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Cover image A coronal slice of mouse brain showing the left hemisphere. Mid-
brain dopamine neurons are expressing tdTomato (red) and in the image we can
see dopaminergic projections in the striatum. Nuclei are stained with DAPI
(blue).
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Time is not something objective and real, neither a substance, nor
an accident, nor a relation. It is the subjective condition necessary

by the nature of the human mind for coordinating any sensible
objects among themselves by a certain law; time is a pure intuition.

Immanuel Kant, 1770
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Título
A estimativa de tempo nos gânglios da base: as contribuições dos neurónios

dopaminérgicos e do corpo estriado para o comportamento de cronometragem.

Resumo
A capacidade de estabelecer relações temporais entre eventos, assim como de prever

as consequências das próprias acções, é essencial para que um animal consiga adaptar-se
ao ambiente que o rodeia. Assim sendo, é fundamental que o cérebro tenha acesso a
informação temporal. Como é que o cérebro representa a passagem do tempo? E quais
são os mecanismos cerebrais que contribuem para a subjectividade das estimavas tem-
porais? Esta dissertação aborda as contribuições do corpo estriado e dos neurónios de
dopamina (DA) do mesencéfalo para comportamentos de cronometragem. Começámos
por monitorizar a actividade de neurónios do corpo estriado enquanto ratazanas desem-
penhavam uma tarefa comportamental que exigia estimativas temporais. Observámos
que diferentes neurónios respondem em alturas distintas do intervalo a ser estimado.
Descobrimos ainda que quando os intervalos a estimar são mais curtos ou mais longos,
cada neurónio contrai ou dilata o seu perfil de resposta, respectivamente, revelando um
código temporal em termos relativos. De seguida, monitorizámos e manipulámos a ac-
tividade dos neurónios de DA da substância negra compacta (SNc) enquanto murganhos
categorizavam intervalos de tempo. Descobrimos que estes neurónios reflectem estima-
tivas de tempo, e que a activação ou inibição transiente destes neurónios é suficiente
para desacelerar ou acelerar essas estimativas, respectivamente. No mesencéfalo, a re-
lação entre a actividade dopaminérgica e as estimativas temporais mostrou-se especifica
à SNc, já que tal relação não foi observada em neurónios de DA da área tegmental ven-
tral. Para além da representação de estimativas temporais, descobrimos ainda que os
neurónios do corpo estriado, assim como os neurónios de DA do mesencéfalo, reflectem
o nível de empenho do animal na tarefa comportamental que está a ser realizada, isto
é, reflectem um estado que se caracteriza por níveis baixos de escolhas prematuras e
níveis altos de escolhas correctas. Por fim, observámos que estas representações rela-
cionadas com o empenho na tarefa são dissociáveis das representações relacionadas com
estimativas temporais. Estes resultados sugerem que o corpo estriado possui um código
ajustável, ao nível populacional, que representa a passagem de tempo, e que os neurónios
de DA da SNc reflectem e controlam decisões baseadas em estimativas temporais. Estas
representações são, muito provavelmente, cruciais para que os animais consigam prever
eventos e consequências e, assim, agir da forma mais apropriada em cada situação.

x



Abstract
To behave adaptively, animals must learn the temporal structure of events in their

environment, and they must also predict the sometimes delayed consequences of their
own actions. Therefore, to produce adaptive behavior, it is essential that the brain
maintains a representation of time. How does the brain represent elapsed time in a
manner that supports adaptive behavior, and what are the mechanisms that contribute
to variability in subjective time estimates? In this monograph I address the roles of
striatal and midbrain dopamine (DA) neurons in timing behavior. First, we recorded
the activity of striatal neurons in rats performing an interval production task. We found
that these neurons responded at different delays spanning the interval being timed. In
addition, individual neurons rescaled their responses in time when intervals changed,
indicating that relative time can be decoded from striatal populations. Next, we both
measured and manipulated the activity of DA neurons in the substantia nigra pars
compacta (SNc) while mice performed a temporal categorization task. We found that
SNc-DA neurons reflected time judgments, and that transiently activating or inhibiting
SNc-DA neurons was sufficient to alter these judgments, slowing or speeding time es-
timation, respectively. Within the midbrain DAergic system, the relationship between
DAergic activity and time judgments was specific to the SNc, as it was not present
when we targeted DA neurons in the ventral tegmental area (VTA). In addition to tim-
ing signals, we found that both striatal and midbrain DA neurons reflected a state of
task engagement (i.e., a state of general adherence to task rules, characterized by low
levels of premature choices and high probability of correct choices). Importantly, task
engagement signals were dissociable from signals related to temporal judgments. These
results suggest that the striatum exhibits a scalable population code for time, and that
variable time judgments are reflected and controlled by SNc-DA neurons. Such timing
signals are likely crucial for animals to generate predictions and to guide their actions
in order to produce adaptive behavior.
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Overview
This monograph is structured into five Chapters. Chapter 1 consists of a general

introduction, in which literature of relevance for the topics discussed in the following
Chapters is presented. In particular, Chapter 1 covers the importance of time for adap-
tive behavior and briefly describes the history of time estimation research. Furthermore,
I introduce the main behavioral paradigms and theoretical models of interval timing,
while highlighting their possible neural basis. Finally, I introduce the idea that a com-
mon neural (and theoretical) basis is shared between interval timing and reinforcement
learning (RL). In this initial Chapter, I opted to only reference studies published until
the year of 2014, since this was the work that informed the conception of the projects
described in the three subsequent Chapters. These three Chapters correspond to the
body of work produced during my doctoral studies. Chapter 2 describes a scalable pop-
ulation code for time found in the rat striatum. Additionally, consistent with the role of
the basal ganglia (BG) in action selection, Chapter 2 describes populations of striatal
neurons that multiplexed information about action and time. Chapter 3 investigates
the role of midbrain dopamine (DA) neurons in mice judging duration. In this Chapter
I describe how DA neurons in the substantia nigra pars compacta (SNc), but not in
the ventral tegmental area (VTA), reflect and control temporal judgments in a manner
consistent with their encoding of a reward prediction error (RPE) signal. In Chapter 4,
I present an additional signal in the BG, in a period before trial initiation, that reflects
task engagement levels in both rats and mice. This signal, found in both SNc-DA and
VTA-DA neurons, is dissociable from the timing signals described in Chapter 3. Fur-
thermore, I describe how the activity of different striatal neuronal subtypes also reflects
task engagement signals. Chapter 5 consists of a general discussion where I summa-
rize and contextualize our findings. Additionally, I address possible contradictions and
questions that arise from our work, while arguing in favor of a unified view of interval
timing and RL. Lastly, I discuss why it might be adaptive for a system that is linked
to reward processing to also impact temporal processing.
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Chapter 1

Introduction

"Timing is everything – whether in making shots, in making love or in
making dinner. Indeed, it is difficult to conceive of an action that does not
require temporal control."

(Gibbon & Malapani, 2006)

1.1 Why time?
One incredible feature in the animal kingdom is the vast range of complex behaviors
that are executed with exquisite temporal precision in the appropriate context. From
a hungry bird foraging for food, to a lioness waiting for the perfect moment to attack
a zebra, virtually all behaviors are executed in complex sequences that are temporally
coordinated. But animals don’t just exhibit these behaviors at random. What makes
most animal behavior astounding is that it is adaptive. In a given environmental context,
an animal will learn to produce a particular behavior at a specific time in order to obtain
a desired outcome. In a different context, however, the selected behavior, as well as its
timing, might be completely different. How do animals achieve this remarkable ability?
The challenge of producing adaptive behavior can be split into four parts: i) animals
must sense their environment and identify relevant features of the current context; ii)
from the vast range of behaviors at their disposal, animals must select the behavior most
likely to lead to the best possible outcome given the context; iii) animals must perform
the selected behavior at the appropriate time; and finally, iv) animals must observe the
outcome of the behavior they selected and use that information to guide future behavior.
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For all the above, a representation of time is crucial. Firstly, any environmental context
is composed of stimuli distributed over space and time. Secondly, the process of selecting
the optimal behavior requires that animals predict the delayed outcome of each possible
behavior. They must do so by evaluating prior outcomes experienced under a context-
behavior contingency and then selecting the behavior that they expect will lead to the
best possible outcome. To infer these causal links and generate predictions, a temporal
representation of when contexts-behaviors-outcomes occurred relative to each other is
required. Additionally, a representation of elapsed time is essential for animals to exhibit
the selected behavior in the appropriate moment. Finally, once animals experience the
outcome of their selected behavior, a representation of time is necessary for a causal
relationship to be formed between context-action and outcome, so that animals update
their predictions about what outcomes to expect next time they encounter the same
context and select the same action.

These same problems that govern adaptive behavior are at the heart of reinforcement
learning (RL) theory, where an agent’s goal is to learn which actions to take in a given
state in order to maximize expected future rewards (Sutton & Barto, 1998). A key
issue that RL tries to solve is the credit-assignment problem: how to distribute credit
appropriately between the many actions that an agent may perform until a delayed
reward occurs (Minsky, 1961; Barto, Sutton, & Anderson, 1983). Therefore, in essence,
understanding how animals represent temporal information is key to understanding how
they learn to behave adaptively.

Although animals are able to represent many relevant timescales [there is exten-
sive evidence for molecular clocks that regulate circadian rhythms of about 24 hours
(Reppert & Weaver, 2002), and for representations in the microsecond to millisecond
range that are crucial for fine motor control (Braitenberg, 1967; Ivry & Keele, 1989)],
adaptive behavior relies on temporal representations in the range of seconds to minutes
to hours (interval timing, e.g., Rakitin et al., 1998; Staddon & Higa, 1999; Buhusi &
Meck, 2005). Virtually all animal species rely on their estimates of time to guide adap-
tive behavior. Throughout evolution the behavioral and neural mechanisms that allow
animals to estimate elapsed time in the absence of mechanical devices such as modern
clocks have been selected. What do we know about how animals estimate the passage
of time?
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1.2 A brief history of time estimation research
Before experimental psychologists and neuroscientists began to systematically study
timing behavior and its neural correlates, the notion of time as a crucial dimension guid-
ing behavior had been recognized and discussed by philosophers for centuries [e.g., Au-
gustine of Hippo (Jordan, 1955); Immanuel Kant (Kant, 1770); William James (James,
1886)]. Although throughout the XIXth century there was an effort among experimen-
tal psychologists to study temporal perception in humans, this endeavor did not prove
fruitful from the get go. According to Judd et al., 1899:

"The investigations of time-perception are among the most difficult un-
dertaken in experimental psychology. If one overlooks the earlier, rather
crude experiments, the number of valuable treatments of this subject re-
duces to five or six. Unfortunately, the results thus far obtained are fre-
quently of such a conflicting character that one feels that the whole ground
must be gone over anew before any interpretation can be commenced. The
articles have come to take on a polemical and too often personal character
that does not tend to stimulate unqualified acceptance of the statements of
either party. The personal equation doubtless plays a very large part in es-
timation of time intervals, and perhaps it would be well for investigators to
recognize this fact once for all, and not to be too hasty in generalizing from
their own individual observations or from those of their own ’school’. The
theories, too, are hypothetical in the last degree, and must be so regarded."

One of such "valuable treatments" was an 1892 study by Heim1, who addressed the
relationship between temporal perception and near-death experiences in human subjects
that had suffered almost fatal falls in the Alps. For Heim’s subjects:

"Time became greatly expanded. (...) Mental activity became enor-
mous, rising to a hundred-fold velocity(...)."

In other words, Heim’s subjects reported that external time appeared to slow down.
This apparent slowing down of external time was accompanied by accounts of "mental
quickness". This description exposes the sometimes counterintuitive relationship be-
tween external and internal time: if one’s internal representation of time is sped up,
external time seems to slow down. We’ll come back to the topic of speeding or slowing
down of time estimates in Section 1.5, but note that just as Judd et al. described, the

1This work was translated to English and expanded upon by Noyes Jr and Kletti in 1972,
80 years after Heim.
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subjective nature of temporal estimation posed real obstacles to the study of time per-
ception. Until then, introspective studies such as Heim’s were the norm, where human
subjects were asked questions and verbally reported their experiences. Controlled be-
havioral tasks, theories of learning and mathematical models of timing behavior would
only flourish in the XXth century2.

1.3 Behavioral paradigms for the study of learn-
ing and interval timing

Classical conditioning The XXth century saw a proliferation of controlled exper-
imental paradigms to study learning and timing behavior. Between the late 1890’s and
the 1920’s, Ivan Pavlov (Pavlov, 1927; Pavlov & Anrep, 2003) studied dogs’ salivary re-
sponses to auditory stimuli that preceded the delivery of food, introducing the paradigm
of classical (or Pavlovian) conditioning. In classical conditioning, a conditioned stimulus
(CS), such as an auditory stimulus, is repeatedly paired with an unconditioned stimulus
(US), such as food. Initially, only the US elicits a response (such as salivation), but
after enough repetitions, the same response will be elicited by the CS, and therefore is
termed conditioned response (CR).

Although the initial theory behind classical conditioning posited that animals learn
these CS-US associations because they occurred together in time (in other words, due
to temporal contiguity, Pavlov, 1927), a series of experiments from Kamin and Rescorla
highlighted surprise and contingency as key factors guiding conditioning. Firstly, Kamin
(1969) used a so-called blocking procedure to show that learning only takes place if a
reward is unpredicted. In other words, after an animal learns a given CS-US pairing, if
a second CS is introduced together with the first CS such that both are paired with the
same US, it will fail to elicit a CR when it is later presented alone. The explanation
for this is that, despite the clear temporal contiguity, the initial CS-US training blocks
any future learning to the second CS. Secondly, a set of experiments by Rescorla (1966,
1967) showed that in fact contingency between CS and US was essential for learning
to occur. Rescorla found that adding enough extra USs randomly during the inter-rial
interval (ITI) without a preceding CS abolished the CR to the CS.

Together, these experiments showed how classical conditioning paradigms require a
combination of contingency and unpredictability between a CS and US to drive learning.

2Although early work from Thorndike in 1898 laid ground for his "Law of effect", this prin-
ciple was only formulated into the XXth century.
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Because the vast majority of CRs are reflexive reactions to the US to begin with, the
classical conditioning framework does not address the issue of how animals learn to
perform non-reflexive behaviors that produce rewarding outcomes.

Operant conditioning Edward Thorndike (1898, 1911) was a pioneer in the study
of how animals learn to produce behaviors that are followed by positive outcomes. In
one of his best known experiments, Thorndike placed hungry cats individually inside
a box from which they could escape by operating latches (Thorndike, 1911). If they
succeeded in escaping the box they received food and then were placed inside the box
for a new trial at escaping. By recording how long cats would take to escape on single
trials, Thorndike found that cats escaped the box more quickly as the number of trials
increased. Thorndike introduced the idea of learning by trial and error: if an animal
performs an action that is followed by an outcome that produces "satisfaction to the
animal", then that action will "be more firmly connected with the situation". Therefore,
if the same situation occurs, that same action will also be more likely to occur. Fur-
thermore, Thorndike suggested that the opposite relationship was true for actions that
were followed by outcomes that caused "discomfort to the animal". Thorndike named
his theory the "Law of effect", because it described the effect of outcomes on behavior.

These ideas planted the seeds for the work of Skinner (1938), although Skinner
moved away from Thorndike’s reference to animals’ sensations. Instead, Skinner mea-
sured behavior and manipulated it using reinforcement: the strengthening of behavior
by the presentation of an event (positive reinforcement) or by the removal/avoidance of
an aversive event (negative reinforcement). These ideas defined operant conditioning,
and the use of reinforcers to control behavior was accompanied by the design of a num-
ber of paradigms. These paradigms differed in how the reinforcers were delivered over
time (in other words, they had distinct schedules of reinforcement). It soon became
apparent that subjects trained in such schedules of reinforcement exhibited response
patterns with clear temporal regularities, leading to the application of these paradigms
to the study of timing behavior. Since then, a vast range of paradigms have been
developed to study interval timing. Below is a short selection of some of the most com-
mon interval production, interval reproduction and interval discrimination paradigms
(more detailed reviews on interval timing paradigms can be found in Grondin, 2010 or
Merchant, Pérez, Zarco, & Gámez, 2013).
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1.3.1 Interval production
Initial operant conditioning paradigms became crucial to the study of timing behav-
ior and fall in the category of interval production paradigms. In interval production
paradigms, an animal’s subjective temporal estimate is correlated with the timing of a
measurable self-paced response that occurs relative to a particular event, usually the
last reinforcer presentation. Two of the most popular interval production paradigms
are described below.

Fixed interval schedules of reinforcement Operant conditioning under
fixed interval (FI) schedules of reinforcement is one of the earliest and most common
paradigms in the study of interval timing behavior (Ferster & Skinner, 1957; Cumming
& Schoenfeld, 1958; Grossmann, 1973; Dews, 1978; Jaldow, Oakley, & Davey, 1989;
Lejeune & Wearden, 1991). FI paradigms reinforce a response (e.g., pressing a lever)
that occurs after a fixed elapsed time since the last reinforcer. After a response is
reinforced, a new FI begins and only when it has elapsed does a response produce a
new reinforcer, and so on. The temporal regularities in animals’ patterns of responding
during FI paradigms have been described extensively (Ferster & Skinner, 1957; Catania
& Reynolds, 1968; Lejeune & Wearden, 1991). Subjects typically respond very little
or not at all immediately following the delivery of the reinforcer. This period is often
referred to as the post-reinforcement pause. Then, approximately two-thirds into the
FI, animals begin responding with high frequency without any external cue signaling
how much time has elapsed. This moment is used as a correlate of the animal’s estimate
of the end of the FI and of the availability of a new reinforcer. When animals gradually
increase their rate of responding, this pattern is referred to as scalop (Dews, 1978).
When animals respond at a constant rate from the end of the post-reinforcement pause
until the end of the FI, they are said to display a break and run pattern (Ferster &
Skinner, 1957; Cumming & Schoenfeld, 1958)3. By the end of the FI, responses stop
and animals collect the reinforcer. In FI schedules, the post-reinforcement pause is
taken as an estimate of the subject’s temporal expectation of reinforcement. There
are a number of variations of the FI paradigm; one of the most widely used is the
peak-interval (PI) procedure.

Peak-interval The PI procedure is essentially a modification of the FI paradigm
where the reinforcer is omitted in a small proportion of probe (or peak) trials (Catania,
1970; Roberts, 1981). On average, responses in these probe trials begin as in the normal

3Ferster and Skinner (1957) referred to this pattern as break-throughs
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trials (with the same patterns as in the FI paradigm) peaking at around the time of the
FI, after which the average rate of responding slowly decreases. Therefore, the peak of
the average response rate on probe trials (also referred to as peak-rate time) allows the
experimenter to infer the subject’s estimate of when the reinforcer should have been
delivered. FI and PI paradigms have been successfully implemented in a vast range of
species, from bees (e.g., Grossmann, 1973) to humans (e.g., Rakitin et al., 1998). One
disadvantage of these classic paradigms, however, is that only one interval duration is
probed across all trials. Other disadvantages will be discussed in Chapter 2.

1.3.2 Interval reproduction
As the name suggests, interval reproduction paradigms rely on a subject’s ability to
reproduce an interval duration that has been previously presented to them. The sub-
ject needs to hold the presented interval in memory for some period of time before
reproducing their estimate of that interval. The exact duration of the interval to be
reproduced can vary from trial to trial, granting this class of tasks more flexibility. The
reproduction can be achieved verbally or by behaviors such as tapping at the begin-
ning and end of the estimated interval or key-pressing for the entire estimated duration
(Woodrow, 1930; Treisman, 1963; Jazayeri & Shadlen, 2010). Interval reproduction is
therefore more complex than interval production or discrimination, and therefore has
not been as successfully applied to non-primate animals.

1.3.3 Interval discrimination
The principles of psychophysics developed by Fechner (1966, but originally published
in 1860) began to be applied to timing behavior in laboratory animals with the devel-
opment of temporal discrimination tasks. Psychophysics studies the behavioral effects
of parametric variations along some physical dimension of a stimulus, and has been
extensively applied in the context of perceptual decision-making (Parker & Newsome,
1998). A common approach in psychophysics is to train animals in tasks where one
of two choices is reinforced depending on a previously presented context. The context
can be manipulated by varying any one physical dimension of a stimulus - for exam-
ple, the vibration frequency of somatosensory stimuli (Mountcastle, Talbot, Sakata, &
Hyvarinen, 1969), or the contrast/coherence in the motion direction of visual stimuli
(Newsome & Pare, 1988). This class of paradigms is commonly referred to as two
alternative forced-choice (2AFC) tasks.
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In the case of 2AFC tasks based on temporal discrimination, the context can be
defined, for example, by stimuli of different durations. Typically, subjects are presented
with a stimulus with a given duration and discrimination is evident if the probability of
performing one of two behaviors is dependent on the duration that was presented. Initial
interval discrimination paradigms reinforced behavior when a given stimulus duration
was presented (e.g., a 1.5 sec stimulus) but not when a different duration (e.g., a 4 sec
stimulus) was presented (Woodrow, 1928; Reynolds & Catania, 1962). In another study,
Cowles and Finan (1941) trained rats to run through different arms of T-maze depending
on the duration of time for which they had been restrained before being released into
the maze. These initial studies led to the development of several paradigms with better
stimulus control. Some of the most widely used types of temporal discrimination tasks
are described below.

Temporal bisection In temporal bisection paradigms (Stubbs, 1968; Church &
Deluty, 1977), subjects are trained to perform one of two actions depending on the
duration of a stimulus. Reinforcers are delivered following correct responses to the short
or long stimulus durations. Typically, these responses occur at different spatial locations
in a training box, and are referred to as the short and long choices (or locations). Once
subjects have learned to perform accurately under these contingencies, intermediate
interval durations are presented and the frequency of responding at either of the two
locations is recorded. These intermediate durations are either reinforced randomly or
not reinforced, and they allow the experimenter to obtain the duration at which subjects
respond with equal probability at the locations associated with the extreme short or
long durations. This point is called the point of subjective equivalence (PSE), and it
has been observed that the PSE in this class of paradigms lies close to the geometric
mean of the two extreme initial durations.

Both Stubbs (1968) and Church and Deluty (1977) designed their paradigms in such
a way that their pigeons and rats, respectively, had to wait until the end of stimulus
presentation before reporting their choice. In 1983, Platt and Davis published results
under a modified version of the bisection paradigm, allowing pigeons to respond at either
the short or long location at any point in the trial. Although anticipatory responses
were allowed, they were not reinforced, and as in the classic bisection paradigm, the
first response after the stimulus elapsed was recorded as the actual choice, and was
rewarded if performed at the correct location. During a trial, Platt and Davis observed
that pigeons began by responding at the short location, and if the short delay elapsed
without a reinforcer being delivered, pigeons would then eventually switch to the long
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location. Because of this switching behavior, this version is sometimes called a switching
paradigm, and has been applied to other species such as the mouse (Balcı et al., 2008).
Behavioral data in this paradigm (Platt & Davis, 1983; Balcı et al., 2008) builds on
the knowledge from the classic bisection paradigms in two aspects: i) like the PSE,
switching also occurred at the geometric mean of the two intervals but, unlike the PSE,
it can be seen as a continuous metric over trials; ii) this paradigm is useful to infer
bisection points only if the ratio between the short and long delays is not larger than
1:44.

Interval categorization Creelman (1962) was one of the first to implement inter-
val categorization paradigms. Interval categorization can be seen as a modified version
of the temporal bisection paradigm where the experimenter controls the boundary of
categorization by reinforcing correct responses to intermediate durations (Creelman,
1962; Leon & Shadlen, 2003; Gouvêa, Monteiro, Soares, Atallah, & Paton, 2014). This
modification confers an advantage to interval categorization over temporal bisection, be-
cause animals have an increased incentive to perform all trials as accurately as possible.
As in the temporal bisection paradigm, one can infer the PSE in temporal categorization
tasks.

1.4 Theoretical models of interval timing behav-
ior

Until the middle of the XXth century, despite the growing number of behavioral studies,
there was no consensus in the field regarding a mathematical model of timing behavior.
As early as 1886, James suggested that:

"It is but dates and events, representing time; their abundance symbol-
izing its length. I am sure that this is so, even where the times compared
are no more than an hour or so in length."

This idea that time could be represented by the quantity of events that occur in a
given period would become the basis for one of the most influential classes of timing
behavior models, pacemaker-accumulator-based models. From the early days of inter-
val production and discrimination tasks, two features of timing behavior were preva-
lent across studies and animal species. Firstly, the average post-reinforcement-pause

4If the ratio between the two durations is larger than 1:4, animals would stop responding
and the resulting switching or PSE was ambiguous (Platt & Davis, 1983; Balcı et al., 2008).
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or peak-rate times were shown to be proportional to the FI duration. This feature
has been referred to as proportional timing (Staddon & Higa, 1999) and flexible accu-
racy (Gibbon & Malapani, 2006). Secondly, there was a linear relationship between
the standard deviation (SD) of either post-reinforcement-pause or peak-rate times and
their average values [in other words, their coefficient of variation (SD over mean) is con-
stant]. This second feature was interpreted as a reflection of Weber’s law5 applied to
the timing domain, which was later referred to as scalar timing/scalar property/scalar
variability/Weber timing (Gibbon, 1977; Gibbon & Church, 1984; Staddon & Higa,
1999; Gallistel & Gibbon, 2000). Below is a brief account of some mathematical models
of timing behavior (a review of interval timing models can be found in Matell, Meck, et
al., 2000; Ivry & Schlerf, 2008; Buhusi & Meck, 2005).

1.4.1 Pacemaker-accumulator models
The classic version of the pacemaker-accumulator model, as well some of its successors,
are described in this subsection.

The classic pacemaker-accumulator model In 1963, Treisman proposed the
classic pacemaker-accumulator model, giving rise to arguably the most influential class
of interval timing behavior models. Treisman’s ideas were influenced by the work of
Hoagland (1933), who suggested that subjective time estimates could result from a
"chemical clock" that is capable of generating temperature-dependent rhythmic activity.
Treisman’s 1963 pacemaker-accumulator model consists of an internal clock unit (or a
pacemaker) that emits pulses, a counter unit that accumulates the number of emitted
pulses, a memory unit that can store the pulse count for a given duration, and a decision
unit that compares the current pulse count with a stored value and can produce a
decision (e.g., deciding whether two stimulus durations are different, or deciding when
to begin responding in an interval production task). The pacemaker emits pulses at
a given inter-pulse-interval that is described to be relatively constant within each trial
but variable across trials, varying around a fixed mean depending on the value of a
parameter that reflects the subject’s level of arousal. Due to this feature, and without
assuming a priori Weber’s law, the classic version of the pacemaker-accumulator model

5Weber’s law states that the just noticeable difference in intensity between two stimuli
is a constant proportion of the initial stimulus intensity. Another way to interpret Weber’s
law is to say that errors in discrimination should be constant if the two stimulus intensities are
proportionally increased or decreased. This suggests that the distribution of intensity estimates
over several trials should be scale-invariant: their coefficient of variation should be constant.
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accounts for the timing analogue of Weber’s law observed in interval production and
discrimination paradigms (Treisman, 1966).

Scalar expectancy theory The scalar expectancy theory (SET) of timing behav-
ior (Gibbon, 1977) and its information processing implementation (Gibbon & Church,
1984) are heavily inspired by Treisman’s 1963 pacemaker-accumulator model, but scalar
timing was one of the main aspects that the theory was explicitly devised to address.
Gibbon’s 1977 work further supported that Weber’s law was applicable to the timing
domain by highlighting that, across a wide range of studies, dividing the distributions
of response times for each schedule of reinforcement by their mean values produced
almost perfectly overlapping distributions. To account for this scalar timing pattern,
Gibbon (1977) devised a theory in which interval timing behavior is a result of a ratio
comparison between two expectancies: i) an instantaneous measure of reinforcement
rate (calculated as the inverse of the current estimate of time until reinforcement); and
ii) the rate of reinforcement estimated over a whole session. Gibbon tested four models
to generate temporal estimates but only his "scalar timing" model (where estimates are
normally distributed with mean and SD proportional to a reference interval) was consis-
tent with the timescale invariance of behavior; hence the scalar expectancy name of his
theory. This approach was successful at explaining the data from the behavioral studies
mentioned in the previous Section. For example, in temporal production paradigms,
"break-and-run" behaviors are generated when the ratio between the two expectancies
crosses a fixed arbitrary threshold.

In 1984, Gibbon and Church formalized an information processing implementation
of SET. In this implementation, a Poisson-variable pacemaker generates independent
and exponentially distributed inter-pulse intervals (Gibbon & Church, 1984; Gibbon,
Church, & Meck, 1984). These pulses are accumulated over the course of a trial and
serially stored in memory after reinforcement. A consequence of the Poisson-variable
inter-pulse-interval is that the variance in estimates increases with the square of the
mean of the interval, which results in a decrease of the coefficient of variation in propor-
tion to the square root of the interval being estimated. In other words, this within-trial
Poisson variability should cause estimates to be relatively more precise for longer in-
tervals than for shorter ones, which is inconsistent with behavioral data. Therefore, to
account for scalar timing in their model, Gibbon and Church (1984) explored a number
of modifications, including ratio-based memory comparisons. Because, in each trial,
accumulated values are stored in memory, after a few trials the memory unit contains
a distribution of values of memorized reinforcement times. SET randomly selects one
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sample from memory and performs a comparison between the current estimate and the
selected memorized estimate. This comparison is performed in the form of a ratio as
described above for the temporal production case. For the temporal discrimination case
between categories A and B, SET requires an extra memory unit and a slightly more
complex decision rule. One memory unit sample is required for each category (MA

and MB) and a comparison needs to be performed between the ratios of the current
accumulated sample (Xt) and the sample drawn from each memory unit. For exam-
ple, if Xt/MA < MB/Xt, then the model favors the category A choice. This noisy
memory ratio-discrimination rule allows for scalar timing in SET, but its plausibility
has been challenged since the basis for this noisy-memory rule is unclear (Staddon &
Higa, 1999), particularly since noisy-memory ratio comparisons are not the only way
to account for scalar timing in pacemaker-accumulator models (Simen, Rivest, Lud-
vig, Balci, & Killeen, 2013). For example, Simen et al. (2013) developed a model that
combines concepts from drift-diffusion and pacemaker-accumulator models, where the
rate of a Poisson-variable pacemaker is adapted depending on the interval being esti-
mated while maintaining the accumulator threshold fixed. Simen et al.’s model, like
Treisman’s, accounts for scalar timing without assuming Weber’s law a priori. In fact,
Gibbon and Church (1984) suggested another variation to SET: removing within-trial
Poisson-variance in the pacemaker and including across-trial pulse rate variance that
is normally distributed would reproduce the scalar property. This produces a much
simpler model that is similar to Treisman’s and where scalar timing can be achieved
without a ratio comparison rule.

1.4.2 Time as a sequence of states
From the work described in Section 1.3 to more recent studies (e.g., Balcı et al., 2008), we
know that animals exhibit sequences of temporally structured behaviors if, for example,
there are strong temporal regularities in reinforcer delivery. Killeen and Fetterman
(1988) proposed the idea that these "adjunctive behaviors" that lead up to the time of
reinforcement could be used as "conditional discriminations of the passage of time". In
the behavioral theory of timing (BeT), Killeen and Fetterman posited that transitions
between adjunctive behaviors are well approximated by a Poisson process similar to
the pacemaker described in SET. Furthermore, the rate of transition between behaviors
is proportional to the rate of reinforcement, allowing BeT to account for the scalar
property in a different way than SET6.

6This approach has been challenged by a number of studies from the authors of SET (e.g.,
Gibbon & Church, 1992 and Church, Meck, & Gibbon, 1994)
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1.4.3 Beat-frequency model
The notion that representations of elapsed time in mathematical models of interval tim-
ing behavior should be biologically plausible became increasingly prominent during the
XXth century. In 1989, Miall suggested a model based on the idea that groups of simul-
taneously entrained neurons may oscillate at slightly different frequencies and therefore
the beat frequency (the frequency at which any oscillator pair spikes simultaneously) be-
tween neurons is longer than their individual oscillation frequencies. Using this model,
Miall suggested that the brain could in principle encode a wide range of durations with
the help of a detector mechanism that keeps track of these beat frequencies and stores
them in memory for future recall. More recently, Matell and Meck (2004) suggested
that distinct brain areas could serve as oscillators and detectors (cortex and striatum,
respectively). The literature on the neural basis of interval timing that gave rise to
Matell and Meck’s striatal beat-frequency model will be introduced in Section 1.5.4.

1.4.4 Time distributed over elements
In another class of timing models, temporal estimates in interval timing behavior are
suggested to be represented in a distributed manner across multiple elements (akin to
the sequences of behavioral states in BeT). In other words, time estimates are viewed as
a result of the linear combination of time-varying (or basis) functions. One of the most
influential models of this class was introduced by Staddon and Higa in 1999. Like SET,
Staddon and Higa propose a model where the animal’s current estimate of elapsed
time and the memorized times of reinforcement are calculated/stored separately and
ultimately compared before a behavior is produced. Yet, in Staddon and Higa’s Multiple
time scale (MTS) model, there is no pacemaker unit. Instead, an input stimulus triggers
basis functions that decrease monotonically at different rates, similar to a cascade of
leaky integrators with different time constants. Also based on BeT, Machado (1997)
proposed the learning to time (LeT) model, where behavioral states are linked in a
feed-forward manner during the interval period. Additionally, an associative process
links those behavioral states and the final operant response, and the strength of that
association is mapped onto the rate (or probability) of responding.

Similar non-linear time-series representations of elapsed time were introduced before
Staddon and Higa and Machado. One such example is the spectral timing model (STM)
proposed by Grossberg & Schmajuk (1989) that successfully reproduces key aspects of
behavior in both classical conditioning and the peak-interval paradigm. The application
of temporal representations distributed over elements in the context of reinforcement
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learning theories (e.g.,Grossberg & Merrill, 1992; Suri & Schultz, 1999; Ludvig, Sutton,
& Kehoe, 2008) will be introduced in Section 1.6.

1.5 The neural basis of interval timing
"In previous decades, the idea that animals can represent time was re-

sisted, partly because it was difficult to imagine a plausible physiological
basis for this representational capacity."

As Gibbon and Malapani (2006) emphasized, scientists studying interval timing
encountered a difficult problem: to understand how biological brains are capable of
representing time in the range of seconds to minutes, a timescale much larger than
the milliseconds range time constants of individual neurons. The lack of a dedicated
sensory system for time meant an added difficulty. Where in the brain should one even
begin to look for the so called internal clock (i.e., a dedicated system that generates a
time-varying signal)? Or does the brain represent time through the temporal statistics
of time-varying sensory and motor signals? Particularly following the development of
behavioral and theoretical models of interval timing, such as those described in the
previous Sections, the field moved towards exploring these questions and probing the
neural basis of timing behavior.

The neurobiological implementation of models mentioned in Section 1.4 might be
possible under a number of different activity patterns and neural architectures. Initial
theories proposed the existence of an internal clock, but this centralized view of temporal
representations has been challenged by a number of studies (see Section "No Central
Clock" in Grondin, 2010 for a review on this topic). In recent years, the view that
temporal representations that guide timing behavior might be the result of a distributed
system has gained increasing support, in part due to studies highlighting that neural
signals able to support temporal representations at timescales longer than the time
constants of single neurons can be found in a vast range of brain areas.

Across the brain, connectivity patterns among neurons are complex and recurrent.
Some theoretical approaches have taken this complexity into consideration when at-
tempting to model dynamics that can support temporal representations. For example,
theoretical work using recurrent neural networks (RNNs) has been successful in repro-
ducing in vivo activity patterns that support temporal representations at long timescales
(e.g., Buonomano, Merzenich, et al., 1995; Wang, 2001). This Section briefly reviews
both experimental and theoretical work that has illuminated the neural basis for tem-
poral representations that are able to support timing behavior (reviews on the neural

14



basis of timing behavior can be found in Buhusi & Meck, 2005; Gibbon & Malapani,
2006).

1.5.1 The cortex
The involvement of cortical areas in timing behavior has been suggested by a number of
studies. Initial attempts at probing a causal relationship between cortical activity and
interval timing using decortication methods (i.e., removal of the entire cortex) proved
hard to interpret. For example, Jaldow et al. (1989) found that, although decorti-
cated rats exhibited later post-reinforcement pause times than control animals in an FI
paradigm, these results were most likely due to motor-related impairments. In fact, the
same group of rats was able to adjust post-reinforcement pause times when presented
with a new FI duration. In a more recent study, however, reversible inactivation of the
rat prefrontal cortex (PFC) led to impairment in performance in a temporal bisection
paradigm (Kim, Jung, Byun, Jo, & Jung, 2009). Additionally, functional magnetic reso-
nance imaging (fMRI) studies have suggested that cortical areas such as supplementary
motor area (SMA) and PFC may be recruited during interval timing tasks (Wiener,
Turkeltaub, & Coslett, 2010).

The neural implementation of different interval timing models can be achieved with
a number of distinct activity patterns, most of which have been found in cortical areas.
One such implementation might be achieved through oscillating patterns (e.g., Miall,
1989; Treisman, Faulkner, Naish, & Brogan, 1990). Such sinusoidal oscillating patterns
have been found in several brain areas including the cortex and can be evoked by
sensory stimuli (e.g., Freeman & Skarda, 1985; Freeman & van Dijk, 1987; Treisman,
Cook, Naish, & MacCrone, 1994) or spontaneously generated (e.g., Silva, Amitai, &
Connors, 1991). Matell and Meck’s (2004) extension of Miall’s Beat-frequency model
proposed the cortex as the source of the oscillation patterns at the basis of their model
that reproduced some of the basic behavioral outputs of the peak-interval paradigm.

A second neural implementation of interval timing models might be achieved through
neural integration (Simen, Balci, Cohen, Holmes, et al., 2011), relating to ramping ac-
tivity patterns that have also been described in cortical areas. For example, during
an interval discrimination task, neurons in the parietal cortex reflect the stimulus cate-
gory that monkeys are likely to choose irrespective of outcome (Leon & Shadlen, 2003).
A representation of elapsed time was also found in parietal cortex in the context of a
delayed eye movement task (Janssen & Shadlen, 2005). In addition, ramping activity
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leading up to movement onset was observed in the preSMA area of monkeys performing
a timing task (Mita, Mushiake, Shima, Matsuzaka, & Tanji, 2009).

A third example of a possible neural implementation of interval timing models can
be achieved through the intrinsic dynamics of neural networks. In this architecture
type, temporal representations are distributed over a set of elements that can be rep-
resented in a number of ways. Several feed-forward types of network models have been
proposed (e.g., serial activation of behavioral states in Machado, 1997; leaky integrators
such as the ones described by Staddon & Higa, 1999). A perhaps more biologically plau-
sible architecture that resembles the recurrent connectivity of cortical neurons is that
of RNNs (e.g., Wang, 2001; Maass, Natschläger, & Markram, 2002), which have been
directly applied to the problem of representing time in cortical neurons (e.g., Karmarkar
& Buonomano, 2007; Buonomano & Maass, 2009; Buonomano & Laje, 2010). These
studies suggest that temporal representations depend on changes in the spatial-temporal
patterns of activity in a neural network. Therefore, decoding temporal information de-
pends on the ability of a system to identify those spatial-temporal patterns. Through
the activity dynamics in these state-dependent RNN models, one can observe persistent
representations of stimulus identity and time for timescales of hundreds of milliseconds
to seconds (Buonomano, 2014). Corroborating this work, activity in the mouse poste-
rior parietal cortex (PPC) exhibits a sequential pattern capable of encoding stimulus
identity and elapsed time (Harvey, Coen, & Tank, 2012), and neurons in the PFC of
both primates (Machens, Romo, & Brody, 2010) and rats (Kim, Ghim, Lee, & Jung,
2013) have been shown to exhibit complex temporal patterns from which time can be
decoded.

1.5.2 The hippocampus and time cells
The hippocampus plays an essential role in encoding spatial information (O’Keefe &
Dostrovsky, 1971). Inspired by Tolman’s (1948) work, in 1978 O’Keefe and Nadel pro-
posed a broader role for the hippocampus as a cognitive map. In fact, before O’Keefe
and Dostrovsky’s (1971) work, the hippocampus had been linked to episodic memory
through the famous case study of patient H.M. (Scoville & Milner, 1957). Although
direct evidence for a role of the hippocampus in interval timing behavior is still missing,
a number of studies in both laboratory animals and humans have linked the hippocam-
pus to the organization of memories in time (Manns, Howard, & Eichenbaum, 2007).
This temporal coding has been observed in situations where it can not be attributed
to external events (e.g., Pastalkova, Itskov, Amarasingham, & Buzsáki, 2008; MacDon-
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ald, Lepage, Eden, & Eichenbaum, 2011; see also Eichenbaum, 2014 for a review on
this topic) and cells exhibiting such activity patterns have been dubbed time cells. A
mathematical framework proposed by Howard et al. (2014) reproduces the patterns
exhibited by time cells (MacDonald et al., 2011) using leaky integrators, sharing a sim-
ilar kind of temporal representation as models of interval timing mentioned in Section
1.4 (Staddon & Higa, 1999; Grossberg & Merrill, 1992). These studies highlight the
concept that hippocampal neurons exhibit sequential activity patterns, similar to those
observed in cortical areas, that could potentially be used to guide timing behavior.

1.5.3 The cerebellum
The relationship between the cerebellum and timing on a millisecond timescale has
been widely studied (Braitenberg, 1967; Ivry & Keele, 1989; Clarke, Ivry, Grinband,
Roberts, & Shimizu, 1996; Buonomano & Mauk, 1994), particularly in the context of
timed motor actions (Buonomano & Laje, 2010). Yet, whether the cerebellum plays a
role at the longer timescales associated with interval timing is still to be determined.
In 2010, Gooch et al. published a study suggesting that cerebellar lesions impair repro-
duction and production of intervals in the suprasecond timescale. The same authors
simultaneously found that temporal discrimination in the same timescale is unaffected
(Gooch et al., 2010). Other studies have reported conflicting results, some claiming no
evidence that cerebellar lesions impair timekeeping in similar tasks (Harrington, Lee,
Boyd, Rapcsak, & Knight, 2004), and others reporting that cerebellar lesions in humans
result in increased (but scalar) variability in time estimates but do not affect accuracy
(Malapani, Dubois, Rancurel, & Gibbon, 1998). This last study is particularly relevant
since dysfunctions of the basal ganglia (BG) induce accuracy distortions as well as in-
creases in the variability of time estimates that deviate from the scalar property when
the same time ranges are probed (Malapani, Rakitin, et al., 1998). These results suggest
that there are marked differences between the functional roles played by cerebellar and
BG circuits in timing behavior.

1.5.4 The striatum and the dopamine clock hypothesis
The striatum is a key component of the BG, a group of subcortical structures that also
includes the globus pallidus (GP), the subthalamic nucleus (STN) and both substantia
nigra pars compacta (SNc) and substantia nigra pars reticulata (SNr) (see Figure 1.1,
adapted from Gerfen & Bolam, 2010). Midbrain dopamine (DA) neurons in the SNc
and ventral tegmental area (VTA) are a crucial part of BG circuitry due to their recip-
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rocal connectivity with the striatum (Gerfen & Bolam, 2010), although the VTA is not
considered part of the canonical organization of the BG.

The BG have been implicated in a vast range of functions, such as motor control
(Graybiel, Aosaki, Flaherty, Kimura, et al., 1994), action selection (Mink, 1996), nov-
elty, and motivation (Wise, 2004), all of which are functions that have been linked to
timing behavior (Pariyadath & Eagleman, 2007; Cools, 2008; Gable & Poole, 2012).
Additionally, interval timing behavior has been shown to be altered in a number of neu-
rological and neuropsychiatric disorders that affect the BG, particularly the striatum
and the midbrain DAergic system. Examples of such disorders include Huntington’s
(Rowe et al., 2010) and Parkinson’s (Artieda, Pastor, Lacruz, & Obeso, 1992; Pastor,
Artieda, Jahanshahi, & Obeso, 1992) diseases, as well as attention deficit hyperactivity
disorder (ADHD) (Noreika, Falter, & Rubia, 2013), schizophrenia (Wahl & Sieg, 1980;
Rammsayer, 1990) and substance abuse (Wittmann, Leland, Churan, & Paulus, 2007;
Lüthi & Lüscher, 2014). Regarding the use of substances, the impact of cannabinoid
drugs such as hashish on time perception has been described, for example, by James
(1886):

"In hashish-intoxication there is a curious increase in the apparent time-
perspective. We utter a sentence, and ere the end is reached the beginning
seems already to date from indefinitely long ago. We enter a short street,
and it is as if we should never get to the end of it."

Since then, a wide range of studies have probed the effects of different drugs that
target the DAergic system on interval timing behavior, as well as on striatal function.
These studies have led to the proposition that the DAergic system may be involved
in regulating the speed of a timekeeping process. The data in support of this idea is
presented below.

