoramento de características agronómicas, no contexto do 

programa português de melhoramento participativo a longo prazo – o 

programa VASO. Os marcadores moleculares utilizados permitiram 

também avaliar o nível de diversidade genética presente noutras 

populações tradicionais de milho ainda em cultivo, com potencial 

para serem incluídas num programa de melhoramento participativo 

orientado para a qualidade. Sementes destas populações foram 

obtidas, na década passada, contactando agricultores da região 

centro do país, região esta conhecida por produzir broa de elevada 

qualidade. A avaliação molecular destas populações de milho foi 

complementada por avaliações agronómicas em ensaios de campo 

multi-locais e pela avaliação de vários parâmetros relacionados com 

a qualidade realizada na farinha de cada população proveniente de 

um ensaio de campo - cor e composição do grão (proteína, gordura , 

fibra), características reológicas (viscosidade) da farinha, níveis de 

compostos bioativos (carotenoides, tocoferóis, compostos fenólicos) 

e conteúdo em aldeídos voláteis. 

Os resultados da avaliação do efeito da seleção massal 

estratificada realizada in-situ nas populações Amiúdo e Castro Verde 

revelaram que este programa de melhoramento participativo foi 

capaz de melhorar ou manter o rendimento das populações, 

preservando sua diversidade genética. No entanto, também se 

observou que a maioria das características de qualidade avaliadas 

evoluiu erraticamente ao longo do tempo de seleção. 

A caracterização da qualidade das populações de milho dos 

agricultores portugueses revelou que essas populações continham 
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altos níveis de proteína e de teor em fibra, e baixos níveis de 

carotenoides, aldeídos voláteis, α- e δ-tocoferóis, e baixos valores de 

viscosidade de degradação. Em relação ao desempenho 

agronómico, as populações de milho dos agricultores apresentaram 

baixos rendimentos de grão mas, no entanto, mais estáveis em todos 

os ambientes testados em comparação com as outras populações de 

milho analisadas. Quanto à sua diversidade genética, as populações 

de cada agricultor eram geneticamente heterogéneas. No entanto, 

todas as populações dos agricultores eram geneticamente distintas 

entre si. Os resultados das avaliações molecular, agronómica e de 

qualidade realizadas constituem uma ferramenta valiosa e 

fundamental para apoiar a conservação e gestão eficiente e efetiva 

dos recursos genéticos disponíveis em futuras atividades de 

melhoramento. 

A dificuldade de selecionar visualmente a maioria das 

características de qualidade consideradas neste trabalho e a 

influência ambiental no fenótipo resultante podem ser ultrapassadas 

através do desenvolvimento de marcadores moleculares associados 

à característica de interesse, através de uma abordagem de seleção 

assistida por marcadores moleculares. Através de um estudo 

genético de associação realizado numa coleção de linhas puras de 

milho parcialmente derivadas de populações de milho portuguesas, 

utilizando os dados fenotípicos de 2 anos de ensaios de campo e a 

informação genotípica de 48.772 marcadores de polimorfismo de 

nucleotídeo único (SNPs) da plataforma de genotipagem 

MaizeSNP50 BeadChip, foi possível identificar várias regiões 

genómicas associadas às características de qualidade. No futuro, 

marcadores moleculares para as variantes genéticas de interesse, 

mais fáceis de usar por melhoradores, serão desenvolvidos e 

validados noutras populações de milho com diferente fundo genético, 
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para que sejam úteis para a seleção assistida por marcadores 

moleculares. 

Concluindo, o trabalho desenvolvido durante esta tese de 

doutoramento abriu caminhos no campo do melhoramento 

participativo de milho em Portugal, aumentou o conhecimento sobre 

a caracterização da qualidade das variedades tradicionais 

portuguesas de milho, postulou caminhos futuros para o 

melhoramento desses recursos genéticos e contribuiu para o 

conhecimento básico e aplicado sobre o controlo genético de 

características relacionadas com a qualidade em milho. 
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1 Quality in food crops – Considerations on maize 

Maize (Zea mays L.) is, along with rice and wheat, one of the 

world’s leading crops and a crucial source of food, feed, fuel, and 

fibers (Tenaillon & Charcosset, 2011). Maize is a staple for large 

populations in Latin America, Africa, and Asia (Ai & Jane, 2016), and 

the way maize kernels are processed and consumed varies greatly 

from country to country, with maize flour and meal being two of the 

most used products for producing many maize-based food 

commodities (Ai & Jane, 2016; Ranum et al., 2014). 

When talking about food quality, several aspects can be 

considered and will all depend on the raw material composition and 

processing. This will ultimately depend on the end-use product. When 

using maize kernel for baking purposes, the improvement of the end-

product quality can be achieved taking into consideration the 

upstream processes (e.g., genotype used, harvest procedures, seed 

quality, and pest control), but also the downstream processes (e.g., 

milling type, baking procedure). Although there are no clearly defined 

criteria for kernel quality for baking purposes (e.g., for maize bread), 

the kernel morphology and phytosanitary quality are generally 

considered as important (large grain size, uniformity, high density, 

and lack of physical damage, pests, and diseases) (Revilla et al., 

2015, and references therein).  

In some countries, such as Spain or Portugal, whole maize flour 

is used for bread production (Rodríguez et al., 2013). In Portugal, the 

ethnic maize-based bread is known locally as broa. Broa is 

traditionally made with more than 50% maize flour mixed with rye 

and/or wheat flour in a mostly empirical process (Brites et al., 2010). 

As further described by the same authors, this process normally 

involves the mixing of sieved wholemeal maize flour with hot water, 
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rye and/or wheat flour (in a variable proportion), with yeast from 

leavened dough from previous broa acting as sourdough. 

In wheat, bread quality depends largely on the viscoelastic 

properties conferred to the dough by the gluten proteins (Shewry et 

al., 1995). However, maize has no gluten and the broa bread quality 

must be evaluated with different parameters. So, contrary to the 

wheat, maize dough has no viscoelastic network that enables to hold 

the gas produced during the fermentation process (Brites et al., 

2010). Consequently, on maize flour, the parameters associated with 

bread quality cannot be evaluated as on wheat. On the absence or 

presence of a reduced amount of gluten, the dough rheological 

properties are provided by starch gelatinization (Brites et al., 2010). 

Previously, Brites et al. (2010), through a sensory analysis on 

broa carried out by a trained panel using open-pollinated maize 

populations, identified a preference, due to texture, taste, and aroma, 

for maize bread produced using open-pollinated populations, as 

opposed to maize bread produced using commercial hybrid maize 

varieties. In the same study, instrumental quality attributes of maize 

flour from open-pollinated populations were measured and compared 

with commercial hybrid maize varieties. The results from that study 

showed that the flour from open-pollinated populations – considered 

by the trained panel to produce better quality broa – had higher 

values of protein, lower values of amylose, and lower viscosities 

(maximum, minimum, final, and breakdown viscosities) (Brites et al., 

2010). More recently, several of the maize flour parameters that 

mainly influence maize quality for broa production have been 

identified (Carbas et al., 2016). Protein and amylose content, flour 

pasting parameters, such as maximum, minimum and final viscosities 

(Brites et al., 2010), but also flour particle size (Carbas et al., 2016), 
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are among these major influencing traits for the quality of the end-

product. 

1.1 The complex nature of maize kernel composition 

The maize kernel is composed of four primary structures. They 

are endosperm, germ, pericarp, and tip cap make up 83%, 11%, 5%, 

and 1% of the maize kernel, respectively (Gwirtz & Garcia‐Casal, 

2014). Its high nutritional value is mainly due to its starch, protein, 

and oil content (Wen et al., 2016) but maize kernels are also rich in 

other micronutrients, such as vitamins (Nuss & Tanumihardjo, 2010). 

Starch is maize's primary carbohydrate and kernel constituent 

(~72% of the kernel dry matter), consisting of a mixture of two 

polymers, amylose and amylopectin (reviewed by Nuss & 

Tanumihardjo, 2010). Protein is mostly distributed between the 

endosperm and the germ (~10% of the kernel dry matter; reviewed by 

Nuss & Tanumihardjo, 2010). Crude maize protein consists of a 

mixture of prolamins (called zeins), glutelins, albumins, and globulins, 

which are differentiated by their solubility properties. Prolamin is the 

major fraction, followed by glutelins, both of which are endosperm-

specific proteins (reviewed by Nuss & Tanumihardjo, 2010). After 

starch and protein, fat in the form of oil is the third largest nutritional 

component of the kernel (~4% of the kernel dry matter) which is 

mainly concentrated in the germ (reviewed by Nuss & Tanumihardjo, 

2010). 

Crude fiber is highly present in the kernel seed coat (87% of the 

seed coat) but is also found in smaller amounts in the endosperm and 

germ walls (Nuss & Tanumihardjo, 2010). The majority of the maize 

fiber is dietary fiber, which is nearly completely insoluble (Rose et al., 

2010). The insoluble dietary fiber in maize is mainly composed of 

cellulose and hemicellulose, with only a small amount of lignin (Rose 
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et al., 2010). In recent years, dietary fiber has attracted increasing 

interest, as many studies have revealed that it may be involved in 

disease preventing and health promoting activities (reviewed in Sun 

et al., 2015). 

Additionally, micronutrients such as vitamins, are found in all 

major parts of the kernel, including the endosperm (provitamin A 

carotenoids), germ (vitamin E), and aleurone (water-soluble vitamins) 

(reviewed by Suri & Tanumihardjo, 2016). Vitamin A, as provitamin A 

carotenoids, and vitamin E, as tocopherols, are the predominant fat-

soluble vitamins found in maize kernels. Both carotenoids and 

tocopherols play important roles as antioxidants (reviewed by Nuss & 

Tanumihardjo, 2010). Even though carotenoids are yellow-orange 

phytopigments, kernel color is not necessarily correlated with 

provitamin A concentration in orange and yellow cultivars, due to its 

variable accumulation in the seed coat, endosperm, and germ (Harjes 

et al., 2008). As for vitamin E, it is found almost exclusively in the 

maize germ oil at about 94% of total tocopherols (reviewed by Nuss & 

Tanumihardjo, 2010). For most varieties, α- and γ-tocopherols are the 

only vitamin E constituents found in significant amounts (reviewed by 

Nuss & Tanumihardjo, 2010). 

1.2 How kernel composition affects processing 

Pasting properties of maize flour are considered important 

parameters in the preparation of different food products as they are 

related to its swelling and gelatinization ability (Paraginski et al., 

2014). Starch, proteins, and lipids are the three major food 

components in cereal-based food products, and interactions among 

them in a food system are of importance to functionality and quality 

(Wang et al., 2017; Zhang & Hamaker, 2003). 
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Changes in starch biochemical characteristics, such as the 

proportion and structure of amylose and amylopectin, will influence its 

viscosity and gelatinization ability, determining the kernel uses in 

distinct products such as bread, beer, or biopolymers (reviewed by 

Cozzolino, 2016). Fiber content can also have an impact on baked 

goods quality, contributing to dough viscosity, air entrapment and the 

improvement of loaf volume and texture (Rose et al., 2010). As 

reviewed by Cozzolino (2016), the presence or addition of chemicals 

can also modify starch properties. For example, the texture and 

structural stability of starch-based raw materials can be modified due 

to interactions between starch with fatty acids (reviewed by 

Cozzolino, 2016). Also the presence of antioxidant phenolic 

compounds may alter and improve starch qualities (Beta & Corke, 

2004; Siriamornpun et al., 2016; Zhu et al., 2009), or influence the 

dough texture (Klepacka & Fornal, 2006), a very important parameter 

in defining bread quality (Matos & Rosell, 2012). 

In numerous maize-based foods, the endosperm or kernel 

hardness has been described as having a major impact on quality 

(Carbas et al., 2016; de la Hera et al., 2013; Fox & Manley, 2009). 

The size of the particles that are released from flour is directly related 

to the kernel hardness. Harder kernels or those richer in vitreous 

endosperm will yield larger particles than those that are softer 

(Chandrashekar & Mazhar, 1999). With regard to the biochemical 

contribution to maize kernel hardness, both protein and starch 

composition are implicated, and specifically, the variation in zein 

classes has been linked to differences in hardness (reviewed in Fox & 

Manley, 2009). The content and composition of zeins are the key 

determinants of protein quality and texture-related traits of the kernel 

(Wang et al., 2016). 
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2 Molecular breeding for maize quality 

Maize breeding has primarily focused on increasing stability and 

grain yield potential, under abiotic and biotic stresses (reviewed in 

Muzhingi et al., 2017). In the last decade, however, much effort has 

been made in evaluating and using the diversity of maize also on the 

improvement of animal feed and human nutrition (reviewed in 

Muzhingi et al., 2017). Currently, maize breeding efforts for improved 

chemical composition is being extended beyond the traditional targets 

of starch, oil, and protein to include components such as vitamins, 

and antioxidant secondary metabolites with considerable 

consequences for human health (Wen et al., 2016). By using marker-

assisted selection, a few nutritional trait-associated genes or QTLs 

(for maize protein quality, oil content and provitamin A levels) have 

been recently introgressed into elite maize lines for their quality 

improvement (Wen et al., 2016, Table 2 therein). 

As reviewed by Moose and Mumm (2008), conventional plant 

breeding that relies only on phenotypic selection has been historically 

effective on crop improvement. However, for some traits, phenotypic 

selection has made little progress due to challenges in phenotype 

accurate measurement or in the identification of the individuals with 

the highest breeding value. The effects of environment and genotype-

by-environment interaction also contribute to the reduced progress in 

conventional plant breeding. For some traits, only destructive 

measurements are available to accurately access the phenotype, or 

trait expression may be dependent on the developmental stage (e.g., 

kernel quality traits) (Moose & Mumm, 2008).  

Bread quality parameters are generally characterized by a 

continuous variation, suggesting the influence of several genes. It is, 

thus, expected that several of the broa’s quality parameters show 



General introduction 

8 

quantitative inheritance. Quantitative traits cannot be classified into 

discrete phenotypic classes, making it impossible to use Mendelian 

approaches. The identification and location of genes controlling these 

traits through Quantitative Trait Loci (QTL) analysis can overcome 

this difficulty (Prioul et al., 1997). The genetic architecture of complex 

quantitative traits is generally studied with the final objective of 

improving crop performance (Yang et al., 2010). Functional markers 

are developed and applied in molecular breeding programs (through 

marker-assisted selection) after the identification of favorable alleles 

by linkage analysis or association mapping (Andersen & Lübberstedt, 

2003).  

QTL linkage mapping approaches suffer from two fundamental 

limitations. First, only the allelic diversity that segregates between the 

parents of a particular cross can be assayed, and second, the amount 

of recombination that occurs during the development of linkage 

mapping populations places a limit on the mapping resolution 

(reviewed in Korte & Farlow 2013). In genome-wide association 

studies, the rapid breakdown of linkage disequilibrium among diverse 

maize lines (association panel) is exploited, enabling very high 

resolution for QTL mapping via association analysis (Flint-Garcia et 

al., 2005). In maize, several QTL linkage mapping studies, and for the 

last 15 years, association mapping studies, were successfully 

undertaken on nutritional quality and have shown that kernel main 

components and other health-related compounds (e.g., tocopherols 

and carotenoids) are controlled by many genes, having complex 

patterns of inheritance (e.g., Cook et al., 2012; Diepenbrock et al., 

2017; Jittham et al., 2017; Li et al., 2013). The elucidation of the 

genes underlying flour main components variation is essential for 

efficiently improving this crop quality. 

http://jxb.oxfordjournals.org/search?author1=Jean-Louis+Prioul&sortspec=date&submit=Submit
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3 Maize in Portugal – a long and diverse story 

Maize, a naturally open-pollinated species, was one of the first 

crops to be domesticated more than 9,000 years ago in the valleys of 

Mexico (Matsuoka et al., 2002). After domestication, maize spread 

rapidly across the Americas (Mir et al., 2013). The first historical 

record attesting to the introduction of maize to Europe is dated from 

1493 when Columbus brought it from the Caribbean to Spain 

(Tenaillon & Charcosset, 2011). Also according to historical records, 

this crop rapidly reached other European countries such as Italy 

during the 15th century (Brandolini & Brandolini, 2009), and Portugal 

by the beginning of the 16th century (Oliveira, 1999). Once maize 

production was established, centuries of evolution in small farm 

households gave rise to a variety of landraces, or traditional maize 

populations across the country. As reviewed in Vaz Patto et al. 

(2013), each traditional maize population can be defined as an open-

pollinated population with an associated historical origin and a distinct 

identity, lacking any formal crop improvement, as well as often being 

genetically diverse, locally adapted, and associated with traditional 

farming systems. According to genetic studies, the Portuguese 

traditional maize populations seemed to be the result of multiple 

introduction events from at least two distinct geographic origins, 

consisting nowadays of a mixture of material from the Caribbean 

islands and material from northeastern America (e.g., Rebourg et al., 

2003; Dubreuil et al., 2006). 

After World War II, Portugal was one of the first European 

countries to test the US maize hybrids which initially were not well 

accepted by the Portuguese farmers due to several handicaps such 

as late maturity or kernel type, not fitted for food or polycropping 

systems (Vaz Patto et al., 2013). Nevertheless, several breeding 
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stations were established within Portugal at that time, from North to 

South, in the cities of Braga (NUcleo de melhoramento de MIlho - 

NUMI), Porto, Viseu, Elvas and Tavira, that soon started to release 

adapted hybrid varieties based on inbreds developed from 

Portuguese and US germplasm (reviewed in Vaz Patto et al., 2013). 

Seeds from the maize germplasm developed within those breeding 

stations are currently curated by the Portuguese Bank of Plant 

Germplasm (Banco Português de Germoplasma Vegetal - BPGV, 

Braga, Portugal). 

After the 1986, when Portugal joined the European Union, 

changes in the agriculture policy — the introduction of monocropping 

systems, the valorization of crop uniformity and yield, the high 

mechanization and fossil inputs, with low manpower, the increase 

land parcel area, with a close market-oriented output for feed — led 

to a replacement of the traditional maize populations by hybrid 

varieties. This replacement by hybrid varieties put the Portuguese 

maize landraces in real risk of disappearance. Fortunately, part of this 

germplasm was already conserved at the BPGV, through an initiative 

during the 70’s that aimed to collect locally grown traditional maize 

populations. Additionally, some enduring landraces also survived at 

the farmers’ fields due to particular traits (Vaz Patto et al., 2007). 

Farmers traditionally select maize seed based on their intrinsic bread 

quality, ear size, and aspect, yield, pests and lodging resistance, and 

maintain a high level of variability to ensure yield under any 

conditions (Vaz Patto et al., 2013). 

To provide an incentive for in-situ conservation of traditional 

maize landraces, Silas Pego, at the beginning of the 80s, had the 

idea of engaging local farmers and their seeds in a maize 

participatory plant breeding program (PPB). By doing this, his goals 

were not only to conserve but also to improve the social well-being of 
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this rural community by increasing farmers’ income through rising 

yields using their own seeds. To bring that idea to practice he led, in 

1984, a detailed survey on farmer’s maize fields at Sousa Valley 

Region, in the Northwest of Portugal. The collected materials were 

the starting point of a PPB project, with simultaneous on-farm 

breeding and on-farm conservation objectives (VASO - ‘‘Vale do 

Sousa’’- project). This project aimed to answer the needs of small 

farmers (e.g., yield, bread making quality, ability for polycropping 

systems) with scarce land availability due to a high demographic 

density, where the US intensive agriculture model did not fit and the 

seed multinationals had no adequate market to operate (Vaz Patto et 

al., 2013). 

Nowadays, with the development of modern sustainable low-

input agriculture in industrialized countries, for economic and 

environmental reasons, an emphasis has been placed on local 

adaptation, on the preservation of genetic diversity, and on quality 

(Cleveland et al., 1999). Conventional plant breeding has been 

successful in favorable environments, but is less successful in 

traditional low-input or organic farming systems with higher stress 

growing conditions, especially in small-scale farms (Vaz Patto et al., 

2013). Under this scenario, participatory plant breeding (PPB) 

programs are arising worldwide to meet the needs of farmers in low-

input and organic environments that are normally overlooked by 

conventional crop breeders (Vaz Patto et al., 2013). 

Participatory plant breeding differs from conventional breeding 

mainly because of the active participation of other actors apart from 

breeders, such as farmers and/or consumers, in the breeding 

program. Those actors can assume an active role in the 

establishment of the breeding objectives and influence or actively 

participate in the breeding activities. In the case of on-farm 



General introduction 

12 

participatory breeding, the selection is made at the farmer’s field, in a 

partnership between breeder and farmer, with the farmer establishing 

the breeding objectives (Vaz Patto et al., 2013). This type of 

decentralized PPB improves breeding efficiency as it increases the 

ratio of the number of varieties adopted by farmers, as it is the 

farmer’s choice to adopt those varieties into the program; it also 

increases traits’ response to selection, as selection is being made in 

the targeted environment (Ceccarelli, 2015). 

In the specific case of the Portuguese maize PPB program, the 

impact of breeding activities on the maize populations’ agronomic 

performance improvement has until now only been measured in two 

out of the several maize populations in the program (Mendes-Moreira 

et al., 2008, 2009), and the temporal changes in genetic diversity 

were only evaluated for one of those populations (Vaz Patto et al., 

2008). Moreover, none of these studies took into consideration quality 

aspects that should be addressed in future breeding programs since 

the quality of these genetic resources for maize bread production 

seems to be a decisive aspect for the on-farm maintenance of the 

historical populations developed and for their present market added-

value (Brites et al., 2010; Vaz Patto et al., 2013). 

In the 21st century, Portuguese traditional maize populations 

can be still found under production as verified in a collecting 

expedition that took place in the last decade in the Central-Northern 

region of Portugal (Vaz Patto et al., 2007). This mission had as main 

objective sampling the enduring traditional maize populations’ 

variability of a particular region in the country, where maize-based 

bread still plays an important role in the local rural economy. Most of 

the traditional Portuguese maize landraces are white flints and 

potentially with a good technological ability for broa bread production 

(Vaz Patto et al., 2007). In this collecting expedition, the majority of 
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the maize populations conserved were being used primarily for bread 

production. Around 50 different (yellow/orange and white) maize 

landraces were collected, characterized using pre-breeding 

approaches and conserved in cold storage (Vaz Patto et al., 2007). 

This collection was later enlarged with landraces collected 

subsequently from the surrounding regions. The fact that the flour 

produced from locally grown maize populations has traditionally been 

used in the formulation of broa has been pointed out by Vaz Patto et 

al. (2007) as one of the reasons for the on-farm conservation of the 

Portuguese maize populations. As a consequence, the collected 

populations were assumed to have the potential to be used in broa 

production. Several other features of traditional maize populations 

have been identified by other authors to explain why these 

populations are still maintained under cultivation, such as the fact that 

when compared to hybrids, maize landraces have a broader plasticity 

to adapt to different environments (Hellin et al., 2014). 

The endured Portuguese collected maize landraces represent 

important sources of genes and gene combinations not yet available 

for crop quality breeding programs. These materials due to their 

intrinsic quality traits (that promoted their maintenance in cultivation) 

are the best candidates for expanding the already existing 

participatory breeding program (VASO) to other regions with 

particular emphasis on quality breeding. However, little is known 

about the phytochemical profiles, antioxidant activity, or organoleptic 

quality of the different Portuguese maize open-pollinated populations 

with a high technological ability for bread production. 

Besides the phenotypic characterization, a better understanding 

of the genetic diversity present in the germplasm available for 

breeding will help to structure germplasm, defining, for example, 

heterotic pools. In addition, it will provide useful information for 
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selecting contrasting parental lines for new breeding populations and 

will help breeders to identify valuable new alleles for breeding 

(Varshney et al., 2016). For an effective conservation and 

management of these interesting plant resources and an effective use 

in quality breeding programs, it is fundamental to: understand the 

parameters affecting bread quality; study the genetic control/basis of 

these complex traits visually difficult to select; and characterize the 

Portuguese collected maize landraces diversity. 

4 Objectives and outline of the present study 

This thesis is built upon the evaluation of nutritional quality 

(macro and micronutrients) and processing traits directly or indirectly 

related with broa bread quality, that is dependent on the composition 

of the wholemeal maize flour, and the used of molecular information 

to build decision-making tools directed towards the establishment of a 

quality-based participatory breeding program. The definition of this 

objective was partly supported by several related aspects (1) the 

unique and diverse maize germplasm existence in the country, 

conserved both in-situ and ex-situ; (2) the empirical knowledge that 

broa made from Portuguese open-pollinated varieties have distinct 

quality characteristics not present in broa from modern commercial 

varieties; (3) the analytical and instrumental knowledge on several 

measurable, physicochemical parameters that distinguish and 

influence the maize bread produced with these maize populations; (4) 

and the availability of high-throughput genotyping platforms 

developed for maize. 

This Ph.D. thesis focused on the phenotypic and genotypic 

characterization of a variety of maize germplasm (populations and 

inbred lines) to allow the development of molecular-based tools for 

breeding purposes. It is restricted to a set of quality-related traits that 
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were previously identified as being particularly important for bread 

quality in maize. These traits fall mainly in one of these two 

categories: nutritional quality (macro and micronutrients) and 

processing quality traits, both measured at the wholemeal flour level, 

since it is known that the former (flour quality) will influence the later 

(bread quality).  

With this thesis, molecular tools, together with phenotypic data 

(agronomic and quality) were used to estimate the effect of on-farm 

stratified mass selection on the agronomic performance, quality, and 

molecular diversity of two historical maize populations; and to 

characterize the genetic diversity of Portuguese maize landraces. A 

maize inbred line collection partially derived from Portuguese maize 

landraces was also used to perform a whole-genome association 

study to identify genomic regions/candidate genes associated with 

traits related to maize bread quality. 

Therefore, the specific objectives of this work were: 

1) To evaluate if on-farm stratified mass selection, in the context of 

long-term participatory research, was able to improve the agronomic 

performance of two historical maize open-pollinated populations, 

Amiúdo and Castro Verde; 

(2) To evaluate the effect of stratified mass selection in the genetic 

diversity levels of these two populations;  

(3) To evaluate the effect of stratified mass selection in quality traits 

(related to consumer preferences, technological, nutritional, and 

organoleptic properties) that may influence maize bread quality. 

(4) To extend the maize populations quality characterization – 

organoleptic, nutritional, and health-related traits – with the 

quantification of aroma-related volatile compounds, and health-
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related compounds, such as tocopherols, carotenoids, and phenolic 

compounds, that might influence the quality and the consumer 

acceptability of maize-based food commodities; 

(5) To accurately estimate the agronomic performance and potential 

of the collected enduring maize populations using multi-location field 

trials (broader performance stability/specific adaptability) across 

different farming sites, exploring new locations for the establishment 

of a future quality-oriented participatory maize breeding program; 

(6) To build decision-making tools to enable an accurate population 

selection within a quality-oriented participatory breeding program, 

based on the integration of agronomic, quality and molecular 

characterization of the maize populations; 

(7) To identify genomic regions controlling for quality-related traits 

through a genome-wide association approach; and 

(8) To identify putative candidate genes involved in each trait 

variation. 

The thesis is structured as follows: in Chapter II the results on 

the temporal genetic stability of two maize populations under long-

term stratified mass selection are presented — this information was 

also integrated with the evolution on quality and agronomic 

performance of those maize populations bred under an on-farm 

participatory breeding program. Chapter III highlights how the 

integration of agronomic, quality and molecular data can potentially 

be used as a decision-making tool in a future quality-oriented 

participatory maize breeding program. Chapters IV and V present the 

identification of genomic regions controlling for nutritional and 

technological traits (Chapter IV), and for health-related (antioxidant) 

compounds (Chapter V) in wholemeal maize flour. Finally, in Chapter 
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VI, the thesis main achievements, key lessons, and action points for 

future work are identified and discussed. 

References 

Ai, Y., & Jane, J. L. (2016). Macronutrients in corn and human nutrition. 

Comprehensive Reviews in Food Science and Food Safety, 15(3), 581-

598. 

Andersen, J. R., & Lübberstedt, T. (2003). Functional markers in plants. Trends 

in Plant Science, 8(11), 554-560. 

Beta, T., & Corke, H. (2004). Effect of ferulic acid and catechin on sorghum and 

maize starch pasting properties. Cereal Chemistry, 81(3), 418-422. 

Brandolini, A., & Brandolini, A. (2009). Maize introduction, evolution and diffusion 

in Italy. Maydica, 54(2), 233-242. 

Brites, C., Trigo, M. J., Santos, C., Collar, C., & Rosell, C. M. (2010). Maize-

based gluten-free bread: influence of processing parameters on sensory 

and instrumental quality. Food and Bioprocess Technology, 3(5), 707-

715. 

Carbas, B., Vaz Patto, M. C., Bronze, M. R., Bento da Silva, A., Trigo, M. J., & 

Brites, C. (2016). Maize flour parameters that are related to the consumer 

perceived quality of ‘broa’ specialty bread. Food Science and Technology, 

36, 259–267. 

Ceccarelli, S. (2015). Efficiency of plant breeding. Crop Science, 55, 87–97. 

Chandrashekar, A., & Mazhar, H. (1999). The biochemical basis and implications 

of grain strength in sorghum and maize. Journal of Cereal Science, 30(3), 

193-207. 

Cleveland, D. A., Soleri, D., & Smith, S. E. (1999). Farmer plant breeding from 

biological perspective: Implications for collaborative plant breeding. 

CIMMYT Economics Working Paper CIMMYT, Mexico DF: CIMMYT, 99–

10. 

Cook, J. P., McMullen, M. D., Holland, J. B., Tian, F., Bradbury, P., Ross-Ibarra, 

J., et al. (2012). Genetic architecture of maize kernel composition in the 

nested association mapping and inbred association panels. Plant 

Physiology, 158(2), 824-834. 



General introduction 

18 

Cozzolino, D. (2016). The use of the rapid visco analyser (RVA) in breeding and 

selection of cereals. Journal of Cereal Science, 70, 282-290. 

de la Hera, E., Talegón, M., Caballero, P., & Gómez, M. (2013). Influence of 

maize flour particle size on gluten‐free breadmaking. Journal of the 

Science of Food and Agriculture, 93(4), 924-932. 

Diepenbrock, C. H., Kandianis, C. B., Lipka, A. E., Magallanes-Lundback, M., 

Vaillancourt, B., Góngora-Castillo, E., et al. (2017). Novel Loci Underlie 

Natural Variation in Vitamin E Levels in Maize Grain. The Plant Cell 

Online, tpc-00475. 

Dubreuil, P., Warburton, M., Chastanet, M., Hoisington, D., & Charcosset, A. 

(2006). More on the introduction of temperate maize into Europe: large-

scale bulk SSR genotyping and new historical elements. Maydica, 51, 

281-291. 

Flint‐Garcia, S. A., Thuillet, A. C., Yu, J., Pressoir, G., Romero, S. M., Mitchell, 

S. E., et al. (2005). Maize association population: a high‐resolution 

platform for quantitative trait locus dissection. The Plant Journal, 44(6), 

1054-1064. 

Fox, G., & Manley, M. (2009). Hardness methods for testing maize kernels. 

Journal of Agricultural and Food Chemistry, 57(13), 5647-5657. 

Gwirtz, J. A., & Garcia‐Casal, M. N. (2014). Processing maize flour and corn 

meal food products. Annals of the New York Academy of Sciences, 

1312(1), 66-75. 

Harjes, C. E., Rocheford, T. R., Bai, L., Brutnell, T. P., Kandianis, C. B., 

Sowinski, S. G., et al. (2008). Natural genetic variation in lycopene epsilon 

cyclase tapped for maize biofortification. Science, 319(5861), 330-333. 

Hellin, J., Bellon, M. R., & Hearne, S. J. (2014). Maize landraces and adaptation 

to climate change in Mexico. Journal of Crop Improvement, 28, 484–501. 

Jittham, O., Fu, X., Xu, J., Chander, S., Li, J., & Yang, X. (2017). Genetic 

dissection of carotenoids in maize kernels using high-density single 

nucleotide polymorphism markers in a recombinant inbred line population. 

The Crop Journal, 5(1), 63-72. 

Klepacka, J., & Fornal, Ł. (2006). Ferulic acid and its position among the 

phenolic compounds of wheat. Critical Reviews in Food Science and 

Nutrition, 46(8), 639-647. 



General introduction 

19 

Korte, A., & Farlow, A. (2013). The advantages and limitations of trait analysis 

with GWAS: a review. Plant Methods, 9(1), 29. 

Li, H., Peng, Z., Yang, X., Wang, W., Fu, J., Wang, J., et al. (2013). Genome-

wide association study dissects the genetic architecture of oil biosynthesis 

in maize kernels. Nature genetics, 45(1), 43-50. 

Liu, R. H. (2003). Health benefits of fruit and vegetables are from additive and 

synergistic combinations of phytochemicals. The American Journal of 

Clinical Nutrition, 78(3), 517S-520S. 

Matos, M.E., & Rosell, C.M. (2012). Relationship between instrumental 

parameters and sensory characteristics in gluten-free breads. European 

Food Research and Technology, 235(1), 107-117.  

Matsuoka, Y., Vigouroux, Y., Goodman, M.M., Sanchez, J., Buckler, E., & 

Doebley, J. (2002). A single domestication for maize shown by multilocus 

microsatellite genotyping. Proceedings of the National Academy of 

Sciences, 99(9), 6080-6084. 

Mendes-Moreira, P. M. R., Pego, S. E., Vaz Patto, C., & Hallauer, A. R. (2008). 

Comparison of selection methods on ‘Pigarro’, a Portuguese improved 

maize population with fasciation expression. Euphytica, 163, 481–499. 

Mendes-Moreira, P. M. R., Vaz Patto, M. C., Mota, M., Mendes-Moreira, J., 

Santos, J. P. N., Santos, J. P. P., et al. (2009). ‘Fandango’: Long term 

adaptation of exotic germplasm to a Portuguese on-farm-conservation 

and breeding project. Maydica, 54, 269–285. 

Mir, C., Zerjal, T., Combes, V., Dumas, F., Madur, D., Bedoya, C., et al. (2013). 

Out of America: tracing the genetic footprints of the global diffusion of 

maize. Theoretical and Applied Genetics, 126(11), 2671-2682. 

Moose, S. P., & Mumm, R. H. (2008). Molecular plant breeding as the foundation 

for 21st century crop improvement. Plant Physiology, 147(3), 969-977. 

Muzhingi, T., Palacios‐Rojas, N., Miranda, A., Cabrera, M. L., Yeum, K. J., & 

Tang, G. (2017). Genetic variation of carotenoids, vitamin E and phenolic 

compounds in Provitamin A biofortified maize. Journal of the Science of 

Food and Agriculture, 97(3), 793-801. 

Nuss, E. T., & Tanumihardjo, S. A. (2010). Maize: a paramount staple crop in the 

context of global nutrition. Comprehensive Reviews in Food Science and 

Food Safety, 9(4), 417-436. 



General introduction 

20 

Oliveira, A. (1999). Nos rumos da modernidade (Vol. 4). Universidade do Porto, 

Portugal. 

Paraginski, R. T., Vanier, N. L., Berrios, J. D. J., De Oliveira, M., & Elias, M. C. 

(2014). Physicochemical and pasting properties of maize as affected by 

storage temperature. Journal of Stored Products Research, 59, 209-214. 

Prioul, J. L., Quarrie, S., Causse, M., & de Vienne, D. (1997). Dissecting 

complex physiological functions through the use of molecular quantitative 

genetics. Journal of Experimental Botany, 48(6), 1151-1163. 

Ranum, P., Peña‐Rosas, J. P., & Garcia‐Casal, M. N. (2014). Global maize 

production, utilization, and consumption. Annals of the New York 

Academy of Sciences, 1312(1), 105-112. 

Rebourg, C., Chastanet, M., Gouesnard, B., Welcker, C., Dubreuil, P., & 

Charcosset, A. (2003). Maize introduction into Europe: the history 

reviewed in the light of molecular data. Theoretical and Applied Genetics, 

106(5), 895-903. 

