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SUMMARY 

Phenotypic variation is a universal property of biological organisms and is 

the raw material for evolution by natural selection. Patterns of phenotypic 

variation in natural populations are greatly dependent on the external 

environment. Beyond filtering phenotypic variation in the process of natural 

selection, the environment can also play an instructive role leading to the 

production of phenotypic variants during development. Environmental cues, 

such as temperature or nutrition, can influence developmental rates and 

trajectories and lead to the production of different phenotypes from the same 

genotype; a phenomenon called developmental plasticity. In the wild, 

organisms are exposed to a variety of environmental cues that might affect 

the development of several traits in different manners.  

 A good match between phenotype and ecological conditions is 

achieved when the environmental cue that triggers changes in development 

is a reliable predictor of the future selective environment. In this context, 

plasticity that results in the production of phenotypes well suited to their 

selective environment can help organisms cope with environmental 

heterogeneity. This can have important implications for population 

persistence, and is a topic of debate in the context of assessing the impact 

of climate change on natural populations.  

 Traditional models of adaptive evolution have often neglected a major 

role for plasticity, mainly because the alternative phenotypes resulting from 

plastic development typically correspond to non-heritable variation. More 

recently, some attention has been given to developmental plasticity in the 

context of whether it facilitates or hinders adaptive evolution, as well as both 

phenotypic and phylogenetic diversification. Beyond the contribution of 

plasticity to evolutionary change, researchers have also explicitly addressed 

the evolution of plasticity. Studies in the field and in the laboratory have 

shown that plasticity can be heritable, subject to selection and therefore, can 

evolve. A number of different models have explicitly addressed the 

conditions that favor the evolution of developmental plasticity, including 
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periodicity of environmental fluctuations and the costs of plasticity. 

Experimental studies have started to provide insight into the genetic basis of 

the evolution of plastic versus robust development. Genetic variation for 

plasticity, which provides the raw material for its evolution, can affect 

different aspects of the relation between phenotype and environment. These 

include the extent of phenotypic change due to changes in environmental 

conditions, and the environmental threshold after which the phenotype is no 

longer robust to environmental change. These types of differences can be 

studied by comparing reaction norms between genotypes. 

 Despite the prevalence of plasticity in nature and its potential 

contribution to the ecology and evolution of populations, we know little about 

the genetic mechanisms whereby the external environment regulates 

development, and about the loci that harbor allelic variation leading to 

differences in plasticity. The aim of my project was to contribute to filling 

some of these gaps. To explore the mechanisms underlying 

environmentally-induced phenotypic variation, and the genetic basis of 

variation in plasticity, I focused on two iconic plastic phenotypes of 

Drosophila, body size and pigmentation. These are well studied phenotypes 

that are closely related to fitness and represent compelling examples of the 

environmental regulation of development. I made use of available analytical 

tools and resources (for genetic analysis) and also developed a new method 

(for quantitative phenotyping of body size and pigmentation; Chapter 2) to 

address a number of open questions about the mechanisms for plasticity 

and variation in plasticity.  

 In Chapter 1, I lay down the background and identify which outstanding 

questions this thesis sought out to address. I also explain the choice of 

model system and provide an overview of the thesis contents. 

 In Chapter 2, we explore the effects of genetic, environmental and 

genotype-by-environment interactions on different components of body 

pigmentation, related with color and color pattern. We showed that those 

traits (and trait-correlations) differ across Drosophila species and standard 
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D. melanogaster “wild-type” genetic backgrounds, as well as between sexes 

and between developmental temperatures. We also demonstrate that the 

window of development during which temperature affects end pigmentation 

phenotype is not the same for different properties of body pigmentation and 

not the same for different genotypes. Finally, we investigate the 

pigmentation traits we defined in natural populations of D. melanogaster 

collected across a European cline, and in other Drosophila species. We then 

discuss our results in the context of how independence (or integration) 

between traits might affect developmental and evolutionary trajectories.  

 In Chapters 3 and 4, we explore the genetic basis of inter-genotype 

variation in the slope of thermal reaction norms for body pigmentation and 

for body size, respectively. We took a genetic mapping approach using a 

panel of community-available D. melanogaster genotypes representing 

naturally segregating alleles from one wild-caught source population. Each 

of ca. 200 fully-sequenced isogenic lines was reared at either of two 

temperatures and female adults were phenotyped for size and for color and 

color pattern traits on both thorax and abdomen. The data were used to: i) 

quantify genetic and environmental components of phenotypic variation, and 

correlations between traits, and ii) identify which loci contribute to inter-line 

differences in thermal plasticity. We found (and validated a selection of) 

genes associated to variation in thermal plasticity in different properties of 

the two body parts, with very little overlap between traits. There was also 

little overlap between loci contributing to variation in plasticity and those 

contributing to trait variation within one single environment. In terms of 

putative functions of those genes, they seemed to span the whole process 

from sensing the external environment, to conveying information about it to 

developing tissues, to executing functions in accordance to that information. 

The genes identified contribute to inter-genotype variation in plasticity in the 

target D. melanogaster and are putative targets of selection in the evolution 

of plasticity in that and possibly other populations.  
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 In Chapter 5, I provide an overview of the main results, discuss 

limitations of our approach, and identify possible future research avenues. I 

also report on additional preliminary data addressing related open questions 

in the study of developmental plasticity: i) quantifying combined effects of 

changes in two environmental cues, which, in isolation are known to impact 

D. melanogaster body size and pigmentation, and ii) testing the hypothesis 

that the mechanism of RNA editing, by which the same mRNA molecule can 

result in the production of alternative peptide products, plays a role in the 

environmental-regulation of developmental outcomes.  

 Altogether, this thesis explores the molecular underpinnings and 

evolution of environmentally-induced phenotypic variation. It uncovers the 

genetic basis of plasticity and explores the mechanisms by which 

environmental inputs are integrated during development. By using 

Drosophila body size and body pigmentation as a model, we provide insight 

into some of the outstanding questions in the field of development plasticity.  
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SUMÁRIO 

A variação fenotípica é uma propriedade universal dos organismos vivos e é 

também a matéria prima para a evolução por selecção natural. Os padrões 

de variação fenotípica que existem na natureza estão intrinsecamente 

dependentes do ambiente externo. Esse ambiente não só afecta quais as 

variantes fenotípicas que aumentam ou diminuem de frequência durante o 

processo de selecção natural, como pode afectar que variantes fenotípicas 

são produzidas durante o processo do desenvolvimento que traduz 

genótipos em fenótipos. Factores ambientais tais como a temperatura ou a 

nutrição podem influenciar as taxas e/ou trajectórias do desenvolvimento e 

levar à produção de fenótipos diferentes a partir dum mesmo genótipo. A 

este fenómeno dá-se o nome de plasticidade fenotípica. Na natureza, os 

organismos estão expostos a inúmeros factores ambientais, cada um dos 

quais podendo afectar o desenvolvimento de diferentes características 

fenotípicas de forma distinta.  

A plasticidade do desenvolvimento pode levar a um melhor ajuste 

entre o fenótipo dos adultos e as condições ambientais a que este vai estar 

exposto. Este ajuste entre o fenótipo e as condições ecológicas é possível 

quando o factor ambiental que provoca alterações no desenvolvimento é um 

predictor fiável onde está inserido. A plasticidade que resulta na produção 

de fenótipos melhor ajustados ao seu ambiente selectivo diz-se adaptativa. 

Este tipo de plasticidade é uma forma dos organismos poderem lidar com 

heterogeneidade ambiental, sem alterações no seu material genético, e 

pode ter um grande impacto para a persistência das populações sujeitas a 

alterações ambientais. Como tal, a plasticidade do desenvolvimento face às 

condições ambientais tornou-se um tópico de interesse, também no contexto 

do estudo do impacto das alterações climáticas em populações naturais.  

Os modelos tradicionais de evolução adaptativa tipicamente não 

consideram a plasticidade fenotípica como um factor importante, uma vez 

que os fenótipos alternativos que resultam da plasticidade do 

desenvolvimento geralmente correspondem a variantes não-hereditários. 
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Porém, mais recentemente, vários estudos têm abordado a discussão de se 

a plasticidade do desenvolvimento poderá facilitar ou dificultar a evolução 

adaptativa e poderá contribuir para a diversificação fenotípica e mesmo 

filogenética. Para além do potencial impacto da plasticidade na evolução, 

vários estudos têm também abordado a questão da evolução da 

plasticidade. Estudos realizados tanto no campo como no laboratório 

mostram que a plasticidade é ela própria uma característica hereditária que 

pode ser alvo de seleção natural. Consequentemente, a plasticidade 

também evolui. Vários estudos teóricos analisaram os tipo de condições que 

podem favorecer a evolução da plasticidade no desenvolvimento, incluído 

factores como a periodicidade das flutuações ambientais e os custos da 

plasticidade.  