Dopamine neurons and the dopamine clock hypothesis A long-standing
theory in the field of interval timing research posits that levels of DA may impact
the speed of an internal clock (Maricq, Roberts, & Church, 1981; Maricq & Church,
1983; Meck, 1983, 1986; Rammsayer, 1993; Matell, King, & Meck, 2004). Perhaps the
root of this idea dates back to the late 1950’s and 1960’s and to the experiments that
illuminated the role of DA in Parkinson’s disease. Parkinson’s disease is a neurode-
generative disorder that mainly affects motor control, where patients exhibit slowness
of movement. In the late 1950’s, Carlsson and colleagues performed a series of key
experiments linking the levels of DA in the central nervous system with Parkinson’s
disease (Carlsson, Lindqvist, & Magnusson, 1957; Carlsson, Lindqvist, Magnusson, &
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Figure 1.1. Illustration of basal ganglia connectivity. Sagittal views of the rat
brain illustrate distinct connections between BG nuclei, their inputs and outputs, as
well as feedback pathways. This figure is adapted from Gerfen & Bolam, 2010. The
striatum is highlighted in red and the substantia nigra pars compacta (SNc) is high-
lighted in blue. Top - The striatum is comprised of two main projection pathways which
arise from two distinct types of striatal medium spiny neurons (MSNs). Direct pathway
MSNs (dMSNs) project to the external globus pallidus (GPe) as well as to the main
output nuclei of the BG, the internal globus pallidus (GPi) and substantia nigra pars
reticulata (SNr). Indirect pathway MSNs (iMSNs) project to the GPe, and therefore
only connect to the output nuclei of the BG indirectly through the subthalamic nucleus
(STN). Bottom left - Similar scheme as top panel but depicting the major input and
output targets of the BG. Most cortical areas provide input to the BG through their con-
nections to the caudate-putamen (CPu) and nucleus accumbens (NAc), which together
constitute the rodent striatum. γ-aminobutyric acid (GABA) neurons in the GPi and
SNr constitute the output of the BG, and provide inhibitory input to the superior col-
liculus (SC) and pedunculopontine nucleus (PPN), as well as to thalamic nuclei. Bottom
right - There are three main feedback pathways to the BG, namely the nigro-striatal
pathway, constituted by SNc-DA neuron inputs to the striatum, thalamo-striatal and
thalamo-cortical pathways.

19



Waldeck, 1958; Bertler & Rosengren, 1959; Carlsson, 1959). Carlsson and colleagues
discovered that DA was present in the brain (and mainly in the striatum) at concen-
trations comparable to those of noradrenaline, suggesting that DA was not merely a
precursor in the biosynthesis pathway of other catecholamines as was believed until
then. The authors also found that DA depletion (mainly in the striatum) was the basis
of a reserpine-induced parkinsonism phenotype in mice. Next, they discovered that the
administration of L-3,4-dihydroxyphenylalanine (L-dopa), a DA precursor, could restore
both normal DA levels and normal motor function to animals treated with reserpine.
Inspired by the work from Carlsson’s group, Hornykiewicz investigated the brains of
Parkinson’s disease patients and control subjects (post mortem), in search of altered
DA levels. Hornykiewicz found that DA levels in the striatum were lower in Parkinson’s
disease patients than controls (Ehringer & Hornykiewicz, 1960), and he speculated that
this depletion might be due to neurodegeneration in the SNc after discovering that levels
of DA were also reduced in the SNc of Parkinson’s patients (Hornykiewicz, 1963). These
findings led to the first administration of L-dopa in humans to treat Parkinson’s dis-
ease symptoms (Cotzias, Van Woert, & Schiffer, 1967; Cotzias, Papavasiliou, & Gellene,
1969), a treatment still in use today.

The ability of DA to restore movement to Parkinson’s patients and the effect of
DAergic agonists in effectively speeding up movement (Carlsson et al., 1957) suggested
that the DAergic system was a good candidate as the speed controller of an internal
clock for interval timing. This theory suggested that an increase in DA levels should
increase the speed of timekeeping, whereas decreasing DA levels should slow down that
speed. Initial experiments produced compelling results in favor of this hypothesis: phar-
macological manipulations using DA agonists and antagonists led to impaired timing
behavior, consistent with an apparent speeding up or slowing down, respectively, of
timekeeping across temporal production and discrimination paradigms (Maricq et al.,
1981; Maricq & Church, 1983; Meck, 1983, 1986; Matell et al., 2004; MacDonald &
Meck, 2005; Balcı et al., 2008). These pharmacological results have been supported by
more recent genetic studies where the overexpression of D2-type DA receptors seems to
cause a shift in response curves to later times during PI paradigms (e.g., Drew et al.,
2007). Also in the context of a PI paradigm, Meck (2006) has shown that a selective
lesion of midbrain DAergic neurons impairs the temporal dynamics of timing behavior.

In some conditions, however, data from similar pharmacological and genetic manip-
ulations are inconsistent with this specific hypothesis. For example, the results from
Drew et al. (2007) can be explained by a decrease in motivation (Ward et al., 2009). Ad-
ditionally, while some studies have found that administration of DA agonists can cause
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a global timing impairment with no specific apparent control of timing speed (Odum,
Lieving, & Schaal, 2002; Balcı et al., 2008), other studies have not found an effect of
manipulating the DAergic system on timekeeping (Balcı et al., 2008, 2010) or have even
suggested an effect in the opposite direction (i.e., increased DA might decrease the speed
of timekeeping) (Lake & Meck, 2013). Finally, pharmacological studies have reported
that DA modulates attentional mechanisms during timing behavior (Buhusi & Meck,
2002; Ward et al., 2009), arguing against a specialized role of DA activity in controlling
only timekeeping speed.

The idea that there is a direct relationship between DA levels and timekeeping
speed has also been challenged by studies in Parkinson’s disease patients. Some studies
report overall timing accuracy deficits in Parkinson’s patients (Artieda et al., 1992;
Malapani, Rakitin, et al., 1998). Malapani, Rakitin, et al. (1998) tested Parkinson’s
disease patients in a PI paradigm where target times of 8 or 21s were presented in
blocks of trials. When under the effect of L-dopa medication, patients’ performance
was comparable to age-matched controls. When patients performed in the absence of
L-dopa, estimates were impaired both in accuracy (the 8s interval was over-estimated
and the 21s interval was under-estimated) and in precision (increased variance that
violates the scalar property). However, the predicted slowing down of timekeeping in
patients tested in the absence of L-dopa medication (and therefore with low levels of
DA) has been harder to observe. While Pastor et al. (1992) found evidence in favor
of the DA clock hypothesis in Parkinson’s disease patients, other studies have shown
normal timing behavior in such patients (Spencer & Ivry, 2005; Wearden et al., 2008).

These conflicting results may, in part, reflect the diversity of functions in which
DA neurons have been implicated. In fact, some studies have suggested that
pharmacologically-induced changes in timing behavior may be explained by changes
in motivation (Odum et al., 2002; Balcı et al., 2010) and attention (Buhusi & Meck,
2002; Lake & Meck, 2013). Therefore, studying the specific activity patterns that DA
neurons might exhibit during interval timing tasks, as well as understanding how DA
neurons mediate these distinct functions, may require measurements/manipulations
with higher spatial and temporal resolution than those outlined above.

The striatum The striatum is the main input nucleus of the BG (see Figure 1.1) and
receives inputs from most cortical areas as well as from the hippocampus, amygdala,
thalamus and brainstem (Gerfen & Bolam, 2010). This input diversity may explain
the wide range of functions in which the striatum, and the BG in general, have been
implicated, including motor control, reinforcement learning and cognitive functions.
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The ability to encode sensory inputs, ongoing behaviors and reward outcomes makes
the striatum an ideal structure to represent elapsed time. In fact, a number of stud-
ies indicate that the striatum may play a key role in timing behavior. Firstly, fMRI
studies have reported striatal activation during tasks that require the processing of
durations (Tanaka et al., 2004) as well as specifically during the performance of PI
paradigms (Hinton & Meck, 2004). Secondly, the striatum is one of the main targets
of the midbrain DAergic system (Bertler & Rosengren, 1959; Watabe-Uchida, Zhu,
Ogawa, Vamanrao, & Uchida, 2012), and it is therefore possible that the impact of
manipulations and disease states affecting the DAergic system on timing behavior are
a result of modulation of striatal activity. Consistent with this idea, Meck (2006) has
shown that the lack of temporally structured responses following selective lesioning of
midbrain DA neurons was reproduced if the DAergic terminals in the striatum alone
were lesioned. Lastly, there is evidence that the striatum, much like the cortex and the
hippocampus, exhibits sequential activity patterns that may support timing behavior.
Jin, Fujii, and Graybiel (2009) found that the dynamics of a subset of striatal neurons
seem to be modulated during fixed delay periods leading up to reward delivery in mon-
keys, with different neurons displaying maximum activity at different points in time (Jin
et al., 2009). Therefore, elapsed time during the delay period could be decoded from
this neural activity that spanned the delay period until reward delivery. Furthermore,
work from Adler et al. (2012) showed similar results in monkeys trained in a classical
conditioning paradigm. Adler et al. also found groups of striatal neurons that exhibited
peak responses at different times, with long latency response neurons exhibiting greater
variability.

It remains unclear, however, if these representations are also present in animals per-
forming tasks that require estimation of elapsed time, and whether such representations
of time can be used to guide behavior. At least one study (Matell, Meck, & Nicolelis,
2003) suggests that this scenario is likely, since striatal (and cortical) neurons exhibit
distinct firing rate modulations depending on whether a lever press leading up to reward
occurs early or later within an FI, allowing the experimenters to decode where in the
FI a lever press occurred.

Interestingly, the sequential activity patterns mentioned above (Jin et al., 2009;
Adler et al., 2012) bear close resemblance to the non-linear time-series representations
of elapsed time that have been proposed in the context of reinforcement learning theories
(Grossberg & Merrill, 1992; Suri & Schultz, 1999; Ludvig et al., 2008).
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1.6 The basal ganglia: where interval timing
meets reinforcement learning

The same "Law of effect" principles that motivated early work in operant conditioning
paradigms (see Section 1.3) also inspired the development of an initial thread of RL
theory7 based on trial-and-error learning (Sutton & Barto, 1998). In RL, animals
are modeled as agents whose goal is to maximize future rewards in an environment
represented by distinct states. To achieve this goal, agents must learn the appropriate
mappings between the states they encounter and a set of actions they may take (e.g.,
which state to visit next). To learn these mappings, agents must predict the (discounted)
amount of future rewards expected from being in a state (i.e., the state value function)
or from taking a certain action in a given state (i.e., the action value function) and
select actions according to a policy that maximizes future rewards.

Temporal-difference learning In a simple scenario akin to classical conditioning,
the agent’s estimate of the value function of a given state can be expressed as a weighted
sum of the features that describe that state (Sutton & Barto, 1990, 1998). These weights
can be updated by a simple temporal-difference (TD) learning rule at each time step,
where a difference between the current prediction the agent has about future rewards
and the prediction generated in the previous timestep is calculated. This temporal-
difference in reward prediction is compared with the actual experienced reward, and if
they are different, a reward prediction error (RPE) is generated. TD learning shares
some basic principles with a model from Rescorla and Wagner (1972) while overcoming
some of the limitations of the latter. In the Rescorla–Wagner model, on each trial,
the difference between the reward the animal is expecting to receive and the actual
reward experienced is calculated: if there is a difference, an RPE signal is generated.
Therefore, the TDmodel can be seen as an extension of the Rescorla–Wagner model with
two important distinctions that grant TD learning a better fit with some conditioning
data: i) the Rescorla–Wagner model is a "trial-level" model (Sutton & Barto, 1990),
because it represents trials as a whole and therefore its predictions are insensitive to
the temporal relationships between stimuli, responses and rewards; TD updates, in
contrast, are performed on each time-step, a more relevant time-frame for an animal,
and are able to account for these temporal relationships within each trial; and ii) the

7There were mainly two initial threads in RL: one concerning trial-and-error learning and
another concerning the problem of optimal control. The modern theory of RL as of the late
1980’s is the result of the combination of these two threads (Sutton & Barto, 1998).
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temporal-difference in reward predictions in the TD algorithm means that the strength
with which stimuli are associated with rewards at a given time is not only predictive of
the immediate reward outcome but also of future ones. Extended comparisons between
these learning rules have been described by several authors (Sutton & Barto, 1990; Niv,
2009; Ludvig, Bellemare, & Pearson, 2011).

Actor-Critic architecture The framework described so far applies to cases in
which the transitions between states are fixed, as in classical conditioning. However,
this framework is insufficient to model interval timing paradigms, where an animal
must not only predict the timing of a reward but also learn when to perform a given
action that maximizes future rewards. This process of selecting the optimal action
is more difficult when the consequences of that action are delayed, as is the case for
many natural behaviors, as well as some interval timing tasks. A major reason for this
difficulty is known as the credit assignment problem: how to assign the appropriate
credit to one or more actions that preceded the current outcome (e.g., Minsky, 1961;
Barto et al., 1983). Selecting which actions to perform is a problem that can be solved in
several ways by RL algorithms (Sutton & Barto, 1998). One example, and in fact one of
the earliest model architectures designed to perform action selection, is the Actor-Critic
architecture (Barto et al., 1983). As the name suggests, the Actor-Critic architecture is
composed of two separate structures, the actor and the critic. The actor is represented
by the policy structure that selects an action given a certain state, independently of the
value function. The estimation of the value function is done by the critic, who must
learn about the policy that the actor is following and provide the actor with a critique
on how to improve its current policy in the form of a TD error.

What is the evidence that the brain may implement an RL-like algorithm? Further-
more, how are features (and consequently time) represented in RL models to appro-
priately assign credit? The following Sections will briefly address these questions (see
Ludvig et al., 2011; Daw, Courville, & Touretzky, 2006 and Gershman, Moustafa, &
Ludvig, 2014 for extensive reviews on this topic).

1.6.1 The neural basis of reinforcement learning
In the last three decades, a number of studies have accumulated evidence in support
of the theory that the BG implements aspects of RL (Daw et al., 2006; Samejima &
Doya, 2007). Firstly, state features and value functions are thought to be represented in
the cortex and striatum, respectively (Doya, 1999; Samejima, Ueda, Doya, & Kimura,
2005; Lau & Glimcher, 2008; Kim, Sul, Huh, Lee, & Jung, 2009). Secondly, and par-
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ticularly important for RL, the firing rate of midbrain DA neurons following rewards,
and reward-predicting stimuli, resembles the TD learning RPE signal mentioned above,
both qualitatively (Schultz, Apicella, & Ljungberg, 1993; Schultz, Dayan, & Montague,
1997) and quantitatively (Waelti, Dickinson, & Schultz, 2001; Bayer & Glimcher, 2005).
For example, DA neurons increase their firing rate when an unexpected reward is pre-
sented. Conversely, the same neurons exhibit a pause in firing rate when an expected
reward is omitted. At least in the context of classical conditioning, this error signal
can be found in the vast majority of DA neurons (Cohen, Haesler, Vong, Lowell, &
Uchida, 2012). This teaching signal is thought to mediate learning at the level of cor-
ticostriatal synapses through DA-dependent plasticity (Reynolds, Hyland, & Wickens,
2001; Reynolds & Wickens, 2002; Steinberg et al., 2013). Indeed, stimulation of DA
neurons suggests that RPE signals are able to elicit learned behaviors (Witten et al.,
2011; Steinberg et al., 2013), in agreement with TD learning theories.

1.6.2 Temporal representations in reinforcement learning
Complete serial compound As mentioned before, a central aspect in RL models
involves choosing what form the temporal representation of features should take. In the
simple case of TD learning, a representation named complete serial compound (CSC)
has been widely applied (Sutton & Barto, 1990; Montague, Dayan, & Sejnowski, 1996;
Schultz et al., 1997). In CSC, every single time step in a stimulus is represented as an
individual non-overlapping binary pulse (Sutton & Barto, 1990). Although a CSC rep-
resentation has proven to be able to reproduce some key aspects of DA neuron responses
in the context of classical conditioning, its implementation has suffered criticism (Daw
et al., 2006; Ludvig et al., 2008; Ludvig, Sutton, & Kehoe, 2012; Gershman et al., 2014).
One concern regarding the CSC representation is that it functions as a perfect digital
clock with no uncertainty, a representation that lacks generalization and is biologically
improbable, since it is inconsistent with animal behavior (see Sections 1.3 and 1.4)
and does not accurately reproduce the firing patterns of DA neurons observed when the
timing of rewards is altered.

For example, a CSC-TD learning algorithm predicts a large and temporally precise
negative RPE when expected rewards are omitted (Ludvig et al., 2008), unlike the
modest and temporally broad decrease in midbrain DA neuron activity (Schultz et al.,
1997). On the other hand, if a reward is delivered earlier than expected, a CSC-TD
learning algorithm will produce a positive RPE signal at the time of reward delivery
but will also exhibit a large, temporally precise, negative RPE at the time of expected
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reward. Yet, experimental evidence suggests that there is no such abrupt decrease in DA
neuron activity (although perhaps a small, temporally smeared effect) at the expected
reward time (Hollerman & Schultz, 1998).

Microstimulus representation Alternative temporal representations to the CSC
have been shown to overcome at least some of the limitations mentioned above. One
of these alternatives was introduced by Ludvig et al. (2008), and proposes that events
(sensory cues or rewards) leave behind a memory trace that decays over time. A series
of basis functions (in this case, temporal receptive fields) encode this memory trace and
the resulting microstimuli become weaker and wider over time, providing a measure of
confidence of the trace hight (Ludvig et al., 2008). TD learning algorithms that use
microstimuli to predict upcoming rewards gain temporal generalization compared to
those employing CSC (Ludvig et al., 2008, 2012) and, as a result, exhibit RPE signals
that match the experimental data of DA neuron recordings under variable reward timing
conditions mentioned earlier (e.g., reward omission and reward anticipation, Schultz et
al., 1997; Hollerman & Schultz, 1998).

A number of studies have proposed similar temporal representations to Ludvig’s
microstimuli, both in the context of RL (Suri & Schultz, 1999) as well as in the context
of interval timing models (see Section 1.4.4; Grossberg & Schmajuk, 1989; Machado,
1997; Staddon & Higa, 1999). Still, for the most part, interval timing and RL have
been addressed separately, although studies mentioned in this Chapter highlight impor-
tant common features between the two frameworks (see Gershman et al., 2014 for an
attempt at reconciling the two). RL and interval timing models share not only similar
forms of theoretical temporal representations, but also common brain areas (in partic-
ular the striatum and the midbrain DA system) thought to implement these models.
Additionally, there is evidence that DA neurons have access to temporal information in
the context of RPE signals because, in the presence of varying temporal expectation,
DAergic responses are smaller when rewards and reward-predicting cues are expected
(Fiorillo, Newsome, & Schultz, 2008). However, an important missing piece is the un-
derstanding of what signals are carried by BG nuclei (particularly in the striatum and
midbrain DAergic neurons) during interval timing tasks. How do those potential signals
relate to these predicted by RL algorithms? The following Chapters will explore these
questions, in an attempt to provide experimental support for a more unified view of
interval timing and RL.
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Chapter 2

A scalable population code
for time in the striatum

To guide behavior and learn from its consequences, the brain must represent time over
many scales. Yet, the neural signals used to encode time in the range of seconds to
minutes to hours (i.e., interval timing) are not known. The striatum is a major input
area of the basal ganglia associated with learning and motor function. Previous studies
have also shown that the striatum is necessary for normal timing behavior. To address
how striatal signals might be involved in timing, we recorded from striatal neurons in
rats performing an interval timing task. We found that neurons fired at delays spanning
tens of seconds and that this pattern of responding reflected the interaction between
time and the animals’ ongoing sensorimotor state. Surprisingly, cells rescaled their
responses in time when intervals changed, indicating that striatal populations encoded
relative time. Moreover, time estimates decoded from activity predicted timing behavior
as animals adjusted to new intervals, and disrupting striatal function led to a decrease
in timing performance. The results in this Chapter suggest that striatal activity forms
a scalable population code for time, providing timing signals that animals use to guide
their actions.
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2.1 Introduction
To behave adaptively in complex, ever-changing environments, animals must learn which
actions to take in a particular context based on their past experience. However, to learn
about the sometimes-delayed consequences of actions and to guide future behavior, it
is absolutely necessary that the brain represent not only actions and consequences but
also temporal information about when those actions and consequences occur (Schultz
et al., 1997).

Multiple lines of evidence implicate the basal ganglia (BG) as a locus for the repre-
sentation of such temporal information. Lesions of the striatum in rats (Meck, 2006),
disease states that affect the BG such as Parkinson’s (Malapani, Rakitin, et al., 1998)
and Huntington’s diseases (Rowe et al., 2010), drugs that affect dopamine (DA) sig-
naling (Maricq & Church, 1983), and genetic manipulations that affect the DA system
in the BG (Ward et al., 2009) all result in interval timing dysfunction. Furthermore,
human functional magnetic resonance imaging (fMRI) studies have found that the stria-
tum, a main input area of the BG, is activated by tasks that involve the processing of
interval information (Hinton & Meck, 2004; Tanaka et al., 2004). In addition, many
theoretical models have been proposed to explain timing behavior. These models can be
grouped into at least three categories. Pacemaker-accumulator models integrate pulses
emitted from a central pacemaker to measure elapsed time (Gibbon, 1977; Simen et al.,
2011). Beat frequency models detect patterns of activation across resettable oscillatory
processes at different frequencies to encode time delays from a resetting event (Meck,
Penney, & Pouthas, 2008). Sequential state models contain orderly transitions between
different activity states that can be used to encode time (Killeen & Fetterman, 1988;
Buonomano et al., 1995; Machado, Malheiro, & Erlhagen, 2009). These theories repro-
duce various aspects of timing behavior in many interval timing tasks. However, neural
data providing evidence for or against these various theories are lacking.

To understand how time is encoded in neural circuits, we recorded the spiking ac-
tivity of neurons as rats performed a serial fixed interval (SFI) timing task. Specifically,
given the apparent localization of timing function in striatal tissue, we asked whether
striatal neural activity could encode elapsed time over durations of tens of seconds to one
minute while we measured behavior that reflected animals’ estimates of time. We found
that different striatal neurons fired maximally at different delays from reward receipt
and that information about animals’ time estimates could be extracted from striatal
populations by simply treating neurons as tuned for time. Importantly, this tuning for
time, while affected by sensorimotor event-related neural responses, could not be fully

28



explained by ongoing behavior, as even cells that displayed responses locked to a specific
behavior varied their responses depending on when that behavior was executed within
a given interval. Strikingly, we found that temporal tuning stretched or contracted,
rescaling with the interval being timed. Thus, striatal populations encoded relative
time, flexibly adapting to the immediate demands of the environment. Finally, we ran
a simple simulation of the SFI task and showed that neural responses resembling those
we observe in the striatum are suitable as a basis for timing behavior. The results in this
Chapter provide important biological insight into how a major brain system encodes
time during behavior.

2.2 Results

2.2.1 Lever pressing start time in SFI task is a behavioral
measure of rats’ expectation of time until reward

To elicit robust time-dependent behavior over a broad range of timescales, we
employed operant conditioning procedures under SFI schedules of reinforcement

12s 24s 36s 48s or 60s

reward

lick

lever press

reward
available

FI =

time

A

Figure 2.1. Schematic of the serial fixed interval task. The following color code
will be commonly used: blue represents short fixed intervals (FIs), and green represents
longer FIs.
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Figure 2.3. Lever pressing rate aligned on reward. Left - Average lever pressing
rate in each of the five FIs, aligned on preceding reward. Dashed lines represent SEM.
Right - Conventions as in (left). Average lever pressing rate aligned on preceding reward,
for 12 sessions from two control animals where reward amount varied in proportion to
the current FI, holding reward volume over time constant during the session.
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(Figure 2.1). Briefly, rats were placed in a behavioral box containing a lever po-
sitioned over a liquid delivery port and were trained to press the lever to receive
water reward. Reward delivery triggered a timer, and reward became available again
only after the timer exceeded an FI ranging from 12s to 60s in multiples of 12s.

p
re

s
s
in

g
 s

ta
rt

 t
im

e
 (

s
)

10 20 30 40 50 60

10

20

30

40

50

60

0
0

PST density

Figure 2.5. Median and interquartile
range of PST. Left - Median and interquar-
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Right - Smoothed density functions depicting
the full distributions of PST.

Lever presses occurring after reward de-
livery but before the FI had elapsed
were not reinforced. An FI was main-
tained for between 18 and 40 rewards
before changing to another FI, ran-
domly chosen from the interval set. In
single sessions, rats tended to distribute
lever pressing toward the latter portion
of the FI, shifting the timing of respond-
ing as FI changes occurred (Figure 2.2).
This pattern of responding produced
ramps in block-wise averaged pressing
as a function of time that varied in slope
in relation to the FI (Figure 2.3). How-
ever, this did not reflect the pattern of
responding in single trials. We asked
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how pressing evolved after pressing onset (pressing start times, PSTs) in each trial by
aligning on the PST and averaging lever press rates across trials and within blocks of the
same FI (Figure 2.4, left panel). This PST is equivalent to the post-reinforcement pause
described in Section 1.3. Rats pressed at a relatively constant rate after the first press
in each trial, with a rate determined by the experienced reward rate (Figure 2.4, right
panel). The ramps in the reward-aligned pressing as a function of time largely result
from changing distributions of PSTs (Figure 2.5), as these vary systematically with FI,
and averaging a group of step functions with onset times drawn from these distributions
will produce ramps of varying slope. This SFI lever pressing task produced systematic
variation in the distributions of PSTs of bouts of anticipatory pressing, consistent with
previous timing studies employing FI schedules of reinforcement (Gibbon, 1977). These
bouts were of a relatively constant rate (see break and run pattern in Section 1.3) that
varied with reward rate over time (Figure 2.4). The PST thus provided a behavioral
metric that covaried with the animals’ changing expectation about time until the next
available reward, which we compared to the activity of neurons recorded in the striatum
during performance of the task as described below.

2.2.2 Striatal neurons display temporal tuning
In the SFI task, reward delivery is both the timing cue and the reinforcer. Since animals
reported knowledge of time between reward availability by when they began to press
a lever, we asked whether neuronal responses in the striatum aligned on reward might
reveal a signal that animals could use to guide the decision of when to begin pressing. We
recorded broadly in the dorsal striatum so as to sample neurons from regions previously
shown to be important for interval timing behavior (Meck, 2006; Figure 2.6, inset),
and the vast majority of units we recorded exhibited average firing rates lower than
five spikes per second, consistent with a population made up of mostly medium spiny
projection neurons (Gage, Stoetzner, Wiltschko, & Berke, 2010; Figure 2.6). Aligned
on reward delivery, the population of recorded cells exhibited a broad distribution of
activity patterns, as reflected in the normalized spike density functions (SDFs; see
Materials & Methods in section 2.4 for details) shown in Figure 2.7. Some cells fired
just after reward delivery, others fired in the middle of the delay, and others fired leading
up to the next reward (Figures 2.7 and 2.8). This produced a slow-moving bump of
activity that traversed the population during each FI. In theory, reading out the location
of this bump in the population could provide an estimate of time within the FI.
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Figure 2.6. Neuron firing rates and reconstruction of recording sites. Distri-
bution of average firing rates (bin size of 1spike/s), calculated using all spikes from each
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(n = 5 rats). Each data point represents one recording site. Black-gray color coding
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However, a core feature of interval timing behavior is that timing accuracy de-
creases with the magnitude of the interval being timed (Gibbon, 1977). Two features of
the neural data could potentially contribute to this phenomenon: an increased spread
of each neuron’s responses as a function of their peak latency and a decreasing den-
sity of neurons displaying peak firing rates as time progresses. We found that the
widths of responses were indeed correlated with their latencies to peak firing within
each FI (left panel in figure 2.9, linear regression, FI 12s, R = 0.4443, p < 0.001; FI 24s,
R = 0.7563, p < 0.001; FI 36s, R = 0.7188, p < 0.001; FI 48s,R = 0.5910, p < 0.001;
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across all five FIs, aligned on reward.
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Figure 2.8. Single neuron examples with different time courses of response
that rescale with FI. Each row corresponds to a single neuron example recorded from
the striatum during performance in the SFI task. Left - Single trial peri-stimulus time
histograms (PSTHs), aligned on reward delivery (green line), with a bin size of 20ms.
Red tick marks indicate the onset of pressing and purple tick marks indicate reward
delivery. Trials are ordered by FI, and within each FI by pressing onset time. Right -
SDFs for each FI block, aligned on reward delivery.

FI 60s, R = 0.4733, p < 0.001; see Materials & Methods in section 2.4 for details). In
addition, the density of peak firing rate latencies in our population decreased over time
within the FI (Figure 2.9, right). Thus, the bump in activity within the striatum pop-
ulation moved progressively slower as the FI wore on. Strikingly, the overall time taken
by this bump to traverse the population appeared to scale with the FI (Figures 2.7
and 2.10). To begin to assess apparent scaling of response times, we first selected cells
that we had recorded in all five FIs and that maintained their ordinal position within
the population when responses within each FI were ordered by firing dynamics (Geffen,
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Figure 2.9. Response width correlates with latencies to peak firing within
each FI. Left - Width of each cell’s response within each FI as a function of latency to
peak firing. Colored lines represent the best linear fit to the data. Right - Histogram of
relative peak latencies pooled over all FIs, using the data in the left panel.

Broome, Laurent, & Meister, 2009). Of the 112 neurons recorded in all FIs, we found
that 76 neurons (68%) maintained their ordinal position in time across the population
(see Materials & Methods in section 2.4 for details). The responses of these neurons
can be observed in Figure 2.7, wherein the position of cells along the y axis is the
same across the panels displaying average responses in each of the FIs (for all recorded
cells, see Figure 2.10). To quantify to what degree responses rescaled, we computed
a scale factor for each neuron as the ratio of the center of mass (COM) of the SDF
in the 12s FI over the COM of the SDF in each of the other four FIs (Figure 2.11).
The distributions of these scale factors were sharper than and significantly different
from null distributions generated by shuffling cell identity across FIs and recomputing
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Figure 2.10. All recorded neuron responses per FI. SDFs of all recorded striatal
neurons across all five FIs, aligned on reward.
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Figure 2.12. Center of mass comparisons per FI. COM of each cell’s SDF in the 12s
FI against each of the other FIs. The black dotted line signifies no change in COM from
block to block. The colored dotted line signifies a change in COM that is proportional
to the change in FI relative to the 12s FI.

the scale factors (red distributions in Figure 2.11, Kolmogorov-Smirnov test, p < 0.001
for all pairwise comparisons). Were the population to have rescaled its responses in
direct proportion to the FI, the medians of these distributions should lie at 1/2, 1/3,
1/4, and 1/5 for the scale factors corresponding to 12/24s, 12/36s, 12/48s, and 12/60s
FIs, respectively. We observed median values of 0.59, 0.39, 0.30, 0.24 for the corre-
sponding distributions, indicating near-proportional rescaling of response times across
the recorded striatal population. A more complete description of the relative scale of
responses can be seen in Figure 2.12, where the COM of each cell’s SDF in the 12s FI
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against each of the other FIs are displayed. These data demonstrate a strong tendency
for rescaling of neural responses across the population, suggesting that the state of stri-
atal populations may convey relative elapsed time information scaled to the animal’s
estimate of the current behaviorally relevant timescale in the environment. We explore
this hypothesis in greater detail below.

2.2.3 Striatal populations encode information about timing
behavior

The above analyses of striatal neural responses indicate a gross correspondence between
striatal activity and timing behavior across blocks of trials, suggesting that striatal ac-
tivity patterns might guide decisions about when to begin pressing the lever during each
FI. To test this hypothesis, we applied a decoding approach to data collected from sin-
gle trials near block transitions, wherein animals systematically changed the time that
they began to press the lever. Specifically, we asked three questions. First, we asked
whether decoded time estimates covaried with true time. Second, we asked whether
systematic errors in estimated time as compared to true time occurred at these block
transitions. Lastly, we asked whether any observed errors in time encoding correlated
with timing behavior. We first built a probabilistic decoder to derive an estimate of
elapsed time from reward in single trials given the observed spiking response of the
population. We focused on the first trials of the 12s and 60s FI blocks because these
blocks were the shortest and longest FIs employed, respectively. Thus, animals consis-
tently overestimated and underestimated the amount of time remaining until reward as
they entered 12s and 60s blocks. Briefly, our decoder was constructed as follows. In
each of the first seven trials of a block, we counted spikes within defined time bins and
asked how likely we were to have observed that number of spikes at each time given
the observed distributions of spike counts in trials 8 onward of the corresponding block.
This generated a likelihood function for current time, given an observed spike count in
each bin, for each individual cell. To derive a measure of the population’s estimate of
the likelihood for current time, we multiplied together the individual cells’ likelihood
functions. We then took the mean of this likelihood function as our estimate for current
time (Dayan & Abbott, 2005). In Figure 2.13, we display decoded estimates as a func-
tion of time for the first seven trials of 12s and 60s FI blocks. We found that decoded
estimates tracked true time but that systematic errors between estimates and true time
were present in the first few trials of the 12s and 60s FI blocks. This feature can be
observed more readily when estimates derived from multiple trials are plotted on the
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Figure 2.13. Decoder estimates of elapsed time. Decoded population estimates of
elapsed time from reward in single trials, for the first seven trials of the 12s and 60s
FIs block plotted against true time. Red traces indicate the mean of the population
likelihood function, and the underlying heatmap indicates the population likelihood
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38



time relative to reward (s)

trial number1 7

d
e

co
d

e
d

 t
im

e
 (

s)

trial number1 7

d
e

co
d

e
d

 t
im

e
 (

s)

10

0

8

6

4

2

2 4 60 8 10

50

0

40

30

20

10

10 20 300 40 50

FI=12 FI=60

Figure 2.14. Decoder estimates run slow or fast depending on FI transition.
Left - Decoded estimates of elapsed time for the first seven trials of the 12s FI block
plotted on the same axis. Curves are quadratic fits to the mean likelihood function of
each individual trial (red lines in Figure 2.13). Red curves represent early trials, and
black curves represent later trials. Right - Same as left but for the 60s FI block.

10 15 20 25

0.20

0.15

0.10

0.05

0.0

0.05

0.10

0.15

m
e

a
n

 e
rr

o
r,

tr
u

e
 t
im

e
 -

 r
e

a
d

o
u
t

(f
ra

c
tio

n
 o

f 
F

I)

R2: 0.63, p=0.03

R2: 0.64, p=0.03

pressing start time (s)

-
-
-

Figure 2.15. Errors in decoded time predicted timing behavior. Mean error
between true time and the decoded population estimate in the first seven trials of the
12s (blue) and 60s (green) FI blocks. Contiguous trials are connected by solid lines to
display the trajectory of the data over trials, and the first trial on each block is indicated
by the black arrow. Dashed horizontal gray line represents zero error average decoding
as compared to true time.

39



might guide decisions about when to begin pressing the lever
during each FI. To test this hypothesis, we applied a decoding
approach to data collected from single trials near block transi-
tions, wherein animals systematically changed the time that
theybegantopress the lever. Specif cally, weasked threeques-
tions. First, weaskedwhetherdecoded timeestimates covaried
with true time. Second, we asked whether systematic errors in
estimated timeas compared to truetimeoccurredattheseblock
transitions. Lastly,weaskedwhetheranyobservederrors intime
encoding correlated with timing behavior.
We f rst built a probabilistic decoder to derive an estimate of

elapsed time from reward in single trials given the observed
spiking responseof thepopulation.Wefocused onthe f rst trials
of the 12-s and 60-s FI blocks because these blocks were the
shortest and longest FIs employed, respectively. Thus, animals
consistently overestimated and underestimated the amount of
time remaining until reward as they entered 12-s and 60-s
blocks. Brief y, our decoder was constructed as follows. In
eachof the f rst seven trials of ablock, wecounted spikes within
def ned time bins and asked how likely we were to have
observed thatnumberof spikes ateachtimegiventheobserved
distributions ofspikecounts intrials 8onwardofthecorrespond-
ing block. This generated a likelihood function for current time,
given an observed spike count in each bin, for each individual
cell. To deriveameasureof thepopulation’s estimateof the like-
lihood forcurrenttime,wemultiplied togethertheindividualcells’
likelihood functions. We then took the mean of this likelihood
function as our estimate for current time [17].
InFigures4Aand4C,wedisplaydecodedestimatesasafunc-

tionoftimeforthef rstseventrials of12-sand60-s FIblocks.We
found thatdecodedestimates tracked truetimebutthatsystem-
atic errors between estimates and true timewere present in the
f rst few trials of the12-s and 60-s FI blocks. This feature canbe
observedmore readilywhenestimates derived frommultiple tri-
als are plotted on the same axes (Figures 4B and 4D, quadratic
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Figure 2.16. Striatal muscimol infusion diminishes PST relationship to the
FI. Each row corresponds to one of two rats that underwent muscimol infusion. Left
- Pressing start times per FI of three successive sessions (from left to right) and their
respective regression slopes (black line) for two rats (top and bottom). Muscimol treat-
ment session is depicted in red and saline treatment in blue. Right - Regression slopes
for the same three sessions depicted on the left, same color code is applied.

same axes (Figures 2.14, quadratic fits). Initial estimates were relatively slow and fast
in the first trials of the 12s and 60s FI blocks, respectively, and became more accurate
after the first few trials.

Next we asked whether such timing signals may be used by animals to guide timing
behavior. We first asked whether errors in decoded time estimates over the first trials
of blocks were correlated with timing behavior. We found that the mean PST was sig-
nificantly correlated with the errors in time estimates derived from the population over
the first seven trials of 12s and 60s FI blocks (Figure 2.15; FI 12s, R2 = 0.63, p = 0.03;
FI 60, R2 = 0.64, p = 0.03). In the initial trials of the 12s FI block, rats began pressing
late relative to subsequent trials, and likewise, the decoded estimate of time relative
to reward ran slow (left panel in Figure 2.14 and blue trace in Figure 2.15). The first
trials of the 60s FI block showed a similar relationship, yet opposite in direction: the
decoded estimate ran quickly in early trials, and rats were early to press (right panel
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in Figure 2.14 and green trace in Figure 2.15). We then tested in two control animals
whether manipulating striatal circuitry via bilateral infusions of the GABAa receptor
(GABAa) agonist muscimol produced deficits in timing behavior (Figure 2.16). In-
deed, at a dose that rendered rats able to perform the task, muscimol reversibly and
significantly diminished the relationship between PST and FI (linear regression, like-
lihood ratio test, significant effect of treatment, p < 0.001), showing that a normally
functioning striatum is critical for normal timing behavior. The consistency between
time estimates decoded from striatal populations and trial-by-trial variations in timing
behavior at block transitions, together with observed dependence of a normally func-
tioning striatum for normal timing behavior, suggests that the brain uses a population
code for time that samples broadly from striatal neurons to guide decisions about when
to act.

2.2.4 Striatal neurons multiplex information about action
and time

Based on previous studies (Mink, 1996; Kim et al., 2009; Jin & Costa, 2010), we
expected that striatal neurons would display significant modulation by behaviors during
the FI. Could behaviors that accompany task performance fully explain the sequential
neural responses we observed? Several features of the data argue against this possibility.
Rats consistently licked at the reward port from 0.5s to 5.5s after reward delivery
(Figure 2.17), and yet, our ability to decode time was unaffected by the animal being
engaged in a fixed behavior over this time (see initial ~5s of decoded time estimates in
Figure 2.13). After departing from the reward port, however, it is possible that observed
dynamics in neural responses are accounted for by ongoing behaviors. Were this the case,
responses related to a particular behavior should not vary depending on when in a trial
the rat engaged in that behavior. To identify neurons that were significantly modulated
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Figure 2.17. Licking behavior across FIs. Probability of licking sequence onset
(blue) and licking sequence offset (red) in the first 12s of all five FIs.
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Figure 2.18. Pressing onset responsive neurons display sensitivity to the time
relative to the FIs. Four single-neuron PSTHs (top) and raster plots (middle) of
2.5 s epochs aligned on pressing onset event (from three animals; the two first columns
display data from two neurons recorded in the same animal and same session). Trials
were sorted in ascending fashion from bottom to top on the vertical axis by the pressing
onset time relative to the FI (middle) and grouped into quintiles. Here, the colors from
gray to red represent the first to the fifth quintile, respectively (middle and top panels).
Bottom - Correlation between the firing rate of the respective neuron and the time of
the pressing onset relative to FI. Each data point is color coded from gray to red for the
first to the tenth decile of the relative pressing onset time. Firing rates were extracted
from the most modulated 500 ms bin of the four bins surrounding the pressing onset
event.
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Figure 2.19. Non-monotonic time-dependent modulations in pressing onset
response. Two additional single-neuron PSTHs (top) and raster plots (middle) of 4 s
epochs aligned on pressing onset event. Trial sorting, alignment and color code as in
Figure 2.18.

by a measured behavior in the SFI task, we focused on a 2.5s epoch centered on the PST
in each trial. We found that of the 76 neurons displayed in Figure 2.7, 31 exhibited
significant modulations around the onset of lever pressing. Next, we asked whether
spiking observed in time bins aligned on the PST was additionally correlated with the
time, relative to the FI, that pressing onset occurred. More than half of pressing onset-
modulated neurons (16/31, 52%) displayed a significant correlation between spiking
around each press initiation and the relative time that press onset occurred within the
FI (Pearson’s linear regression, p < 0.01). Figure 2.18 shows examples of four such
neurons from three different animals, all of which vary in their responses around the
PST, from none at all to robust firing.

The regression approach described above is only expected to identify neurons that
display a monotonic relationship between pressing onset response and the relative time
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Figure 2.20. Schematic of timing behavior simulation. Firing of striatal neurons
was modeled based on receptive fields for the height of a decaying trace that is reset in
each trial by reward delivery (top left). This trace can decay faster (solid line) or slower
(dotted line) by adjusting the parameter γ. The Gaussian functions (top right) represent
receptive fields evenly spaced along the height of the trace function. The trace function
was multiplied by the receptive fields to generate rate functions, the levels of which
vary across time as the memory trace decays. Spike counts observed within defined
time bins were then multiplied by the logarithm of their respective rate functions and
summed to compute the population log likelihood function for current time given the
population response, from t = 0 to t = FI. The maximum of this likelihood function
was used to derive our estimate for current time relative to reward, for each time bin.
Decoded time estimates can run faster or slower depending on whether the trace function
decays quickly or slowly. For each trial, when the decoded time estimate reached a given
threshold (red dotted line), we simulated a probabilistic pressing process. If the decoded
estimate runs too slowly, it fails to reach the threshold value for expected reward (blue
dotted line) before the current FI elapses, and the reward happens before it was expected
(dotted black box), generating a large prediction error that drives appropriate updating
of γ in the next trial. If the decoded estimate runs more accurately (solid black box),
a small prediction error is generated, and γ is minimally adjusted in the next trial.
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of pressing onset. Other cells may have displayed significant time-dependent modula-
tions in pressing onset response that were not monotonic (for example, see Figure 2.19).
To identify such cells, we asked whether the median of distributions of spikes counts,
collected around pressing onsets and falling into each of five quintiles of relative PSTs,
differed from each other. We found that 53 out of 76 neurons (70%) displayed in Fig-
ure 2.7 exhibited significantly different median spike counts across relative time within
the FI (p < 0.01, Kruskal-Wallis). Of these, nine cells were significantly modulated
by the onset of lever pressing and were not identified in the linear regression analysis.
Overall, only six cells that displayed response modulation around PST did not exhibit
additional modulation by relative time in the FI as assessed by linear regression and/or
nonparametric testing for median difference in spike count.

These results suggest that striatal neurons multiplex information about time and
immediate sensorimotor state of the animal and argue strongly against the possibility
that the striatal population responses we observed can be explained by purely non-time-
related responses to specific sensory or motor components of ongoing behavior.

2.2.5 A simple simulation of timing behavior

Figure 2.21. Simulated lever pressing
behavior. Example of simulated lever
pressing behavior on the SFI task. Gray
markers indicate a lever press and red mark-
ers indicate the PST.

In order to understand the relationship
between the recorded striatal signals and
rats’ behavior, we ran a simple simula-
tion that performed the SFI task (Fig-
ure 2.20). The core of this simulation is
comprised of a set of temporal basis func-
tions that were inspired by the diverse
single-neuron responses observed in our
striatal dataset as well as existing tim-
ing and learning models, some of which
were introduced in Chapter 1 (Grossberg
& Schmajuk, 1989; Suri & Schultz, 1999;
Ludvig et al., 2008; Howard et al., 2014).

We used the method described in
Ludvig et al. (2008) to generate tempo-
ral basis (see also Section 1.6.2). Each
function was used as a rate function for generating inhomogeneous Poisson spike trains
from which time was read out during task performance. Whenever this time readout
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passed a threshold, presses were produced at a fixed rate. In order to adapt to the
changing FIs, we implemented a simple learning rule to update a temporal scale factor
for the basis functions depending on the difference between expected time of reward
and encoded time at the time of reward delivery. Lastly, to account for our observa-
tion that many striatal neurons multiplexed information about action and time, each
press produced a response in the temporal basis that was proportional to the product
of the original time-dependent rate function at the time of the press and a rate function
generated by the press itself. With these elements, we ran the simulation under the
conditions contained in the SFI task.

The simulation produced qualitatively similar behavior to that of rats (Figures 2.21
and 2.22) and reproduced the three main features that we observed in striatal neurons:
temporal tuning, rescaling of neural responses (Figure 2.23), and multiplexing of infor-
mation about action and time (Figure 2.24). Although simple, the simulation serves
as proof of principle that neural activity with the properties that we observe in this
Chapter can serve as a basis for timing behavior and suggests candidate computational
elements such as a scale factor and temporal error signal for which there might exist
functional analogs in the brain.
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Figure 2.22. Model accuracy and precision across FIs. Left - Median and in-
terquartile range of modeled PST for each of the five FIs. Right - Mean error between
true time and the decoded estimate from model units on the first seven trials of the 12s
(blue) and 60s (green) FI blocks as in Figure 2.15.
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Figure 2.23. SDFs of simulated units ordered by response profile. Each panel
corresponds to one FI as in Figure 2.7.