Revilla, P., de Galarreta, J. I. R., Malvar, R. A., Landa, A., & Ordás, A. (2015). 

Breeding maize for traditional and organic agriculture. Euphytica, 205(1), 

219-230.  

Rodríguez, V. M., Soengas, P., Landa, A., Ordás, A., & Revilla, P. (2013). 

Effects of selection for color intensity on antioxidant capacity in maize 

(Zea mays L.). Euphytica, 193(3), 339-345. 

Rose, D. J., Inglett, G. E., & Liu, S. X. (2010). Utilisation of corn (Zea mays) bran 

and corn fiber in the production of food components. Journal of the 

Science of Food and Agriculture, 90(6), 915-924. 

Siriamornpun, S., Tangkhawanit, E., & N. Kaewseejan. (2016). Reducing 

retrogradation and lipid oxidation of normal and glutinous rice flours by 

adding mango peel powder. Food Chemistry, 201, 160-167. 

Siró, I., Kápolna, E., Kápolna, B., & Lugasi, A. (2008). Functional food. Product 

development, marketing and consumer acceptance—A review. Appetite, 

51(3), 456-467. 

Sun, Q., Wu, M., Bu, X., & Xiong, L. (2015). Effect of the amount and particle 

size of wheat fiber on the physicochemical properties and gel morphology 

of starches. PloS one, 10(6), e0128665. 



General introduction 

21 

Shewry, P. R., Tatham, A. S., Barro, F., Barcelo, P., & Lazzeri, P. (1995). 

Biotechnology of breadmaking: unraveling and manipulating the multi-

protein gluten complex. Nature Biotechnology, 13(11), 1185-1190. 

Suri, D. J., & Tanumihardjo, S. A. (2016). Effects of different processing methods 

on the micronutrient and phytochemical contents of maize: from A to Z. 

Comprehensive Reviews in Food Science and Food Safety, 15(5), 912-

926. 

Varshney, R.K., Singh, V.K., Hickey, J.M., Xun, X., Marshall, D.F., Wang, J., et 

al. (2016). Analytical and decision support tools for genomics-assisted 

breeding. Trends in Plant Science, 21(4), 354-363. 

Vaz Patto, M.C., Mendes-Moreira, P.M., Alves, M.L., Mecha, E., Brites, C., 

Bronze, R., et al. (2013). Participatory plant quality breeding: An ancient 

art revisited by knowledge sharing. The Portuguese experience. In Plant 

breeding from laboratories to fields, S. B. Andersen (Ed.), (pp. 255–288). 

Rijeka,Croatia: InTech. 

Vaz Patto, M. C., Moreira, P. M., Almeida, N., Satovic, Z., & Pego, S. (2008). 

Genetic diversity evolution through participatory maize breeding in 

Portugal. Euphytica, 161, 283–291. 

Vaz Patto, M. C., Moreira, P. M., Carvalho, V., & Pego, S. (2007). Collecting 

maize (Zea mays L. convar. mays) with potential technological ability for 

bread making in Portugal. Genetic Resources and Crop Evolution, 54(7), 

1555-1563. 

Wang, G., Wang, G., Wang, J., Du, Y., Yao, D., Shuai, B., et al. (2016). 

Comprehensive proteomic analysis of developing protein bodies in maize 

(Zea mays) endosperm provides novel insights into its biogenesis. Journal 

of Experimental Botany, erw396. 

Wang, S., Zheng, M., Yu, J., Wang, S., & Copeland, L. (2017). Insights into the 

Formation and Structures of Starch–Protein–Lipid Complexes. Journal of 

Agricultural and Food Chemistry, 65(9), 1960-1966. 

Wen, W., Brotman, Y., Willmitzer, L., Yan, J., & Fernie, A. R. (2016). Broadening 

our portfolio in the genetic improvement of maize chemical composition. 

Trends in Genetics, 32(8), 459-469. 

Tenaillon, M.I., & Charcosset, A. (2011). A European perspective on maize 

history. Comptes Rendus Biologies, 334(3), 221-228. 



General introduction 

22 

Yang, X., Yan, J., Shah, T., Warburton, M. L., Li, Q., Li, L., et al. (2010). Genetic 

analysis and characterization of a new maize association mapping panel 

for quantitative trait loci dissection. Theoretical and Applied Genetics, 

121(3), 417-431. 

Zhang, G., & Hamaker, B. R. (2003). A three component interaction among 

starch, protein, and free fatty acids revealed by pasting profiles. Journal of 

Agricultural and Food Chemistry, 51(9), 2797-2800. 

Zhu, F., Cai, Y.Z., Sun, M., & Corke, H. (2009). Effect of phytochemical extracts 

on the pasting, thermal, and gelling properties of wheat starch. Food 

Chemistry, 112(4), 919-923. 

  



Maize populations under participatory breeding 

23 

Chapter II 

Temporal genetic stability of two maize (Zea mays 

L.) populations under long-term stratified mass 

selection 
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Abstract 

Modern maize breeding programs gave rise to genetically 

uniform varieties that can affect maize’s capacity to cope with 

increasing climate unpredictability. Maize populations, genetically 

more heterogeneous, can evolve and better adapt to a broader range 

of edaphic–climatic conditions. These populations usually suffer from 

low yields; it is therefore desirable to improve their agronomic 

performance while maintaining their valuable diversity levels. With 

this objective, a long-term participatory breeding/on-farm 

conservation program was established in Portugal. In this program, 

maize populations were subject to stratified mass selection. This work 

aimed to estimate the effect of on-farm stratified mass selection on 

the agronomic performance, quality, and molecular diversity of two 

historical maize populations. Multi-location field trials, comparing the 

initial populations with the derived selection cycles, showed that this 

selection methodology led to agronomic improvement for one of the 

populations. The molecular diversity analysis, using microsatellites, 

revealed that overall genetic diversity in both populations was 

maintained throughout the selection. The comparison of quality 

parameters between the initial populations and the derived selection 

cycles was made using the kernel from a common-garden 

experiment. This analysis showed that the majority of the quality traits 

evaluated progressed erratically over time. In conclusion, this 

breeding approach, through simple and low-cost methodologies, 

proved to be an alternative strategy for genetic resources’ on-farm 

conservation. 

Keywords: ear traits, microsatellites, molecular diversity, on-farm 

conservation, open-pollinated populations, participatory plant 

breeding, yield, Zea mays L. 
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1 Introduction 

Climate change represents a challenge to food security 

(Wheeler & von Braun, 2013). The negative impact of climate change 

on agriculture and therefore on food production is exacerbated by 

greater crop uniformity (Ceccarelli et al., 2010). An increasing number 

of studies show that biodiversity improves the capacity of 

agroecosystems to cope with extreme weather events and climate 

variability (Khoury et al., 2014; Ortiz, 2011), allowing crops’ evolution 

and adaptation to specific edaphic–climatic conditions (Ceccarelli, 

2015). This is particularly important in the context of low-input/ 

organic production systems, more prone to biotic and abiotic 

constraints and in which crop resilience is fundamental. The greater 

uniformity of crops is specifically a concern for maize, wheat, and 

rice, which alone provide 60% of the calories in the human diet. In 

these three crops, recent plant breeding has led to extreme genetic 

uniformity (Ceccarelli et al., 2013). As reviewed by Hellin et al. (2014), 

it is important that plant breeding reach a compromise by developing 

not only higher-yielding but also stress-tolerant cultivars, to allow 

them to cope and adapt when faced with different environmental 

conditions. In the case of maize, the more heterogeneous open-

pollinated populations, adapted to specific environmental conditions 

and human uses, have progressively been replaced in the last 

century by homogeneous, higher-yielding commercial hybrids 

(Pingali, 2001). Still, open-pollinated populations’ cultivation has been 

maintained, often in marginal lands or low-input systems where 

commercial hybrids are not well adapted (Vaz Patto et al., 2013). 

They may also be kept by their dietary or nutritional value, taste, or 

for the price premium they attract because of high-quality traditional 

properties that compensate for lower yields (Jarvis et al., 2011). 
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Portugal was one of the first European countries to adopt maize 

and one of the few where historical maize populations can still be 

found under cultivation (Vaz Patto et al., 2013). The resilience of 

these maize populations in the Portuguese scenario can be partially 

explained by their technological quality in maize bread production 

(Vaz Patto et al., 2013). The Portuguese ethnic maize-based bread, 

named broa, is highly accepted for its distinctive sensory 

characteristics (Carbas et al., 2016). This bread is traditionally 

manufactured using local maize populations and still plays an 

important economic and social role in Central and Northern rural 

communities of the country (Vaz Patto et al., 2007). Broa is 

traditionally made with more than 50% maize flour mixed with rye 

and/or wheat flour by a mainly empirical process (Brites et al., 2010). 

This process normally involves the mixing of the sieved wholemeal 

maize flour, with hot water, rye and/or wheat flour (in a variable 

proportion), and yeast from leavened dough from late broa, acting as 

sourdough (Brites et al., 2010). 

In what concerns broa bread quality, differences between the 

higher-yielding dent hybrids and the hard endosperm Portuguese 

open-pollinated populations have been recently determined (Carbas 

et al., 2016). In that work, it was shown that the broa produced with 

the hybrid dent varieties had higher specific volume. However, a 

sensory analysis showed a preference for the maize bread made 

using Portuguese open-pollinated populations due to better mouthfeel 

flavor and texture (Carbas et al., 2016). Parameters associated with 

aroma or flavor (e.g., volatile aldehydes; Klensporf & Jelén, 2005), 

and texture (e.g., viscosity parameters; Brites et al., 2010) can be 

important in assessing the product’s quality and therefore need to be 

investigated. Additionally, bread nutritional value is another quality 

aspect of great importance. In recent years, consumption of particular 
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foods and food products, rich in antioxidant compounds, has been 

associated with the prevention of modern lifestyle-related 

degenerative disease (Liu, 2003). In that regard, maize displays a 

considerable natural variation in the content and composition of 

antioxidant compounds such as carotenoids (Owens et al., 2014) and 

tocopherols (Lipka et al., 2013). However, little is known about the 

phytochemical profiles, antioxidant activity, or organoleptic quality of 

the different Portuguese maize open-pollinated populations with a 

high technological ability for bread production. 

With the development of modern sustainable low-input 

agriculture in industrialized countries, for economic and 

environmental reasons, an emphasis has been placed on local 

adaptation, on the preservation of genetic diversity, and on quality 

(Cleveland et al., 1999). Conventional plant breeding has been 

successful in favorable environments, but is less successful in 

traditional low-input or organic farming systems with higher stress 

growing conditions, especially in small-scale farms (Vaz Patto et al., 

2013). Under this scenario, participatory plant breeding (PPB) 

programs are arising worldwide to meet the needs of farmers in low-

input and organic environments that are normally overlooked by 

conventional crop breeders (Vaz Patto et al., 2013). 

Participatory plant breeding differs from conventional breeding 

mainly because of the active participation of other actors apart from 

breeders, such as farmers and/or consumers, in the breeding 

program. Those actors can assume an active role in the 

establishment of the breeding objectives and influence or actively 

participate in the breeding activities. In the case of on-farm 

participatory breeding, the selection is made at the farmer’s field, in a 

partnership between breeder and farmer, with the farmer establishing 

the breeding objectives (Vaz Patto et al., 2013). Taking into 
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consideration the central role attributed to farmers on this breeding 

approach, their acceptance, and enthusiasm while participating in the 

program has been identified as one of the key aspects for the 

success of on-farm participatory plant breeding (Vaz Patto et al., 

2013). This type of decentralized PPB improves breeding efficiency 

as it increases the ratio of the number of varieties adopted by 

farmers, as it is the farmer’s choice to adopt those varieties into the 

program; it also increases traits’ response to selection, as selection is 

being made in the targeted environment (Ceccarelli, 2015). 

In 2012, Ceccarelli et al. (2012) published the results of a 

survey on the previous major PPB experiences worldwide. Of the 22 

active PPB programs presented in that report, three are in maize and 

are located in Portugal, China, and Nepal. The Portuguese 

participatory maize breeding program started in 1984 and initially had 

as its main objective the improvement of the agronomic performance 

of historical maize populations, functioning in parallel as a strategy for 

the on-farm conservation of those plant genetic resources (Vaz Patto 

et al., 2013). 

The methodologies implemented in every breeding program are 

dependent on the type of reproductive system of the crop. In naturally 

cross-pollinated species, such as maize, improvement of open-

pollinated populations can be achieved by recurrent mass selection if 

the pollinations are controlled and/or by the use of stratified selection 

(Gardner, 1961). In the on-farm breeding activities of the Portuguese 

maize participatory breeding program, as controlled pollinations are 

time-consuming, the use of stratified mass selection has been the 

selected methodology. In mass selection, a fraction of individuals is 

visually selected to form the following generation. As for stratified 

mass selection, prior to the selection of individuals (mass selection), 

the field is first divided into smaller selection units (field stratification), 
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minimizing the bias due to field heterogeneity. The differences among 

plants within field’s sections are more likely to be due to genetic 

differences than to environmental effects (Hallauer et al., 2010). 

Stratified mass selection has been shown in the past to be a useful 

methodology for improving several agronomic traits in maize, for 

example, for adapting exotic germplasm into breeding programs and 

target environments (Hallauer, 1999) or for yield improvement of 

open-pollinated maize populations (Mendes-Moreira et al., 2008, 

2009; Smith et al., 2001). 

In the Portuguese maize participatory breeding program, 

breeding activities were intended to occur mainly in the farmer’s field, 

with breeder and farmer working side by side. Firstly, the selection 

methodologies were demonstrated by the breeder at each farmer’s 

field, and afterward, the farmer conducted the same selection 

methodologies in the other part of the field. In this way, the farmer 

had a permanent possibility to compare the effectiveness of the 

breeder’s advice and the breeder needed to respect the farmer’s 

management system (e.g., low-input), advising only simple and low-

cost selection methodologies based on population genetics theory, 

with the farmer keeping the decision power over the direction of 

selection. Besides the specific breeding objectives defined by each 

farmer for each maize population, in this program the farmer is 

advised by the breeder to select in the field by detasseling the 

undesirable plants before pollination (weakest and all that do not fit 

the desired ideotype, such as the pest and disease susceptible 

looking ones); the farmer is also advised to evaluate a few days 

before harvest the root and stalk quality by foot-kicking the plants at 

their base (at the first visible internodes). This also serves as an 

indirect measurement of pest tolerance, as the plant that does not 

resist the impact and breaks down is eliminated. Additionally, the 
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farmer is advised to favor the selection of more prolific plants or the 

ones with a lower ear insertion if that trait is among the farmer desired 

ideotype. Prior to this selection, the field is first divided into smaller 

selection units (field stratification). After harvesting, a second 

selection (postharvest) is conducted in the ears. This selection 

includes the specific breeding objectives of each population and the 

elimination of unhealthy damaged ears. Selected ears are then 

shelled and mixed together to form the next-year generation. With this 

scheme, the selection pressure ranges from 1% to 5% (Mendes-

Moreira et al., 2009). Generally, the postharvest selection is the only 

selection that the farmer traditionally carries out (nonformal selection) 

and the one that had been applied to the historical maize populations 

previously to their introduction in this participatory program. 

2 Materials and Methods 

2.1 Populations’ origin and main features 

The two historical open-pollinated maize populations evaluated 

in this study were previously subjected to on-farm stratified mass 

selection in the context of a participatory breeding program. This 

breeding program has been running in Portugal since 1984 in the 

Sousa Valley region, in the northern part of the country. Each maize 

population in this breeding program occupied, on average, an area of 

1,000 m2 and was composed of approximately 5,000 individuals per 

growing season (given a plant density of 50,000 plants/ha). 

Amiúdo, a yellow flint early population (FAO 200), was chosen 

to integrate the PPB program in its beginning, in 1984. This 

population was selected due to its short life cycle and because it had 

already adapted to the local conditions (poor soils with low pH, water 
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stress, and aluminum toxicity); it was also chosen because it could be 

used for bread production (Vaz Patto et al., 2013). 

The Amiúdo population was selected at two different locations: 

at the Lousada site (41°14′7.8″N 8°18′11.1″W), where the selection 

was performed by the breeder and farmer; and at the Serra do 

Carvalho site (41°34′12.74″N, 8°19′28.77″W), where the selection 

was performed by the breeder. In both cases, the specific breeding 

objective, set by the farmer, was to achieve a higher-yielding 

population; the same selection methodologies were applied at both 

the Lousada and Serra do Carvalho sites. 

Castro Verde, an orange flint late population (FAO 600), was 

introduced in the PPB program in 1994 with the initial aim of 

achieving a population that could run in the category of yellow flint in 

a contest for the “Best Ears” of the Sousa Valley. This population was 

characterized by its big ears and very tall plants (>3 m in height). 

Until 2000, Castro Verde was selected at the Lousada site 

(41°14′7.8″N 8°18′11.1″W) by the farmer. The selection criteria were 

set to obtain bigger ears by improving the traits that might enable the 

ears to win the “Best Ears” contest, namely ear length and kernel 

weight, row number, and the number of kernels per ear. After 2001, 

due to a reduction in the breeding activities at the Lousada site, the 

Castro Verde population began to be selected at the Coimbra site 

(40°13′0.22″N, 8°26′47.69″W) by the breeder. At that point, some 

adjustments were made to the breeding objectives but keeping the 

same selection methodologies (stratified mass selection). Specifically, 

selection criteria were fine-tuned to decrease the height of the ear 

insertion on the stalk, increase the stalk resistance, and keep 

increasing the ear size while still maintaining an orange flint kernel. 

As a result of 19 years of Amiúdo selection at Lousada site, 19 

cycles of stratified mass selection were originated, and as a result of 
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25 years of Amiúdo selection at Serra do Carvalho site, 25 cycles of 

stratified mass selection were originated. In this study, the following 

Amiúdo cycles were analyzed: the initial population from 1984, 

considered as cycle 0 (hereafter referred to as AMC0-1984), and the 

nineteenth and the twenty-fifth cycles of stratified mass selection, 

obtained in 2003 at the Lousada site (hereafter referred to as AM-

LC19-2003) and in 2009 at the Serra do Carvalho site (hereafter referred 

to as AM-SCC25-2009), respectively. 

As a result of 14 years of Castro Verde selection, 14 cycles of 

stratified mass selection were originated between Lousada and 

Coimbra sites. In this study, the following Castro Verde cycles were 

analyzed: the initial population from 1994, considered as cycle 0 

(hereafter referred to as CAC0-1994), and the ninth and fourteenth 

cycles of stratified mass selection at Coimbra obtained in 2004 

(hereafter referred to as CA-CC09-2004) and in 2009 (hereafter referred 

to as CA-CC14-2009), respectively. 

The summary of the specific breeding objectives for the Amiúdo 

and Castro Verde populations, as well as the timeline and selection 

sites where the different cycles, analyzed in this work, were 

developed, is given in Figure 1. 

2.2 Agronomic evaluation 

The agronomic performance of two historical maize populations, 

Amiúdo and Castro Verde, and their derived selection cycles was 

compared in multi-location field trials. The Amiúdo initial population 

(AMC0-1984) and selection cycles (AM-LC19-2003 and AM-SCC25-2009) were 

evaluated in eight locations: Quinta da Conraria, Montemor-o-Velho, 

S. Pedro do Sul, Lousada, Valada do Ribatejo, Vouzela-1, Vouzela-2, 

and Travassos. The Castro Verde initial population (CAC0-1994) and 

selection cycles (CA-CC09-2004 and CA-CC14-2009) were evaluated in five 
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locations: Quinta da Conraria, Montemor-o-Velho, Lousada, Valada 

do Ribatejo, and Covas do Monte. 
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The different locations represent different areas where maize 

open-pollinated populations are traditionally produced in the country 

and also the different agronomic production systems normally 

associated with maize open-pollinated populations, ranging from 

conventional production systems (Montemor-o-Velho) to organic 

production systems (Quinta da Conraria and Valada do Ribatejo) to 

low-input production systems (all the other locations). Information 

about the sites’ characterization is given in Table S1. Initial 

populations and selection cycles were evaluated, at farmers’ fields, in 

a randomized complete block design, with three blocks per location. 

Each initial population and derived selection cycles were overplanted 

by hand in two-row plots 6.4 m long and with 0.75 m between rows. 

Each plot was thinned at the seven-leaf stage to 48 plants per plot to 

achieve a plant density of 50,000 plants/ha. Therefore, in each 

environment, a total of 144 plants (48 plants per plot*3 blocks) were 

evaluated for each cycle. Plots were irrigated as needed and 

mechanically weeded and/or hand-weeded as necessary. All the plots 

were harvested by hand. 

The agronomic evaluation of each initial population and derived 

selection cycles was performed as described in Table 1. The data 

collected were intended to track eventual changes occurring in ear 

morphology, plant architecture, plant health and quality of the stalk 

and root system, population uniformity, and grain production. 
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2.3 Agronomic data analysis 

All agronomic data analysis was carried out in SAS software 

(SAS Release 9.2.; SAS Institute, 2004). 

Analysis of variance for Amiúdo cycles (initial population—

AMC0-1984; AM-LC19-2003 selection cycle; and AM-SCC25-2009 selection 

cycle) and for Castro Verde cycles (initial population—CAC0-1994; CA-

CC09-2004 selection cycle; and CA-CC14-2009 selection cycle) was carried 

out separately per population using the PROC MIXED procedure. In 

the mixed-model statement, environments and cycles (initial 

population and derived selection cycles) were treated as fixed effects, 

while blocks, treated as random, were nested in the environments. 

The interaction between cycles and the environment was included in 

the model. Cycle means were compared using a Tukey–Kramer 

multiple comparisons test. 

To summarize multivariate changes occurring in both 

populations across the participatory breeding program, a principal 

component analysis (PCA) on the standardized agronomic data was 

performed using the PROC PRINCOMP procedure. The number of 

principal components was determined by inspecting eigenvalues of 

principal components (using the Kaiser criterion that retains 

components with eigenvalues greater than one). The first two 

principal components were then projected in a biplot to display shifts 

occurring in the agronomic traits measured on both initial populations 

and their selection cycles. 

2.4 Molecular evaluation 

Thirty random individual plants from the Amiúdo and Castro 

Verde initial populations and derived selection cycles were genotyped 

with 20 microsatellites (SSRs—simple sequence repeats). SSRs 

were chosen based on their location in the maize reference genome 
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(1 SSR per chromosome arm) and repeat motifs (≥3 base pairs) to 

facilitate allele scoring (Table S2). Information about each SSR can 

be found at MaizeGDB (Lawrence et al., 2008, www.maizegdb.org). 

DNA was isolated from adult leaves of each plant using the 

modified CTAB procedure as described in Saghai-Maroof et al. 

(1984). DNA quality was accessed using a 0.8% SeaKem® LE 

Agarose gel (Cambrex Bio Science Rockland, Inc., USA) stained with 

SYBR® Safe (Invitrogen, USA). DNA quantification was performed 

using a spectrophotometer, Nanodrop ND-2000C (Thermo Scientific, 

USA). An additional step for polysaccharide removal (Rether et al., 

1993) was added when the ratio 260/230 nm wavelength was inferior 

to 1.6 to avoid the interference of these contaminants in SSR 

amplification. 

The SSR loci were amplified using a nested-PCR method 

(Schuelke, 2000). PCR products were separated on 6.5% 

polyacrylamide sequencing gel (20 μl 6.5% KBPlus Gel Matrix, 150 μl 

APS 10%, and 15 μl TEMED) using a LI-COR 4300 DNA analyzer 

system. To account for any variance between PCR amplifications and 

electrophoresis runs, DNA from the B73 maize inbred line was used 

as a reference sample. Scoring of the alleles was confirmed manually 

by two independent users to ensure scoring accuracy. A genotypic 

matrix of the alleles per individual plant, scored in base pairs, was 

generated and served as the basis for the molecular data analysis. 

2.5 Molecular data analysis 

To assess the intracycle genetic diversity, the average number 

of alleles per locus (Nav), observed (HO) and expected heterozygosity 

(HE), and inbreeding coefficient (FIS) were calculated for each initial 

population and selection cycles using GENEPOP software 

(GENEPOP v4.0; Raymond & Rousset, 1995). The values of these 
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estimates, obtained in each initial population and selection cycles, 

were then compared to test whether the values of Nav, HO, HE, and FIS 

were significantly different among cycles with the Kruskal–Wallis test 

using SAS software (SAS Release 9.2, SAS Institute Inc 2004). 

The genotypic frequencies for each locus and for each Amiúdo 

and Castro Verde cycles were tested for conformance to Hardy–

Weinberg (HW) expectations using GENEPOP software (GENEPOP 

v4.0; Raymond & Rousset, 1995). The probability test was based on 

the Markov chain method (Guo & Thompson, 1992; Raymond & 

Rousset, 1995) using 10,000 dememorization steps, 20 batches, and 

5,000 iterations per batch. The sequential Bonferroni adjustments 

(Rice, 1989) were then applied to correct for the effect of multiple 

tests using SAS software (SAS Release 9.2, SAS Institute Inc 2004). 

Differences in allele frequencies distributions along the 

breeding program were tested according to Waples (1989a), in which 

the null hypothesis states that the observed differences in allele 

frequency can be explained entirely by genetic drift and sampling 

error. For the Amiúdo population, the temporal variation in allele 

frequencies was tested (i) between the Amiúdo initial population 

(AMC0-1984) and the selection cycle from the Lousada site (AM-LC19-

2003), and (ii) between the Amiúdo initial population (AMC0-1984) and the 

selection cycle from the Serra do Carvalho site (AM-SCC25-2009). For 

the Castro Verde population, the temporal variation in allele 

frequencies was tested between the initial Castro Verde population 

(AMC0-1984) and the latter selection cycle from the Coimbra site (CA-

CC14-2009). Afterward, the sequential Bonferroni adjustments (Rice, 

1989) were applied to the level of significance to correct for the effect 

of multiple tests using SAS software (SAS Release 9.2, SAS Institute 

Inc 2004). The effective population size, which is a parameter 

necessary to test for temporal variation in allele frequencies, 
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according to Waples (1989a), was estimated using NeEstimator 

software (NeEstimator v2.01, Do et al., 2014) following the temporal-

based method under sample plan II (Waples, 1989b), as the samples 

analyzed did not return to the breeding program. Alleles with a 

frequency lower than 0.05 were excluded, parametric chi-squared 

95% confidence intervals for effective population size were 

calculated, and the variance in allele frequencies was calculated 

according to Nei and Tajima (1981). 

Analysis of molecular variance (AMOVA; Excoffier et al., 1992), 

a method of estimating population differentiation directly from 

molecular data, was used to test whether the different cycles from 

Amiúdo and Castro Verde populations had suffered genetic 

differentiation along the breeding program. This was done by testing 

the partition of the total microsatellite diversity between and within 

each pair of cycles, as well as among and within all cycles using 

ARLEQUIN software (ARLEQUIN v3.0; Excoffier et al., 2005). The 

variance components retrieved from AMOVA were used to calculate a 

series of statistics called ϕ-statistics, which summarize the degree of 

differentiation between population divisions and are analogous to 

Wright's F-statistics (Excoffier et al., 1992). The variance components 

were tested statistically by nonparametric randomization tests using 

10,000 permutations in ARLEQUIN software (ARLEQUIN v3.0, 

Excoffier et al., 2005). 

To represent genetic relationships among individual plants, a 

factorial correspondence analysis (FCA) was carried out using 

GENETIX software (GENETIX v4.05; Belkhir et al., 2004), as this 

analysis provides a way of visually showing how genetically distant 

the different initial populations and derived selection cycles are; it also 

serves as a method for observing the level of genetic homogeneity 

within each cycle. 
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2.6 Quality evaluation 

As both populations are used for human consumption, we also 

measured in each of the Amiúdo and Castro Verde initial populations 

and derived selection cycles several traits associated with kernel 

quality. Therefore, this study also intended to evaluate in which way 

traits related to flour's pasting behavior (flour viscosity parameters), 

nutritional value (protein, fat, and fiber content), potential bioactive 

compounds (carotenoids, tocopherols, total phenolic compounds 

content), and aroma-related compounds (volatile aldehydes) have 

changed or were maintained along the PPB program. For that, a bulk 

of kernel from each selection cycle produced from a common-garden 

experiment established in Coimbra in 2009, under controlled 

pollinations, was used. 

Wholemeal maize flour was obtained after milling the kernel 

through a Falling number 3100 mill (Perten, Sweden), using a 0.8-mm 

screen. 

2.6.1 Pasting behavior 

The pasting properties of maize flour were obtained with a 

Rapid Viscosity Analyzer RVA-4 (Newport Scientific, Australia) at 

15% solids as described in Brites et al. (2010). Peak (PV), minimum 

or trough (TV), and final viscosities (FV) were recorded in cPoise, and 

the breakdown (BD) was calculated as PV-TV. 

2.6.2 Flour color parameters 

Maize flour color was determined on 10–12 g of sample in an 

opaque recipient using a Minolta chromameter CR-2b and CIE 

tristimulus color parameters: L*—lightness; a*—red/green index; and 

b*—yellow/blue index. L* values can vary from L* = 0 (black) to L* = 

100 (white); positive a* values mean that samples tend toward the red 
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part of the color spectra; positive b* values mean that samples tend 

toward the yellow part of the color spectra. 

2.6.3 Protein, fat, and fiber content 

Flour protein (PR), fat (FT), and fiber (FI) content were 

determined by a near-infrared spectroscopic method with an 

Inframatic 8620 equipment (Perten, Sweden), with calibrations 

supplied by the manufacturer. Results were expressed in percentage. 

2.6.4 Total carotenoid content 

The total carotenoid content (TCC) was spectrophotometrically 

measured at 450 nm according to the AACCI method 14-60.01 

(AACC International 2012). Results were expressed in μg of lutein 

equivalent per gram of sample, as the main carotenoid found in 

maize. 

2.6.5 Tocopherols content 

α-Tocopherol (AT), γ-tocopherol (GT), and δ-tocopherol (DT) 

were separated from the fat portion of the maize flours by high-

performance liquid chromatography (HPLC) and quantified using an 

Agilent 1200 model with a fluorescence detector (FLD) and a Diol 

column (LiChropher 100, 250 × 4 mm) according to the method ISO 

9936 (2006). Tocopherols content was expressed in μg/g fat basis. 

2.6.6 Total free phenolic content 

Ethanolic extracts (EtOH:H2O 50:50, v/v) for assessing the total 

phenolic content (PH) of maize flour were prepared as described in 

Lopez-Martinez et al. (2009), with some modifications as described in 

detail in Supplementary Material. 

The total free phenolic content was assessed using the Folin–

Ciocalteu assay (Singleton et al., 1999) with a Beckman DU-70 
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spectrophotometer, with slight modifications as described in Silva et 

al. (2015), and expressed in mg of gallic acid equivalents/100 g of dry 

weight (GAE/100 g DW). 

2.6.7 p-Coumaric and ferulic acid content 

p-Coumaric (CU) and ferulic acid (FE) were quantified by HPLC 

coupled with a photodiode array detector (HPLC-PDA) at 280 nm with 

a Thermo Finnigan Surveyor HPLC system according to Silva et al. 

(2006). p-Coumaric (CU) and ferulic acid contents were expressed in 

mg/100 g of dry weight (mg/100 g DW). 

2.6.8 Volatile aldehydes content 

The volatile fraction of maize flour was analyzed by solid-phase 

microextraction–gas chromatography–mass spectrometry (SPME-

GC-MS). A 2-cm 50/30-μm DVB/Carboxen/PDMS fiber (SUPELCO) 

was used for solid-phase microextraction. Volatile compounds were 

analyzed with a GCMS-QP2010 Plus Shimadzu equipment and 

separated in a Varian Factor Four column 

(30 m × 0.25 mm × 0.25 μm). Volatile aldehydes content (AL) was 

taken as the sum of the peak area of the main aldehydes identified 

(hexanal, heptenal, 2-heptanal (Z), 2-octenal (E), nonanal, 2-nonenal 

(E), and decanal). Details on the quantification of volatile aldehydes 

content can be found in Supplementary Material. 

2.7 Quality data analysis 

To summarize the eventual multivariate changes on the 

evaluated quality traits occurring in both populations across the 

participatory breeding program, a principal component analysis (PCA) 

was performed using the PROC PRINCOMP procedure after 

standardization of the quality traits, similar to what has been already 

described for the agronomic data analysis. 
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3 Results 

In this work, the agronomical, molecular, and quality evolution 

of two historical open-pollinated maize populations, Amiúdo and 

Castro Verde, across a participatory plant breeding program was 

accessed. 

3.1 Agronomic evolution 

In relation to the Amiúdo population agronomic performance, 

on-farm stratified mass selection led, in both selection sites—

Lousada and Serra do Carvalho—to a significant increase in ear 

(EW) and cob weight (CW) and cob/ear weight ratio (CWEW) (0.9%–

1.2% for EW, 2.1%–3% for CW, and 1%–1.6% gain per cycle for 

CWEW, respectively) as well as to a significant gain in grain yield per 

plant (0.9% gain per cycle) and in grain yield overall (0.8% gain per 

cycle) (Table 2). The Amiúdo selection cycle from the Lousada site 

also had a significant increase in the levels of ear moisture (0.5% 

gain per cycle) when compared with the initial population (Table 2). 

The selection performed at the Serra do Carvalho site gave rise to an 

Amiúdo population with a decreased percentage of stalk lodging 

(−1.4% gain per cycle) and to an increase in tassel branching (0.4% 

gain per cycle) (Table 2). 

In relation to the Castro Verde population, on-farm stratified 

mass selection did not lead to any significant differences in the mean 

values of the agronomic traits evaluated in this work (Table 3). For 

both Amiúdo (Table 2) and Castro Verde (Table 3), no significant 

genotype x environment interaction was detected for the agronomic 

traits evaluated. 
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A principal component analysis based on the agronomic data 

was used to summarize the multivariate changes occurring in both 

populations across the participatory breeding program. The first two 

principal components for both the Amiúdo and Castro Verde cycles 

retained 94.49% of the total variance, with the first component 

already retaining 84.37% of the observed variance (Figure 2).  

 

Figure 2. Biplot of principal component analysis (PCA) based on 14 

agronomic traits measured in the Amiúdo cycles (initial population—AMC0-

1984; AM-LC19-2003 selection cycle; and AM-SCC25-2009 selection cycle) and 

Castro Verde cycles (initial population—CAC0-1994; CA-CC09-2004 selection 

cycle; and CA-CC14-2009 selection cycle). 

In the PCA biplot (Figure 2), the first axis clearly separated the 

Amiúdo from the Castro Verde populations. Moreover, for Amiúdo the 

first axis separated the initial population (AMC0-1984) from the two 

selection cycles (AM-LC19-2003 and AM-SCC25-2009) in the direction of an 

increase in all the traits analyzed except for plant prolificacy (P) and 
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the angle of the leaf insertion in the stalk (N) that decreased in this 

direction. The second axis separated the two selection cycles, AM-

LC19-2003 and AM-SCC25-2009, in the direction of an increase in the 

number of plants standing (SP), with the selection cycle from the 

Serra do Carvalho site having a higher number of plants standing. As 

for Castro Verde, and as expected by the results obtained previously 

for the analysis of variance (Table 3), no clear progression was 

observed along the selection process when comparing the position on 

the biplot of the initial population CAC0-1994, the cycle from 2004 (CA-

CC09-2004), and the cycle from 2009 (CA-CC14-2009) (Figure 2). 

3.2 Molecular diversity evolution 

3.2.1 Intrapopulation diversity 

The molecular diversity analysis allowed tracing the overall 

genetic diversity evolution in the two open-pollinated populations 

under study. In terms of quantitative differences in the alleles 

detected for the Amiúdo population, 73.26% of all alleles were 

maintained throughout the cycles: Of the 86 alleles detected, 63 were 

common to all the cycles (Table S3). Only six to eight alleles (7%–

9.3%), out of the 74 identified in the initial population (AMC0-1984), were 

not detected in the Serra do Carvalho (AM-SCC25-2009) and in the 

Lousada (AM-LC19-2003) selection cycles, respectively (Table S2). 