Por outro lado, estudos experimentais em diferentes organismos têm 

elucidado a base genética da evolução da plasticidade ou da robustez do 

processo do desenvolvimento em relação a factores ambientais externos. A 

variação genética para a capacidade e forma como o desenvolvimento 

responde a factores externos (plasticidade) proporciona a matéria prima 

para a evolução da plasticidade. Esta variação genética pode afectar vários 

aspectos da relação entre o fenótipo e o ambiente, incluindo  quanto e de 

que forma os diferentes factores ambientais afectam o fenótipo. Para 

estudar estas diferenças entre genótipos são utilizadas tipicamente normas 

de reação, que correspondem a uma linha (ou curva), que descreve a 

variação de um dado fenótipo em função de diferentes contextos ambientais.  

Apesar da prevalência da plasticidade na natureza e a sua potencial 

contribuição para a ecologia e evolução das populações, sabemos pouco 

acerca dos mecanismos genéticos através dos quais o ambiente externo 

regula o desenvolvimento e sobre os genes que contém variação alélica que 

contribui para variação nos níveis ou propriedades da plasticidade. O 

objectivo do meu projecto foi contribuir para preencher algumas destas 

lacunas no nosso conhecimento da plasticidade fenótipica. Para explorar os 

mecanismos por detrás da variação fenotípica induzida pelo ambiente e a 
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base genética da variação na plasticidade do desenvolvimento, foquei-me 

em dois fenótipos plásticos no modelo na mosca-do-vinagre, Drosophila – o 

tamanho e pigmentação do corpo. Quer o tamanho quer a pigmentação dos 

adultos das moscas Drosophila são características sobejamente estudadas, 

quer em termos da sua importância para a ecologia das espécies, quer em 

termos da sua evolução e desenvolvimento. Ambas são características cujo 

valor adaptativo está bem estabelecido e cuja expressão depende também 

de factores ambientais, como a temperatura em que as larvas e pupas se 

desenvolvem. Usando este modelo para estudar abordar várias questões 

abertas sobre os mecanismos para a plasticidade e para a variação da 

plasticidade, recorri a ferramentas analíticas e recursos (para analise 

genética) e também desenvolvi um novo método (para análise quantitativa 

dos fenótipos escolhidos; Capítulo 2).  

No Capítulo 1, discuto o contexto e revejo a literatura disponível 

sobre a plasticidade no desenvolvimento, incluíndo aspectos da sua 

evolução e regulação. Também explico quais as questões pertinentes que 

esta tese tem como objectivo resolver e a escolha do organismo modelo. No 

final do capítulo dou ainda uma visão geral do conteúdo desta tese.  

No Capítulo 2, exploramos a contribuição de factores genéticos e 

ambientais, bem como da interacção entre os dois, para as diferenças em 

diferentes componentes da pigmentação do corpo, incluindo cor e padrões 

de cor. Demonstramos que estas características (e as correlações entre 

elas) diferem entre genótipos de Drosophila melanogaster frequentemente 

usados em estudos experimentais como representando o “tipo selvagem”. 

Também caracterizamos diferenças entre sexos e diferenças devidas à 

temperatura a que os organismos foram expostos durante o 

desenvolvimento. Neste capítulo mostramos também que a janela temporal 

durante o desenvolvimento em que a temperatura pode afectar a 

pigmentação do adulto não é o mesmo nem para todas as componentes da 

pigmentação nem para todos os genótipos estudados. Finalmente, 

investigamos as mesmas componentes da pigmentação em populações 
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naturais de D. melanogaster e em diferentes espécies de Drosophila. Por 

último, discuto os resultados no contexto de como a independência (ou 

integração) entre as diferentes componentes da pigmentação do corpo pode 

afectar as trajetórias evolutivas desta importante característica adaptativa.  

Nos Capítulos 3 e 4, exploramos a base genética da variação entre 

genótipos no declive das normas de reacção térmicas para a pigmentação 

corporal e tamanho do corpo, respectivamente. O declive das normas de 

reacção descreve quão plásticas essas características são em relação à 

temperatura a que as moscas se desenvolvem e permite-nos comparar 

níveis de plasticidade entre genótipos. Utilizámos uma técnica de 

mapeamento genético, fazendo uso dum painel de genótipos de mosca-do-

vinagre disponível para toda a comunidade científica. Este painel foi criado a 

partir duma população natural e contém alelos que segregam nessa 

população. As moscas capturadas na natureza foram usadas para 

estabelecer aproximadamente 200 linhas isogénicas cujos genomas foram 

sequenciados. Para estudar plasticidade térmica, moscas das diferentes 

linhas foram submetidas a duas temperaturas alternativas. As fêmeas 

adultas resultantes foram caraterizadas em relação ao tamanho, cor e 

padrões de cor do tórax e abdómen. Estes dados foram usados para: i) 

quantificar componentes genéticos e ambientais da variação fenotípica, e 

correlações entre diferentes características e ii) identificar que diferenças 

genéticas contribuem para as diferenças entre linhas isogénicas na 

plasticidade térmica. Descobrímos e validámos uma série de genes 

associados à variação na plasticidade térmica em diferentes propriedades 

das duas partes do corpo e constatámos que havia pouca sobreposição nos 

genes relativos aos diferentes fenótipos estudados. Havia também pouca 

sobreposição entre genes que contribuem para a variação da plasticidade e 

aqueles que contribuem para a variação de cada característica dentro de um 

único ambiente. No que toca às possíveis funções desses genes, 

verificámos que estas poderão estar relacionadas com todas as fases do 

processo, desde a percepção do ambiente externo, à transmissão dessa 
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mesma informação aos tecidos em desenvolvimento e finalmente à 

execução de funções de acordo com a informação processada. Os genes 

que identificámos contribuem para variação entre genótipos na plasticidade 

da mosca-do-vinagre e são alvos de selecção putativos para evolução da 

plasticidade na população de que o painel de mapeamento for derivado, e 

potencialmente noutras populações.  

No Capitulo 5, dou uma visão geral dos resultados desta tese, 

discuto limitações da nossa abordagem e refiro possíveis experiências a 

realizar no futuro, para ampliar ou consolidar o nosso conhecimento acerca 

do tema da regulação e evolução da plasticidade fenotípica adaptativa. 

Neste capítulo, apresento também dados preliminares que obtivemos para 

explorar duas questões complementares sobre a plasticidade no 

desenvolvimento, através: i) da quantificação dos efeitos da combinação de 

diferentes factores ambientais (temperatura e nutrição) cujos efeitos 

individuais no tamanho e pigmentação da mosca-do-vinagre são conhecidos 

mas cujas possíveis interacções (também com factores genéticos) estão por 

documentar, e ii) do teste da hipótese de que o mecanismo de edição do 

RNA, que pode levar à produção de diferentes proteínas a partir da mesma 

molécula de RNA mensageiro, afectar a regulação ambiental do 

desenvolvimento (ou, plasticidade).  

Em suma, esta tese investiga a base molecular e a evolução da 

variação fenotípica induzida pelo ambiente. Revela também a base genética 

da plasticidade e explora os mecanismos pelos quais os factores ambientais 

são integrados pelo organismo durante o seu desenvolvimento. Utilizando o 

tamanho do corpo e pigmentação da Drosophila como modelo, obtivemos 

conhecimento que permitirá responder a questões pendentes acerca da 

plasticidade do desenvolvimento. 
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 “But all evolutionary biologists know that variation itself is 

nature's only irreducible essence.”       Stephen Jay Gould 
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ABSTRACT 

Phenotypic variation is the result of the effects of genotype and environment 

that are integrated by developmental and evolutionary processes. Despite 

the impact that phenotypic plasticity may have on evolutionary outcomes, 

current paradigms in biology often rule out features of the environmental 

dependency of development whereby phenotypes can be altered. Moreover, 

little is known about the loci contributing to variation in plasticity and about 

the mechanisms by which the environment regulates development. The aim 

of this introduction is to provide an overview of the key conceptual and 

empirical knowledge about plasticity. More detailed and targeted information 

is then given in the introductions of each individual chapter. In the following 

four sections, I discuss the contribution of the external environment to 

phenotypic variation, the role of plasticity on adaptive evolution and its 

genetic underpinnings. Then, I introduce why Drosophila body color and 

body size are suitable systems to study the molecular mechanisms and 

evolution of developmental plasticity. Finally, I give a brief overview of the 

contents of the chapters presented in this thesis.  
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PHENOTYPIC VARIATION AND EVOLUTION 

Understanding the diversity in colors, shapes and other phenotypes in the 

natural world is among the most fascinating and old challenges of biology. It 

is a considerable challenge given that nature seems to have explored 

endless possibilities on how to become different or alike. Heritable 

phenotypic variation is the fuel for evolutionary change, as postulated by 

Darwin and Wallace in the theory of evolution by natural selection (Darwin & 

Wallace 1858; Darwin 1859). This theory became widely accepted after the 

discovery of genes as the fundamental source of inheritance (Mendel 1865), 

which established the pillars upon which evolutionary biologists have been 

exploring the mechanistic basis of natural diversity. Our understanding of the 

proximate and ultimate mechanisms that generate phenotypic variation 

(Mayr 1963; Tinbergen 1963) has progressed immensely in the last decades 

and remains a central topic in current research. This progress has benefited 

greatly from the development and availability of sophisticated technological 

tools and from multidisciplinary integrative efforts, such as global 

collaboration initiatives (e.g. DrosEU consortium; www.droseu.net), and 

even efforts beyond the restricted community of “professional” researchers, 

such as those of citizen-science projects (e.g. Silvertown et al. 2011), and 

amateur scientists (Lafuente & Alonso 2010). 