Figure 2.24. Time dependent modulation of press onset responses in simu-
lated units. Four simulated single-unit PSTHs of 2.5 s epochs aligned on pressing onset
event (top). Trials were grouped, aligned and color coded as in Figure 2.18. Bottom -
Correlation between the firing rate of the correspondent unit on the top panel and the
PST relative to FI. Each data point is color coded as in Figure 2.18.

2.3 Discussion
Time is a fundamental dimension of animals’ experience in the world. As such, it plays
an integral role in many brain processes, from perception to motor control to learning
and memory formation. What is the role of temporal representation within the BG?
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A dominant view supported by a wide range of neurobiological data posits that the
BG implements aspects of reinforcement learning (RL) (Schultz et al., 1997; Kim et
al., 2009; Doya, 1999; Lauwereyns, Watanabe, Coe, & Hikosaka, 2002; Samejima et
al., 2005; Lau & Glimcher, 2008), learning how an organism ought to act in order
to maximize reward. However, to learn about the sometimes-delayed consequences
of actions and to guide future behavior toward rewarding outcomes, it is absolutely
necessary that the brain represent situations and actions through time (Schultz et al.,
1997; Sutton & Barto, 1998). Indeed, temporal relations among actions and events
contain the causal information that learning systems have evolved to detect through a
process sometimes referred to as credit assignment (Balsam & Gallistel, 2009). Once
credit for the occurrence of predictable events has been assigned, this information must
be used to profitably guide the course and timing of action as situations arise. This
continuous learning-behaving cycle is what RL algorithms naturally account for (Sutton
& Barto, 1998). Yet, it is not known how the BG, the brain system most often associated
with RL, represents temporal relationships over the durations necessary to explain its
purported role in animal learning and behavior.

The sequential neural states that we describe in the striatum during timing behavior
can provide a unifying view of the BG’s role in timing and RL. These signals are
strikingly similar to temporal basis functions proposed in existing learning models as
more neurally plausible and efficient representations of time (Grossberg & Schmajuk,
1989; Suri & Schultz, 1999; Ludvig et al., 2008), which we show can be used to generate
timing behavior similar to what we observed experimentally. Such models operate by
learning a set of weights used in a weighted sum of the temporal basis to construct a
moment-by-moment prediction about future events such as expected reward. In theory,
a weighted combination of activity patterns in the cortical or thalamic inputs to the
striatum could act as such temporal basis and modulate the responses of striatal neurons
that we observed.

An important question for future studies concerns the mechanism that generates
the striatal dynamics we observed. We find it unlikely, given the duration of the in-
tervals we examined, that striatal dynamics were purely locally generated, although
several modeling studies suggest mechanisms for generating sequential activity states
using striatum-like circuitry over shorter timescales (Ponzi & Wickens, 2010; Berns &
Sejnowski, 1998). Indeed, the signals we use to decode time were affected, but not
fully explained by, the ongoing sensorimotor state of the animal. Thus, our decoding
approach implicitly endorses a number of prominent interval timing theories, positing
that animals may use behavioral (Killeen & Fetterman, 1988; Machado et al., 2009)
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or sensory state (Ahrens & Sahani, 2011) transitions to learn to time events in the
environment and their own behavior.

Our behavioral data did not strictly adhere to the scalar property, as has been
shown to be the case in other timing studies (Staddon & Higa, 1999), particularly when
subjects estimate long timescales such as the ones presented in this Chapter. Although
the variance of the PST distributions increased with the mean PST across the different
FIs, the dynamic nature of the SFI task might promote a strategy where animals begin
pressing earlier on longer intervals, so as to not avoid missing a possible block transition
to a shorter FI.

The data presented in this Chapter appear most consistent with theoretical models
that suggest distributed representations of time encoded by the joint activity of popu-
lations of neurons (Buonomano et al., 1995). Indeed, the decoder used in this Chapter
assumes that time information may be present in many different neurons. However,
we cannot rule out that upstream of the population we recorded in the striatum, other
forms of temporal representations may exist. For instance, an accumulating process such
as that contained within pacemaker-accumulator models (e.g., Treisman, 1963; Gibbon,
1977; see Section 1.4.1) might act to trigger neurons to become active at different delays
as the accumulator passes a series of thresholds.

We show that sequential neural activation in the striatum can be used to encode
time on a scale of tens of seconds up to one minute. These results add to a growing list of
studies that demonstrate sequential activation of neurons over multi-second time-scales
in other brain areas, such as the hippocampus (Pastalkova et al., 2008; MacDonald
et al., 2011), the cerebellum (Buonomano & Mauk, 1994), the parietal cortex (Harvey
et al., 2012), and the prefrontal cortex (Machens et al., 2010; Shinomoto et al., 2011;
Kim et al., 2013). Unlike previous studies, we found that many individual striatal
neurons exhibited responses that dynamically rescaled with the timing of events in the
environment and that this scaling of responses produced changes in time encoding by
the population that correlated with timing behavior. Combined with previous studies
highlighting the importance of a normally functioning striatum for timing behavior
(Meck, 2006; Malapani, Rakitin, et al., 1998; Rowe et al., 2010; Ward et al., 2009), the
effect of striatal inactivation shown in Figure 2.16, and other work that demonstrated
time encoding by striatal populations over shorter timescales (Jin et al., 2009), the
results presented in this Chapter suggest that information about where in time a subject
finds itself relative to anticipated events in the environment is present in populations of
striatal neurons and is used to guide behavior.
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Similar timing signals observed in areas other than the striatum are viewed within
the larger context of the functional role of those areas where they were recorded. Timing
signals in the hippocampus might endow explicit memories with accurate information
about the order and temporal context of events (Howard et al., 2014), and timing signals
in the cerebellum might coordinate learned actions at a fine timescale (Buonomano &
Mauk, 1994), while timing signals in premotor cortex might enable accurate timing of
movement in general (Merchant et al., 2013). The striatal neurons we observed appear
to multiplex temporal information with other, non-temporal types of information, such
as signals related to the ongoing sensorimotor state of the animal and likely other pre-
viously identified striatal signals related to actions, motor sequences, or reinforcement
(Lauwereyns et al., 2002; Samejima et al., 2005; Lau & Glimcher, 2008; Jin & Costa,
2010). Such multiplexing of temporal and other information in populations of striatal
neurons as observed in this Chapter is consistent with previous observations (Matell et
al., 2003) and is likely to be critical to the previously ascribed and well-studied function
of the BG in learning and action selection.

2.4 Materials & Methods
All experiments were approved by the Champalimaud Centre for the Unknown Bioethics
Committee and the Portuguese Direção Geral Veterinária.

2.4.1 Behavior
Five male Long-Evans hooded rats were trained in an operant lever pressing paradigm
reinforced with 0.015ml of water on a FI reinforcement schedule (Figure 2.1). The FI
was varied randomly in blocks of ≥ 18 trials among five intervals ranging in multiples
of 12 from 12s to 60s . A real-time LINUX state machine directed by custom software
in MATLAB (bcontrol, Mathworks) controlled the task. To remove incidential lever
depressions that sometimes occurred as animals explored the box, PST was computed
as the first press on each trial where the interval until the next press fell below the 85th
percentile of the inter-press interval distribution of the entire session.

2.4.2 Neurophysiology
Movable arrays of 32 tungsten microwires (CD neural systems) were implanted uni-
laterally in the striatum under isoflurane anesthesia. Neural signals recorded during
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behavior were amplified and high pass filtered at 100Hz or 250Hz (i2smicro), and wave-
forms corresponding to action potentials from single neurons were sorted offline using
principal component analysis (PCA) (offline sorter, Plexon). All isolated units (179
total from 5 rats, 25 R1, 9 R2, 21 R3, 28 R4, 96 R5) recorded for at least three blocks
in sessions in which PSTs correlated significantly with FI (p < 0.05) were included in
subsequent analyses. To construct SDF, spikes were counted in bins of 20ms. This
histogram was then divided by the number of trials, smoothed with a half gaussian
kernel with a standard deviation of 500ms, and z-scored by subtracting the mean and
dividing by the standard deviation of the time series. We applied PCA to the SDFs of
all recorded neurons within each FI separately (Figure 2.10), or the concatenated SDFs
of a subset of neurons across all FIs together (Figure 2.7). SDFs were aligned on reward,
including activity from reward delivery minus one FI to reward delivery plus one FI. As
has been done previously, we applied an ordering procedure wherein SDFs were ordered
by their angular position within a plane defined by the contributions made by the first
two PCs to SDFs, rotating around the origin (Geffen et al., 2009). This method has the
advantage that it orders cells with respect to their dynamics while taking into account
the full firing profile of each neuron over time, as opposed to methods that order by
peak response time that only take into account one moment in the cell’s average firing
profile.

2.4.3 Selection for cells with consistent relative response
profiles

To identify cells that maintained their position in the population across the FIs we
performed the following selection. First, The PCA-based ordering process was applied
to all neurons that were recorded in all five FIs (n = 112). Importantly, for this analysis
PCA was run separately on data collected in each FI so that each cell’s ordered position
within the population was free to change across FI. Next, each within-FI position was
converted to a unit vector, at an angle determined by its ordered position. These unit
vectors were then averaged, and those average vectors with a length of 0.75 or greater
(n = 76/112, 68%) were identified as having consistent ordinal positions within the
population across FIs.

2.4.4 Scale factors
To quantify the temporal rescaling observed in striatal neurons across the different
FIs, we computed a scale factor for each neuron in the 24s, 36s, 48s, and 60s FIs as
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the ratio of the center of mass of neural firing in the 12s FI, over the the center of
mass of neural firing in each of the four other FIs (Figure 2.12 and 2.11). We then
generated null distributions by recomputing scale factors using the same data but where
scale factors were repeatedly computed across cells instead of within single cells (100
repetitions). We then tested for significant differences between the data distributions
and the null distributions for each of the four sets of ratios using a Kolmogorov-Smirnov
test (p < 0.001).

2.4.5 Latency and width of responses
To quantify the latency and the spread of the observed striatal responses (Figure 2.9),
we estimated the time of the peak firing rate in each FI and the width at its half-height
from from a smoothed PSTH aligned on reward delivery. 10ms bins were used to build
the PSTH, smoothed with a gaussian kernel with a standard deviation (SD) that was
inversely proportional to the median firing rate of the neuron (SD = 11/median firing
rate). We selected the firing mode as the time of the peak of the smoothed PSTH, and
the width of the peak at the half height between the trough (minimum) and the peak
(maximum) of the smoothed PSTH as our measure of spread. To prevent edge effects,
peaks occurring later than three quarters of the FI were removed from the analysis.
We asked whether each cell’s spread was correlated with it’s delay to peak firing by
linear regression (FI 12s, R = 0.4443, p < 0.001; FI 24s, R = 0.7563, p < 0.001; FI 36s,
R = 0.7188, p < 0.001; FI 48s, R = 0.5910, p < 0.001; FI 60s, R = 0.4733, p < 0.001).

2.4.6 Decoding methods
We built a maximum likelihood decoder to estimate current time within the SFI task
given the pattern of activity across the population. To best control for conditions
across sessions, we focus on the the first seven trials of the 12s and 60s FI blocks. In
12s FI trials, spikes were counted in 1.5s bins beginning with the earlier edge aligned to
reward delivery and moved in 100ms steps until the later edge reached 12s. In 60s FI
trials,spikes were counted in 5s bins beginning with the earlier edge aligned to reward
delivery and moved in 100ms steps until the later edge reached 60s. Time labels were
placed at the earlier edge of the bins. To build distributions of spikes counts used
to generate the single cell likelihood functions, P (t | r), meaning the probability of it
being any moment in time given the observed spike count, we did the following: first we
counted the number of spikes observed for trials 8 onward since a block switch, and for
all time bins. To estimate the underlying probability density we smoothed the resulting
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histograms using local regression within a window of 30 spikes. We then counted spikes
within the same time bins during trials 1 through 7 since the block switch. For each
spike count, we determined the likelihood of observing that many spikes in each time
bin, given the data from the later trials. These single cell likelihood functions from
every cell recorded (n = 179) were multiplied together to derive a population estimate
of current time given the number of spikes observed from each cell in the population.
To derive a single estimate from this likelihood function derived from the population,
we took the mean (Dayan & Abbott, 2005).

2.4.7 Muscimol infusions
We implanted 24-gauge stainless steel cannulas bilaterally into the striatum (coordinates
from bregma: 2mm anterior; ± 2.7mm lateral; 4mm ventral) of two rats under isoflurane
anesthesia. After one week of recovery from surgery, rats were allowed to perform the
SFI task. Once the rats performed well (5 block switches with significant regression of
PST vs. FI) in the SFI task, we injected saline (PBS, 1x), muscimol (GABAa agonist,
SigmaTM) and saline in three successive days. To perform the injections, rats were
anaesthetised using 1.5-2.5% isoflurane (v/v). Muscimol or saline solution was delivered
using a 1 µL (Hamilton) syringe attached to a injection pump (Harvard ApparatusTM,
HA11D 702209) through a 24-gauge injector. The injector extended 1.5mm beyond the
tip of the guide cannulas. We used a muscimol concentration of 22.2 ng µL−1 in saline,
injecting 0.6 µL during 2.5 min. The injector was left in place for an additional 1.5 min
and the rats were placed for a 45 min recovery period in a home-cage before starting the
test session. Both rats received the saline vehicle injections using the same parameters
as the muscimol treatment.

2.4.8 Identification of pressing onset related neurons
To identify neurons modulated by the onset of lever pressing, we compared distributions
of “test” spike counts in time bins of 500ms during two seconds centered on lever pressing
onset, to distributions of “baseline” spike counts from 500ms time bins situated between
2.5 and 1s before lever pressing onset (Jin & Costa, 2010). Baseline time bins consisted
of 3 non-overlapping 500ms time bins, while test time bins consisted of 500ms bins that
were moved in 10ms steps starting with the trailing edge at 1s before lever pressing
onset, until the leading edge met 1s after lever pressing onset. Cells were considered
significantly modulated around lever press onset if at least 50 consecutive test bins were
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significantly different from a baseline distribution constructed by pooling spike counts
in the three non-overlapping baseline bins Kruskal-Wallis test, p < 0.05).

2.4.9 Identification of press start time modulated neurons
To identify neurons displaying press onset responses that varied additionally with time,
we compared observed spike counts in four bins of 500ms centered on the PST in each
trial. Given the observed rescaling in striatal neurons during the task, we first normal-
ized PSTs by dividing each PST by the FI of the block in which it occurred, resulting
in fractional PSTs. We then used two methods to identify neurons that exhibited re-
sponses aligned on the PST that varied with fractional PST. First we performed linear
regression, using fractional PST to predict spike counts in each time bin. We performed
an additional analysis to test for differences in median spike count observed across trials
that had been binned with respect to fractional PST. Fractional PSTs were separated
into five bins, the edges of which corresponded to 0, 20, 40, 60, 80 and 100th percentiles.
Responses were considered not to be uniform with respect to fractional PST if trials in
at least one bin displayed a median spike count that was significantly different from the
rest (Kruskal-Wallis, p < 0.01).

2.4.10 Simulation of timing behavior
We ran a simulation of timing behavior in the SFI task that takes into account the
temporal tuning, rescaling and multiplexing properties of striatal neurons presented in
this Chapter. The firing of striatal neurons was simulated based on receptive fields for
the height of a decaying memory trace of the reward (Figure 2.20,top panel) (Ludvig et
al., 2008).

yτ = γτ (2.1)

The trace function y (equation 2.1), was reset to a value of 1 at each reward delivery;
Its exponential decay rate γ was initialized as 0.999. The trace function decays over an
arbitrary time unit τ that varies from 0 to 10000. The receptive fields f had equidistant
means µ on the height of the trace function y, and standard deviation σ fixed at 0.1.

f(y, µ, σ) = 1√
2π
e

− (y−µ)2

2σ2 (2.2)
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Next, we generated 75 temporal basis functions that served as rate functions for gener-
ating spike trains. The basis functions were computed as follows:

bt(i) = f
(
yt,

i

m
, σ
)
yt (2.3)

The level of the ith basis function b out of m total basis at time t, was determined by
the product of the corresponding height of the trace function yt and the receptive field
f . The result was a set of temporal basis functions that became progressively wider,
delayed and with a lower peak (Figure 2.20, second panel from top). We then generated
spikes for each unit using these basis functions rate functions in an inhomogeneous
poisson spiking process. To compute internal estimates of time and simulate behavior,
we first counted spikes bins of 10ms and at each time step we multiplied the number
of observed spikes by the logarithm of its’ respective unit’s basis function, it’s tuning
curve for time. This produced a log likelihood for time given the observed spikes for
each unit. We then summed the individual unit log-likelihood functions (Jazayeri &
Movshon, 2006). We used the maximum of this likelihood function as our estimate of
current time relative to reward for each time bin. Two fixed thresholds were established
to trigger changes in the simulated behavior. Crossing the first threshold set at three
eighths (3/8) of the maximally possible internal time estimate triggered press initiation.
The second threshold, set at twice the level of the pressing threshold, was the expected
reward time. Once the decoded time crossed the pressing threshold, we simulated
pressing at a fixed rate. Pressing persisted at that fixed rate until the end of the FI was
reached and reward delivered. The time of reward receipt was then compared to the
expected time of reward (the second threshold). Differences between real and expected
time generated a type of prediction error that was used to update the time constant
γ of the exponential trace that controlled scaling of the basis functions. The update
proceeded as the equation below:

γ := γ + α ·
(

1
γt−tr

)
·
(
l(tr)− τr
max(lτ )

)
(2.4)

Where α was the learning rate set to 0.00007, t was the current time, and tr was the time
of the reward. The expected time of reward τr was fixed as three fourths of the length
of the τ vector (τ ≈ 7500) and l(tr) is the current estimation of time at the moment
that the reward is received. This adjustment of the parameter γ in the trace function
(equation 2.1) led encoded time to change faster or slower, allowing for the simulation
to exhibit an adaptive timing of neural and behavioral responses that resembled the
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experimental data. Information about each press fed back onto the temporal basis
in the following manner. Each unit possessed a press locked contribution to its rate
function. This press contribution to firing was a gaussian rate function with a standard
deviation of 200ms, and a mean precedence relative to the press that was drawn from
another gaussian distribution with a mean of -1500ms and a SD of 300ms. However,
the contribution of each press to the firing of a given unit was computed as the product
of the instantaneous, time dependent rate at the time of the press, and the press locked
contribution to firing.
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Chapter 3

Midbrain dopamine neurons
control judgment of time

Our sense of time is far from constant. For instance, time flies when we are having
fun, and it slows to a trickle when we are bored. Midbrain dopamine (DA) neurons
have been implicated in variable time estimation. However, a direct link between signals
carried by DA neurons and temporal judgments is lacking. Additionally, it is unclear
whether distinct DA neuron subpopulations in the substantia nigra pars compacta (SNc)
and ventral tegmental area (VTA) carry distinct signals during timing behavior. In this
Chapter, we measured and manipulated the activity of DA neurons in both SNc and
VTA as mice judged the duration of time intervals. We found that pharmacogenetic
suppression of DA neurons decreased behavioral sensitivity to time. Next, we measured
DA neuron activity in the SNc and found that these neurons encode a reward predic-
tion error signal that reflects both temporal expectation and the expected probability of
reward. Furthermore, we observed a horizontal shift of the psychometric curve toward
long choices when SNc-DA neuron activity was low, and a horizontal shift in the op-
posite direction when activity was high. Additionally, we show that transient activation
or inhibition of DA neurons in the SNc was sufficient to slow or speed time estimation,
respectively. Interestingly, DA neurons in the VTA did not reflect nor control temporal
judgments. Therefore, activity of DA neurons in the SNc, but not in the VTA, reflects
and can directly control the judgment of time.
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3.1 Introduction
Our ability to accurately estimate and reproduce time intervals is variable and depends
on many factors, including motivation (Gable & Poole, 2012), attention (Coull, Vidal,
Nazarian, &Macar, 2004), sensory change (Ahrens & Sahani, 2011), novelty (Pariyadath
& Eagleman, 2007), and emotions (Droit-Volet & Meck, 2007). In addition, several
neurological and neuropsychiatric disorders (Pastor et al., 1992; Wittmann et al., 2007;
Noreika et al., 2013; Wahl & Sieg, 1980) are accompanied by changes in timing behavior.
Midbrain dopamine (DA) neurons are implicated in many of the psychological factors
(Cools, 2008) and disorders (Pastor et al., 1992; Noreika et al., 2013; Lüthi & Lüscher,
2014) associated with changes in time estimation.

Midbrain DA neurons also encode reward prediction errors (RPEs; Schultz et al.,
1997; Bayer & Glimcher, 2005; Eshel, Tian, Bukwich, & Uchida, 2016; Steinberg et
al., 2013), an important teaching signal in reinforcement learning (RL; Sutton & Barto,
1998). Phasic DA responses to reward-predicting cues reflect the magnitude of (Tobler,
Fiorillo, & Schultz, 2005; Cohen et al., 2012), probability of (Fiorillo, Tobler, & Schultz,
2003), and expected time delay until the reward (Kobayashi & Schultz, 2008; Fiorillo
et al., 2008). When expectation varies over time, DA neuron responses are smaller at
times when rewards and reward-predicting cues are more expected (Fiorillo et al., 2008;
Pasquereau & Turner, 2015), indicating that DA neurons receive temporal information.
Manipulations of the DAergic system by pharmacological (Maricq & Church, 1983) or
genetic (Drew et al., 2007) approaches disrupt timing behavior, suggesting that DA
neurons may directly modulate timing. However, the data from pharmacological and
genetic manipulations are inconsistent: in some cases, DA seems to speed up timekeep-
ing (Maricq & Church, 1983; Drew et al., 2007; Buhusi & Meck, 2002), and in others,
DA seems to slow down or not affect timekeeping (Lake & Meck, 2013; Balcı et al.,
2010). Additionally, there are distinct subpopulations of midbrain DA neurons, that
may carry distinct signals in the context of timing behavior and RL, adding another
layer of complexity to the study of the functional role of these neurons. However, most
of the manipulation studies mentioned above did not distinguish between the two main
subpopulations of midbrain DA neurons: those in the substantia nigra pars compacta
(SNc) and those in the ventral tegmental area (VTA).

SNc and VTA are located in anatomical proximity to each other and have classically
been treated as a relatively homogeneous neuronal population. Many SNc and VTA
neurons share electrophysiological properties such as broad waveforms, two modes of
activity patterns (a tonic mode between 2 and 5Hz and a phasic mode characterized by
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brief discharges >15Hz) and inhibition mediated by the D2-type autoreceptor (Sulzer,
Zhang, Benoit-Marand, & Gonon, 2010). These properties have been used to identify
these neurons in vivo (e.g., Schultz, 1986; Schultz & Romo, 1987; Schultz et al., 1993;
Hollerman & Schultz, 1998; Fiorillo et al., 2003). Additionally, one traditional tool used
to identify both SNc-DA and VTA-DA neurons histologically is immunostaining brain
slices for tyrosine hydroxylase (TH), the rate-limiting enzyme for DA synthesis (e.g.,
Watabe-Uchida et al., 2012; Stamatakis et al., 2013).

Despite their common features, there are also profound differences between SNc-DA
and VTA-DA neurons, suggesting that this seemingly homogeneous group of neurons is
in fact quite heterogeneous. One major difference between the two is their distinct input
and output connectivity patterns with both cortical and subcortical areas. SNc-DA
neurons have been shown to receive inputs from areas such as motor and somatosensory
cortices, subthalamic nucleus (STN) and dorsal striatum (DS) (Watabe-Uchida et al.,
2012). VTA-DA neurons, in contrast, receive inputs from the lateral hypothalamus
and nucleus accumbens (NAc), among others (Watabe-Uchida et al., 2012). Many of
these connections are reciprocal: for example, SNc-DA neurons are known to send the
vast majority of their axons to the DS (nigrostriatal pathway) while VTA-DA neurons
mainly project to the NAc (mesolimbic pathway) (Malenka, Nestler, & Hyman, 2009).

How these distinct anatomical connectivity patterns might translate to differences in
the response of SNc-DA or VTA-DA neurons is currently unclear. Although some stud-
ies suggest that distinct DA neuron connectivity patterns relate to different responses
in the presence of aversive stimuli (Lammel, Ion, Roeper, & Malenka, 2011; Lammel et
al., 2012), whether these anatomical differences relate to distinct signals in the context
of timing behavior is unknown. To determine (i) what signals are encoded by midbrain
DA neurons during timing behavior and (ii) how DA neurons contribute to variability
in temporal judgments, in this Chapter we measured and manipulated the activity of
SNc-DA and VTA-DA neurons in mice as they performed categorical decisions about
duration (Gouvêa et al., 2014, 2015).

3.2 Results

3.2.1 An intact DAergic system is required during perfor-
mance of a temporal discrimination task in mice

We first trained mice to perform a temporal discrimination task (Figure 3.1, left panel).
Mice initiated trials at a central nose port, immediately triggering the delivery of two
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identical tones separated by a variable delay. Mice reported the delay between tones as
shorter or longer than 1.5s at one of two lateral nose ports for water reward. Incorrect
choices were not rewarded. Performance was nearly perfect for the easiest intervals
but more variable for intervals near 1.5s (the boundary between the “short” and “long”
categories) and was well described by a sigmoidal psychometric function (Figure 3.1,
middle panel).

We then pharmacogenetically suppressed DAergic neuronal activity and observed
impaired temporal judgments on treatment days as compared with adjacent nontreat-
ment days (p < 0.004, n = 3 mice; Figure 3.1, right panel). We also observed a tendency
to perform fewer trials [control group, 177 ± 15 trials; CNO–treated group, 115 ± 54 tri-
als; mean ± standard deviation (SD); p = 0.05], suggesting that the animals’ motivation
was affected by DAergic suppression.

Figure 3.1. Performance of temporal discrimination task requires DAergic
activity.
Left - Task schematic and order of events (circles in the upper panel, nose-ports; gray
shading in the lower panel, interval period). Middle - Logistic function fit to the daily
(gray) and average (black) performance of an example mouse (10 sessions). Right -
Pharmacogenetic suppression (hM4D) was targeted to midbrain DAergic neurons, and
mice were injected with either clozapine N-oxide (CNO) or saline on consecutive days
(top panel); the main panels shows the mean psychometric performance on days with
saline or CNO treatment (black or red, respectively; n = 3 mice). Error bars, standard
error of the mean (SEM). The inset shows the percent of correct trials on days before
and after CNO treatment in mice expressing hM4D (filled circles, n = 3; * p < 0.005)
or non–hM4D-expressing controls (open circles, n = 4). Error bars, SEM.
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Figure 3.2. Schematic of the photometry apparatus and surgical procedure.
A single surgical procedure was performed for adeno-associated virus (AAV) injections
and optical fiber implantation. After 1-2 weeks of recovery, mice were retrained on the
temporal discrimination task and the Ca2+ activity of DAergic neurons was recorded
during task performance.

GCaMP6f 20µmtdTomato

Figure 3.3. Image of the SNc histology. Confocal image of SNc neurons displaying
GCaMP6f (left) and tdTomato (middle) positive neurons. A merged image is shown on
the right.

3.2.2 SNc-DAergic activity is precisely aligned to temporal
cues, not movement

To test whether fluctuations in endogenous DA neuron activity predicted systematic
changes in temporal judgments, we used fiber photometry (Matias, Lottem, Dugue,
& Mainen, 2017) to measure Ca2+ activity in DAergic neurons (Figure 3.2). Briefly,
we injected a combination of two adeno-associated viruses (AAVs) containing double-
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Fig. S1. Common mode correction of photometric recordings.

Top, Simultaneously recorded time course dF/F in green and red channels (left), and correlation 

between these two channels (right). Middle, Color density plot of correlation between green and 

red channels before (left) and after (right) correcting for common mode noise by removing corre-

lations. Bottom, Same as top after common mode correction.

Soares, Atallah, Paton; Supplementary Materials pg.!1
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Figure 3.4. Common mode correction of photometric recordings. Top - Simul-
taneously recorded time course ∆F/F in green and red channels (left), and correlation
between these two channels (right). Middle - Color density plot of correlation between
green and red channels before (left) and after (right) correcting for common mode noise
by removing correlations. Bottom - Same as top after common mode correction.
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floxed inverted open reading frames encoding either the Ca2+ indicator GCaMP6f or
the activity-independent fluorescent protein tdTomato, targeting the SNc of transgenic
mice expressing cyclic recombination enzyme (Cre) under the control of the promoter
of either TH or dopamine transporter (DAT) (DA-Cre, Figure 3.2 and Figure 3.3).
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Figure 3.5. Optical fiber
placement for photome-
try experiment. Circles
represent the tips of optical
fibers.

The tdTomato signal was used to correct for small
changes in GCaMP6f signal due to motion (Figure 3.4,
see Materials & Methods in Section 3.4 for details).

We began by targeting SNc-DA neurons since they
densely innervate the DS (Watabe-Uchida et al., 2012),
and removal of DA input to the DS can cause a selec-
tive deficit in timing (Meck, 2006). Additionally, the
DS has been shown to encode relative time as well as
temporal judgments (see data in Chapter 2; Gouvêa et
al., 2015). The reconstruction of the location of optical
fiber placement is shown in Figure 3.5. Next, we ana-
lyzed single trial traces and observed that SNc-DAergic
responses were locked to the three main task events on
single trials: the first tone, the second tone, and reward
delivery (or omission thereof, see Figure 3.6). Average
traces of these signals per interval duration across five
mice are shown in Figure 3.7. Activity increased af-
ter reward delivery and decreased when the reward was
omitted in the case of incorrect choices (Figure 3.8, left
panel; Schultz et al., 1993). SNc-DAergic signaling has
also been implicated in movement. In our task, DAergic
responses following a tone could in principle reflect the
tone itself or a subject’s movement, as subjects reported
their choice shortly after the second tone.

However, as can be seen in Figure 3.8, SNc-DA neuron activity in this task was
consistently locked to the presentation of the second tone and to reward delivery, but
not to incorrect choices. Indeed, responses to the first tone, which coincided with
animals’ entry into a noseport, and responses to the second tone, which was not tightly
aligned with animals’ entry into a noseport, were similar to each other (middle panel in
Figure 3.8, red and gray traces). In contrast, we observed no increase in activity aligned
on unrewarded entries into the choice noseport (middle panel in Figure 3.8, black trace)
or to entries into the initiation port in the absence of a tone (right panel in Figure 3.8,
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Figure 3.7. Single trial and average DA neuron activity grouped by interval
duration. Left - All trials of DA neuronal activity recorded from a single subject are
shown, split by interval duration and aligned on trial initiation (first tone delivery; white
vertical line). Each row represents a trial, and within each interval, trials are sorted
from fast (top) to slow (bottom) response time (RT, time from the second tone to choice;
3759 trials). Right - Mean DAergic neuron responses, split by interval duration (n = 5
mice; intervals are color-coded as throughout). Shading, SEM across mice. z, z-score,
∆F/F, see Materials & Methods in Section 3.4.

black trace). Lastly, SNc-DA neuron activity was better aligned to tone presentation
than to the movement of leaving the noseport (right panel in Figure 3.8, red and blue
traces). These results demonstrate that SNc-DA neuron activity in this task did not
reflect movement per se.
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Figure 3.8. SNc-DA neuron activity does not reflect movement per se. Left
- Photometric recordings of SNc-DA neuronal activity from a single subject, split by
outcome (correct choices, top; incorrect choices, bottom) and aligned on choice (white).
Within each outcome, trials were sorted by RTs [slow (top) to fast (bottom)]. Red
dots mark the time of second-tone presentation (2426 trials). Middle - Mean DAergic
responses of incorrect trials aligned on the three main task events [first tone (red),
second tone (gray), and choice (black); n = 5 mice]. Shading, SEM across mice. Right
- Mean SNc-DA neuron activity aligned on three events: central port entry followed by
the 1st tone that signals trial initiation (red); central port entry in the absence of a tone
(black); central port exit after trial initiation (blue). Shade: SEM across mice (n = 5
mice).

3.2.3 SNc-DAergic responses correlate with temporal judg-
ments and are explained by a simple model of RPE

In this task, the second tone marks the end of the interval to be categorized and is a
sensory cue that predicts reward. The amplitude of a RPE at the time of the second
tone should be modulated by two factors: the subject’s expectation of reward at tone
delivery and their temporal expectation of the second tone itself. First, expectation of
reward varies as a function of stimulus difficulty, where the more difficult the interval
to be categorized, the lower the probability of reward (Figure 3.9). Second, because
delay intervals were randomly selected from the stimulus set on each trial, occurrence
of the second tone becomes less surprising with time (Figure 3.9). Indeed, animals were
sensitive to changing temporal expectation, as indicated by a systematic decrease in
response time (RT, the delay between second tone delivery and choice execution) with
increasing interval duration (RT for the shortest interval greater than RT for the longest
interval; p < 0.005 in each of five mice). To test whether second tone responses reflected
a RPE that integrated information about temporal expectation and expected reward,
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Figure 3.9. SNc-DA responses evoked by the second tone are explained by a
simple model of RPE. Left - Linear model including RPE components: expectation
of reward P (subject performance, top) and temporal expectation S (surprise, the in-
verse of the subjective hazard function; bottom). W , weight; a.u., arbitrary units. See
Materials & Methods in Section 3.4 for details. Middle - Measured second tone SNc-DA
responses for six time intervals (black traces; n = 5 mice) are compared to predicted
SNc-DA response (red dots). Right - The graph on the right shows model predictions
versus measured SNc-DAergic activity (gray symbols, individual mice; mean responses
across mice, black filled circles).

Subjective Expectation
of Interval Offset

Subjective Hazard Rate

a.
u.

Temporal Surprise (S)

0.6 2.4 0.6 2.4 0.6 2.4

1

0

Time Interval Time IntervalTime Interval

a.
u.

a.
u.

Figure 3.10. Computation of Temporal Surprise in RPE model. Left - Subjective
expectation, E, of interval offset, i.e. second tone (black) computed as the sum of the
subjective expectation that each of the 6 intervals (colors) would occur. The expectation
of each interval is assumed to be a Gaussian, SD = 0.15s. Middle - Subjective hazard
rate, H, (gray) is the probability of the second tone occurring given that it has not
yet occurred. Right - Temporal surprise, S, (gray, the inverse of H) at each of the 6
intervals (black dots) and plotted in the inset as in Figure 3.9. See Materials & Methods
in Section 3.4 for details.
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we asked how well the pattern of average responses to all six second tones could be
explained by a linear combination of temporal expectation (i.e., surprise, the inverse of
the subjective hazard function; Figure 3.10) and performance (the probability of reward
for each stimulus). On average, 90% of variance in mean responses could be explained
by a relatively equal contribution of these two factors (range, 58 to 99%; n = 5 mice;
Figure 3.9). Reward responses were also consistent with RPE coding: within a given
choice category, they tended to be larger for intervals that animals miscategorized more
often (Figure 3.11). On average, SNc-DA neuron responses to the second tone contained
information about elapsed time through their encoding of temporal expectation. Do
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Figure 3.11. Reward responses reflect performance. Top left - Mean photometry
signals aligned on choice (reward) during correct trials. Colors as in Figure 3.7 indicate
the different interval durations (n = 5 mice). Top right - Mean DAergic neuron response
for correct trials, window 0.2 - 5s after choice, as a function of interval duration. Error
bars indicate SEM (n = 5 mice). Bottom - Same as top but for incorrect (no reward)
trials.
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Figure 3.12. SNc-DAergic responses correlate with choice behavior. Left -
Mean photometry signals aligned on trial initiation for all intervals during correct trials
(n = 5 mice). Middle - Same as left but for incorrect trials. Right - Mean SNc-DA
response to the second tone when an interval was judged as long versus short. Each
shape represents a different mouse. Black symbols represent responses averaged across
all interval stimuli.

these responses relate to variations in judgments of time? When animals correctly
judged intervals, the response to the second tone was, on average, larger for intervals in
the short category (Figure 3.12, left panel). However, on incorrect trials, the pattern was
reversed: The response to the second tone was larger for intervals in the long category
(Figure 3.12, middle panel). Thus, SNc-DA response magnitude reflected the animals’
assessment of the interval duration, not the actual interval duration. Over all intervals,
the second-tone response for a given interval was significantly larger when that interval
was judged as short (p < 0.001; Figure 3.12, right panel). How do these results relate
to the underlying decision and motor processes that guide choice during the task?

3.2.4 Changes in a time-dependent component of choice
behavior are predicted by SNc-DAergic activity

In principle, the trial-to-trial variations in SNc-DA neuron activity could be related to
a time-dependent component of the decision, such as the speed of internal timekeeping
or the location of the decision boundary in time. Alternatively, variations in SNc-DA
activity might reflect a time-independent component of the behavior, such as a constant
action bias.

To quantitatively evaluate these two possibilities, we performed a logistic regression
to assess the degree to which the magnitude of the SNc-DA neuron response to the
second tone predicted animals’ choices on single trials. We found that activity predicted
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Chapter.
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Figure 3.14. Illustration of possible relationships between DA activity and
judgments. Distinct patterns of temporal judgments are expected depending on the
nature of the relationship between DA response and choice.

choice to a lesser extent in the case of easy stimuli than in the case of difficult stimuli
(Figure 3.13).

These data suggest that the SNc-DA neuron response was systematically related
to the horizontal position of the psychometric curve along the time axis and not the
vertical position along the choice axis (Figure 3.14). To test this, we split trials into
high, medium, and low terciles of the distribution of responses to the second tone
[Figures 3.13 (histograms) and 3.15]. While the second tone response amplitude was
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used to group trials, the systematic ordering of SNc-DA neuron responses emerged
toward the beginning of the trial and persisted throughout an interval (Figure 3.16, top
left and bottom panels). We next constructed psychometric curves for trials in each
tercile and compared a range of models for the psychometric curve.
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Figure 3.15. Illustration of trial-by-
trial tercile analysis. Three individual
trials illustrating low, medium, and high
second-tone DA responses (quantified as the
mean response in the gray-shaded box) and
grouped by tercile within the entire sec-
ond tone response distribution, depicted at
right.

The model that best explained the
behavioral data collected from high-,
medium-, and low-tercile trials consisted
of three sigmoid curves that differed only
in their horizontal location along the time
axis (Figure 3.16, top right panel). We
observed a shift toward long choices when
SNc-DAergic activity was low, and the
opposite shift when activity was high.
Specifically, as SNc-DAergic activity var-
ied from the lower to the upper ter-
cile, the psychometric threshold shifted
by ∼340ms (i.e., 20% of the 1.5s category
boundary; range, 90 to 620ms; 6 to 42%;
n = 5 mice). The relationship between
SNc-DAergic response and psychometric
shift was observed for recordings in either
hemisphere (Figure 3.17), thus ruling out
an explanation based on the laterality of
short versus long choices.

Instead, these results indicate that higher or lower SNc-DAergic activity is corre-
lated with a change in a time-dependent component of the decision. How might this
correlation between SNc-DA neuron activity and the location of the psychometric curve
along the time axis relate to our initial finding that temporal expectation contributed
to the average second-tone response? The theory of DAergic RPE coding predicts that
slower (or faster) timekeeping, by stretching (contracting) temporal surprise along the
time axis, should increase (decrease) DAergic responses to the second tone (Figure 3.18).
We observed a pattern of SNc-DAergic response to the second tone that was consistent
with this (Figure 3.12 and 3.18). Furthermore, if SNc-DAergic activity reflects RPE
continuously throughout a trial, differences in activity associated with slower or faster
timekeeping (i.e., the separation between low- and high-activity terciles) should also
grow continuously over time, and indeed, this is the case in our data (Figure 3.16 and
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Figure 3.16. SNc-DAergic activity correlates with a change in a time-
dependent component of choice behavior. Top left - Average SNc-DA response
in each tercile for the 1.74s interval stimulus (n = 1868 trials, 5 mice). Shading, SEM.
Top right - Psychometric curves constructed using trials from each tercile of SNc-DA
response. Curves are the maximum-likelihood fits of logistic functions with the lowest
bayesian information criterion scores (n = 8533 trials, 5 mice). Error bars, 95% confi-
dence interval (CI). The inset shows the difference in the probability of making a long
choice between medium and low or high (red or blue) SNc-DA response trials. Error
bars, SEM. Bottom - The top row is as in top left but for all six interval durations;
data shown on the top left are outlined in gray. The bottom row shows results from
the receiver operating characteristic (ROC) analysis: the area under the ROC curve
(auROC), distinguishing high- and low-tercile SNc-DA responses. This difference in
DA response increased during the course of the trial (red linear regression; coefficient
of determination (R2) ranging from 0.72 to 0.98; p < 0.0001).
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Figure 3.17. Changes in temporal judgments are similarly predicted by SNc-
DA neuron activity in both hemispheres. Probability of mice making long choices,
P(Long Choices), during low (red), medium (gray) and high (blue) tercile DAergic activ-
ity recorded contralateral (left) and ipsilateral (right) relative to the short choice port.
Sigmoidal curves are the lowest bayesian information criterion (BIC) score maximum
likelihood fits of logistic functions (n = 5 mice).

3.18). In contrast to the expected impact of variability in the speed of timekeeping
on RPE coding, it is not apparent to us how changes in the location of the decision
boundary along an animal’s internal notion of time should change RPEs arising at the
presentation of the second tone. The most parsimonious explanation of the data is that
SNc-DA neuron activity reflects variability in the speed of internal timekeeping.

3.2.5 Optogenetic manipulation of SNc-DA neurons is suf-
ficient to change judgments of time

These results demonstrate a correlation between temporal judgments and SNc-DA neu-
ron activity. However, it is unclear whether SNc-DA neuron activity simply reflects, or
whether it is sufficient to cause changes in, time judgments. We mimicked the observed
variability in SNc-DAergic responses by optogenetically activating or inhibiting SNc-DA
neurons (Figure 3.19 and 3.20). We confirmed that SNc-DA neurons could be reliably
activated and inhibited during our light protocols by electrophysiologically recording the
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Figure 3.18. Illustration of how trial-by-trial variation in temporal estimation
may impact DAergic response. Left and middle - Illustration of how changes in
temporal estimation (i.e. slower or faster decrease of the temporal surprise, left) may
result in smaller DAergic responses when time estimates run faster than average (red)
and larger responses when they run slower (blue) (middle). Right - Measured DA
response for the two time intervals nearest the category boundary (same data as in
Figure 3.12). Arrows in all panels illustrate consistency between hypothesized effect of
faster (red) and slower (blue) timekeeping on responses to the second tone shown in
the left and middle panels, and experimentally observed changes in response to second
tone shown in the right panel associated with incorrect “long” (red) and “short” (blue)
judgments.

response of optogenetically identified SNc-DA neurons using the same photoactivation
or photoinhibition protocol outside of the context of the task (Figure 3.21). Next, we
activated or inhibited SNc-DA neurons on a minority of randomly chosen trials during
task performance. Notably, we found that increasing or decreasing SNc-DA activity
resulted in a horizontal shift in the psychometric curve in the directions predicted by
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Choice port entry

Water reward or error tone

Activation/  30% trialsInhibition
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Figure 3.19. Schematic of optogenetic experiment. Left - Illustration of viral
strategy and subsequent fiber implantation. Right - Activation (blue) and inhibition
(red) protocol schematic.
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Figure 3.20. Optical fiber placement for optogenetic experiment. Circles rep-
resent the tips of the optical fibers across the two experiments.
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Figure 3.21. Histology confirmation and validation of light protocols. Left -
Histology confirming membrane expression of ChR2-YFP or NpHR-YFP, both in green,
in neurons of the SNc expressing TH in red. Right - Histology confirming membrane
expression of ChR2-YFP or NpHR-YFP, both in green, in neurons of the SNc expressing
TH in red. Right - Single-trial (top panels) and peri-stimulus time histogram (bottom
panels) of in vivo electrophysiological measurement of two DA neurons reliably activated
and inactivated by light (n = 53 and 8 trials, respectively).
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Figure 3.22. Optogenetic manipulation of SNc-DA neurons is sufficient to
change judgment of time. Left - Choice behavior and psychometric curves during
control trials (black), photoactivated trials (blue), and unstimulated trials immediately
after photoactivation (gray, n = 4 mice). Error bars, 95% CI. Insets show the mean
difference in the probability of a long choice between photoactivated and control trials
(top, one bar per animal; bottom, one data point per stimulus). Error bars, SEM. Right
- Same as left panel but for animals whose DA neurons were inhibited (n = 4 mice).

the photometry data, albeit more modestly in the case of photoinhibition (excitation,
140 ± 20 ms, n = 4 mice; inhibition, –68 ± 23 ms, n = 4 mice; Figure 3.22 and 3.23).
These effects were transient, occurring only on stimulated trials, and thus could not be
explained as resulting from learning (gray curves in Figure 3.22), nor were they observed
in control animals (Figure 3.24).

In addition, as was the case when sorting trials on the basis of SNc-DA response to
the second tone, we observed no systematic effect on RTs, arguing against SNc-DAergic
neuron activity affecting the subjects’ movement toward or incentive salience of choice
options during the task (Figure 3.25).
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Figure 3.24. Light alone does not impact temporal judgments. Choice behavior
and psychometric curves for control mice (left, n = 4 mice; right, n = 3 mice), related
to Figure 3.22.
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Figure 3.25. Activation and inhibition of SNc-DA neurons do not systemat-
ically impact RTs. Change in median RT for each interval stimulus (columns) in
each stimulated mouse (rows). White and black indicate increases and decreases in RT
respectively, star indicates p < 0.05 significance. Note that, despite the opposite effects
of activation and inhibition on temporal judgments, they have no systematic pattern of
impact on RTs.