Likewise, in terms of quantitative differences in the alleles detected 

for Castro Verde population, the majority of the alleles (65.91%) were 

maintained throughout the cycles: Of 88 alleles detected, 58 were 

common to all the cycles (Table S3). Only 10 alleles (11.4%), out of 

the 74 detected in the initial population, were not detected in the CA-

CC14-2009 selection cycle (Table S2). 
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As for the allelic frequencies, for both Amiúdo and Castro Verde 

populations a considerable proportion of the alleles detected were 

present in low frequencies (0.1 or less): Amiúdo cycles with 39.19% 

at the initial population (AMC0-1984), 41.89% at the selection cycle from 

the Lousada site (AM-LC19-2003), and 48.10% at the selection cycle 

from the Serra do Carvalho site (Figure S1A); and Castro Verde 

cycles with 47.30% at initial population (CAC0-1994), 48.61% at the CA-

CC09-2004 selection cycle, and 50% at the CA-CC14-2009 selection cycle 

(Figure S1B). 

When testing for significant differences among cycles within 

each population in the average number of alleles detected, observed 

and expected heterozygosity, and inbreeding coefficients, no 

significant differences were observed among the cycles for both the 

Amiúdo and Castro Verde populations (Table 4). 

The global Hardy–Weinberg equilibrium test detected a 

significant departure from Hardy–Weinberg equilibrium in the Amiúdo 

cycle, AM-SCC25-2009, and in the Castro Verde cycle, CA-CC14-2009, both 

due to heterozygote deficiency (FIS = 0.042, p-value <.01; and 

FIS = 0.082, p-value <.05, respectively) (Table 4). When testing for the 

departure from Hardy–Weinberg equilibrium by individual locus in 

both the Amiúdo and Castro Verde populations, the majority of the 

loci had their genotypic frequencies in accordance with Hardy–

Weinberg expectations (Table S4). 

With the objective of testing for temporal changes in the allele 

frequencies distribution, the effective population size (Ne) was 

estimated by a temporal-based method under sample plan II. For 

Amiúdo, the estimated effective population size for the Lousada site 

was Ne = 119.6, while for the Serra do Carvalho site the Ne value was 

bigger (Ne = 243.7) (Table S5). For Castro Verde, the estimated 

effective population size was Ne = 161.7 (Table S5). After a 
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Bonferroni multiple-test correction, no significant temporal variation of 

allele frequencies was detected for both populations and selection 

sites (Amiúdo: Table S6; Castro Verde: Table S7). 

Table 4. Genetic variability estimates for Amiúdo initial population (AMC0-1984) 

and Castro Verde initial population (CAC0-1994) and derived selection cycles. 

Population / 

Selection cycle 
N Nav Npr HO HE FIS 

P-value 

HWE 

AMC0-1984 30 3.70 3 0.537 0.532 -0.009 ns 

AM-LC19-2003 30 3.70 1 0.523 0.531 0.014 ns 

AM-SCC25-2009 30 3.95 4 0.503 0.526 0.042 ** 

P-value*(KW)  0.961  0.584 0.725 0.520  

CAC0-1994 30 3.70 4 0.482 0.482 0.000 ns 

CA-CC09-2004 30 3.60 2 0.456 0.482 0.054 ns 

CA-CC14-2009 30 3.80 6 0.457 0.498 0.082 * 

P-value*(KW)  0.911  0.790 0.930 0.825  

* P-value of Kruskal-Wallis test among cycles (initial populations and derived 

selection cycles).  

N: number of individuals, Nav: average number of alleles, Npr: number of private 

alleles, HO: observed heterozygosity, HE: gene diversity or expected heterozygosity, 

FIS: inbreeding coefficient, P-value HWE: The probability global test for Hardy-

Weinberg equilibrium (HWE) for each cycle was based on Markov chain method. ns - 

non-significant; * - significant at P < 0.05; ** - significant at P < 0.01 

3.2.2 Differentiation among cycles 

The genetic differentiation among cycles within each population 

was tested following the framework of AMOVA. The AMOVA results 

showed that for the Amiúdo population, the percentage of variance 

that could be attributed to differences among all cycles represented 

2.86% of the total molecular variation (Table 5). The pairwise 

comparisons between Amiúdo cycles showed that stratified mass 

selection led overall to a significant but small genetic differentiation 

(given the significant ϕST values; Table 5). For the Castro Verde 

population, AMOVA showed that the variation among all cycles 

represented only 1.72% of the total molecular variation (Table 5). In 

this case, stratified mass selection did not generate a significant 
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genetic differentiation between CAC0-1994 and CA-CC09-2004 

(ϕST = 0.003, p-value >.05) (Table 5). 

Table 5. Analysis of molecular variance (AMOVA) results for the partitioning 

of SSR variation among and within Amiúdo cycles (AMC0-1984, AM-LC19-2003, 

and AM-SCC25-2009) and Castro Verde cycles (CAC0-1994, CA-CC09-2004, and 

CA-CC14-2009). 

Comparison 

% Total variance 

-statistics
1
 P()

2
 Among 

Cycles 

Within 

Cycles 

AMC0-1984 vs. AM-LC19-2003 4.33 95.67 0.043 *** 

AMC0-1984 vs. AM-SCC25-2009 2.98 97.02 0.030 *** 

AM-LC19-2003 vs. AM-SCC25-2009 1.22 98.78 0.012 * 

All Amiúdo cycles 2.86 97.14 0.029 *** 

CAC0-1994 vs. CA-CC09-2004 0.34 99.66 0.003 ns 

CAC0-1994 vs. CA-CC14-2009 2.40 97.60 0.024 *** 

CA-CC09-2004 vs. CA-CC14-2009 2.36 97.64 0.024 *** 

All Castro Verde cycles 1.72 98.28 0.017 *** 
1
-statistics: corresponds to an analogous to the fixation index (FST) which measures 

the degree of genetic differentiation among populations/selection cycles (ST) 
2
 P(): the level of significance of the -statistics was tested by non-parametric 

randomization tests using 10,000 permutations. ns - non-significant; * - significant at 

P < 0.05; *** - significant at P < 0.001 

3.2.3 Genetic relationships among individuals 

The factorial correspondence analysis depicts graphically the 

genetic proximity/differentiation within and among initial populations 

and selection cycles. From the factorial correspondence analysis of 

the Amiúdo population, the first axis, which accounted for 66.16% of 

the observed genotypic variance, separated the initial population 

(AMC0-1984) from its selection cycles. The second axis, which 

accounted for 33.84% of the observed genotypic variance, separated 

the selection cycle from the Lousada site (AM-LC19-2003) from the 

selection cycle from the Serra do Carvalho site (AM-SCC25-2009; 

Figure 3). From the factorial correspondence analysis of Castro 

Verde, the first axis, which accounted for 63.85% of the observed 
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genotypic variance, separated the most recent selection cycle (CA-

CC14-2009) from the other two. The second axis, which accounted for 

36.15% of the observed genotypic variance, separated the initial 

cycle (CAC0-1994) from the 2004 selection cycle (CA-CC09-2004; 

Figure 4).  

 

Figure 3. Factorial correspondence analysis (FCA) of 90 maize plants 

belonging to the Amiúdo cycles (initial population − AMC0-1984; AM-LC19-2003 

selection cycle; and AM-SCC25-2009 selection cycle). Each individual genotype 

is indicated by a small symbol, while the cycle's mean value is represented 

by larger ones. 
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Figure 4. Factorial correspondence analysis (FCA) of 90 maize plants 

belonging to the Castro Verde cycles (initial population − CAC0-1994; CA-CC09-

2004 selection cycle; and CA-CC14-2009 selection cycle). Each individual 

genotype is indicated by a small symbol, while the cycle's mean value is 

represented by larger ones. 

3.3 Quality evolution 

In relation to Amiúdo quality evaluation, the breeding activities 

led, in the material developed both at Lousada (AM-LC19-2003 cycle) 

and at Serra do Carvalho (AM-SCC25-2009 cycle), to a slight increase in 

the total carotenoid content (TCC) and in the color red/green index 

(a*), accompanied by a decrease in the levels of γ-tocopherol (GT), 

protein (PR), fiber (FI), total volatile aldehydes (AL), total free 
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phenolic (PH) compounds, p-coumaric acid (CU), and ferulic acid 

(FE) (Table S8). 

In the case of Castro Verde quality evaluation, although the 

results showed first a reduction of the flour's yellowness (taken as 

color parameter b* values) from CAC0-1994 to CA-CC09-2004 and 

afterward from CA-CC09-2004 to CA-CC14-2009 cycle, the b* value stopped 

decreasing. Moreover, it was observed an increase in the levels of (α-

, δ-, and γ-) tocopherols (AT, DT, GT), and p-coumaric acid (CU), as 

well as a decrease in the levels of fiber (FI), protein (PR), and total 

free phenolic (PH) compounds along the selection cycles. 

Nevertheless, for Castro Verde, the majority of the quality traits (10 of 

18) variation was erratic along selection cycles. 

As for the principal component analysis based on the quality 

data in both the Amiúdo and Castro Verde populations, the first two 

components retained 73.20% of the total observed variance, with the 

first component explaining 50.99% of the observed variance 

(Figure 5). The traits that primarily influenced the first component 

were α- and δ-tocopherol (AT and DT), fat (FT), peak and trough 

viscosities (PV and TV), and protein content (PR). The trait that 

primarily influenced the second component was the p-coumaric acid 

(CU) content. 

The PCA biplot revealed an increase in the levels of α- and δ-

tocopherol (AT and DT) and fat (FT) when comparing the Amiúdo 

initial population (AMC0-1984) with the Amiúdo cycle from the Lousada 

selection site (AM-LC19-2003). While comparing the Amiúdo initial 

population (AMC0-1984) with the Amiúdo cycle from the Serra do 

Carvalho selection site (AM-LC25-2009), an opposite trend was depicted 

with a decrease in the levels of α- and δ-tocopherol (AT and DT), and 

fat (FT), accompanied by a decrease in levels of p-coumaric acid 

(CU). 
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Figure 5. Biplot of principal component analysis (PCA) based on 18 quality 

traits in the Amiúdo cycles (initial population—AMC0-1984; AM-LC19-2003 

selection cycle; and AM-SCC25-2009 selection cycle) and Castro Verde cycles 

(initial population—CAC0-1994; CA-CC09-2004 selection cycle; and CA-CC14-2009 

selection cycle). 

4 Discussion 

Amiúdo and Castro Verde are two historical open-pollinated 

maize populations that have been subjected to on-farm stratified 

mass selection, in the context of a long-term participatory breeding 

program. The results presented here revealed that this participatory 

program is improving or maintaining yield and quality parameters 

while preserving the genetic diversity of maize populations. 

Additionally, this program is empowering farmers as they keep the 

decision power and learn some basic population improvement 

methodologies, and at the same time represents an alternative 

strategy for endangered genetic resources’ on-farm conservation. 
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4.1 Phenotypic effects of stratified mass selection 

The results obtained from multi-location field trials, established 

to evaluate the effects of stratified mass selection in these two maize 

populations, showed that this methodology was able to improve the 

Amiúdo population, according to the established selection criteria in 

two different selection sites (Lousada and Serra do Carvalho). 

Nevertheless, according to the data collected, the same methodology 

failed to lead to an agronomic improvement of the Castro Verde 

population. 

The Amiúdo population, integrated on the PPB program since 

its beginning, was selected by two different people, in two different 

selection sites, but with similar edaphic–climatic conditions. For both 

selection sites, achieving a higher-yielding population was the 

breeding objective established by the farmer. Indeed, Amiúdo 

population had a yield increase through mass selection (0.8% gain 

per cycle) accompanied by heavier cobs and ears. This gain was, 

however, inferior to the experimental values obtained across long-

term maize recurrent selection methods for population improvement, 

as reviewed by Betrán et al. (2004). According to Betrán et al. (2004), 

when grain yield is the primary selection criterion, mass selection 

showed on average a 1.8% gain per cycle, being this value often 

smaller than the average values obtained with family-based recurrent 

selection, such as selfed—S1 or S2—family selection (with 7% and 

5% gain per cycle, respectively). One of the reasons for the slower 

yield progress observed in Amiúdo population in comparison with 

these reviewed values, besides its particular genetic background, 

may be a reflection of the lower selection intensity applied under the 

present participatory program (1%–5%). 
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As for Castro Verde population, the phenotypic data showed 

that stratified mass selection was able to partially induce phenotypic 

differences that follow the direction of the breeding objectives 

(maintenance of orange grain color set as breeding criterion after 

2001). Nevertheless, an analysis of most of the other breeding 

criteria—achieve bigger ears, decrease the height of the ear insertion 

in the plants, and increase stalk resistance—showed that no 

significant improvements were obtained for the Castro Verde 

population using this methodology. 

4.2 Implications for a quality-oriented breeding program 

An important aspect of both the Amiúdo and Castro Verde 

populations is the fact that their flours can be used for food. In fact, a 

recent sensory hedonic analysis of maize bread, including bread 

obtained from these populations, showed that both populations were 

able to produce bread with preferential characteristics (Carbas et al., 

2016). With the objective of integrating these two populations in a 

quality-oriented breeding program in due course, several traits related 

to consumer preferences and technological, nutritional, and 

organoleptic properties (quality traits) were measured. It was 

observed that the majority of those traits progressed erratically along 

the breeding program for the Castro Verde population. One exception 

was the total carotenoid content, which can be selected efficiently by 

choosing the more yellow/orange ears as the b* parameter 

(yellowness) is highly correlated with total carotenoid content (Kljaka 

et al., 2014). In general for quality traits, as the ones considered in 

this work, a direct visual selection, like the one performed for the 

agronomic traits, is not possible, and other complementary breeding 

methodologies are needed to encourage their effective improvement 

by farmers. 
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4.3 Breeding program weaknesses and strengths analysis 

When grain yield was the primary breeding objective, on-farm 

stratified mass selection, as described in this work, was effective in 

improving population yield although at a slower rate than what can be 

obtained through other more complex family-based recurrent 

selection methods. With more diverse breeding objectives, as in the 

case of Castro Verde population, the stratified mass selection was not 

always effective in achieving the same progress. 

An extensive compilation of several cases of yield improvement 

achieved through mass selection in maize can be found at Hallauer et 

al. (2010, table 7.8, therein). A few examples that show the potential 

of stratified mass selection specifically in the context of a participatory 

maize breeding program were described in Mendes-Moreira et al. 

(2008, 2009) and Smith et al. (2001). In the first two works, two other 

maize populations from the same Portuguese breeding program as in 

the present study had their agronomic performance improved in line 

with the farmers’ breeding objectives (Mendes-Moreira et al., 2008, 

2009). Also Smith et al. (2001) showed that tree cycles of stratified 

mass selection applied to five different Mexican maize populations 

were sufficient to obtain an increase in yield. Several factors have 

been identified as having an impact on mass selection effectiveness 

or ineffectiveness (Hallauer et al., 2010). Among them, one can 

highlight the trait under selection, an adequate isolation, the sample 

size utilized, genotype x environment interaction, and the precision of 

the experimental techniques used (environmental control, parental 

control). In the present work, it was shown that the selection 

methodology was able to alter traits related to ear architecture in the 

Amiúdo population, and therefore, the lack of agronomic progress in 

ear architecture-related traits in the Castro Verde population should 
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not be due to the trait under selection per se. Moreover, as the 

analysis of variance did not detect a significant genotype-by-

environment interaction, the lack of Castro Verde progress should not 

be a consequence of this interaction. Instead, it could be most likely 

related to two particular aspects of the Castro Verde population: First, 

as the selection criterion until the year 2000 was set to get bigger 

ears, one hypothesis is that because this population had already ears 

of a significant size before entering the breeding program, the farmer 

was not fully engaged with the breeding activities. Second, after 

2001, this population started to be selected at Coimbra site by the 

breeder. Therefore, another hypothesis for the lack of observable 

agronomic progress is that the population did not have adequate 

isolation, as other populations were also being grown at the same 

site; and the number of individual plants screened may have been too 

small to select/capture the best genotypes. Indeed, Castro Verde 

initial population, which resulted from years of farmers traditional 

selection based mainly on ear traits evaluated after harvest, had 

already a high grain yield for an open-pollinated maize population 

(6,862.71 kg/ha). Probably due to this, a yield increase was not the 

main objective of the farmer involved on Castro Verde selection. This, 

however, was not the case for the farmer involved on Amiúdo 

selection that was aiming to improve the population initial yield 

(4,568.84 kg/ha). Nevertheless, both original maize populations 

showed on average higher yields than the only data publicly available 

on nonimproved historical Portuguese maize populations with high 

quality potential for maize bread broa production (Vaz Patto et al., 

2007). Grain yield of these traditional populations was evaluated in a 

common-garden field experiment, and it varied from 755 to 

3,757 kg/ha, with an average of 1,982 kg/ha (Vaz Patto et al., 2007). 
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In the maize populations analyzed in the present study, not only 

natural selection but also human selection is affecting yield. In a 

review by Murphy et al. (2013), several examples of the effectiveness 

of evolutionary breeding (accounting only for natural selection) in 

improving the agronomic fitness of self-pollinated cereal crops have 

been examined. With this breeding approach, improvement resulted 

from natural selection favoring high-yielding genotypes as an 

outcome of the relationship between the yield capacity of an 

individual plant and its fitness components (Murphy et al., 2013). This 

yield increase is highly dependent on the selective environmental 

pressure and may affect maturity, plant height, and relationships 

among agronomic important traits unfavorably (Phillips & Wolfe, 

2005). A comparison between the yield progress attained under the 

studied participatory breeding program and the yield progress that 

might be attained with an evolutionary breeding approach could have 

generated relevant information on the effectiveness of the human 

(artificial) selection versus natural selection. Unfortunately, no 

references were found in the literature on the effect of evolutionary 

breeding in maize populations to allow a direct comparison with the 

present study. However, by performing the selection of Amiúdo and 

Castro Verde populations within the target environment (at the 

farmers’ fields), on-farm participatory breeding guarantees local 

adaptation and it may also counteract undesirable changes caused 

by natural selection in traits of agronomic importance. Moreover, by 

respecting farmers’ breeding objectives, an increase in the ratio of 

improved populations adopted by the farmer can be obtained. 

Although one can argue that differences in response to 

selection in a similar genetic background may be due to different 

intensity or accuracy of selection, the acceptance and the enthusiasm 

of the farmers to join the program are the best guarantees of success. 
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Farmers need to be fully engaged in the selection decision process 

(breeding objectives) but be open to accept breeder 

recommendations (preharvest parental control + postharvest 

selection). 

One open question in the present study is: How able is the 

farmer to perform pre-harvest trait selection? In the present work, the 

preharvest selection was not exclusive but mainly performed by the 

breeder, and therefore, the farmer's ability could not be clearly 

evaluated. Nevertheless, theoretically, the preharvest selection 

methodologies proposed in the Portuguese participatory breeding 

program are very straightforward and are beforehand demonstrated 

by the breeder in the farmer's field. Therefore, these methodologies 

should be easily implemented by any farmer engaged in the breeding 

process. Indeed, it has been already demonstrated by Mendes-

Moreira et al. (2008) that such preharvest methodologies were 

successfully implemented by farmers in another maize population 

from the same participatory breeding program. The farmer's 

motivation and time availability/field dimensions (the bigger the field, 

the larger amount of time needed for stratified preharvest selection) 

seem to be the two main limitations for the successful implementation 

of this preharvest selection. 

4.4 Genotypic effects of stratified mass selection 

The effect of stratified mass selection in the genetic diversity 

levels of the two populations was also evaluated using SSRs. This 

analysis showed that the overall genetic diversity was maintained in 

both populations. In particular, even in the Amiúdo population where 

phenotypic modifications on ear morphology and yield gain were 

detected, no significant changes were identified on the overall genetic 

diversity levels, measured by the average number of alleles detected, 
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observed and expected heterozygosity, and inbreeding coefficients. 

Also, no significant temporal variation of allele frequencies was 

detected in any of populations under study, indicating that the 

observed differences in allele frequency are more likely a result of 

genetic drift and/or sampling error (Waples, 1989a). As opposed to 

the results obtained by Labate et al. (1999) and Solomon et al. 

(2010), in which the authors detected a loss of genetic diversity in 

maize population subjected to few as 11 and 12 cycles of reciprocal 

recurrent selection, no significant differences in genetic diversity 

levels were identified in the current study. According to Hoban et al. 

(2014), changes in genetic diversity levels are most likely identified 

only when the effective population size is smaller than 100 

individuals. In the present work, both populations had an effective 

population size bigger than 100, by contrast to the smaller effective 

population sizes estimated for the maize populations in Labate et al. 

(1999) and Solomon et al. (2010). In addition, the results presented 

here concur with the results previously described for the Portuguese 

Pigarro maize population (Vaz Patto et al., 2008) where stratified 

mass selection demonstrated to be an effective way to conserve 

diversity on-farm, and at the same time allowed relevant phenotypic 

improvements to be achieved. 

4.5 Final remarks 

In conclusion, on-farm stratified mass selection in the context of 

a participatory plant breeding program was shown to improve the 

agronomic performance of the Amiúdo population selected in two 

different selection sites. Moreover, for both the Amiúdo and Castro 

Verde populations, the breeding activities retained the populations’ 

genetic diversity. The unpredictability of the evolution of quality 

parameters along this breeding program also brings to light the need 
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to develop efficient selection tools to maintain or improve these traits. 

Molecular markers associated with those traits and/or high throughput 

spectroscopy-based phenotypic screening methodologies are among 

the tools that may aid in the improvement of characteristics that 

cannot be easily (visually) selected by farmers. The implementation of 

such breeding tools into participatory selection brings up another 

issue: To make these tools easily available, a platform of participatory 

research connecting enthusiastic, open-minded farmers, breeders, 

and scientists must be built to make its application a reality. 
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Abstract 

Previous studies have reported promising differences in the 

quality of kernels from farmers’ maize populations collected in a 

Portuguese region known to produce maize-based bread. However, 

several limitations have been identified in the previous 

characterizations of those populations, such as a limited set of quality 

traits accessed and a missing accurate agronomic performance 

evaluation. The objectives of this study were to perform a more 

detailed quality characterization of Portuguese farmers’ maize 

populations; to estimate their agronomic performance in a broader 

range of environments; and to integrate quality, agronomic, and 

molecular data in the setting up of decision-making tools for the 

establishment of a quality-oriented participatory maize breeding 

program. 

Sixteen farmers’ maize populations, together with 10 other 

maize populations chosen for comparison purposes, were multiplied 

in a common-garden experiment for quality evaluation. Flour obtained 

from each population was used to study kernel composition (protein, 

fat, fiber), flour’s pasting behavior, and bioactive compound levels 

(carotenoids, tocopherols, phenolic compounds). These maize 

populations were evaluated for grain yield and ear weight in nine 

locations across Portugal; the populations’ adaptability and stability 

were evaluated using additive main effects and multiplication 

interaction (AMMI) model analysis. The phenotypic characterization of 

each population was complemented with a molecular 

characterization, in which 30 individuals per population were 

genotyped with 20 microsatellites. 

Almost all farmers’ populations were clustered into the same 

quality-group characterized by high levels of protein and fiber, low 

levels of carotenoids, volatile aldehydes, α- and δ-tocopherols, and 
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breakdown viscosity. Within this quality-group, variability in particular 

quality traits (color and some bioactive compounds) could still be 

found. Regarding the agronomic performance, farmers’ maize 

populations had low but considerably stable grain yields across the 

tested environments. As for their genetic diversity, each farmers’ 

population was genetically heterogeneous; nonetheless, all farmers’ 

populations were distinct from each other’s. 

In conclusion, and taking into consideration different quality 

improvement objectives, the integration of the data generated within 

this study allowed the outline and exploration of alternative directions 

for future breeding activities. As a consequence, more informed 

choices will optimize the use of the resources available and improve 

the efficiency of participatory breeding activities. 

Keywords: Zea mays L., open-pollinated varieties, yield, nutritional 

quality, organoleptic quality, processing quality, genetic diversity, 

participatory plant breeding 

1 Introduction 

Maize (Zea mays L.) plays a major role in nutrition in many 

countries and is the basis for the production of several foods, such as 

polenta, bread, tortillas, snacks, and cornflakes (Fernandes et al., 

2013). In some of the countries such as Spain or Portugal whole 

maize flour is used for bread production (Rodríguez et al., 2013). The 

ethnic Portuguese maize-based bread is known locally as broa. Broa 

is traditionally made with more than 50% maize flour mixed with rye 

and/or wheat flour in a mostly empirical process (Brites et al., 2010). 

As further described by the same authors (Brites et al., 2010), this 

process normally involves the mixing of sieved wholemeal maize flour 
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with hot water, rye and/or wheat flour (in a variable proportion), with 

yeast from leavened dough from earlier broa acting as sourdough. 

In the last few decades, consumers’ views on how foods 

positively or negatively affect their health have changed and, 

therefore, foods today are not only intended to satisfy hunger and 

provide necessary nutrients; they are also used to prevent nutrition-

related diseases and improve physical and mental well-being 

(reviewed in Siró et al., 2008). Given this rising awareness in 

consumers, the consideration of the quality aspects of plant breeding 

is now a commercially relevant issue. The health benefits of 

consuming whole grains have been well documented, and are often 

associated with those benefits conveyed by their dietary fiber content 

(Ktenioudaki et al., 2015). Additionally, whole grains are rich in 

bioactive phytochemicals such as phenolic compounds, tocopherols, 

and carotenoids (Slavin et al., 2000).  

Additionally, the market demand for gluten-free formulations 

has driven more research in the different steps leading from the 

maize kernel to the baking process (e.g., Moreira et al., 2015; Garzón 

et al., 2017; Martínez & Gómez, 2017). In parallel, an increased 

investment on the improvement of open-pollinated maize populations 

has been driven by a renewed interest in materials traditionally used 

for ethnic food commodities and for their use in the context of more 

sustainable farming systems (e.g., Revilla et al., 2012, 2015; 

Samayoa et al., 2016).  

Since the introduction of maize in Europe from the Americas in 

the 15th century, diverse maize varieties have been selected for 

adaptation to a wide range of environments and consumer 

preferences (Revilla et al., 2015, Tenaillon & Charcosset, 2011). 

Portugal, Spain, and Italy are considered primary centers of maize 

introduction in Europe (Dubreuil et al., 2006). The European maize 
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populations although much less variable than the Central and South 

American populations (Rebourg et al., 2003), are a useful alternative 

because they were selected from multiple origins in the Americas and 

have the advantage of 400 years of adaptation to temperate climates 

(Romay et al., 2012), but lower yield than modern hybrids under 

conventional agricultural conditions (Revilla et al., 2015). 

In the 21st century, Portuguese traditional maize populations 

can be still found under production as verified in a collecting 

expedition that took place in the last decade in the Central-Northern 

region of Portugal (Vaz Patto et al., 2007). This mission had as its 

main objective sampling the enduring traditional maize populations’ 

variability in a particular region of the country, where maize-based 

bread still plays an important role in the local rural economy (Vaz 

Patto et al., 2007). In this collecting expedition, it was recorded that 

the majority of the maize populations conserved were being used 

primarily for bread production. As a consequence, the collected 

populations were assumed to have the potential to be used in broa 

production. The fact that flour produced from locally grown maize 

populations has traditionally been used in the formulation of broa has 

been pointed out by Vaz Patto et al. (2007) as one of the reasons for 

the on-farm conservation of the Portuguese maize populations.  

Brites et al. (2010), through a sensory analysis on broa bread 

carried out by a trained panel using open-pollinated maize 

populations, identified a preference, due to texture, taste, and aroma, 

for maize bread produced using open-pollinated populations, as 

opposed to maize bread produced using commercial hybrid maize 

varieties. In the same study, instrumental quality attributes of maize 

flour from open-pollinated populations were measured and compared 

to commercial hybrid maize varieties. The results from that study 

showed that the flour from open-pollinated populations – considered 
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by the trained panel to produce better quality broa – had higher 

values of protein, lower values of amylose, and lower viscosities 

(maximum, minimum, final, and breakdown viscosities) (Brites et al., 

2010). 

Besides the phenotypic characterization, a better understanding 

of the genetic diversity present in the germplasm available for 

breeding helps to structure germplasm, defining, for example, 

heterotic pools; provides useful information for selecting contrasting 

parental lines for new breeding populations; and helps breeders to 

identify valuable new alleles for breeding (Varshney et al., 2016).  

Currently, only a limited number of Portuguese traditional maize 

populations are integrated into the long-term participatory maize 

breeding program that has been running since 1984 in the northeast 

region of Portugal (Sousa Valley, Lousada) (Vaz Patto et al., 2013). 

One of the main advantages of on-farm participatory plant breeding is 

that it enables the constant adaptation of crops to the environment 

and supports the involvement of farmers since the selection criteria 

for the maize populations are defined in accordance with farmers’ 

decisions. This breeding program was set at the Sousa Valley region 

because this was a well-known area in the country for maize 

production, with good edaphic-climatic conditions, and because at the 

time of the program implementation, it was initiated with the support 

of the local community (reviewed in Vaz Patto et al., 2013). In this 

Portuguese participatory maize breeding program, the selection was 

mainly focused on the improvement of grain yield and other important 

agronomic traits, considering that quality was safeguarded by the use 

of local traditional maize populations (Moreira, 2006). Nevertheless, 

by the comparative evaluation of different selection cycles of some of 

the participatory bred maize populations, Alves et al. (2017) verified 

that although diversity was maintained under this program, quality 
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traits evolved erratically. This observation, together with the 

increasing market importance given to quality aspects, set the stage 

for addressing the need to develop appropriate decision-making tools 

to bring about a quality-oriented maize population selection. 

Although previous works (Vaz Patto et al., 2007, 2009; Brites et 

al., 2010) improved our knowledge of the agronomic, quality, and 

molecular aspects of traditional maize populations collected from the 

central region of Portugal, some limitations remained. Specifically, in 

terms of agronomic characterization, it is still necessary to understand 

the eventual effect and interaction of the different maize farming sites 

on those maize populations. Moreover, the use of controlled 

pollinations in the previous studies might have reduced production 

per plot, as described in Vaz Patto et al. (2007); therefore, field trials, 

under real production management over several locations, are still 

necessary to correctly evaluate the potential grain yield and to study 

how each traditional population behaves when grown in the different 

areas where maize populations have traditionally been produced in 

the country. In terms of quality characterization, it is necessary to 

evaluate other health-promoting, nutritional, and organoleptic 

compounds that can have an impact on consumers’ perception and 

acceptance of the final product. Finally, in terms of molecular 

characterization, it is necessary to increase the number of individual 

plants evaluated per population from the original five, assessed in 

Vaz Patto et al. (2009). Maize is a naturally open-pollinated crop and, 

therefore, a large number of individuals should be evaluated to 

accurately estimate the number of alleles and their frequency per 

population and, as a result, to assess the similarities and infer the 

genetic structure between and within maize populations.  

The maize populations that were surveyed in the collecting 

mission that took place in the Central-Northern region of Portugal 
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(Vaz Patto et al., 2007) are not at this date involved in any 

participatory maize breeding program. Given the previous Portuguese 

experience with this type of breeding approach and to promote the 

use of such distinct material, this work proposes to produce relevant 

(phenotypic and molecular) information on these materials and to 

develop decision-making tools to aid in the establishment of a quality-

oriented participatory breeding program. This breeding program 

should take into consideration market-driven quality traits (traits 

related to consumer acceptance, such as organoleptic and health-

related compounds), while also improving the agronomic performance 

of the breeding materials. The characterization of these populations 

will allow the identification of the most relevant ones for each 

breeding objective and will result in a more efficient use of those 

genetic resources in breeding programs. Therefore, the objectives of 

this study are: 

(1) To extend the maize populations quality characterization – 

organoleptic, nutritional, and health-related traits – with the 

quantification of aroma-related volatile compounds, and health-

related compounds, such as tocopherols, carotenoids, and phenolic 

compounds, that might influence the quality of maize-based food 

commodities; 

(2) To accurately estimate the agronomic performance and 

potential of the collected maize populations using multi-location field 

trials (broader performance stability/specific adaptability) across 

different farming sites, exploring new locations for the establishment 

of a future quality-oriented participatory maize breeding program; 

(3) To build decision-making tools to enable an accurate 

population selection within a quality-oriented participatory breeding 

program, by complementing the precise agronomic and quality 

description with a more thorough molecular characterization. 
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2 Materials and Methods 

2.1 Plant material 

The materials evaluated in this study consisted of 16 enduring 

traditional maize populations that were collected in the Central-

Northern region of the country from small farms with low input 

agricultural systems (Vaz Patto et al., 2007). These farmers’ 

populations were labeled in this work as broa-x (x corresponds to the 

specific name given to each population).  

For comparison purposes, nine open-pollinated populations 

from the long-term Portuguese maize participatory breeding program, 

identified in this work as participatory bred (PPB) populations, and an 

international reference, the US open-pollinated population 

BS22(R)C6, were also included in this study. The populations under 

the Portuguese maize participatory breeding program were selected 

and/or developed primarily to improve their agronomic performance 

(reviewed in Vaz Patto et al., 2013). BS22(R)C6 is a genetically 

broad-based synthetic population developed primarily for improved 

grain yield and root and stalk strength (Hallauer et al., 2000). More 

information about each population can be found in Table S1. 

2.2 Quality evaluation 

Quality traits related to flour’s pasting behavior (flour viscosity 

parameters), nutritional value (protein, fat, and fiber content), 

bioactive compounds (carotenoids, tocopherols, total phenolic 

content, p-coumaric and ferulic acid content), and aroma-related 

compounds (volatile aldehydes content) were evaluated in 26 maize 

populations. For that, a bulk of kernel from each maize population 

produced from a common-garden experiment established in Coimbra 

in 2009 was used. Information about the site characterization can be 
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found in Table S2. Each population was overplanted by hand in two-

row plots 6.4 m long and with 0.75 m border space between two 

planted rows. Each plot was thinned at the seven-leaf stage to 48 

plants per plot to achieve a plant density of 50,000 plants.ha−1. Plots 

were irrigated as needed and mechanically and/or hand weeded as 

necessary following common agricultural practices for maize in the 

region. Pollination was controlled within each plot. All the plots were 

harvested by hand. After harvest, ears were dried at 30-35ºC in an 

oven (Memmert Model UFE 800, Memmert GmbH + Co. KG, 

Germany) until a ~15% in moisture was reached. The ears were then 

shelled and the kernel collected per plot basis, packed in a paper 

bags and kept at 4ºC until further analysis. 

Wholemeal maize flour was obtained after milling the kernel 

through a Cyclone Falling number 3100 mill (Perten, Sweden) with a 

0.8 mm mesh. 

The pasting properties of maize flour were obtained with a 

Rapid Viscosity Analyzer RVA-4 (Newport Scientific, Australia). The 

viscosity profiles were obtained for each population according to 

Almeida-Dominguez et al. (1997) at 15% solids, using the following 

heating and cooling cycle settings: (1) holding at 50°C for 2 min, (2) 

heating to 95°C in 4.5 min, (3) holding at 95°C for 4.5 min, (4) cooling 

to 50°C in 4 min, (5) holding at 50°C for 10 min. The RVA paddle 

speed was set at 960 rpm for the first 10 s of the test, after which the 

speed was changed to 160 rpm. Peak (PV), minimum or trough (TV), 

and final viscosities (FV) were recorded in cPoise and the breakdown 

viscosity (BD) was calculated as PV–TV, and setback from trough 

viscosity (SB1) was calculated as FV–TV. 