 Eco-evo-devo (i.e. ecological evolutionary developmental biology) has 

played an instrumental role in our understanding of the living world, by 

placing biological phenomena at the intersection of different disciplines. This 

field of research studies the interactions between an organisms’ 

environment, genotype, and development and incorporates these into 

evolutionary theory (Laubichler & Maienschein 2007; Abouheif et al. 2014). 

Researchers have recently proposed to incorprate knowledge derived from 

main topics of eco-evo-devo studies, such as modularity or plasticity, into 

other scientific areas, namely climate change and conservation biology 

(Campbell et al. 2017). Some of that interest relies on the possibility of being 

able to predict evolutionary paths, particularly in the context of environmental 
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threats induced by human activity. Despite great progress and an 

astounding accumulation of both sequence data and sophisticated analytical 

tools, understanding the relationship between genotype and phenotype has 

remained much more elusive than anticipated in the early days of whole 

genome sequencing. Predicting phenotypes based on genomic and 

environmental data is hard given that genotype-phenotype maps (and 

evolutionary outcomes) in nature are far more complicated than the usually 

simplistic set-ups used in the laboratory. In reality, genes are not isolated 

independent entities, and phenotypes are composed of many traits with 

complex associations. Moreover, multiple environmental cues act (and 

interact) in combination to influence phenotypic outcomes during 

development, and, ecological challenges are highly variable in time and in 

space. At any of these different levels of biological organization we are faced 

with the premise that “the whole is different than the sum of its parts”. 

 

Environmentally-induced phenotypic variation 

Many studies in the last decades have provided insight into the mechanisms 

that shape patterns of variation within and among species, using a variety of 

taxa and traits (e.g. Kato et al. 1993; Stern 2000; Kichenin et al. 2013). It has 

become evident that the environment, beyond filtering phenotypic variation 

during evolution, can also produce new phenotypic variants from a single 

genotype; a phenomenon called phenotypic plasticity (Bradshaw 1965). 

Plasticity is widespread in nature, occurring in virtually all biological 

kingdoms, from bacteria to mammals, and at all levels of biological 

organization, from regulation of gene expression in the cell-compartment, to 

overall physiological changes in the organism (Sultan 2000; Nijhout 2003a; 

Beldade, Mateus & Keller 2011). The study of plasticity and of its potential 

consequences for the ecology and evolution of organisms are central to our 

understanding of the genotype-phenotype-fitness interplay. Moreover, as 

portrayed by the controversial ‘nurture vs. nature’ dichotomy (Moore 2003), 

the topic has been at the boundary between scientific and sociological 
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concerns. This is, at least partly, because plasticity exemplifies the 

complexity of genotype-phenotype maps and sustains the need for a 

revision of the traditional genetic deterministic view of development (i.e. the 

unfolding of an already set sequence of events), giving way to a scenario 

where development (and phenotypic variation) in itself is a set of integrated 

responses to genotype-by-environment interactions (see Lewontin 2000). 

The study of plasticity may also be relevant in the context of human health. 

Indeed, an increasing number of epidemiological studies associate external 

effects during early life to the risk of developing some modern diseases, 

such as cardiovascular disorders, type 2 diabetes, obesity and osteoporosis 

(see Gluckman & Hanson 2007). 

 Plastic responses in nature are incredibly diverse. This is illustrated by 

the variety of cues, traits, and ecological scenarios that have been 

characterized to date in different species (see Schlichting & Pigliucci 1998; 

Figure 1.1). During adulthood, environmentally-induced phenotypic variation 

usually leads to changes that are reversible, such as rapid metabolic, 

physiological or behavioral alterations. In the case of developmental 

plasticity, external environmental cues influence developmental rates and 

trajectories during pre-adult stages, typically leading to changes in adult 

phenotypes that are often, irreversible (Figure 1.2). Iconic examples of 

developmental plasticity include temperature-induced polyphenisms in 

butterflies (Shapiro 1984), the nutritional determination of casts in social 

insects (Maleszka 2008; Smith et al. 2008), and the changes in body 

morphology upon predators’ presence in water fleas (Eads, Andrews & 

Colbourne 2008).  

 Plastic responses can be triggered by different types of environmental 

cues that can be biotic (e.g. presence of conspecifics) or abiotic (e.g. 

temperature) and that can reflect heterogeneity in environment, in space 

and/or in time. While in some cases there is a substantial degree of cue-to-

trait specificity in determining how development will be altered, in others, a 

single cue can simultaneously affect different traits and the same trait can 
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simultaneously be affected by several cues. For instance, temperature (e.g. 

Bochdanovits, van der Klis & de Jong 2003), nutrition (Brian 1975) and 

presence of predators (e.g. Beckerman, Rodgers & Dennis 2010), often 

affect development time, body size and other correlated life-history traits. 

Traditionally, most work on developmental plasticity has concentrated on 

studying the effect of a single environmental cue on a particular trait but 

more recent work is starting to elucidate the way in which multiple 

environmental cues are integrated during development (Braendle & Félix 

2008; Rodrigues et al. 2017). In fact, in natural habitats organisms are 

exposed to a multitude of environmental influences, that might be redundant, 

additive or interact in some form (e.g. synergistically or antagonistically), and 

may impact the development of multiple traits in different manners (Chevin 

2013; Piggott, Townsend & Matthaei 2015). For instance, in a cooperatively 

breeding cyclid fish, the combination of social environment and predation 

risk experienced during pre-adult phases determines whether the adult will 

follow a ‘dispersal’ or a ‘philanthropic’ strategy later in life. These different 

strategies involve changes in several behavioral traits (Fischer et al. 2017). 

More research on this direction is likely to follow trying to elucidate the extent 

to which environment-by-environment interactions may impact 

developmental and evolutionary processes.   
 

 

Figure 1.1.  Environmentally-induced phenotypic variation. Textbook examples 
of plasticity in various taxa. A. Females of the bluehead wrasse (yellow morph) can 
become males (blue morph), in the absence of a male in the harem. B. In the 
grasshopper Schistocerca lineata, adult body color and wing development is 
density-dependent and determined by tactile stimulation from conspecifics during 
development. C. In response to predators, the water flea, Daphnia longicephala, 
develops protective crests and tail spines. D. Larval nutrition determines casts 
during development in honeybees. E. Seasonal dimorphism in the pigmentation 
patterns of the wings of the gaudy commodore, Precis octavis. 



 

21 

1 
Environmental regulation of development 

Development can either respond to or resist environmental perturbation and 

the balance between these two processes is crucial for organismal survival 

and fitness. This corresponds to the phenomena of plasticity and 

robustness, respectively. Even though plasticity and robustness are at the 

two ends of the spectrum, neither of them are absolute properties of an 

organism or of a developmental program. Different traits of an individual can 

have different responses to the same cue, as shown for example in 

Mycalesis butterflies where the size of the eyespots on ventral and dorsal 

surfaces of the wing respond in opposite directions to thermal variation (van 

Bergen et al. 2017). Moreover, particular traits may only show environmental 

sensitivity during a time window while being highly robust throughout the rest 

of development (e.g. Koyama, Mendes & Mirth 2013; Mendes & Mirth 2016).  

 The environmental regulation of development can be mechanistically 

divided into a series of steps whereby i) the environmental cue needs to be 

sensed, ii) those signals need to be transmitted by a modulating system that 

conveys information about the external environment to the developing 

tissues, and iii) effector mechanisms, such as changes in gene expression, 

will result in different developmental outcomes based on the signals received 

(Figure 1.2). Several molecular players have been identified as candidates 

for mediating the environmental effects on development. In most, if not all, 

cases that are well described, hormones work as modulators that instruct 

developmental changes based on environmental information (see Nijhout 

1998). Examples of this physiological mediation of plasticity include the case 

of several amphibian species where conditions of desiccation trigger 

changes in the endocrine system capable of accelerating metamorphosis 

(Denver 1997), and the case of  dung beetles where ecdysteroid titers 

underlie the nutrition-dependent horn size in males  (Emlen & Nijhout 1999).  

 Differences in gene expression due to alternative developmental 

environments have also been identified for a number of species and in 

relation to several environmental cues.  Using a variety of methods, from 



 

22 

1 
candidate-gene approaches (Abouheif & Wray 2002; Shoemaker-Daly et al. 

2010; Miyakawa et al. 2010) to more unbiased transcriptomic analysis 

(Levine, Eckert & Begun 2011; Zhou et al. 2012), studies in this area have 

provided insights onto the magnitude and the identity of the genes affected 

by environmental changes. Underlying some these are a number of 

mechanisms that extend genetics (and inheritance) beyond the classical 

DNA coding sequence. These include DNA methylation and/or post-

transcriptional modifications that are known to contribute to inter-individual 

variation in many traits, including those representing cases of plasticity (see 

Bossdorf et al. 2008). For instance, diet-dependent methylation patterns 

regulate the induction of queen and worker castes in honeybees (Lyko et al. 