3.2.6 VTA-DA neuron responses do not correlate with or
change temporal judgments

The results shown so far in this Chapter demonstrate a direct link between SNc-DA
neuron activity and temporal judgments. Do DA neurons in other regions, such as the
VTA, carry similar signals during this task?

To answer this question, we repeated the fiber-photometry experiment illustrated
in Figure 3.2, but aimed the optical fibers at the VTA. At first, the responses from
VTA-DA neurons appeared very similar to the responses of SNc-DA: VTA-DA neuron
activity was also locked to the main task events (first tone, second tone and reward de-
livery/omission). A closer look at the data, however, highlighted noticeable differences
between DAergic activity in the two areas. Figure 3.9 shows that SNc-DA neuron activ-
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Figure 3.27. VTA-DAergic responses do not correlate with choice behavior.
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shape represents a different mouse. Black symbols represent responses averaged across
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ity is well explained by a relatively equal contribution of both predictors (performance
and temporal surprise) in a simple RPE model. When we applied the same model to
the VTA-DA neuron data, however, we observed that the contribution of the temporal
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expectation predictor was greatly reduced (Figure 3.26, 0.14 ratio between temporal
expectation and performance, see Section 3.4.8 for details). Additionally, we found that
splitting average VTA-DA neuron activity by stimulus and judgment did not reveal
the same pattern as was observed in SNc-DA neurons (i.e., second tone-evoked VTA-
DA neuron activity was not consistently different between short and long judgments;
Figure 3.27, compare with Figure 3.12). These result suggest that, in our task, the
RPE signal (evoked by the second tone) carried by VTA-DA neurons mainly reflects
the average probability of reward the animal expects, whereas the response of SNc-DA
neurons additionally reflects the temporal expectation of the second tone event itself.

The results in Figure 3.12 suggest that VTA-DA neuron activity evoked by the sec-
ond tone might not related to variations in time judgments, unlike SNc-DA activity.
First we confirmed that second tone-evoked VTA-DA neuron activity was variable in
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Figure 3.29. There are no consistent differences between RTs on trials divided
by SNc-DA neuron activity tercile. Median RTs and interquartile range of correct
trials are plotted for each interval duration. Trials were split by SNc-DA tercile as
described before. Each panel represents a single subject. Stars indicate p < 0.05
significance when testing the distributions of RTs of the two extreme terciles using a
Wilcoxon rank sum test.

amplitude on a trial-by-trial basis when controlling for stimulus duration. To do this,
we again split trials according to the tercile within which they fell on the distributions
of second tone-evoked activity (Figure 3.15). This second tone response variability was
similar to that previously observed in the SNc (Figure 3.16). We had additionally ob-
served that variability in SNc-DA neuron activity was systematically related to temporal
judgments, evidenced by an horizontal shift towards short choices with higher SNc-DA
neuron activity (Figure 3.16, top right panel). However, unlike SNc-DA neurons, VTA-
DA neuron activity evoked by the second tone did not relate to temporal judgments.
This was evident since the performance from trials corresponding to the different terciles
of VTA-DA activity overlapped (Figure 3.28). We reasoned that perhaps the variability
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Figure 3.30. There are no consistent differences between RTs on trials divided
by VTA-DA neuron activity tercile. Median RTs and interquartile range of correct
trials are plotted for each interval duration. Trials were split by VTA-DA tercile as
described before. Each panel represents an single subject. Stars indicate p < 0.05
significance when testing the distributions of RTs of the two extreme terciles using a
Wilcoxon rank sum test.

in second tone evoked VTA-DA activity could underlie a vigor or motivational state that
could be reflected in the animals’ RTs. When we analyzed the RTs for each individual
animal split by terciles of DA activity, we did not observe any consistent differences
(Figures 3.29 and 3.30), indicating that neither SNc-DA nor VTA-DA neuron second
tone evoked activity related to RT.

The data presented so far suggest that the relationship between DA activity and
temporal judgments is specific to SNc neurons. We then reasoned that we should
not observe an effect on temporal judgments by activating VTA-DA neurons, since we
did not observe major temporal expectation signals in VTA-DA neurons, nor did we
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Figure 3.32. Activation and inhibition of VTA-DA neurons do not system-
atically impact RTs. Change in median RT for each interval stimulus (columns) in
each stimulated mouse (rows). White and black indicate increases and decreases in RT
respectively.
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Figure 3.33. Comparisons of fraction of premature and valid choice types
between photoactivated and control trials in SNc, VTA and control groups
of mice. Top row - Fraction of premature choices in trials where photoactivation was
performed vs when it was not. Mice where the fiber was aimed at the SNc are shown
in the left column, the ones targeting the VTA are plotted in the middle column and
control animals are plotted in the right column. Middle row - Same as top row but
for fraction of missed choices. Bottom row - Same as top row but for fraction of valid
choices.
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observe a relationship between trial-to-trial variability in VTA-DA activity and temporal
judgments. Indeed, when we optogenetically activated VTA-DA neurons in an identical
manner to the SNc-DA neuron experiments, we did not observe an effect on temporal
judgments in the photoactivated trial, nor in the subsequent one (Figure 3.31).

Furthermore, we compared animals’ RTs and probability of premature choices, two
behavioral variables that could be impacted by DA neuron activation but might not
be directly reflected in temporal judgments. We found no systematic differences in RT
across stimulation conditions in either SNc or VTA (Figures 3.25 and 3.32). Although
we found a decrease in premature choices in photoactivation trials compared to control
trials in both SNc and VTA animals, this tendency was also present in light control
animals (Figure 3.33). Therefore, we attribute these differences to an artifact caused
by the light.

This lack of an effect on temporal judgments by photoactivating VTA-DA neurons
was not due to an inability to produce any behavioral effect at the power levels used in
the experiment, since we had selected power levels for this experiment with the same
criteria used for the SNc experiment (see Section 3.4.11 for details). These criteria
involved performing a self-reinforcement assay (Figure 3.34), where light delivery was
triggered when mice interrupted one of two available noseports. Mice quickly displayed a
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Figure 3.34. Photoactivation of both SNc-DA and VTA-DA neurons drives
self-reinforcement. Left - Mean percentage of choices performed in either the non-
stimulated (gray) or the stimulated (blue) noseports for the animals in the SNc group
(n = 4 mice, p < 0.005). Error bars, SEM. Right - As in the left panel but for mice in
the VTA group (n = 5 mice, p < 0.005).
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higher rate of responding at the light-paired noseport compared to the inactive noseport
in both SNc-DA and VTA-DA photoactivation experiments. These results indicate
that the lack of effect in the temporal discrimination task was not due to an inability to
produce a behavioral effect. Rather, these results suggest that VTA-DA neurons, unlike
SNc-DA neurons, do not reflect nor control temporal judgments in this timing task, and
that the relationship between second tone-evoked activity and temporal judgments is
specific to SNc-DA neurons.

3.3 Discussion
Here we demonstrate a direct link between signals carried by midbrain SNc-DA neurons
and judgments of elapsed time. Higher or lower levels of SNc-DAergic activity not only
correlated with but could directly control timekeeping. Furthermore, the absence both
correlative and causal relationships between trial-by-trial variability in VTA-DA neuron
activity and temporal judgments suggests that this link between DA neuron activity
and temporal judgments in our task is specific to the SNc. We argue that the differences
observed here between the RPE signals in SNc-DA and VTA-DA neurons may be due
to the distinct input patterns between these two regions. Studies have shown both the
encoding of elapsed time in the DS (see results in Chapter 2 and Gouvêa et al., 2015)
as well as the requirement of intact DA input to the DS, but not to the NAc, for proper
timing behavior (Meck, 2006). Our results are consistent with this work since the DS
is an area preferentially and reciprocally connected to DA neurons in the SNc rather
than in the VTA (Watabe-Uchida et al., 2012).

The results shown in this Chapter are in agreement with some results of phar-
macological manipulations of the DAergic system during timing tasks (Lake & Meck,
2013), but appear at odds with some others that showed accelerated timekeeping with
increased DAergic tone (Maricq & Church, 1983; Buhusi & Meck, 2002). However, re-
cent studies demonstrate that many of the pharmacological effects on timing behavior
can be explained by the changes in motivation (Balcı et al., 2010; Odum et al., 2002)
and attention (Buhusi & Meck, 2002; Ward et al., 2009) that accompany DAergic drug
administration (Panigrahi et al., 2015). Indeed, pharmacogenetic DAergic manipula-
tion in our task affected motivated behavior. Variability in the effects of pharmacology
on timing may result from its relatively slow time course, which allows for compen-
sation and/or the superposition of multiple distinct behavioral effects. Additionally,
many of these pharmacological approaches lacked the spatial resolution to distinguish
between the signals carried by VTA-DA and SNc-DA neurons in timing behavior. Our
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approach circumvents these issues with genetically targeted, transient manipulations of
DA neuron activity.

Our results represent an important addition to the study of differences between
signals carried by subpopulations of midbrain DA neurons by identifying a specific rela-
tionship between SNc-DA, but not VTA-DA, neuron activity and temporal judgments.
Additional studies expanding on the differences between these subpopulations will be
fundamental for our understanding of how differential signals are conveyed and trans-
mitted by these neurons during temporal judgments and learning in general.

Recent work has proposed that RPE signals in the mouse VTA reflect a hidden-
state inference across time (Starkweather, Babayan, Uchida, & Gershman, 2017). In
this study, animals were presented with odor cues that predicted rewards at different
delays. A particular odor cue predicted a variable reward delay drawn from a Gaussian
distribution, with a 90% probability. In this context, RPE signals in the VTA following
reward delivery gradually increased with the delay between cue and reward delivery.
The authors propose that animals infer whether they are in a state that can lead to
reward delivery or if an uncued transition to an (unrewarded) inter-rial interval (ITI)
state occurred. Furthermore, they propose that VTA activity reflects this inference.
This hypothesis is unlikely to explain our results for a number of reasons. First, in
our task, animals always have direct auditory feedback of the transitions to the ITI,
independently of the trial outcome. Additionally, animals in both the SNc and VTA
groups are presented with each second tone delay in a relatively uniform manner. For
these reasons, a hidden-state inference hypothesis is unlikely to explain the differences
between the activity of SNc-DA and VTA-DA neurons observed in this Chapter.

Importantly, we monitored and manipulated the activity of midbrain DA neurons,
and not the levels of released DA. The relationship between tonic and phasic firing of DA
neurons and DA release is not entirely clear, and is complicated by feedback mechanisms
by which released DA can affect the firing of DA neurons (Bunney & Aghajanian, 1978).

Although unexpected, the data presented here may explain existing behavioral data.
Situations in which DAergic activity is elevated naturally, such as states of high approach
motivation (Bromberg-Martin, Matsumoto, & Hikosaka, 2010), response uncertainty (de
Lafuente & Romo, 2011), or cognitive engagement (Fried et al., 2001), are associated
with underestimation of time (Gable & Poole, 2012; Coull et al., 2004; Hicks, Miller, &
Kinsbourne, 1976). Conversely, situations that decrease DAergic activity, such as when
fearful or aversive stimuli are presented (Oleson, Gentry, Chioma, & Cheer, 2012), are
associated with overestimation of time (Watts & Sharrock, 1984). These observations,
together with our data, suggest that flexibility in time estimation may confer an adaptive
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advantage on the individual. For example, underestimating duration in better-than-
expected situations may lead to longer engagement in those situations, resulting in even
greater reward than if time estimation were not flexible. In other words, there may be
a normative explanation for why “time flies when we are having fun” underlying our
observation that DA neurons, which are so central to reward processing, exert control
over time estimation.

3.4 Materials & Methods
All experiments were approved by the Champalimaud Centre for the Unknown Bioethics
Committee and by the Portuguese Veterinary General Board (Direção Geral Veterinária,
project approval 014303 - 0420/000/000/2011) and in accordance with the European
Union Directive 86/609/EEC.

3.4.1 Animals
Adult (over 2 months old) male and female mice of DAT:Cre and TH:Cre lines (DA-Cre)
were used for the experiments presented in this Chapter. We observed no differences
in results between the two genotypes and hence combined data across genotypes. Mice
were group housed prior to surgical procedures and single housed following surgery.
Mice were maintained under water deprivation for all behavioral experiments (>70%
body weight from baseline ad libitum period before deprivation).

3.4.2 Behavioral setup
The behavioral box (20 × 17 × 19 cm, model 003102.0001; Island motion corpora-
tion), contained 3 nose ports and a speaker. The behavioral box contained 3 front
walls (135°angle between the center and the side walls) 2 side walls and a back wall
with 90°angle between them. Each of the three front walls contained a nose port
equipped with infrared emitter / sensor pair to access port entry and exit times (model
007120.0002; Island motion corporation). The central nose port was set as the trial
initiation port, and choices were reported at the lateral nose ports. For correct trials,
a 4 µL water reward was delivered using solenoid valves (LHDA1233115H; The Lee
Company, Westbrook, CT). Tones were delivered through a speaker mounted on one
of the side walls (Neo3 PDRW W/BC; Bohlender-Graebener, Bad Oeynhausen, Ger-
many). All sensors and effectors in the behavioral box were read and controlled using a
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microprocessor (Arduino Mega 2560) via a custom circuit board. The task was imple-
mented by the microprocessor, which outputted data via serial a communication port
to a desktop running custom Python based software.

3.4.3 Behavioral task
Mice were trained to categorize interval durations as either short or long by performing
right and left choices as previously described (Gouvêa et al., 2014, 2015). Briefly,
mice self-initiated trials by entering the central nose port, and this action triggered the
delivery of a pair of tones (7500 Hz, 150ms) separated by one of 8 randomly selected
intervals (0.6, 1.05, 1.26, 1.38, 1.62, 1.74, 1.95 and 2.4s). There was a limited window
(∼2-3 weeks) in which to image DA neurons before signal loss. Therefore, with the
goal of maximizing data collected for each stimulus, for fiber photometry experiments
the 1.38s and 1.62s stimuli were omitted. Trial availability was not signalled to the the
animal. Thus, if the animal inserted their snout into the initiation port before the point
that a trial became available, nothing happened. After both tones were played, mice
reported their judgments by entering one of the two laterally located nose ports. For
intervals shorter than a 1.5s category boundary, responses were reinforced at one of the
lateral ports. For intervals longer than 1.5s, responses were reinforced at the opposite
port. Incorrect responses were followed by a white noise burst (150ms) and a time out
(8s). The short/long right/left were counterbalanced across animals. Sessions typically
lasted ∼2 hours. Psychometric functions were fit using a 4-parameter logistic function:

P (x) = (u− l) e
x−b
s

1 + e
x−b
s

+ l (3.1)

Where P (x) is the probability of a long choice as a function of stimulus duration, s
controls the slope, b the inflection point and l and u control the minimum and maximum
values of the curve respectively. Only sessions where performance was ≥ 70% were used
for further analysis.

3.4.4 Surgery

Viral injections

All surgeries were performed with mice under isoflurane anesthesia (1-2% at 1 L/min).
We stereotaxically targeted the SNc bilaterally for all viral deliveries (from bregma:
3.16 mm posterior, 1.4 mm lateral, 4.2 mm ventral) using an automated microproces-
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sor controlled microinjection pipette (Nanoject II; Drummond Scientific Company,
Broomall, PA) with micropipettes pulled from borosilicate capillaries (Drummond Sci-
entific Company, Broomall, PA). Injections were performed at 0.2 Hz frequency pulses,
with 4.6 nL or 9.2 nL injection volumes per pulse. For all injections, the micropipette
was kept at the injection site for 10 min before withdrawal. For experiments targeting
the VTA, all viral injections were performed at the following target coordinates (from
bregma: 3.3 mm posterior, 0.34 mm lateral, 4.2 mm ventral) with a lateral angle of 10°.

hM4D-mediated pharmacogenetic inhibition For this experiment, we in-
jected 0.5 µL of a AAV2.hSyn.DIO.hM4D(Gi).mCherry virus (titer 4.6 × 1012 vg/mL;
University of North Carolina Chapel Hill Vector Core).

Photometry For the photometry experiments, we injected 0.5 µL of a mixture of two
virus: AAV1.Syn.Flex.GCaMP6f (titer 1.71× 1013 gc/mL; University of Pennsylvania
Vector Core) and AAV1.CAG.Flex.tdTomato (titer 5.88 × 1012 gc/mL; University of
Pennsylvania Vector Core) at a 3:1 ratio.

Photoactivation and photoinhibition For the photoactivation experiments,
we injected animals with 1 µL of AAV2/1.EF1a.DIO.ChR2.EYFP (titer 1.11 × 1013
gc/mL; University of Pennsylvania Vector Core). For the photoinhibition experi-
ments, we injected animals with either 1 µL of AAV1.CAG.DIO.ArchT.GFP (titer
4 × 1010 gc/mL; University of North Carolina Chapel Hill Vector Core) or 0.5 µL of
AAV2.EF1a.DIO.eNpHR3.0.EYFP (titer 5.7 × 1012 vg/mL; University of North Car-
olina Chapel Hill Vector Core). Light controls were DA-cre implanted with fibers either
with or without 1 µL AAV2/1.EF1a.DIO.EYFP (titer 1.11 × 1013 gc/mL; University
of North Carolina Chapel Hill Vector Core) injection. All titers were calculated using
qPCR.

Optical fiber implantation

For the photometry and optogenetic experiments, we chronically implanted optical fibers
bilaterally in the SNc (from bregma: 3.16 mm posterior, 1.4 mm lateral, 4 mm ventral for
photometry, 3.9 mm ventral for optogenetic experiments) or in the VTA (from bregma:
3.3 mm posterior, 0.35 mm lateral, 4.2 mm ventral for photometry and optogenetic ex-
periments) a lateral angle of 10°. Analgesia was administered intraperitoneally following
each surgery (buprenorphine, 0.1 mg/kg).
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3.4.5 CNO administration for hM4D mediated inactivation
CNO (10 mg/kg, Tocris Bioscience, Bristol, UK) and saline solutions (0.05-0.1 mL
volume) were injected intraperitoneally, 20 min prior to session initiation. We tested
for a nonspecific CNO effect by repeating the protocol on a separate group of animals
that had not been injected with the AAV2-hM4D(Gi) virus.

3.4.6 Fiber photometry setup
Two lasers (473 nm and 556 nm; Changchun New Industries Tech. Co. Ltd., Changchun,
China) were coupled to individual patchcords (100 µm core diameter, 0.22 NA; Doric
lenses) and connected to an individual collimator adapter each (EFL 4.5 mm, NA 0.50;
Doric lenses) and a neutral density filter (NE30B; Thorlabs), mounted on the main
setup unit. Three dichroic mirrors (Di01-R561-25x36 and FF552-Di02-25x36, Semrock;
T495LP, Chroma) were fixed inside the main unit, allowing for 473 nm and 556 nm light
delivery and GCaMP6f and tdTomato fluorescence detection. The 473 nm and 556 nm
light was coupled into a patchcord (200 µm core diameter, 0.48 NA; Doric lenses) using
a lens (EFL 4.5 mm, NA 0.50) and a rotatory joint (Doric lenses). The patchcord
was mated to one of two chronically implanted optical fibers (200 µm core diameter,
0.48 NA; Doric lenses). Laser intensities at the patchcord tip, before mating to the
chronically implanted fiber, were ∼20 µW. For detection of GCaMP6f fluorescence,
light was collected by the lens, transmitted and reflected by the dichroics before final
filtering and focusing (bandpass: ET525/50m; Chroma, lens: EFL 25.4mm, model
LA1951 - A; Thorlabs) into a photodetector (PDF10A/M; Thorlabs). For detection
of tdTomato fluorescence, light was collected by the lens and transmitted through all
dichroics before final filtering and focusing (bandpass filter FF01-641/75-25; Semrock)
into a second photodetector. Photodetector output was digitized at 1 kHz (NI PCIe-
6351 board via NI BNC-2120) and recorded using custom software in Bonsai (Lopes et
al., 2015). For each mouse, the hemisphere being recorded was alternated daily.

3.4.7 Fiber photometry data analysis
All data analysis was performed with custom MATLAB software (Mathworks). Raw
photometry traces were filtered in the frequency range of 0.2 Hz - 15 Hz. For each
session, ∆F/F was calculated on a trial by trial basis for both GCaMP6f and tdTomato
traces as (F - F0) / F0, where F0 was calculated as the mean across all trials of the mean
fluorescence values within a window of -4 s to -2s before each trial initiation. Robust
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regression using the GCaMP6f and tdTomato ∆F/F was performed and the coefficient
estimates were used to calculate a predicted GCaMP6f ∆F/F based on the observed
tdTomato ∆F/F. This predicted GCaMP6f ∆F/F was then subtracted to the observed
GCaMP6f ∆F/F to calculate the corrected ∆F/F. When pooling data across animals,
each session’s corrected ∆F/F was z-scored using the mean and SD across the entire
session. For splitting trials according to DAergic activity, for each session and interval
duration, distributions were built using each trial’s mean signal between 300ms and
500ms after second tone onset, after linearly regressing out correlations with a pre-first
tone response baseline window spanning -1 to 0.2s relative to first tone onset. These
distributions were then split into terciles. Separability of DA responses between trials
falling into the upper and lower terciles of the second tone response were assessed by
computing the area under the ROC curve at each time point throughout the trial.

3.4.8 RPE model
A simple linear RPE model was fit to the DA response and predicted the amplitude of
a RPE at the time of the second tone:

D =WP P +WS S + const (3.2)

Where D is predicted DA response. P is average expectation of reward which
was determined experimentally, i.e. the measured performance at each interval. S is
temporal surprise, i.e. the inverse subjective hazard rate (Figure 3.10) (Janssen &
Shadlen, 2005):

S = 1
H

(3.3)

To calculateH, we began by calculating the subjective expectation of each individual
stimulus, modeled as a Gaussian with mean at each stimulus duration and SD = 0.15s.
We then summed these subjective expectation Gaussians which is represented as E,
subjective expectation of interval offset. We then calculated the subjective hazard rate,
Ht, that is:

Ht = Et
1− Et

(3.4)

The W ’s are the respective weights, where w ≥ 0 and was determined using MAT-
LAB’s global optimization toolbox. The predicted DA neuron response accounted for
90% of variance in the average data recorded in the SNc and 46% in the average data
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recorded in the VTA. The exact ratio of weights S/(P + S) varied across recordings
and brain area. This ratio was on average 0.52 for the SNc data set, indicating that S
and P were equally represented in the pattern of SNc-DA neuron activity. The ratio
of weights S/(P + S) for the VTA data set was on average 0.14 indicating that P was
mostly represented in the pattern of SNc-DA, with a lower contribution of S.

3.4.9 Trial-by-trial prediction of choice from the dopamine
response

To estimate the probability of animals performing a long choice (PLong) given DAergic
neuron response to the second tone, we used logistic regression. The log odds ratio was
modeled as:

ln
PLong

1− PLong
= B0 ·DAresponse +B1 (3.5)

Where B0 and B1 are the logistic fit parameters (slope and intercept respectively) and
DA response is the response of DAergic neurons to the second tone. The PLong was
recovered by exponentiating both sides of the above equation and solving for PLong:

PLong = 1
e−t , t = B0 ·DAresponse +B1 (3.6)

3.4.10 Electrophysiological recordings
Mice under isoflurane anesthesia (1-2% at 1 L/min). A 480 nm LED (Doric lenses) or
a 473 nm laser (Laserglow Technologies, Toronto, Canada) were used as light source.
An ‘optrode’ was created: optical fiber (200 µm core diameter, 0.48 NA; Thorlabs)
was glued to a platinum-iridium microelectrode (catalog #UEPLEESE1N2M; FHC,
Bowdoin, ME), the tip of which was extended ∼400 µm from the tip of the fiber. Light
power at the tip of the optical fiber was 4 mW for activation and 15 mW for inhibition.
The optrode targeted the SNc (from bregma: 3.16 mm posterior, 1.4 mm lateral, 4.2 mm
ventral) for simultaneous SNc photoactivation and recording. Square light pulses were
delivered at a 10 Hz frequency for 3s, with a 2s interval between each stimulation onset.
Extracellular signals were amplified (model 4000, A-M Systems), high-pass filtered at
100 Hz and digitized at 32 kHz. A custom MATLAB (Mathworks) based software was
used to record and analyze extracellular signals and to control the LED or the laser via
a NI PCIe-6351 board, NI SCB-68 and NI BNC-2090 accessories (National Instruments
Corporation, Austin, TX).
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3.4.11 Optogenetic manipulations during task performance
A laser (473 nm for activation and 556/596 nm for inhibition (Laserglow Technologies,
Toronto, Canada) was coupled to a patchcord (200 nm core, 0.48 NA; Doric lenses),
connected to a splitting patchcord (200 nm core, 0.48 NA; Doric lenses) for bilateral light
delivery through a rotatory joint (FRJ 1×1; Doric lenses) into two chronically implanted
optical fibers (200 nm core diameter, 0.48 NA; Doric lenses). Prior to manipulations
using light during timing behavior, we performed a self-reinforcement assay in each of
the ChR2 injected animals (both in the SNc and VTA groups). The goals for this
assay were: i) have a positive behavioral effect and ii) to define the power levels to use
in the timing task manipulation. Animals were placed in a behavioral box similar to
the one used for training in the timing task but with only two available nose ports.
Interrupting one of the nose ports (active port) would elicit a 500ms pulse train of
20ms individual pulses delivered at 25HZ using the 473 nm laser. Interrupting the
other nose port (inactive port) was inconsequential. In both SNc and VTA animals,
we defined the minimum power that elicited a preference for the active port versus
the inactive port and used that power level for the optogenetic activation during task
performance. For optogenetic manipulations in the context of the timing task, laser
stimulation was delivered randomly in 30% of trials. Starting upon trial initiation, 20ms
duration square pulses were delivered at a 10 Hz frequency for 3s for photoactivation
and a continuous square pulse of 3s for inhibition experiments. Laser power at the
tip of the fiber was on average 4 mW , 15 mW and 40 mW for the 473 nm, 556 nm and
596 nm lasers, respectively. Control animals were tested with the same protocol with
an average laser power of 5 mW for the 473 nm laser and 48 mW for the 596 nm laser.

3.4.12 Immunohistochemistry and microscopy
Histological analysis was performed after all experiments to confirm optical fiber
placement. Mice were anesthetized with pentobarbital (Eutasil, 50 mg/kg intraperi-
toneally; CEVA Sante Animale, Libourne, France) and perfused transcardially with
4% paraformaldehyde (P6148, Sigma-Aldrich). The brains were removed from the
skull, stored for 24 hours in 4% paraformaldehyde, and then kept in PBS for ∼ 1 week
until sectioning. A vibratome (VT1000S, Leica Microsystems, Wetzlar, Germany) was
used to section the brain into 50 µm thick slices that were then immunostained with
antibodies to tyrosine hydroxylase (22941, 1:5000, ImmunoStar) to visualize DAergic
neurons and 49,6-diamidino-2-phenylindole (DAPI, D9542, Sigma-Aldrich) to visualize
nuclei. For the fiber photometry experiments, slices were additionally immunostained
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with an antibody to green fluorescent protein (GFP) (A-6455, 1:1000, Invitrogen) to
amplify the fluorescent signal from cells expressing GCaMP6f. Images were acquired
with a confocal microscope (Zeiss LSM 710, Zeiss) using a 20X objective. Using
stereological procedures (StereoInvestigator, 100 µm2 windows within the SNc, spaced
by 150 µm), we quantified the number of GCaMP6f expressing neurons in the SNc (480
neurons, n = 2 mice). We confirmed high levels of co-localization between GCaMP6f
and tdTomato (90% in DAT-Cre, 84% in TH-Cre) as well as high degree of specificity
of GCaMP6f expression in DA neurons (82% in DAT-Cre, 75% in TH-Cre).

3.4.13 Statistics and model comparison
To select the model that best explained differences in the pattern of the subjects’ judg-
ments between conditions (i.e. photometry: high, medium, low DA; photostimulation:
light, control) we fit models based on a 4 parameter logistic psychometric function de-
scribed in Equation 3.1. We tested models which allowed all possible combinations of
parameters to vary. That is, in a given model, between 0 and 4 parameters were allowed
to vary between experimental conditions. For each model, we calculated the maximized
value of the likelihood function (L) and the BIC. Models with the lowest BIC value are
presented in Section 3.2 as lower BIC values are evidence for the model.

L(θ | x) = P (x | θ) (3.7)

Where x are the observed probabilities of a long choice and Θ are the parameters of the
model (slope, bias, offset and amplitude).

BIC = −2 · ln(L) + k · ln(n) (3.8)

Where k is the number of free parameters to be estimated and n is the number of data
points in the experimental data. Statistical significance was determined using Wilcoxon
sign rank and rank sum tests where appropriate, unless otherwise stated.

Acknowledgments
The experiments presented in this Chapter were designed by Sofia Soares, Bassam Atal-
lah and Joseph Paton. Sofia Soares and Bassam Atallah acquired and analyzed the data.
We thank Alessandro Braga for assistance with behavioral training, Gonçalo Lopes for
assistance with Bonsai and Margarida Duarte for assistance with mouse colonies. We

94



thank Tiago Monteiro, Thiago Gouvêa, other members of the Paton laboratory, Brian
Lau, Eran Lottem, Masayoshi Murakami, Cindy Poo, Alfonso Renart and Thomas
Akam for discussions and/or comments on versions of the manuscript on which part
of this Chapter is based (Soares et al., 2016). We thank Zachary Mainen for support.
We thank the histopathology and vivarium staff from the Champalimaud Scientific and
Technological Platforms for support and animal care.

V. Jayaraman, R. A. Kerr, D. S. Kim, L. L. Looger, and K. Svoboda from the
GENIE (Genetically-Encoded Neuronal Indicator and Effector) Project at the Howard
Hughes Medical Institute’s Janelia Farm Research Campus for providing the AAV-
GCaMP6f through the University of Pennsylvania Vector Core. Viruses for expression
of NpHR3.0 and EYFP are available from the University of North Carolina Vector
Core under a material transfer agreement with K. Deisseroth. Viruses for expression of
GCaMP6f and TdTomato are available from the University of Pennsylvania Vector Core
under a material transfer agreement with the trustees of the University of Pennsylvania
on behalf of J. Wilson.

This work was supported by the following institutions: Champalimaud Foundation;
Portuguese FCT (Fundação para a Ciência e a Tecnologia, SFRH/BD/51895/2012 to
Sofia Soares); European Molecular Biology Organization (Advanced Long Term Fellow-
ship 983-2012 to Bassam Atallah); Marie Curie Actions (FP7-PEOPLE-2012-IIF 326398
to Bassam Atallah); Bial Foundation (188/12 to Joseph Paton) and Simons Foundation
(Simons Collaboration on the Global Brain award 325476 to Joseph Paton).

95





Chapter 4

Task engagement signals in
the basal ganglia

Animals’ choices are a complex function of sensory evidence, prior experience and in-
ternal states. Although psychophysics has been crucial to the study of how judgments
relate to stimulus difficulty, much less is known about the influence of internal states
such as task engagement on animals’ performance. Here, we trained mice on the same
temporal discrimination task described in Chapter 3 and used a generalized linear model
(GLM) to identify behavioral and task-related stimuli that predicted performance and
premature choices. We also recorded the activity of midbrain dopamine (DA) neurons
during task performance and found that activity in a period prior to trial initiation
(pre-trial) was predictive of animals’ performance: the higher the pre-trial DA activity,
the worse the performance. Remarkably, pre-trial DA activity was also higher when
animals responded prematurely than when they waited to complete a trial, indicating
that DA pre-trial activity reflected not simply upcoming performance levels, but a more
general state of task engagement. Surprisingly, similar signals (albeit of opposite sign),
were observed in a number of neuronal types in the striatum, arguing for a global role
of the basal ganglia (BG) in task engagement. Adding this pre-trial signal to the GLM
improved predictions of both performance level and premature behavior, confirming the
relationship between this signal and choice behavior. Together, these results suggest that
two major BG components reflect a task engagement state that, together with current
sensory evidence, predicts animals’ choices.
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4.1 Introduction
Animals integrate sensory evidence in their environment to guide behavior. To care-
fully study the neural circuits that underlie decision-making, experimenters often turn
to psychophysics to describe how decisions depend on sensory input (Parker & New-
some, 1998; Carandini & Churchland, 2013). The power of this approach is that changes
in psychometric curve parameters can be used to infer how measured or imposed neural
activity patterns relate to internal decision variables such as sensitivity or bias (Parker
& Newsome, 1998; Carandini & Churchland, 2013). In such studies, experimenters often
begin by overtraining animals on a given task to reach a stable performance criterion
before any measurement or manipulation. Still, performance in overtrained animals is
somewhat variable, sometimes even for relatively ’easy’ stimuli far from the category
boundary (e.g., Brunton, Botvinick, & Brody, 2013; Znamenskiy & Zador, 2013). Ad-
ditionally, despite this overtraining, animals sometimes fail to maximize reward by not
adhering to task rules, as evidenced by impulsive decisions before the termination of
the stimulus to be discriminated or lack of trial completion. Thus, an open question
remains as to which factors, other than stimulus difficulty, affect choice behavior on
psychophysical tasks.

Beyond task-relevant sensory stimuli, behavior is strongly influenced by an animal’s
internal state. A range of studies have addressed the relationship between states such
as arousal, motivation or engagement, and behavior (Anderson, 2016). Arousal is gen-
erally related to an increase in physiological, autonomic and motor activities (such as
transitions from sleep to wakefulness). Therefore, arousal can be seen as a relatively
global regulator of behavior (Anderson, 2016).

Motivation is described as a combination of homeostatic drive states (such as thirst)
and states driven by external stimuli (e.g., states driven by reward-predicting cues) that
promote goal-directed behaviors (Berridge, 2004; Liljeholm & O’Doherty, 2012; Ander-
son, 2016). For example, one factor that impacts animals’ motivation is the degree
of association between sensory cues and previous rewards. Furthermore, satiety levels
contribute to changes in motivation, and consequently in performance (Berditchevskaia,
Cazé, & Schultz, 2016) and goal-directed behaviors in general, as evidenced by contin-
gency devaluation paradigms (Balleine & Dickinson, 1998; Dias-Ferreira et al., 2009).

Task engagement is another example of an internal state that relates to task per-
formance (Manly, Robertson, Galloway, & Hawkins, 1999; Robertson, Manly, Andrade,
Baddeley, & Yiend, 1997; Smallwood et al., 2004; Smallwood, McSpadden, & Schooler,
2007; Cheyne, Solman, Carriere, & Smilek, 2009). Although many definitions of task
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engagement exist (in many cases relating it to sustained attentional processes), they
share the idea that a core feature of disengagement consists of "reduced allocation of
attentional resources to environmental task-related stimuli" (Cheyne et al., 2009). This
definition mainly derives from studies using human subjects performing tasks similar to
Go/No-Go tasks (Robertson et al., 1997; Manly et al., 1999; Smallwood et al., 2007),
where performance can be complemented with verbal reports to identify trials where
subjects experience "task unrelated thoughts" (Smallwood, Baracaia, Lowe, & Obon-
sawin, 2003; Smallwood et al., 2004; Cheyne et al., 2009). Additionally, a number of
studies have identified behavioral correlates of task engagement, providing a bridge for
the study of this internal state in laboratory animals. Subjects experiencing low levels
of task engagement exhibit a general decrease in performance, an increase in anticipa-
tory/premature behavior, and an increase in choice omission (i.e., failures to report the
occurrence of a stimulus; Manly et al., 1999; Smallwood et al., 2004; Cheyne et al.,
2009). In this Chapter, our use of the term task engagement/disengagement is based on
these ideas, and takes advantage of these behavioral correlates. Although some neural
correlates of arousal (Sakurai, 2007; Taylor et al., 2016) and motivation (Mogenson,
Jones, & Yim, 1980; Wise, 2004) have been identified, less is known about the neural
mechanisms underlying task engagement. How might task engagement be regulated by
the brain to influence behavior?

Midbrain dopamine (DA) neurons have been shown to play an important role in
motor control (Carlsson et al., 1957), reinforcement learning (Schultz et al., 1997) and
timing behavior (Meck, 2006), but they have also been implicated in a broad range
of internal states including arousal (Taylor et al., 2016) and motivation (Mogenson
et al., 1980; Wise, 2004). Additionally, evidence from attention deficit hyperactivity
disorder (ADHD) suggests that DA neurons may also play a role in states beyond
arousal and motivation (Levy, 1991). For example, drugs that target the DAergic
system are routinely used to treat ADHD patients (Castle, Aubert, Verbrugge, Khalid,
& Epstein, 2007), alleviating the symptoms of distractibility, hyperactivity, impulsivity,
poor concentration and poor performance on cognitive tasks (Levy, 1991; Wodka et
al., 2007; Noreika et al., 2013; Gmehlin et al., 2014). However, the details of how
DA neuron activity might relate to these symptoms, and to a general state of task
engagement, remains unknown.

In this Chapter, we investigated the behavioral and neural correlates of performance
in a psychophysical task, using an approach we believe is suited to parse the relative
contributions of task-relevant stimuli, and behavioral variables that correlate with dif-
ferent internal states, to performance. Throughout this Chapter, the term performance
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is used as a measure of behavioral sensitivity, interchangeably with the measure of prob-
ability of a correct choice across all valid trials. First, to better understand the variables
that may influence behavior in this task, we used a generalized linear model (GLM) to
model performance using solely task-relevant stimulus information and behavioral vari-
ables. We found that current stimulus difficulty and response time (RT) were the best
predictors of performance, with minimal effects of trial history and movement-related
variables. We used a similar approach to predict the probability of a premature choice,
and found that a history of premature choices was predictive of impulsive behavior in
the current trial. We then probed the relationship between DA neuron activity in both
the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) and
behavior (either performance or premature choices) in this task using fiber photometry.

We identified a period preceding trial initiation (pre-trial) where activity in both
the cell bodies and axonal projections of DA neurons was predictive of performance.
Additionally, we found that premature choices and missed trials were also predicted by
this pre-trial DA signal, suggesting that DA neurons contribute to a broader state of
task engagement. In addition, we found that a similar relationship between neuronal
activity and task engagement was present in different neuronal types in the striatum,
arguing for a global role of basal ganglia (BG) circuits in task engagement.

Finally, we found that adding these neural signals to our GLM improved predictions
of both performance and premature behavior, confirming that pre-trial activity in stri-
atal and midbrain DA neurons predicts how likely an animal is to adhere to task rules,
make correct decisions, and ultimately maximize rewards.

4.2 Results

4.2.1 A generalized linear model predicts correct and pre-
mature choices

We began by training mice on the same temporal discrimination task described in
Chapter 3 (see left and middle panels of Figure 3.1), where the delay between two tones
was categorized as either shorter or longer than a 1.5s category boundary (Gouvêa et
al., 2014, 2015). Trials were self-initiated when the mouse interrupted a central nose
port and long/short choices were reported at a left/right located noseport. We imposed
an inter-rial interval (ITI) period, after which a new trial became available for initiation.
The requirement for mice to self-initiate trials ensured a certain level of engagement in
task performance. Even so, we observed that animals’ performance was variable on a
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Figure 4.1. Variable performance in a temporal discrimination task.
Top - Single session example. Dots represent single trials and solid lines illustrate the
running average of the probability of either a correct choice (black) or a premature
choice (gray). Bottom left - Same as middle panel of Figure 3.1 illustrating a logistic
function fit to the daily (gray) and average (black) performance of an example mouse
(10 sessions). Bottom right - Mean RT across 15 sessions of an example animal, split
by correct or incorrect choices (green or red traces, respectively). Error bars, standard
error of the mean (SEM).

trial-by-trial basis (Figure 4.1, top panel, black curve). An additional layer of variability
was observed in cases where animals failed to adhere to task rules. There were three
general types of trials in this task: valid, premature and missed. If a mouse waited for
the second tone to report its choice, the trial was labeled as valid and the choice could
be rewarded or not depending on whether it was correct or incorrect (Figure 4.1, top
panel, green and red dots, respectively). If the animal displayed impulsive-like behavior
and did not wait for the second tone before choosing one of the lateral ports, the trial
was labeled as premature and was not rewarded (Figure 4.1, top panel, gray dots and
gray solid line). Finally, in a minority of trials, animals initiated a trial but failed to
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Figure 4.2. A generalized linear model predicts correct and premature
choices. Top left - For each mouse, a GLM was built to predict correct choices. The
model was cross-validated (see Section 4.4.5 for details) and the mean of each coefficient
value across all cross-validations was calculated per animal. Dots represent the mean
across mice of the coefficient values for each predictor variable used in the GLM (n = 10
mice). Error bars, SEM. Top right - Probability of a correct choice [P(correct)] pre-
dicted by the model versus P(correct) in the data. Each color represents a single animal
(10 mice). Each dot of the same color represents the mean P(correct) calculated in a
bin of 30 trials. For this binning, single trials were sorted in ascending order of model
prediction values. Bottom - Same as panels on top but for GLMs predicting premature
choices, using distinct predictors (see x axis in bottom left panel).
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perform a choice within 5s of the second tone being played (Figure 4.1, top panel, blue
dots). These trials were labeled as missed and were also not rewarded.

In this task, we observed trial-by-trial variability in the probability of correct and
premature trials. We sought to identify the factors that contribute to this variability.
We started by assessing performance as a function of stimulus identity, since the cur-
rent stimulus should be the main factor determining choice for optimal performance.
As described in Chapter 3, the probability of a long choice was well described by a
psychometric function (Figure 4.1, bottom left panel): performance was nearly optimal
on the shortest and longest intervals, but choices became more variable as the interval
durations approached the category boundary. In addition, we found that the RT, or
the time between the second tone presentation and choice, varied systematically with
stimulus and outcome (Figure 4.1, bottom right panel). RTs were shorter for correct
trials when compared to incorrect trials.

To identify variables that related to performance on a trial-by-trial basis, and to
quantify their relative contributions to performance, we built a GLM for each animal
(see Section 4.4.5 for details), in which we estimated animals’ performance based on
eight predictors (Figure 4.2, top left panel, x axis). The first obvious candidate was the
stimulus identity on the current trial, since performance depends on stimulus difficulty
(Figure 4.1, bottom left panel). The second predictor in this model was the RT, a vari-
able that also covaried with performance (Figure 4.1, bottom right panel). The third
and fourth predictors were related with the history of past rewards: namely the reward
outcome and premature behavior on the previous trial. The fifth, sixth and seventh
predictors described animals’ behavior in a pre-trial period (the 2 seconds leading up
to trial initiation): the rate of nose poking in the initiation port, the latency to initiate
a trial (the time from trial availability to trial initiation), and the euclidean distance
between the animal’s trajectory in the pre-trial period of each trial and the mean tra-
jectory in this period across trials. The poke rate and latency to initiate trials can be
seen as proxies for an animal’s motivation to initiate a trial, and the distance to the
mean trajectory is used here as a metric for motor output consistency in this pre-trial
period. Lastly, the eighth predictor of the model corresponded to the fraction within
a session where each trial occurred, since animals’ performance could vary as animals
become satiated across a session.

We found that in all animals the current stimulus identity and the respective RT
were the best predictors of performance (Figure 4.2, top left panel). Other predictors
(including past rewards/choices) contributed much less to changes in performance than
the evidence presented in the current trial, and in some animals were even excluded
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from the model by regularization (see Section 4.4.5). Our GLM predicted performance
above chance levels (Figure 4.2, top right panel, see Section 4.4.5).

These results indicate that although there was a small influence of trial history and
other factors on performance, mice mostly relied on the current stimulus identity to
solve the task, which is the strategy they should adopt in order to maximize rewards.
In spite of this, animals did not always adhere to task rules, as evidenced by the existence
of premature and missed trials. Missed trials were harder to model due to their rare
occurrence, but premature trials were more common. Therefore, we built an additional
GLM per animal to predict premature choices using the subset of predictors from the
model described above that were applicable for a premature choice scenario (Figure 4.2,
bottom left panel, x axis). We found that the best predictor of a premature response was
a premature choice on the previous trial, outweighing the effects of previous rewards,
movement or motivation-related predictors (Figure 4.2, bottom left panel). As was the
case for predictions of performance, this GLM also predicted premature choices above
chance levels (Figure 4.2, bottom right panel).

4.2.2 Midbrain DA neuron pre-trial activity reflects task
engagement

DA neurons have been implicated in a range of internal states, such as arousal (Taylor
et al., 2016), motivation (Mogenson et al., 1980; Wise, 2004) and attention (Levy,
1991). We therefore turned to the midbrain DAergic system and began by recording the
calcium activity of DA neurons in both the SNc and the VTA during task performance,
using fiber photometry as described in Chapter 3. Interestingly, we observed a high
level of variability in DA neuron activity during the pre-trial period, and we therefore
asked how this variability related to performance in the upcoming trial. To answer this
question, we split trials into terciles of pre-trial DA neuron activity in a similar fashion
as described in Chapter 3, but now using a 2 second window before trial initiation as
our window of interest. This allowed us to identify trials in which pre-trial DA neuron
activity was high, medium or low for each session (Figure 4.3). We then selected only
valid trials, and plotted the probability of a long choice as a function of interval duration
for trials in the high (purple), medium (black) or low (green) tercile (Figure 4.4, left
panel). Surprisingly, we found that pre-trial DA neuron activity was inversely related
with performance: the higher the activity, the poorer the performance. This result
was robust across animals and indicates that the activity of DA neurons prior to trial
initiation is predictive of animals’ performance in the upcoming trial.
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Figure 4.3. Pre-trial DAergic activity is variable. Left - Average DA neuron
response in each tercile of pre-trial activity for the 1.74s interval stimulus (10 mice).
Shading, SEM. Low, middle and upper terciles are color coded in green, black and
purple, respectively. This color code will be kept throughout this Chapter. Right - As
in left but for all six interval durations; data shown on the left are outlined in gray.