Maize flour yellowness was determined on a 10 to 12 g sample 

in an opaque recipient using a Minolta chromameter CR-2b and the 

CIE tristimulus color parameters b* (yellow/blue index). Positive b* 
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values indicate that sample tends toward the yellow part of the color 

spectra. 

Flour protein (PR), fat (FT), and fiber (FI) content were 

determined by a near-infrared spectroscopic method using Inframatic 

8620 equipment (Perten, Sweden), with calibrations supplied by the 

manufacturer. Results were expressed in percentages. 

The total carotenoids content (TCC) was spectrophotometrically 

measured at 450 nm according to the AACC method 14-60.01 (AACC 

International, 2012). Results were expressed in μgrams of lutein 

equivalent per gram of sample, as the main carotenoid found in 

maize. 

α-Tocopherol (AT), γ-tocopherol (GT), δ-tocopherol (DT) were 

separated from the fat portion of the maize flours by high-

performance liquid chromatography (HPLC) and quantified using an 

Agilent 1200 model with a fluorescence detector (FLD) and a Diol 

column (LiChropher 100, 250 x 4 mm) according to the method ISO 

9936 (2006). Tocopherols content was expressed in μg/g fat basis. 

For assessing the total free phenolic compounds content (PH) 

of maize flour ethanolic extracts (EtOH:H2O 50:50, v/v) were prepared 

according to Lopez-Martinez et al. (2009), with some modifications. 

Briefly, 2 g of maize flour was extracted with 20 mL of EtOH:H2O 

(50:50, v/v) for 15 minutes, using an Ultra Turrax T25 (Janke & 

Kunkel, IKA Labortechnik, Germany). Final extracts were filtered 

using a Whatman filter paper (type42: retention 2.5 μm, diameter 18.5 

cm). Extracts were prepared in triplicate and preserved at -20ºC until 

analysis. 

Total free phenolic compounds content (PH) was assessed 

using the Folin-Ciocalteau assay (Singleton et al., 1999) with a 

Beckman DU-70 spectrophotometer, with slight modifications as 
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described in Silva et al. (2015), and expressed in mg of gallic acid 

equivalents/100 g of dry weight (GAE/100 g DW). 

p-Coumaric (CU) and ferulic acid (FE) were quantified by HPLC 

coupled with a photodiode array detector (HPLC-PDA) at 280 nm with 

a Thermo Finnigan Surveyor HPLC system according to Silva et al. 

(2006). p-Coumaric (CU) and ferulic acid content were expressed in 

mg/100 g of dry weight.  

Solid phase micro-extraction (SPME) was used as sample 

preparation methodology and the volatile fraction was analyzed by 

gas chromatography-mass spectrometry (SPME-GC-MS). Briefly, to 

one gram of maize flour, 4.5 mL of Milli-Q water was added to a 

capped vial and were homogenized using a vortex. For sample 

preparation, a 2cm- 50/30 μm DVB/Carboxen/PDMS fiber 

(SUPELCO) and an exposure time of 60 minutes, at 60ºC were used.  

Volatile compounds were analyzed in a GCMS-QP2010 Plus 

Shimadzu equipment and compounds were separated in a Varian 

Factor Four column (30 m x 0.25 mm x 0.25 μm). The injector was at 

250ºC and the column was at 35ºC for 5 minutes, followed by a 

gradual increase of 5ºC/min until a final temperature of 230ºC was 

reached. The injection was performed using a splitless mode. The 

interface and ion source on MS equipment was set at 250ºC. Mass 

spectra were produced at 70 eV in a range of 29 – 299, using a 

scanning velocity of 555 scans/s. Helium was used as mobile phase 

at a flow rate of 2.1 mL/min. The equipment was coupled to an 

automatic sampler AOC-5000 (Shimadzu). GCMSsolution Release 

2.53SU1 software was applied for data acquisition and treatment. 

Volatile aldehydes content (AL) was taken as the sum of the 

peak area of the main aldehydes identified (hexanal, heptenal, 2-

heptanal (Z), 2-octenal (E), nonanal, 2-nonenal (E) and decanal). 

Identification of volatile compounds was performed by a comparison 
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of the experimental mass spectra with the ones from the software’s 

spectra library (WILEY 229, NIST 27 and 147). A standard mixture of 

hydrocarbons C8-C20 (40 mg/L each, in hexane) was used to 

determine linear retention indexes – LRI (Kovats indexes) – in order 

to confirm identification. The values of LRI determined for each 

compound were compared with described LRI for the same type of 

column (El-Sayed, 2014, http://www.pherobase.com). 

2.3 Quality data analysis 

All the calculations were performed in SAS Release 9.2 (SAS 

Institute Inc., 2004). Pearson correlation coefficients were calculated 

between the 14 maize quality traits in all maize populations using 

PROC CORR procedure. 

Principal component analysis (PCA) was performed using the 

PROC PRINCOMP procedure on standardized data. The number of 

principal components was determined by checking eigenvalues of the 

principal components (Kaiser Criterion that retains components with 

eigenvalues greater than one and SCREE plot) and the cumulative 

proportion of variance explained. 

The standardized principal component scores were multiplied 

by the root of their eigenvalues to calculate pairwise Euclidean 

distances between populations. The average linkage method (i.e., 

UPGMA) of PROC CLUSTER was applied in order to classify maize 

populations into groups and to determine the optimal number of 

clusters. Cubic Clustering Criterion (CCC) statistics and Pseudo F 

(PSF) statistics were calculated and plotted. The classification of 

maize populations into groups as obtained by cluster analysis was 

evaluated by discriminant analysis (DA) using 14 traits in PROC 

DISCRIM procedure in SAS. The probabilities of classification 
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success of the discriminant function were estimated by cross-

validation. 

The univariate analysis of variance using PROC GLM was 

conducted in order to test mean differences between quality-groups 

for 14 traits. Means were separated using the least-squares means 

procedure with Tukey’s control adjustment for multiple comparisons. 

2.4 Agronomic evaluation 

The agronomic performance of all maize populations was 

compared in multi-location field trials. Field trials were established 

during 2010 in nine different sites: Quinta da Conraria, Montemor-o-

Velho, S. Pedro do Sul, Lousada, Valada do Ribatejo, Vouzela-1, 

Vouzela-2, Travassos, and Coimbra. 

The different locations represent different areas where maize 

open-pollinated populations traditionally are produced in the country 

and the different agronomic production systems normally associated 

with maize open-pollinated populations, ranging from conventional 

(Montemor-o-Velho) to organic (Quinta da Conraria and Valada do 

Ribatejo), and also considering low-input production systems (all the 

other locations). Information about the sites’ characterizations can be 

found in Table S2. 

During the 2010 growing season, a total of 26 maize 

populations were evaluated in a randomized complete block design, 

each population replicated within the three blocks set per field trial 

(location). Each population was overplanted by hand in two-row plots 

6.4 m long and with 0.75 m between rows. Each plot was thinned at 

the seven-leaf stage to 48 plants per plot to achieve a plant density of 

50,000 plants.ha−1. Plots were irrigated as needed and mechanically 

and/or hand weeded as necessary. All the plots were harvested by 

hand. 
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In each environment, a maximum of 144 plants (48 plants per 

plot × 3 blocks) were evaluated for each population. Missing data 

issues were identified for all the late cycle populations (Verdeal da 

Aperrela, Castro Verde, Estica, Fisga, and Fandango) in Travassos, 

Vouzela-1, and S. Pedro do Sul; all sites located at mid-altitude, 

where no data was obtained. The Pigarro population, a participatory 

bred population, also suffered from poor adaptation to the trial 

environments since data for Pigarro could only be retrieved for three 

out of nine environments: Lousada (the population’s site of origin), 

Valada do Ribatejo, and Vouzela-2, the latter with data in only one 

block. 

Grain yield and ear weight per population were recorded for 

each block. Ear weight was taken as an indirect measurement of ear 

size, the trait for which the majority of the collected maize populations 

were being selected. The agronomic performance of each population 

was evaluated according to Moreira et al. (2008) as described in 

Table S3. 

2.5 Agronomic data analysis 

Pearson correlation coefficients between grain yield and ear 

weight were calculated using PROC CORR procedure in SAS 

Release 9.2 (SAS Institute Inc., 2004). Given the high correlation 

between grain yield and ear weight, further analysis on genotype by 

environment interactions was reported for grain yield only. 

The genotype-by-environment (G × E) interaction analysis was 

carried out using Additive Main effects and Multiplication Interaction 

(AMMI) models, a convenient tool for detecting patterns and systemic 

trends that can usually have direct ecological or biological 

interpretation (Gauch et al., 2011). Previously described missing data 

issues required the model fitting using the Expectation-Maximization 
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(EM) algorithm, as implemented in the so-called “EM-AMMI” model 

(Gauch & Zobel, 1990). 

The general form of AMMI models can be expressed as 

(Gauch, 1992): 

𝑌𝑖𝑗 =  𝜇 + 𝑔𝑖 + 𝑒𝑗 +  ∑ 𝜆𝑘𝛾𝑖𝑘𝛿𝑗𝑘

𝑝

𝑘=1

+  𝜌𝑖𝑗 +  𝜀𝑖𝑗 

where Yij is the mean response of the population i in the environment 

j; µ is the overall mean; gi is the fixed effect of the population i (i = 1, 

2, ... g); ej is the fixed effect of environment j (j = 1, 2, ... e); εij is the 

experimental error; the G × E interaction is represented by the factors 

λk , a singular value of the kth interaction principal component axis 

(IPCA) (k = 1, 2, ... p, where p is the number of axes to be retained in 

the model), γik , the population eigenvector for kth IPCA, and δjk , the 

environmental eigenvector for kth IPCA; ρij is the residual comprised 

of the discarded axes. 

Selection of the optimal model (number of axes to be retained in 

the model) was done by cross-validation, using two replicates for 

model fitting and the remaining one for validation in 1000 iterations. 

Both EM-AMMI modeling and cross-validation were carried out using 

MATMODEL software (Gauch, 2007).  

After selecting the optimal AMMI model, the adaptability and 

phenotypic stability of the maize populations were summarized in a 

biplot. Since the optimal model was AMMI1, the biplot depicts the 

main effects of population/genotype and environment versus the 

scores for first IPCA. The biplot was generated in Microsoft Excel 

2010 using the IPCA scores and trait means retrieved from 

MATMODEL software. 
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2.6 Molecular evaluation 

Thirty random individual plants from each maize population 

were genotyped with 20 microsatellites (SSRs – simple sequence 

repeats). SSRs were chosen based on their location in the maize 

reference genome (1 SSR per chromosome arm), and repeat motifs 

(≥ 3 base pairs) to facilitate allele scoring (Table S4). Information 

about each SSR can be found at MaizeGDB (Lawrence et al., 2008 – 

www.maizegdb.org). 

Genomic DNA was isolated from the adult leaves of each plant 

using the modified CTAB procedure as described in Saghai-Maroof et 

al. (1984). Genotyping procedures were carried out accordingly to 

Alves et al. (2017). A genotypic matrix of the alleles’ scores per 

individual plant, in base pairs, was generated and served as the basis 

for the molecular data analysis. 

2.7 Molecular data analysis 

The informativeness of each microsatellite marker was 

assessed measuring their Polymorphism Information Content (PIC; 

Botstein et al., 1980) and the number of alleles detected using 

PowerMarker software (PowerMarker V3.23, Liu & Muse, 2005).  

Genetic variability within each population was accessed by the 

following parameters: the average number of alleles per locus (Nav), 

the number of private alleles (Npr), using GENEPOP software 

(GENEPOP V4.0, Raymond & Rousset, 1995), and the allelic 

richness (Nar), as the measure of the number of alleles per locus 

independent of sample size, using FSTAT software (FSTAT V2.9.3.2, 

Goudet, 2002). 

Also for each population, the following parameters based on the 

allelic frequencies were estimated: the observed (HO) and expected 

heterozygosity (HE), and the inbreeding coefficient (FIS), using 
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GENEPOP software (GENEPOP V4.0, Raymond & Rousset, 1995). 

The same software was also used to test if the genotypic frequencies 

in each population were in conformance to Hardy-Weinberg (HW) 

expectations. The probability test for Hardy-Weinberg (HW) 

equilibrium was based on the Markov chain method (Guo & 

Thompson, 1992; Raymond & Rousset, 1995) followed by sequential 

Bonferroni adjustments (Rice, 1989) to correct for the effect of 

multiple tests, using SAS Release 9.2 (SAS Institute, 2004). 

For comparison purposes, the significance of differences in 

average values of Nar, HO, HE and FIS between farmers’ populations 

and participatory bred (PPB) populations were tested using FSTAT 

software (FSTAT V2.9.3.2, Goudet, 2002). 

The genetic differentiation between all pairs of populations was 

measured with pairwise FST estimates. Pairwise FST values and their 

respective P-values for significant differences from zero were 

calculated with FSTAT software (FSTAT V2.9.3.2, Goudet, 2002). 

To represent the genetic relationships between all maize populations, 

pairwise Cavalli-Sforza–Edwards’ chord distances (DCSE) (Cavalli-

Sforza & Edwards, 1967) were calculated and an unrooted 

phylogenetic tree was constructed using Fitch-Margoliash algorithm 

(Fitch & Margoliash, 1967) with 1,000 bootstraps (Felsenstein, 1985) 

over microsatellite loci as implemented in SEQBOOT, GENDIST, 

FITCH, and CONSENSE programs of the PHYLIP software package 

(PHYLIP ver3.6b, Felsenstein, 2004). 

The analysis of molecular variance (AMOVA, Excoffier et al., 

1992) was used to partition the total microsatellite diversity among all 

populations and within all populations. The same analysis was also 

used to partition the total microsatellite diversity detected among 

farmers’ populations and participatory bred populations, within 

farmers’ populations vs. participatory bred populations, and within all 
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populations. The variance components retrieved from AMOVA 

analysis were used to calculate a series of statistics called φ-

statistics, which summarize the degree of differentiation between 

population divisions and are analogous to Wright's F-statistics 

(Excoffier et al., 1992). The variance components were tested 

statistically by non-parametric randomization tests using 10,000 

permutations in ARLEQUIN software (ARLEQUIN ver3.0, Excoffier et 

al., 2005). 

A model-based clustering method was applied on multilocus 

microsatellite data to infer genetic structure and define the number of 

gene pools in the dataset using the STRUCTURE software 

(STRUCTURE V2.3.3, Pritchard et al., 2000). Given a value for the 

number of gene pools, this method assigns individual genotypes from 

the entire sample to gene pools in a way that linkage disequilibrium 

(LD) is maximally explained. Ten runs per each K were done by 

setting the number of gene pools (K) from 1 to 10. Each run consisted 

of a burn-in period of 200,000 steps followed by 106 MCMC (Monte 

Carlo Markov Chain) replicates assuming an admixture model and 

correlated allele frequencies. No prior information was used to define 

the gene pools. The choice of the most likely number of gene pools 

(K) was carried out by comparing the average estimates of the 

likelihood of the data, ln[Pr(X|K)], for each value of K (Pritchard et al., 

2000), as well as by calculating an ad hoc statistic ΔK, based on the 

rate of change in the log probability of data between successive K 

values as described by Evanno et al. (2005). The program 

STRUCTURE HARVESTER was used to process the STRUCTURE 

results files (STRUCTURE HARVESTER v0.6.92, Earl, 2012). 
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3 Results 

3.1 Quality evaluation 

Correlations among quality traits can be found in Table S5. The 

majority (approximately 70%) of the quality traits were not correlated 

with each other, or had weaker correlations (46.34% of the total 

significant correlations detected), with a Pearson correlation 

coefficient |r| < 0.5. Protein (PR) content that was strongly positively 

correlated with fiber (FI) content (r = 0.954, P < 0.001). In addition, 

both these traits (PR and FI) were negatively correlated with the 

breakdown viscosity (BD) (r = −0.752 and r = -0.711, respectively, 

P < 0.001), and with the α-tocopherol (r = −0.764 and r = −0.786, 

respectively, P < 0.001) and δ-tocopherol values (r = −0.693 and 

r = 0.719, respectively, P < 0.001). The total carotenoids content 

(TCC) was strongly positively correlated with the flour yellowness 

(r = 0.985, P < 0.001), measure as b* from the CIE tristimulus color 

parameters.  

Because the parameters describing the pasting properties of 

maize flour were correlated among them, and because the 

breakdown viscosity (BD) and setback from trough viscosity (SB1) 

parameters were derived from the primary viscosity parameters (FV, 

PV, and TV), only the BD and SB1 viscosity parameters were chosen 

for further analyses. 

A principal component analysis (PCA) on the standardized 

quality data was performed in order to summarize multivariate 

similarities among the maize populations analyzed. 

The position of the maize populations along the first principal 

component (x-axis) in the PCA biplot, as shown in Figure 1, was 

mainly defined by their protein and fiber content, the breakdown 

viscosity, the total carotenoids content, α- and δ-tocopherol content, 
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and volatile aldehydes content. As shown in Figure 1, the farmers’ 

populations (broa-x populations) were largely discriminated from the 

non-broa-x maize populations along this principal component. The 

position of the maize populations along the second principal 

component (y-axis) was set primarily according to its flour yellowness 

(measured by b* color parameter), total carotenoids content, p-

coumaric acid, and ferulic acid content. The third principal component 

was mainly influenced by setback from trough viscosity values, and 

the fourth principal component was mainly defined by the levels of 

total free phenolic compounds (Table S6). 

To assess if the different maize populations under study would 

group into different quality-based groups, a cluster analysis was 

performed based on the first four principal components retrieved from 

the PCA. The first four principal components were used since we 

observed that only by considering the first four principal components, 

retrieved in the PCA, was a stabilized accumulated percentage of 

variance (77.94% of total variance) obtained, all having eigenvalues 

greater than one (Table S6). 

As a result of the cluster analysis, the highest values of both 

Pseudo F (PSF) statistics and Cubic Clustering Criterion were 

obtained when considering three clusters. Therefore, it was decided 

that the classification of maize populations in three quality-groups 

would be the optimal solution. One of the clusters is composed 

exclusively of one population, the Amiúdo population, and was 

therefore excluded from further analyses. As for the other two quality-

groups identified, one was mainly composed of farmers’ populations 

(broa-x populations), and was named quality-group I; the second 

group identified was composed of the remaining maize populations 

and was named quality-group II (Figure 1). 
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The groups retrieved from cluster analysis were then validated 

by performing a discriminant analysis. The discriminant function, 

based on 14 traits, correctly classified all the populations into their 

respective quality-group (100% classification success) when using 

the standard method, and 22 out of 25 populations (88% classification 

success) when using the cross-validation method. The groups 

obtained by cluster analysis were in agreement with the populations’ 

positions in the PCA biplot (Figure 1). 

 

Figure 1. Biplot of principal component analysis (PCA) based on 14 quality 

traits measured in 26 maize populations; different colored circles correspond 

to the different quality-based groups identified on cluster analysis: quality-

group I is depicted in black, quality-group II is depicted in white; the Amiúdo 

population is depicted in grey. 
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Quality-group I, where the majority of farmers’ populations were 

clustered, was characterized by having a higher fiber and protein 

content than the average value found in quality-group II, and lower 

breakdown viscosity values, lower total carotenoids content, lower 

levels of volatile aldehydes, and lower α-tocopherol and δ-tocopherol 

content than the average values found in quality-group II (Table 1). 

Table 1. Analysis of variance and comparison of mean values for the quality 

traits among quality-group I and quality-group II, as defined by cluster 

analysis. 

Trait Mean Square P(F)
1
 

Quality-group 

I II 

Protein (PR) 31.89 *** 12.18 9.83 

Fiber (FI) 0.87 *** 2.36 1.97 

Fat (FT) 1.47x10
-5

 ns 4.97 4.97 

Breakdown (BD) 2.54x10
6
 *** 82.38 746.11 

Setback1 (SB1) 9.33x10
6
 ns 1.97x10

3
 2.37x10

3
 

Yellow/blue index (b*) 211.46 ns 16.72 22.78 

Total carotenoids (TCC) 2.31x10
3
 * 15.86 35.88 

α-tocopherol (AT) 20.07x10
3
 *** 39.29 98.32 

δ-tocopherol (DT) 627.43 *** 16.21 26.65 

γ-tocopherol (GT) 8.49x10
3
 ns 244.26 282.65 

Total free phenolic 

compounds (PH) 
1.08x10

3
 ns 159.64 145.92 

p-coumaric acid (CU) 5.48x10
-3

 ns 0.35 0.38 

Ferulic acid (FE) 4.48x10
-4

 ns 0.38 0.38 

Volatile aldehydes (AL) 6.84x10
14

 *** 2.44x10
6
 13.34 x10

6
 

1
P(F) – significance of the F-test for differences between quality groups: ns – non-

significant; * – significant at P < 0.05; *** – significant at P < 0.001 

Quality traits’ units: Protein (PR), fiber (FI) and fat (FT) expressed in percentage; 

Viscosity parameters (BD and SB1) expressed in cPoise; Yellow/blue index (b*) – if 

b* is positive it means that samples tend to the yellow part of the color spectra; Total 

carotenoids (TCC) expressed in μgrams of lutein equivalent per gram of sample; 

Tocopherols (AT, DT and GT) expressed in μg/g fat basis; Total free phenolic 

compounds content (PH) expressed in gallic acid equivalents/100 g of dry weight; p-

coumaric acid (CU) and ferulic acid (FE) expressed in mg/100 g of dry weight; 

Aldehydes (AL) taken as the chromatogram peak area. 
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3.2 Agronomic evaluation 

Grain yield was strongly and positively correlated with ear 

weight (r = 0.81, P < 0.0001), therefore the following genotype-by-

environment interaction analysis on agronomic data was reported 

only for grain yield.  

The AMMI ANOVA (Table 2) shows that population, 

environment, and the G × E interaction were significant (P < 0.05) for 

grain yield. From the total variation expressed as the sum of squares, 

the genotypes accounted for 28.12%, and the G × E interaction 

accounted for a 16.96% variation. The cross-validation identified 

AMMI1 as the optimal model; therefore, G × E was further partitioned 

into a single interaction principal component axis (IPCA) and model 

residual.  

Table 2. Additive Main effects and Multiplication Interaction (AMMI) analysis 

of variance for maize populations’ grain yield tested in 9 different 

environments. 

Source Degrees of Freedom Mean Square P-value 

Total 602 372.94 
 

Treatment 233 733.75 <0.001 

Population 25 2525.58 <0.001 

Environment 8 8719.55 <0.001 

G × E 
1
 200 190.34 <0.05 

IPCA1
2
 32* 486.70 <0.001** 

Residual 168 133.89 0.723 

Error 369 145.11 
 

1
 G × E – Genotype-by-Environment interaction 

2
 IPCA1 – first Interaction Principal Component Axis 

* Degrees of freedom assigned to IPCAs using Gollob’s method (Gauch, 1992) 

** F ratio constructed using residual mean square as denominator 

The results of AMMI1 fitting for grain yield (Mg/ha) are 

illustrated in Figure 2. This biplot depicts both main effects for 

populations (G) and environments (E), on the x-axis, and G × E 
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interaction, on the y-axis. Coordinates, where the axes are crossing in 

the biplot, correspond to the overall grain yield mean (5.05 Mg/ha) (on 

the x-axis) and no G × E interaction (on the y-axis). The vertical axis 

separates lower-yielding populations and the environments where the 

maize populations performed the worst on the left side from the 

higher-yielding populations and environments where populations 

performed the best on the right side.  

The population with the highest mean grain yield was 

Fandango, a participatory (PPB) bred maize population, and the 

population with the lowest mean grain yield was a farmers’ maize 

population – broa-142 (Figure 2). The horizontal axis separates all 

populations and environments into two groups with opposite 

interaction effects, and the strength of the interaction effects is 

depicted as the distance from the x-axis to each environment; 

therefore, the Coimbra site has the strongest positive interaction 

effect on the populations’ performance and the Montemor-o-Velho 

site the strongest negative interaction effect on the populations’ 

performance. The positioning of a population close to a certain 

environment indicates the specific adaptation of those populations to 

those environments.  

Overall, all farmers’ populations were low-yielding, with grain 

yield mean of 4.49 Mg/ha, value below the overall grain yield mean 

(5.05 Mg/ha), and with positive interaction effects with the Valada do 

Ribatejo, Travassos, and Coimbra sites; therefore, they are better 

adapted to those environments. Participatory bred populations with a 

long cycle until maturation (identified as late populations in Table S2), 

such as Fandango, Estica, Fisga, and Verdeal da Aperrela, had high 

grain yields (7.37 Mg/ha, 6.68 Mg/ha, 6.59 Mg/ha, and 5.85 Mg/ha, 

respectively) and performed better at environments such as the 

Montemor-o-Velho and Lousada sites. 
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Figure 2. Biplot of mean grain yield against first principal component scores 

(IPCA1) of the Interaction Principal Component Analysis for 26 maize 

populations and 9 tested environments. Legend: farmers’ populations are 

depicted in black circles; participatory bred (PPB) populations and the outer 

group (BS22(R)C6) are depicted in white circles; tested environments are 

depicted in black crosses. 

3.3 Genetic diversity analysis 

The molecular characterization of the populations was done 

using 20 microsatellites markers distributed evenly across the 10 

maize chromosomes. The level of information retrieved from the 

markers used, calculated as the polymorphic information content 

(PIC), was, on average, 0.516. Overall the 20 microsatellites detected 

114 different alleles, with an average of 5.7 alleles per marker (Table 

S4). Except for broa-142, from the farmers’ populations, and Verdeal 

da Aperrela, from the participatory bred populations, both showing an 

excess of homozygous individuals (FIS = 0.113 and FIS = 0.093, 
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respectively), no deviations from Hardy-Weinberg expectations were 

detected in the remaining 24 maize populations (Table S7). 

The results of the genetic variability assessment within each 

population can be found in Table S7. When considering only the 

farmers’ populations (broa-x populations), the lowest number of 

alleles and the lowest genetic diversity (HE) were found in population 

broa-CMSPH8 (Nar = 2.8; HE = 0.405), whereas the highest values of 

both parameters were found in population broa-113 (Nar = 3.5; 

HE = 0.549) (Table S7). For comparison purposes, it is worth noting 

that the US population (BS22(R)C6) always showed values of the 

number of alleles and genetic diversity below the average values 

detected on the farmers’ populations (Table S7). It was also revealed 

that the allelic richness (Nar) and genetic diversity (HE) were 

significantly lower on farmers’ populations when compared to 

participatory bred populations (Nar = 3.164 vs. Nar = 3.692; HE = 0.490 

vs. HE = 0.514) (Table 3). 

Genetic differentiation between all pairs of populations was 

measured with pairwise FST estimates. All pairwise FST values were 

significantly different from zero at P < 0.05, except between Estica 

and Fisga populations. 

Table 3. Differences in average values of Nar, HO, HE, and FIS between 

farmers’ populations and participatory bred (PPB) populations. 

Group 
No. of 

populations 
Nar HO HE FIS 

Farmers' populations 16 3.164 0.487 0.490 0.008 

PPB populations 9 3.692 0.514 0.544 0.055 

P-value*  0.001 0.063 0.002 0.006 

*P-values obtained after 1,000 permutations | Nar: allelic richness; HO: observed 

heterozygosity; HE: expected heterozygosity; FIS: inbreeding coefficient 
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The average genetic differentiation of farmers’ populations was 

below the overall average (overall FST = 0.124 vs. farmers’ 

populations FST = 0.099) (Table S8). 

The results from the analysis of molecular variance (AMOVA; 

Excoffier et al., 1992) can be found in Table 4. AMOVA was used to 

partition the total microsatellite diversity: (1) among and within all 

populations; (2) among farmers’ populations and participatory bred 

populations, among populations within groups, and within all 

populations. 

Table 4. Analysis of molecular variance (AMOVA) analysis for the 

partitioning of microsatellite diversity (1) among all populations and within 

populations, (2) among farmers’ populations and participatory bred (PPB) 

populations, among populations within groups, and within all populations. 

Analysis 
Source of 

variation 
df

1
 

Percentage 

of variation 
-statistics

2
 

P-value 

()
3
 

(1) All 

populations 

Among 

populations 
25 12.75 ST = 0.127 < 0.0001 

Within 

populations 
1534 87.25   

(2) Farmers’ 

populations 

vs. PPB 

populations 

Among groups 1 2.30 CT = 0.023 < 0.001 

Among 

populations 

within groups 

23 10.29 sc = 0.105 < 0.0001 

Within 

populations 
1475 87.41 ST = 0.126 < 0.0001 

1
 df - stands for degrees of freedom | 

2
-statistics: corresponds to an analogous to 

the Wright’s F-statistics which measures the degree of genetic differentiation | 
3
 P-

value (): the level of significance of the -statistics was tested by non-parametric 

randomization tests using 10,000 permutations. 

The result from the AMOVA shows that most of the observed 

genetic variance (87.25%) can be explained by the heterogeneity that 

exists within each population – intra-population variability. 

Nevertheless, some degree of genetic differentiation exists between 
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farmers’ populations and participatory bred populations with a 

CT = 0.023 (P-value () < 0.001) (Table 4). 

In the unrooted tree, all farmers’ populations were placed on the 

same branch, clustered together with two participatory bred 

populations – Pigarro and Bastos. Moreover, the farmers’ populations 

were placed further away from the populations with a US genetic 

background – BS22(R)C6, Fandango, Estica, and Fisga (Figure 3). 

The average genetic distance between all populations was 0.104, 

with the minimum distance observed between two participatory bred 

populations (Estica and Fisga, DCSE = 0.021) and the maximum 

distance observed between a farmers’ population – broa-CMSPH8 – 

and the outer group population – BS22(R)C6 – (DCSE = 0.281) (Figure 

3, Table S9). 

 

Figure 3. Fitch-Margoliash tree based on Cavalli-Sforza–Edwards’ chord 

distances between 16 farmers’ populations and 9 participatory bred (PPB) 

maize populations, plus the BS22(R)C6 synthetic population from the US, 

abbreviated for BS22 in the tree figure; bootstrap support values higher than 

50% over 1,000 replicates are indicated with a red asterisk. 
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The existence of a genetic structure within the overall set of 

maize populations was investigated using a model-based clustering 

method implemented in STRUCTURE software (Pritchard et al. 

2000). The highest ΔK value was observed for K = 2 (for K = 2, ΔK= 

336.156, a value considerably bigger than the subsequent ΔK value 

for K = 3, ΔK = 67.031) and therefore two gene pools were 

considered to be the optimal solution. The proportion of membership 

of each gene pool in the 30 individual plants analyzed per population 

was retrieved from the run with the highest average estimates of the 

likelihood of the data, conditional on a given number of clusters, 

ln[Pr(X|K)]. 

From the 16 farmers’ populations analyzed, all were 

predominantly build of gene pool A (Figure S1, gene pool A in blue), 

averaging a proportion of membership of 93.3% ± 9.6%. 

4 Discussion 

Given the previous successful Portuguese experience in 

participatory maize breeding and to promote the use of the maize 

populations collected from a broa-producing region, this work aimed 

to develop decision-making tools to support the establishment of a 

new participatory maize quality-oriented breeding program in the 

country. 

4.1 Maize populations’ quality characterization 

The detailed characterization performed in the present study 

allowed for the identification of two main quality-based groups, and an 

outlying population, Amiúdo. Amiúdo clearly differed from the 

remaining maize populations in terms of its higher carotenoids level 

and lower levels of p-coumaric and ferulic acids. The different quality-

based groups detected by cluster analysis were in agreement with the 
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results obtained from principal component analysis: 14 out of the 16 

farmers’ populations analyzed were placed in the same quality-group, 

named quality-group I, which corresponds to 87.5% of the farmers’ 

populations (broa-x populations), with the exception of broa-092 and 

broa-102 populations; broa-x populations were essentially separated 

from the non-broa-x populations by their higher protein and fiber 

content, their lower levels of total carotenoids, α- and δ-tocopherol, 

and volatile aldehydes, as well as by their lower breakdown viscosity 

values. Populations belonging to quality-group I had on average 

12.18% protein, a value slightly above the average reported for maize 

kernel (8–11% of protein, % w/w, FAO, 1992) but similar to the values 

(12.73–13.33%) previously reported by Vaz Patto et al. (2009) using 

an extended number of Portuguese maize populations. Quality-group 

I populations also presented on average 2.36% in fiber, which is 

similar to the value reported for maize kernel (2% fiber, % w/w, FAO, 

1992; 2.59-2.61% in Vaz Patto et al., 2009). The populations from 

quality-group I had lower breakdown viscosities when compared with 

the populations from the other quality-group, which were composed 

mainly of non-broa-x populations. Breakdown viscosity (BD) is 

calculated as the difference between the peak (maximum) and the 

trough (minimum) viscosities obtained during the Rapid Visco 

Analyser (RVA) heating-cooling cycle. Breakdown viscosity is a 

measure of how easily the swollen starch granules can be disrupted 

after peak viscosity is reached during the RVA heating-cooling cycle 

(Wani et al., 2012). Since the breakdown viscosity is the result of the 

disintegration of starch granules, this value suggests the degree of 

starch stability during cooking (Wani et al., 2012). Julianti et al. 

(2015), when studying different composite flour formulations, 

observed that by increasing the proportion of soybean flour, a flour 

rich in protein, the breakdown viscosity measured during the RVA 
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heating-cooling cycle decreased. In the present work protein content 

and breakdown viscosity values are shown to have a strongly 

negative correlation between them. Related to what was discussed by 

Julianti et al. (2015), one of the possible explanations for the lower 

breakdown viscosities values observed in this current work in farmers’ 

populations (broa-x populations) is the higher level of protein usually 

detected on those materials compared to the values obtained for the 

majority of non-broa-x populations.  

It is known that the chemical composition of flour will influence 

the food texture and aroma (Collar et al., 2015; Shobha et al., 2015). 

Additionally, the maize populations that produce better-quality broa 

have higher protein values and lower breakdown values when 

compared to commercial maize varieties (Brites et al., 2010). The 

higher protein contents can probably induce increased amounts of 

flour water absorption ratio and corresponding higher bread moisture. 

In fact, the crumb moisture was been identified (Carbas et al., 2016) 

as a relevant attribute for consumer acceptability of broa. 

Taking all that into consideration, according to the values of 

protein and breakdown viscosity obtained for traditional maize 

populations in the current work, and previously by Vaz Patto et al. 

(2009), one can argue that for maize populations used for broa 

production the optimal range values will be 12% to 13% of protein, 

and breakdown viscosity values of 82-300 cPoise. 

Besides the basic nutritional value and pasting behavior-related 

traits also previously studied in Vaz Patto et al. (2009), in the current 

work, quality traits that might influence consumers’ 

preferences/choices, such as volatile compounds related to aroma 

and health-related compounds such as carotenoids, tocopherols, and 

phenolic compounds, were also analyzed. 
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Vitamin A, as provitamin A carotenoids, and vitamin E, as 

tocopherols, are the predominant fat-soluble vitamins found in maize 

kernels (Nuss & Tanumihardjo, 2010). Moreover, the health benefits 

of grain products have also been associated with the antioxidant 

properties of the phenolic compounds found in grains (Bonoli et al., 

2004). Carotenoids are a diverse family of yellow-orange pigments 

(Nuss & Tanumihardjo, 2010), and even though previous reports 

showed that grain color is not necessarily correlated with a provitamin 

A concentration of yellow and orange maize (e.g., Harjes et al., 

2008), in the current work a strong positive correlation between the 

total carotenoid content and flour yellowness was detected. 

Within the antioxidant phenolic compounds, ferulic acid is 

predominant in maize kernel, mainly present in the bound form (Adom 

& Liu, 2002), with p-coumaric acid also widely found in maize (Pei et 

al., 2016). Within the present study quality-group I, composed mainly 

by broa-x populations, a substantial range of variation could be found 

for flour yellowness and total carotenoids, and for the two individual 

phenolic compounds analyzed – p-coumaric acid and ferulic acid. 