2010), and experimental demethylation leads to increased plasticity of 

flowering traits in Arabidopsis (Bossdorf et al. 2010). Future research in this 

direction will reveal the prevalence of such mechanisms and how they 

interact with the hormones that mediate plasticity. 

 

 

 
Figure 1.2.  Sequence of steps from the inductive to the selective 
environmental cues. For the environment to affect development, environmental 
cues need to be sensed and this external information has to be transmitted to the 
developing tissues by internal signals. Upon receiving such signals, changes in gene 
expression will modify development and give rise to alternative adult phenotypes.  In 
cases of adaptive plasticity, when the inductive cue is a reliable predictor of the 
future conditions, plasticity leads to adult phenotypes better suited to their 
environment. Adapted from P. Beldade. 
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Reaction norms 

Developmental plasticity is commonly studied using reaction norms (Figure 

1.3) that are graphical representations in which variation in phenotype is 

represented as a function of variation environment (Woltereck, 1909; 

Schmalhausen, 1949; Sultan and Bazzaz, 1993). Reaction norms will be of 

different shapes depending on the type of plastic response (Figure 1.3B). 

When development is robust to environmental perturbation, reaction norms 

are flat. A gradual relationship between environment and phenotype, such 

as the temperature-induced differences in body size in many insects (Nijhout 

2003b; Mirth & Shingleton 2012), leads to continuous reaction norms. More 

dramatic responses, with an environmental threshold upon which the 

phenotype changes, are depicted by switch-type reaction norms, such as the 

casts in social insects or the polyphenisms in Lepidoptera (Figure 1.3B).   

 In natural and experimental populations, there is variation in the way 

different genotypes respond to the environment. This variation is reflected in 

the genotype-by-environment (G × E) interaction component of the partition 

of phenotypic variance (Figure 1.3A) and can be assessed by comparing 

reaction norms for different genetic backgrounds (Figure 1.3C-D). These 

comparisons can provide information about the extent of plasticity, the form 

of the reaction norms (e.g. linear, quadratic), and the extent of genetic 

variation for plasticity. Differences in plasticity between genotypes can affect 

different aspects of the plastic response, including properties of reaction 

norms such as the intercept, shape and the slope (Figure 1.3C). The genes 

underlying those differences presumably provide the raw material for natural 

selection to act upon during the evolution of plasticity under heterogeneous 

environments. This will be a central topic of this thesis. 
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Figure 1.3. Genetic, environmental and genotype-by-environment effects on 
phenotypic variation. All the plots illustrate reaction norms where variation in 
phenotype (Y axis) is represented as a function of environmental variation (X axis). 
A. Schematic representation of phenotypic values for two genetic backgrounds (G1 
and G2) measured at two environmental conditions. Total phenotypic variation (VP) 
in a population can be partitioned into genetic variation (VG; difference between filled 
and empty symbols), environmental variation (VE; difference between circles and 
squares) and genotype-by-environment variation (VGxE; difference between solid and 
dashed lines). There is also an intra-genotype, intra-environment component of 
variation, which is represented in the diagram by the shadow. B. Reaction norms 
can be different depending on the type of environmental dependence of the 
phenotype and the plot illustrates three types: a continuous response (linear 
reaction norm), a nonlinear relationship with discrete alternative phenotypes (switch-
type reaction norm), and a case in which development is robust to environmental 
perturbation (flat reaction norm). C. Genetic variation for plasticity can affect 
different properties of reactions norms such as the intercept, slope, shape and/or 
threshold at which the phenotype responds to environmental variation. D. 
Populations can differ in the extent of genetic variation for plasticity.  In population 1, 
there is no plasticity. In population 2, there is plasticity (i.e. genotypes show different 
phenotypes depending on the environment), but there is no genetic variation for the 
magnitude of the environmental effect on phenotype (i.e. all genotypes show parallel 
reaction norms). Population 3 demonstrates genetic variation for the extent of 
plasticity in that different genotypes have reaction norms of different slopes. 
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THE ROLE OF PLASTCITY IN ADAPTIVE EVOLUTION  

Plasticity is, by definition, a property of a genotype under a given 

environment and can be adaptive, maladaptive, or have no major 

implications for organismal fitness (Ghalambor et al. 2007). In many cases of 

adaptive developmental plasticity, an inductive environmental cue predicts 

the selective environment that the individual will experience as an adult and 

this triggers the development of phenotypes better suited for that 

environment (Figure 1.2) (Scheiner 1993; West-Eberhard 2005). Even 

though most attention has been paid to the study of adaptive plasticity, 

conceptual and empirical work also provide examples in which plasticity is 

neutral or even maladaptive, for instance when the inductive cue becomes 

an reliable predictor of the forthcoming selective environment (e.g. 

Langerhans & Dewitt 2002). 

 Whether plasticity hinders or promotes adaptive evolution has been 

the topic of intense debate in the last decades, with observations from the 

field and the laboratory providing evidence for both. These data suggest that 

plasticity has the potential to hinder or facilitate adaptation, and that this 

ultimately depends on the relationship between the available genetic 

variation, the environmentally-induced phenotypes, and the selection 

pressures at play (see Ghalambor et al. 2007). When populations are faced 

with a novel environment, plasticity can affect adaptive evolution in different 

ways (Figure 1.4). If the environmentally-induced changes in development 

produce phenotypes that are better adjusted to the novel conditions 

experienced (i.e. closer to the local fitness optimum), then plasticity can 

have an immediate benefit allowing the population to persist as genetic 

changes still occur (Figure 1.4A). Conversely, if the induced phenotypes are 

maladaptive in the new environment (i.e. further away from the local fitness 

optimum), then plasticity can reduce the chances of the population persisting 

(Figure 1.4B). Novel conditions, outside the original realm of conditions 

experienced by the population, can also release cryptic genetic variation that 

might provide new raw material for adaptive evolution (Figure 1.4C). On the 
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other hand, plasticity can also hide genetic variation in cases where 

particular genes are not expressed under the novel developmental 

conditions.  

 Even though traditional models of adaptive evolution have often 

neglected any major contribution of phenotypic plasticity, more recent work 

proposed that plasticity can promote phenotypic diversification and 

speciation (see West-Eberhard 2005; Susoy et al. 2015) and can accelerate 

adaptive evolution (Moczek & Nijhout 2003; Wund et al. 2008). The role of 

plasticity in adaptive evolution remains contentious, however, it is generally 

recognized that adaptive plasticity can affect the immediate survival of 

populations exposed to change by providing the means to cope with 

environmental heterogeneity (Gotthard and Nylin 1995, Schlichting and 

Pigliucci 1998, West-Eberhard 2003, Nylin et al. 2005, Pfennig et al. 2010, 

Ghalambor et al. 2015). This has been illustrated for example, in a study on 

populations of Daphnia where plasticity has repeatedly been co-opted to 

facilitate rapid adaptation to the presence of predators (Scoville & Pfrender 

2010). This and other examples (Pfennig et al. 2010), provide evidence that 

plasticity may represent a solution to challenges posed by changing 

environments (De Jong 2005), including those triggered by climate change. 

 
 

 
Figure 1.4. Plasticity can hider or promote adaptive evolution. The grey symbol 
represents the mean phenotype of a population without the effect of plasticity while 
the green symbol shows the mean phenotype generated via plasticity. A. When 
plasticity places the population closer to the fitness optimum, the population can 
persist and still be subjected to directional selection, facilitating adaptation. B. 
Plasticity can be deleterious for adaptation if it places the population far away from 
the fitness optimum. C. Plasticity can lead to a release of cryptic genetic variation 
and this would turn adaptation dependent on the new genetic variation. 
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EVOLUTION OF PLASTICITY 

Theoretical models have begun to outline the factors that could favor the 

evolution of plasticity, such as the predictability of the environmental 

fluctuation (Leimar, Hammerstein & van Dooren 2006; Reed et al. 2010), the 

reliability of inductive cues and the potential costs of plasticity (Callahan, 

Maughan & Steiner 2008; Snell-Rood 2012; Murren et al. 2015). The 

inductive cue should accurately predict the future selective environment that 

adults will experience. Inductive and selective environments can, but do not 

need to be the same. In several cases of seasonal polyphenism in 

butterflies, photoperiod and temperature experienced during larval stages 

act as inductive cues while the selective pressures are related to predation 

risk and opportunities for reproduction (Brakefield & Reitsma 1991). The 

optimal response to a heterogeneous set of environmental challenges would 

be to always evolve plasticity, allowing organisms to exhibit the best 

phenotype in every environment without the need for genetic change (see 

Moran 1992). There are, however, both limits and costs associated with 

plasticity, such as for instance energetic costs of producing and maintaining 

sensory or regulatory mechanisms, that may constraint the evolution of 

plasticity (see Dewitt, Sih & Wilson 1998; Murren et al. 2015).  