We observed the same relationship between DA pre-trial activity and performance
independently of whether activity was recorded in the SNc or in the VTA (Figure 4.4,
right panel), suggesting that the relationship between midbrain DA neuron activity and
performance is a global functional signal carried by subpopulations of midbrain DAergic
neurons with distinct projection targets. This raised the question of whether this rela-
tionship was present in the main output areas of the SNc and VTA, respectively, the DS
and the NAc. To answer this question we again expressed GCaMP6f in midbrain DA
neurons, but now aimed optical fibers at either DS or NAc (Figure 4.5) and recorded
the activity of DAergic projections in these areas. We observed that the relationship
between pre-trial DA activity and performance was indeed present at DAergic termi-
nals in both DS and NAc (Figure 4.4, right panel), demonstrating that this pre-trial
performance-related activity is a global signal that reaches multiple output target areas
of midbrain DA neurons.

The data shown so far indicates that pre-trial DA activity is inversely related to
animals’ performance. However, we wondered whether this relationship might reflect a
more general state of task engagement. We operationally define the internal state of
task engagement as one where animals initiate and complete trials with high levels of
performance and low levels of impulsivity. Conversely, low task engagement is charac-
terized by either poor performance, impulsive behavior (high probability of premature
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Figure 4.4. Pre-trial DAergic activity negatively correlates with performance.
Left - Psychometric curves constructed using trials from each tercile of DA neuron activ-
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striatum (DS) and nucleus accumbens (NAc)]. Curves are the maximum-likelihood fits
of logistic functions with the lowest bayesian information criterion scores (n = 24769
trials, 10 mice). Error bars, 95% confidence interval (CI). Right - Slope (the log 1

s
, where

s is the parameter that controls the slope of the psychometric curve, see Equation 4.1
in Section 4.4.3) is plotted for each tercile of DA activity in each data group of animals
where optical fibers were aimed either at the cell bodies in SNc (n = 7 mice) or VTA
(n = 4 mice), or at their main projection sites in DS (n = 3 mice) or NAc (n = 3 mice).
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Figure 4.5. Schematic of the photometry surgical procedure targeting DAer-
gic projection sites. In a subset of animals, at the same time as SNc and/or VTA
adeno-associated virus (AAV) injections and optical fiber implantation, we additionally
implanted optical fibers aiming at the dorsal or ventral striatum. After 1-2 weeks of
recovery, mice were retrained on the temporal discrimination task and the Ca2+ activity
of DAergic neurons was recorded during task performance.
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Figure 4.6. Pre-trial DAergic activity is directly correlated with premature
choices and missed trials. Left - Mean DAergic activity aligned on trial initiation,
split by the outcome that will follow seconds later (valid trials in black, premature trials
in orange and missed trials in gray). Shade, SEM (n = 10 mice). Right - The mean
percentage of premature choices over all trials in each tercile of DA neuron activity.
Error bars, SEM (n = 10 mice).

trials) or even lack of trial completion (missed trials). If DA neurons reflect this gen-
eral state, and given the inverse relationship between pre-trial DA neuron activity and
performance, we hypothesized that pre-trial DA activity should be higher in premature
and missed trials than in valid trials. We tested this hypothesis by plotting DA activity
in valid, premature and missed trials, and found that pre-trial DA neuron activity was
elevated in premature and missed trials when compared to valid trials (Figure 4.6, left
panel). Consistent with this result, we found that the higher the pre-trial DA neu-
ron activity, the higher the probability of premature trials (Figure 4.6, right panel).
These results suggest that pre-trial DA neuron activity relates to more than simply the
probability of an animal performing trials correctly, but reflects a broader state of task
engagement, predicting the probability of both adherence to task rules and accurate
performance.
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4.2.3 Pre-trial activity in dMSNs and iMSNs also reflects
task engagement

The results presented in the previous Section indicate that pre-trial midbrain DA ac-
tivity reflects a state of task engagement. Given the reciprocal connectivity patterns
between striatal and midbrain DA neurons, we hypothesized that a similar pre-trial
signal might be present in striatal neurons. To answer this question, we recorded the
calcium activity of medium spiny neurons (MSNs), a γ-aminobutyric acid (GABA)ergic
population of projection neurons that represents > 95% of striatal neurons. These neu-
rons are subdivided into direct pathway MSNs (dMSNs) and indirect pathway MSNs
(iMSNs), depending on whether their axonal projections directly target the substantia
nigra pars reticulata (SNr) and the internal segment of the globus pallidus (GP), or if
they do so indirectly through the subthalamic nucleus (STN) and external segment of
the GP (Kreitzer, 2009). These two subpopulations can be genetically targeted since
dMSNs mainly express D1 type DA receptors, while iMSNs mainly express D2 type
DA receptors and the adenosine A2A receptor (Kreitzer, 2009). We used the same Cre-
mediated viral expression as described above, but used transgenic mice that express Cre
specifically in either dMSNs or iMSNs. This approach allowed us to record the calcium
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Figure 4.7. Schematic of the photometry surgical procedure targeting MSNs
in either the direct or indirect pathway. AAV injections and optical fiber implan-
tation in the DS of mice expressing cyclic recombination enzyme (Cre) in either direct
pathway MSNs (D1-Cre) or indirect pathway MSNs (A2a-Cre). After 1-2 weeks of re-
covery, mice were retrained on the temporal discrimination task and the Ca2+ activity
of DAergic neurons was recorded during task performance.
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Figure 4.8. A generalized linear model also predicts correct and premature
choices in dMSN-Cre and iMSN-Cre mice. Same as Figure 4.2 but for animals
in which Cre is expressed in either direct pathway MSNs (dMSNs) or indirect pathway
MSNs (iMSNs) (n = 8 mice).
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Figure 4.10. Pre-trial MSN activity is positively correlated with performance.
Same as Figure 4.4 but for recordings performed in the DS from either dMSNs or iMSNs
(n = 8 mice, 4 in each pathway).

activity of dMSNs and iMSNs while mice performed a similar version of the temporal
discrimination task described previously (Figure 4.7, see Section 4.4.3).

We first applied a similar GLM to that in Figure 4.2 to the behavioral data of
this different cohort of animals and found identical results to those from DA animals.
Specifically, in animals expressing GCaMP6f in MSNs, the best predictors of perfor-
mance were current stimulus identity and response time (Figure 4.8 top left panel),
and the best predictor of premature choices was whether the previous choice was also
premature (Figure 4.8 bottom left panel).

This similarity between DA and MSN animal groups suggests that their behavioral
strategies to perform the task are comparable. Similarly to the data in Figure 4.3,
both dMSN and iMSN activity displayed variability in the pre-trial period (Figure 4.9).
Surprisingly, pre-trial activity in both MSN pathways was positively correlated with
performance - the higher the pre-trial activity in MSNs, the better the performance
(Figure 4.10). The positive correlation between MSN activity and performance con-
trasts with the negative correlation between DA neuron activity performance (compare
Figures 4.4 and 4.10), and suggests that levels of performance are not encoded in a sim-
ilar fashion across brain areas. Instead, some transformation must occur between the
activity of neurons in these brain areas to explain the opposite sign in their relationship
to performance.
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Figure 4.11. Pre-trial MSN activity is negatively correlated with premature
choices. Same as Figure 4.6 but for recordings performed in the DS from either dMSNs
or iMSNs (n = 8 mice). Missed trials are not plotted because they were even more rare
than in the DA-Cre group of mice.

In addition, we predicted based on the results shown in Figure 4.6 that if MSN
activity predicts a general state of engagement, then we should observe lower MSN
activity in premature trials than in valid ones (there were not enough missed trials in this
data set to be analyzed). Indeed, Figure 4.11 displays this negative relationship between
pre-trial MSN activity and premature choices, again consistent with the hypothesis that
both midbrain DA neurons and MSNs in the striatum reflect task engagement signals.

4.2.4 Generalized linear model predictions are improved
by including pre-trial neural activity

If the pre-trial activity patterns shown in Figures 4.3 and 4.9 are relevant for predicting
performance and premature behavior, we should observe an improvement of the models
shown in Figures 4.2 and 4.8 if we add pre-trial DA neuron or pre-trial MSN activity as
a predictor. To test this hypothesis, we ran four additional GLMs in which we added
pre-trial DA neuron or MSN activity as a predictor of performance or of premature
choices (Figure 4.12). We compared the performance of these new models that included
pre-trial activity with previous models without neural activity as an additional predic-
tor. We found that the coefficient values for the pre-trial DA neuron or MSN activity
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Figure 4.12. Updated generalized linear models incorporating pre-trial neural
activity to predict correct and premature choices. Top left - Same as Figure 4.2
but with the mean DA neuron pre-trial activity in the 2s window leading up to trial
initiation as an additional predictor of performance. Top right - Same as Figure 4.2 but
with the mean pre-trial activity in the 2s window leading up to trial initiation as an
additional predictor of premature choices. Bottom - Same as Figure 4.8 and top panels
but for animals where pre-trial activity was recorded from either dMSNs or iMSNs.
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Figure 4.13. Pre-trial activity of DA neurons and MSNs improves generalized
linear model predictions of performance and premature choices. Top left -
Deviance explained by the GLM shown in Figure 4.12, which includes pre-trial DA
neuron activity as a predictor of performance, versus that explained by the GLM shown
in Figure 4.2, which does not include DA neuron activity as a predictor. Each dot
represents one mouse (n = 10 mice). Top right - Same as top left panel but for models
predicting premature choices. Bottom - Same as top panels for models including/not
including activity of MSNs as a predictor (n = 8 mice).
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predictors were comparable to other significant predictors such as RT or interval identity
(Figure 4.12). As such, the fraction of deviance explained (see Section 4.4.5 for details)
by the models with pre-trial neural activity as a predictor was larger than that explained
in models without pre-trial neural activity in both the midbrain DAergic system and
in the striatum (Figure 4.13, dots lying below the unity line indicate model improve-
ment by adding pre-trial neural activity), indicating that pre-trial activity improves our
predictions of both task performance and premature behavior.

4.2.5 Consistency of striatal population dynamics during
the delay period reflects task engagement

The results presented so far in this Chapter reveal an interesting correlation between
multiple BG neuronal types and behavioral proxies of task engagement, but they simul-
taneously raise a number of questions.

Firstly, how is the relationship between pre-trial activity and performance inverted
between DA neurons and MSNs? There are many possible scenarios consistent with
these data (see Section 4.3), one of which involves DA neuron pre-trial activity im-
pacting that of MSNs. We first considered the possibility that DA neurons might act
directly through D1/D2 type DA receptors mainly expressed in dMSNs and iMSNs, re-
spectively. However, this hypothesis is not parsimonious since DA has opposing effects
on these cell types, depolarizing dMSNs and hyperpolarizing iMSNs (Kreitzer, 2009).
Therefore, the pre-trial activity of dMSNs should, like that of DA neurons, be inversely
related with performance; however, our results indicate a positive relationship between
dMSN activity and performance (see Figure 4.10). We then considered the hypothesis
that DA neurons might act indirectly on MSNs through striatal interneurons, which
could induce the same effect in both dMSNs and iMSNs. As a first step towards test-
ing this hypothesis, we took advantage of an existing dataset in our lab in which the
activity of striatal neurons was recorded using electrophysiology in rats performing this
temporal discrimination task (Gouvêa et al., 2015). Because distinct neuronal types
in the striatum exhibit distinct baseline firing rates and waveform properties (Berke,
Okatan, Skurski, & Eichenbaum, 2004; Kreitzer, 2009; Gage et al., 2010), we used these
properties to identify putative MSNs (pMSNs) and putative interneurons (pInts) (see
Section 4.4.9 for details). We observed that the vast majority of striatal neurons (in
particular pMSNs) were silent during the pre-trial period. PInts, however, due to their
higher average firing rates, were more active during the pre-trial period. This allowed
us to separate trials into octiles based on the pre-trial pInt activity. We compared
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Figure 4.14. Pre-trial activity of putative striatal interneurons is negatively
related with performance. Psychometric curves constructed using trials from the
extreme octiles of putative interneuron pre-trial activity. Curves are the maximum-
likelihood fits of logistic functions with the lowest bayesian information criterion scores.
Each plot represents one rat. Error bars, 95% CI.

performance between trials in the upper and lower octiles and found that pre-trial pInt
activity in 2 out of 3 rats was inversely related with performance (Figure 4.14), the same
relationship as that of DA neurons. This observation is suggestive of a scenario where,
in the pre-trial period, DA neurons can potentially impact MSN activity indirectly by
exciting, for example, parvalbumin positive, fast spiking interneurons (FSIs), which in
turn have a hyperpolarizing effect on both dMSNs and iMSNs (Kreitzer, 2009). In fact,
given the details of our selection criteria, as well as previous work (e.g., Gage et al.,
2010), the population of pInts selected here may indeed be largely comprised of FSIs.

Secondly, how might a signal that occurs in a period before trial initiation influence
choices that occur several hundreds of milliseconds to seconds later? From the work of
Gouvêa et al. (2015), we know that the population dynamics of striatal neurons in this
task resemble the sequential temporal patterns described in Chapter 2. Additionally,
Gouvêa et al. (2015) found that subjective time could be decoded from the activity
of striatal ensembles during the delay period (the period between the first and sec-
ond tones). Yet, the photometry technique employed here (see Figure 4.9) sums the
activity of many neurons, thereby obscuring these single neuron dynamics during the
delay period. To explore these single neuron dynamics and their relationship to task
engagement, we re-analyzed the dataset in Gouvêa et al. (2015) during the delay period.
For each trial, we calculated how much the striatal population state deviated from the
mean population state across all trials (i.e., outlierness, see left panel of Figure 4.15 and
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Figure 4.15. Trial-by-trial consistency in striatal neuron dynamics positively
correlates with performance. Left - Cartoon illustrating the selection of outlier
trials. Illustration of a low-dimensional representation of population state (i.e., the
first two principal components, PCs) during one interval duration. For each interval
duration, the euclidean distance between each trial’s neural trajectory and the average
trajectory across trials in a given interval duration was used as a measure of outlierness
(Section 4.4.9 for details). Example outlier trials are color coded in purple, and a
typical trial (i.e., similar to the average neural state) is color coded in green. Right -
The performance of rats on trials falling in the upper octile of the outlierness distribution
(purple) are plotted and compared with performance from all other trials (i.e., typical
trials, green). Data from the 3 rats in the data set from Gouvêa et al., 2015.

Section 4.4.9 for details). We found that outlier trials (i.e., trials where neural dynamics
deviated from the average trajectory) were negatively correlated with performance - the
more divergent a trial’s trajectory is, the worse the rat’s performance (Figure 4.15, right
panel). These data demonstrate that delay period activity in striatal populations is also
predictive of performance, suggesting one possible way in which pre-trial activity may
relate to activity during the decision period in striatal neurons.

4.3 Discussion
The data presented in this Chapter highlight behavioral and neural correlates of a state
of task engagement. Specifically, animals’ performance levels and general adherence to
task rules were correlated with the average activity of midbrain DA neurons, striatal
MSNs and pInts in a period preceding trial initiation. Moreover, delay period activity in
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striatal neurons was also predictive of performance, highlighting a possible link between
striatal pre-trial activity and activity during the decision period.

These results add to the known function of DA neurons in regulating states such as
arousal (Taylor et al., 2016) and motivation (Mogenson et al., 1980; Wise, 2004), and
suggest a basis for the contribution of the BG to a state of task engagement. Here,
task engagement is mainly characterized by high levels of performance and low levels
of premature behavior. Conversely, lack of task engagement is characterized by poor
performance, impulsivity (high probability of premature trials) and even failure to com-
plete trials (missed trials). Interestingly, these traits are hallmarks in the diagnosis of
ADHD, a disorder that has been linked to DAergic function (Levy, 1991; Castle et al.,
2007). Drugs administered to treat symptoms of ADHD generally act by elevating the
levels of DA in the brain. At first glance, this may seem to contradict our observation
that low DA neuron activity relates to high task engagement. It is important to note,
however, that the relationship between tonic/phasic activity of DA neurons and DA
release remains unclear and complex. In fact, due to feedback mechanisms mediated by
D2-type auto-receptors, DA agonists have been shown to inhibit the firing of DAergic
neurons (Bunney & Aghajanian, 1978), providing a possible explanation for the appar-
ent discrepancy between our results and general ADHD treatments. Additionally, our
finding that low MSN activity is associated with decreased performance and increased
impulsivity is also consistent with human studies that report low striatal activity in
ADHD patients (Lou, Henriksen, Bruhn, Børner, & Nielsen, 1989).

In this study, we monitored DA neuron activity in the context of a temporal dis-
crimination task. It remains unclear, however, whether the relationship between DA
neuron activity and task engagement is present in other perceptual decision-making
tasks. Other signals carried by DA neurons, such as reward prediction error (RPE)
or motivation-related signals, have been described in a wide range of tasks and animal
species (Wise, 2004), and have also been observed in both SNc and VTA neurons. Due
to the prevalence of this signal across the BG, as well as the potential relevance of a
general task engagement signal, we predict that a similar signal might be found in other
behavioral contexts.

Although fiber photometry allows one to record the simultaneous activity of many
neurons within a target area, it cannot resolve the activity of single neurons. While it
remains unclear if this pre-trial activity difference is present in all midbrain DA neurons
or only in a subset of them, the fact that we observe this signal in both SNc-DA and
VTA-DA neurons suggests that the signal is widespread. In contrast, other response
patterns in the same task but in a different trial epoch that reflect and control temporal
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judgments are specific to SNc-DA neurons (see Chapter 3). This suggests that, while
SNc-DA and VTA-DA neurons may exhibit differences in RPE coding, task engagement
signals are similarly represented in these populations.

The presence of neural correlates of task engagement in striatal neurons raises the
question of how the signals in distinct BG nuclei relate to each other. Although our
results are consistent with a scenario in which DA neurons may indirectly impact MSN
activity through striatal interneurons, several other possibilities could also explain our
data. For example, through their reciprocal connectivity patterns (Watabe-Uchida et
al., 2012), it is possible that MSNs could themselves be impacting DA neuron pre-trial
activity. Since MSNs provide inhibitory input onto DA neurons, this could explain the
inversion of sign between MSNs and DA neurons in their relationship with task engage-
ment. Further experiments will be required to fully dissect the circuit-level mechanisms
underlying the interactions between distinct BG nuclei in the context of task engage-
ment. Along these lines, we performed preliminary experiments in which the activity of
both midbrain DA and striatal neurons was simultaneously recorded during task per-
formance (data not shown). Data from such experiments is likely to elucidate some of
these mechanisms.

Finally, the observation that animals’ performance is diminished when striatal pop-
ulation dynamics are more variable suggests that stereotypic neural dynamics might
be associated with states of engagement, while ’wandering’ neural dynamics, which are
more variable with respect to the average dynamical pattern, can be a sign of task
disengagement.

Taken together, the data presented in this Chapter argues for a role of multiple
BG components in the process of task engagement. Task engagement, in turn, is com-
bined with current sensory information to guide animals’ decisions, adding to the list
of internal states that are modulated by these subcortical nuclei.

4.4 Materials & Methods
All experiments were approved by the Champalimaud Centre for the Unknown Bioethics
Committee and by the Portuguese Veterinary General Board (Direção Geral Veterinária,
project approval 014303 - 0420/000/000/2011) and in accordance with the European
Union Directive 86/609/EEC.
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4.4.1 Animals
Adult (over two months old) male and female mice of dopamine transporter (DAT):Cre
and tyrosine hydroxylase (TH):Cre lines (DA-Cre) were used for the photometry record-
ings of midbrain DA neurons presented in this Chapter (n = 10 mice). Adult (over two
months old) male and female mice of D1:Cre (Gensat - EY217, n = 4 mice) and A2a:Cre
(Gensat - K139, n = 4 mice) lines were used for the photometry recordings of dMSN
and iMSN activity, respectively. Mice were group housed prior to surgical procedures
and single housed following surgery. Mice were maintained under water deprivation for
all behavioral experiments (>70% body weight from baseline ad libitum period before
deprivation). We also re-analyzed data from an existing data set in the lab (Gouvêa et
al., 2015). In this study, three male Long-Evans hooded rats (Rattus norvegicus, 6-24
months old) were used for neural recordings using electrophysiology.

4.4.2 Behavioral setup
Mice For the mouse data sets, the behavioral setup was the same as described in
Chapter 3, Section 3.4.2.

Rats The behavioral setup for the acquisition of the rat data set in Gouvêa et al., 2015
is described below. Behavioral boxes consisted of a plastic container (IKEA, Alfragide,
Portugal) with a speaker (Cover Industrial Co., Guangdong, China) and three noseports
(Island Motion), each containing a visible LED and an infra-red emitter/receiver pair
for detecting presence at the noseport. Additionally, the choice ports contained a metal
tube connected to a solenoid valve for water reward delivery. Valves were calibrated to
deliver 25µl of water per reward event. Interfacing with these sensors and effectors was
achieved in the same way as described in Chapter 3, Section 3.4.2.

4.4.3 Behavioral task
Mice and rats were trained to categorize interval durations as either short or long by
performing right and left choices as previously described (see Chapter 3, Section 3.4.3
as well as Gouvêa et al., 2014, 2015). The only exception was that animals from the
D1:Cre and A2a:Cre genotypes were additionally required to maintain fixation in the
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central noseport for the whole delay period between first and second tone presentations.
Psychometric functions were fit using a 4-parameter logistic function:

P (x) = (u− l) e
x−b
s

1 + e
x−b
s

+ l (4.1)

Where P (x) is the probability of a long choice as a function of stimulus duration, s
controls the slope, b the inflection point and l and u control the minimum and maximum
values of the curve respectively. Only sessions where performance was ≥ 70% were used
for further analysis.

4.4.4 Video acquisition and tracking
Video data of animals performing the task was acquired using high-speed cameras (Flea3
FL3-U3-13S2C-CS, Point Grey Research Inc., Richmond, Canada) at 120 frames per
second. Both the acquisition and offline tracking of each animal were performed using
Bonsai (Lopes et al., 2015), which was also used for the acquisition of photometry data
as mentioned in Chapter 3, Section 3.4.6. We extracted the position of the center of
mass of each animal from the raw videos, by performing background subtraction and
thresholding the image so that the animal’s body appeared as an isolated element from
any other component in the behavioral box. For each frame, we took the centroid of this
isolated element and tracked its x and y positions, building a trajectory of the animals’
movements in xy coordinates.

4.4.5 Generalized linear models
We fit logistic GLMs to two discrete response variables: i) performance (correct and
incorrect trials) or ii) premature behavior (premature trials and valid trials).

Predictor variables to explain correct choices Single-trial measures of be-
havioral and task-related variables were used. For the model using correct choices as a
response variable, the initial GLM included 13 predictor variables. The first 6 variables
(Int1, Int2, ..., Int6) corresponded to the six possible stimulus durations in each trial
(value of one to the stimulus presented in that trial and zero for all others). The 7th

variable (RTime) was the RT of each trial. Because RTs vary with interval duration
(see Figure 4.2), we normalized RTs by z-scoring RT values by interval duration. The
8th variable (PrevRew) corresponded to whether the previous trial was rewarded (one)
or not (zero). The 9th variable (PrevPrem) corresponded to whether the previous trial
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resulted in a premature choice (one) or in a valid one (zero). The 10th variable (Poke
rate) corresponded to the number of central nose port interruptions the animal per-
formed in a 4s window leading up to trial initiation. The 11th variable (LatToInit)
corresponded to the time from trial availability to trial initiation. The 12th variable
(EUDist) corresponded to the eucledian distance taken between each single trial trajec-
tory of the animal in the behavioral box and the mean trajectory of the animal in that
session (trajectories were taken in a window of 2s before trial initiation). This variable
can be interpreted as a measure of the consistency in xy trajectory traversed by the
animal in the behavioral box during the pre-trial period. The 13th variable (FracSess)
corresponded to the point in a session at which a given trial occurred (each individual
trial number divided by the total number of trials in the session). For the models where
pre-trial neural activity was included as a predictor variable, this predictor consisted
of the average activity measured in a 2s window before trial initiation. All of these
variables were constructed on a session-by-session basis and concatenated per animal.

Predictor variables to explain premature choices Single-trial measures of
behavioral and task-relevant variables were used as described above, but some measures,
such as interval duration or RT, were not appropriate since the upcoming trial to be
predicted would could be premature. Therefore, we used only the applicable subset of
the variables described above to predict premature choices: previous premature trials,
previous rewarded trials, latency to initiate a trial, fraction of session where a given
trial occurred, pre-trial poke rate and consistency in behavioral xy coordinates.

GLM fitting We used the lassoglm package in MATLAB (Mathworks) to fit all
the GLMs. For models that estimated performance levels, we used a binary vector of
choice outcomes as the response variable (correct = 1; incorrect = 0). For models
that estimated premature choices, we used a similar binary vector (premature = 1;
not_premature = 0). Each session was divided into two groups: a training group with
80% of the total amount of trials, and a testing group with the remaining 20% of trials.
Coefficients were fitted for each animal separately using coordinate descent. We learn
the coefficients β by minimizing the cost function:

min
β0,β

( 1
N
Deviance(β0, β) + λPα(β)

)
(4.2)

where the Deviance was calculated using the log ratio of the response variable in the
training group yi (e.g., 1 if the trial was correct or premature, 0 otherwise) and the
model prediction µi for all i = 1 : N trials in the training group. This ratio was
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calculated over the positive and null values of the response variable:

Deviance = 2
N∑
i=1

(
yilog

(
yi
µi

)
+ (1− yi)log

( 1− yi
1− µi

))
(4.3)

The cost function in Equation 4.2 combines the model’s Deviance with a penalization
term λPα(β) that corresponds to elastic net regularization:

Pα(β) =
P∑
j=1

(
(1− α)

2 β2
j + α|βj |

)
(4.4)

where, for all j = 1 : P predictor variables, a parameter α interpolates between the
L1 (α=1) or the L2 (α=0) norm of β. We selected an α=0.95 which allowed for some
predictors to be excluded from the model1 while preventing degeneracy concerns if
predictor variables are strongly correlated. The parameter λ in Equation 4.2, which
effectively scales the impact of the penalization Pα(β), was chosen by tenfold cross-
validation of the training group. After learning the coefficients β using the training set,
we evaluated the performance of the model by using the testing group (remaining 20%
of trials to validate the model) and calculating the model’s Deviance (Equation 4.3)
but where yi was now the observed choice in the testing group. This entire procedure
was repeated 100 times, generating a distribution of Deviance values calculated using
only the testing groups of trials.

GLM analysis These Deviance values calculated using the test data set were com-
pared to the Deviance of a null model (i.e., where the same test data set is used but
the model only includes the β0 bias coefficient parameter). This allowed us to calculate
the Devianceexplained by the current model:

Devianceexplained = 1− Deviancecurrentmodel
Deviancenullmodel

(4.5)

To test whether GLM predictions explained the test data sets significantly
above chance levels, we compared the models’ Devianceexplained to a distribution of
Devianceexplained by models in which the vector of response variables (correct choices
or premature choices) were shuffled with respect to the predictor variables. For all
animals and all models, the distribution of deviances was significantly different that

1Although several predictors were excluded from the models in different runs of the cross-
validation procedure, for descriptive purposes we maintained all predictors in the plots shown
in this Chapter.

123



that of the shuffled model (n = 100 per distribution, per model, per animal, p < 0.0001
in all of them).

4.4.6 Surgery
Mice Surgical procedures were performed as described in Chapter 3, Section 3.4.4
with 2 exceptions. Firstly, when fibers were aimed at the DS or NAc for photometry
recordings of DA neuron projections at these sites, the viral injections were performed
in the midbrain as described but the optical fibers were aimed at distinct coordinates
(for DS - from bregma: 0.74 mm anterior, 1.5 mm lateral, 2.4 mm ventral; for NAc -
from bregma: 1.68 mm anterior, 1.25 mm lateral, 4 mm ventral).

Secondly, when fibers were aimed at DS for photometry recordings of dMSN or
iMSN activity, we injected 0.3 µL of a mixture of the same AAV1.Syn.Flex.GCaMP6f
and AAV1.CAG.Flex.tdTomato virus described in Chapter 3, Section 3.4.4 bilaterally.
However, for this experiment, we injected a 5:1 ratio of these viruses in distinct coordi-
nates (from bregma: 0.5 mm anterior, 2.1 mm lateral, 2.3 mm ventral for virus injection,
2.0 mm ventral for optical fiber implantation).

Rats For electrophysiology experiments, we re-analyzed data from (Gouvêa et al.,
2015), where rats were implanted with 32-channel tungsten microwire moveable ar-
ray bundles (Innovative Neurophysiology) under isoflurane anaesthesia. All recordings
targeted dorsal striatum (coordinates from bregma: 0.2 mm anterior, 3 mm lateral for
rat 1; 0.84 mm anterior, 2.5 mm lateral for rats 2 and 3. Rats were given a week of
post-surgical recovery and the placement of the arrays was confirmed with histology.

4.4.7 Fiber photometry setup
For all photometry experiments presented in this Chapter, we used the same photometry
setup described in Chapter 3, Section 3.4.6. For the experiments recording from DA
neurons, in some animals, optical fibers were simultaneously implanted in multiple areas
(DS, NAc, SNc and VTA). In these cases, the location being recorded was alternated
daily. For the experiments regarding activity of dMSN and iMSN activity, for each
mouse, the hemisphere being recorded was also alternated daily.
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4.4.8 Fiber photometry data analysis
Data analysis of photometry experiments performed in all mice of all genotypes pre-
sented in this Chapter shared the same basic pre-processing, ∆F/F calculation, cor-
rection using tdTomato signals and z-scoring approaches as described in Chapter 3,
Section 3.4.6. Additionally, for splitting trials according to pre-trial activity, for each
session, distributions were built using each trial’s mean signal in a 2s window before
trial initiation. These distributions were then split into terciles, and this separation
criterion was used to construct psychometric curves using only the valid trials within
each tercile.

4.4.9 Electrophysiology of striatal neurons in the rat
Data acquisition and pre processing For the electrophysiology data analysis
described in this Chapter, we re-analyzed data from (Gouvêa et al., 2015). First,
neural activity was recorded at a 30kHz sampling frequency, amplified and then filtered
between 250-750Hz (Cerebus - Blackrock Microsystems). Each bundle (four bundles per
array, 8 electrodes per bundle) was independently moved 50 − 100µm ventrally after
each recording session, hence ensuring that each recording session sampled a distinct
neuronal population of striatal neurons. An offline sorting approach (Offline Sorter,
Plexon) was used to isolate waveforms from single neurons.

Firing rates calculation and selection of neurons All further analysis were
performed using MATLAB (Mathworks). To calculate firing rates from single spike
events, we counted spikes in windows of 2ms and convolved these spike counts with
Gamma kernel with parameters θ = 100 ms (or 50 bins) and k = 2. For further anal-
ysis, we selected sessions where ≥ 10 neurons were recorded, and where the minimum
population average firing rate across the session was ≥ 2.5Hz.

Identification of pMSN and pInt and pre-trial firing rates calculation
We identified as pMSNs all neurons whose average firing rate across all trials was < 5Hz
and whose waveform width (i.e., the time from waveform peak to waveform valley) was
> 0.4ms. Conversely, pInts were identified as all neurons whose average firing rate
across all trials was ≥ 5Hz and whose waveform width was ≤ 0.4ms. Similar criteria
have been used previously (Gage et al., 2010), and most likely, the pInts identified here
correspond largely to a subpopulation of FSIs (Berke et al., 2004; Gage et al., 2010).
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To calculate pre-trial firing rates, for each neuron and each trial, we counted spikes
in 2ms bins within a window of 2s prior to trial initiation. Then, for each trial, we av-
eraged the spike rates of specific selected populations (e.g., pInt shown in Figure 4.14).
The distributions of these trial-by-trial average pre-trial firing rates in specific subpop-
ulations of striatal neurons were divided into octiles. The performance of each rat for
trials that fell in the most extreme octiles of average pInt pre-trial firing rates are plotted
in Figure 4.14 (lower octile in green, higher octile in purple).

Analysis of trial-by-trial consistency in striatal neuron dynamics This
analysis was performed on individual sessions, splitting trials by stimulus duration. The
goal of this analysis was to compare the variability of the neural population state (or
trajectory) on single trials to the average state of the population across all trials. We
began this analysis by creating a vector of firing rates during the delay period for each
trial of a given interval duration in a given session (i.e., population state or trajectory
on single trials). We took the median across trials of this population state using only
correct trials and refer to it as the average population trajectory. We then calculated the
euclidean distance between the population trajectory on a given trial and the average
population trajectory, for each time point in the delay period. Next, we took the mean
of this euclidean distance across the delay period (i.e., average distance to the mean
trajectory on a single trial) and created a distribution of single trial average distances to
the mean trajectory. Finally, we selected the trials that fell on the upper octile of this
distribution and labeled them as ’outliers’, since they were the ones who most deviated
from the average population trajectory during the delay period (Figure 4.15, purple
trials). The remaining trials were labeled as ’typical’ (Figure 4.15, green trials).

4.4.10 Statistics and model comparison
To select the model that best explained differences in the pattern of the subjects’ judg-
ments between conditions (i.e. photometry: high, medium, low pre-trial activity; neural
activity: outlier or typical delay period trajectory), we fit models as described in Chap-
ter 3, Section 3.4.13. Statistical significance was determined using Wilcoxon sign rank
and rank sum tests where appropriate, unless otherwise stated.
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Chapter 5

Discussion

"The hours and minutes still seem excruciatingly long when I am bored,
and all too short when I am engaged."

Oliver Sacks, 2004

5.1 Brief summary of the main findings
The work presented in this monograph provides strengthening evidence for the role of
the basal ganglia (BG) in timing behavior. First, neurons in the dorsal striatum (DS)
reflect a scalable population code for time: the responses of single neurons stretched
or contracted in time following changes in the duration of the interval being timed.
Furthermore, time estimates decoded from the population of striatal neurons were pre-
dictive of timing behavior when animals flexibly adjusted to new durations. Midbrain
dopamine (DA) neurons in the substantia nigra pars compacta (SNc), which recipro-
cally connect to the DS, both reflected and controlled temporal judgments, suggesting
that these neurons may play a critical role in the moment-by-moment regulation of
time judgments. Previous pharmacological studies have demonstrated that many of the
effects of DA agonists and antagonists on timing behavior can be explained by changes
in attention that accompany DAergic drug administration (Buhusi & Meck, 2002; Ward
et al., 2009). Consistent with this observation, we identified signals related with task
engagement in midbrain DA and striatal neurons, but importantly, we found that these
signals were dissociable from those related to timing behavior.
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The following Sections explore open questions that arise from our findings. They
also discuss these findings in the context of current theories of interval timing and
reinforcement learning (RL), in an attempt at contributing to a unified view of these
fields.

5.2 Temporal representations: origins and impli-
cations

Our finding that striatal neurons exhibit sequential temporal patterns of activity that
support the representation of elapsed time adds to the vast range of studies report-
ing similar dynamics across the brain in areas such as the cortex (Machens et al.,
2010; Harvey et al., 2012; Kim et al., 2013; Schmitt et al., 2017; Wang, Narain, Hos-
seini, & Jazayeri, 2017), the cerebellum (Buonomano & Mauk, 1994), the hippocampus
(Pastalkova et al., 2008; MacDonald et al., 2011), and the thalamus (Schmitt et al.,
2017). The widespread nature of these sequential patterns raises the question of where
these signals originate.

This Section addresses possible origins and implications of the striatal dynamics
we observed, as well as mechanisms that may allow for the flexible control of these
dynamics.

5.2.1 Origins and flexible control of striatal dynamics
Due to the long duration of the intervals we probed, and to the existence of sequential
activity patterns in striatal afferents, it is unlikely that the dynamics we observed are
purely locally generated. The multiplexing of elapsed time with the ongoing sensori-
motor state of the animal described in Chapter 2 argues in favor of the hypothesis that
striatal dynamics may result from the combination of the sensory, motor and/or associa-
tive information of its afferents. Therefore, a key step towards understanding the origin
of these striatal dynamics will likely involve studying how they relate to the dynamics
present in such input areas. For example, population codes for sensory and behavioral
variables have been shown to exhibit distinct timescales across the cortex, with sensory
cortices exhibiting shorter timescales than associative ones (Murray et al., 2014; Run-
yan, Piasini, Panzeri, & Harvey, 2017). At least in part, these distinct timescales are
likely to result from stronger and more long-lasting correlations between the activity of
neurons in more associative areas when compared to sensory ones (Runyan et al., 2017).
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NAc
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SNc
VTA

Sensorimotor
Associative/limbic

Figure 5.1. Illustration of the parallel organization of the basal ganglia. Coro-
nal views of the rat brain at anterior-posterior positions containing either the striatum
(top) or the midbrain DAergic system (bottom), illustrating the parallel organization
of the BG. In the striatum, dorsal-lateral (DL) areas of the caudate-putamen (CPu)
receive predominantly sensory and motor inputs from cortical and thalamic inputs, and
tend to reciprocally connect to ventral tier SNc-DA neurons. Conversely, ventral-medial
(VM) CPu regions and nucleus accumbens (NAc) neurons preferentially receive more
associative/limbic inputs and tend to reciprocally connect to ventral tegmental area
(VTA)-DA and dorsal tier SNc-DA neurons. This figure was adapted from Björklund
& Dunnett, 2007.
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Interestingly, afferent cortical and thalamic projections to the striatum follow a to-
pographical organization, such that sensory and motor inputs mainly target the dorsal-
lateral (DL) striatum, while more associative-limbic cortical and thalamic inputs target
ventral-medial (VM) striatal regions (see Figure 5.1, Voorn, Vanderschuren, Groenewe-
gen, Robbins, & Pennartz, 2004). This topography may in part explain the distinct
functional roles that have been observed across the medial-lateral (ML) axis of the stria-
tum: while the DL striatum seems to reflect stimulus-response associations in habitual
behaviors, the dorsal-medial (DM) striatal region seems to reflect stimulus-outcome as-
sociations that underlie goal-directed behaviors (Voorn et al., 2004; Gremel & Costa,
2013). Whether this topographical organization can be informative with respect to the
representations that we describe in this monograph is not known. One hypothesis is
that the long-timescale sequential representations we observed in the striatum might
result from the combination of these temporally regular cortical and thalamic inputs,
and that the topographical organization of these inputs might be preserved in striatal
dynamics. Since the neural recordings described in Chapter 2 did not systematically
probe the ML and dorsal-ventral (DV) axes of the striatum, future experiments (e.g.,
simultaneous recordings of cortical and striatal neuron activity; targeted recordings of
striatal neurons on the basis of their afferent inputs) will be able to directly test this
hypothesis (see Section 5.3.2 for mentions of such experiments).

Another question that arises from this work regards the observation that striatal
neurons flexibly rescale their responses with the interval being timed. Is this property
specific to striatal populations? We observed rescaling when the intervals being timed
varied from 12s up to 60s, and were presented to the animal in blocks of trials. Addi-
tionally, work from Xu, Zhang, Dan, and Poo (2014) showed that cortical neurons were
also capable of rescaling their activity when intervals were presented in a block struc-
ture, at least on a much shorter timescale (1.5s to 2.5s). Furthermore, our observation
that errors in decoded time at block transitions predicted timing behavior suggests that
the temporal representation in the striatum may be used to guide behavior. Consistent
with this idea, recent work from our group has shown that, when rats are trained in a
temporal discrimination task similar to that described in Chapter 3, a low-dimensional
representation of the activity of striatal neurons reveals that neural trajectories run
ahead or behind when rats judge a near-boundary interval as long or short, respectively
(Gouvêa et al., 2015).
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Similar trial-by-trial variability has been described in the primate caudate nucleus1

and dorsomedial frontal cortex (MFC) during a temporal production task (Wang et al.,
2017). In both areas, single neuron response profiles were stretched or compressed for
longer or shorter production times, respectively, consistent with the the data shown in
Chapter 2. Moreover, at the population level, this rescaling was reflected by changes
in the speed with which the activity of cortical populations traversed an invariant tra-
jectory, consistent with the results from Gouvêa et al. (2015). Specifically, Wang et
al. (2017) found slower speeds for trials where production times were longer and faster
speeds for short production times. The dynamics described by Wang et al. (2017)
spanned intervals < 1.5s. It remains unknown whether cortical sequential dynamics are
able to span tens of seconds, like the striatal dynamics we describe in Chapter 2.

The studies described above indicate that flexible/scalable dynamics, capable of
supporting timing behavior, can be found in both cortical and striatal neurons. What
mechanisms might underlie this flexibility? Recent work exploring recurrent neural
network (RNN) models have made progress towards answering this question. One hy-
pothesis proposed by Wang et al. (2017) is that the scaling and variable speed of cortical
dynamics may result from a combination of recurrent dynamics and the input drive to
the system. An initial input drive (a cue signal which varies in level providing context
regarding the interval duration) may set the initial and final positions of the trajectory
along an ’input subspace’, while the recurrent dynamics create a ’recurrent subspace’
that defines the neural trajectory between these initial and final positions. In their
theory, the ’input subspace’ is defined by the weights of the inputs to the network,
controlling the speed of the trajectory. On the other hand, the ’recurrent subspace’ is
constrained by the recurrent weights, and is responsible for the rescaling.

While Wang et al. (2017) attempted to model a cortical-like circuit, Murray et al.
(2017) have explicitly modeled a striatum-like recurrent inhibitory network with sparse
activity to generate sequences of activity with variable duration and speed. Importantly,
their network does so without a sequential input, but with a tonic excitatory input that
may change in intensity over time. Furthermore, Murray et al. (2017) propose synaptic
depression at connections between medium spiny neurons (MSNs) as the mechanism
that allows activity to switch from one unit to another. The effect of this synaptic
depression is to reduce the amount of inhibition that an active unit applies to inactive
units. The basic mechanism that controls the dynamics of how activity switches between

1In primates, the DS is composed by the caudate nucleus and the putamen, which are divided
by the internal capsule. In rodents, these structures are not distinguishable and are therefore
referred to as caudate-putamen (CPu) (Fentress, Stanfield, & Cowan, 1981).
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units in this network is the competition between this synaptic depression and the level
of excitatory input. In both models, the rescaling of individual units and the speed of
population dynamics are determined by a combination of the level of input to the
network and the (intrinsic) parameters of recurrent dynamics. Wang et al. (2017)
suggest that thalamic inputs may play a role in controlling the input gain and the
speed of population dynamics. The authors found that activity in MFC-projecting
thalamic neurons was required for performance in their temporal production task; and
this activity, unlike that of MFC and caudate neurons, did not scale with production
intervals. Instead, thalamic activity was systematically higher for shorter production
intervals, providing a possible neural basis for the input drive of their model. Another
possibility is that the signals in midbrain DA neurons described in Chapter 3 may play
a role in this process. For example, in the model proposed by Murray et al. (2017), DA
neuron activity may play a role in the control of temporal rescaling by either modulating
the level of input to the recurrent inhibitory network and/or by modifying the levels
of recurrent synaptic depression. In support of this hypothesis, work from Tecuapetla,
Carrillo-Reid, Bargas, and Galarraga (2007) has shown that DA regulates short-term
plasticity at striatal inhibitory synapses.

Interestingly, the concept that the ’intrinsic’ properties of neural networks may con-
tribute to their representation of time has been suggested by previous models of timing
(Goel & Buonomano, 2014). In fact, recent in vitro work has shown that cortical organ-
otypic slices are able to learn the temporal pattern of repeatedly presented temporal
intervals, providing evidence in support of such an intrinsic model of timing, at least in
the subseconds range (Goel & Buonomano, 2016).

The hypothesis that midbrain DA activity may be involved in regulating the dy-
namics of striatal population activity during timing behavior may offer an overarching
view of the results presented in Chapters 2 and 3. However, other forms of temporal
representations are found across the brain. For example, recent work from Emmons et
al. (2017) has shown that activity in frontal cortex and striatal neurons varies monoton-
ically during timing behavior (i.e., activity ramps up or down while animals estimate
duration). Emmons et al. also found that activity in this frontostriatal circuit scales
with the interval being timed, and that inactivating the frontal cortex disrupts ramping
activity in striatal neurons. Both linear and nonlinear activity patterns have been pre-
viously reported in the the context a temporal reproduction task in the parietal cortex
of non-human primates (Jazayeri & Shadlen, 2015). In this study, nonlinear activity
profiles were observed while monkeys measured an interval, but activity was reset and
proceeded to monotonically increase as monkeys reproduced distinct intervals. Inter-
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estingly, the slope of this ramping activity was inversely related to the interval duration
that was previously measured, so that activity in the parietal cortex terminated at a
similar level at the time of reproduction for all durations. One possibility is that such
ramping activity patterns may trigger striatal neurons to become active at different
delays. Additionally, the activity of DAergic neurons may play a role in controlling the
slope of such ramping activity patterns.

5.2.2 Implications for theoretical timing models
The striatal signals we used to decode time multiplexed information about time and
the ongoing sensorimotor state of the animal, therefore implicitly favoring a number
of sequential state models of interval timing (Killeen & Fetterman, 1988; Machado et
al., 2009; Ahrens & Sahani, 2011). Such models propose that animals may learn the
temporal relationship between sensory cues in the environment and their behavior using
sensory or behavioral state transitions. Furthermore, our results are consistent with
RNN models in which temporal representations are distributed across many neurons and
time is therefore encoded by the combined activity of neuronal populations (Buonomano
et al., 1995; Wang et al., 2017; Murray et al., 2017).