This indicates that further improvement to increase the attractiveness 

of food formulations based on the populations within that quality-

group, and specifically for those traits, where variation can still be 

found, is still possible. Indeed, some of these antioxidant compounds 

may reduce the retrogradation and improve starch qualities (Beta & 

Corke, 2004; Siriamornpun et al., 2016; Zhu et al., 2009), or influence 

the formation of dough texture (Klepacka & Fornal, 2006), a very 

important parameter in defining bread quality (Matos & Rosell, 2012). 

Maize kernel nutritional composition can vary due to various 

factors such as the genotype, environmental conditions, and 

processing (Prasanthi et al., 2017). In the future, the study of G × E 

interaction for quality traits should also be undertaken since 
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genotype-by-environment interaction are known to affect some quality 

traits (e.g., Malvar et al., 2008; Revilla et al., 2015). This study would 

allow us not only to test the significance of the G × E on the presently 

considered quality traits but also to compare, for each trait, the 

proportion of explained variance by the G × E term with respect to the 

genotype main effects. 

Because data acquisition for the quality traits accessed in this 

study is very expensive and time-consuming in the present work 

genotype-by-environment analysis was only performed at an 

agronomic level. Nevertheless, even with quality data from only one 

common-garden experiment, the results obtained from the 

multivariate analysis allowed us to highlight the similarities that exist 

among farmers’ populations, as well as to identify the quality traits 

that discriminate them. 

4.2 Maize populations’ agronomic performance 

Multi-location field trials were established across different 

farming systems in order to accurately estimate the agronomic 

performance and evaluate the agronomic potential of the farmers’ 

maize populations. An Additive Main effects and Multiplicative 

Interaction (AMMI) method was implemented to identify maize 

populations with broader stability (i.e., lower variation across 

locations) or specific adaptability to the tested locations, and to 

evaluate potential new locations for the quality-oriented breeding 

program in the country. According to Furtado Ferreira et al. (2006), an 

undesirable population will have low stability associated with low 

productivity; therefore, the ideal population is one with high 

productivity and IPCA1 values close to zero (stable across 

environments).  
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The lower the IPCA1 value (in absolute values), the lower its 

contribution to the G × E interaction; therefore, the more stable the 

agronomic behavior of the population. On average, and in terms of 

grain production, the farmers’ populations analyzed in the present 

work had a broader stability value when compared to all the maize 

populations (|IPCA1|FARMERS = 1.124 vs. |IPCA1|OVERALL = 1.635). 

However, the results also showed that all farmers’ populations were 

low-yielding (4.49 Mg/ha, on average), performing better in 

environments such as the Valada do Ribatejo (organic production), 

Travassos, or Coimbra sites. 

In conclusion, the agronomic evaluation allowed for the 

identification of the most appropriate locations where selection 

activities should be pursued if increasing grain yield and/or ear weight 

is among the breeding objectives in a quality-oriented participatory 

maize breeding program. Moreover, that choice can be fine-tuned 

according to the maize populations under selection. Of course, other 

factors, such as local support/interest from both farmers and local 

institutions (e.g., municipality and farmers’ associations) must be 

taken into consideration when choosing the location for this kind of 

participatory research (Vaz Patto et al., 2013). In addition, the end 

product to be produced (maintaining the ethnic maize-based bread 

entity or extending it to other novelty food products) may influence the 

choice of the location as well as the particular populations that are 

more suitable due to their quality traits. In this way, if a population or 

a group of populations selected for a quality objective/end-use 

behaves better in a particular environment, this might be the best 

environmental choice. An extra factor to keep in mind for these 

decisions: should we consider the quality certification of the end 

product? For example, if we were to consider the Portuguese ethnic 

maize-based bread as a value-added product by adding a 
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certification, according to the European Union (EU) agricultural 

product quality policy (https://ec.europa.eu/agriculture/quality_en; 

accessed August 30th 2017), such as protected designations of origin 

(PDOs), protected geographical indications (PGIs), or traditional 

speciality guaranteed (TSG). This possibility of certification might 

have profound implications for the organization of the breeding 

program. Not only geographic implications (selection of the site(s) for 

PPB implementation), if one wants to select for a particular 

environment, but also on the breeding design/crosses allowed (intra-

population selection, selection of one population vs. inter-population 

crosses, selection of several populations). 

4.3 Phenotypic and molecular characterization data integration 

One of the proposed objectives of this study was to build 

decision-making tools for an accurate population selection within a 

quality-oriented participatory breeding program. This was achieved by 

complementing a precise agronomic and quality description with a 

more thorough molecular characterization. 

For example, in the case in which we need to start from either 

one particular population (intra-population selection) or from several 

populations (inter-population crosses), molecular information such as 

that gathered in this study acts as an effective extra decision-making 

tool to evaluate and compare the genetic resources available to 

breeders. As already pointed out by Reif et al. (2003), simple 

sequence repeat markers provide a valuable tool for grouping 

germplasm and are a good complement to field trials for identifying 

groups of genetically similar germplasm. 

The genetic diversity/distance calculated between potential 

crossing parents can be chosen to assure the highest possible 

diversity within a cross (Tuvesson et al., 2007), to plan useful gene 



Decision-Tools for participatory maize breeding 

107 

combinations, increasing the performance through increased 

heterosis (Reif et al., 2003), or to add new variation to the breeding 

program in a controlled fashion (Tuvesson et al., 2007). 

In the present work, based on the genetic distances and genetic 

structure of the maize populations, two main clusters could be 

identified that in a systematic manner separated the maize 

populations with a known US genetic background from the other 

maize populations. One of the clusters contained all the broa-x 

populations together with two participatory bred populations derived 

from two traditional maize populations (Pigarro and Bastos). The 

quality-group I, which is composed mainly of farmers’ populations (14 

broa-x populations), plus one participatory bred population (Bastos), 

is almost identical to this genetic-based cluster (only Pigarro is not 

included). We also observed that the maize flour from the majority of 

the broa-x Portuguese populations, evaluated at the Coimbra site, 

had higher levels of protein and fiber and lower levels of α- and δ-

tocopherols, associated with a lower breakdown viscosity values 

when compared to the maize populations of quality-group II. 

For illustration purposes, in the case of a quality oriented 

breeding program for maize bread using the Portuguese populations, 

one of the breeding objectives to be pursued could focus on 

increasing the agronomic performance of the populations and 

tocopherol levels (α- and δ-tocopherol content) that are limiting on 

this germplasm, but without compromising the protein content or 

increasing viscosity. An increase in maize vitamin E levels, as 

tocopherols, can elevate its nutritional value by enhancing their role 

as antioxidants (Nuss & Tanumihardjo, 2010). As an example, one 

can improve the α-tocopherol levels on these Portuguese populations 

by using as a donor parent the maize population with the highest α-

tocopherol levels (Fandango; 123.64 μg/g fat basis; a population with 
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a known US genetic background). The cross with the Fandango 

population, genetically distant from the broa-x populations, may 

promote heterosis and consequently a higher agronomic performance 

of the resulting hybrid population.  

As in the described example, the knowledge generated from 

both phenotypic and genotypic analysis will aid in deciding future 

breeding activities and genetic resources management. As for bread 

making and other end uses, the same decision-making process could 

be used to select the initial populations, breeding approaches, and 

optimal breeding locations. At present, existing information is already 

in use to identify potential maize open-pollinated populations as 

parental lines to generate better-performing population hybrids with 

increased content in tocopherols and total free phenolic compounds, 

decreased content in volatile aldehydes, and decreased overall 

viscosity. This information was compiled separately according to the 

populations’ kernel color (white kernel vs. non-white kernel) since 

kernel color has been linked to consumer acceptance (Ranum et al., 

2014) and also appears to be important for Portuguese maize bread 

consumer choices (Carbas et al., 2016). 

Through the integration of the different levels of information 

available, more informed choices are optimizing the use of resources 

and improving the efficiency of participatory breeding activities. 
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Table S2. Location, soil and climate characterization of the field trials sites. – 

Table available online through the link 

<https://figshare.com/s/8e6803ff1cb901c2aab6> 

Table S3. List of agronomic traits evaluated per plot basis, abbreviation and 

respective description. 

Trait Abbreviation Units/Scale Description 

Ear weight  EW Gram (g) 

Ear weight, adjusted to 15% of 

grain moisture. Measure by 

averaging the weight of 4 

shelled ears per plot. 

Grain yield
1
 Y 

Kilogram/hectare 

(kg/ha) 

Grain yield adjusted to 15% 

moisture. Formula: Grain yield = 

Ear weight × (Grain weight/Ear 

weight) × (100%–% moisture at 

harvest)/ (100%–15% moisture). 

Grain weight and ear weight 

taken from 4 shelled ears. 

1
Grain yield adjusted to 15% of moisture was calculated according to Moreira et al. 

(2008) 

Table S4. List of 20 microsatellite loci, their repeat motifs, chromosomal bin 

positions, and allelic diversity within 26 maize populations (N = 780). 

No. Marker Repeat motif Bin location Range (bp) Na
1
 PIC

2
 

1 nc007 (CCT) 5.01 143 – 158 6 0.701 

2 phi059 (ACC) 10.02 142 – 160 6 0.416 

3 phi065 CACTT 9.03 131 – 156 5 0.501 

4 phi084 (GAA) 10.03-10.04 148 – 160 4 0.442 

5 umc1065 (ACA)17 2.06 128 – 164 13 0.832 

6 umc1134 (AGC) 7.03 79 – 91 7 0.491 

7 umc1139 (GAC)4 8.01 146 – 158 3 0.283 

8 umc1267 (CGG)4 9.03-9.04 113 – 122 4 0.582 

9 umc1329 (GCC)7 4.06 77 – 86 3 0.426 

10 umc1425 (TCA)4 3.04 119 – 131 5 0.368 

11 umc1431 (GCA)5 1.09 132 – 138 3 0.54 

12 umc1689 (GCG)5 1.05 137 – 146 4 0.403 

13 umc1690 (GCA)4 3.07 82 – 94 4 0.425 

14 umc1777 (CTG)4 8.05 113 – 125 5 0.412 
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Continuation Table S4 

No. Marker Repeat motif Bin location Range (bp) Na
1
 PIC

2
 

15 umc1787 (CGG)4 7.02 80 – 89 3 0.411 

16 umc2030 (CGA)4 2.04 112 – 124 5 0.574 

17 umc2059 (CAG)8 6.08 122 – 146 8 0.727 

18 umc2196 (CCG) 6.01 115 – 133 6 0.552 

19 umc2216 (TC)10 5.06 118 – 134 9 0.492 

20 umc2281 (GTCC)5 4.03 152 – 204 11 0.734 

 
Average 

 
 

 
5.7 0.516 

 
Total 
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 1
 Na – total number of alleles 

2
 PIC – Polymorphism Information Content 

Table S5. Pearson correlation coefficients among 17 quality traits calculated 

from a common-garden experiment (Coimbra, 2009) for 26 maize 

populations analyzed. – Table available online through the link 

<https://figshare.com/s/4dc7d834959ecdf37125> 

Table S6. Pearson correlation coefficients between quality traits and the first 

four principal components (PC) scores (PC1 to PC4), and the eigenvalues 

and percentage of variance for the four principal components. 

No. Trait PC1  PC2  PC3  PC4  

1 PR -0.863 *** -0.300 ns 0.326 ns -0.095 ns 

2 FI -0.907 *** -0.124 ns 0.222 ns -0.121 ns 

3 FT -0.203 ns 0.580 ** -0.402 * -0.020 ns 

4 BD 0.669 *** 0.107 ns -0.582 ** -0.018 ns 

5 SB1 0.147 ns -0.472 * -0.717 *** -0.155 ns 

6 b* 0.506 ** -0.688 *** 0.223 ns 0.029 ns 

7 TCC 0.611 *** -0.626 *** 0.250 ns 0.014 ns 

8 AT 0.872 *** 0.195 ns 0.039 ns -0.118 ns 

9 DT 0.863 *** 0.128 ns 0.120 ns -0.176 ns 

10 GT 0.468 * 0.139 ns 0.533 ** -0.553 ** 

11 PH -0.281 ns 0.447 * -0.210 ns -0.718 *** 

12 CU 0.120 ns 0.676 *** 0.132 ns 0.552 ** 

13 FE -0.046 ns 0.765 *** 0.265 ns -0.045 ns 

14 AL 0.624 *** 0.336 ns 0.289 ns 0.094 ns 

Eigenvalue 4.915  2.969  1.796  1.231  

% of variance 35.11  21.21  12.83  8.79  

P-value of the significance levels of correlations indicated as: ns – non-significant; * – 

significant at P < 0.05; ** – significant at P < 0.01; *** – significant at P < 0.001 
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Quality traits’ abbreviations: PR – protein; FI – fiber; FT – fat; BD – breakdown; SB1 

–setback1; b* – yellow/blue index; TCC – total carotenoids; AT – α-tocopherol; DT – 

δ-tocopherol; GT – γ-tocopherol; PH – total free phenolic compounds; CU – p-

coumaric acid; FE – ferulic acid; AL – volatile aldehydes. 

Table S7. Within-population genetic diversity estimates in 26 maize 

populations (N = 780). 

Population N Nav Nar Npr HO HE FIS 
P-value 

HWE 

Broa-048 30 3.2 3.1 1 0.502 0.468 -0.073 ns 

Broa-057  30 3.4 3.3 0 0.462 0.477 0.032 ns 

Broa-065  30 3.5 3.4 1 0.487 0.507 0.041 ns 

Broa-070  30 3.2 3.1 0 0.487 0.504 0.033 ns 

Broa-092  30 3.3 3.2 0 0.458 0.482 0.049 ns 

Broa-102 30 3.6 3.5 0 0.466 0.490 0.049 ns 

Broa-113  30 3.6 3.5 0 0.566 0.549 -0.032 ns 

Broa-136 30 3.3 3.2 0 0.514 0.525 0.020 ns 

Broa-142 30 3.3 3.2 1 0.474 0.535 0.113 ** 

Broa-148  30 3.0 2.9 0 0.488 0.483 -0.010 ns 

Broa-164  30 3.1 3.0 0 0.491 0.463 -0.059 ns 

Broa-172 30 3.4 3.3 1 0.506 0.508 0.004 ns 

Broa-186  30 3.2 3.1 2 0.490 0.487 -0.007 ns 

Broa-214 30 3.0 2.9 0 0.446 0.445 -0.003 ns 

Broa-CMSPH3  30 3.1 3.0 0 0.525 0.518 -0.015 ns 

Broa-CMSPH8 30 2.8 2.8 1 0.424 0.405 -0.048 ns 

Amiúdo 30 4.0 3.8 1 0.503 0.526 0.042 ns 

Bastos 30 3.5 3.4 0 0.503 0.530 0.052 ns 

Pigarro 30 3.8 3.7 0 0.493 0.523 0.057 ns 

Verdeal da 

Aperrela 
30 3.5 3.4 1 0.468 0.516 0.093 *** 

Aljezur 30 4.0 3.9 0 0.566 0.591 0.042 ns 

Castro Verde 30 3.8 3.7 0 0.457 0.498 0.082 ns 

Estica 30 4.1 4.0 0 0.549 0.588 0.065 ns 

Fisga 30 3.9 3.8 1 0.536 0.560 0.043 ns 

Fandango 30 3.7 3.6 0 0.551 0.563 0.022 ns 

BS22(R)C6 30 2.9 2.8 0 0.477 0.468 -0.019 ns 

Average 
 

3.4 3.3  0.496 0.508 0.022  

N – sample size; Nav – average number of alleles; Nar – average number of alleles 

per locus independent of sample size (allelic richness); Npr – total number of private 

alleles; HO – observed heterozygosity; HE – expected heterozygosity; FIS – inbreeding 

coefficient; P-value HWE: The probability global test for Hardy-Weinberg equilibrium 

(HWE) for each population was based on Markov chain method. ns – non-significant; 

** – significant at P < 0.01; *** – significant at P < 0.001 
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Table S8. Pairwise FST values between farmers’ populations, pairwise FST 

values between participatory bred (PPB) populations, and pairwise FST 

values between all maize populations. 

Parameter 

Farmers’ populations PPB populations All populations 

FST 
Between 

populations 
FST 

Between 

populations 
FST 

Between 

populations 

Average 0.099 
 

0.113 
 

0.124 
 

Minimum 0.030 
Broa-142 / Broa-

172 
0.005 Estica / Fisga 0.005 

Estica / 

Fisga 

Maximum 0.262 
Broa-214 / Broa-

CMSPH8 
0.233 

Verdeal da 

Aperrela / Castro 

Verde 

0.377 

Broa-

CMSPH8 / 

BS22(R)C6 

FST stands for fixation index 

Table S9. Average chord distance between farmers’ populations, average 

chord distance between participatory bred (PPB) populations, and overall 

Cavalli-Sforza–Edwards’ chord distances between all maize populations. 

Parameter 

Farmers’ populations PPB populations All populations 

DCSE 
Between 

populations 
DCSE 

Between 

populations 
DCSE 

Between 

populations 

Average 0.078 
 

0.096 
 

0.104 
 

Minimum 0.035 
Broa-136 / Broa-

172 
0.021 Estica / Fisga 0.021 

Estica / 

Fisga 

Maximum 0.183 
Broa-214 / Broa-

CMSPH8 
0.164 

Verdeal da 

Aperrela / 

Castro Verde 

0.281 

Broa-

CMSPH8 / 

BS22(R)C6 

DCSE - Pairwise Cavalli-Sforza–Edwards’ chord distance 
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Figures 

 
Figure S1. Proportion of membership of each maize population in each of 

the two gene pools inferred from multi-locus microsatellite data using a 

model-based clustering method. Each horizontal line within each population 

corresponds to an individual plant. Gene pool A is depicted in blue; gene 

pool B is depicted in orange. The BS22(R)C6 synthetic population from the 

US, abbreviated for BS22 in the figure. 
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Chapter IV 

Genome-wide association study for kernel 

composition and flour pasting behavior in 

wholemeal maize flour 
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Abstract 

Maize is a crop in high demand for food purposes and 

consumers worldwide are increasingly concerned with food quality. 

However, breeding for improved quality is a complex task and 

therefore developing tools to select for better quality products is of 

great importance nowadays. In Portugal, a unique germplasm has 

been developed through centuries of adaptation to local environment 

and food uses, in particular, for ethnic maize leaved maize broa bread 

production. Several parameters related to kernel composition, flour 

pasting behavior and flour particle size have been previously 

identified as crucial for broa quality. 

In this work we took advantage, for the first time, of an original 

collection of 132 maize inbred lines, partially developed from 

Portuguese traditional maize populations, and carried a genome-wide 

association study aiming to identify genomic regions controlling 

compositional and pasting properties of maize wholemeal flour, 

fundamental on the development of quality-related molecular 

selection tools. The inbred lines were trialed during two growing 

seasons and samples from each field replicate characterized for main 

compositional traits (protein, fiber, fat, and starch), flour pasting 

parameters (viscosity profiles) and mean particle size, using well-

established methodologies. The same collection was genotyped with 

the MaizeSNP50 BeadChip array. SNP-trait associations were tested 

using a mixed linear model that accounted for the genetic relatedness 

among inbred lines. 

With this approach, 57 genomic regions were identified 

associated with the 11 different quality traits evaluated. Several 

regions controlling multiple traits were also detected with the 

identification of potential candidate genes. As an example, for 
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breakdown viscosity and peak viscosity, two viscosity parameters that 

reflect the capacity of the starch to absorb water and swell, the 

strongest common associated region for both traits was located near 

the dull endosperm 1 gene which encodes a starch synthase and is 

determinant on the starch endosperm structure in maize.  

This study allowed a better understanding of the complex 

genetic basis of maize kernel main compositional and pasting quality, 

identifying candidate genes for the majority of the quality associated 

genomic regions, or the most promising target regions to develop 

molecular tools to increase efficacy and efficiency of quality selection 

within maize breeding programs. 

Keywords: Zea mays L., nutritional quality, pasting behavior, 

Portuguese maize germplasm, candidate genes, plant breeding 

1 Introduction 

Maize (Zea mays L.) is, along with rice and wheat, one of the 

world leading crops and a crucial source of food, feed, fuel and fibers 

(Tenaillon & Charcosset, 2011). Together, these three species 

account for 93% of all cereal food consumption (FAO, 2012). The 

major nutritional components and source of economic value in maize 

kernel are starch, protein, oil, and fiber (reviewed in Chen et al., 

2016). From a processing perspective, the maize kernel is composed 

of four primary structures. The endosperm, germ, pericarp, and tip 

cap make up 83%, 11%, 5%, and 1% of the maize kernel biomass, 

respectively (Gwirtz & Garcia‐Casal, 2014). The endosperm is 

primarily composed of starch surrounded by a protein matrix (Gwirtz 

& Garcia‐Casal, 2014). The germ or embryo is high in fat (33.3%), as 

well as in enzymes and nutrients needed for maize plant growth and 

development (Gwirtz & Garcia‐Casal, 2014). In the maize kernel 
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endosperm, starch is deposited as semi-crystalline granules, 

constituted by amylose and amylopectin. Although starch metabolism 

is complex, only four classes of enzymes, adenosine diphosphate 

glucose pyrophosphorylases, starch synthases, starch branching 

enzymes and debranching enzymes, have been identified as critical 

players in starch biosynthesis (Wang et al., 2015, and references 

therein). The primary storage proteins in the maize kernel are 

prolamines, called zeins, which are divided into four subfamilies of α- 

(19 and 22-kDa), β- (15 kDa), γ- (16-, 27-, and 50-kDa), and δ-zeins 

(10- and 18-kDa) (reviewed in Hartings et al., 2012). 

The way in which maize is processed and consumed varies 

greatly from country to country, with maize flour and meal being two 

of the most popular products (Ranum et al., 2014, and references 

therein). A better understanding of the complex genetic basis of 

maize kernel main components is essential for devising more efficient 

breeding tools to support the improvement of this crop main products 

compositional quality. 

Maize mutants have been widely used to isolate genes 

encoding key enzymes in starch metabolism (e.g., Shrunken1 (sh1), 

Brittle2 (bt2), Waxy1 (wx1), Sugary2 (su2), Dull1 (du1), and Sugary1 

(su1) (reviewed in Wang et al., 2015), as well as genes regulating 

zein synthesis and deposition (e.g., opaque-2 (o2), opaque-15 (o15), 

floury1 (fl1)) (reviewed in Hartings et al., 2012). High-throughput 

genomics and post-genomics approaches are now providing new 

tools to better understand the genetic and biochemical networks 

operating during maize kernel development, contributing ultimately to 

its composition, and a high degree of complexity and regulation has 

been detected (reviewed in Hartings et al., 2012). 

Quantitative trait loci (QTL) linkage mapping, and for the last 15 

years, association mapping studies enabling higher resolution QTL 
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location, have shown that kernel main components are controlled by 

many genes, having complex patterns of inheritance (e.g., Cook et 

al., 2012, and references therein). For instance, Wilson et al. (2004) 

used an association approach to evaluate the involvement of six 

maize candidate genes, from the starch biosynthesis pathway, on 

major kernel compositional related traits (protein, oil, and starch 

concentration and composition, including pasting properties and 

amylose levels). With this work, Wilson et al. (2004) identified 

haplotypes of brittle endosperm2 (bt2), shrunken1 (sh1), and 

shrunken2 (sh2) that were associated with several kernel composition 

traits, and haplotypes of amylose extender1 (ae1) and sh2 with 

association with starch pasting properties (Wilson et al., 2004). More 

recently, genome-wide association studies (GWAS) have been used 

on the genetic dissection of maize kernel quality traits. Examples are 

the work of Li et al. (2013) that carried out a GWAS to unravel the 

genetic architecture of oil biosynthesis in maize kernels, and the work 

conducted by Cook et al. (2012) that carried out a joint-QTL 

mapping/GWAS for kernel starch, protein, and oil content. 

The Portuguese maize germplasm is recognized by its high 

diversity (Vaz Patto et al., 2004, 2007) and associated potential 

quality for food since Portugal has a long tradition in the production of 

the ethnic leavened maize-based bread – broa (Vaz Patto et al., 

2007). This ethnic bread is made with a 50% or more of maize flour, 

mixed with wheat or rye (Brites et al., 2010), for which the local maize 

populations are usually preferred (Vaz Patto et al., 2007). Several of 

the maize flour parameters that mainly influence maize kernel quality 

for broa production have been identified (Brites et al., 2010; Carbas et 

al., 2016). Protein and amylose content, flour pasting parameters, 

such as maximum, minimum and final viscosities (Brites et al., 2010), 

and flour particle size (Carbas et al., 2016), were among these major 

https://link.springer.com/article/10.1007/s11947-008-0108-4#CR37
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influencing parameters. Pasting properties of maize flour are 

considered important parameters to consider for the preparation of 

different food products as they are related to its swelling and 

gelatinization characteristics (Paraginski et al., 2014). Starch, 

proteins, and lipids are the three major food components in cereal-

based food products, and interactions among them in a food system 

are of importance to functionality and quality (Wang et al., 2017; 

Zhang & Hamaker, 2003). 

A comprehensive analysis of all these different quality-related 

parameters is still missing in the Portuguese maize germplasm and 

so the national diversity was never properly exploited on the 

development of efficient tools / innovative approaches to support 

breeding for these complex quality traits. 

The present study was carried out to identify genomic regions 

controlling the upper mentioned quality-related parameters through a 

genome-wide association approach, using a unique association panel 

constituted by a collection of maize inbred lines where a considerable 

amount of the unexplored Portuguese maize germplasm is present. 

This will allow the understanding of the genetic architecture of quality 

traits, the identification of candidate quality genes and the 

development of quality associated molecular selection tools for traits 

difficult to select by conventional methods. In this work, we took 

advantage of the diverse germplasm developed through decades of 

maize breeding by the extinct NUMI (Núcleo de Melhoramento de 

Milho), and now conserved at the Portuguese Plant Germplasm Bank 

(Banco Português de Germoplasma Vegetal - BPGV, Braga, 

Portugal). The uniqueness of the association mapping panel used in 

the current work, constituted by Portuguese, foreign and mixed origin 

lines, could lead to the discovery of quality alleles not previously 

identified in other germplasm collections. 
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Our approach consisted of (i) phenotyping the germplasm 

collection with different quality parameters, using samples harvested 

from a two environments field experiment, (ii) genotyping the same 

germplasm collection with the MaizeSNP50 BeadChip array, (iii) 

investigating the degree of genetic structure within the collection, and 

(iv) performing a GWAS with a mixed linear model approach, with the 

subsequent search for candidate genes and /or associated molecular 

markers. 

2 Materials and Methods 

2.1 Plant material 

The maize inbred line collection used on this study was 

assembled observing a significant representation of lines selected 

from traditional Portuguese maize populations (29 lines) and lines 

with a mixed Portuguese x foreign origin (the majority of the lines 

whose names start by PB, PP, PV or PT, Table S1). The reasoning 

behind this was the premise that the locally grown Portuguese maize 

populations, is the material traditionally used for the formulation of 

baked commodities (as the leaved maize-based bread broa), are 

considered as keepers of quality traits related to bread production. 

The original seed of the maize inbred lines collection used in this 

study was provided by the Portuguese Bank of Plant Germplasm 

(BPGV, Braga, Portugal). 

From a total of 164 different maize inbred lines sowed on the 

field trials, only 132 yielded sufficient kernels to proceed with their 

quality analysis (Table S1). Additional details on their recorded 

pedigree may be found in Table S1. Thirty-six of the yielding lines had 

a white kernel, further divided into 20 with flint endosperm, three 

intermediate and 13 with dent endosperm. The remaining 96 inbred 
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lines had a kernel color ranging from yellow to red, further divided into 

37 with flint endosperm, eight intermediate, and 51 with dent 

endosperm (Table 1). 

Table 1. Summary of the number of maize inbred lines grouped accordingly 

to their kernel color and endosperm type used to measure nutritional and 

processing quality traits in wholemeal flour. 

Kernel color 
Endosperm type 

Flint Intermediate Dent Total 

White 20 3 13 36 

Yellow 3 4 26 33 

Yellow-orange 18 3 23 44 

Orange 16 1 1 18 

Red − − 1 1 

Total 57 11 64 132 

 

2.2 Field characterization and experimental design 

The inbred lines were evaluated at Coimbra site (40°13'0.22"N, 

8°26'47.69"W), Portugal, during the 2011 and 2012 growing seasons, 

using an organic agriculture converted field. The conversion started in 

2011 and the field was considered to be fully managed under an 

organic agriculture system by 2012. This site is part of the Mondego 

river irrigation perimeter, a very high-yielding maize area where the 

average maize hybrids yield is 14.5 Mg.ha-1 (Mendes-Moreira et al., 

2015). It is located 50 km from the seacoast, with 25 m altitude. Its 

alluvial soils are characterized at 0-20 cm and 20-40 cm respectively 

by a pH of 5.65 and 5.75, a percentage of soil with a particle size less 

than 0.2 mm diameter of 83.37% and 82.84%; and an organic matter 

percentage of 2.91% and 2.55%. Agricultural practices were similar in 

both growing seasons, but sowing and harvest dates differed 

between growing seasons. Sowing took place at the 28th April and 

11th May and the harvests took place on the 28th September and on 

the 6th November in 2011 and 2012, respectively. 
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In each year, the maize inbred lines were evaluated using a 

randomized complete block design, with two blocks (replicates). 

Information on the spatial distribution of the plots was also recorded 

(row and columns field coordinates). Each plot consisted of two rows 

7.2 m long (6.4 m planted row plus 0.8 m border space between two 

planted rows), with an inter-row distance of 0.75 m. Each plot was 

overplanted by hand and thinned at the V7 growth developmental 

stage to achieve a plant density of approximately 50,000 plants ha-1. 

Plots were mechanically and hand-weeded when needed and 

managed following common agricultural practices for maize in the 

region. Pollination was controlled within each plot. All the plots were 

harvested by hand. After harvest, ears were dried at 30-35ºC in an 

oven (Memmert Model UFE 800, Memmert GmbH + Co. KG, 

Germany) until a ~15% in moisture was reached. The ears were then 

shelled, and the kernel collected per plot basis packed in paper bags 

and kept at 4ºC until further analysis. 

2.3 Phenotypic data acquisition 

A seed sample from each of the harvested plots (replicates) 

was used for quality determinations. Therefore, the total number of 

samples analyzed corresponded to [number of inbred lines × number 

of field replicates (2) × number of growing seasons (2)]. 

Wholemeal maize flour was obtained from all the seed samples 

using a Falling number 3100 mill (Perten Inc., Sweden) with a 0.8 mm 

screen.  

In order to prevent/minimize the enzymatic action and 

subsequent alteration of the flour properties, flour samples were also 

lyophilized using Cientificolab® equipment built for pilot-scale 

lyophilization of food commodities. For that, each sample was 
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individually placed in a flask (height 3.7 cm, diameter 4.2 cm) and 

then freeze-dried for long-term preservation. 

Eleven quality traits were measured in wholemeal maize flour: 

nutritional-related traits – protein (PR), fiber (FI), fat (FT) and total 

starch content (ST and STL, see below for details); technological-

related traits – mean particle size (SIZE and SIZE L; see below for 

details), peak (or maximum) viscosity (PV), trough (or minimum) 

viscosity (TV), final viscosity, breakdown viscosity (BD), setback from 

trough viscosity (SB1), and setback from peak viscosity (SB2). 

2.3.1 Flour protein, fiber, fat and starch content 

Flour protein (PR), fiber (FI) and fat (FT) content were 

determined for each non-lyophilized sample by near-infrared 

reflectance (NIR) spectroscopy (Percon Inframatic 8620, Perten Inc., 

Sweden), with calibrations for non-lyophilized samples supplied by 

the manufacturer. Values for protein, fiber, and fat corresponded to 

the mean value of up to two technical replicates. The total starch 

content was determined in lyophilized (STL) (2011 and 2012 growing 

seasons) and non-lyophilized (ST) (only 2012 growing season) 

samples using Fourier Transform Near-Infrared Reflectance (FT-NIR) 

spectroscopy (FT-NIR MPA, Bruker Optics, Germany), with 

calibrations for non-lyophilized samples supplied by the manufacturer. 

Values for total starch content obtained from 2012 growing season 

lyophilized and non-lyophilized samples where further used to test 

whether both datasets were correlated (phenotypic correlation 

between datasets). Values for total starch content (non-lyophilized 

(ST) and lyophilized (STL) samples) corresponded to the mean value 

of two to four technical replicates. Protein, fiber, fat, and starch 

content was expressed in percentage (%). 
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2.3.2 Mean particle size  

The maize flour Particle Size Index (PSI) was determined using 

also FT-NIR spectroscopy (FT-NIR MPA, Bruker Optics, Germany). 

For 2011 growing season, only the mean for particle size in 

lyophilized samples (SIZEL) was measured. For 2012 growing 

season, both mean particle size in non-lyophilized (SIZE) and 

lyophilized flours (SIZEL) were determined. Values for mean particle 

size (non-lyophilized (SIZE) and lyophilized (SIZEL) samples) 

corresponded to the mean value of two to four technical replicates. 

The calibration models for PSI FT-NIR analysis were obtained using 

the particle size values measured in a subset of 30 non-lyophilized 

samples according to the AACC method 55-40.01:1999 (AACC, 

1999), with a Malvern multi-channel laser light-scatter instrument 

(Malvern Instruments Ltd., England). Values for mean particle size 

obtained from lyophilized and non-lyophilized samples from the 2012 

growing season were further used to test whether both datasets were 

correlated (phenotypic correlation between datasets). After 

calibration, the mean particle size volume value, or D[4,3], retrieved 

from the particle size distribution, was used as an average measure 

of the particle size of each sample and was expressed in µmeters. 

2.3.3 Flour pasting properties 

Maize flour pasting properties were evaluated by recording their 

viscosity profiles using a Rapid Visco Analyser (RVA) (Newport 

Scientific, Australia). The viscosity profiles were obtained on non-

lyophilized samples according to Almeida-Dominguez et al. (1997) at 

15% solids, using the following heating and cooling cycle set: (1) 

holding at 50°C for 2 min, (2) heating to 95°C in 4.5 min, (3) holding 

at 95°C for 4.5 min, (4) cooling to 50°C in 4 min, (5) holding at 50°C 

for 10 min. The RVA paddle speed was set at 960 rpm for the first 10 
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s of the test, after which the speed was changed to 160 rpm. Peak (or 

maximum) (PV), trough (or minimum) (TV) and final (FV) viscosities 

were recorded. The breakdown (BD) was calculated as peak 

viscosity-trough viscosity, setback from trough viscosity (SB1) as final 

viscosity - trough viscosity, and setback from peak viscosity (SB2) as 

final viscosity - peak viscosity. Up to two technical replicates of the 

viscosity profiles were taken for each sample. All the viscosity and 

viscosity-related traits were expressed in cPoise. 

2.4 Phenotypic data analysis 

A phenotypic analysis was performed per individual trial to 1) 

perform quality control of the data, 2) obtain estimates of genetic 

variances (and covariances between traits) and heritability, and 3) 

obtain adjusted trait means per inbred line. For quality control, 

graphical inspection of residuals was used to assess normality (Q-Q 

plot), homogeneity of variance (residuals versus fitted values), and 

identify outliers. Potential influential observations identified by the raw 

data method, which identifies observations exceeding 1.5 times the 

interquartile range, and the residual method, which identified 

standardized residuals by mixed model analysis, were removed from 

the analysis. One of the traits (breakdown viscosity, BD) required a 

squared-root-transformation to stabilize the variance. All analyses 

were done using the Breeding View software (Murray et al., 2014), 

available through the IBP Breeding Management System (The IBP 

Breeding Management System Version 3.0.9, 2015). 

In detail, single trait-single growing season analysis, using 

mixed models, was performed using the “Single trait field trial 

analysis” pipeline of Breeding View, selecting the model for 

resolvable row-by-column design as implemented in the software. 