 Transitions from environmentally-sensitive to robust development, and 

vice versa, have been documented for a variety of species. Examples 

include the evolution of different degrees of genetic caste determination in 

ants (Schwander et al. 2010) or the erosion of head size plasticity in snakes 

(Aubret & Shine 2009). Beside studies from natural populations, there are 

also precedents of changes in plasticity resulting from artificial selection 

experiments. For instance, in Manduca sexta a single mutation in the 

juvenile hormone-regulatory pathway conferred environmental sensitivity 

and preceded the evolution of a larval color polyphenism (Suzuki & Nijhout 

2006).  

 Environmental-sensitivity of development is likely to be the ancestral 

state in most cases, with selection then favoring the ability to buffer 
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environmental effects (Newman & Müller 2000; Nijhout 2003a). In recent 

years, sophisticated analyses have highlighted specific mechanisms that 

may enhance robustness (see Nijhout et al. 2017) such as redundancy in 

cell precursors (Braendle & Félix 2008), gene enhancers (Frankel et al. 

2010), and/or regulatory microRNAs (Brenner et al. 2010). Conversely, 

modularity in molecular networks (Snell-Rood et al. 2010) may enable 

plasticity. By acting on those and other mechanisms selection can adjust the 

extent of plasticity in trait development. When the ecological conditions favor 

the evolution plasticity, selection can act on the regulation of environmentally 

sensitive phenotypes by genetic accommodation (see West-Eberhard 2003; 

Braendle & Flatt 2006; Crispo 2007) and enhance the precision plastic 

responses.   

  

THE GENETIC BASIS OF PLASTICITY 

Despite the prevalence of plasticity in nature and its potential consequences 

for the ecology and evolution of organisms, we still know very little about the 

genetic bases underlying plasticity and how it varies in natural populations. 

The genetic basis of plasticity includes loci involved in environmental-

responsiveness (e.g. hormones that regulate plastic responses) as well as 

loci responsible for variation in plasticity (e.g. loci underlying inter-genotype 

differences in plasticity). Traditionally, studies have mostly focused on the 

former, unraveling the effects of candidate genes putatively involved in the 

environmental-regulation of development (Gibert, Peronnet & Schlötterer 

2007; Gibert, Mouchel-Vielh & Peronnet 2017; Mendes & Mirth 2016) and 

identifying quantitative trait loci (QTLs) whose effects vary across 

environments (QTL-by-environment interactions) (Fry et al. 1998; Gurganus 

et al. 1998; Vieira et al. 2000; Leips & Mackay 2000; Bergland et al. 2008).  

Much less attention has been given to identifying the genes that carry 

natural allelic variants that contribute to inter-genotype variation in plasticity 

itself, which are those that alter the properties of reaction norms (e.g. genes 

leading to flat vs. steep reaction norms). These can presumably be a subset 
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of the genes involved in environmentally-sensitive development, and will be 

main focus of study in this thesis.  

 Studies in different systems have shown that plasticity is heritable, 

subject to selection, and, therefore, can evolve (Bradshaw 1965; Via & 

Lande 1985; Scheiner 1993; de Jong 2005; Ghalambor et al. 2007; Aubret & 

Shine 2009). Overwhelming evidence from natural and experimental 

populations from different species shows that individuals can differ 

significantly in the extent of sensitivity and responsiveness to environmental 

cues (Scheiner & Goodnight 1984; Newman 1994; Robinson & Wilson 1996; 

Smekens & van Tienderen 2001; Gockel et al. 2002; Nussey et al. 2005; 

Lardies 2008). We also know of the polygenic nature of changes in reaction 

norms, including the extent of phenotypic change resulting from 

environmental conditions (Lind & Johansson 2007) and the environmental 

threshold at which the phenotype changes (Moczek & Nijhout 2003). Genetic 

variation for plasticity can affect different aspects of the relationship between 

phenotype and environment, and selection on this genetic variation can lead 

to different outcomes, being at the two extremes, the evolution of canalized, 

environmentally insensitive phenotypes and the dramatic, threshold 

polyphenisms. Properties of reaction norms are likely to be quantitative traits 

for which variation results from the simultaneous segregation of alleles at 

multiple QTLs and thus, can be studied within a classical evolutionary 

genetics framework. Successful attempts to map the genetic basis for 

variation in plasticity include the identification of QTLs associated with 

thermal regulation of life-history traits in Caenorhabditis elegans (Gutteling et 

al. 2007) and for photoperiod-induced flowering in Arabidopsis thaliana 

(Ungerer et al. 2003).  

 Whether reaction norms emerge as direct targets of selection, an idea 

that favors the existence of the so-called “plasticity genes”, or as by-products 

of selection acting on the traits themselves, has been a highly disputed topic. 

In this context, different theoretical models have been proposed accounting 

for the genetic basis of variation in plasticity (all discussed in Weber & 
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Scheiner 1992). These include the “pleiotropy model” that proposes that 

plasticity is the product of a differential expression of alleles in different 

environments (Via & Lande 1985) and the “epistasis model” whereby 

plasticity is itself a trait that can evolve independently (Scheiner & Lyman 

1991). Even though experimental evidence about this is still scarce, some 

examples illustrate that selection on plasticity can be independent of 

selection on the trait mean, as, for example, shown for inflorescence height 

in Arabidopsis thaliana under different levels of shading (Scheiner & 

Callahan 1999) and for thermal plasticity in the timing of egg-laying in 

collared flycatchers (Brommer et al. 2005). 

 A more coherent understanding of plasticity and its potential 

contribution to evolution requires expanding our knowledge about the natural 

allelic variants that cause inter-individual variation in plasticity, which would 

represent the raw material upon which selection can act or drive the 

evolution of plasticity. Identifying these loci will help elucidating what is the 

nature and the magnitude of allelic effects contributing to variation in 

plasticity as well as what is the identity of the genes involved. For instance, 

what are the loci that underlie variation in plasticity? At which level of the 

environmental regulation of development do these genes act? Are those loci 

common between traits, body parts, and between variants that determine 

variation in mean trait values?  

 

OUR MODEL: BODY SIZE AND PIGMENTATION IN DROSOPHILA 

Insect body size and body pigmentation are emblematic examples of how 

the interactions between genotype and environment can determine 

phenotypes and affect fitness. Both traits play fundamental roles in 

reproduction and survival by influencing organismal performance under 

ecological challenges such as predation risk (e.g. Barnes et al. 2010; 

Ahlgren et al. 2013), thermo-regulation (e.g. Gibert & DeLong 2014; 

Kingsolver & Wiernasz 1991) and competition for mates (Badyaev & Young 

2004; Head, Kozak & Boughman 2013). Body size is a key trait that is 



 

31 

1 
closely associated with many other life history traits (including lifespan and 

reproductive output) and has been shown to be under strong selection in 

natural populations (Lafferty & Kuris 2002; Barnes et al. 2010). Body 

pigmentation represents a classic example of adaptive evolution, including 

mimicry (Nadeau 2016), industrial melanism (Cook & Saccheri 2013), 

modularity (Beldade & Brakefield 2003) and novel traits (Brakefield, Beldade 

& Zwaan 2009). It is too, often closely associated with a number of fitness-

related traits, including behavior and immunity (see Wittkopp & Beldade 

2009). 

 Body size and body pigmentation vary between species, populations 

and environments (including clinal and seasonal). Moreover, both traits are 

typically sexually dimorphic and differ significantly between the body parts of 

an individual (e.g. Ng et al. 2008; Signor et al. 2016). This great diversity has 

triggered a vast number of ecological and evolutionary studies that have 

shed light onto the mechanisms that shape inter- and intra-specific variation 

in body size (Honěk & Honek 1993; Scharf, Juanes & Rountree 2000; Yom-

Tov & Geffen 2006) and in body pigmentation  (e.g. Cloney 2017; Steiner et 

al. 2007; Pool & Aquadro 2007) in different species.  

 Both traits are determined by genetic, environmental and genotype-by-

environment components, and are plastic in response to different 

environmental cues, such as nutrition and temperature (Nijhout 2003b; 

Shingleton et al. 2007; Wittkopp & Beldade 2009; Beldade et al. 2011). 

Thermal plasticity is, indeed, quite common in ectothermic animals, most 

notably in insects, where the temperature experienced during development 

has a strong effect on several traits, including adult body size and coloration 

(e.g. Sutcliffe, Carrick & Willoughby 1981; Solensky & Larkin 2009).  

 Work with Drosophila has provided much insight into the genetic and 

physiological mechanisms underlying the development of body size and 

body color. Body size and body size proportions are mostly regulated by 

insulin, juvenile and ecdysone hormones (Figure 1.5B) (see Mirth &  

Shingleton 2012) and pigmentation development results from the enzymes 
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that synthesize pigments (effector genes) and the transcription factors that 

regulate the spatial and temporal expression of those enzymes (patterning 

genes) (see Massey & Wittkopp 2016) (Figure 1.5A). A great number of 

studies have also explored the genetic variants and respective associations 

with environmental factors that might shape the patterns of variation in body 

size and body color (e.g. French, Feast & Partridge 1998; Loeschcke, 

Bundgaard & Barker 2000; Pool & Aquadro 2007b) (Figure 1.6). This has led 

to the development of very sophisticated methods to analyze genomic data, 

in contrast to the rather coarse analytical tools to quantify phenotypes.  