Additionally, given the ramping activity previously described in cortical and striatal
neurons (Leon & Shadlen, 2003; Janssen & Shadlen, 2005; Mita et al., 2009; Jazayeri
& Shadlen, 2015; Hanks et al., 2015; Emmons et al., 2017), it is possible that an
accumulating process such as in classic pacemaker-accumulator models (Treisman, 1963;
Gibbon, 1977) or as in drift-diffusion based timing models (Simen et al., 2011), might
serve as a trigger for neurons to become active at different delays, as the accumulator
reaches a series of thresholds. Under this framework, DA neuron activity could control
temporal judgments by impacting the rate of this accumulation process, but in the
opposite direction to that proposed by the DA clock hypothesis (Meck, 1983, 1996). In
other words, higher DA neuron activity might slow the rate of an accumulation process
rather than accelerating it.

5.2.3 On the distributed nature of temporal representa-
tions across the brain

Temporal representations seem to not only be distributed within neurons in a given
area, but also across distinct brain areas. How can we make sense of the function of
these widespread temporal representations? An attractive hypothesis is that temporal
representations can be interpreted within the context of the general functional role of
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each brain area. For example, sequential dynamics in the cerebellum may coordinate
movements at a fine timescale (Buonomano & Mauk, 1994). Hippocampal temporal
representations, conversely, may be combined with spatial representations to organize
events in space and time, thereby creating faithful memories of experience (Eichenbaum,
2014). In the cortex, meanwhile, sensory and motor areas may use time-varying sig-
nals to represent sensory events (Runyan et al., 2017) and to produce precisely timed
movements (Merchant et al., 2013). These data suggest that timing signals are likely
distributed across multiple brain areas. Within such a distributed process, what role
may striatal temporal representations play when compared to their cortical afferents?

Bakhurin et al. (2017) took steps towards addressing this question by recording
the simultaneous activity of striatal and orbitofrontal cortical neurons while mice were
trained in a classical conditioning paradigm, in which an odor conditioned stimulus
(CS) predicted the delayed delivery of an unconditioned stimulus (US). Mice were able
to learn this temporal relationship, as illustrated by their anticipatory licking behavior
after the CS presentation. The authors found that, although time from CS presentation
could be decoded from both cortical and striatal neurons, time estimates decoded from
the striatum were more accurate than those from the cortex. The apparent higher
accuracy of striatal than cortical temporal representations might result from the fact
that striatal neurons integrate information across a vast range of cortical territories,
and may therefore have an advantage in encoding elapsed time over individual cortical
areas (Bakhurin et al., 2017).

Additionally, temporal representations in the striatum may be essential for animals
to learn how to behave adaptively. The sequential activity patterns we observed in
the striatum multiplexed temporal with non-temporal information, such as the ongoing
sensorimotor state of the animal. The existence of temporal representations modulated
by animals’ actions, motor sequences and reinforcement may be critical for the learning
and action selection functions attributed to the striatum and to the BG in general
(Mink, 1996; Doya, 1999; Niv, 2009).

Finally, the observed rescaling of striatal temporal representations to distinct tempo-
ral contexts may provide a neural basis for the observation that learning of associations
is timescale-invariant: the number of trials required for learning is constant if the ratio
between inter-stimulus-interval and inter-trial-interval is also constant (see Balsam &
Gallistel, 2009 for a review on this topic). This timescale invariance can be achieved by
the rescaling of temporal representations to the changing temporal context, consistent
with our observations and with a general role for striatal dynamics in adaptive behavior.
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5.3 Dopamine neurons: interval timing and be-
yond

The results in Chapter 3 suggest that midbrain DA neurons in the SNc reflect and
control temporal judgments. In this Section, I discuss apparent contradictions between
our results and previous studies regarding the role of DAergic activity in the control
of timekeeping. Additionally, this Section explores other functions that have been at-
tributed to the firing of midbrain DA neurons, and suggests that many of these distinct
roles may in fact result from a common computational logic.

5.3.1 Rethinking the DA clock hypothesis
The DA clock hypothesis, a longstanding theory regarding the role of DA in interval
timing behavior, posits that high (or low) levels of DA can control the speed of inter-
nal timekeeping by increasing (or decreasing) the rate of a pacemaker-like mechanism
(Maricq et al., 1981; Meck, 1983; Maricq & Church, 1983; Meck, 1996; Çevik, 2003).
The data presented in Chapter 3 adds to a number of studies that seem to contradict
the DA clock hypothesis (Holson, Bowyer, Clausing, & Gough, 1996; Buhusi & Meck,
2002; Balcı et al., 2010; Lake & Meck, 2013; Fung, Murawski, & Bode, 2017). One of
the main differences between previous literature and the work presented in this mono-
graph is that we recorded and manipulated the activity of midbrain DA neurons on
a moment-by-moment basis, while previous work mainly employed long-term lesions
(Meck, 2006), pharmacological agents (Maricq & Church, 1983), and genetic (Drew et
al., 2007) manipulations of the DAergic system. Such manipulations of tonic DA levels
are likely to result in compensatory mechanisms, perhaps offering an explanation for
such inconsistencies in the literature. Additionally, in vivo microdialysis has shown that
DA agonists evoke an initial peak followed by a rapid (< 1 hour) decrease in the levels
of striatal DA (Holson et al., 1996), suggesting that DA agonist administration may not
always lead to a prolonged increase in DA levels. Furthermore, tonic changes in DA
levels across trials have been linked to motivation (Wise, 2004), vigor (Panigrahi et al.,
2015) and attention (Levy, 1991), all factors that may confound effects of DA on time-
keeping in these long-term manipulations. In fact, superimposition of such effects has
been proposed as a possible explanation for how pharmacological manipulations impact
timing behavior (for effects on motivation see Odum et al., 2002; Balcı et al., 2010;
Balcı, 2014; for effects on attention see Buhusi & Meck, 2002; Ward et al., 2009). We
believe that the temporal resolution of the the measurements and manipulations of DA
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neuron activity presented in Chapter 3 helped us to circumvent some of these issues. In
fact, Chapter 4 illustrates one way in which our approach may have been able to avoid
such superimposition effects, since midbrain DA neuron activity in a pre-trial initiation
period seems to relate not to timekeeping, but to a general state of task engagement, a
distinction that a long-term manipulation would not have identified.

Our data appears consistent with the idea that situations that seem to slow down
time estimates may be associated with higher DAergic activity. Our sense of time is
known to be influenced by a number of factors. For example, fast internal timekeeping
(when external time seems to slow down) has been shown to occur when subjects experi-
ence stress (Falk & Bindra, 1954), fear (Watts & Sharrock, 1984), boredom (Watt, 1991)
or pain (Ogden, Moore, Redfern, & McGlone, 2015). Conversely, novel music causes
consumers to underestimate the time they have spent shopping (Yalch & Spangenberg,
2000), pleasurable events seems to last for a shorter time (Droit-Volet, Ramos, Bueno, &
Bigand, 2013), and time estimates are slowed down following the consumption of caloric
primary rewards (e.g., fruit juice, Fung et al., 2017). These results are consistent with
the notion that novelty, pleasure and primary rewards are associated with slow internal
timekeeping (when external time seems to ’fly’). Interestingly, a number of these latter
situations are accompanied by changes in midbrain DA activity: for example, DAergic
activity is thought to increase following the presentation of novel stimuli (Horvitz, 2000;
Menegas, Babayan, Uchida, & Watabe-Uchida, 2017) and the consumption of caloric
substances (Frank et al., 2008). These studies are consistent with our observations that
increased DAergic activity is related to slower timekeeping.

Still, there might be alternative explanations for our finding that SNc-DA neuron
activity relates to temporal judgments. For example, one could argue that the relation-
ship between SNc-DA neuron activity and temporal judgments may be due to a change
in the instantaneous value of the option being considered, which could produce results
similar to those we describe. Were this the case, we should have observed a similar
relationship when recording and manipulating the activity of DA neurons in the ventral
tegmental area (VTA), since these neurons are known to be involved in the encoding
of value (Hamid et al., 2016). However, no such relationship was present in VTA-DA
neurons. Therefore, the most parsimonious explanation of the data shown in Chapter 3
seems to be that SNc-DA neuron activity affects temporal judgments through an im-
pact on timekeeping mechanisms. The idea that DAergic activity might be involved in
regulating striatal dynamics, as discussed in Section 5.2.1, suggests one way in which
DA neurons may influence temporal judgments. This hypothesis is attractive due to
the recurrent connectivity between SNc-DA neurons and neurons in the dorsal striatum
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(Björklund & Dunnett, 2007; Watabe-Uchida et al., 2012), which rescale their activity
patterns to the interval being timed. Therefore, trials where DA neuron activity is
consistently high or low may relate to trials where striatal activity is progressing slowly
or quickly. Further data in favor of this hypothesis may be provided from simultaneous
recordings of striatal and DA neuron activity (or DA release in the striatum). Alter-
natively, DA activity may regulate the rate of an accumulation process, as discussed in
the previous Section, but in the opposite direction to that suggested by the original DA
clock hypothesis (Meck, 1983, 1996).

5.3.2 On the diversity of functions attributed to DA neu-
rons

The hypothesis that midbrain DA neurons in the SNc and VTA encode a reward predic-
tion error (RPE) signal has been supported, for more than two decades, by a number of
classical conditioning studies (Schultz et al., 1993, 1997; Cohen et al., 2012; Steinberg
et al., 2013). These studies have shown that DA neurons respond phasically to unpre-
dicted rewards, as well as to reward-predicting stimuli after learning, while exhibiting a
pause in activity when expected rewards are omitted. Recent work has provided further
evidence in favor of this hypothesis, by showing that phasic responses in DA neurons
are proportional to the subtraction between expected and experienced outcomes (Eshel
et al., 2015, 2016). Additionally, and consistent with the results presented in Chapter 3,
DA neurons are modulated by reward expectation, exhibiting larger responses at times
when rewards, and reward-predicting cues, are less expected (Fiorillo et al., 2008; Pas-
quereau & Turner, 2015). Moreover, a number of studies have implicated the firing of
DA neurons in model-based learning (Daw, Gershman, Seymour, Dayan, & Dolan, 2011;
Bromberg-Martin, Matsumoto, Hong, & Hikosaka, 2010; Sharpe et al., 2017; Langdon,
Sharpe, Schoenbaum, & Niv, 2018), expanding the scope of the prediction error signals
reflected by these neurons.

Nevertheless, a number of studies have provided data that somewhat challenges
this view. For example, some DA neurons seem to respond to novel stimuli that have
no predictive power (Horvitz, 2000; Menegas et al., 2017). The projection targets of
these neurons are distinct from those of neurons exhibiting more classic RPE responses:
DA activity measured at axonal terminals in the nucleus accumbens (NAc) reveals
signals following cues that predict rewards, while DA activity at axon terminals in
the posterior striatum do not seem to encode an RPE signal, but instead respond to
novel stimuli. In addition, it has also been described that DA neurons in the SNc, and
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in particular the ones reciprocally connected to relatively DL areas of the striatum,
increase their activity in response to both positive and negative USs (juice or air-puffs),
as well as to the predicting CS (Matsumoto & Hikosaka, 2009; Lerner et al., 2015).
Another class of studies has suggested that SNc-DA neuron activity, as well as axonal
DAergic activity in the DS, is modulated by the onset of locomotion, movement direction
and adjustments in posture (Howe & Dombeck, 2016; Parker et al., 2016; Dodson et
al., 2016). Furthermore, Syed et al. (2016) trained rats to either initiate or suppress
movement in response to distinct cues in order to receive reward, and found that DA
levels in the NAc are increased when the cue presented triggers movement. In contrast,
when the cue presented is associated with movement suppression for reward delivery,
DA levels in the NAc are unchanged. Finally, although many of these studies focus
on phasic DA responses, and the evoked phasic release of DA, it remains unclear how
the sustained (tonic) levels of DA relate to the RPE theory of DA neuron activity.
For example, in value-based decision-making paradigms, these tonic modulations of DA
neuron activity appear to reflect the average rate of rewards (Hamid et al., 2016). In
addition, changes in DA neuron activity on slow timescales have also been linked to vigor
(Niv, Daw, Joel, & Dayan, 2007; Panigrahi et al., 2015). Finally, Howard, Li, Geddes,
and Jin (2017) have suggested that, in the context of a temporal bisection task, SNc-DA
activity biases the selection of actions. Although the authors favor this interpretation,
the general pattern of activity they observed seems consistent with our findings: higher
DA activity relates to short judgments, but the authors reject the hypothesis that their
data might be explained as DA neurons reflecting temporal judgments. This difference
in interpretation may, at least in part, result from an attempt of the authors to separate
reward expectation and temporal surprise. In our view, an RPE signal can reflect the
combination of these two factors, as shown in Chapter 3, and this approach might also
explain the signals observed by Howard et al. (2017).

How can we make sense of the vast range of functions that have been attributed to
DA neurons, such as those described above? In a recent review, Lau, Monteiro, and
Paton (2017) suggested that perhaps DA neurons with apparently distinct functions
may, in fact, implement similar algorithms. In their own words:

"We suggest that the parallel circuit architecture of the BG might be
expected to produce variability in the response properties of different
dopamine neurons, and that variability in response profile may not reflect
variable functions, but rather different arguments that serve as inputs to a
common function: the computation of prediction error."

140



For example, distinct groups of midbrain DA neurons exhibit reciprocal connections
with particular striatal regions: DA neurons within the ventral tier of the SNc exhibit
preferential reciprocal connections to DL regions of the striatum (Figure 5.1, Björklund
& Dunnett, 2007; Watabe-Uchida et al., 2012; Lerner et al., 2015), while those in the
VTA and in the dorsal tier of the SNc seem to reciprocally connect to more VM striatal
areas, as well as to project to limbic and cortical areas. In turn, the striatum is thought
to exhibit a sensory-motor to associative gradient coding in the DL to VM striatal axis,
as described in Section 5.2.1 (Figure 5.1, Voorn et al., 2004). Therefore, the apparent
localization of motor-related signals in DA neurons that project to dorsal striatal areas
may reflect the selective sensorimotor nature of the inputs that these neurons receive
from those same areas. Following these ideas proposed by Lau et al. (2017), one way to
interpret the differences we observed between SNc-DA and VTA-DA neurons is that a
prediction error may be computed in both structures but using distinct inputs, where
signals reflecting elapsed time are less predominant and/or precise in VTA-DA neurons
than in the ones in the SNc. This might be the case in tasks such as those described in
this monograph, where animals likely map the category of interval durations (short vs.
long) onto egocentric movements (right vs. left). In such scenarios, combining elapsed
time with the ongoing sensorimotor state of an animal may be advantageous. However,
unpublished work from our group suggests that, in situations where an allocentric rule
might be used to solve the task (e.g., where the animal maps interval duration to
cardinal directions such as north and south), ventral striatal neurons seem to encode
elapsed time to a higher degree than those in the DS (unpublished work, see conference
poster in Monteiro, Rodrigues, Motiwala, Gouvêa, & Paton, 2017). In this context,
temporal information might be combined, in the ventral striatum, with more associative
signals from areas such as the hippocampus. Therefore, it is possible that DA neurons
reciprocally connected to ventral striatal neurons, such as those in the VTA, may reflect
and control temporal judgments in this alternative allocentric scenario.

5.4 Towards a unified view of interval timing and
RL

A vast range of studies have implicated the BG in interval timing behavior (Maricq et
al., 1981; Maricq & Church, 1983; Meck, 1983, 1986; Rammsayer, 1993; Matell et al.,
2003, 2004; Xu et al., 2014; Bakhurin et al., 2017; Wang et al., 2017). In what has been
a largely separate research field, it has also been highlighted for decades that the BG
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are crucial for implementing aspects of RL (Schultz et al., 1993; Mink, 1996; Schultz
et al., 1997; Doya, 1999; Waelti et al., 2001; Bayer & Glimcher, 2005; Samejima et al.,
2005; Daw et al., 2006; Samejima & Doya, 2007; Lau & Glimcher, 2008; Kim et al.,
2009). RL and interval timing might not only share common brain areas, but might
share a common theoretical framework, particularly in the form of common temporal
representations.

The sequential neural states found in the striatum during timing behavior, as well
as the relationship between SNc-DA neuron activity and temporal judgments, may
provide evidence towards a unified view of the role of the BG in interval timing and in
RL. First, the signals we observed in the striatum resemble temporal basis functions,
which have been proposed by a number of learning models as efficient and neurally
plausible temporal representations (Grossberg & Schmajuk, 1989; Suri & Schultz, 1999;
Ludvig et al., 2008). In fact, similar temporal representations have also been applied in
the context of interval timing models (see Section 1.4.4; Grossberg & Schmajuk, 1989;
Machado, 1997; Staddon & Higa, 1999).

In an attempt at reconciling these two fields, Gershman et al. (2014) proposed that:

"(...) by incorporating a time-sensitive action selection mechanism into RL
models, a single computational system can support both RL and interval
timing."

One way to achieve such a time-sensitive action selection mechanism is to implement
an Actor-Critic architecture combined with temporal basis representations. According
to Gershman et al., such a combination reproduces the basic behavioral patterns ob-
served in probe trials during a peak-interval (PI) procedure (i.e., increase in response
rate, peaking at the estimated reward time, followed by a decrease in response rate).
Most importantly, the authors points out how basis functions that peak early in time
are more precise than those that peak later, and as a consequence, the credit for rewards
that occur at longer delays is assigned to a larger number of basis functions. Due to
this dispersed credit assignment for later rewards, the timing of responses that occur
for those later rewards is more variable than that of those that occur for earlier ones.
This feature allows this RL architecture to display the scalar property (Gibbon, 1977).
Furthermore, DA neurons may play a crucial role in this process, since there is evidence
that prediction errors might be computed based on a value signal that decreases in pre-
cision over time. This idea is based on data showing that the response of DA neurons
to reward delivery is positively related to the logarithm of the delay between stimulus
and reward (Fiorillo et al., 2008). The results presented in this monograph support
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the view discussed above, where RL and interval timing may be implemented under
similar theoretical and biological bases. Yet, it remains unclear whether there might be
an advantage for a system so intrinsically linked to reward processing to also control
subjective time estimates. This question is discussed in the next and final Section.

5.5 Combining time and reward may be adaptive
Having a system that combines the encoding of rewards with that of variable time esti-
mates might be particularly relevant in ethological contexts such as foraging. Optimal
foraging theory addresses the strategies underlying animals’ foraging behavior in the
face of dynamic environments, where they must balance the relative costs of staying in
a particular food patch and switching to a new one (Stephens & Krebs, 1986; Kolling
& Akam, 2017). A central problem that foraging animals must solve is to estimate how
long they should stay in the current food patch. On one hand, food patches become less
valuable the longer an animal engages in depleting them, but on the other, switching to
another food patch takes time and is therefore costly. Under such constraints, the opti-
mal (reward-maximizing) strategy has been described by marginal value theory (MVT),
which posits that animals should stay in a given patch for as long as the reward rate
at that patch is greater than or equal to the average reward rate in the environment
(Charnov, 1976). In most cases, foraging behavior can be well explained by an MVT
comparison rule (Constantino & Daw, 2015; Kolling & Akam, 2017). To implement an
MVT-like model, the brain must compute both the average reward rate in the envi-
ronment and the reward rate at the current patch, and must compare these values in
order to make a decision. To calculate such reward rates, an estimate of elapsed time is
crucial. Combining the encoding of reward and time may be adaptive because it could
potentially allow estimates of reward rate to be adjusted when patches are better (or
worse) than expected, such that animals engage with such patches for longer (or shorter)
times. Under this hypothesis, one might expect that better-than-expected situations
should be associated with shorter time estimates, as we propose in this monograph.
Therefore, the current reward rate at better-than-expected patches would be calculated
as a higher value than if time estimates were precise.

However, MVT models, as well as model-free RL algorithms, fail to explain foraging
behavior in situations where the reward rate at a given patch may either increase or
decrease as time elapses (Wittmann et al., 2016). Under such circumstances, subjects
are more likely to leave the current patch if reward rates are decreasing. These data
suggest that, when deciding when to leave a patch, humans might use recent changes
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in reward rate to extrapolate the future reward rate, and use this estimate to guide
behavior (Kolling & Akam, 2017). Kolling and Akam suggest that model-based average
reward RL may explain these apparently distinct foraging strategies. Additionally, it
is possible that RL models that combine more flexible and variable temporal repre-
sentations may explain behavior under complex foraging scenarios, offering a possible
adaptive reason for timing control and reward processing to be combined in one system.

5.6 Concluding remarks
Representing elapsed time is crucial for animals to behave adaptively. In this mono-
graph, we trained rodents to estimate duration and probed the roles of striatal and
midbrain DA neurons in timing behavior. We propose that the striatum encodes a
scalable population code for time, and that midbrain DA neuron activity reflects and
controls temporal judgments.

Our work offers a possible biological basis for temporal representations (and their
variability) within interval timing models. Additionally, because we found data indicat-
ing that higher DAergic activity relates to slow timekeeping, our results challenge the
DA clock hypothesis, a major theory in the field. Furthermore, our moment-by-moment
activity measurements and manipulations allowed us to dissociate signals related to
timekeeping from those related to animals’ task engagement levels.

The results presented in this monograph provide strengthening evidence for the role
of the BG in interval timing. Furthermore, our results may also be used as a basis for
a continued effort in unifying interval timing and learning theories such as RL.

Finally (and thank you for reading this far), our results also raise a number of
questions regarding, for example, the origin of these BG dynamics, how they might be
used to produce behavior and what types of behaviors they may influence. Exciting
times are ahead, as researchers continue to combine multidisciplinary approaches to
advance our understanding of these questions, and ultimately to explain how organisms
behave adaptively.
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Appendix A

Articles published in
peer-reviewed journals

A.1 A scalable population code for time in the
striatum

The following Section is a reprint of the article published as in Mello et al., 2015. Copy-
right information and permissions can be found at http://www.cell.com/permissions.
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SUMMARY

To guide behavior and learn from its consequences,
the brain must represent time over many scales. Yet,
the neural signals used to encode time in the sec-
onds-to-minute range are not known. The striatum
is a major input area of the basal ganglia associated
with learning and motor function. Previous studies
have also shown that the striatum is necessary for
normal timing behavior. To address how striatal sig-
nals might be involved in timing, we recorded from
striatal neurons in rats performing an interval timing
task. We found that neurons fired at delays spanning
tens of seconds and that this pattern of responding
reflected the interaction between time and the ani-
mals’ ongoing sensorimotor state. Surprisingly, cells
rescaled responses in time when intervals changed,
indicating that striatal populations encoded relative
time. Moreover, time estimates decoded from activ-
ity predicted timing behavior as animals adjusted to
new intervals, and disrupting striatal function led to
a decrease in timing performance. These results sug-
gest that striatal activity forms a scalable population
code for time, providing timing signals that animals
use to guide their actions.

INTRODUCTION

To behave adaptively in complex, ever-changing environments,
animals must learn which actions to take in a particular context
based on their past experience. However, to learn about the
sometimes-delayed consequences of actions and to guide
future behavior, it is absolutely necessary that the brain repre-
sent not only actions and consequences but also temporal infor-
mation about when those actions and consequences occur [1].
Multiple lines of evidence implicate the basal ganglia (BG) as a

locus for the representation of such temporal information. Le-
sions of the striatum in rats [2], disease states that affect the
BG such as Parkinson’s [3] and Huntington’s disease [4], drugs
that affect dopamine (DA) signaling [5], and genetic manipula-
tions that affect the DA system in the BG [6] all result in interval
timing dysfunction. Furthermore, human fMRI studies have
found that the striatum, a main input area of the BG, is activated
by tasks that involve the processing of interval information [7, 8].

In addition, many theoretical models have been proposed
to explain timing behavior. These models can be grouped
into at least three categories. Pacemaker-accumulator models
integrate pulses emitted from a central pacemaker to measure
elapsed time [9, 10]. Beat frequency models detect patterns
of activation across resettable oscillatory processes at dif-
ferent frequencies to encode time delays from a resetting
event [11]. Sequential state models contain orderly transitions
between different activity states that can be used to encode
time [12–14]. These theories reproduce various aspects of
timing behavior in many interval timing tasks. However,
neural data in conflict or in support of the various theories are
lacking.
To understand how time is encoded in neural circuits, we re-

corded the spiking activity of neurons as rats performed an inter-
val timing task. Specifically, given the apparent localization of
timing function in striatal tissue, we asked whether striatal neural
activity could encode elapsed time over durations of tens of sec-
onds to 1 min while we measured behavior that reflected ani-
mals’ estimates of time.
We found that different striatal neurons fired maximally at

different delays from reward receipt and that information about
animals’ time estimates could be extracted from striatal popula-
tions by simply treating neurons as tuned for time. Importantly,
this tuning for time, while affected by sensorimotor event-related
neural responses, could not be fully explained by ongoing
behavior, as even cells that displayed responses locked to a spe-
cific behavior varied their responses depending on when that
behavior was executed within a given interval. Strikingly, we
found that temporal tuning stretched or contracted, rescaling
with the interval being timed. Thus, striatal populations encoded
relative time, flexibly adapting to the immediate demands of the
environment. Finally, we ran a simple simulation of the task and
show that neural responses resembling those we observe in the
striatum are suitable as a basis for timing behavior. These results
provide important biological insight into how a major brain sys-
tem encodes time during behavior.

RESULTS

Lever Pressing Start Time under Fixed Interval
Reinforcement Schedules Is a Behavioral Measure of
Rats’ Expectation of Time until Reward
To elicit robust time-dependent behavior over a broad range of
timescales, we employed operant conditioning procedures un-
der fixed interval (FI) schedules of reinforcement (Figure 1A).
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Briefly, rats were placed in a behavioral box containing a lever
positioned over a liquid delivery port and were trained to press
the lever to receive water reward. Reward delivery triggered a
timer, and reward became available again only after the timer ex-
ceeded a FI ranging from 12 s to 60 s in multiples of 12 s. Lever
presses occurring after reward delivery but before the FI had
elapsed were not reinforced. A FI was maintained for between
18 and 40 rewards before changing to another FI, randomly cho-
sen from the interval set.

In single sessions, rats tended to distribute lever pressing
toward the latter portion of the FI, shifting when they responded
as FI changes occurred (Figures 1B and S1A). This pattern of re-
sponding produced ramps in block-wise averaged pressing as a
function of time that varied in slope in relation to FI (Figures 1C
and S1B). However, this did not reflect the pattern of responding
in single trials. We asked how pressing evolved after pressing
onset (pressing start times, PSTs) in each trial by aligning on
the PST and averaging lever press rates across trials and within
blocks of the same FI (Figure 1D). Rats pressed at a relatively
constant rate after the first press in each trial, with a rate deter-
mined by the experienced reward rate (Figure S1C). The ramps
in the reward-aligned pressing as a function of time largely result
from changing distributions of PSTs (Figure 1E), as these vary
systematically with FI, and averaging a group of step functions
with onset times drawn from these distributions will produce
ramps of varying slope.

This serial fixed interval (SFI) lever pressing task produced
systematic variation in the distributions of PSTs of bouts of antic-
ipatory pressing, consistent with previous timing studies em-
ploying FI schedules of reinforcement [9]. These bouts were of
a relatively constant rate that varied with reward rate over time
(Figures 1D and S1C). The PST thus provided a behavioral metric
that covaried with the animals’ changing expectation about time
until the next available reward, whichwe compared to the activity
of neurons recorded in the striatum during performance of the
task as described below.

Striatal Neurons Display Temporal Tuning
In the SFI task, reward delivery is both the timing cue and the
reinforcer. Since animals reported knowledge of time between
reward availability by when they began to press a lever, we
asked whether neuronal responses in the striatum aligned on
reward might reveal a signal that animals could use to guide
the decision of when to begin pressing. We recorded broadly
in the dorsal striatum so as to sample neurons from regions pre-
viously shown to be important for interval timing behavior [2]
(inset in Figure S1D), and the vast majority of units we recorded
exhibited average firing rates of less than five spikes per second,
consistent with a population made up of mostly medium spiny
projection neurons [15] (Figure S1D).
Aligned on reward delivery, the population of recorded cells

exhibited a broad distribution of activity patterns, as reflected
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Figure 1. The SFI Task Produces Systematic Changes in Lever PST
(A) Task structure. The following color code will be commonly used: blue represents short FIs, and green represents longer FIs.

(B) Example of lever pressing behavior in a single session of the SFI task. Gray markers indicate a lever press; red markers indicate the PST.

(C) Average lever pressing rate in each of the five FIs, aligned on preceding reward. Dashed lines represent SEM.

(D) Average rate of lever pressing in each block, aligned onPST. Traces are plotted on a solid line for the period for whichmore than half of the trials contribute data

and on a dotted line after that point. Shaded patches along the horizontal axis represent SEM. 1 s bins are indicated in (C) and (D).

(E) Median and interquartile range of PST for each of the five FIs. Smoothed density functions depicting the full distributions of PST are shown on the right.

See also Figure S1.
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in the normalized spike density functions (SDFs; see Supple-
mental Experimental Procedures for details) shown in Figure 2A.
Some cells fired just after reward delivery, others fired in the
middle of the delay, and others fired leading up to the next
reward (Figures 2A, S2, and S3). This produced a slow-moving
‘‘bump’’ of activity that traversed the population during each
FI. In theory, reading out the location of this bump in the popula-
tion could provide an estimate of time within the FI. However, a
core feature of interval timing behavior is that timing accuracy
decreases with the magnitude of the interval being timed [9].
Two features of the neural data could potentially contribute to
this phenomenon: an increased spread of each neuron’s re-
sponses as a function of their peak latency and a decreasing
density of neurons displaying peak firing rates as time pro-
gresses. We found that the widths of responses were indeed
correlated with their latencies to peak firing within each FI (Fig-
ure 2B, linear regression, FI 12 s, R = 0.4443, p < 0.001; FI
24 s, R = 0.7563, p < 0.001; FI 36 s R = 0.7188, p < 0.001; FI
48 s, R = 0.5910, p < 0.001; FI 60 s R = 0.4733, p < 0.001; see
Supplemental Experimental Procedures for details). In addition,
the density of peak firing rate latencies in our population
decreased over time within the FI (Figure 2C). Thus, the bump
in activity within the striatum population moved progressively
slower as the FI wore on. Strikingly, the overall time taken by
this bump to traverse the population appeared to scale with
the FI (Figures 2A and S4A). To begin to assess apparent scaling
of response times, we first selected cells that we had recorded in
all five FIs and that maintained their ordinal position within the
population when responses within each FI were ordered by firing
dynamics [16]. Of the 112 neurons recorded in all FIs, we found
that 76 neurons (68%) maintained their ordinal position in time
across the population (see Supplemental Experimental Proce-
dures for details). The responses of these neurons can be

observed in Figure 2A, wherein the position of cells along the
y axis is the same across the panels displaying average re-
sponses in each of the FIs (for all recorded cells, see Figure S4A).
To quantify to what degree responses rescaled, we computed

a scale factor for each neuron as the ratio of the center of mass
(COM) of the SDF in the 12-s FI over the COM of the SDF in each
of the other four FIs (Figure 3A). The distributions of these scale
factors were sharper than and significantly different from null dis-
tributions generated by shuffling cell identity across FIs and
recomputing the scale factors (red distributions in Figure 3A, Kol-
mogorov-Smirnov test, p < 0.001 for all pairwise comparisons).
The medians of these distributions, were the population to
have rescaled its responses in direct proportion to the FI, should
lie at 1/2, 1/3, 1/4, and 1/5 for the scale factors corresponding to
12/24 s, 12/36 s, 12/48 s, and 12/60 s FIs, respectively. We
observed median values of 0.59, 0.39, 0.30, 0.24 for the corre-
sponding distributions, indicating near-proportional rescaling
of response times across the recorded striatal population. A
more-complete description of the relative scale of responses
can be seen in Figures 3B–3E, where the COM of each cell’s
SDF in the 12-s FI against each of the other FIs are displayed.
These data demonstrate a strong tendency for rescaling of neu-
ral responses across the population, suggesting that the state of
striatal populations may convey relative elapsed time informa-
tion scaled to the animal’s estimate of the current behaviorally
relevant timescale in the environment. We explore this hypothe-
sis in greater detail below.

Striatal Populations Encode Information about Timing
Behavior
The above analyses of striatal neural responses indicate a gross
correspondence between striatal activity and timing behavior
across blocks of trials, suggesting that striatal activity patterns
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might guide decisions about when to begin pressing the lever
during each FI. To test this hypothesis, we applied a decoding
approach to data collected from single trials near block transi-
tions, wherein animals systematically changed the time that
they began to press the lever. Specifically, we asked three ques-
tions. First, we asked whether decoded time estimates covaried
with true time. Second, we asked whether systematic errors in
estimated time as compared to true time occurred at these block
transitions. Lastly, we askedwhether any observed errors in time
encoding correlated with timing behavior.

We first built a probabilistic decoder to derive an estimate of
elapsed time from reward in single trials given the observed
spiking response of the population. We focused on the first trials
of the 12-s and 60-s FI blocks because these blocks were the
shortest and longest FIs employed, respectively. Thus, animals
consistently overestimated and underestimated the amount of
time remaining until reward as they entered 12-s and 60-s
blocks. Briefly, our decoder was constructed as follows. In
each of the first seven trials of a block, we counted spikes within
defined time bins and asked how likely we were to have
observed that number of spikes at each time given the observed
distributions of spike counts in trials 8 onward of the correspond-
ing block. This generated a likelihood function for current time,
given an observed spike count in each bin, for each individual
cell. To derive a measure of the population’s estimate of the like-
lihood for current time, wemultiplied together the individual cells’
likelihood functions. We then took the mean of this likelihood
function as our estimate for current time [17].

In Figures 4A and 4C,we display decoded estimates as a func-
tion of time for the first seven trials of 12-s and 60-s FI blocks. We
found that decoded estimates tracked true time but that system-
atic errors between estimates and true time were present in the
first few trials of the 12-s and 60-s FI blocks. This feature can be
observed more readily when estimates derived from multiple tri-
als are plotted on the same axes (Figures 4B and 4D, quadratic
fits). Initial estimates were relatively slow and fast in the first trials
of the 12-s and 60-s FI blocks, respectively, and became more
accurate after the first few trials.

Next we asked whether such timing signals may be used by
animals to guide timing behavior. We first asked whether errors
in decoded time estimates over the first trials of blocks were

correlated with timing behavior. We found that the mean PST
was significantly correlated with the errors in time estimates
derived from the population over the first seven trials of 12-s
and 60-s FI blocks (Figure 5; FI = 12, R2 = 0.63, p = 0.03; FI =
60, R2 = 0.64, p = 0.03). In the initial trials of the 12-s FI block,
rats began pressing late relative to subsequent trials, and like-
wise, the decoded estimate of time relative to reward ran slow
(Figures 4B and 5). The first trials of the 60-s FI block showed
a similar relationship, yet opposite in direction: the decoded
estimate ran quickly in early trials, and rats were early to press
(Figures 4D and 5). We then tested in two control animals
whether manipulating striatal circuitry via bilateral infusions of
the GABAa agonist muscimol produced deficits in timing
behavior (Figure S5). Indeed, at a dose that rendered rats able
to perform the task, muscimol reversibly and significantly dimin-
ished the relationship between PST and FI (linear regression,
likelihood ratio test, significant effect of treatment, p < 0.001),
showing that a normally functioning striatum is critical for normal
timing behavior. The consistency between time estimates de-
coded from striatal populations and trial-by-trial variations in
timing behavior at block transitions, together with observed
dependence of a normally functioning striatum for normal timing
behavior, suggests that the brain uses a population code for time
that samples broadly from striatal neurons to guide decisions
about when to act.

Striatal Neurons Multiplexed Information about Action
and Time
Based on previous studies [18–20], we expected that striatal
neurons would display significant modulation by behaviors dur-
ing the FI. Could behaviors that accompany task performance
fully explain the sequential neural responses we observed?
Several features of the data argue against this possibility. Rats
consistently licked at the reward port from 0.5 s to 5.5 s after
reward delivery (Figure S4B), and yet, our ability to decode
time was unaffected by the animal being engaged in a fixed
behavior over this time (see initial !5 s of decoded time esti-
mates in Figures 4A and 4C). After departing from the reward
port, however, it is possible that observed dynamics in neural re-
sponses are accounted for by ongoing behaviors. Were this the
case, responses related to a particular behavior should not vary
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depending on when in a trial the rat engaged in that behavior.
To identify neurons that were significantly modulated by a
measured behavior in our task, we focused on a 2.5-s epoch
centered on the PST in each trial. We found that of the 76 neu-
rons displayed in Figure 2A, 31 exhibited significant modulations
around the onset of lever pressing. Next, we asked whether
spiking observed in time bins aligned on the PST was addition-
ally correlated with the time, relative to the FI, that pressing onset
occurred. More than half of pressing onset-modulated neurons
(16/31, 52%) displayed a significant correlation between spiking
around each press initiation and the relative time that press onset
occurredwithin the FI (Pearson’s linear regression, p < 0.01). Fig-
ures 6A–6D show examples of four such neurons from three

different animals, all of which vary in their responses around
the PST, from none at all to robust firing.
The regression approach described above is only expected to

identify neurons that display a monotonic relationship between
pressing onset response and the relative time of pressing onset.
Other cells may have displayed significant time-dependent mod-
ulations in pressing onset response that were not monotonic (for
example, see Figures S2B and S3A). To identify such cells, we
asked whether the median of distributions of spikes counts,
collected around pressing onsets and falling into each of five
quintiles of relative PSTs, differed from each other. We found
that 53 out of 76 neurons (70%) displayed in Figure 2A exhibited
significantly different median spike counts across relative time
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within the FI (p < 0.01, Kruskal-Wallis). Of these, nine cells were
significantly modulated by the onset of lever pressing and were
not identified in the linear regression analysis. Overall, only six
cells that displayed response modulation around PST did not
exhibit additional modulation by relative time in the FI as
assessed by linear regression and/or nonparametric testing for
median difference in spike count. These results suggest that
striatal neurons multiplex information about time and immediate
sensorimotor state of the animal and argue strongly against the
possibility that the striatal population responses we observed
can be explained by purely non-time-related responses to spe-
cific sensory or motor components of ongoing behavior.

A Simple Simulation of Timing Behavior
In order to understand the relationship between the recorded
striatal signals and rats’ behavior, we ran a simple simulation
that performed the SFI task (Figure 7A). The core of this simula-
tion is comprised of a set of temporal basis functions that were
inspired by the diverse single-neuron responses observed in
our striatal dataset as well as existing timing and learningmodels
[21–24]. We used the method described in [23] to generate tem-
poral bases. Each function was used as a rate function for gener-
ating inhomogeneous Poisson spike trains from which time was
read out during task performance. Whenever this time readout
passed a threshold, presses were produced at a fixed rate. In
order to adapt to the changing FIs, we implemented a simple
learning rule to update a temporal scale factor for the basis func-
tions depending on the difference between expected time of
reward and encoded time at the time of reward delivery. Lastly,
to account for our observation that many striatal neurons multi-
plexed information about action and time, each press produced
a response in the temporal bases that was proportional to the

product of the original time-dependent rate function at the time
of the press and a rate function generated by the press itself.
With these elements, we ran the simulation under the conditions
contained in the SFI task.
The simulation produced qualitatively similar behavior to that

of rats (Figures 7B and S6) and reproduced the three main fea-
tures that we observed in striatal neurons: temporal tuning,
rescaling of neural responses (Figure 7C), and multiplexing of in-
formation about action and time (Figure 7D). Although simple,
the simulation serves as proof of principle that neural activity
with the properties that we observe in this study can serve as a
basis for timing behavior and suggests candidate computational
elements such as a scale factor and temporal error signal for
which there might exist functional analogs in the brain.

DISCUSSION

Time is a fundamental dimension of animals’ experience in the
world. As such, it plays an integral role in many brain processes,
from perception to motor control to learning and memory forma-
tion. What is the role of temporal representation within the BG? A
dominant view supported by a wide range of neurobiological
data posits that the BG implements aspects of reinforcement
learning (RL) [1, 20, 25–28], learning how an organism ought to
act in order to maximize reward. However, to learn about the
sometimes-delayed consequences of actions and to guide
future behavior toward rewarding outcomes, it is absolutely
necessary that the brain represent situations and actions
through time [1, 29]. Indeed, temporal relations among actions
and events contain the causal information that learning systems
have evolved to detect through a process sometimes referred to
as credit assignment [30]. Once credit for the occurrence of pre-
dictable events has been assigned, this information must be
used to profitably guide the course and timing of action as situ-
ations arise. This continuous learning-behaving cycle is what RL
algorithms naturally account for [29]. Yet, it is not known how the
BG, the brain system most often associated with RL, represents
temporal relationships over the durations necessary to explain
its purported role in animal learning and behavior.
The sequential neural states that we describe in the striatum

during timing behavior can provide a unifying view of the BG’s
role in timing and RL. These signals are strikingly similar to tem-
poral basis functions proposed in existing learning models as
more neurally plausible and efficient representations of time
[21–23], which we show can be used to generate timing behavior
similar to what we observed experimentally. Such models
operate by learning a set of weights used in a weighted sum
of the temporal bases to construct a moment-by-moment
prediction about future events such as expected reward. In
theory, a weighted combination of activity patterns in the cortical
or thalamic inputs to the striatum could act as such temporal
bases and modulate the responses of striatal neurons that we
observed.
An important question for future studies concerns the mecha-

nism that generated the striatal dynamics we observed. We
find it unlikely, given the duration of the intervals we examined,
that striatal dynamics were purely locally generated, although
several modeling studies suggest mechanisms for generat-
ing sequential activity states using striatum-like circuitry over
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shorter timescales [31, 32]. Indeed, the signals we use to decode
time were affected, but not fully explained by, the ongoing
sensorimotor state of the animal. Thus, our decoding approach
implicitly endorses a number of prominent interval timing
theories, positing that animals may use behavioral [12, 14] or
sensory state [33] transitions to learn to time events in the envi-
ronment and their own behavior.
Our data appear most consistent with theoretical models that

suggest distributed representations of time encoded by the joint
activity of populations of neurons [13]. Indeed, the decoder used
in the current study assumes that time information may be pre-
sent in many different neurons. However, we cannot rule out
that upstream of the population we recorded in the striatum,
other forms of temporal representations may exist. For instance,
an accumulating process such as that contained within pace-
maker accumulator models [9] might act to trigger neurons to
become active at different delays as the accumulator passes a
series of thresholds.
We show that sequential neural activation in the striatum can

be used to encode time on a scale of tens of seconds up to

1 min. These results add to a growing list of studies that demon-
strate sequential activation of neurons over multi-second time-
scales in other brain areas, such as the hippocampus [34, 35],
the cerebellum [36], the parietal cortex [37], and the prefrontal
cortex [38–40]. Unlike previous studies, we found that many indi-
vidual striatal neurons exhibited responses that dynamically re-
scaled with the timing of events in the environment and that
this scaling of responses produced changes in time encoding
by the population that correlated with timing behavior. Com-
bined with previous studies highlighting the importance of a nor-
mally functioning striatum for timing behavior [2–4, 6], the effect
of striatal inactivation in the current study, and other work that
demonstrated time encoding by striatal populations over shorter
timescales [41], our results suggest that information about where
in time a subject finds itself relative to anticipated events in the
environment is present in populations of striatal neurons and is
used to guide behavior.
Similar timing signals observed in areas other than the striatum

are viewed within the larger context of the functional role of
those areas where they were recorded. Timing signals in the
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hippocampus might endow explicit memories with accurate in-
formation about the order and temporal context of events [24],
and timing signals in the cerebellum might coordinate learned
actions at a fine timescale [36], while timing signals in premotor
cortexmight enable accurate timing of movement in general [42].
The striatal neurons we observed appear to multiplex temporal
information with other, non-temporal types of information, such

as signals related to the ongoing sensorimotor state of the animal
and likely other previously identified striatal signals related to
actions, motor sequences, or reinforcement [19, 26–28]. Such
multiplexing of temporal and other information in populations
of striatal neurons as observed in the current study is likely to
be critical to the previously ascribed and often-studied function
of the BG in learning and action selection.

A C

D

B

Figure 7. A Simple Simulation of Timing Behavior
(A) Firing of striatal neurons was modeled based on receptive fields for the height of a decaying trace that is reset in each trial by reward delivery (top left). This

trace can decay faster (solid line) or slower (dotted line) by adjusting the parameter g. The Gaussian functions (top right) represent receptive fields evenly spaced

along the height of the trace function. The trace function was multiplied by the receptive fields to generate rate functions, the levels of which vary across time as

the memory trace decays. Spike counts observed within defined time bins were thenmultiplied by the logarithm of their respective rate functions and summed to

compute the population log likelihood function for current time given the population response, from t = 0 to t = FI. The maximum of this likelihood function was

used to derive our estimate for current time relative to reward, for each time bin. Decoded time estimates can run faster or slower depending on whether the trace

function decays quickly or slowly. For each trial, when the decoded time estimate reached a given threshold (red dotted line), we simulated a probabilistic

pressing process. If the decoded estimate runs too slowly, it fails to reach the threshold value for expected reward (blue dotted line) before the current FI elapses,

and the reward happens before it was expected (dotted black box), generating a large prediction error that drives appropriate updating of g in the next trial. If the

decoded estimate runs more accurately (solid black box), a small prediction error is generated, and g is minimally adjusted in the next trial.