The statistical model includes an intercept, a fixed block effect, a 
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random row and column effects (nested within blocks), a genotypic 

effect (fixed or random, see the explanation that follows) and a 

residual. The Field trial analysis node in Breeding View performs two 

mixed model analyses: in the first step (Step 1) the inbred lines 

(genotypes) were fitted as a random term, while in the second step 

(Step 2) the inbred lines were fitted as a fixed term. The Step 1 model 

is used to obtain estimates of variance parameters. From Step 1 the 

heritability, as well as the best linear unbiased predictors (BLUPs) 

were calculated for each inbred line (and correlations between BLUPs 

of different traits used to obtain estimates of genetic correlations 

between traits). In Step 2, structural variance components (rows and 

column variances) are fixed to those estimated in Step 1, and by 

including the inbred lines as a fixed term, best linear unbiased 

estimators (BLUEs) for each inbred line were produced.  

For each quality trait, a multi-environment trial analysis was also 

performed to assess the consistency across growing seasons. The 

analysis of variance was carried out using the REML variance 

components analysis procedure in Genstat software (Genstat® for 

Windows 18th edition, Payne et al., 2015). The mixed model included 

growing seasons (fixed), maize inbred lines and season by line 

interaction (fixed or random) while blocks, rows, and columns, were 

treated as random terms, and nested within growing seasons. 

Similarly to what was already described for the single trial analysis, in 

the multi-environment trial analysis, BLUPs and BLUEs were 

calculated for each inbred line across growing seasons. BLUPs were 

used on principal component analysis (PCA) to assess genetic 

correlations between traits and BLUEs were used as input phenotypic 

data in the association mapping analysis, for the combined analysis 

across growing seasons. 
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2.5 Genotypic data acquisition 

DNA was isolated from adult leaves from each maize inbred line 

using a modified CTAB procedure as described in Saghai-Maroof et 

al., (1984). DNA quality was accessed using a 0.8% SeaKem® LE 

Agarose gel (Cambrex Bio Science Rockland, Inc., USA) stained with 

SYBR® Safe (Invitrogen, USA). DNA quantification was done using a 

spectrophotometer Nanodrop ND-2000C (Thermo Scientific, USA). 

An additional step for polysaccharides removal (Rether et al. 1993) 

was added when the ratio 260/230 nm wavelength was inferior to 1.6 

to avoid the interference of these contaminants on Single Nucleotide 

Polymorphism (SNP) genotyping. DNA concentration for all inbred 

lines was set to 50 ng/μl and genotyped with the Illumina 

MaizeSNP50 BeadChip array (Ganal et al., 2011). The genotyping 

array procedure and alleles scoring was conducted by the genotypic 

service provider (TraitGenetics GmbH, Gatersleben, Germany). This 

array allows the screening of 17,520 genes (since 33,417 of the 

SNPs present in this array are located on 17,520 genes and 16,168 

SNPs are located in intergenic regions) (Ganal et al., 2011). The 

position of each marker along the maize B73 reference genome was 

updated from the initially available coordinates when the 

MaizeSNP50 BeadChip was originally designed (B73 reference 

genome version 1) to the coordinates in the released B73 reference 

genome version 3. These coordinates were taken from the maize 

genome browser, via the MaizeGDB database (Lawrence et al., 2008, 

www.maizegdb.org). 
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2.6 Genotypic data analysis 

2.6.1 Genotypic data quality control 

Genotypic data quality control was performed by removing SNP 

markers and inbred lines with more than 25% of missing data. SNPs 

called as heterozygous were set as missing data (0.93% of the total 

SNP calls). Moreover, markers close to fixation (allelic frequency 

superior to 95%) or markers with a minor allele frequency (MAF) 

smaller than 5% were also removed. After this filter, a total of 48,772 

SNPs remained and were used for the association mapping analysis. 

2.6.2 Genetic structure analysis 

A subset of 1,821 SNPs, evenly distributed across the genome 

(corresponding approximately to 1 SNP per Megabase pairs, Mb), 

was used to calculate principal components to study the population 

structure among inbred lines and to calculate the kinship matrix to 

study the pairwise genetic relatedness among inbred lines as 

implemented in Genstat software (Genstat® for Windows 18th 

edition, Payne et al., 2015). 

2.7 Association mapping analysis 

Given that for all the quality traits under study, the variance 

components for genotype-by-environment (G × E) interaction (σ2
g×y) 

were much smaller than the genotype variance component (σ2
g), 

univariate association analysis was carried out using the adjusted 

means for field trial design (BLUEs) obtained across growing 

seasons. Genome-wide association studies were conducted with the 

Genstat software using the available genotypic (SNPs scored with the 

MaizeSNP50 BeadChip array) and quality data (11 quality traits) 

measured in 132 maize inbred lines. The Genstat software performs 

association mapping in the mixed model framework, fitting markers as 
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fixed and inbred lines as random terms using REML (Malosetti et al., 

2007). 

Three different models were tested to detect significant marker-

trait associations: the naïve model [Phenotype = SNP + (Genotype + 

Error)], that neither accounts for population structure nor familiar 

relatedness; a model accounting for population structure (Q) using 15 

principal components from PCA [Phenotype = Q + SNP + (Genotype 

+ Error)]; and a model accounting for familiar relatedness (K) 

[Phenotype = SNP + Genotype + Error] with Genotype random 

effects structured following a kinship matrix K. For each chromosome, 

a different kinship matrix was calculated where only the SNPs located 

on the other nine maize chromosomes were used to calculate the 

kinship matrix (Listgarten et al., 2012; Rincent et al., 2014). 

The inspection of the inflation values for each model and the 

quantile-quantile (Q-Q) plots of the respective P-values, allowed 

defining the best statistical model to fit the phenotypic data. Models 

with inflation factor near 1 are better and for quantile-quantile (Q-Q) 

plots, it is expected that few P-values will deviate from their expected 

distribution. The observed P-values from marker-trait associations 

were used to draw Manhattan plots where the −log10 P values of each 

SNP were plotted against their chromosomal positions. A liberal 

threshold of –log10 (P-value) = 4 was set to identify significant marker-

trait associations. The effect of the minor frequency SNP variant, 

reported in relation to the most frequent allele reference, was 

calculated. 

2.8 Post-GWAS procedures 

A local linkage disequilibrium (LD) study was performed to 

define the chromosomal regions to search for candidate genes for the 

traits under analysis. 
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This procedure was done in two steps: In Step 1, the average 

intra-chromosomal LD was estimated as the squared correlation 

coefficient r2, after correcting for population structure using the 

principal component scores from Eigenanalysis, as implemented in 

Genstat software. For this calculation, the same subset of 1,821 

SNPs previously used for the genetic structure analysis was 

employed. LD decay was visualized per chromosome by plotting r2 

against the physical mapping distance in Mb. A liberal threshold for 

LD decay (r2 > 0.1) was used to estimate the average genetic 

distance for which markers were considered to be no longer 

correlated. In Step 2, a genomic window around each SNP location 

significantly associated with the traits analyzed was established by 

subtracting and adding the average genetic distance for LD decay 

(r2 > 0.1), estimated in Step 1. All the SNP markers located within 

those windows were then used to estimate the local LD decay. At this 

point, a stricter threshold of r2 > 0.2 was considered. The markers’ 

positions flanking each local LD block were further used as queries 

positions on the maize genome browser, via MaizeGDB 

(https://www.maizegdb.org/gbrowse/), to retrieve the list of candidate 

genes mapped within those genomic regions. 

The genome sequence of the maize inbred line B73 (Zea mays 

B73 RefGen_v3) was used as the reference genome for candidate 

gene analyses (Schnable et al., 2009). The functional annotation of 

the genes under the identified genomic regions was retrieved via 

Phytozome (Goodstein et al., 2011, Phytozome 11, version AGPv3 - 

Zea mays Ensembl-18) using the gene model identifier as the query. 

KEGG: Kyoto Encyclopedia of Genes and Genomes database 

(Kanehisa & Goto, 2000) was used to retrieve information on the 

pathways where the candidate genes could be involved. 
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3 Results 

3.1 Maize flour compositional and pasting properties traits 

variation 

As shown in Table 2, where the quality traits variance 

components and heritabilities are presented, the highest percentage 

of variance was typically due to differences between the inbred lines 

(σ2g), except for mean particle size (SIZEL), setback from trough 

viscosity (SB1) and setback from peak viscosity (SB2), where the 

error variance component was higher. The G × E interaction variance 

component (σ2g×y) was more evident for traits related to maize flour 

pasting properties (viscosity parameters). Nevertheless, and for all 

traits analyzed, the variance component associated to differences 

between inbred lines was far greater than the variance component 

attributed to the effect of G × E interaction term (σ2g / σ2g×y > 1). 

Fiber content had the highest heritability value (h2 = 65%, 

across growing seasons), and setback from peak viscosity (SB2) the 

lowest (h2 = 31%, across growing seasons) (Table 2). Detailed 

information on the collection of maize inbred lines phenotypic values 

(range and mean ± standard deviation) for quality traits evaluated in 

two growing seasons (2011 and 2012) can be found in Table S4. 

Considering the data obtained across the two growing seasons, 

fiber and protein content appeared strongly and positively correlated 

as well as peak viscosity (PV) with breakdown viscosity (BD_SqRt); 

or final viscosity (FV) with setback from trough viscosity (SB1), being 

all of those pairwise comparisons with phenotypic (Figure 1) and 

genetic correlations coefficients superior to 0.8 (r > 0.8; Table S2 and 

Table S3). 
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A strong positive phenotypic correlation was also detected 

between lyophilized and non-lyophilized maize inbred lines samples 

in what respects starch content and mean particle size (r = 0.81 and 

r = 0.77, respectively, P < 0.001, Table S2). 

Figure 1. Heat maps 

illustrating the (I) 

phenotypic and (II) 

genetic correlations 

for compositional 

and pasting quality 

traits measured in 

wholemeal flour of 

132 maize inbred 

lines grown during 

(A) 2011 growing 

season, and (B) 

2012 growing 

season. Quality traits’ key: 1 – Protein content, 2 – Fiber content, 3 – Fat 

content, 4 – Starch content in non-lyophilized flour, 5 – Starch content in 

lyophilized flour, 6 – Mean particle size in non-lyophilized flour, 7 – Mean 

particle size in lyophilized flour, 8 – Peak viscosity, 9 – Trough viscosity, 10 – 

Final viscosity, 11 – Breakdown viscosity (squared-root-transformed), 12 – 

Setback from trough viscosity, and 13 – Setback from peak viscosity. 

The first two components of principal component analysis 

(explaining a total of 69.74% of the variability present in the dataset) 

depicted a high diversity among the inbred lines of the association 

panel for the quality traits analyzed (Figure 2). The maize inbred lines 

derived entirely from Portuguese traditional maize landraces were 

mainly located towards lower breakdown and peak viscosity values, 
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lower starch content and higher protein, fiber and mean particle size 

values. 

Figure 2. Principal component 

analysis (PCA) biplot based on 

BLUP values for 11 quality 

traits measured in 132 maize 

inbred lines. Circles colored in 

blue correspond to inbred lines 

selected entirely from 

Portuguese landraces. Quality 

traits’ abbreviations: PR –

percentage of protein; FI – 

percentage of fiber; FT – 

percentage of fat; STL – 

percentage of starch in lyophilized flour; SIZEL – mean particle size in 

lyophilized flour; PV – peak (maximum) viscosity; TV – trough (minimum) 

viscosity; FV – final viscosity; BD_SqRt – squared-root transformed values of 

the breakdown viscosity; SB1 – setback from trough viscosity; SB2 – 

setback from peak viscosity. 

3.2 Genetic structure 

From the performed principal components/Eigenanalysis 

(Figure 3), a wide dispersion of inbred lines was observed, with some 

separation of inbred lines according to kernel type (flint vs. dent) 

along PC1. The majority of the 29 lines selected directly from 

traditional Portuguese maize populations were clustered within the 

flint types (Figure S1).  
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Figure 3. Plots of the first three 

principal component scores 

derived from Eigenanalysis 

(Genstat software) showing the 

maize inbred lines distribution. 

Inbred lines are coded by 

endosperm type: dent (squares), flint (circles), and intermediate (triangles) 

endosperms; and kernel color (white, yellow, yellow-orange, orange, and 

red). The variance explained by each principal component is given in the 

axis heading. 

3.3 Genomic regions associated with quality traits 

GWAS was performed using a mixed linear model (MLM) and 

either kinship relationship (K matrix) or population structure 

(Eigenanalysis) was taken into account to avoid spurious 

associations. After inspecting the observed inflation factors obtained 

for each tested model, the mixed linear model accounting for familial 

relatedness (K matrix) was selected as the best model (Table S5). 
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Therefore, the results reported below concern the results obtained 

using this model. 

For all the studied major constituents of maize kernel (protein, fiber, 

fat, and starch content) and all the studied parameters affecting the 

maize flour technological performance (starch pasting properties and 

flour’s mean particle size), significantly associated SNP markers were 

identified. In total, 72 unique SNPs were identified as being 

associated with the 11 quality traits analyzed across the two growing 

seasons (2011 and 2012) using a threshold –log10(P-value) = 4. The 

72 SNPs corresponded to 57 genomic regions (LD r2 > 0.2) (Figure 4, 

Table S6). 

Considering the number of identified associated genomic 

regions across years per trait (Figure 4, also in the supplementary 

material Table S6 and Figure S2), breakdown viscosity (BD_SqRt) 

appeared as the trait with the bigger number of associated regions 

(nine regions, distributed among six different chromosomes), closely 

followed by protein content (PR), fiber content (FI) and mean particle 

size (SIZEL), all with eight associated genomic regions distributed 

respectively by three, four or five different chromosomes. Setback 

from trough viscosity (SB1) was the trait with the fewer detected 

associated regions (two regions, distributed between two different 

chromosomes). For all of the traits, and based on the rare allele 

contributions to the trait variation, SNPs associated with an increase 

as well as a decrease in the trait were detected (Table S7). The 

exception was trough viscosity (TV) and setback from peak viscosity 

(SB2) where the rare allele was always responsible for a decrease in 

the trait value (Table S7).  
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Figure 4. Schematic representation of the chromosomal regions identified by 

genome-wide association for the 11 quality traits using a collection of 132 

maize inbred lines evaluated across two growing seasons. Horizontal bars 

represent each of the 10 maize chromosomes; for each chromosome, the 

SNP markers were sorted according to their positions, in megabase pairs. 

Each genomic region was termed accordingly to the trait, followed by a 

number identifying each individual region; vertical lines below correspond to 

the location of the genomic region associated with the trait variation. Co-

localized regions associated with multiple traits are highlighted in blue. Traits 

abbreviations’: PR – percentage of protein; FI – percentage of fiber; FT – 

percentage of fat; STL – percentage of starch in lyophilized flour; SIZEL – 

mean particle size in lyophilized flour ; PV – peak (maximum) viscosity; TV – 

trough (minimum) viscosity; FV – final viscosity; BD_SqRt – squared-root 

transformed values of the breakdown viscosity; SB1 – setback from trough 

viscosity; SB2 – setback from peak viscosity. 
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The significant SNP-traits associations only explained a small 

portion of the phenotypic variance observed for all traits, being that 

the range was smaller in the cases of fiber, protein, and starch 

content (percentage of phenotypic variance explained: for fiber, 

6.46%-9.03%; for protein, 6.61%-9.88%; for starch, 6.79%-9.61%) 

(Table S7). 

Some of these genomic regions were associated with multiple 

quality traits (Figure 4); many of those traits were highly correlated 

(Figure 1, Table S2 and Table S3). Protein (PR) and fiber content (FI) 

were simultaneously associated with two different genomic regions on 

chromosome 1 (Figure 5). One of those regions was located between 

32,313 kilobase pairs (kb) and 32,548 kb and three significantly 

associated SNPs were identified. The other genomic region was 

located between 267,849 kb and 267,886 kb. This last region was 

also associated with breakdown viscosity (BD_SqRt) (Table S6).  

 
Figure 5. Chromosome 1 Manhattan plot with the genome-wide association 

results for protein and fiber content obtained using a collection of 132 maize 

inbred lines evaluated across two growing seasons. The y-axis shows the 

−log10 P values of 7,749 SNPs, and the x-axis shows their chromosomal 



GWAS for maize flour composition and pasting behavior 

150 

positions. Horizontal black and grey lines represent the liberal threshold of 

P = 1×10
−4

, and the Bonferroni-corrected threshold of P = 6.45×10
−6

, 

respectively. 

Two other genomic regions were simultaneously associated 

with different traits more related to flour’s pasting properties (traits 

from viscosity profiles). Namely, one genomic region associated with 

breakdown viscosity (BD_SqRt) and peak viscosity (PV) was 

identified on chromosome 10 (60,092 kb to 60,351 kb) (Figure 6). 

Two other regions were associated both to setback from trough 

viscosity (SB1) and final viscosity (FV) in chromosome 3 (173.419 kb 

to 173,420 kb) and chromosome 6 (34,978 kb to 35,091 kb) (Figure 

7).  

 
Figure 6. Chromosome 10 Manhattan plots with the genome-wide 

association results for peak viscosity (PV) and breakdown viscosity 

(BD_SqRt) obtained using a collection of 132 maize inbred lines evaluated 

across two growing seasons. The y-axis shows the −log10 P values of 3,477 

SNPs, and the x-axis shows their chromosomal positions. Horizontal black 

and grey lines represent the liberal threshold of P = 1×10
−4

, and the 

Bonferroni-corrected threshold of P = 1.44×10
−5

, respectively. 
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Figure 7. Chromosome 3 and chromosome 6 Manhattan plots with the 

genome-wide association results for setback from trough viscosity (SB1) and 

final viscosity (FV) obtained using a collection of 132 maize inbred lines 

evaluated across two growing seasons. The y-axis shows the −log10 P 

values of each SNP, and the x-axis shows their chromosomal positions. The 

horizontal black line represents the liberal threshold of P = 1×10
−4

. 

Regions strongly associated to a single trait were also detected 

(Figure 4). This was the case of a genomic region on chromosome 5 

strongly associated with the setback from peak viscosity (SB2) 

(located at 23,783 kb) (Table S6). 

When inspecting the Manhattan plots per trait (Figure S2), it 

was also possible to identify regions where many different SNPs were 

associated consistently with the same trait although with a lower 

statistical level of significance. This was the case for fiber content (FI) 

with two associated genomic region, one on chromosome 1 (267,638 

kb to 267,677 kb) and another on chromosome 10 (118.527 kb to 

118,852 kb) respectively where four and three different associated 

SNP markers were located. Also on chromosome 1, two very close 

genomic regions (267,974 kb, and 268,031 kb to 268,218 kb) bared 3 
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different SNP markers associated with protein content (PR) (Table 

S6). For setback from peak viscosity (SB2), one of these regions was 

also detected in chromosome 4 (114,121 to 114,298 kb) where three 

different SNP markers were simultaneously associated with this trait 

variation (Table S6). Finally, and for mean particle size (SIZEL), two 

very close genomic regions, located on chromosome 5 (113,716 to 

113,814 kb and 114,124 to 114,136 kb), bared 3 different SNPs 

associated with this trait variation (Table S6). 

In summary, while some of the genomic regions were 

associated with several traits, the majority of the genomic regions 

were associated to a single trait. 

3.4 Candidate genes identification 

The average LD decay for the quality traits significantly 

associated genomic regions was 52.23 kb for LD r2 > 0.2. This value 

extended to a maximum of 457 kb in a region of chromosome 10 

spanning from 59,574 kb to 60,031 kb identified as being associated 

with breakdown viscosity trait (BD_SqRt) (Table S6). Using as 

reference the filtered gene set from the B73 RefGen_v3 assembly, a 

complete list of genes mapped within the significantly associated 

genomic regions identified in the GWAS for the 11 quality traits can 

be found in Table S8. A substantial proportion (66.67%) of the SNPs 

significantly associated with the quality traits were mapped within 

genes (48 out of 72 SNPs significantly associated with any trait, Table 

S8). And the degree of linkage disequilibrium around the genomic 

regions identified by GWAS allowed achieving a mapping resolution 

to the gene level for 40.35% of the cases (LD blocks where a single 

gene was identified, Table S8). 

In the frame of this thesis, it was not possible to describe all 

candidate genes located within the associated genomic regions in 
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detail (Table S8). We here, therefore, restrict ourselves to describe 

those that were (1) located within regions where the strongest 

significant associations where detected, or (2) located within regions 

associated with multiple quality traits. 

Genes within the regions with the strongest SNP-trait associations 

The strongest SNP traits associations detected, corresponding 

to three different genomic regions, were located on chromosomes 1, 

5, and 10 (SNPs highlighted in Table S6). One genomic region on 

chromosome 1 (32,314 kb to 32,548 kb) associated with protein 

content (PR), a second genomic region on chromosome 5 

(23,783,411 bp) associated with setback from peak viscosity (SB2), 

and the last one on chromosome 10 (60,092 kb to 60,351 kb) 

associated with peak viscosity (PV) and breakdown viscosity 

(BD_SqRt). 

In the genomic region identified on chromosome 1 (32,314 kb to 

32,548 kb), three SNPs were significantly associated with protein 

(PR) content (rs131232105, rs131177502, and rs131232195). In this 

region, the strongest SNP associated with protein content, 

rs131232105 (–log10 (P-value) = 5.416), was located within the 

GRMZM2G099528 gene, coding for a B-cell receptor-associated 31-

like protein. The other two significantly associated SNPs 

(rs131177502 and rs131232195, –log10 (P-value) = 4.636) were 

located within the GRMZM5G849530 gene, coding for a protein of 

unknown function. By considering the LD decay in that region, other 

associated genes could also be identified: GRMZM2G085427, coding 

for TSL-kinase interacting protein 1 (ZmMYBR59 transcription factor), 

GRMZM5G884325, coding for a small nuclear ribonucleoprotein Sm 

D3, involved in the spliceosome, GRMZM2G104255, coding for a 

member of the CRAMPED PROTEIN family (PTHR21677), 
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GRMZM5G868062, coding for a 60S ribosomal protein 

15.5kD/SNU13, NHP2/L7A family (includes ribonuclease P subunit 

p38), involved in splicing. The genes mapped within the region 

spanning on chromosome 1 from 32,314 kb to 32,548 kb, besides 

being putatively involved in protein content, were also candidate 

genes for fiber content. 

In the genomic region identified on chromosome 5, one 

significant SNP was strongly associated with setback from peak 

viscosity (SB2) (rs131504732, -log10 (P-value) = 5.846). This SNP 

was located within the GRMZM2G376743 gene, coding for a protein 

from the ARM repeat superfamily (PTHR33836:SF1). This SNP was 

not in LD (r2 > 0.2) with its neighbor markers.  

Finally, in the genomic region identified on chromosome 10, two 

SNPs were significantly associated with peak viscosity (PV) and 

breakdown viscosity (BD_SqRt) (rs128531960 and rs131765763). Of 

those SNPs, the strongest SNP associated with both traits was 

rs131765763 (–log10 (P-value) = 5.468, for peak viscosity, and (–

log10 (P-value) = 5.671, for breakdown viscosity). The SNPs 

associated with those two traits were not mapped within any gene. 

Nevertheless, considering the LD decay around those SNPs, several 

genes were identified within the region: GRMZM2G079777, coding 

for a V-type proton ATPase subunit D protein, involved in the 

phagosome and in oxidative phosphorylation, GRMZM2G181192 

(glx1), coding for glyoxylase1, involved in the pyruvate metabolism, 

GRMZM2G079925 and GRMZM2G005938, both coding for 

pentatricopeptide repeat-containing proteins. 

Genes within regions associated with multiple quality traits 

On chromosome 1, besides the region described in the previous 

section strongly associated with protein content, several candidate 
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genes were located on another genomic region identified being 

simultaneously associated with breakdown viscosity (BD_SqRt), fiber 

(FI) and protein (PR) content. This region spanned from 267,849 kb 

to 267,886 kb. One of the two significant SNPs for fiber content 

(rs131184056, –log10 (P-value) = 4.047) was mapped within the 

GRMZM2G127656 gene, which encodes a protein containing a zinc-

finger domain of monoamine-oxidase A repressor R1. One of the two 

significant SNPs for protein content (rs128946745, –log10 (P-value) = 

4.065) was mapped within the GRMZM2G022787 gene, which 

encodes for a pentatricopeptide repeat-containing protein. 

Considering the LD decay around the significant SNPs, the 

AC186684.4_FG001 gene, which encodes for a protein of unknown 

function, was also within that region. 

Two regions were simultaneously associated with the final 

viscosity (FV), and setback from trough viscosity (SB1), the region of 

chromosome 3 spanning from 173,419 to 173,420 kb and the region 

on chromosome 6 spanning from 34,978 kb to 35,091 kb. In the first 

region (chromosome 3), the significant SNP (rs131180967, -log10 (P-

value) = 4.571, for FV, and –log10 (P-value) = 4.103, for SB1) was 

mapped within the GRMZM2G452630 gene, coding for a serine 

hydroxyl-methyl-transferase related protein. In the second region 

(chromosome 6), the significant SNP (rs131176534, -log10 (P-value) = 

4.675, for FV, and -log10 (P-value) = 4.224, for SB1) was mapped 

within the GRMZM2G045971 gene, coding for a preprotein 

translocase Sec Sec61-beta subunit protein. Other genes mapped 

within this last region, considering the LD decay around the significant 

SNPs, were GRMZM2G336583 gene, coding for a phragmoplastin 

interacting protein 1, GRMZM5G868296 gene, coding for a protein of 

unknown function, and GRMZM2G001205 gene, coding for a C2H2-

type zinc finger protein.  
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4 Discussion 

This work reports the identification of 57 genomic regions 

associated with the 11 different quality traits evaluated in wholemeal 

maize flour. This was achieved through the genome-wide association 

analysis that we undertook, using for the first time an original 

association panel containing inbred lines derived from traditional 

Portuguese maize populations. This study allowed to identify 

candidate genes for the majority of the quality associated genomic 

regions controlling for maize kernel main compositional and pasting 

quality variation. However also novel regions, with no clear 

candidates, were identified that were not previously acknowledged 

using other germplasm collections studies. 

4.1 Genomic regions associated with flour composition and 

pasting properties 

The number of regions identified for each quality trait varied 

from nine regions for breakdown viscosity (BD_SqRt), to two regions 

for setback from trough viscosity (SB1). Additionally, several regions 

controlling multiple traits were also identified, which was not 

surprising given the strong pairwise phenotypic and genotypic 

correlation detected between some of the traits evaluated (such as 

peak viscosity and breakdown viscosity, final viscosity and setback 

from tough viscosity or protein and fiber content). This detection of 

genomic regions associated with multiple traits variation could be due 

to pleiotropic effects, with a single gene affecting multiple traits. 

However, since several genes are mapped within some of those 

regions, as mentioned in Karn et al. (2017), fine mapping within these 

regions is still required in order to properly address if a pleiotropic 

gene is responsible for both traits variation or the traits’ variation is 
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due to two closely linked genes, and investigate about the possibility 

of independent selection among the correlated traits. 

In what concerns the 29 maize inbred lines derived directly from 

Portuguese populations, the multivariate analysis showed that the 

inbred lines derived from Portuguese maize populations were overall 

characterized by having lower breakdown viscosity, peak viscosity, 

and starch content, and higher protein, fiber and mean particle size 

values. Considering the effect of the most frequent allele of the 

strongest SNPs associated with those traits and/or the SNPs that 

explained the biggest proportion of genetic variance, we observed 

that indeed the frequency of the SNP variants in the Portuguese 

inbred lines were directed towards an increase in protein, fiber and 

mean particle size, and a decrease in starch, breakdown viscosity 

and peak viscosity. This can indicate a positive selection towards the 

presence of the favourable alleles for protein content (SNP 

rs131232105); for fiber content (SNP rs132587158) and mean 

particle size (SNP rs131635762), and alleles associated with a 

decrease in breakdown and peak viscosities values (SNP 

rs128531960), and decrease in starch content (SNP rs131186983) in 

the Portuguese maize germplasm. For example, the strongest 

associated SNP in chromosome 1 for protein content (rs131232105) 

(Table S7), the variant allele had an effect on the reduction of protein 

content (−0.56%) in comparison to the most frequent allele. The 

same SNP was also associated with fiber content, and also, in this 

case, the variant allele had an effect on the reduction of fiber content 

(−0.10%) in comparison to the most frequent allele. We observe in 

the 29 inbred lines derived from entirely from Portuguese maize 

populations that the unfavorable allele was only present in ~10% of 

the Portuguese lines.  
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4.2 Candidate genes identification 

Several of the SNP-trait associations detected in the present 

study were located within or near a priori candidate gene, which 

strengthened and served as a proof-of-concept for the usefulness of 

the used association panel, thought the statistical power to detect the 

significant associations was clearly constrained most likely by the size 

of the association panel and by the fast LD decay rate observed in 

the regions associated with the traits analyzed. 

Some of the genomic regions identified in this work harbored 

potential candidate genes for which we had no previous information 

on their involvement with the quality traits analyzed. This was the 

case for one of the genomic regions on chromosome 1 strongly 

associated with protein content and also associated with fiber 

content. These “novel” regions with unforeseen candidate genes, not 

previously described as associated to the studied traits, may be due 

to the use of different association panels harboring different genetic 

variability, or simply be due to the rapid rate of LD decay observed in 

the present panel that hampered the identification of the obvious 

candidate. 

For one of the flour pasting properties studied in this work, 

associated with breakdown viscosity, a promising a priori candidate 

gene − dull endosperm 1 gene (GRMZM2G141399, du1) − was 

located near two identified associated genomic regions on 

chromosome 10 at a distance of ~46 kb and ~564 kb downstream of 

the confidence intervals considered (59,574-60,031 kb and 60,092-

60,351 kb, respectively). The dull endosperm 1 gene encodes a 

starch synthase and is a determinant of the structure of endosperm 

starch in maize (Gao et al., 1998; Wu et al., 2015).  
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As mentioned by Bian et al. (2014), GWAS associations have 

higher resolution, but often lower power due to stringent thresholds 

designed to minimize false positive associations, and leading to 

variability of detection across studies. For instance, in the current 

work the allelic variation for SNP ID rs128946933 (chromosome 1 at 

267,974,184 bp was almost below the threshold considered to for a 

significant SNP-trait association (-log10 (P-value) = 4.002). This SNP 

was associated with protein content in maize flour and was located 

within the GRMZM2G066749 gene. Recently, Chen et al. (2017) 

demonstrated that this particular GRMZM2G066749 gene is the 

causative gene for dek35 mutants. The mature dek35 seeds exhibited 

a significant decrease in seed dry weight and zein protein content 

(Chen et al., 2017). 

Several other a priori candidate genes previously identified as 

associated with maize kernel composition traits and starch pasting 

properties (e.g., Cook et al., 2012; Wilson et al., 2004; Xu et al., 

2014) were not detected in the present study. Examples are the brittle 

endosperm2 (bt2), shrunken1 (sh1), and shrunken2 (sh2) known for 

significant association with kernel composition traits, as well as the 

amylose extender1 (ae1) and sh2 known for significant association 

with starch pasting properties (Wilson et al., 2004). Another example 

of a potential candidate gene for starch content would be the brittle 

endosperm1 gene (GRMZM2G144081, bt1), coding a protein Brittle1 

(Bt1) protein, involved in ADP-Glc transport into endosperm plastids 

and playing a role in starch biosynthesis (Xu et al., 2014). Associated 

with oil content in maize kernels is the acyl-CoA:diacylglycerol 

acyltransferase gene (GRMZM2G169089, DGAT1-2), (Cook et al, 

2012; Zheng et al., 2008). The genotyping platform used on the 

current work screened several SNPs located within all the 

aforementioned candidate genes. Nevertheless, no association was 
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detected between those SNPs and the level maize kernel 

composition traits and starch pasting properties on the present 

association panel. As pointed out by Cook et al. (2012) several 

factors could be responsible for differences in position and quantity of 

QTLs detected between studies, including variation in allelic 

frequency, mapping resolution influenced by the magnitude of linkage 

disequilibrium in a population, marker density, environmental effects, 

and QTL analysis methods (Cook et al., 2012).The relatively small 

size of the used association panel might have constrained the 

statistical power to detect significant marker-trait associations in the 

present study. 

An ideal association panel should harbor as much genetic 

diversity as possible, which would be used to resolve complex trait 

variation to a single gene or nucleotide (Yang et al., 2010). However, 

the genetic diversity should also be balanced with the genetic 

homogeneity of phenotypic traits, to ensure equal adaptation of all 

lines in multiple environments for phenotypic data collection (Yang et 

al., 2010). The rapid rate of LD decay observed in the present study 

in the SNPs associated with the quality traits evaluated suggests that 

a higher marker density would have been beneficial in the detection 

of other regions putatively linked to maize flour’s quality. 

Findings from the GWAS provide valuable genetic information 

into trait architecture or candidate loci for subsequent validation 

(Korte & Farlow, 2013). Preliminary GWAS analysis should be 

complemented by statistical procedures to help prioritize GWAS 

results (Cantor et al., 2010), as well as other follow-up analyses of 

GWAS loci and additional experiments, may be required to pinpoint 

the causal genes (Huang & Han, 2014). The SNPs strongly 

associated with the traits analyzed, and/or the SNPs which allelic 

variant was found to contribute to larger phenotypic effects, should be 
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prioritized as candidate genomic regions for marker development to 

support selection activities especially for the quality-related traits 

difficult to measure/assess. Nevertheless, prior to that, those 

associations need to be validated. Future work will concentrate on the 

validation of the results retrieved in this work by sequencing those 

regions on contrasting maize populations for the given trait. Since the 

actual materials used for the manufacturing of maize-based bread are 

the maize populations, these are the ideal independent materials to 

proceed with the missing validation.  
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Table S1. Maize inbred lines with available quality data, known pedigree, 

kernel color, and endosperm type. – Table available online through the link 
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Table S5. Observed inflation factors for the models tested in genome-wide 

association (GWAS) analysis. Inflation factor for the adaptive kinship model 

corresponds to the average value across chromosomes. 

# Trait Naive Eigen Adaptive Kinship 
1
 

1 Protein content (PR) 1.409 1.133 1.062 

2 Fiber content (FI) 1.730 1.080 1.079 

3 Fat content (FT) 1.578 1.055 1.033 

4 Starch content (STL) 1.658 1.125 1.091 

5 Mean particle size (SIZEL) 1.647 1.105 1.108 

6 Peak viscosity (PV) 1.690 1.077 1.048 

7 Trought viscosity (TV) 1.270 1.064 1.019 

8 Final viscosity (FV) 1.246 1.051 1.036 

9 Breakdown viscosity (BD_SqRt) 1.782 1.098 1.090 

10 Setback from trough viscosity (SB1) 1.138 1.038 1.038 

11 Setback from peak viscosity (SB2) 1.149 1.053 1.036 
1
 Calculated according to Listgarten et al., 2012; Rincent et al., 2014 

Table S6. Significant SNP-trait associations using -log10 (P-value) = 4, as 

the threshold from a genome-wide association study for 11 quality traits 

using a collection of 132 maize inbred lines evaluated across two growing 

seasons. – Table available online through the link 

<https://figshare.com/s/d367b1be4d441c879144> 
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Table S8. Candidate genes mapped within the genomic regions associated 

with 11 quality traits. – Table available online through the link < 

https://figshare.com/s/e163a933dc8cfc1e08aa> 

Figures 

 

Figure S1. Plots of the first three principal component scores derived from 

Eigenanalysis (Genstat software) showing the maize inbred lines distribution. 