 

Figure 1.5. Regulation of body size and body pigmentation in Drosophila 
A. Melanin synthesis pathway in Drosophila and its central components with 
enzymes (in orange), pigments (in black) and regulators (in blue) (from Wittkopp & 
Beldade 2009). B. Schematic representation of the genetic and environmental 
regulation of body size and proportions. Increased temperature reduces body size 
while increased protein content in the larval food increases adult size. The control of 
body size is determined by signals sent from the fat body to the central nervous 
system (CNS), which in turn regulates the production of insulin-like peptides (dILPs) 
and ultimately determines the duration of the growth period. The diagrams also 
shows differences in size between genotypes and between organs of a given 
individual (from Mirth & Shingleton 2012). 
 

 The association between body size and body pigmentation and 

temperature found across geographical populations of many insect species, 

including Drosophila, is assumed in most cases, to be adaptive plasticity. 

Flies are darker and larger in colder environments presumably relating to 

thermo-regulation needs; darker to be able to absorb more solar radiation 

and larger because growth efficiency decreases with increasing 

environmental temperature (see Klowden 2007). The selective advantage of 
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a larger body in colder environment remains unclear but the prevalence of 

the temperature-size rule (i.e. higher temperatures leads to smaller bodies 

and vice versa) in natural and experimentally evolved populations, has been 

taken as a evidence of its adaptive significance (e.g. Atkinson & Sibly 1997; 

Adrian et al. 2016). However, the literature also offers alternative hypotheses 

to explain the relationship between body pigmentation (and body size), 

temperature and fitness which do not invoke an adaptive response, including 

biophysical and/or developmental constraints (Gibert, Moreteau & David 

2000; Angilletta Jr et al. 2002). 

 

Figure 1.6. Drosophila body size and body pigmentation as a model to study 
plasticity. A. Phylogenetic tree and examples of diversity in abdominal 
pigmentation in females from different Drosophila species. B. Island of origin and 
drawing of illustrating pigmentation for females of each species in the Drosophila 
dunni subgroup showing a latitudinal cline in abdominal pigmentation (from 
Hollocher, Hatcher & Dyreson 2000). C. Drosophila melanogaster females (left) and 
males (right) from size-selected populations maintained under different conditions of 
hypoxia (from Klok & Harrison 2009). 
 

 Drosophila melanogaster, in particular, is a proven powerful model to 

map phenotypic variation to known locations in the genome given the 

availability of genetic tools and more recently, of panels of genotypes 
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representing naturally segregating alleles (King, Macdonald & Long 2012).  

This includes the Drosophila Genetic Reference Panel (DGRP), a wild-

caught population from Raleigh (North Carolina, USA) composed of ca. 205 

fully sequenced isogenic lines, which has been extensively used to map 

genetic variation for numerous complex traits (Mackay et al. 2012; Huang et 

al. 2014), including body size (Vonesch et al. 2016) and body pigmentation 

(Dembeck et al. 2015). Most of this work has been typically done by rearing 

genotypes under a single environment. Thus, despite great advances on our 

understanding of the genetic architecture and nature underlying variation in 

many quantitative traits, the genetic basis for plasticity remains largely 

unexplored. Given the availability of these mapping panels it is now possible 

to expose these lines/genotypes to different developmental environments, 

assess phenotypic plasticity for size and pigmentation, and identify which 

loci contributing to variation in plasticity.  

 

THIS THESIS 

This thesis investigates the molecular underpinnings and evolution of 

environmentally-induced phenotypic variation (Figure 1.7). It uncovers the 

genetic basis of thermal plasticity and explores the mechanisms by which 

environmental inputs affect development. By using Drosophila body size and 

body pigmentation as a model, we provide insight into some of the 

outstanding questions in the field of development plasticity. What are the loci 

that carry allelic variation determining that some genotypes are less or more 

plastic? Do these loci affect the sensing of environmental cues, the 

transmission of these external signals or the implementation of the 

information in developing tissues? Are the loci regulating plasticity the same 

for different plastic traits? Do these loci also contribute to inter-individual 

variation observed within a given environment? How is multifactorial 

environmental information integrated during development?  

 In Chapter 2 we explore the effects of genetic, environmental and 

genotype-by-environment effects on body coloration. Because pigmentation 
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is composed of different elements related with color and color pattern, and 

those can vary in different ways, we developed a quantitative method that 

decomposes pigmentation into different traits (Figure 1.6). We studied how 

those traits differ across Drosophila species and between genetic 

backgrounds, sexes, and temperatures. Our data allowed us to characterize 

correlations across traits and body parts, and to analyze the effects of 

genotype and environment on those correlations. We also explored how 

different genotypes of D. melanogaster vary in their windows of thermal 

sensitivity. We expand some of our findings to other natural populations of 

D. melanogaster from a European latitudinal cline. 

 In Chapter 3 we used the DGRP to unravel the genetic basis of 

thermal plasticity for different pigmentation components. To do so, we 

quantify five pigmentation traits, related with color and color pattern, of two 

body parts (thoracic and abdominal) from flies reared at two temperatures. 

We documented effects of genotype, environment and genotype-by-

environment on the different pigmentation components, and we identified 

and validated loci contributing to variation in thermal plasticity in those. We 

explored the extent of overlap between validated and putative QTLs for 

plasticity in different pigmentation traits, as well as between QTLs underlying 

variation within and between environments.  

 Using a similar approach as used in Chapter 3, in Chapter 4 we 

identified the genetic basis for thermal plasticity in body size in D. 

melanogaster. We characterized genetic variation for thermal plasticity in 

thorax and abdomen size, and identified loci contributing to variation in the 

slope of thermal reaction norms. We again explored at the extent of overlap 

between QTLs or size and for size plasticity, and between QTLs for size 

plasticity in different body parts.  

 In the Discussion chapter, I give an overview of our integrated results 

and discuss both their significance and possible future research directions. I 

also present preliminary data I have collected, including the contribution of 

environment-by-environment (ExE) interactions to phenotypic variation, and 
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the potential role of RNA editing to thermal plasticity in D. melanogaster. All 

together this thesis aims at shedding light on the extent and genetic basis of 

inter-genotype variation in plasticity that is required for the evolution of 

plasticity under heterogeneous environments.  

 The data chapters of this thesis have been written in view of later 

submission for publication. For that reason, there might be some repetition, 

particularly between this chapter and the introductory sections of other 

chapters.  

 

 
Figure 1.7. Thesis outline.  Diagram showing variation in Drosophila, from 
genotypes to species diversity, and summarizing the main topics of this project. 
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Chapter 2 
 

The effects of genetic and environmental factors 
on Drosophila body color components 
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ABSTRACT 

Body pigmentation is a diversified trait that plays important roles in the 

survival and reproduction of insect species. Pigmentation results from the 

combined effect of many traits that have the potential to vary in their 

response to internal and external factors and can develop and evolve more 

or less independently. However, due to the lack of quantitative methods to 

accurately measure pigmentation, body pigmentation is typically reduced to 

one trait in many species, including Drosophila. Here we develop a method 

to quantify color and color pattern, decompose the pigmentation phenotype 

into different components and explore the effect of genetic background, sex 

and temperature on each component. We found that genetic and 

environmental factors have different effects on trait associations, namely 

variance and correlations, in D. melanogaster. Pigmentation components 

show diverse responses to sexual and environmental differences. We also 

show that the stages of development that are sensitive to temperature differ 

between genetic backgrounds and across pigmentation traits. Finally, we 

characterize patterns of pigmentation variation in other natural populations 

and in five Drosophila species and investigate how pigmentation traits are 

affected by genetic and environmental effects to create the diversity in body 

color. 
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INTRODUCTION  

Body coloration is an emblematic system of how adaptive evolution can 

shape phenotypes, given its essential role in the survival and reproduction of 

many species. Classic examples of adaptation via the evolution of color and 

color patterns include mate attraction (e.g. Mundy et al. 2004; Hill & McGraw 

2006), mimicry (e.g. Mallet & Joron 1999; Nadeau 2016) and camouflage 

(e.g. Cook & Saccheri 2013) which all involve visual communication between 

individuals of the same or other species. Pigmentation also plays a role in 

thermoregulation (e.g. Clusella-Trullas et al. 2008), where fitness benefits 

arise from physiological processes that improve tolerance to adverse 

environmental conditions. The diversity of pigmentation found across 

species, populations, sexes and even individuals of same sex, has been the 

focus of many ecological and evolutionary studies, of which some have 

provided exciting insights on the sources of inter- and intraspecific variation 

in pigmentation (e.g. Pool & Aquadro 2007; Massey & Wittkopp 2016), 

including studies on co-option (e.g. Shirai et al. 2012) and cis-regulatory 

evolution (e.g. Miyagi et al. 2015). Attempts to unravel the relationship 

between genotype and (pigmentation) phenotypes typically focus on the 

genetic mechanisms underlying phenotypic variation, and this has led to the 

development of sophisticated methods for the analysis of genomic data in 

comparison to the rather coarse analytical tools available to quantify 

phenotypes. 