(B) Example of simulated lever pressing behavior on the SFI task. Gray markers indicate a lever press; red markers indicate the PST.

(C) SDFs of simulated units ordered by response profile. Each panel corresponds to one FI.

(D) Four single-unit peri-stimulus time histograms of 2.5-s epochs aligned on pressing onset event (top). Trials were grouped in quintiles of the relative PST. The

colors from gray to red represent the average firing in the first to the fifth quintile, respectively. The bottom panel shows the correlation between the firing rate of

the correspondent unit on the top panel and the PST relative to FI. Each data point is color coded from gray to red for the first to the tenth decile of the relative PST.

See also Figure S6.
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EXPERIMENTAL PROCEDURES

All experiments were in accordancewith the European Union Directive 86/609/

EEC and approved by the Portuguese Veterinary General Board (Direcção-

Geral de Veterinária, project approval 014303 - 0420/000/000/2011). Five

male Long-Evans hooded rats were used in the neurophysiological experi-

ments, and two male Long-Evans rats were used for the muscimol experi-

ments. All isolated units (179 total from 5 rats, 25 R1, 9 R2, 21 R3, 28 R4, 96

R5) recorded for at least three blocks in sessions in which PSTs correlated

significantly with FI (p < 0.05) were included in subsequent analyses. All ana-

lyses and simulations were performed using custom software in MATLAB

(MathWorks). See Supplemental Experimental Procedures for a detailed

description of methods and procedures.
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ary Mainen, Thiago Gouvêa, Eric DeWitt, Alfonso Renart, and Masayoshi Mur-

akami for critical comments on versions of the manuscript and discussions.

We thank the histopathology and vivarium staff from the Champalimaud Scien-

tific and Technological Platforms for support. This work was supported by

Champalimaud and Gulbenkian Foundations and fellowships to G.B.M.M.

and S.S from the Portuguese Foundation for Science and Technology.

Received: December 15, 2014

Revised: January 23, 2015

Accepted: February 11, 2015

Published: April 23, 2015

REFERENCES

1. Schultz, W., Dayan, P., and Montague, P.R. (1997). A neural substrate of

prediction and reward. Science 275, 1593–1599.

2. Meck, W.H. (2006). Neuroanatomical localization of an internal clock: a

functional link between mesolimbic, nigrostriatal, and mesocortical dopa-

minergic systems. Brain Res. 1109, 93–107.

3. Malapani, C., Rakitin, B., Levy, R., Meck, W.H., Deweer, B., Dubois, B.,

and Gibbon, J. (1998). Coupled temporal memories in Parkinson’s dis-

ease: a dopamine-related dysfunction. J. Cogn. Neurosci. 10, 316–331.

4. Rowe, K.C., Paulsen, J.S., Langbehn, D.R., Duff, K., Beglinger, L.J., Wang,

C., O’Rourke, J.J., Stout, J.C., and Moser, D.J. (2010). Self-paced

timing detects and tracks change in prodromal Huntington disease.

Neuropsychology 24, 435–442.

5. Maricq, A.V., and Church, R.M. (1983). The differential effects of

haloperidol and methamphetamine on time estimation in the rat.

Psychopharmacology (Berl.) 79, 10–15.

6. Ward, R.D., Kellendonk, C., Simpson, E.H., Lipatova, O., Drew, M.R.,

Fairhurst, S., Kandel, E.R., and Balsam, P.D. (2009). Impaired timing pre-

cision produced by striatal D2 receptor overexpression is mediated by

cognitive and motivational deficits. Behav. Neurosci. 123, 720–730.

7. Hinton, S.C., and Meck, W.H. (2004). Frontal-striatal circuitry activated by

human peak-interval timing in the supra-seconds range. Brain Res. Cogn.

Brain Res. 21, 171–182.

8. Tanaka, S.C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., and Yamawaki,

S. (2004). Prediction of immediate and future rewards differentially recruits

cortico-basal ganglia loops. Nat. Neurosci. 7, 887–893.

9. Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal

timing. Psychol. Rev. 84, 279–325.

10. Simen, P., Balci, F., de Souza, L., Cohen, J.D., and Holmes, P. (2011). A

model of interval timing by neural integration. J. Neurosci. 31, 9238–9253.

11. Meck, W.H., Penney, T.B., and Pouthas, V. (2008). Cortico-striatal repre-

sentation of time in animals and humans. Curr. Opin. Neurobiol. 18,

145–152.

12. Killeen, P.R., and Fetterman, J.G. (1988). A behavioral theory of timing.

Psychol. Rev. 95, 274–295.

13. Buonomano, D.V., and Merzenich, M.M. (1995). Temporal information

transformed into a spatial code by a neural network with realistic proper-

ties. Science 267, 1028–1030.

14. Machado, A., Malheiro, M.T., and Erlhagen, W. (2009). Learning to time: a

perspective. J. Exp. Anal. Behav. 92, 423–458.

15. Gage, G.J., Stoetzner, C.R., Wiltschko, A.B., and Berke, J.D. (2010).

Selective activation of striatal fast-spiking interneurons during choice

execution. Neuron 67, 466–479.

16. Geffen, M.N., Broome, B.M., Laurent, G., and Meister, M. (2009). Neural

encoding of rapidly fluctuating odors. Neuron 61, 570–586.

17. Dayan, P., and Abbott, L.F. (2005). Theoretical Neuroscience, Second

Edition. (Cambridge: MIT Press).

18. Mink, J.W. (1996). The basal ganglia: focused selection and inhibition of

competing motor programs. Prog. Neurobiol. 50, 381–425.

19. Jin, X., and Costa, R.M. (2010). Start/stop signals emerge in nigrostriatal

circuits during sequence learning. Nature 466, 457–462.

20. Kim, H., Sul, J.H., Huh, N., Lee, D., and Jung, M.W. (2009). Role of striatum

in updating values of chosen actions. J. Neurosci. 29, 14701–14712.

21. Grossberg, S., and Schmajuk, N.A. (1989). Neural dynamics of adaptive

timing and temporal discrimination during associative learning. Neural

Netw. 2, 79–102.

22. Suri, R.E., and Schultz, W. (1999). A neural network model with dopamine-

like reinforcement signal that learns a spatial delayed response task.

Neuroscience 91, 871–890.

23. Ludvig, E.A., Sutton, R.S., and Kehoe, E.J. (2008). Stimulus representation

and the timing of reward-prediction errors in models of the dopamine sys-

tem. Neural Comput. 20, 3034–3054.

24. Howard, M.W., MacDonald, C.J., Tiganj, Z., Shankar, K.H., Du, Q.,

Hasselmo, M.E., and Eichenbaum, H. (2014). A unified mathematical

framework for coding time, space, and sequences in the hippocampal re-

gion. J. Neurosci. 34, 4692–4707.

25. Doya, K. (1999). What are the computations of the cerebellum, the basal

ganglia and the cerebral cortex? Neural Netw. 12, 961–974.

26. Lauwereyns, J., Watanabe, K., Coe, B., and Hikosaka, O. (2002). A neural

correlate of response bias in monkey caudate nucleus. Nature 418,

413–417.

27. Samejima, K., Ueda, Y., Doya, K., and Kimura, M. (2005). Representation

of action-specific reward values in the striatum. Science 310, 1337–1340.

28. Lau, B., and Glimcher, P.W. (2008). Value representations in the primate

striatum during matching behavior. Neuron 58, 451–463.

29. Sutton, R.S., and Barto, A.G. (1998). Reinforcement Learning.

(Cambridge: MIT Press).

30. Balsam, P.D., and Gallistel, C.R. (2009). Temporal maps and informative-

ness in associative learning. Trends Neurosci. 32, 73–78.

31. Ponzi, A., andWickens, J. (2010). Sequentially switching cell assemblies in

random inhibitory networks of spiking neurons in the striatum. J. Neurosci.

30, 5894–5911.

32. Berns, G.S., and Sejnowski, T.J. (1998). A computational model of how the

basal ganglia produce sequences. J. Cogn. Neurosci. 10, 108–121.

Current Biology 25, 1113–1122, May 4, 2015 ª2015 Elsevier Ltd All rights reserved 1121



33. Ahrens, M.B., and Sahani, M. (2011). Observers exploit stochastic models

of sensory change to help judge the passage of time. Curr. Biol. 21,

200–206.

34. Pastalkova, E., Itskov, V., Amarasingham, A., and Buzsáki, G. (2008).
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and eventually merge close to the bottom of the
image. As qualitatively evidenced by the dI/dU
map of Fig. 4B and quantitatively supported by
the line sections plotted at the bottom of this
panel, the edge state disappears as soon as the
step-step separation decreases below the spatial
extent of the edge state (25)—i.e., about 10 nm.
We further analyze the response of these edge
states to highmagnetic fields B. Figure 4C reports
a dI/dU map (top) and STS data acquired on an
odd step edge (bottom) at B = 11 T; contrary to the
quantum spin Hall state found in HgTe, the 1D
TCI state investigated here is robust against time-
reversal symmetry breaking perturbations. Finally,
Fig. 4D shows that the edge state also persists at
elevated temperatures (T = 80 K). Despite the
reduced intensity evidenced by the STS spectrum,
a well-defined 1D channel is still clearly present.
The observation of a distinct type of one-

dimensional states at odd step edges of topological
crystalline insulators with relatively wide bulk
band gaps opens up opportunities for the use
of topological materials for sensing and informa-
tion processing purposes well beyond existing
materials (4, 10, 11). Furthermore, the absence of
scattering and the high degree of spin polariza-
tion observed in tight-binding calculations indi-
cate that the 1Dmidgap state might be useful for
spintronics applications. By patterning the step-
and-terrace structure of TCI surfaces, this may
allow for the creation of well-separated conduc-
tive channels with a width of only about 10 nm.
This may lead to interconnections between func-
tional units at ultrahigh packing densities. To
fully explore whether the 1D midgap state found
at odd TCI step edges display quantum conduct-
ance effects, further investigations by, for exam-
ple, four-probe transport measurements, will be
needed.
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BRAIN RESEARCH

Midbrain dopamine neurons control
judgment of time
Sofia Soares,* Bassam V. Atallah,*† Joseph J. Paton†

Our sense of time is far from constant. For instance, time flies when we are having fun, and
it slows to a trickle when we are bored. Midbrain dopamine neurons have been implicated
in variable time estimation. However, a direct link between signals carried by dopamine
neurons and temporal judgments is lacking. We measured and manipulated the activity
of dopamine neurons as mice judged the duration of time intervals. We found that
pharmacogenetic suppression of dopamine neurons decreased behavioral sensitivity to
time and that dopamine neurons encoded information about trial-to-trial variability in time
estimates. Last, we found that transient activation or inhibition of dopamine neurons was
sufficient to slow down or speed up time estimation, respectively. Dopamine neuron
activity thus reflects and can directly control the judgment of time.

O
ur ability to accurately estimate and re-
produce time intervals is variable and de-
pends onmany factors, includingmotivation
(1), attention (2), sensory change (3), novelty
(4), and emotions (5). In addition, several

neurological and neuropsychiatric disorders (6–9)
are accompanied by changes in timing behavior.
Midbrain dopamine (DA) neurons are implicated
in many of the psychological factors (10) and dis-
orders (6, 8, 11) associated with changes in time
estimation.
Midbrain DA neurons also encode reward pre-

diction errors (RPEs) (12–15), an important teach-
ing signal in reinforcement learning (16). Phasic
DA responses to reward-predicting cues reflect
the magnitude of (17, 18), probability of (19), and
expected time delay until the reward (20, 21).
When expectation varies over time, DA neuron
responses are smaller at times when rewards
and reward-predicting cues are more expected
(21, 22), indicating that DA neurons receive tem-
poral information. Manipulations of the DAergic
system by pharmacological (23) or genetic (24)
approaches disrupt timing behavior, suggesting
that DA neurons may directly modulate timing.
However, the data from pharmacological and ge-
netic manipulations are inconsistent: In some
cases, DA seems to speed up timekeeping (23, 25),
and in others, DA seems to slow down or not
affect timekeeping (26, 27).

To determine (i) what signals are encoded by
midbrain DA neurons during timing behavior
and (ii) howDA neurons contribute to variability
in temporal judgments, we measured and mani-
pulated the activity of DA neurons in mice as
they performed categorical decisions about dura-
tion (28). We first trained mice to perform a tem-
poral discrimination task (Fig. 1A, left). Mice
initiated trials at a central nose port, immediate-
ly triggering the delivery of two identical tones
separated by a variable delay. Mice reported the
delay between tones as shorter or longer than 1.5 s
at one of two lateral nose ports for water reward.
Incorrect choices were not rewarded. Perform-
ance was nearly perfect for the easiest intervals
but more variable for intervals near 1.5 s (the
boundary between the “short” and “long” cate-
gories) and was well described by a sigmoid psy-
chometric function (Fig. 1A, middle).
Wethenpharmacogenetically suppressedDAergic

neuronal activity and observed impaired tempo-
ral judgments on treatment days as compared
with adjacent nontreatment days (P < 0.004, n =
3 mice; Fig. 1A, right). We also observed a ten-
dency to perform fewer trials [control group,
177 ± 15 trials; clozapine N-oxide (CNO)–treated
group, 115 ± 54 trials; mean ± SD; P = 0.05],
suggesting that the animals’ motivation was
affected byDAergic suppression. To test whether
fluctuations in endogenous DA neuron activity
predicted systematic changes in temporal judg-
ments, we used fiber photometry (29) tomeasure
Ca2+ activity in DAergic neurons, targeting the
substantia nigra pars compacta (SNc) (Fig. 1, B
and C, and figs. S1 and S2).
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Fig. 1. Dopaminergic (DAergic) signaling is required and precisely aligned
to temporal cues, not movement, during performance of a temporal cate-
gorization task. (A) Shown on the left is the task schematic and order of
events (circles in the upper panel, nose-ports; gray shading in the lower
panel, interval period). A logistic function fit to the daily (gray) and average
(black) performanceof an examplemouse (10 sessions) is shown in themiddle.
Pharmacogenetic suppression (hM4D) was targeted to midbrain DAergic
neurons, and mice were injected with either CNO or saline on adjacent
days; shown on the right is mean psychometric performance on days with
saline or CNO treatment (black or red, respectively; n = 3 mice). Error bars,
SEM. The inset shows the percent of correct trials on days before and after
CNO treatment in mice expressing hM4D (filled circles, n = 3; *P < 0.005)
or non–hM4D-expressing controls (open circles, n = 4). Error bars, SEM.
(B) Schematic of the photometry apparatus and viral and surgical procedure.
(C) Image of the substantia nigra pars compacta (SNc) histology. (D) On the

left, all trials of DA neuronal activity recorded froma single subject are shown,
split by interval duration and aligned on trial initiation (first tone delivery;
white vertical line). Each row represents a trial, and within each interval, trials
are sorted from fast (top) to slow (bottom) response time (RT, time from the
second tone to choice; 3759 trials). Shown on the right are mean DAergic
neuron responses, split by interval duration (n = 5 mice; intervals are color-
coded as throughout). Shading, SEM across mice. z, z-score, DF/F, see the
methods. (E) Example photometric traces recorded during a single correct
and incorrect trial of the 1.74-s interval. (F) Photometric recordings of DA
neuronal activity froma single subject, split by outcome (correct choices, top;
incorrect choices, bottom) and aligned on choice (white). Within each
outcome, trials were sorted by RTs [slow (top) to fast (bottom)]. Red dots
mark the time of second-tone presentation (2426 trials). (G) Mean DAergic
responses of incorrect trials aligned on the threemain task events (first tone,
second tone, and choice; n = 5 mice). Shading, SEM across mice.
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Fig. 2. DAergic responses correlate with temporal
judgments and are explained by a simple model
of reward prediction error (RPE). (A) Linear mod-
el (left) including RPE components: expectation of
reward P (subject performance, top left) and tem-
poral expectation S (surprise, the inverse of the
subjective hazard function; bottom left). w, weight;
a.u., arbitrary units. In the middle panel, measured
second-tone DAergic response for six time intervals
(black traces; n = 5 mice) are compared to pre-
dicted DA response (red dots). The graph on the
right shows model predictions versus measured
DAergic activity (gray symbols, individual mice;
mean responses across mice, black filled circles).
(B) Average measured DA response for all intervals
during correct and incorrect trials. (C) Mean DA
response to the second tone when an interval was
judgedas long versus short. Each shape represents a
differentmouse. Black symbols represent responses
averaged across all interval stimuli.
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choice behavior are predicted by DAergic activity.
(A) Trial-by-trial logistic regression (black) that predicts
choice from the amplitude of the second-tone DA re-
sponse (gray), for each of the six time intervals (left to
right).The top and bottom histograms illustrate the num-
ber of trials, as a function of DA response, in which the
subject made long and short choices, respectively (n =
8533 trials, 5 mice). For each session and interval, DA
responses are grouped into terciles—high (blue),medium
(gray), and low (red)—throughout the figure. (B) Distinct
patterns of temporal judgments are expected depending
on the nature of the relationship between DA response
and choice. (C) Three individual trials illustrating low,
medium, and high second-tone DA responses (quantified
as the mean response in the gray-shaded box) and
grouped by tercile within the entire second-tone re-
sponse distribution, depicted at right. (D) Average DA
response in each tercile for the 1.74-s interval stimulus
(n= 1868 trials, 5mice). Shading, SEM. (E) Psychometric
curves constructed using trials from each tercile of DA
response. Curves are the maximum-likelihood fits of
logistic functions with the lowest Bayesian information
criterion scores (n = 8533 trials, 5 mice). Error bars, 95%
confidence interval (CI).The inset shows the difference in
the probability of making a long choice between medium
and low or high (red or blue) DA response trials. Error
bars, SEM. (F) The top row is as in (D) but for all six
interval durations; data shown in (D) are outlined in gray.
The bottom row shows the area under the curve (auc),
distinguishing high- and low-tercile DA responses. This
difference in DA response increased during the course of
the trial (red linear regression; coefficient of determina-
tion r2 ranging from 0.72 to 0.98; P < 0.0001). 1.5 2.4
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We observed DAergic responses locked to the
three main task events on single trials: the first
tone, the second tone, and reward delivery (or
omission thereof) (Fig. 1E). Activity increased
after reward delivery and decreased when the
reward was omitted in the case of incorrect
choices (Fig. 1F) (30). DAergic signaling has also
been implicated inmovement; however, DA neu-
ron activity in this task did not reflect movement
per se (Fig. 1, F and G, and fig. S3).
In this task, the second tone marks the end of

the interval to be discriminated and is a sensory
cue that predicts reward. The amplitude of a RPE
at the time of the second tone should be modu-
lated by two factors: the subject's expectation
of reward at tone delivery and their temporal
expectation of the second tone itself. First, ex-
pectation of reward varies as a function of stim-
ulus difficulty, where the more difficult the
interval to be discriminated, the lower the proba-
bility of reward (Fig. 2A). Second, because delay
intervals were randomly selected from the stim-
ulus set on each trial, occurrence of the second
tone becomes less surprising with time (Fig. 2A).
Indeed, animals were sensitive to changing tem-
poral expectation, as indicated by a systematic
decrease in response time (RT, the delay between
second-tone delivery and choice execution) with
increasing interval duration (RT for the shortest
interval greater than RT for the longest interval;
P < 0.005 in each of five mice). To test whether
second-tone responses reflected a RPE that in-
tegrated information about temporal expectation
and expected reward, we asked how well the pat-
tern of average responses to all six second tones
could be explained by a linear combination of
temporal expectation (i.e., surprise, the inverse of
the subjective hazard function; fig. S4) and per-
formance (the probability of reward for each
stimulus). On average, 90% of variance in mean

responses could be explained by a relatively equal
contribution of these two factors (range, 58 to
99%; n = 5 mice; Fig. 2A). Reward responses
were also consistent with RPE coding: Within a
given choice category, they tended to be larger
for intervals that animals miscategorized more
often (fig. S5).
On average, DA neuron responses to the sec-

ond tone contained information about elapsed
time through their encoding of temporal expec-
tation. Do these responses relate to variations in
judgments of time? When animals correctly
judged intervals, the response to the second tone
was, on average, larger for intervals in the short
category (Fig. 2B). However, on incorrect trials,
the pattern was reversed: The response to the
second tone was larger for intervals in the long
category. Thus, DA responsemagnitude reflected
the animals’ assessment of the interval duration,
not the actual interval duration. Over all intervals,
the second-tone response for a given interval was
significantly larger when that interval was judged
as short (P < 0.001; Fig. 2, B and C). How do these
results relate to the underlying decision and mo-
tor processes that guide choice during the task?
In principle, the trial-to-trial variations in DA

neuron activity could be related to a time-
dependent component of the decision, such as
the speed of internal timekeeping or the location
of the decision boundary in time. Alternatively,
variations in DA activity might reflect a time-
independent component of the behavior, such as
a constant action bias. To quantitatively evaluate
these two possibilities, we performed a logistic
regression to assess the degree to which the mag-
nitude of the DA neuron response to the second
tone predicted animals’ choices on single trials.
We found that activity predicted choice to a les-
ser extent in the case of easy stimuli than in the
case of difficult stimuli (Fig. 3A). These data sug-

gest that theDAneuron responsewas systematically
related to the horizontal position of the psy-
chometric curve along the time axis and not
the vertical position along the choice axis (Fig.
3B). To test this, we split trials into high, me-
dium, and low terciles of the distribution of
responses to the second tone [Fig. 3, A (histo-
grams) and C]. While the second-tone response
amplitude was used to group trials, the system-
atic ordering of DA neuron responses emerged
toward the beginning of the trial and persisted
throughout an interval (Fig. 3, D and F). We next
constructed psychometric curves for trials in
each tercile and compared a range of models for
the psychometric curve. The model that best ex-
plained the behavioral data collected from high-,
medium-, and low-tercile trials consisted of three
sigmoid curves that differed only in their hori-
zontal location along the time axis (Fig. 3E). We
observed a shift toward long choiceswhenDAergic
activity was low, and the opposite shift when
activity was high. Specifically, as DA activity var-
ied from the lower to the upper tercile, the psy-
chometric threshold shifted by ~340ms (i.e., ~20%
of the 1.5-s category boundary; range, 90 to 620ms;
6 to 42%; n = 5 mice). The relationship between
DAergic response and psychometric shift was
observed for recordings in either hemisphere
(fig. S6), thus ruling out an explanation based on
the laterality of short versus long choices. In-
stead, these results indicate that higher or lower
midbrain DAergic activity is correlated with a
change in a time-dependent component of the
decision.
How might this correlation between DA neu-

ron activity and the location of the psychometric
curve along the time axis relate to our initial
finding that temporal expectation contributed to
the average second-tone response? The theory of
DAergic RPE coding predicts that slower (faster)
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Fig. 4. Optogenetic manipulation of dopamine neurons is sufficient to
change judgment of time. (A) Schematics illustrating viral strategy and
subsequent fiber implantation (left) and stimulation protocol (right). (B andC)
Histology confirming membrane expression of ChR2-YFP or NpHR-YFP (both
green) in neurons of the SNc expressing tyrosine hydroxylase (TH, red). (D and
E) Single-trial (top panels) and peri-stimulus time histogram (bottom panels)
of in vivo electrophysiological measurement of two DA neurons reliably ac-

tivated and inactivated by light (n = 53 and 8 trials, respectively). (F) Choice
behavior and psychometric curves during control trials (black), photoactivated
trials (blue), and unstimulated trials immediately after photoactivation (gray)
(n = 4 mice). Error bars, 95% CI. Insets show the mean difference in the
probability of a long choice between photoactivated and control trials (top,
one bar per animal; bottom, one data point per stimulus). Error bars, SEM.
(G) Same as (F) but for animals whose DA neurons were inhibited (n = 4).
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timekeeping, by stretching (contracting) tempo-
ral surprise along the time axis, should increase
(decrease) DAergic responses to the second tone
(fig. S7). We observed a pattern of DAergic re-
sponse to the second tone that was consistent
with this (Fig. 2, B and C, and fig. S7). Further-
more, if DAergic activity reflects RPE continu-
ously throughout a trial, differences in activity
associatedwith slower or faster timekeeping (i.e.,
the separation between low- and high-activity
terciles) should also grow continuously over time,
and indeed, this is the case in our data (Fig. 3F
and fig. S7). In contrast to the expected impact of
variability in the speed of timekeeping on RPE
coding, it is not apparent to us how changes in
the location of the decision boundary along an
animal’s internal notion of time should change
RPEs arising at the presentation of the second
tone. The most parsimonious explanation of the
data is that DA neuron activity reflects variability
in the speed of internal timekeeping.
These results demonstrate a correlationbetween

temporal judgments and DA neuron activity.
However, it is unclear whether DA neuron acti-
vity simply reflects, or whether it is sufficient to
cause changes in, time judgments. Wemimicked
the observed variability in DAergic responses by
optogenetically activating or inhibiting DA neu-
rons (Fig. 4, A to E) on a minority of randomly
chosen trials. Notably, we found that increasing
or decreasing DA activity resulted in a horizontal
shift in the psychometric curve in the directions
predicted by the photometry data, albeit more
modestly in the case of photoinhibition (excita-
tion, 140 ± 20ms, n= 4mice; inhibition, –68 ± 23
ms, n= 4mice; Fig. 4, F andG, and fig. S8). These
effects were transient, occurring only on stimu-
lated trials, and thus could not be explained as
resulting from learning (Fig. 4, F and G), nor
were they observed in control animals (fig. S9).
In addition, as was the case when sorting trials
on the basis of DA response to the second tone,
we observed no systematic effect on RTs, arguing
against DAergic neuron activity affecting the
subjects’ movement toward or incentive salience
of choice options during the task (fig. S10).
Here we demonstrate a direct link between

signals carried bymidbrainDAneurons and judg-
ments of elapsed time. Higher or lower levels of
DAergic activity not only correlated with but
could directly control timekeeping. These data
are in agreement with some results of pharma-
cological manipulations of the DAergic system
during timing tasks (26), but appear at odds with
some others that showed accelerated timekeeping
with increased DAergic tone (23, 25). However,
recent studies demonstrate thatmany of the phar-
macological effects on timing behavior can be
explained by the changes in motivation (27, 31)
that accompany DAergic drug administration
(32). Indeed, pharmacogenetic DAergic manipu-
lation in our task affected motivated behavior.
Variability in the effects of pharmacology on
timing may result from its relatively slow time
course, which allows for compensation and/or
the superposition of multiple distinct behavioral
effects. Our approach circumvents these issues

with genetically targeted, transient manipula-
tions ofDAneuronactivity.Additionally,we focused
on DA neurons in the SNc because many project
to a dorsocentral region of the striatum where
removal of DA input can cause a selective deficit
in timing (33); however, whether DA neurons in
other regions, such as the ventral tegmental area,
contribute to timing variability is unknown. Last,
we monitored and manipulated the activity of
midbrain DA neurons, and not the levels of
released DA. The relationship between tonic and
phasic firing of DAneurons andDA release is not
entirely clear, and it is complicated by feedback
mechanisms by which released DA can affect the
firing of DA neurons (34).
Although unexpected, the data presented here

may explain existing behavioral data. Situations in
which DAergic activity is elevated naturally,
such as states of high approach motivation (35),
response uncertainty (36), or cognitive engagement
(37), are associated with underestimation of time
(1, 2, 38). Conversely, situations that decrease
DAergic activity, such as when fearful or aversive
stimuli are presented (39), are associated with
overestimation of time (40). These observations,
together with our data, suggest that flexibility in
time estimationmay confer an adaptive advantage
on the individual. For example, underestimating
duration in better-than-expected situations may
lead to longer engagement in those situations,
resulting in even greater reward than if time
estimation were not flexible. In other words,
there may be a normative explanation for why
“time flies when we are having fun” underlying
our observation that DA neurons, which are so
central to reward processing, exert control over
time estimation.

REFERENCES AND NOTES

1. P. A. Gable, B. D. Poole, Psychol. Sci. 23, 879–886
(2012).

2. J. T. Coull, F. Vidal, B. Nazarian, F. Macar, Science 303,
1506–1508 (2004).

3. M. B. Ahrens, M. Sahani, Curr. Biol. 21, 200–206
(2011).

4. V. Pariyadath, D. Eagleman, PLOS ONE 2, e1264
(2007).

5. S. Droit-Volet, W. H. Meck, Trends Cogn. Sci. 11, 504–513
(2007).

6. M. A. Pastor, J. Artieda, M. Jahanshahi, J. A. Obeso, Brain 115,
211–225 (1992).

7. M. Wittmann, D. S. Leland, J. Churan, M. P. Paulus,
Drug Alcohol Depend. 90, 183–192 (2007).

8. V. Noreika, C. M. Falter, K. Rubia, Neuropsychologia 51,
235–266 (2013).

9. O. F. Wahl, D. Sieg, Percept. Mot. Skills 50, 535–541
(1980).

10. R. Cools, Neuroscientist 14, 381–395 (2008).
11. A. Lüthi, C. Lüscher, Nat. Neurosci. 17, 1635–1643

(2014).
12. W. Schultz, P. Dayan, P. R. Montague, Science 275, 1593–1599

(1997).
13. H. M. Bayer, P. W. Glimcher, Neuron 47, 129–141

(2005).
14. N. Eshel, J. Tian, M. Bukwich, N. Uchida, Nat. Neurosci. 19,

479–486 (2016).
15. E. E. Steinberg et al., Nat. Neurosci. 16, 966–973

(2013).
16. R. S. Sutton, A. G. Barto, Introduction to Reinforcement Learning,

vol. 135 (MIT Press, 1998).
17. P. N. Tobler, C. D. Fiorillo, W. Schultz, Science 307, 1642–1645

(2005).
18. J. Y. Cohen, S. Haesler, L. Vong, B. B. Lowell, N. Uchida,

Nature 482, 85–88 (2012).

19. C. D. Fiorillo, P. N. Tobler, W. Schultz, Science 299, 1898–1902
(2003).

20. S. Kobayashi, W. Schultz, J. Neurosci. 28, 7837–7846
(2008).

21. C. D. Fiorillo, W. T. Newsome, W. Schultz, Nat. Neurosci. 11,
966–973 (2008).

22. B. Pasquereau, R. S. Turner, J. Neurophysiol. 113, 1110–1123
(2015).

23. A. V. Maricq, R. M. Church, Psychopharmacology 79, 10–15
(1983).

24. M. R. Drew et al., J. Neurosci. 27, 7731–7739
(2007).

25. C. V. Buhusi, W. H. Meck, Behav. Neurosci. 116, 291–297
(2002).

26. J. I. Lake, W. H. Meck, Neuropsychologia 51, 284–292
(2013).

27. F. Balci et al., Brain Res. 1325, 89–99
(2010).

28. T. S. Gouvêa et al., eLife 4, e11386 (2015).
29. S. P. dos Santos Matias, E. Lottem, G. P. Dugue, Z. F. Mainen,

http://biorxiv.org/content/early/2016/06/18/059758
(2016).

30. W. Schultz, P. Apicella, T. Ljungberg, J. Neurosci. 13, 900–913
(1993).

31. A. L. Odum, L. M. Lieving, D. W. Schaai, J. Exp. Anal. Behav. 78,
195–214 (2002).

32. B. Panigrahi et al., Cell 162, 1418–1430
(2015).

33. W. H. Meck, Brain Res. 1109, 93–107
(2006).

34. B. S. Bunney, G. K. Aghajanian, Naunyn Schmiedeberg’s
Arch. Pharmacol. 304, 255–261 (1978).

35. E. S. Bromberg-Martin, M. Matsumoto, O. Hikosaka, Neuron 67,
144–155 (2010).

36. V. de Lafuente, R. Romo, Proc. Natl. Acad. Sci. U.S.A. 108,
19767–19771 (2011).

37. I. Fried et al., Nat. Neurosci. 4, 201–206
(2001).

38. R. E. Hicks, G. W. Miller, M. Kinsbourne, Am. J. Psychol. 89,
719–730 (1976).

39. E. B. Oleson, R. N. Gentry, V. C. Chioma, J. F. Cheer,
J. Neurosci. 32, 14804–14808 (2012).

40. F. N. Watts, R. Sharrock, Percept. Mot. Skills 59, 597–598
(1984).

ACKNOWLEDGMENTS

We thank A. Braga for assistance with behavioral training;
M. Duarte for assistance with mouse colonies; G. Lopes for
assistance with Bonsai; T. Monteiro, T. Gouvêa, other members of
the Paton laboratory, B. Lau, E. Lottem, M. Murakami, C. Poo,
A. Renart, and T. Akam for discussions and/or comments on the
manuscript; Z. Mainen for support; platforms at the Champalimaud
Centre for histology support and animal care; and V. Jayaraman,
R. A. Kerr, D. S. Kim, L. L. Looger, and K. Svoboda from the GENIE
(Genetically-Encoded Neuronal Indicator and Effector) Project at
the Howard Hughes Medical Institute’s Janelia Farm Research
Campus for providing the AAV-GCaMP6f through the University of
Pennsylvania Vector Core. Viruses for expression of NpHR3.0 and
EYFP are available from the University of North Carolina Vector
Core under a material transfer agreement with K. Deisseroth.
Viruses for expression of GCaMP6f and TdTomato are available
from the University of Pennsylvania Vector Core under a material
transfer agreement with the trustees of the University of
Pennsylvania on behalf of J. Wilson. The work was funded by the
Bial Foundation (188/12 to J.J.P.), the Simons Foundation (Simons
Collaboration on the Global Brain award 325476 to J.J.P.),
Fundação para Ciência e Tecnologia (SFRH/BD/51895/2012 to
S.S.), the European Molecular Biology Organization (Advanced
Long Term Fellowship 983-2012 to B.V.A.), Marie Curie Actions
(FP7-PEOPLE-2012-IIF 326398 to B.V.A.), and the Champalimaud
Foundation (internal funding to J.J.P.). Data presented in this paper
can be found at www.dropbox.com/sh/ip6forddl84028j/
AAAsa3ry41bu4acYk1Bl3KDra?dl=0.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/354/6317/1273/suppl/DC1
Materials and Methods
Figs. S1 to S10
References (41–43)

8 July 2016; accepted 4 November 2016
10.1126/science.aah5234

SCIENCE sciencemag.org 9 DECEMBER 2016 • VOL 354 ISSUE 6317 1277

RESEARCH | REPORTS

 o
n 

D
ec

em
be

r 8
, 2

01
6

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fro

m
 





References

Adler, A., Katabi, S., Finkes, I., Israel, Z., Prut, Y., & Bergman, H. (2012). Tem-
poral convergence of dynamic cell assemblies in the striato-pallidal network.
Journal of Neuroscience, 32 (7), 2473–2484.

Ahrens, M. B., & Sahani, M. (2011). Observers exploit stochastic models of
sensory change to help judge the passage of time. Current Biology, 21 (3),
200–206.

Anderson, D. J. (2016). Circuit modules linking internal states and social be-
haviour in flies and mice. Nature Reviews Neuroscience, 17 (11), 692–704.

Artieda, J., Pastor, M. A., Lacruz, F., & Obeso, J. A. (1992). Temporal discrim-
ination is abnormal in parkinson’s disease. Brain, 115 (1), 199–210.

Bakhurin, K. I., Goudar, V., Shobe, J. L., Claar, L. D., Buonomano, D. V., &
Masmanidis, S. C. (2017). Differential encoding of time by prefrontal and
striatal network dynamics. Journal of Neuroscience, 37 (4), 854–870.

Balcı, F. (2014). Interval timing, dopamine, and motivation. Timing &amp;
Time Perception, 2 (3), 379–410.

Balcı, F., Ludvig, E. A., Abner, R., Zhuang, X., Poon, P., & Brunner, D. (2010).
Motivational effects on interval timing in dopamine transporter (dat) knock-
down mice. Brain Research, 1325 , 89–99.

Balcı, F., Papachristos, E., Gallistel, C., Brunner, D., Gibson, J., & Shumyatsky,
G. (2008). Interval timing in genetically modified mice: a simple paradigm.
Genes, Brain and Behavior , 7 (3), 373–384.

Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: con-
tingency and incentive learning and their cortical substrates. Neurophar-
macology, 37 (4), 407–419.

Balsam, P. D., & Gallistel, C. R. (2009). Temporal maps and informativeness in
associative learning. Trends in neurosciences, 32 (2), 73–78.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive ele-
ments that can solve difficult learning control problems. IEEE transactions
on systems, man, and cybernetics(5), 834–846.

165



Bayer, H. M., & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a
quantitative reward prediction error signal. Neuron, 47 (1), 129–141.

Berditchevskaia, A., Cazé, R., & Schultz, S. R. (2016). Performance in a go/nogo
perceptual task reflects a balance between impulsive and instrumental com-
ponents of behaviour. Scientific reports, 6 .

Berke, J. D., Okatan, M., Skurski, J., & Eichenbaum, H. B. (2004). Oscillatory
entrainment of striatal neurons in freely moving rats. Neuron, 43 (6), 883–
896.

Berns, G. S., & Sejnowski, T. J. (1998). A computational model of how the
basal ganglia produce sequences. Journal of cognitive neuroscience, 10 (1),
108–121.

Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physi-
ology &amp; behavior , 81 (2), 179–209.

Bertler, Å., & Rosengren, E. (1959). Occurrence and distribution of dopamine
in brain and other tissues. Cellular and Molecular Life Sciences, 15 (1),
10–11.

Björklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain:
an update. Trends in neurosciences, 30 (5), 194–202.

Braitenberg, V. (1967). Is the cerebellar cortex a biological clock in the millisec-
ond range? Progress in brain research, 25 , 334–346.

Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Distinct tonic
and phasic anticipatory activity in lateral habenula and dopamine neurons.
Neuron, 67 (1), 144–155.

Bromberg-Martin, E. S., Matsumoto, M., Hong, S., & Hikosaka, O. (2010). A
pallidus-habenula-dopamine pathway signals inferred stimulus values. Jour-
nal of neurophysiology, 104 (2), 1068–1076.

Brunton, B. W., Botvinick, M. M., & Brody, C. D. (2013). Rats and humans can
optimally accumulate evidence for decision-making. Science, 340 (6128),
95–98.

Buhusi, C. V., & Meck, W. H. (2002). Differential effects of methamphetamine
and haloperidol on the control of an internal clock. Behavioral neuroscience,
116 (2), 291.

Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? functional and neural
mechanisms of interval timing. Nature reviews. Neuroscience, 6 (10), 755.

Bunney, B., & Aghajanian, G. (1978). d-amphetamine-induced depression of
central dopamine neurons: evidence for mediation by both autoreceptors
and a striato-nigral feedback pathway. Naunyn-Schmiedeberg’s archives of
pharmacology, 304 (3), 255–261.

Buonomano, D. V. (2014). Neural dynamics based timing in the subsecond to
seconds range. In Neurobiology of interval timing (pp. 101–117). Springer.

Buonomano, D. V., & Laje, R. (2010). Population clocks: motor timing with

166



neural dynamics. Trends in cognitive sciences, 14 (12), 520–527.
Buonomano, D. V., & Maass, W. (2009). State-dependent computations: spa-

tiotemporal processing in cortical networks. Nature reviews. Neuroscience,
10 (2), 113.

Buonomano, D. V., & Mauk, M. D. (1994). Neural network model of the cerebel-
lum: temporal discrimination and the timing of motor responses. Neural
computation, 6 (1), 38–55.

Buonomano, D. V., Merzenich, M. M., et al. (1995). Temporal information
transformed into a spatial code by a neural network with realistic properties.
Science, 267 (5200), 1028–1030.

Carandini, M., & Churchland, A. K. (2013). Probing perceptual decisions in
rodents. Nature neuroscience, 16 (7), 824–831.

Carlsson, A. (1959). The occurrence, distribution and physiological role of cat-
echolamines in the nervous system. Pharmacological reviews, 11 (2), 490–
493.

Carlsson, A., Lindqvist, M., & Magnusson, T. (1957). 3, 4-
dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists.
Nature, 180 (4596), 1200–1200.

Carlsson, A., Lindqvist, M., Magnusson, T., & Waldeck, B. (1958). On the
presence of 3-hydroxytyramine in brain. Science, 127 (3296), 471–471.

Castle, L., Aubert, R. E., Verbrugge, R. R., Khalid, M., & Epstein, R. S. (2007).
Trends in medication treatment for adhd. Journal of attention disorders,
10 (4), 335–342.

Catania, A. (1970). Reinforcement schedules and psychophysical judgment: A
study of some temporal properties of behavior. The theory of reinforcement
schedules.

Catania, A. C., & Reynolds, G. (1968). A quantitative analysis of the responding
maintained by interval schedules of reinforcement. Journal of the Experi-
mental analysis of behavior , 11 (3S2), 327–383.

Çevik, M. Ö. (2003). Effects of methamphetanine on duration discrimination.
Behavioral neuroscience, 117 (4), 774.

Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical
population biology, 9 (2), 129–136.

Cheyne, J. A., Solman, G. J., Carriere, J. S., & Smilek, D. (2009). Anatomy of
an error: A bidirectional state model of task engagement/disengagement
and attention-related errors. Cognition, 111 (1), 98–113.

Church, R. M., & Deluty, M. Z. (1977). Bisection of temporal intervals. Journal
of Experimental Psychology: Animal Behavior Processes, 3 (3), 216.

Church, R. M., Meck, W. H., & Gibbon, J. (1994). Application of scalar timing
theory to individual trials. Journal of Experimental Psychology: Animal
Behavior Processes, 20 (2), 135.

167



Clarke, S., Ivry, R., Grinband, J., Roberts, S., & Shimizu, N. (1996). Exploring
the domain of the cerebellar timing system. Advances in psychology, 115 ,
257–280.

Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., & Uchida, N. (2012). Neuron-
type specific signals for reward and punishment in the ventral tegmental
area. nature, 482 (7383), 85.

Constantino, S. M., & Daw, N. D. (2015). Learning the opportunity cost of time
in a patch-foraging task. Cognitive, Affective, &amp; Behavioral Neuro-
science, 15 (4), 837–853.

Cools, R. (2008). Role of dopamine in the motivational and cognitive control of
behavior. The Neuroscientist, 14 (4), 381–395.

Cotzias, G. C., Papavasiliou, P. S., & Gellene, R. (1969). Modification of parkin-
sonism - chronic treatment with l-dopa. New England Journal of Medicine,
280 (7), 337–345.

Cotzias, G. C., Van Woert, M. H., & Schiffer, L. M. (1967). Aromatic amino
acids and modification of parkinsonism. New England Journal of Medicine,
276 (7), 374–379.

Coull, J. T., Vidal, F., Nazarian, B., & Macar, F. (2004). Functional anatomy of
the attentional modulation of time estimation. Science, 303 (5663), 1506–
1508.

Cowles, J. T., & Finan, J. L. (1941). An improved method for establishing
temporal discrimination in white rats. The Journal of Psychology, 11 (2),
335–342.

Creelman, C. D. (1962). Human discrimination of auditory duration. The Journal
of the Acoustical Society of America, 34 (5), 582–593.

Cumming, W., & Schoenfeld, W. (1958). Behavior under extended exposure to
a high-value fixed interval reinforcement schedule. Journal of the Experi-
mental Analysis of Behavior , 1 (3), 245–263.

Daw, N. D., Courville, A. C., & Touretzky, D. S. (2006). Representation and
timing in theories of the dopamine system. Neural computation, 18 (7),
1637–1677.

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011).
Model-based influences on humans’ choices and striatal prediction errors.
Neuron, 69 (6), 1204–1215.

Dayan, P., & Abbott, L. F. (2005). Theoretical neuroscience (Vol. 806). Cam-
bridge, MA: MIT Press.

de Lafuente, V., & Romo, R. (2011). Dopamine neurons code subjective sen-
sory experience and uncertainty of perceptual decisions. Proceedings of the
National Academy of Sciences, 108 (49), 19767–19771.

Dews, P. (1978). Studies on responding under fixed-interval schedules of rein-
forcement: Ii. the scalloped pattern of the cumulative record. Journal of

168



the Experimental Analysis of Behavior , 29 (1), 67–75.
Dias-Ferreira, E., Sousa, J. C., Melo, I., Morgado, P., Mesquita, A. R., Cerqueira,

J. J., . . . Sousa, N. (2009). Chronic stress causes frontostriatal reorganiza-
tion and affects decision-making. Science, 325 (5940), 621–625.

Dodson, P. D., Dreyer, J. K., Jennings, K. A., Syed, E. C., Wade-Martins, R.,
Cragg, S. J., . . . Magill, P. J. (2016). Representation of spontaneous
movement by dopaminergic neurons is cell-type selective and disrupted in
parkinsonism. Proceedings of the National Academy of Sciences, 113 (15),
E2180–E2188.

Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia
and the cerebral cortex? Neural networks, 12 (7), 961–974.

Drew, M. R., Simpson, E. H., Kellendonk, C., Herzberg, W. G., Lipatova, O.,
Fairhurst, S., . . . Balsam, P. D. (2007). Transient overexpression of striatal
d2 receptors impairs operant motivation and interval timing. Journal of
Neuroscience, 27 (29), 7731–7739.

Droit-Volet, S., & Meck, W. H. (2007). How emotions colour our perception of
time. Trends in Cognitive Sciences, 11 (12), 504–513.

Droit-Volet, S., Ramos, D., Bueno, J. L., & Bigand, E. (2013). Music, emotion,
and time perception: the influence of subjective emotional valence and
arousal? Frontiers in psychology, 4 .

Ehringer, H., & Hornykiewicz, O. (1960). Distribution of noradrenaline and
dopamine (3-hydroxytyramine) in the human brain and their behavior in
diseases of the extrapyramidal system. Klinische Wochenschrift, 38 , 1236–
1239.