Inbred lines selected directly from traditional Portuguese maize populations 

are depicted in blue. The variance explained by each principal component is 

given in the axis heading. 
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Figure S2. Manhattan 

plots showing the 

genome-wide 

association results for 

each of the 11 quality 

traits obtained using a 

collection of 132 maize 

inbred lines evaluated 

across two growing 

seasons. (A) PR – percentage of protein; (B) FI – percentage of fiber; (C) FT 

(A) (B) (C) 

(D) (E) (F) 

(G) (H) (I) 

(J) (K) 
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– percentage of fat; (D) STL – percentage of starch in lyophilized flour; (E) 

SIZEL – mean particle size in lyophilized flour ; (F) PV – peak (maximum) 

viscosity; (G) TV – trough (minimum) viscosity; (H) FV – final viscosity; (I) 

BD_SqRt – squared-root transformed values of the breakdown viscosity; (J) 

SB1 – setback from trough viscosity; (K) SB2 – setback from peak viscosity. 

The y-axis shows the −log10 P values of 48,772 SNPs, and the x-axis shows 

their chromosomal positions. The horizontal red lines represent the liberal 

threshold of P = 1 × 10−4. Vertical lines separate each of the 10 maize 

chromosomes. 
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Chapter V 

Genetic basis of carotenoids, tocopherols, and 

phenolic compounds in wholemeal maize flour − a 

genome-wide association approach 
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Abstract 

Maize is one of the most import food crops worldwide. 

Consumers worldwide are increasingly concerned with food quality. 

However, maize breeding for improved quality is a complex task and 

therefore developing tools to select for better quality products is of 

great importance nowadays. The exploitation of maize natural 

variation in compounds with antioxidant activity, such as tocopherols, 

carotenoids and phenolic compounds, has received an increased 

interest in the last years due to its beneficial role in human health and 

also due to their effect on preventing quality deterioration of food 

products helping to maintain their nutritional value. 

In this work we took advantage, for the first time, of a collection 

of 132 maize inbred lines, partially developed from Portuguese 

traditional maize populations, to carry out a genome-wide association 

study aiming to identify genomic regions controlling for several 

antioxidant compounds of maize wholemeal flour, fundamental on the 

development of quality-related molecular selection tools. The inbred 

lines were trialed during two growing seasons and samples from each 

field replicate characterized for total carotenoids content, α-

tocopherol, γ-tocopherol, δ-tocopherol, total free phenolic compounds 

and hydroxycinnamic acids content, using well-established 

methodologies. Each maize inbred line was previously genotyped 

with the MaizeSNP50 BeadChip array. SNP-trait associations were 

tested using a mixed linear model accounting for the genetic 

relatedness among inbred lines. 

With this approach, 73 different genomic regions were identified 

associated with the 10 antioxidant compounds-related traits 

evaluated. The majority of the identified genomic regions were 

associated to a single trait (78%). The stronger SNPs associations 



GWAS for antioxidant compounds in maize flour 

179 

with trait variation were detected for total carotenoids content, flour 

yellowness, and lightness, on chromosome 6, for δ-tocopherol 

content, on chromosome 1, and α-tocopherol content, on 

chromosome 5. Several of the SNP-trait associations were located 

within or near genes known to be involved in the carotenoids and 

tocopherols biosynthetic pathway. The strongest SNP-trait 

associations for total carotenoids content, flour yellowness, and flour 

lightness were located upstream of the GRMZM2G300348 gene (y1 - 

yellow endosperm1), coding for a phytoene synthase (PSY1), an 

enzyme catalyzing the first committed step of the carotenoids 

biosynthetic pathway.  

Although for all the traits analyzed significant SNP-trait 

association were detected, this study was particularly successful in 

unveiling the genetic architecture of traits either with high heritability 

values, controlled by a smaller set of genes, and/or traits controlled 

by large-effect loci (e.g., flour yellowness and total carotenoids 

content). 

Keywords: Zea mays L., carotenoids, tocopherols, phenolic 

compounds, color, Portuguese maize germplasm, quantitative trait 

loci, candidate genes 

1 Introduction 

In the last few decades, consumers’ views on how food 

positively or negatively affects their health have changed.Today, food 

is not only intended to satisfy hunger and provide the necessary 

nutrients, but it is also used to prevent nutrition-related diseases and 

improve physical and mental well-being (reviewed in Siró et al., 

2008). Maize (Zea mays L.) is, along with rice and wheat, one of the 

world leading crops and a crucial source of food, feed, fuel and fibers 
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(Tenaillon & Charcosset, 2011). Together, these three species 

account for 93% of all cereal food consumption (FAO, 2012), playing 

a major role in nutrition in many countries, as a source of oil, flour and 

starch (Fernandes et al., 2013). Besides maize kernel content in 

macronutrients, such as starch, protein, oil, and fiber (reviewed in 

Chen et al., 2016a), maize is also rich in micronutrients such as 

several vitamins (Nuss & Tanumihardjo, 2010) and phenolic 

compounds (Bento-Silva et al., 2017) that may contribute to their 

overall antioxidant activity. The exploitation of maize natural variation 

in compounds with antioxidant activity, such as tocopherols, 

carotenoids and phenolic compounds, has received an increased 

interest in the last years. This interest can be partially explained by its 

benefits for human health in the prevention of chronic diseases 

(Ktenioudaki et al., 2015), but also due to their effect on the 

prevention of quality deterioration of food products, contributing to the 

maintenance of their nutritional value (Shahidi, 1997).  

In maize kernel, the highest amount of phenolic compounds is 

present in the insoluble fraction, but the soluble/free fraction has high 

chemical diversity, being strongly associated with the color of the 

kernel (Salinas-Moreno et al., 2017). Moreover, the presence of those 

compounds in different plant-based foods may contribute to food 

flavor and color (Salinas-Moreno et al., 2017). Vitamin A, as 

provitamin A carotenoids, and vitamin E, as tocopherols, are the 

predominant fat-soluble vitamins found in maize kernels (Nuss & 

Tanumihardjo, 2010). Carotenoid accumulation conveys a yellow-

orange color to the endosperm (Wurtzel et al., 2012). Vitamin E is 

found almost exclusively in maize germ oil at about 94% of total 

tocopherols (reviewed in Nuss & Tanumihardjo, 2010). Natural 

genetic variability in carotenoids, tocopherols, and phenolic 

compounds has been reported in maize (e.g., Žilić et al., 2012). 
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Given the rising awareness in consumers’ dietary choices, the 

consideration of quality aspects in plant breeding is now a 

commercially relevant issue. The diversity of maize has been the 

base for breeding programs that have generated much of the higher-

yielding maize varieties presently used worldwide. Historically, this 

effort has primarily focused on increasing stability and grain yield 

potential, under abiotic and biotic stresses (reviewed in Muzhingi et 

al., 2017). In the last decade, however, much effort has been made in 

evaluating and using the diversity of maize also on the improvement 

of animal feed and human nutrition (reviewed in Muzhingi et al., 

2017). As reviewed by Moose & Mumm (2008), conventional plant 

breeding that relies only on phenotypic selection has been historically 

effective. However, for some traits, phenotypic selection has made 

little progress due to challenges in measuring phenotypes accurately 

or in the identification of the individuals with the highest breeding 

value. The effects of environment, genotype-by-environment 

interaction, and measurement errors also contribute to the reduced 

progress. For some traits, only destructive measurements are 

available to accurately access the phenotype, or trait expression may 

be dependent on the developmental stage (e.g. kernel quality traits) 

(Moose & Mumm, 2008). Recently, Wen et al. (2016a) and Jiang et 

al. (2017) reviewed the advances made in maize improvement. These 

authors concluded that currently, the efforts for improving maize 

kernel covers not only the traditional staples of oil, protein, and starch 

traits but also compounds such as vitamins and free amino acids 

contents, as well as secondary metabolites such as phenylpropanoids 

and alkaloids. 

Maize is the basis for the production of several foods, such as 

polenta, bread, tortillas, snacks, cornflakes (Fernandes et al., 2013). 

In some countries, such as Spain and Portugal, wholemeal maize 
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flour is used for bread production (Brites et al., 2010; Rodríguez et al., 

2013). The Portuguese maize germplasm is recognized by its high 

diversity (Vaz Patto et al., 2004, 2007, 2009) and associated potential 

quality for food since Portugal has a long tradition in the production of 

an ethnic leavened maize-based bread – broa (Vaz Patto et al., 

2007). This ethnic bread is made with a 50% or more of maize flour, 

mixed with wheat or rye (Brites et al., 2010), for which the local maize 

populations are usually preferred (Vaz Patto et al., 2007). The fact 

that flour produced from locally grown maize populations has been 

traditionally preferred in the formulation of broa has been pointed out 

by Vaz Patto et al. (2007) as one of the reasons for the present on-

farm survival of the Portuguese maize populations. All in all, bread 

making requires a deep understanding of the many complex raw 

material and process interactions that collectively contribute to the 

final product quality (Cauvain, 2012). Maize flour from the Portuguese 

maize populations have, on average, higher levels of protein and fiber 

and lower levels of α- and δ-tocopherols, associated with a lower 

breakdown of viscosities values when compared to maize populations 

from other origins (Alves et al., Chapter III). In the same study, it was 

verified that on a quality-oriented maize breeding program using the 

Portuguese populations, breeding objectives should focus on 

increasing the agronomic performance of the populations but also on 

their tocopherol levels since these are limiting on this germplasm 

(Alves et al., Chapter III). An increase in maize vitamin E levels, as 

tocopherols, would elevate maize nutritional value (Nuss & 

Tanumihardjo, 2010).  

Variability on the ferulic acid and p-coumaric acid content, the 

two main phenolic compounds found in maize kernel (Adom & Liu, 

2002; Pei et al., 2016), and on the total carotenoid content was 

previously reported among Portuguese traditional maize populations 

https://link.springer.com/article/10.1007/s11947-008-0108-4#CR37
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(Alves et al., Chapter III). It has been shown that some of these 

antioxidant compounds may reduce the retrogradation and improve 

starch qualities (Beta & Corke, 2004; Siriamornpun et al., 2016; Zhu 

et al., 2009), or influence the formation of dough texture (Klepacka & 

Fornal, 2006), a very important parameter in defining bread quality 

(Matos & Rosell, 2012). Additionally, secondary metabolites such as 

carotenoids, but also phenolic compounds are known to greatly 

contribute to maize kernel color (Žilić et al., 2012). Kernel color is 

generally linked to consumer acceptance (Ranum et al., 2014) and 

appears also to be important for Portuguese maize bread consumer 

choices (Carbas et al., 2016). 

Most agriculturally and economically important traits have 

complex genetic underpinnings (i.e., determined by multiple 

quantitative trait loci, QTLs) (Wen et al., 2016a). Precise location and 

characterization of these functional loci can facilitate crop 

improvement via marker-assisted selection (MAS). To dissect 

complex traits, linkage analysis and association mapping have been 

commonly used (Wen et al., 2016a). The underlying genetic basis for 

the variation on tocopherol and carotenoids levels in maize kernel, 

and to a less extend on phenolic compounds variation, has been the 

subject of quantitative trait locus (QTL) linkage mapping, and during 

last years this research was boosted by association analysis (Wong 

et al., 2004; Chander et al., 2008a; Harjes et al., 2008; Yan et al., 

2010; Li et al., 2012; Shutu et al, 2012; Azmach et al., 2013; Chandler 

et al., 2013; Fu et al., 2013; Lipka et al., 2013; Romay et al., 2013; 

Owens et al., 2014; Wen et al., 2014; Suwarno et al., 2015; Santiago 

et al., 2016; Wen et al., 2016b; Diepenbrock et al., 2017; Jittham et 

al., 2017). As pointed out by several authors (e.g., Shutu et al., 2012; 

Treutter, 2010; Zhai et al., 2016), for devising more efficient breeding 

tools to support the improvement of these health-promoting 
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compounds, a comprehensive and deeper understanding of the 

regulatory mechanisms and the complex genetic basis of maize flour 

antioxidants is essential. 

A comprehensive analysis of all these different quality-related 

parameters is still missing in the Portuguese maize germplasm and 

so the national diversity was never properly exploited on quality 

breeding neither on the development of efficient tools / innovative 

approaches to support breeding for these complex quality traits. In 

this work, we took advantage of the diverse germplasm developed 

through decades of maize breeding by several Portuguese regional 

maize breeding stations now extinct such as the NUMI (Núcleo de 

Melhoramento de Milho), and presently conserved at the Portuguese 

Bank of Plant Germplasm (Banco Português de Germoplasma 

Vegetal - BPGV, Braga, Portugal). This collection of maize inbred 

lines, containing a considerable amount of the unexplored 

Portuguese maize germplasm, was characterized for the following 

antioxidant compounds-related traits, measured in wholemeal maize 

flour: total carotenoids, α-tocopherol, γ-tocopherol, δ-tocopherol, total 

free phenolic compounds and total hydroxycinnamic acids content. 

Different flour color parameters were also measured: flour lightness, 

red/green index, and yellowness. The main objective was to identify 

genomic regions controlling the upper mentioned quality-related 

parameters through a genome-wide association approach. The 

uniqueness of the association mapping panel used in the current 

work, constituted by Portuguese, foreign and mixed origin lines, could 

lead to the discovery of genomic regions associated to the variation of 

quality traits not previously identified in other germplasm collections 

analysis. 
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2 Materials and Methods 

2.1 Plant material 

The maize inbred line collection used in this study was the 

same as previously used in Alves et al. (unpublished, Chapter IV). As 

described previously in Chapter IV, from a total of 164 different maize 

inbred lines sowed on the field trials, only 132 yielded sufficient 

kernels to proceed with their quality analysis (Table S1). Additional 

details on their recorded pedigree may be found also in Table S1. 

This collection varied in kernel color from white, yellow, yellow-

orange, orange, and red, and in endosperm type from flint, 

intermediate, and dent types. The summary showing those lines 

grouped by endosperm type and kernel color can be found in Chapter 

IV, Material and Methods section (see Table 1 in Chapter IV). 

This collection was assembled observing a significant 

representation of lines selected from traditional Portuguese maize 

populations (29 lines) and lines with a mixed Portuguese x foreign 

origin (the majority of the lines whose names start by PB, PP, PV or 

PT, Table S1). The rationale behind this was the premise that the 

locally grown Portuguese maize populations, is the material 

traditionally used for the formulation of food commodities, were 

considered as keepers of quality traits related to food production. The 

original seed of the maize inbred lines collection used in this study 

was provided by the Portuguese Bank of Plant Germplasm (BPGV, 

Braga, Portugal). 

2.2 Field characterization and experimental design 

The inbred lines were evaluated at Coimbra site (40°13'0.22"N, 

8°26'47.69"W), Portugal, during the 2011 and 2012 growing seasons, 

using an organic agriculture converted field. The site characterization 
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and experimental design were previously described in Chapter IV. 

Briefly, in each year, the maize inbred lines were evaluated using a 

randomized complete block design, with two blocks (replicates). 

Information on the spatial distribution of the plots was also recorded 

(row and columns field coordinates). Each plot consisted of two rows 

7.2 m long (6.4 m planted row plus 0.8 m border space between two 

planted rows), with an inter-row distance of 0.75 m. Plots were 

mechanically and hand-weeded when needed and managed following 

common agricultural practices for maize in the region. Pollination was 

controlled within each plot. All the plots were harvested by hand.  

After harvest, ears were dried at 30-35ºC in an oven (Memmert 

Model UFE 800, Memmert GmbH + Co. KG, Germany) until a ~15% 

moisture was reached. The ears were then shelled and the kernel 

collected per plot basis, packed in paper bags and kept at 4ºC until 

further analysis. 

2.3 Phenotypic data acquisition 

A seed sample from each of the harvested plots (replicates) 

was used for quality determinations. The total number of samples 

analyzed corresponded therefore to [number of inbred lines × number 

of field replicates (2) × number of growing seasons (2)]. 

Firstly, wholemeal maize flour was obtained from all the seed 

samples using a Falling number 3100 mill (Perten Inc., Sweden) with 

a 0.8 mm screen.  

In this work, the following antioxidant compounds-related traits, 

measured in this maize flour, were considered: total carotenoids 

content (TCC), α-tocopherol (AT), γ-tocopherol (GT), δ-tocopherol 

(DT), total phenolic compounds content as assessed by Folin–

Ciocalteu assay (PHS) and by HPLC (PHH), total hydroxycinnamic 

acids content (HY). Additionally, several color parameters were 
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measured: flour lightness (L*), red/green index (a*), and yellowness 

(b*). 

2.3.1. Total carotenoids content 

The total carotenoids content (TCC) was spectrophotometrically 

measured at 450 nm according to the AACC method 14-60.01 (AACC 

International, 2012). Results were expressed in μgrams of lutein 

equivalent per gram of sample, as the main carotenoid found in 

maize. 

2.3.2 Tocopherols content 

α-Tocopherol (AT), γ-tocopherol (GT), δ-tocopherol (DT) were 

separated from the fat portion of the maize flours by high-

performance liquid chromatography (HPLC) and quantified using an 

Agilent 1200 model with a fluorescence detector (FLD) and a Diol 

column (LiChropher 100, 250 x 4 mm) according to the method ISO 

9936 (2006). Tocopherols content was expressed in μg/g fat basis. 

2.3.3 Total phenolic compounds content 

Ethanolic extracts (EtOH:H2O 50:50, v/v) for assessing the total 

phenolic content (PH) of maize flour were prepared following the 

procedure described by Lopez-Martinez et al. (2009), with some 

modifications. Briefly, 2 g of maize flour were extracted with 20 mL of 

EtOH:H2O (50:50, v/v) for 15 minutes, using an Ultra Turrax T25 

(Janke & Kunkel, IKA Labortechnik, Germany). Final extracts were 

filtered using a Whatman filter paper (type42: retention 2.5 μm, 

diameter 18.5 cm). Extracts were prepared in triplicate and preserved 

at -20ºC until analysis. 

Total phenolic compounds content was assessed using two 

different methodologies: by Folin-Ciocalteau assay (Singleton et al., 

1999), and by high-performance liquid chromatography (HPLC). The 
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reasoning behind using both methods was that the Folin–Ciocalteu 

assay has historically been the most used methodology for measuring 

the total phenolic compounds content. However, as reviewed by 

Naczk and Shahidi (2006), the quantifications by HPLC are more 

reliable as the measurements obtained from the Folin-Ciocalteau 

assay can suffer from an overestimation due to the presence of other 

compounds that absorb in the same wavelength used in the assay. 

The levels of total hydroxycinnamic acids in each sample were also 

assessed by HPLC. 

The Folin-Ciocalteau assay (Singleton et al., 1999) used to 

determine the total phenolic compounds (PHS) content was 

performed using a Beckman DU-70 spectrophotometer, with slight 

modifications as described in Silva et al. (2015), and the total free 

phenolic compounds content per sample was expressed in mg of 

gallic acid equivalents/100 g of dry weight (GAE/100 g DW). 

Total phenolic compounds (PHH) and total hydroxycinnamic 

acids (HY) content were quantified by High-Performance Liquid 

Chromatography (HPLC). The HPLC system used was a Thermo 

Finnigan (Surveyor model) equipped with an autosampler, pump and 

photodiode array detector (PDA) coupled to a Dionex ED40 

electrochemical detector. Chromatographic separation of compounds 

was carried out with a Lichrocart RP-18 column (250 x 4 mm, particle 

size 5 µm, Merck) and a Manu-cart® RP-18 pre-column in a 

thermostated oven at 35°C. 

Photodiode array detector was programmed for a scanning 

between 192 and 798 nm at a speed of 1 Hz with a bandwidth of 5 

nm. The detection was monitored using three individual channels, 

280, 320 and 360 nm, at a speed of 10 Hz with a bandwidth of 11 nm. 

The injection volume applied was 20 µL.  
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The auto sampler's temperature was set at 12°C. The eluents 

used were A – phosphoric acid solution p.a. (0.1%) in Milli-Q® water 

and B – 0.1% phosphoric acid p.a. in acetonitrile HPLC gradient 

grade: Milli-Q® water (40:59.9), at a flow rate of 0.700 mL/min. The 

following gradient of eluents was used: initially 100% A and 0% B, 0-

20% B over 15 min, 20% B for 10 min, 20-70% B from 25 to 70 min, 

70% B for 5 min, 70-100% B from 75 to 85 min, held isocratically 

(100% B) for 15 min, followed by a equilibration step of 10 min. 

The total phenolic content was determined by total 

chromatogram areas at 280 nm. Results were expressed in mg gallic 

acid equivalents (GAE) / 100 g of dry weight. 

The total hydroxycinnamic acid content was determined by the 

total chromatogram areas of hydroxycinnamic acids compounds at 

320 nm. Results were expressed in mg ferulic acid equivalents (FAE) 

/ 100 g of dry weight. 

2.3.4 Flour color parameters 

Maize flour color was assessed on a 10 to 12 g sample in an 

opaque recipient using a Minolta chromameter CR-2b with the CIE 

tristimulus color parameters: L* - lightness, a* - red/green index, b* - 

yellow/blue index. L* values can vary from L* = 0 (black) to L* = 100 

(white); positive a* values meant that samples tend toward the red 

part of the color spectra; positive b* values meant that samples tend 

toward the yellow part of the color spectra. 

2.4 Phenotypic data analysis 

A phenotypic data analysis was performed per individual trial, 

as already described in Chapter IV (Alves et al., unpublished) to 1) 

perform quality control of the data, 2) obtain estimates of genetic 

variances (and covariances between traits) and heritabilities, and 3) 
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obtain adjusted trait means per inbred line. The phenolic compounds 

(PHS, PHH, and HY), and α- and δ-tocopherol (AT and DT) data 

required a log10-transformation to stabilize the variance. All analyses 

were performed, following the same procedure as described in 

Chapter IV (Alves et al., unpublished), using the Breeding View 

software (Murray et al., 2014), available through the IBP Breeding 

Management System (The IBP Breeding Management System 

Version 3.0.9, 2015).  

Traits’ heritability, as well as the best linear unbiased predictors 

(BLUPs) for each inbred line, was calculated. The correlations 

between BLUPs of different traits were used to obtain estimates of 

genetic correlations between traits. The adjusted means for field trial 

design (best linear unbiased estimators - BLUEs) for each growing 

season were retrieved to be used afterward as the input phenotypic 

data on the association mapping analysis and to assess the 

phenotypic correlations between traits. 

For each trait, a multi-environment trial analysis was also 

performed to test for interaction between the maize inbred lines and 

the two growing seasons, as previously described in Chapter IV 

(Alves et al., unpublished). The analysis of variance was carried out 

using the REML variance components analysis procedure in Genstat 

software (Genstat® for Windows 18th edition, Payne et al., 2015). 

The mixed model included growing seasons (fixed), maize inbred 

lines and season by line interaction (fixed or random), while blocks, 

rows, and columns, were treated as random terms, and nested within 

growing seasons. BLUPs and BLUEs were calculated for each inbred 

line across growing seasons. BLUPs were used on principal 

component analysis (PCA) to assess genetic correlations between 

traits and BLUEs were used as input phenotypic data in the 
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association mapping analysis, for the combined analysis across 

growing seasons. 

2.5 Genotypic data  

The same genotypic dataset as previously described in Chapter 

IV (Alves et al., unpublished) was used to perform the association 

analysis. Briefly, each maize inbred line was genotyped with the 

Illumina MaizeSNP50 BeadChip array (Ganal et al., 2011) using 

genomic DNA obtained from adult leaves. The genotyping array 

procedure and alleles scoring was conducted by the genotypic 

service provider (TraitGenetics GmbH, Gatersleben, Germany). This 

array allows the screening of 17,520 genes (since 33,417 of the 

SNPs present in this array are located on 17,520 genes and 16,168 

SNPs are located in intergenic regions) (Ganal et al., 2011). The 

position of each marker along the maize B73 reference genome was 

updated from the initially available coordinates when the 

MaizeSNP50 BeadChip was originally designed (B73 reference 

genome version 1) to the coordinates in the released B73 reference 

genome version 3. These coordinates were taken from the maize 

genome browser, via the MaizeGDB database (Lawrence et al., 2008, 

www.maizegdb.org). Genotypic data quality control was performed by 

removing SNP markers and inbred lines with more than 25% of 

missing data. SNPs called as heterozygous were set as missing data 

(0.93% of the total SNP calls). Moreover, markers close to fixation 

(allelic frequency superior to 95%) or markers with a minor allele 

frequency (MAF) smaller than 5% were also removed. After this filter, 

a total of 48,772 SNPs remained and were used for the association 

mapping analysis. 
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2.7 Association mapping analysis 

Given that for all the quality traits under study, with the 

exception of δ-tocopherol (DTLOG), variance components for 

genotype-by-environment (G × E) interaction (σ2
g×y) were much 

smaller than the genotype main effect variance component (σ2g), 

univariate association analysis was carried out using the adjusted 

means from the field trial design (BLUEs) obtained across growing 

seasons. Additionally, and only for δ-tocopherol (DTLOG), the 

univariate association analysis was also carried out using the 

adjusted means (BLUEs) obtained separately for each growing 

season. Genome-wide association studies were conducted with the 

Genstat software using the available genotypic (SNPs from the 

MaizeSNP50 BeadChip array) and antioxidant compounds-related 

data (10 quality traits) measured in 132 maize inbred lines. The 

Genstat software performs association mapping in the mixed model 

framework, fitting markers as fixed and inbred lines as random terms 

using REML (Malosetti et al., 2007).  

Following the same procedure described in Chapter IV (Alves et 

al., unpublished), three different models were tested to detect 

significant marker-trait associations: the naïve model [Phenotype = 

SNP + (Genotype + Error)], that neither accounts for population 

structure nor for familiar relatedness; a model accounting for 

population structure (Q) using 15 principal components from PCA 

[Phenotype = Q + SNP + (Genotype + Error)]; and a model 

accounting for familiar relatedness (K) [Phenotype = SNP + Genotype 

+ Error] with Genotype random effects structured following a kinship 

matrix K. For each chromosome, a different kinship matrix was 

calculated where only the SNPs located on the other nine maize 

chromosomes were used to calculate the kinship matrix (Listgarten et 
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al., 2012; Rincent et al., 2014). The principal components to account 

for population structure among inbred lines and the kinship matrix to 

account for pairwise genetic relatedness among inbred lines were 

previously calculated in Alves et al. (unpublished, Chapter IV) using a 

subset of 1,821 SNPs, evenly distributed across the genome 

(corresponding approximately to 1 SNP per Megabase pairs). 

The observed P-values from marker-trait associations were 

used to draw Manhattan plots. The threshold to consider a marker-

trait association significant was set to –log10 (P-value = 4). 

Additionally, the more stringent Bonferroni-corrected thresholds at 

α = 0.05 (P-value = 1/N, N represents the number of markers used in 

GWAS for each chromosome) worked as the threshold-guideline to 

discuss the strongest association detected for each trait. The effect of 

the minor frequency SNP variant, reported in relation to the most 

frequent allele reference, was calculated. 

2.8 Post-GWAS procedures 

To define the chromosomal regions where to search for 

candidate genes for the traits under analysis, a local linkage 

disequilibrium (LD) study was performed following the same approach 

as already described in Chapter IV (Alves et al., unpublished). LD 

was estimated as the squared correlation coefficient, r2, after 

correcting for population structure using the principal component 

scores from Eigenanalysis, as implemented in Genstat software.  

The markers’ positions flanking each local LD block, for which 

LD r2 > 0.2, were further used as queries positions on the maize 

genome browser, via MaizeGDB 

(https://www.maizegdb.org/gbrowse), to retrieve the list of candidate 

genes mapped within those genomic regions. The genome sequence 

of the maize inbred line B73 (Zea mays B73 RefGen_v3 assembly) 
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was used as the reference genome for candidate gene analyses 

(Schnable et al., 2009). The functional annotation of the genes under 

the genomic regions identified in the GWAS was retrieved via 

Phytozome (Goodstein et al., 2011, Phytozome 11, version AGPv3 - 

Zea mays Ensembl-18) using the gene model identifier as the query. 

KEGG: Kyoto Encyclopedia of Genes and Genomes database 

(Kanehisa & Goto, 2000) was used to retrieve information on the 

pathways where the candidate genes could be involved. 

3 Results 

3.1 Wholemeal maize flour antioxidant compounds-related traits 

variation 

As shown in Table 1, where the quality traits variance 

components and heritabilities are presented, the highest percentage 

of variance was normally due to differences between the inbred lines 

(σ2g), except for PHSLOG, where the error variance component was 

higher than the genotype main effect variance, and DTLOG, where 

the σ2g×y variance component was higher than the genotype main 

effect variance. Nevertheless, with the exception of DTLOG, for all 

the other traits analyzed, the variance component associated to 

differences between inbred lines was far greater than the variance 

component attributed to the G×E interaction term effect (σ2g / σ2g×y > 

1).  

Total carotenoids content (TCC) and flour yellowness (b*) had 

by far the highest heritability value across growing seasons (h2 = 

96%, for b*, and h2 = 92%, for TCC). By contrast, DTLOG and 

PHSLOG had the lowest heritability values (h2 = 37%, for DTLOG, 

and h2 = 41%, for PHSLOG) (Table 1). Complementary information 

on the collection of maize inbred lines phenotypic values (range, and 
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mean ± standard deviation) for the quality traits evaluated during two 

growing seasons (2011 and 2012) can be found in Table S4. 
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Considering the data obtained across the two growing seasons, flour 

yellowness (b*) was highly and positively correlated with the level of 

total carotenoids (TCC) content on the samples (r> 0.8). Flour 

lightness (L*) was moderately and negatively correlated with a*, b* 

and TCC (r < −0.4). The assessment of the total phenolic compounds 

content measured with the Folin-Ciocalteau assay and HPLC were 

positively correlated (r > 0.6). HYLOG was moderately and positively 

correlated with the total phenolic compounds as measured by HPLC 

(r > 0.5) (Figure 1, Table S2 and Table S3). 

Figure 1. Heat maps 

illustrating the (I) 

phenotypic and (II) genetic 

correlations for health-

related and color quality 

traits measured in 

wholemeal flour of 132 

maize inbred lines grown 

during (A) 2011 growing 

season, and (B) 2012 

growing season. Quality 

traits’ key: 1 – L*, flour’s 

lightness; 2 – a*, flour’s 

red/green index, positive values indicate that samples tend toward the red 

part of the color spectra; 3 – b*, flour’s yellow/blue index, positive values 

indicates that samples tend toward the yellow part of the color spectra; 4 – 

TCC, total carotenoids content; 5 – ATLOG, log10-transformed α-tocopherol 

content; 6 – DTLOG, log10-transformed δ-tocopherol content; 7 – GT, γ-

tocopherol content; 8 – PHSLOG, log10-transformed total phenolic 

compounds, assessed by Folin–Ciocalteu assay; 9 – PHHLOG, log10-

transformed total phenolic compounds, assessed by HPLC; 10 – HYLOG, 

log10-transformed total hydroxycinnamic acids, assessed by HPLC. 
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In Figure 2, the first two components of the principal component 

analysis, explaining a total of 48.43% of the variability present in the 

dataset, are projected depicting a high diversity among the inbred 

lines of the association panel for the majority of the traits analyzed. 

The maize inbred lines could clearly be separated into two main 

groups according to their flour yellowness and total carotenoids 

content. Representatives from the inbred lines mainly derived from 

Portuguese traditional maize populations could be found in both color 

groups.  

Figure 2. Principal 

component analysis 

(PCA) biplot based on 

BLUP values for 11 

quality traits 

measured in 132 

maize inbred lines. 

Circles colored in blue 

correspond to inbred 

lines selected entirely 

from Portuguese 

landraces. Quality 

traits’ abbreviations: 

L* – flour’s lightness; a* – flour’s red/green index, positive values indicate 

that samples tend toward the red part of the color spectra; b* – flour’s 

yellow/blue index, positive values indicates that samples tend toward the 

yellow part of the color spectra; TCC – total carotenoids content; ATLOG – 

log10-transformed α-tocopherol content; DTLOG – log10-transformed δ-

tocopherol content; GT – γ-tocopherol content; PHSLOG – log10-transformed 

total phenolic compounds, assessed by Folin–Ciocalteu assay; PHHLOG – 
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log10-transformed total phenolic compounds, assessed by HPLC; HYLOG – 

log10-transformed total hydroxycinnamic acids, assessed by HPLC. 

3.2 Genomic regions associated with quality traits 

GWAS was performed using a mixed linear model (MLM) and 

either kinship relationship (K matrix) or population structure 

(Eigenanalysis) was taken into account to avoid spurious 

associations. After inspecting the observed inflation factors obtained 

for each tested model, the mixed linear model accounting for familial 

relatedness (K matrix) was selected as the best model (Table S5). 

Therefore, the results reported below concern the results obtained 

using this model. 

For all the studied tocopherols, carotenoids and phenolic 

compounds, significantly associated SNP markers were identified 

(Figure 3). In total, and using a liberal threshold –log10(P-value) = 4 to 

recognize a significant SNP-trait associations, 104 unique SNPs were 

identified as being associated with the 10 quality traits analyzed 

across the two growing seasons (2011 and 2012), corresponding to 

73 genomic regions (LD r2 > 0.2) (Figure 3, Table S6). Based on the 

rare allele contributions to the trait variation, SNPs variants 

associated with increase as well as decrease in the trait value were 

detected for flour’s lightness (L*) and yellowness (b*), and for total 

carotenoids content (TCC), α-tocopherol (ATLOG), δ-tocopherol 

(DTLOG), and γ-tocopherol (GT) (Table S7). For flour’s red-green 

color (a*), total hydroxycinnamic acids (HYLOG) and for total phenolic 

compounds measured by HPLC (PHHLOG), the rare allele was 

always responsible for an increase in the trait value (Table S7). For 

total phenolic compounds measured by the Folin-Ciocalteau assay 

(PHSLOG), the rare allele was always responsible for a decrease in 

the trait value (Table S7). 
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Some of the genomic regions were associated with multiple 

highly correlated traits. Flour lightness (L*) and flour red-green index 

(a*) shared a region on chromosome 9, and flour’s yellowness (b*) 

and total carotenoids content (TCC) shared 13 regions on 

chromosome 6, one region on chromosome 7, and one region on 

chromosome 9 (Figure 3). Nevertheless, the majority of the detected 

associated genomic regions were only associated to a single trait 

(78%, 57 genomic regions). 

Considering the number of identified associated genomic 

regions across years per trait (Figure 3, see also supplementary 

material Table S6 and Figure S1), flour’s yellowness (b*) and total 

carotenoids content (TCC) appeared as the traits with the bigger 

number of detected associated regions (twenty-two and twenty-one 

regions, respectively), followed by flour’s lightness (twelve regions). 

For all these three traits, the highest number of associations was 

detected on chromosome 6. 

Flour’s yellowness (b*) and total carotenoids content (TCC) were 

simultaneously associated in thirteen genomic regions on 

chromosome 6 (Figure 3). Those thirteen regions on chromosome 6 

were found in neighbor LD blocks, all close to each other, creating a 

major genomic region strongly associated to both traits spanning from 

78,981 kb to 82,864 kb (Figure 3; LD blocks no.41 to no.53, in Table 

S6). In that major region, twenty-seven significant SNP- b* and 

twenty-eight significant SNP-TCC associations were detected. The 

strongest association for both b* and TCC traits was located on 

chromosome 6 around 82,179 kb (rs131576886; for b*, −log10 (P-

value) = 17.648, and for TCC, −log10 (P-value) = 12.89) (Figure 4). 