 Diversity in pigmentation is the product of different colors that are 

arranged in distinct spatial patterns. In insects, the development of 

pigmentation involves enzymes that produce pigments and transcription 

factors that regulate their temporal and spatial expression (see Wittkopp & 

Beldade 2009). Differences in pigmentation can be found between the body 

parts of an organism and even across pattern elements within the same 

body part. Moreover, body pigmentation is made up of many components, 

related with color and/or color pattern, which do not necessarily develop and 

evolve together (e.g. Beldade & Brakefield 2003; Linnen et al. 2013). These 
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pigmentation components can have divergent responses to genetic and 

environmental factors and be correlated and/or constrained by 

developmental and evolutionary processes. The inter-connection between 

traits, referred to as phenotypic integration in the case of a tight connection 

or phenotypic independence when traits are uncoupled, has been previously 

investigated in the context of body coloration. For instance, the serial 

pigmentation elements, called eyespots, present on the dorsal and ventral 

wing surfaces of the butterfly Bicyclus anynana, have been shown to 

respond independently to variation in temperature and to internal levels of 

ecdysone (Mateus et al. 2014).  

 Drosophila is perhaps one of the best-characterized insect species, 

with several studies exploring the genetic variants, and associations with 

environmental factors, that shape the patterns of variation found between 

species, populations and individuals (e.g. Hollocher, Hatcher & Dyreson 

2000; Gibert, Peronnet & Schlötterer 2007; Pool & Aquadro 2007). In 

Drosophila, differences in pigmentation have been associated to desiccation 

resistance (Parkash, Rajpurohit & Ramniwas 2008) and UV protection 

(Matute & Harris 2013). Moreover, there is also an association between 

pigmentation and other phenotypes, such as behavior (Takahashi 2013) and 

immunity (Dombeck & Jaenike 2004), mediated by multiple roles of melanin 

and melanogenesis genes (see Wittkopp & Beldade 2009). Pigmentation in 

Drosophila shows developmental plasticity in relation to a variety of 

environmental cues, such as nutrition (Shakhmantsir, Massad & Kennell 

2014) and temperature (David, Capy & Gauthier 1990). Thoracic 

pigmentation in flies is often characterized by the presence of a trident — a 

darker pigmented element — or longitudinal stripes. Abdominal pigmentation 

is composed of longitudinal stripes of dark pigment that vary in width and 

color. The wings of some Drosophila species can show melanic patches that 

vary in number, size and shape (e.g. True et al. 1999). Traditionally, studies 

on body coloration have used qualitative measurements of pigmentation or 

quantitative analysis of single body regions, leading to oversimplification of 
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the phenotypic data. A better understanding of the evolution and 

development of these pigmentation components requires more detailed and 

quantitative methods for phenotyping. In fact, the need for sophisticated 

methods to quantify phenotypic data has become a general quest in biology 

(Houle, Govindaraju & Omholt 2010) and researchers have begun to 

develop and implement techniques that quantify phenotypic variation, 

including pigmentation (Saleh Ziabari & Shingleton 2017), in more detail.  

 Here, we characterize different aspects of pigmentation in Drosophila, 

encompassing color and color pattern in different body parts and explore 

environmental and genetic effects on each of these. To do so, we developed 

a method to quantify body pigmentation components and analyzed these 

components in two different genetic backgrounds of D. melanogaster, 

natural populations of the same species collected along a latitudinal cline 

and, finally, for five additional Drosophila species. We discuss our results in 

the context of the potential evolutionary and developmental independence of 

different pigmentation components. 

 

RESULTS 

 We developed a method to quantify five pigmentation traits (Figure 

2.1) and analyzed how these components, and the associations between 

them, vary between body parts, sexes and temperatures in two genetic 

backgrounds of D. melanogaster (Figure 2.2). We attempted to determine 

the stages of development that respond plastically to the environment (i.e. 

the windows of sensitivity for plasticity) (Figure 2.3). We then studied 

patterns of variation in pigmentation in natural populations of D. 

melanogaster which were collected along a latitudinal cline (Figure 2.4) and, 

finally, for five additional Drosophila species (Figure 2.5).   

 

Associations between components of Drosophila body pigmentation. 

We used a quantitative method to define five distinct pigmentation 

components (see Materials and Methods) and analyzed how these vary 
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between body parts, in females and males of two genetic backgrounds of D. 

melanogaster (CantonS and OregonR) that were reared at either 17°C or 

28°C. These five components encompass different aspects of the 

pigmentation phenotype that are related to color and color pattern (see 

Figure 2.1 for examples and Materials and Method for detailed description of 

the traits).  

 

Figure 2.1. Quantitative analysis of body pigmentation. A. Abdomens 
from females and males from two D. melanogaster genetic backgrounds 
(OregonR and CantonS) reared at 17°C (upper panel) or 28°C (lower panel). 
For each pixel in the transect we extracted RGB values that are represented 
in the RGB plots (cube plots on the left side of each fly). By calculating the 
distance of each of those pixels to the black (see Materials and Methods) we 
converted the RGB vectors into two dimensional information and 
represented the distance of each pixel (Y axis) from the anterior to the 
posterior extremes of the transect (X axis) (plots below abdomens). B. 
Diagram showing the different pigmentation traits. From left to right, overall 
darkness (Odk), the color of the pattern element (Cpa), the color of the 
background (Cbk), the pattern (Pat) and the range (Ran). 
 

We assessed the relationship between pigmentation components by 

estimating Pearson correlations (significance level 0.05). Globally, there 

were few significant correlations and those were dependent on the genetic 

background, the sex and the temperature analyzed (Figure 2.2A). 
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Pigmentation traits were more correlated with each other within a given body 

part than between body parts and trait correlations were stronger for 

abdominal female traits.  

Correlations between traits were dependent on the genetic 

background; pigmentation traits were more integrated (i.e. more and 

stronger correlations) in CantonS when compared to OregonR. For a given 

genetic background, the relationship between pigmentation components also 

differed between sexes. For instance, female pigmentation traits showed 

stronger correlations than males in CantonS. 

The temperature experienced during development also affected the 

correlations between traits, with higher temperature decreasing the strength 

and number of significant correlations. Interestingly, in some cases the effect 

of temperature was not found only in the magnitude of the correlation but 

also in the direction. For instance, patterning and band color in thoraxes of 

OregonR females was positively correlated at 17°C while negatively at 28°C. 

 

Variation in components of body color: effects of genotype, 

environment and genotype-by-environment  

Using flies from two genetic backgrounds (OregonR and CantonS), reared at 

either 17°C or 28°C, we assessed how the five pigmentation components 

(see Figure 2.1 and Materials and Methods) vary between genotypes, sexes 

and temperatures (Figure 2.2B, Table 2.S1 for the results of the model). We 

found significant differences between genetic backgrounds for most of the 

abdominal traits, but not for the thoracic ones. Differences between sexes 

were evident in all abdominal pigmentation traits. Here, sexual dimorphism 

was largest for pattern (Pat) and this was presumably determined by the 

presence of darker and wider bands in males. In the thorax, only overall 

darkness (Odk) and range (Ran) were sexually dimorphic. 

 We demonstrated that thermal plasticity for pigmentation in Drosophila 

compromises responses of all five components and that all of these, in their 
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own way, contributed to darker pigmentation phenotypes at lower 

temperatures. This finding held true for both sexes, although the extent of 

plasticity was higher in females than in males (estimated by the differences 

in mean values between temperatures). We also found differences in 

plasticity between body parts, with most abdominal traits showing a 

significant response to variation in developmental temperature while such 

responses where only observed for overall darkness and range in the thorax. 

Overall, comparisons between pigmentation components across 

body parts revealed that abdominal traits have higher degree of sexual 

dimorphism and higher plasticity than thoracic ones. Indeed, most thoracic 

traits do not differ between genetic backgrounds, sexes and  

rearing temperatures. Comparison between pigmentation components 

across genetic backgrounds revealed that color traits were less variable than 

patterning ones between genetic backgrounds, sexes and environments.   

In some cases, we found genotype-specific differences in 

pigmentation traits between sexes and/or temperatures. For instance, 

thoracic pigmentation is plastic in females of CantonS while it is not thermo-

sensitive in OregonR. Similarly, darkness in abdominal pigmentation is 

plastic in both genetic backgrounds but the direction of the response goes in 

opposite directions.  