Eichenbaum, H. (2014). Time cells in the hippocampus: a new dimension for
mapping memories. Nature Reviews. Neuroscience, 15 (11), 732.

Emmons, E. B., De Corte, B. J., Kim, Y., Parker, K. L., Matell, M. S., &
Narayanan, N. S. (2017). Rodent medial frontal control of temporal pro-
cessing in the dorsomedial striatum. Journal of Neuroscience, 37 (36), 8718–
8733.

Eshel, N., Bukwich, M., Rao, V., Hemmelder, V., Tian, J., & Uchida, N. (2015).
Arithmetic and local circuitry underlying dopamine prediction errors. Na-
ture, 525 (7568), 243.

Eshel, N., Tian, J., Bukwich, M., & Uchida, N. (2016). Dopamine neurons
share common response function for reward prediction error. Nature Neu-
roscience, 19 (3), 479–486.

Falk, J. L., & Bindra, D. (1954). Judgment of time as a function of serial position
and stress. Journal of Experimental Psychology, 47 (4), 279.

Fechner, G. (1966). Elements of psychophysics. vol. i.
Fentress, J., Stanfield, B., & Cowan, W. (1981). Observations on the development

of the striatum in mice and rats. Anatomy and embryology, 163 (3), 275–

169



298.
Ferster, C. B., & Skinner, B. F. (1957). Schedules of reinforcement.
Fiorillo, C. D., Newsome, W. T., & Schultz, W. (2008). The temporal precision

of reward prediction in dopamine neurons. Nature neuroscience, 11 (8),
966–973.

Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward
probability and uncertainty by dopamine neurons. Science, 299 (5614),
1898–1902.

Frank, G. K., Oberndorfer, T. A., Simmons, A. N., Paulus, M. P., Fudge, J. L.,
Yang, T. T., & Kaye, W. H. (2008). Sucrose activates human taste pathways
differently from artificial sweetener. Neuroimage, 39 (4), 1559–1569.

Freeman, W. J., & Skarda, C. A. (1985). Spatial eeg patterns, non-linear dynam-
ics and perception: the neo-sherringtonian view. Brain Research Reviews,
10 (3), 147–175.

Freeman, W. J., & van Dijk, B. W. (1987). Spatial patterns of visual cortical fast
eeg during conditioned reflex in a rhesus monkey. Brain research, 422 (2),
267–276.

Fried, I., Wilson, C. L., Morrow, J. W., Cameron, K. A., Behnke, E. D., Ackerson,
L. C., & Maidment, N. T. (2001). Increased dopamine release in the human
amygdala during performance of cognitive tasks. Nature neuroscience, 4 (2),
201.

Fung, B., Murawski, C., & Bode, S. (2017). Caloric primary rewards systemati-
cally alter time perception.

Gable, P. A., & Poole, B. D. (2012). Time flies when you’re having approach-
motivated fun: Effects of motivational intensity on time perception. Psy-
chological science, 23 (8), 879–886.

Gage, G. J., Stoetzner, C. R., Wiltschko, A. B., & Berke, J. D. (2010). Selec-
tive activation of striatal fast-spiking interneurons during choice execution.
Neuron, 67 (3), 466–479.

Gallistel, C. R., & Gibbon, J. (2000). Time, rate, and conditioning. Psychological
review, 107 , 289.

Geffen, M. N., Broome, B. M., Laurent, G., & Meister, M. (2009). Neural
encoding of rapidly fluctuating odors. Neuron, 61 (4), 570–586.

Gerfen, C. R., & Bolam, J. P. (2010). The neuroanatomical organization of
the basal banglia. In Hanbook of basal ganglia structure and function (pp.
3–28).

Gershman, S. J., Moustafa, A. A., & Ludvig, E. A. (2014). Time representa-
tion in reinforcement learning models of the basal ganglia. Frontiers in
computational neuroscience, 7 .

Gibbon, J. (1977). Scalar expectancy theory and weber’s law in animal timing.
Psychological review, 84 (3), 279.

170



Gibbon, J., & Church, R. M. (1984). Sources of variance in an information
processing theory of timing. In H. L. Roitblat, H. S. Terrace, & T. G. Bever
(Eds.), Animal cognition (Vol. 1, p. 465). Psychology Press.

Gibbon, J., & Church, R. M. (1992). Comparison of variance and covariance
patterns in parallel and serial theories of timing. Journal of the experimental
analysis of behavior , 57 (3), 393–406.

Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory.
Annals of the New York Academy of sciences, 423 (1), 52–77.

Gibbon, J., & Malapani, C. (2006). Time perception and timing, neural basis of.
In Encyclopedia of cognitive science. John Wiley & Sons, Ltd.

Gmehlin, D., Fuermaier, A. B., Walther, S., Debelak, R., Rentrop, M., West-
ermann, C., . . . others (2014). Intraindividual variability in inhibitory
function in adults with adhd - an ex-gaussian approach. PloS one, 9 (12),
e112298.

Goel, A., & Buonomano, D. V. (2014). Timing as an intrinsic property of neural
networks: evidence.

Goel, A., & Buonomano, D. V. (2016). Temporal interval learning in cortical
cultures is encoded in intrinsic network dynamics. Neuron, 91 (2), 320–327.

Gooch, C. M., Wiener, M., Wencil, E. B., & Coslett, H. B. (2010). Interval
timing disruptions in subjects with cerebellar lesions. Neuropsychologia,
48 (4), 1022–1031.

Gouvêa, T. S., Monteiro, T., Motiwala, A., Soares, S., Machens, C., & Paton, J. J.
(2015). Striatal dynamics explain duration judgments. Elife, 4 , e11386.

Gouvêa, T. S., Monteiro, T., Soares, S., Atallah, B. V., & Paton, J. J. (2014).
Ongoing behavior predicts perceptual report of interval duration. Frontiers
in neurorobotics, 8 .

Graybiel, A. M., Aosaki, T., Flaherty, A. W., Kimura, M., et al. (1994). The
basal ganglia and adaptive motor control. Science, 1826–1826.

Gremel, C. M., & Costa, R. M. (2013). Orbitofrontal and striatal circuits dynam-
ically encode the shift between goal-directed and habitual actions. Nature
communications, 4 , 2264.

Grondin, S. (2010). Timing and time perception: a review of recent behavioral
and neuroscience findings and theoretical directions. Attention, Perception,
& Psychophysics, 72 (3), 561–582.

Grossberg, S., & Merrill, J. W. (1992). A neural network model of adaptively
timed reinforcement learning and hippocampal dynamics. Cognitive brain
research, 1 (1), 3–38.

Grossberg, S., & Schmajuk, N. A. (1989). Neural dynamics of adaptive timing
and temporal discrimination during associative learning. Neural Networks,
2 (2), 79–102.

Grossmann, K. E. (1973). Continuous, fixed-ratio, and fixed-interval reinforce-

171



ment in honey bees. Journal of the Experimental Analysis of Behavior ,
20 (1), 105–109.

Hamid, A. A., Pettibone, J. R., Mabrouk, O. S., Hetrick, V. L., Schmidt, R.,
Vander Weele, C. M., . . . Berke, J. D. (2016). Mesolimbic dopamine signals
the value of work. Nature neuroscience, 19 (1), 117–126.

Hanks, T. D., Kopec, C. D., Brunton, B. W., Duan, C. A., Erlich, J. C., & Brody,
C. D. (2015). Distinct relationships of parietal and prefrontal cortices to
evidence accumulation. Nature, 520 (7546), 220–223.

Harrington, D. L., Lee, R. R., Boyd, L. A., Rapcsak, S. Z., & Knight, R. T.
(2004). Does the representation of time depend on the cerebellum? effect
of cerebellar stroke. Brain, 127 (3), 561–574.

Harvey, C. D., Coen, P., & Tank, D. W. (2012). Choice-specific sequences in
parietal cortex during a virtual-navigation decision task. Nature, 484 (7392),
62.

Heim, A. (1892). Notizen über den tod durch absturz. Jahrbuch des Schweizer
Alpenclub, 27 , 327–37.

Hicks, R. E., Miller, G. W., & Kinsbourne, M. (1976). Prospective and retrospec-
tive judgments of time as a function of amount of information processed.
The American journal of psychology, 719–730.

Hinton, S. C., & Meck, W. H. (2004). Frontal-striatal circuitry activated by
human peak-interval timing in the supra-seconds range. Cognitive Brain
Research, 21 (2), 171–182.

Hoagland, H. (1933). The physiological control of judgments of duration: Ev-
idence for a chemical clock. The Journal of General Psychology, 9 (2),
267–287.

Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in
the temporal prediction of reward during learning. Nature neuroscience,
1 (4).

Holson, R. R., Bowyer, J. F., Clausing, P., & Gough, B. (1996).
Methamphetamine-stimulated striatal dopamine release declines rapidly
over time following microdialysis probe insertion. Brain research, 739 (1),
301–307.

Hornykiewicz, O. (1963). The tropical localization and content of noradrenalin
and dopamine (3-hydroxytyramine) in the substantia nigra of normal per-
sons and patients with parkinson’s disease. Wiener klinische Wochenschrift,
75 , 309.

Horvitz, J. C. (2000). Mesolimbocortical and nigrostriatal dopamine responses
to salient non-reward events. Neuroscience, 96 (4), 651–656.

Howard, C. D., Li, H., Geddes, C. E., & Jin, X. (2017). Dynamic nigrostriatal
dopamine biases action selection. Neuron, 93 (6), 1436–1450.

Howard, M. W., MacDonald, C. J., Tiganj, Z., Shankar, K. H., Du, Q., Hasselmo,

172



M. E., & Eichenbaum, H. (2014). A unified mathematical framework for
coding time, space, and sequences in the hippocampal region. Journal of
Neuroscience, 34 (13), 4692–4707.

Howe, M., & Dombeck, D. (2016). Rapid signalling in distinct dopaminergic
axons during locomotion and reward. Nature, 535 (7613), 505–510.

Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. Journal
of cognitive neuroscience, 1 (2), 136–152.

Ivry, R. B., & Schlerf, J. E. (2008). Dedicated and intrinsic models of time
perception. Trends in cognitive sciences, 12 (7), 273–280.

Jaldow, E. J., Oakley, D. A., & Davey, G. C. (1989). Performance of decorti-
cated rats on fixed interval and fixed time schedules. European Journal of
Neuroscience, 1 (5), 461–470.

James, W. (1886). The perception of time. The Journal of speculative philosophy,
20 (4), 374–407.

Janssen, P., & Shadlen, M. N. (2005). A representation of the hazard rate of
elapsed time in macaque area lip. Nature neuroscience, 8 (2), 234–241.

Jazayeri, M., & Movshon, J. A. (2006). Optimal representation of sensory infor-
mation by neural populations. Nature neuroscience, 9 (5), 690.

Jazayeri, M., & Shadlen, M. N. (2010). Temporal context calibrates interval
timing. Nature neuroscience, 13 (8), 1020–1026.

Jazayeri, M., & Shadlen, M. N. (2015). A neural mechanism for sensing and
reproducing a time interval. Current Biology, 25 (20), 2599–2609.

Jin, D. Z., Fujii, N., & Graybiel, A. M. (2009). Neural representation of time
in cortico-basal ganglia circuits. Proceedings of the National Academy of
Sciences, 106 (45), 19156–19161.

Jin, X., & Costa, R. M. (2010). Start/stop signals emerge in nigrostriatal circuits
during sequence learning. Nature, 466 (7305), 457.

Jordan, R. (1955). Time and contingency in st. augustine. The Review of
Metaphysics, 394–417.

Judd, C., et al. (1899). Time-sense.
Kamin, L. J. (1969). Predictability, surprise, attention, and conditioning. Pun-

ishment and aversive behavior .
Kant, I. (1770). Inaugural dissertation: On the form and principles of the sensible

and the intelligible world. Kant. Selected Pre-Critical Writings, 45–92.
Karmarkar, U. R., & Buonomano, D. V. (2007). Timing in the absence of clocks:

encoding time in neural network states. Neuron, 53 (3), 427–438.
Killeen, P. R., & Fetterman, J. G. (1988). A behavioral theory of timing. Psy-

chological review, 95 (2), 274.
Kim, H., Sul, J. H., Huh, N., Lee, D., & Jung, M. W. (2009). Role of striatum in

updating values of chosen actions. Journal of neuroscience, 29 (47), 14701–
14712.

173



Kim, J., Ghim, J.-W., Lee, J. H., & Jung, M. W. (2013). Neural correlates
of interval timing in rodent prefrontal cortex. Journal of Neuroscience,
33 (34), 13834–13847.

Kim, J., Jung, A. H., Byun, J., Jo, S., & Jung, M. W. (2009). Inactivation
of medial prefrontal cortex impairs time interval discrimination in rats.
Frontiers in behavioral neuroscience, 3 .

Kobayashi, S., & Schultz, W. (2008). Influence of reward delays on responses of
dopamine neurons. Journal of neuroscience, 28 (31), 7837–7846.

Kolling, N., & Akam, T. (2017). (reinforcement?) learning to forage optimally.
Current Opinion in Neurobiology, 46 , 162–169.

Kreitzer, A. C. (2009). Physiology and pharmacology of striatal neurons. Annual
review of neuroscience, 32 , 127–147.

Lake, J. I., & Meck, W. H. (2013). Differential effects of amphetamine and
haloperidol on temporal reproduction: dopaminergic regulation of attention
and clock speed. Neuropsychologia, 51 (2), 284–292.

Lammel, S., Ion, D. I., Roeper, J., & Malenka, R. C. (2011). Projection-specific
modulation of dopamine neuron synapses by aversive and rewarding stimuli.
Neuron, 70 (5), 855–862.

Lammel, S., Lim, B. K., Ran, C., Huang, K. W., Betley, M. J., Tye, K., . . .
Malenka, R. C. (2012). Input-specific control of reward and aversion in the
ventral tegmental area. Nature, 491 (7423), 212.

Langdon, A. J., Sharpe, M. J., Schoenbaum, G., & Niv, Y. (2018). Model-based
predictions for dopamine. Current Opinion in Neurobiology, 49 , 1–7.

Lau, B., & Glimcher, P. W. (2008). Value representations in the primate striatum
during matching behavior. Neuron, 58 (3), 451–463.

Lau, B., Monteiro, T., & Paton, J. J. (2017). The many worlds hypothesis of
dopamine prediction error: implications of a parallel circuit architecture in
the basal ganglia. Current Opinion in Neurobiology, 46 , 241–247.

Lauwereyns, J., Watanabe, K., Coe, B., & Hikosaka, O. (2002). A neural correlate
of response bias in monkey caudate nucleus. Nature, 418 (6896), 413.

Lejeune, H., & Wearden, J. (1991). The comparative psychology of fixed-interval
responding: Some quantitative analyses. Learning and Motivation, 22 (1),
84–111.

Leon, M. I., & Shadlen, M. N. (2003). Representation of time by neurons in the
posterior parietal cortex of the macaque. Neuron, 38 (2), 317–327.

Lerner, T. N., Shilyansky, C., Davidson, T. J., Evans, K. E., Beier, K. T., Za-
locusky, K. A., . . . others (2015). Intact-brain analyses reveal distinct
information carried by snc dopamine subcircuits. Cell, 162 (3), 635–647.

Levy, F. (1991). The dopamine theory of attention deficit hyperactivity disorder
(adhd). Australian and New Zealand Journal of Psychiatry, 25 (2), 277–
283.

174



Liljeholm, M., & O’Doherty, J. P. (2012). Contributions of the striatum to
learning, motivation, and performance: an associative account. Trends in
cognitive sciences, 16 (9), 467–475.

Lopes, G., Bonacchi, N., Frazão, J., Neto, J. P., Atallah, B. V., Soares, S.,
. . . others (2015). Bonsai: an event-based framework for processing and
controlling data streams. Frontiers in neuroinformatics, 9 .

Lou, H. C., Henriksen, L., Bruhn, P., Børner, H., & Nielsen, J. B. (1989).
Striatal dysfunction in attention deficit and hyperkinetic disorder. Archives
of Neurology, 46 (1), 48–52.

Ludvig, E. A., Bellemare, M. G., & Pearson, K. G. (2011). A primer on rein-
forcement learning in the brain: Psychological, computational, and neural
perspectives. In Computational neuroscience for advancing artificial intel-
ligence: Models, methods and applications (pp. 111–144). IGI Global.

Ludvig, E. A., Sutton, R. S., & Kehoe, E. J. (2008). Stimulus representation and
the timing of reward-prediction errors in models of the dopamine system.
Neural computation, 20 (12), 3034–3054.

Ludvig, E. A., Sutton, R. S., & Kehoe, E. J. (2012). Evaluating the td model of
classical conditioning. Learning & behavior , 40 (3), 305–319.

Lüthi, A., & Lüscher, C. (2014). Pathological circuit function underlying addic-
tion and anxiety disorders. Nature Neuroscience, 17 (12), 1635–1643.

Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing with-
out stable states: A new framework for neural computation based on per-
turbations. Neural computation, 14 (11), 2531–2560.

MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hip-
pocampal "time cells” bridge the gap in memory for discontiguous events.
Neuron, 71 (4), 737–749.

MacDonald, C. J., & Meck, W. H. (2005). Differential effects of clozapine and
haloperidol on interval timing in the supraseconds range. Psychopharma-
cology, 182 (2), 232–244.

Machado, A. (1997). Learning the temporal dynamics of behavior. Psychological
review, 104 (2), 241.

Machado, A., Malheiro, M. T., & Erlhagen, W. (2009). Learning to time: A
perspective. Journal of the Experimental Analysis of Behavior , 92 (3), 423–
458.

Machens, C. K., Romo, R., & Brody, C. D. (2010). Functional, but not anatom-
ical, separation of “what” and “when” in prefrontal cortex. Journal of
Neuroscience, 30 (1), 350–360.

Malapani, C., Dubois, B., Rancurel, G., & Gibbon, J. (1998). Cerebellar dysfunc-
tions of temporal processing in the seconds range in humans. Neuroreport,
9 (17), 3907–3912.

Malapani, C., Rakitin, B., Levy, R., Meck, W. H., Deweer, B., Dubois, B., &

175



Gibbon, J. (1998). Coupled temporal memories in parkinson’s disease: a
dopamine-related dysfunction. Journal of Cognitive Neuroscience, 10 (3),
316–331.

Malenka, R., Nestler, E., & Hyman, S. (2009). Chapter 6: widely projecting sys-
tems: monoamines, acetylcholine, and orexin. Sydor A, Brown RY. Molecu-
lar Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.).
New York: McGraw-Hill Medical, 147–148.

Manly, T., Robertson, I. H., Galloway, M., & Hawkins, K. (1999). The absent
mind: further investigations of sustained attention to response. Neuropsy-
chologia, 37 (6), 661–670.

Manns, J. R., Howard, M. W., & Eichenbaum, H. (2007). Gradual changes in
hippocampal activity support remembering the order of events. Neuron,
56 (3), 530–540.

Maricq, A. V., & Church, R. M. (1983). The differential effects of haloperidol
and methamphetamine on time estimation in the rat. Psychopharmacology,
79 (1), 10–15.

Maricq, A. V., Roberts, S., & Church, R. M. (1981). Methamphetamine and
time estimation. Journal of Experimental Psychology: Animal Behavior
Processes, 7 (1), 18.

Matell, M. S., King, G. R., & Meck, W. H. (2004). Differential modulation of
clock speed by the administration of intermittent versus continuous cocaine.
Behavioral neuroscience, 118 (1), 150.

Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing:
coincidence detection of oscillatory processes. Cognitive brain research,
21 (2), 139–170.

Matell, M. S., Meck, W. H., & Nicolelis, M. A. (2003). Interval timing and the
encoding of signal duration by ensembles of cortical and striatal neurons.
Behavioral neuroscience, 117 (4), 760.

Matell, M. S., Meck, W. H., et al. (2000). Neuropsychological mechanisms of
interval timing behavior. Bioessays, 22 (1), 94–103.

Matias, S., Lottem, E., Dugue, G. P., & Mainen, Z. F. (2017). Activity patterns
of serotonin neurons underlying cognitive flexibility. Elife, 6 , e20552.

Matsumoto, M., & Hikosaka, O. (2009). Two types of dopamine neuron distinctly
convey positive and negative motivational signals. Nature, 459 (7248), 837–
841.

Meck, W. H. (1983). Selective adjustment of the speed of internal clock and
memory processes. Journal of Experimental Psychology: Animal Behavior
Processes, 9 (2), 171.

Meck, W. H. (1986). Affinity for the dopamine d2 receptor predicts neurolep-
tic potency in decreasing the speed of an internal clock. Pharmacology
Biochemistry and Behavior , 25 (6), 1185–1189.

176



Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cogni-
tive brain research, 3 (3), 227–242.

Meck, W. H. (2006). Neuroanatomical localization of an internal clock: A func-
tional link between mesolimbic, nigrostriatal, and mesocortical dopaminer-
gic systems. Brain Research, 1109 (1), 93–107.

Meck, W. H., Penney, T. B., & Pouthas, V. (2008). Cortico-striatal representation
of time in animals and humans. Current opinion in neurobiology, 18 (2),
145–152.

Mello, G. B., Soares, S., & Paton, J. J. (2015). A scalable population code for
time in the striatum. Current Biology, 25 (9), 1113–1122.

Menegas, W., Babayan, B. M., Uchida, N., & Watabe-Uchida, M. (2017). Op-
posite initialization to novel cues in dopamine signaling in ventral and pos-
terior striatum in mice. elife, 6 , e21886.

Merchant, H., Pérez, O., Zarco, W., & Gámez, J. (2013). Interval tuning in the
primate medial premotor cortex as a general timing mechanism. Journal of
Neuroscience, 33 (21), 9082–9096.

Miall, C. (1989). The storage of time intervals using oscillating neurons. Neural
Computation, 1 (3), 359–371.

Mink, J. W. (1996). The basal ganglia: focused selection and inhibition of
competing motor programs. Progress in neurobiology, 50 (4), 381–425.

Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the IRE ,
49 (1), 8–30.

Mita, A., Mushiake, H., Shima, K., Matsuzaka, Y., & Tanji, J. (2009). Interval
time coding by neurons in the presupplementary and supplementary motor
areas. Nature neuroscience, 12 (4), 502–507.

Mogenson, G. J., Jones, D. L., & Yim, C. Y. (1980). From motivation to ac-
tion: functional interface between the limbic system and the motor system.
Progress in neurobiology, 14 (2), 69–97.

Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesen-
cephalic dopamine systems based on predictive hebbian learning. Journal
of neuroscience, 16 (5), 1936–1947.

Monteiro, T., Rodrigues, F., Motiwala, A., Gouvêa, T. S., & Paton, J. J. (2017).
Decoupling categorical choice from action reveals pure timing signals in
striatal populations. Cosyne Abstract.

Mountcastle, V. B., Talbot, W. H., Sakata, H., & Hyvarinen, J. (1969). Cor-
tical neuronal mechanisms in flutter-vibration studied in unanesthetized
monkeys: Neuronal periodicity and frequency discrimination. Journal of
neurophysiology.

Murray, J. D., Bernacchia, A., Freedman, D. J., Romo, R., Wallis, J. D., Cai, X.,
. . . others (2014). A hierarchy of intrinsic timescales across primate cortex.
Nature neuroscience, 17 (12), 1661–1663.

177



Murray, J. M., et al. (2017). Learning multiple variable-speed sequences in
striatum via cortical tutoring. eLife, 6 , e26084.

Newsome, W. T., & Pare, E. B. (1988). A selective impairment of motion per-
ception following lesions of the middle temporal visual area (mt). Journal
of Neuroscience, 8 (6), 2201–2211.

Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical
Psychology, 53 (3), 139–154.

Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2007). Tonic dopamine: opportunity
costs and the control of response vigor. Psychopharmacology, 191 (3), 507–
520.

Noreika, V., Falter, C. M., & Rubia, K. (2013). Timing deficits in attention-
deficit/hyperactivity disorder (adhd): Evidence from neurocognitive and
neuroimaging studies. Neuropsychologia, 51 (2), 235–266.

Noyes Jr, R., & Kletti, R. (1972). The experience of dying from falls. Omega-
Journal of Death and Dying, 3 (1), 45–52.

Odum, A. L., Lieving, L. M., & Schaal, D. W. (2002). Effects of d-amphetamine
in a temporal discrimination procedure: Selective changes in timing or rate
dependency? Journal of the experimental analysis of behavior , 78 (2), 195–
214.

Ogden, R. S., Moore, D., Redfern, L., & McGlone, F. (2015). The effect of pain
and the anticipation of pain on temporal perception: A role for attention
and arousal. Cognition and Emotion, 29 (5), 910–922.

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. prelim-
inary evidence from unit activity in the freely-moving rat. Brain research,
34 (1), 171–175.

O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford:
Clarendon Press.

Oleson, E. B., Gentry, R. N., Chioma, V. C., & Cheer, J. F. (2012). Sub-
second dopamine release in the nucleus accumbens predicts conditioned
punishment and its successful avoidance. Journal of Neuroscience, 32 (42),
14804–14808.

Panigrahi, B., Martin, K. A., Li, Y., Graves, A. R., Vollmer, A., Olson, L., . . .
Dudman, J. T. (2015). Dopamine is required for the neural representation
and control of movement vigor. Cell, 162 (6), 1418–1430.

Pariyadath, V., & Eagleman, D. (2007). The effect of predictability on subjective
duration. PLoS ONE , 2 (11), e1264.

Parker, A. J., & Newsome, W. T. (1998). Sense and the single neuron: probing
the physiology of perception. Annual review of neuroscience, 21 (1), 227–
277.

Parker, N. F., Cameron, C. M., Taliaferro, J. P., Lee, J., Choi, J. Y., Davidson,
T. J., . . . Witten, I. B. (2016). Reward and choice encoding in terminals

178



of midbrain dopamine neurons depends on striatal target. Nature neuro-
science, 19 (6), 845.

Pasquereau, B., & Turner, R. S. (2015). Dopamine neurons encode errors in pre-
dicting movement trigger occurrence. Journal of neurophysiology, 113 (4),
1110–1123.

Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsáki, G. (2008). Inter-
nally generated cell assembly sequences in the rat hippocampus. Science,
321 (5894), 1322–1327.

Pastor, M., Artieda, J., Jahanshahi, M., & Obeso, J. (1992). Time estimation and
reproduction is abnormal in parkinson’s disease. Brain, 115 (1), 211–225.

Pavlov, I. P. (1927). Conditional reflexes: An investigation of the physiological
activity of the cerebral cortex. H. Milford.

Pavlov, I. P., & Anrep, G. V. (2003). Conditioned reflexes. Courier Corporation.
Platt, J. R., & Davis, E. R. (1983). Bisection of temporal intervals by pi-

geons. Journal of Experimental Psychology: Animal Behavior Processes,
9 (2), 160.

Ponzi, A., & Wickens, J. (2010). Sequentially switching cell assemblies in ran-
dom inhibitory networks of spiking neurons in the striatum. Journal of
Neuroscience, 30 (17), 5894–5911.

Rakitin, B. C., Gibbon, J., Penney, T. B., Malapani, C., Hinton, S. C., & Meck,
W. H. (1998). Scalar expectancy theory and peak-interval timing in hu-
mans. Journal of Experimental Psychology: Animal Behavior Processes,
24 (1), 15.

Rammsayer, T. (1990). Temporal discrimination in schizophrenic and affective
disorders: evidence for a dopamine-dependent internal clock. International
Journal of Neuroscience, 53 (2-4), 111–120.

Rammsayer, T. H. (1993). On dopaminergic modulation of temporal information
processing. Biological psychology, 36 (3), 209–222.

Reppert, S. M., & Weaver, D. R. (2002). Coordination of circadian timing in
mammals. Nature, 418 (6901), 935.

Rescorla, R. A. (1966). Predictability and number of pairings in pavlovian fear
conditioning. Psychonomic Science, 4 (11), 383–384.

Rescorla, R. A. (1967). Pavlovian conditioning and its proper control procedures.
Psychological review, 74 (1), 71.

Rescorla, R. A., &Wagner, A. R. (1972). A theory of pavlovian conditioning: The
effectiveness of reinforcement and non-reinforcement. Classical conditioning
II: Current research and theory.

Reynolds, G., & Catania, A. C. (1962). Temporal discrimination in pigeons.
Science, 135 (3500), 314–315.

Reynolds, J. N., Hyland, B. I., & Wickens, J. R. (2001). A cellular mechanism
of reward-related learning. Nature, 413 (6851), 67.

179



Reynolds, J. N., & Wickens, J. R. (2002). Dopamine-dependent plasticity of
corticostriatal synapses. Neural Networks, 15 (4), 507–521.

Roberts, S. (1981). Isolation of an internal clock. Journal of Experimental
Psychology: Animal Behavior Processes, 7 (3), 242.

Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997).
Oops!’: performance correlates of everyday attentional failures in traumatic
brain injured and normal subjects. Neuropsychologia, 35 (6), 747–758.

Rowe, K. C., Paulsen, J. S., Langbehn, D. R., Duff, K., Beglinger, L. J., Wang,
C., . . . Moser, D. J. (2010). Self-paced timing detects and tracks change
in prodromal huntington disease. Neuropsychology, 24 (4), 435.

Runyan, C. A., Piasini, E., Panzeri, S., & Harvey, C. D. (2017). Distinct
timescales of population coding across cortex. Nature, 548 (7665), 92–96.

Sacks, O. (2004). Speed. New Yorker , 80 , 48–59.
Sakurai, T. (2007). The neural circuit of orexin (hypocretin): maintaining sleep

and wakefulness. Nature Reviews Neuroscience, 8 (3), 171–181.
Samejima, K., & Doya, K. (2007). Multiple representations of belief states

and action values in corticobasal ganglia loops. Annals of the New York
Academy of Sciences, 1104 (1), 213–228.

Samejima, K., Ueda, Y., Doya, K., & Kimura, M. (2005). Representation of
action-specific reward values in the striatum. Science, 310 (5752), 1337–
1340.

Schmitt, L. I., Wimmer, R. D., Nakajima, M., Happ, M., Mofakham, S., &
Halassa, M. M. (2017). Thalamic amplification of cortical connectivity
sustains attentional control. Nature, 545 (7653), 219–223.

Schultz, W. (1986). Responses of midbrain dopamine neurons to behavioral
trigger stimuli in the monkey. Journal of neurophysiology, 56 (5), 1439–
1461.

Schultz, W., Apicella, P., & Ljungberg, T. (1993). Responses of monkey dopamine
neurons to reward and conditioned stimuli during successive steps of learn-
ing a delayed response task. Journal of neuroscience, 13 (3), 900–913.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of pre-
diction and reward. Science, 275 (5306), 1593–1599.

Schultz, W., & Romo, R. (1987). Responses of nigrostriatal dopamine neurons
to high-intensity somatosensory stimulation in the anesthetized monkey.
Journal of neurophysiology, 57 (1), 201–217.

Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral
hippocampal lesions. Journal of neurology, neurosurgery, and psychiatry,
20 (1), 11.

Sharpe, M. J., Chang, C. Y., Liu, M. A., Batchelor, H. M., Mueller, L. E., Jones,
J. L., . . . Schoenbaum, G. (2017). Dopamine transients are sufficient and
necessary for acquisition of model-based associations. Nature Neuroscience.

180



Shinomoto, S., Omi, T., Mita, A., Mushiake, H., Shima, K., Matsuzaka, Y., &
Tanji, J. (2011). Deciphering elapsed time and predicting action timing
from neuronal population signals. Frontiers in computational neuroscience,
5 .

Silva, L. R., Amitai, Y., & Connors, B. W. (1991). Intrinsic oscillations of
neocortex generated by layer 5 pyramidal neurons. Science, 251 (4992),
432.

Simen, P., Balci, F., Cohen, J. D., Holmes, P., et al. (2011). A model of interval
timing by neural integration. Journal of Neuroscience, 31 (25), 9238–9253.

Simen, P., Rivest, F., Ludvig, E. A., Balci, F., & Killeen, P. (2013). Timescale
invariance in the pacemaker-accumulator family of timing models. Timing
&amp; Time Perception, 1 (2), 159–188.

Skinner, B. F. (1938). The behaviour of organisms: An experimental analysis.
D. Appleton-Century Company Incorporated.

Smallwood, J., Davies, J. B., Heim, D., Finnigan, F., Sudberry, M., O’Connor,
R., & Obonsawin, M. (2004). Subjective experience and the attentional
lapse: Task engagement and disengagement during sustained attention.
Consciousness and cognition, 13 (4), 657–690.

Smallwood, J., McSpadden, M., & Schooler, J. W. (2007). The lights are on but
no one’s home: Meta-awareness and the decoupling of attention when the
mind wanders. Psychonomic Bulletin &amp; Review, 14 (3), 527–533.

Smallwood, J. M., Baracaia, S. F., Lowe, M., & Obonsawin, M. (2003). Task un-
related thought whilst encoding information. Consciousness and cognition,
12 (3), 452–484.

Soares, S., Atallah, B., & Paton, J. (2016). Midbrain dopamine neurons control
judgment of time. Science, 354 (6317), 1273–1277.

Spencer, R. M., & Ivry, R. B. (2005). Comparison of patients with parkinson’s
disease or cerebellar lesions in the production of periodic movements involv-
ing event-based or emergent timing. Brain and cognition, 58 (1), 84–93.

Staddon, J., & Higa, J. (1999). Time and memory: towards a pacemaker-free
theory of interval timing. Journal of the experimental analysis of behavior ,
71 (2), 215–251.

Stamatakis, A. M., Jennings, J. H., Ung, R. L., Blair, G. A., Weinberg, R. J.,
Neve, R. L., . . . others (2013). A unique population of ventral tegmental
area neurons inhibits the lateral habenula to promote reward. Neuron,
80 (4), 1039–1053.

Starkweather, C. K., Babayan, B. M., Uchida, N., & Gershman, S. J. (2017).
Dopamine reward prediction errors reflect hidden-state inference across
time. Nature Neuroscience, 20 (4), 581–589.

Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., & Janak,
P. H. (2013). A causal link between prediction errors, dopamine neurons

181



and learning. Nature neuroscience, 16 (7), 966–973.
Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton University

Press.
Stubbs, A. (1968). The discrimination of stimulus duration by pigeons. Journal

of the experimental analysis of behavior , 11 (3), 223–238.
Sulzer, D., Zhang, H., Benoit-Marand, M., & Gonon, F. (2010). Regulation of

extracellular dopamine: release and reuptake. In (pp. 297–319).
Suri, R. E., & Schultz, W. (1999). A neural network model with dopamine-like

reinforcement signal that learns a spatial delayed response task. Neuro-
science, 91 (3), 871–890.

Sutton, R. S., & Barto, A. G. (1990). Time-derivative models of pavlovian
reinforcement. In Learning and computational neuroscience: Foundations
of adaptive networks.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction
(Vol. 1) (No. 1). MIT press Cambridge.

Syed, E. C., Grima, L. L., Magill, P. J., Bogacz, R., Brown, P., & Walton, M. E.
(2016). Action initiation shapes mesolimbic dopamine encoding of future
rewards. Nature neuroscience, 19 (1), 34–36.

Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S.
(2004). Prediction of immediate and future rewards differentially recruits
cortico-basal ganglia loops. Nature neuroscience, 7 (8), 887.

Taylor, N. E., Van Dort, C. J., Kenny, J. D., Pei, J., Guidera, J. A., Vlasov,
K. Y., . . . Solt, K. (2016). Optogenetic activation of dopamine neurons
in the ventral tegmental area induces reanimation from general anesthesia.
Proceedings of the National Academy of Sciences, 113 (45), 12826–12831.

Tecuapetla, F., Carrillo-Reid, L., Bargas, J., & Galarraga, E. (2007). Dopamin-
ergic modulation of short-term synaptic plasticity at striatal inhibitory
synapses. Proceedings of the National Academy of Sciences, 104 (24), 10258–
10263.

Thorndike, E. L. (1898). Animal intelligence: An experimental study of the
associative processes in animals. Psychological Monographs, 2 .

Thorndike, E. L. (1911). Animal intelligence: Experimental studies. Macmillan.
Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive coding of reward

value by dopamine neurons. Science, 307 (5715), 1642–1645.
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological review,

55 (4), 189.
Treisman, M. (1963). Temporal discrimination and the indifference interval:

Implications for a model of the" internal clock". Psychological Monographs:
General and Applied, 77 (13), 1.

Treisman, M. (1966). A statistical decision model for sensory discrimination
which predicts weber’s law and other sensory laws: Some results of a com-

182



puter simulation. Perception &amp; Psychophysics, 1 (4), 203–230.
Treisman, M., Cook, N., Naish, P. L., & MacCrone, J. K. (1994). The internal

clock: electroencephalographic evidence for oscillatory processes underlying
time perception. The Quarterly Journal of Experimental Psychology, 47 (2),
241–289.

Treisman, M., Faulkner, A., Naish, P. L., & Brogan, D. (1990). The internal
clock: Evidence for a temporal oscillator underlying time perception with
some estimates of its characteristic frequency. Perception, 19 (6), 705–742.

Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W., & Pen-
nartz, C. M. (2004). Putting a spin on the dorsal - ventral divide of the
striatum. Trends in neurosciences, 27 (8), 468–474.

Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with
basic assumptions of formal learning theory. Nature, 412 (6842), 43–48.

Wahl, O. F., & Sieg, D. (1980). Time estimation among schizophrenics. Percep-
tual and motor skills.

Wang, J., Narain, D., Hosseini, E., & Jazayeri, M. (2017). Flexible control of
speed of cortical dynamics. bioRxiv, 155390.

Wang, X.-J. (2001). Synaptic reverberation underlying mnemonic persistent
activity. Trends in neurosciences, 24 (8), 455–463.

Ward, R. D., Kellendonk, C., Simpson, E. H., Lipatova, O., Drew, M. R.,
Fairhurst, S., . . . Balsam, P. D. (2009). Impaired timing precision pro-
duced by striatal d2 receptor overexpression is mediated by cognitive and
motivational deficits. Behavioral neuroscience, 123 (4), 720.

Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A., & Uchida, N. (2012).
Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neu-
ron, 74 (5), 858–873.

Watt, J. D. (1991). Effect of boredom proneness on time perception. Psychological
Reports, 69 (1), 323–327.

Watts, F. N., & Sharrock, R. (1984). Fear and time estimation. Perceptual and
motor skills, 59 (2), 597–598.

Wearden, J. H., Smith-Spark, J., Cousins, R., Edelstyn, N., Cody, F., & O’Boyle,
D. (2008). Stimulus timing by people with parkinson’s disease. Brain and
cognition, 67 (3), 264–279.

Wiener, M., Turkeltaub, P., & Coslett, H. B. (2010). The image of time: a
voxel-wise meta-analysis. Neuroimage, 49 (2), 1728–1740.

Wise, R. A. (2004). Dopamine, learning and motivation. Nature reviews. Neu-
roscience, 5 (6), 483.

Witten, I. B., Steinberg, E. E., Lee, S. Y., Davidson, T. J., Zalocusky, K. A.,
Brodsky, M., . . . others (2011). Recombinase-driver rat lines: tools, tech-
niques, and optogenetic application to dopamine-mediated reinforcement.
Neuron, 72 (5), 721–733.

183



Wittmann, M., Leland, D. S., Churan, J., & Paulus, M. P. (2007). Impaired
time perception and motor timing in stimulant-dependent subjects. Drug
and alcohol dependence, 90 (2), 183–192.

Wittmann, M. K., Kolling, N., Akaishi, R., Chau, B. K., Brown, J. W., Nelissen,
N., & Rushworth, M. F. (2016). Predictive decision making driven by
multiple time-linked reward representations in the anterior cingulate cortex.
Nature communications, 7 .

Wodka, E. L., Mark Mahone, E., Blankner, J. G., Gidley Larson, J. C., Fotedar,
S., Denckla, M. B., & Mostofsky, S. H. (2007). Evidence that response
inhibition is a primary deficit in adhd. Journal of clinical and experimental
neuropsychology, 29 (4), 345–356.

Woodrow, H. (1928). Temporal discrimination in the monkey. Journal of Com-
parative Psychology, 8 (5), 395.

Woodrow, H. (1930). The reproduction of temporal intervals. Journal of Exper-
imental Psychology, 13 (6), 473.

Xu, M., Zhang, S.-y., Dan, Y., & Poo, M.-m. (2014). Representation of inter-
val timing by temporally scalable firing patterns in rat prefrontal cortex.
Proceedings of the National Academy of Sciences, 111 (1), 480–485.

Yalch, R. F., & Spangenberg, E. R. (2000). The effects of music in a retail setting
on real and perceived shopping times. Journal of business Research, 49 (2),
139–147.

Znamenskiy, P., & Zador, A. M. (2013). Corticostriatal neurones in auditory
cortex drive decisions during auditory discrimination. Nature, 497 (7450),
482.

184






	Acknowledgments
	Título e Resumo
	Abstract
	Author Contributions and Financial Support
	Overview
	Contents
	List of Figures
	Acronyms
	1 Introduction
	1.1 Why time?
	1.2 A brief history of time estimation research
	1.3 Behavioral paradigms for the study of learning and interval timing
	1.3.1 Interval production
	1.3.2 Interval reproduction
	1.3.3 Interval discrimination

	1.4 Theoretical models of interval timing behavior
	1.4.1 Pacemaker-accumulator models
	1.4.2 Time as a sequence of states
	1.4.3 Beat-frequency model
	1.4.4 Time distributed over elements

	1.5 The neural basis of interval timing
	1.5.1 The cortex
	1.5.2 The hippocampus and time cells
	1.5.3 The cerebellum
	1.5.4 The striatum and the dopamine clock hypothesis

	1.6 The basal ganglia: where interval timing meets reinforcement learning
	1.6.1 The neural basis of reinforcement learning
	1.6.2 Temporal representations in reinforcement learning


	2 A scalable population code for time in the striatum
	2.1 Introduction
	2.2 Results
	2.2.1 Lever pressing start time in SFI task is a behavioral measure of rats’ expectation of time until reward
	2.2.2 Striatal neurons display temporal tuning
	2.2.3 Striatal populations encode information about timing behavior
	2.2.4 Striatal neurons multiplex information about action and time
	2.2.5 A simple simulation of timing behavior

	2.3 Discussion
	2.4 Materials & Methods
	2.4.1 Behavior
	2.4.2 Neurophysiology
	2.4.3 Selection for cells with consistent relative response profiles
	2.4.4 Scale factors
	2.4.5 Latency and width of responses
	2.4.6 Decoding methods
	2.4.7 Muscimol infusions
	2.4.8 Identification of pressing onset related neurons
	2.4.9 Identification of press start time modulated neurons
	2.4.10 Simulation of timing behavior


	3 Midbrain dopamine neurons control judgment of time
	3.1 Introduction
	3.2 Results
	3.2.1 An intact DAergic system is required during performance of a temporal discrimination task in mice
	3.2.2 SNc-DAergic activity is precisely aligned to temporal cues, not movement
	3.2.3 SNc-DAergic responses correlate with temporal judgments and are explained by a simple model of RPE
	3.2.4 Changes in a time-dependent component of choice behavior are predicted by SNc-DAergic activity
	3.2.5 Optogenetic manipulation of SNc-DA neurons is sufficient to change judgments of time
	3.2.6 VTA-DA neuron responses do not correlate with or change temporal judgments

	3.3 Discussion
	3.4 Materials & Methods
	3.4.1 Animals
	3.4.2 Behavioral setup
	3.4.3 Behavioral task
	3.4.4 Surgery
	3.4.5 CNO administration for hM4D mediated inactivation
	3.4.6 Fiber photometry setup
	3.4.7 Fiber photometry data analysis
	3.4.8 RPE model
	3.4.9 Trial-by-trial prediction of choice from the dopamine response
	3.4.10 Electrophysiological recordings
	3.4.11 Optogenetic manipulations during task performance
	3.4.12 Immunohistochemistry and microscopy
	3.4.13 Statistics and model comparison


	4 Task engagement signals in the basal ganglia
	4.1 Introduction
	4.2 Results
	4.2.1 A generalized linear model predicts correct and premature choices
	4.2.2 Midbrain DA neuron pre-trial activity reflects task engagement
	4.2.3 Pre-trial activity in dMSNs and iMSNs also reflects task engagement
	4.2.4 Generalized linear model predictions are improved by including pre-trial neural activity
	4.2.5 Consistency of striatal population dynamics during the delay period reflects task engagement

	4.3 Discussion
	4.4 Materials & Methods
	4.4.1 Animals
	4.4.2 Behavioral setup
	4.4.3 Behavioral task
	4.4.4 Video acquisition and tracking
	4.4.5 Generalized linear models
	4.4.6 Surgery
	4.4.7 Fiber photometry setup
	4.4.8 Fiber photometry data analysis
	4.4.9 Electrophysiology of striatal neurons in the rat
	4.4.10 Statistics and model comparison


	5 Discussion
	5.1 Brief summary of the main findings
	5.2 Temporal representations: origins and implications
	5.2.1 Origins and flexible control of striatal dynamics
	5.2.2 Implications for theoretical timing models
	5.2.3 On the distributed nature of temporal representations across the brain

	5.3 Dopamine neurons: interval timing and beyond
	5.3.1 Rethinking the DA clock hypothesis
	5.3.2 On the diversity of functions attributed to DA neurons

	5.4 Towards a unified view of interval timing and RL
	5.5 Combining time and reward may be adaptive
	5.6 Concluding remarks

	A Articles published in peer-reviewed journals
	A.1 A scalable population code for time in the striatum
	A.2 Midbrain dopamine neurons control judgment of time

	References