This SNP explained 20.7% of the phenotypic variance observed for 

b*, and 17.9% of the phenotypic variance observed for TCC (Table 

S7). The presence of the variant allele “G” in that position led to a 
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decrease of (−)6.8 CIE color units in the b* value (corresponding to a 

less yellow flour), and a decrease of (−)17.67 μg of lutein equivalents 

per 100 g of sample (Table S6). Three regions on chromosome 6 

located between 82,179 kb and 82,334 kb, in addition to being 

associated with TCC and b*, were also associated with flour lightness 

(L*). The strongest SNP-L* association was located on chromosome 

Figure 3. Schematic representation of the chromosomal 

regions identified by genome-wide association for the 10 

quality traits using a collection of 132 maize inbred lines 

evaluated across two growing seasons. The horizontal 

bars represent each of the 10 maize chromosomes; for 

each chromosome, the SNP markers were sorted 

according to their positions, in megabase pairs. Each 

genomic region was termed accordingly to the trait, 

followed by a number identifying each individual region; 

vertical lines below correspond to the location of the 

genomic region associated with the trait variation. Co-

localized regions associated with multiple traits are 

highlighted in blue. 
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Quality traits’ abbreviations: L* – flour’s lightness; a* – flour’s red/green 

index, positive values indicate that samples tend toward the red part of the 

color spectra; b* – flour’s yellow/blue index, positive values indicates that 

samples tend toward the yellow part of the color spectra; TCC – total 

carotenoids content; ATLOG – log10-transformed α-tocopherol content; 

DTLOG – log10-transformed δ-tocopherol content; GT – γ-tocopherol 

content; PHSLOG – log10-transformed total phenolic compounds, assessed 

by Folin–Ciocalteu assay; PHHLOG – log10-transformed total phenolic 

compounds, assessed by HPLC; HYLOG – log10-transformed total 

hydroxycinnamic acids, assessed by HPLC. 

6 around 82,180 kb (rs131576883; −log10 (P-values) = 6.384). This 

SNP explained 13.2% of the observed phenotypic variance for flour 

lightness. The presence of the variant allele “T” resulted in an 

increase of (+)1.02 CIE color units, corresponding to a lighter/brighter 

flour (Table S6). 

 
Figure 4. Chromosome 6 Manhattan plot with the genome-wide association 

results for flour’s yellowness (b*). Flour’s lightness (L*), and total carotenoids 

content (TCC) obtained using a collection of 132 maize inbred lines 
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evaluated across two growing seasons. The y-axis shows the −log10 P 

values of 3,922 SNPs, and the x-axis shows their chromosomal positions. 

Horizontal black and grey lines represent the liberal threshold of P = 1 × 

10
−4

, and the Bonferroni-corrected threshold of P = 1.27 × 10
−5

, respectively. 

As for tocopherols (α-, δ-, and γ-), δ-tocopherol (DTLOG) had 

the bigger number of detected associated regions (eight regions 

across growing seasons), plus six more regions that were only 

identified in the GWAS analysis done on the individual growing 

seasons (2011 or 2012), followed by α-tocopherol (ATLOG), with 

seven detected regions across chromosome 4 (four regions), 5 (two 

regions), and 10 (one region), and γ-tocopherol (GT) with only four 

regions associated located on chromosomes 1 (2 regions), 4, and 8 

(Figure 3). Also for total phenolic compounds content measured by 

the Folin-Ciocalteau assay (PHSLOG) and for the total 

hydroxycinnamic acids content (HYLOG) only two regions were 

detected associated with the traits’ variation, and for total phenolic 

compounds content measured by HPLC (PHHLOG) only one region 

was associated with the trait variation.  

For α-tocopherol (ATLOG) the strongest SNP-ATLOG 

association was observed on chromosome 5 between 200,420 kb 

and 200,421 kb (rs130180529 and rs130180536; −log10 (P-values) = 

5.639) (Figure 5). Both SNP were in the same LD block (r2 > 0.2) and 

explained 13.3% of the phenotypic variance observed for α-

tocopherol. The presence of the variant allele “AT” led to a reduction 

of (−)0.255 μgrams of α-tocopherol per gram of fat. The frequency of 

the variant allele “AT” on the association panel was 34.2%, however, 

in the 29 inbred lines derived entirely from Portuguese traditional 

maize populations this variant allele was the most common one (freq 

≈ 69%). 
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For δ-tocopherol (DTLOG), the strongest SNP-DTLOG 

associations across growing seasons were located on chromosome 1 

between 298,814 kb and 298,815 kb (rs128990610 and 

rs128990613; −log10 (P-value) = 5.986). Those two SNPs were 

positioned in the same LD block (r2 > 0.2) and explained 19.66% of 

the phenotypic variance observed for δ-tocopherol levels across 

growing seasons. The presence of the “AT” variant allele led to a 

reduction of (−)0.272 μgrams of δ-tocopherol per gram of fat (Table 

S6).  

 
Figure 5. Chromosome 5 Manhattan plot with the genome-wide association 

results for flour’s α-tocopherol content (ATLOG) obtained using a collection 

of 132 maize inbred lines evaluated across two growing seasons. The y-axis 

shows the −log10 P values of 5,305 SNPs, and the x-axis shows their 

chromosomal positions. Horizontal black and grey lines represent the liberal 

threshold of P = 1 × 10
−4

, and the Bonferroni-corrected threshold of P = 9.43 

× 10
−6

, respectively. 
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For γ-tocopherol (GT), the percentage of phenotypic variance 

explained by each significantly associated SNP (7.22% - 9.50%) were 

inferior when compared with the other two tocopherols (9.58% - 

13.11% for α-tocopherol, and 10.26% - 19.67% for δ-tocopherol). The 

strongest SNP-GT association was located on chromosome 8 around 

26,077 kb (rs131179677; −log10 (P-value) = 4.879). This SNP 

explained 9.27% of the phenotypic variance observed for γ-

tocopherol levels in maize flour. The presence of the “C” variant allele 

resulted in a reduction of (−)52.19 μgrams of γ-tocopherol per gram of 

fat (Table S6).  

Very few significant SNP-trait associations were detected for 

the phenolic compound traits analyzed in this work (PHSLOG, 

PHHLOG, and HYLOG) (Figure 3). Moreover, the associations 

detected explained a small percentage of the phenotypic variance 

observed (6.96% - 9.57%) (Table S7). For PHSLOG, the strongest 

association was located on chromosome 9 at 154,122 kb 

(rs132575077; −log10 (P-values) = 4.158). This SNP explained 8% of 

the phenotypic variance observed. For PHHLOG, only one significant 

SNP-trait association was detected; it was localized on chromosome 

5 between 125,841 and 126,064 kb (rs130095308; −log10 (P-value) = 

4.214). This SNP explained 6.96% of the phenotypic variance 

observed. For HYLOG, the strongest association was detected on 

chromosome 1 at 176,867 kb (rs128811826; −log10 (P-value) = 

4.749). This SNP explained 9.57% of the phenotypic variance 

observed for total hydroxycinnamic acids content.  

3.3 Candidate genes identification 

The average LD decay for the quality traits significantly 

associated genomic regions was 47.20 kb for LD r2 > 0.2. This value 

extended to a maximum LD distance of 853 kb in a region of 
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chromosome 10 spanning from 148,762 kb to 149,615 kb identified 

as being associated with the α-tocopherol trait (ATLOG) (Table S6). 

Using as reference the filtered gene set from the B73 RefGen_v3 

assembly, a complete list of genes mapped within the significantly 

associated genomic regions identified in the GWAS for the 10 quality 

traits can be found in Table S8. A considerable proportion of the 

SNPs significantly associated with the quality traits were mapped 

within genes (~68%, 71 out of 104 SNPs significantly associated with 

any trait, Table S8). And the degree of linkage disequilibrium around 

the genomic regions identified by GWAS allowed achieving a 

mapping resolution to the gene level for 54.79% of the cases (LD 

blocks where a single gene was identified, Table S8). 

In the frame of this thesis, it is not possible to describe all 

candidate genes located within the associated genomic regions in 

detail (Table S8). We here, therefore, restrict ourselves mainly to 

those that were located within regions where the strongest significant 

associations were detected. The stronger SNPs associated with the 

trait variation were detected for total carotenoids, flour yellowness, 

and lightness, and δ-tocopherol and α-tocopherol variation. 

For both flour’s yellowness (b*) and total carotenoids content 

(TCC) the strongest SNP associated with both traits was 

rs131576886 (−log10 (P-value) = 17.648, for b*, and (−log10 (P-value) 

= 12.890, for TCC). For L* the strongest SNP associated with the trait 

variation was rs131576883 (−log10 (P-value) = 6.384). Both SNPs 

were not mapped within any gene. Nevertheless, they were located 

1,141 bp (rs131576886) and 476 bp (rs131576883) upstream of the 

GRMZM2G300348 (y1 - yellow endosperm1) gene. This gene codes 

for a phytoene synthase, an enzyme involved in the carotenoid 

biosynthesis pathway. Considering the local LD decay in the region 

where those SNPs where located, other nine genes were mapped 
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within this mega-region (chromosome 6: 78,981 kb to 82,864 kb). 

Details on their identification as well as functional annotation can be 

found in Table S8.  

For δ-tocopherol, on chromosome 1 (298,814 to 298,815 kb) 

two SNPs were equally strongly associated with DTLOG variation 

(rs128990610 and rs128990613; -log10 (P-value) = 5.986). Both SNPs 

were located within the GRMZM5G876146 (umc2244) gene, coding 

for a pantoate--beta-alanine ligase, an enzyme involved both in the 

beta-alanine metabolism and in the pantothenate and CoA 

biosynthesis pathway. 

For α-tocopherol, on chromosome 5 (200,420 kb to 200,421 kb) 

two SNPs were equally strongly associated with ATLOG variation 

(rs130180529 and rs130180536; -log10 (P-value) = 5.639). Both SNPs 

were located within the GRMZM2G035213 gene (vte4 - vitamin E 

synthesis4), coding for tocopherol O-methyltransferase, an enzyme 

involved in vitamin E biosynthesis. 

4 Discussion 

This work reports the identification of 73 genomic regions 

associated with the 10 antioxidant compounds-related traits evaluated 

in wholemeal maize flour. This was achieved through a genome-wide 

association analysis undertaken using an association panel 

containing maize inbred lines derived from traditional Portuguese 

maize populations. This study allowed to identify candidate genes for 

the majority of the quality associated genomic regions controlling for 

maize antioxidant compounds-related traits (carotenoids, tocopherols, 

and phenolic compounds) and flour color. However, also novel 

regions, with no clear candidates, were identified that were not 

previously acknowledged using other germplasm collections studies. 

The association panel showed to be more suitable to study the 
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genetic architecture of traits either with high heritability values, 

controlled by a smaller set of genes, and/or traits controlled by large-

effect loci (e.g., flour yellowness and total carotenoids content). 

Especially for δ-tocopherol levels in the inbred lines collection, 

an environmental influence was observed. This is in line with the 

genotype-by-environment (G × E) interactions previously described 

for tocopherol levels in maize kernel (e.g., Chander et al., 2008b). 

Several of the SNP-trait associations detected in the present 

study were located within or near genes known to be involved in the 

biosynthetic pathway of the compounds under analysis. This 

observation strengthened and served as a proof-of-concept for the 

usefulness of the used association panel, though the statistical power 

to detect the significant associations was clearly constrained by the 

size of the association panel and by the fast LD decay rate observed 

in the majority of regions associated with the traits analyzed.  

Considering all the regions identified in this work, the genomic 

region harboring the strongest SNP-traits associations was found on 

chromosome 6 and was associated with total carotenoids content, 

flour yellowness, and flour lightness. The strongest SNP-trait 

associations for total carotenoids content, flour yellowness and flour 

lightness were not mapped within any gene but were located 

respectively 1,141 base pairs and 476 base pairs upstream of the 

GRMZM2G300348 gene (y1 - yellow endosperm1), coding for a 

phytoene synthase (PSY1), an enzyme catalyzing the first committed 

step of the carotenoids biosynthetic pathway (Buckner et al., 1996). 

GRMZM2G300348 gene was also identified previously under a QTL 

controlling for carotenoids levels (Fu et al., 2013; Jittham et al., 2017; 

Wong et al., 2004) and kernel color (Chandler et al., 2013; Romay et 

al., 2013). 
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The high number of strongly significant SNPs both associated 

with carotenoids levels and flour yellowness found on chromosome 6 

near the region harboring the GRMZM2G300348 gene goes in line 

with the fact that very extensive LD has been previously found around 

this gene (Palaisa et al., 2004). Extensive LD has been found 

common in regions that have experienced strong selective sweeps 

(e.g., Tian et al., 2009). This selection pressure has caused the LD 

around this locus on yellow maize to span hundreds of kilobase pairs 

(Yan et al., 2011).  

Other genomic regions identified in this work harbored potential 

candidate genes for which we had no previous information of their 

involvement with the quality traits analyzed. This was the case for one 

of the genomic regions on chromosome 1 strongly associated with 

flour lightness (L*) (chr1: 76,243 kb to 76,322 kb). Flour lightness is 

negatively correlated with other two traits measured in this work − 

flour yellowness (b*) and total carotenoids content (TCC). Moreover, 

this region was co-localized with a QTL previously identified for the 

ratio of β-cryptoxanthin in relation to total carotenoids content (Jittham 

et al., 2017). The identification of regions containing no obvious 

candidate genes may result from the use of a different association 

panel harboring different genetic variability, or simply be due to the 

rapid rate of LD decay observed in the present panel that hampered 

the identification of the most obvious candidate. 

Plants are the primary source of dietary vitamin E, producing 

tocopherol and tocotrienol derivatives that collectively constitute 

vitamin E (DellaPenna & Pogson, 2006). Among these derivatives, α-

tocopherol has the highest biological activity for human health (Traber 

& Atkinson, 2007). Thus, increasing the levels of vitamin E in food 

crops, particularly of α-tocopherol, is the goal of vitamin E 

biofortification (review in Jiang et al., 2017). In present work, we 
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identified a region strongly associated with α-tocopherol. This region 

was located in chromosome 5 and the strongest associated SNP-α-

tocopherol was located within the GRMZM2G035213 gene which 

codes for γ-tocopherol methyltransferase (VTE4), a well-known 

enzyme involved in the vitamin E biosynthesis, converting γ-

tocopherol to α-tocopherol (Shutu et al., 2012). In the last years, 

several QTL linkage mapping and associations studies have identified 

this genomic region and dissected it to the genes level and were able 

to shown the contribution of this gene in the regulation of tocopherol 

levels (Chander et al., 2008a; Li et al., 2012; Shutu et al., 2012; Lipka 

et al., 2013; Diepenbrock et al., 2017).  

Also, and in line with the observation that the range of 

tocopherols is positively correlated with oil content (Nuss & 

Tanumihardjo, 2010), in the present work, several of the genomic 

regions identified associated with tocopherols variation were co-

localized with QTLs previously identified for oil (fat) or fatty acids 

content in maize kernel. For instance, the region on chromosome 1 

(81,984,649-82,033,180 bp) associated with γ-tocopherol variation 

co-localized with QTLs for oil and linoleic acid variation in maize 

kernels (Yang et al., 2010) and also the region on chromosome 1 

(298,814,922-298,815,104 bp) strongly associated with δ-tocopherol 

co-localized with QTLs previously identified for oil variation in maize 

kernels (Cook et al., 2012). 

The Portuguese traditional maize populations were 

characterized by low yields, besides the low α-tocopherol levels 

observed in maize flour (Alves et al., Chapter III). Taking this into 

consideration in the case of a quality-oriented breeding program for 

maize food using the Portuguese germplasm, one of the possible 

breeding objectives to pursue would be to increase their limiting 

tocopherol levels. Additionally, tocopherols present in the seed play 
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essential physiological roles in the plant as they are involved in 

guaranteeing seed longevity, preventing lipid peroxidation during 

germination, and in abiotic stress tolerance (e.g., Chen et al., 2016b; 

Sattler et al., 2004; Wang et al., 2017). In the present work, two SNPs 

were strongly associated with α-tocopherol and explained 13.3% of 

the phenotypic variance observed on chromosome 5. In relation to 

the average value of the association panel, the effect of the variant 

allele “AT” led to a decrease of 15.2% - 21.2% in α-tocopherol levels. 

Additionally, we observed that the allele “AT” that was indeed the 

most frequent allele in the 29 inbred lines derived entirely from 

Portuguese traditional maize populations, directing them towards a 

decrease in levels of α-tocopherol. Therefore, this gene is a promising 

target for the development of a molecular marker that will aid in the 

section of lines/populations with higher levels of α-tocopherol. 

Noteworthy the mention of one of the SNP significantly 

associated with L* variation that was mapped within the 

GRMZM2G152135 gene. Previous works (Vallabhaneni et al., 2009; 

Yan et al., 2010; Azmach et al., 2013; Fu et al., 2013; Owens et al., 

2014; Suwarno et al., 2015; Jittham et al., 2017) had demonstrated in 

maize that the gene GRMZM2G152135 (hyd3 - hydroxylase3) located 

on chromosome 10 and coding for a beta-carotene 3-hydroxylase, an 

enzyme involved in the carotenoid biosynthesis, underlies a principal 

quantitative trait locus associated with β-carotene concentration and 

conversion in maize kernels. Flour lightness was moderately and 

negatively correlated with total carotenoids content and additionally, 

these traits also shared several genomic regions associated with their 

variation on chromosome 6. Therefore, though this region was not 

identified in this work associated directly with carotenoids variation, it 

should also be considered as a potential target region driving 

carotenoid content in this inbred line collection. 
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Especially for carotenoids (and color yellow/orange), and 

tocopherols levels in maize kernel, candidate genes that have been 

consistently identified under QTLs controlling for those compounds in 

other works such as the viviparous9 (vp9) (Wong et al., 2004; 

Chandler et al., 2013), lycopene epsilon cyclase1 (lycΕ1) (Harjes et 

al., 2008; Chandler et al., 2013; Fu et al., 2013; Owens et al., 2014; 

Suwarno et al., 2015), zeaxanthin epoxidase1 (zep1) (Chandler et al., 

2013; Owens et al., 2014; Suwarno et al., 2015), or the white cap1 

(wc1) (Chandler et al., 2013; Suwarno et al., 2015), known for their 

involvement in the control of kernel carotenoids content and kernel 

color; as well as the 4-hydroxyphenylpyruvate dioxygenase 1 (hppd1) 

(Chander et al. 2008a), albino or pale green mutant1 (apg1, vte3), 

and the homogentisate geranylgeranyl transferase1 (hggt1) 

(Diepenbrock et al., 2017), known for significant association with the 

variation in kernel tocopherols content, were not detected as 

associated with that traits variation in the present study. The 

genotyping platform used on the current work screened several SNPs 

located within all the aforementioned candidate genes. Nevertheless, 

no association was detected between those SNPs and the levels of 

carotenoids, yellowness, and tocopherols in maize flour on the 

present association panel. As pointed out by Cook et al. (2012) 

several factors could be responsible for differences in position and 

quantity of QTLs detected between studies, including variation in 

allelic frequency, mapping resolution influenced by the magnitude of 

linkage disequilibrium in a population, marker density, environmental 

effects, and QTL analysis methods. The relatively small size of the 

used association panel might have constrained the statistical power 

to detect significant marker-trait associations in the present study. 

Also, the rapid rate of LD decay observed in the present study in the 

SNPs associated with the quality traits evaluated suggests that a 
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higher marker density would have been beneficial in the detection of 

other regions putatively linked to maize flour’s quality. 

The SNPs strongly associated with the traits analyzed and/or 

the SNPs which allelic variants were found to contribute to larger 

phenotypic effects should be prioritized as candidate genomic regions 

for marker development to support selection activities especially for 

the quality-related traits more difficult to measure/assess. 

Nevertheless and as already mentioned in Chapter IV, those 

associations need to be further validated. Future work will 

concentrate on the validation of the results retrieved in this work by 

sequencing those regions on contrasting maize populations for the 

given trait. Since the actual materials used for the manufacturing of 

the broa maize-based bread are the maize populations, these are the 

ideal independent materials to proceed with the missing validation.  
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Supplementary material 

Tables 

Table S1. Maize inbred lines with available quality data, known pedigree, 

kernel color, and endosperm type. – Table available online through the link 

<https://figshare.com/s/051f42ca548266f113e2> 
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Table S5. Observed inflation factors for the models tested in genome-wide 

association (GWAS) analysis. Inflation factor for the adaptive kinship model 

corresponds to the average value across chromosomes. 

Trait Naive Eigen 
Adaptive 

Kinship 
1
 

L* 1.294 1.156 1.114 

a* 1.245 1.092 1.068 

b* 1.859 1.321 1.078 

TCC 1.804 1.324 1.095 

ATLOG 1.357 1.130 1.027 

DTLOG
2
 

2011 growing season 1.082 1.039 1.012 

2012 growing season 1.130 1.076 1.012 

across growing seasons 1.048 1.048 1.020 

GT 1.302 1.050 1.040 

PHSLOG 1.015 1.015 1.011 

PHHLOG 1.174 1.126 1.026 

HYLOG 1.105 1.059 1.002 
1
 Calculated according to Listgarten et al., 2012; Rincent et al., 2014 | 

2 For DTLOG, 

genome-wide association analysis was performed using the phenotypic 

adjusted means across growing seasons, and individually for each growing 

season. 

Quality traits’ abbreviations: L* - flour’s lightness; a* - flour’s red/green index; b* - 

flour’s yellow/blue index; TCC - total carotenoids content; ATLOG
 
- α-tocopherol 

content; DTLOG - δ-tocopherol content; GT - γ-tocopherol content; PHSLOG
 
- total 

phenolic compounds by Folin–Ciocalteu assay; PHHLOG - total phenolic compounds 

by HPLC; HYLOG - total hydroxycinnamic acids 

Table S6. Significant SNP-trait associations using -log10 (P-value) = 4, as 

the threshold from a genome-wide association study for 10 health-related 

quality traits using a collection of 132 maize inbred lines evaluated across 

two growing seasons. – Table available through the link 

<https://figshare.com/s/6f7f7dcd7b689a145603> 
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Table S8. Candidate genes mapped within the genomic regions associated 

with 10 health-related quality traits. – Table available online through the link 

<https://figshare.com/s/c63a960416b0fc0115f1> 

 

Figures  

Figure S1. Manhattan plots showing the genome-wide association results 

for each of the 10 health-related quality traits obtained using a collection of 

132 maize inbred lines evaluated across two growing seasons, and for 

individual growing seasons in the case of the genome-wide association 

results for δ-tocopherol. – Figure available online through the link 

<https://figshare.com/s/110da3a07eda01a98529> 
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General discussion 

Quality is receiving increasing relevance on plant breeding 

efforts to develop healthier and more nutritious crops (Hefferon, 

2015). Maize is one of the main crops used for human consumption 

and, due to this, in high demand for food purposes (Nuss & 

Tanumihardjo, 2010; Ranum et al., 2014). Consumers worldwide are 

increasingly concerned with food quality. Breeding for improved plant 

quality is, however, a complex task (Jiang et al., 2017; Munck, 2009; 

Wen et al., 2016) and, therefore, the development of tools that will 

allow a more efficient and effective selection for better quality 

products is of great importance nowadays. 

In Portugal, a unique germplasm has been developed through 

centuries of adaptation to local environment and food uses, in 

particular, for ethnic maize leavened broa bread production (reviewed 

in Vaz Patto et al., 2013). Several parameters related to kernel 

composition, flour pasting behavior and flour particle size have been 

previously identified as crucial for broa quality (Brites et al., 2010; 

Carbas et al., 2016). Because of their use for human consumption 

(broa bread), these maize landraces are in part maintained, and not 

yet totally replaced by commercial hybrids (Vaz Patto et al., 2007). 

Nonetheless, the underuse of these materials as well as the limited 

knowledge on their phenotypic and molecular characterization as 

motivated the work developed under this Ph.D. thesis. In this way, the 

knowledge generated, through the efforts undertaken with this 

project, is a genuine attempt to contribute to the conservation 

promotion and revival the use of the Portuguese traditional maize 

populations, unveiling their potential for a quality-oriented breeding. In 

this thesis, molecular markers were used, together with phenotypic 

(agronomic and quality) data, to evaluate the effect of on-farm 
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stratified mass selection in two historical maize populations selected 

under the a long-term participatory breeding program - the VASO 

program; and to characterize the genetic diversity of Portuguese 

maize populations still under cultivation (farmers’ populations). 

Additionally, a maize inbred line collection partially derived from 

Portuguese maize populations was analyzed at the molecular and 

phenotypic level to perform a whole-genome association study, in 

order to scrutinize the complex genetic basis and identify genomic 

regions/candidate genes associated with maize bread quality. These 

molecular-based tools would be fundamental for future maize 

breeding given the difficulty to visually select for the majority of the 

quality-related traits. 

The main achievements of this Ph.D. project were: 

(1) To provide further evidence for the effectiveness of participatory 

breeding methodologies on agronomic plant improvement, while 

maintaining high molecular diversity, in two historical maize open-

pollinated populations, Amiúdo and Castro Verde (Chapter II). Our 

observations also bring awareness for the need to develop selection 

tools for characteristics that cannot be visually selected by farmers, in 

order to trace down or improve these traits. The development of these 

missing tools was further explored in Chapter IV and V. 

(2) Through the integration of both phenotypic and genotypic 

characterization gathered throughout Chapter III, to generate a 

valuable tool to support an efficient and effective management of the 

available genetic resources in future breeding activities. 

(3) By employing a genome-wide association approach on a maize 

inbred collection containing lines partially derived from Portuguese 

maize populations, to unveil the genetic basis of the quality traits 
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evaluated in Chapters IV and V. A total of 128 genomic regions were 

identified associated with the different compositional and pasting 

behavior quality traits, and the different health-related quality traits 

evaluated. 

The Portuguese traditional landraces have been evolving since 

maize introduction in the country and can still be found under 

cultivation at the farmers’ fields (Vaz Patto et al., 2007). Generally, 

landraces are known to be less productive than hybrid varieties 

(Revilla et al., 2015) so their agronomic improvement (yield) is always 

an important aspect to be considered in future breeding activities. 

Moreover, maize landraces are considered to have a broader 

plasticity to adapt to different environments (Hellin et al., 2014) and 

given the present climate changes concerns (Wheeler & von Braun, 

2013) those materials could represent a valuable asset to breed for 

unpredictable environments. 

Traditional maize populations collected from the Central 

Portuguese region, known to produce a market renowned maize-

based bread (Vaz Patto et al., 2007), are not currently involved in any 

conventional breeding program, neither on the long-term Portuguese 

participatory maize breeding program (VASO program) (Vaz Patto et 

al., 2013). Taking into account their potential to improve maize 

quality-related aspects, a similar breeding methodology as currently 

used in the Portuguese participatory breeding program (for example, 

stratified mass selection) could be applied to these populations. 

However, an inclusive evaluation of the effect of stratified mass 

selection methodology on an extended number of maize populations 

was at the beginning of this thesis still missing. In Chapter II, taking 

advantage of the material selected through the VASO program, we 

expanded the knowledge on the effects of stratified mass selection 
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methodology at the agronomic, quality and molecular levels on the 

historical Portuguese maize populations. 

Also in Chapter II, we compared the agronomic performance of 

the different populations and their selection cycles in multi-location 

field trials. Multi-location field trials, comparing the initial populations 

with the derived selection cycles, showed that this selection 

methodology led to agronomic improvement in one of the populations. 

In the literature, some examples showing the potential of stratified 

mass selection specifically in the context of a participatory maize 

breeding program can be found described in Mendes-Moreira et al. 

(2008, 2009) and Smith et al. (2001). Since the two populations 

analyzed on Chapter II are used for human consumption, we also 

measured several traits associated with grain quality on the same 

material harvested from a single field location. This analysis showed 

that the majority of the quality traits evaluated progressed erratically 

over time during selection. We assessed as well the evolution of the 

molecular diversity along the selection process using microsatellite 

markers. The molecular diversity analysis revealed that the overall 

genetic diversity in both populations was maintained throughout the 

selection. One of the reasons for the maintenance of the overall 

genetic diversity levels of both populations can be due to their 

effective populations’ size, which was above 120 individuals. 

According to Hoban et al. (2014), changes in genetic diversity levels 

are most likely identified only when the effective population size is 

smaller than 100 individuals. 

Given their specific uses in food, these landraces can be 

relevant sources of interesting alleles to improve quality of maize-

based food products. Previous studies have reported promising 

differences in the quality of kernels among the farmers’ maize 

populations collected in a Portuguese region known to produce broa 
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bread (Vaz Patto et al., 2009). Several limitations have been 

identified in the previous characterizations of those populations (Vaz 

Patto et al., 2009), such as a reduced set of quality traits accessed 

and a missing accurate agronomic performance evaluation and these 

were addressed in Chapter III of the present thesis. The results from 

Chapter III allowed expanding the current knowledge on Portuguese 

farmers’ maize populations collected from a traditional maize-based 

bread-national producing region. Namely, by generating a more 

thorough characterization of their phenotypic (quality and agronomic) 

and genetic diversity that allowed to better organize future breeding 

activities and identify sources (populations) of interesting traits to be 

used on future crosses. These maize populations were evaluated for 

grain yield and ear weight in nine locations across Portugal. The 

populations’ adaptability and stability were evaluated using additive 

main effects and multiplication interaction (AMMI) model analysis. 

Regarding the agronomic performance, farmers’ maize populations 

had low but considerably stable grain yields across the tested 

environments. Hellin et al. (2014) also mentioned the bigger stability 

of Mexican maize landraces when compared with hybrids; these 

populations had a wider plasticity to adapt to different environmental 

conditions while still maintaining yield. The majority of the farmers’ 

populations analyzed in this thesis were characterized by high levels 

of protein and fiber, low levels of carotenoids, volatile aldehydes, α- 

and δ-tocopherols content, and low breakdown viscosity values. An 

example as of how the phenotypic and molecular information 

collected can be integrated and applied into a decision-making 

process to support the establishment of a quality-oriented 

participatory maize breeding program was presented and discussed 

in Chapter III. Specifically, one of the breeding objectives to be 

pursued could focus on increasing the agronomic performance of the 
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populations and tocopherol levels (α- and δ-tocopherol content) that 

are limiting on this germplasm. An increase in maize vitamin E levels, 

as tocopherols, can elevate its nutritional value by enhancing their 

role as antioxidants (Nuss & Tanumihardjo, 2010). Moreover, 

tocopherols play an essential physiological role in the plant as vitamin 

E is involved in guaranteeing seed longevity, preventing lipid 

peroxidation during germination, and in abiotic stress tolerance (e.g., 

Chen et al., 2016; Sattler et al., 2004; and Wang et al., 2017). 

As previously discussed by others, the majority of maize traits, 

including kernel quality-related traits, have complex patterns of 

inheritance, being controlled by multiple genes (Wallace et al., 2013). 

From the results in Chapter II, it was observed that the majority of the 

quality traits evaluated progressed erratically over time stressing the 

importance on the development of quality-related molecular selection 

tools. Moreover, the influence of environmental conditions in 

phenotypic data related to quality traits has also been reported (e.g., 

Ketthaisong et al., 2014; Wilson et al., 2004). In Chapters IV and VI of 

this work we took advantage of the existing maize inbred line 

collection from the Portuguese Plant Germplasm Bank and used, for 

the first time, an original collection of 132 maize inbred lines, partially 

developed from Portuguese traditional maize populations, to carried a 

genome-wide association study aiming to identify genomic 

regions/candidate genes controlling compositional and pasting 

properties of maize wholemeal flour. 

This study allowed to better understand the complex genetic 

basis of maize kernel main compositional and pasting quality, by 

identifying candidate genes for the majority of the quality associated 

genomic regions, or the most promising target regions to develop 

molecular tools to increase efficacy and efficiency of quality selection 

within maize breeding programs. Important to mention is that the size 
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of the collection of maize inbred lines used in this work most likely 

affected the power to detect significant marker-trait associations, and 

the subsequent identification of genomic regions controlling the 

analyzed traits association. As reported in Yang et al. (2010), using 

simulation studies, a collection of 155 diverse maize lines for 

association mapping was suitable to study mainly traits controlled by 

major QTLs and the collection size should be extended for further 

investigating the genetic basis of other traits controlled by genes with 

moderate or even minor effects. Nevertheless, with this approach, a 

total of 128 genomic regions associated with the quality traits, 

evaluated in Chapters III and IV, were identified: 57 genomic regions 

associated with the 11 different compositional and pasting behavior 

quality traits evaluated, and 73 genomic regions associated with the 

10 different health-related quality traits evaluated. 

In our genome-wide association analysis, the strongest marker-

trait associations detected were associated with total carotenoids 

content, flour yellowness, and lightness variation. The strongest SNP-

trait associations for these three traits were located upstream of the 

GRMZM2G300348 gene (y1 - yellow endosperm1), coding for 

phytoene synthase (PSY1), an enzyme catalyzing the first committed 

step of the carotenoids biosynthetic pathway (Buckner et al., 1996). 

GRMZM2G300348 gene was also identified previously under a QTL 

controlling for carotenoids levels (Fu et al., 2013; Jittham et al., 2017; 

Wong et al., 2004) and kernel color (Chandler et al., 2013; Romay et 

al., 2013). Several other regions controlling multiple traits were also 

detected in the present study with the subsequent identification of 

potential candidate genes. As an example, for breakdown viscosity 

and peak viscosity, two viscosity parameters that reflect the starch 

capacity to absorb water and swell, the strongest common associated 

region was located near the dull endosperm 1 gene, which encodes a 
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starch synthase and is determinant on the starch endosperm 

structure in maize (Gao et al., 1998; Wu et al., 2015). Other a priori 

candidate gene, the GRMZM2G035213 gene (vte4), which codes for 

γ-tocopherol methyltransferase (VTE4), a well-known enzyme 

involved in the vitamin E biosynthesis (Shutu et al., 2012), was found 

under a genomic region associated with α-tocopherol variation. 

Quantitative trait loci (QTLs) contributing for tocopherol levels have 

been consistently identified by others in the region where this gene is 

located (e.g., Diepenbrock et al., 2017; Lipka et al., 2013; Shutu et 

al., 2012). 

Concerning future work related to the detected SNP-trait 

associations, the regions detected to be associated with the several 

quality traits analyzed in this work will need to be validated using an 

independent genetic background before they can become applicable 

in Marker-Assisted Selection (MAS). Priority will be given to the 

regions where the strongest association, higher SNP effect size, and 

where QTLs for the same or related traits were detected on previous 

works. Moreover, in the case of SNPs located near or within intra-

genic regions, the putative functional effect of each associated SNP, 

using in silico prediction based on the maize B73 reference genome, 

will also serve as criteria to further investigate the possibility of those 

SNPs being directly linked to the trait, as advised for instance in 

McLaren et al. (2016). 

Currently, a genome-wide association approach is also being 

undertaken to detect genomic regions involved in the variation of 

volatile compounds content in maize flour. Specifically, the 

identification of genomic regions controlling volatile aldehydes content 

is one of the research topics being presently addressed. The majority 

of farmers’ populations were characterized by low levels of volatile 

aldehydes (Alves et al., Chapter III). It is widely known that the aroma 
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strongly influences consumer preference and acceptance of baked 

goods. Aldehydes have been identified as the main volatile 

compounds that contribute to the aroma in cereals (Klensporf & 

Jelén, 2005), and aroma volatiles such as aldehydes resulting from 

the polyunsaturated fatty acids’ oxidation can contribute to the 

development of off-flavors and rancidity (Gwirtz & Garcia-Casal, 

2014). Previously, Brites et al. (2010), through a sensory analysis on 

broa, carried out by a trained panel using open-pollinated maize 

populations, identified a preference, due to texture, taste, and aroma, 

for maize bread produced using open-pollinated populations, as 

opposed to maize bread produced using commercial hybrid maize 

varieties. 

As main conclusions, the work developed under this Ph.D. 

opened ways in the field of participatory maize breeding in Portugal, 

improved the knowledge on the quality characterization of traditional 

maize landraces, postulating future paths for breeding these 

materials, and increased the basic and applied knowledge on the 

genetic control of quality-related traits in maize. 

As final remark, and noteworthy to mention is the fact that the 

work developed under this Ph.D. thesis, where knowledge of the 

agronomic performance, quality characterization, and identification of 

putative genomic regions joint to develop future markers to assist 

selection of quality traits, is also in line with the “Goal 2: End hunger, 

achieve food security and improved nutrition and promote sustainable 

agriculture”, of the 17 Sustainable Development Goals of the United 

Nations’ 2030 Agenda for Sustainable Development (United Nations, 

UN, 2015). 
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