 
 
Figure 2.2. Variation and co-variation in pigmentation traits with 
genetic background, sex and temperature in D. melanogaster. A. Heat 
map of Pearson’s correlation coefficients for all pigmentation traits in 
abdomens and thoraxes of CantonS (upper panel) and OregonR (lower 
panel) of flies reared at 17°C or 28°C. For each matrix, females are in the 
left corner and males in the right. Positive correlations are denoted in blue 
and negative correlations in red. Non-significant correlations (p-value > 0.05) 
are indicated with a white dot. B. Pigmentation trait values in females (open 
circles) and males (closed circles) reared at 17°C (blue) or 28°C (red) 
degrees. The bar represents the mean value of all individuals per sex and 
temperature. We tested for the effect of sex and temperature on the trait 
using the model lm (Trait ~ Sex *Temperature). Results of the post-hoc 
multiple comparisons using the Tukey honest significance test are indicated 
in the figure with letters (p-value < 0.05).  
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The sensitive period for pigmentation plasticity differs between traits 

and genetic backgrounds  

We investigated the thermally sensitive stages of development for 

pigmentation plasticity by characterizing the impact of changing the rearing 

temperature at different stages of development. For that, we exposed 

developing flies from OregonR and CantonS to 17°C or 28°C during one 

window of development while keeping them at 23°C for the remaining 

stages. We tested four different treatments at 17°C and at 28°C (see  

 

 

 
Figure 2.3. Windows of sensitivity for abdominal pigmentation 
plasticity in D. melanogaster. Pigmentation traits (Y axis) pattern (left 
plots) and background color (right plots) in females of two D. melanogaster 
genetic backgrounds (OregonR and CantonS) exposed to each of the 
treatments (X axis). The treatment codes and corresponding stages that 
were exposed to either 17°C or 28°C degrees were: T (constant 
temperature), L (late larval development), p (early pupal period) and, P (late 
pupal period). In each graph, dots represent phenotypes of single individual 
females, and the horizontal bar is the mean of those values.  We tested for 
the effect of genotype and treatment and found a significant effect. We then 
tested for the effect of treatment on each genetic background independently 
using the model lm (Trait ~Treatment). Results of the post-hoc multiple 
comparisons using the Tukey honest significance test are indicated in the 
figure with letters (p-value > 0.01).  
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Material and Methods) and found that that all five pigmentation traits were 

affected by genotype and treatment (Table 2.S2) and that the window of  

thermal sensitivity differed between pigmentation traits and between genetic 

backgrounds (Figure 2.3). For instance, pattern in OregonR was affected by 

treatments at all developmental stages tested while in CantonS it seems to 

be determined by larval and early pupal stages, but not by the late pupal 

stage.  On the other hand, the color of the background in OregonR was only 

affected by early pupal treatment and in CantonS did not show significant 

differences in flies reared at 17°C or 28°C. Accordingly, none of the thermal 

treatments seem to affect this trait, with the exception of early pupal 

treatment at 17°C, which showed a very extreme response, with flies being 

lighter than in any other treatment.  

 

Body pigmentation differences between Drosophila populations 

We explored the patterns of variation in pigmentation components in three 

natural populations, from Finland, Austria and Spain that together represent 

a latitudinal cline in Europe (Figure 2.4). For five different genetic 

backgrounds from each of those locations, we analyzed our pigmentation 

components in female flies reared at either 17°C or 28°C. We found 

differences between genetic backgrounds and rearing temperatures for all 

pigmentation components in each of the three locations. We also found that 

most pigmentation components and plasticity therein differed between 

locations, with the exception of color traits (i.e. color of pattern element and 

color of the background) (Figure 2.4A). At 17°C, flies were darker (thoracic 

darkness and pattern) in the population from Finland, followed by the Spain 

and Austria populations. However, at 28°C the situation was reversed, with 

the Finnish population demonstrating lighter components. Analysis of 

abdominal components revealed that darkness did not differ between 

populations, while pattern showed higher values in the populations from 

Finland in each of the two temperatures.   
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Body pigmentation differences between Drosophila species 

We analyzed pigmentation components in five Drosophila species (D. 

simulans, D. malerkotliana, D. repleta, D. mojavensis baja and D. 

mojavensis mojavensis) that show interspecific variation in body coloration 

(see Figure 2.4A for an example). For instance, D. simulans and D. 

malerkotliana are phenotypically more similar to D. melanogaster than the 

other species, with abdomens showing a pattern of dark bands on a light 

background and the thoracic pigmentation is characterized by the presence 

(and darkness) of the trident. D. repleta, D. mojavensis baja and D. 

mojavensis mojavensis, which are closely related species, have heavily 

melanized dorsal thoraxes and patterned abdomens. However, both the 

shape and color of abdominal bands and background in the abdomens, of 

these three species, was is different from the ones found in D. 

melanogaster, D. simulans and D. malerkotliana (Figure 2.5A).  

 Quantification of the pigmentation components in the Drosophila 

species revealed clear differences between species (Figure 2.S1, Table 

2.S3). Similarly to what was found for D. melanogaster pigmentation 

components differ between sexes and temperatures (Table 2.S3). 

Pigmentation components show divergent responses when we looked at 

differences between sexes and rearing temperature (Figure 2.4B). 

Comparison of Cohen’s D coefficient shows that the direction and magnitude 

of the sexual response differs between traits and species (Figure 2.4C). The 

largest differences were found between sexes, were most abdominal traits 

show sexual dimorphism. Pattern and background color in the abdomens of 

D. melanogaster and D. simulans show a much stronger effect of sex than in 

all other species. Interestingly, different traits seem to contribute to the 

phenotypic differences between females and males in the various 

Drosophila species (Figures 2.4B, 2.4C, 2.S1 and 2.S2).  
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Figure 2.4. Variation in pigmentation between D. melanogaster 
populations. A. Differences in pigmentation components between 
populations from the three locations: Finland (F), Austria (A) and Spain (S). 
Significant (p-value < 0.01) differences in traits (columns under “Effect of 
Location”) and in plasticity of the traits between locations (columns under 
“Effect of Location*Temperature) are shown in black. Non-significant effects 
are shown in grey. The models tested were lm (Trait ~ Location) for within-
environment comparisons and lm (Trait ~ Location * Temperature) for 
plasticity comparisons. In all cases, significant differences among groups 
were estimated by post hoc comparisons (Tukey’s honest significant 
differences) and are indicated by “<” and “>” symbols, depending on the 
direction of the difference. B. Means and confidence intervals of darkness 
(Odk; Y axis) and pattern (Pat; X axis) in thoraxes and abdomens of females 
from the three European populations (dot filling represent the location: 
Finland in blue, Austria in green and Spain in orange), reared at two 
temperatures (dot outline represents the temperature: 17°C in and 28°C in 
red). 
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Figure 2.5. Inter specific variation in pigmentation. A. Example of 
abdominal pigmentation in females, RGB (left) and AP plots (below) in 
females of five Drosophila species: D. simulans, D. malerkotliana,  two 
subspecies of D. mojavensis (D. mojavensis baja and D. mojavensis 
mojavensis) and D. repleta. B. The effect size (Cohen’s D coefficient) of sex 
(left panel) and temperature (right panel) on the thoracic and abdominal 
pigmentation traits of the different Drosophila species. Cohen’s D coefficient 
for the effect of sex or temperature is represented by the size of the dots for 
each species and trait. Black and grey dots represent positive and negative 
coefficients, respectively. C. Schematic representation of the thoracic and 
abdominal pigmentation in females and males of Drosophila species. The 
size of the boxes represents the size of the patterning relative to 
the/background and the color is the mean R, G, B value for each sex and 
species. 
 
 

Temperature also affects pigmentation components in the different 

Drosophila species. In the thorax, variation in rearing temperature leads to 

larger differences in overall darkness and range while in the abdomen it is 

the pattern that shows the strongest response to temperature (Figures 2.4B 

and 2.4C).  
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DISCUSSION  

Pigmentation is, as a visually compelling trait that is evolutionary diverse, 

ecologically relevant and developmentally tractable. Insects show a 

fascinating diversity of body colors and this variation is striking at both the 

inter- and intra-specific level. Variation in pigmentation between genotypes, 

populations and species, can be caused by differences in color composition 

and/or color pattern that occur across the entire body and/or in specific body 

regions. These components of body pigmentation can respond in different 

manners to internal and external factors, and consequently have the 

potential to develop and evolve more or less independently.   

 

Decomposing phenotypic variation in Drosophila pigmentation 

The lack of quantitative methods for phenotyping has led to an 

oversimplification of complex phenotypes that consist of different traits that 

can develop and evolve more or less independently. We show that the 

patterns of variation we observe between sexes, species or environments 

are ultimately the outcome of different traits, some related with pattern, such 

as the degree of banding in the abdomens, but also differences in the actual 

colors of these patterns (i.e. the color of the pigment that is deposited in the 

cuticle). By decomposing the pigmentation phenotype into different traits we 

were able to disentangle the extent and direction of the response of those 

components to internal and external cues. Analysis of the variation in 

pigmentation traits showed that i) pigmentation components respond in 

different ways to the same factor (for example, sex or genetic background) 

and ii) that different factors affect a given trait in different ways. For instance, 

abdominal traits in Drosophila were overall more responsive to sexual and 

environmental differences than thoracic traits. 

Correlations between pigmentation components differ between 

genotypes, sexes and environmental conditions. The fact that trait 

associations, such as trade-offs, are dependent on genetic and 

environmental factors, could potentially influence adaptation (e.g. Marquez & 
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Knowles 2007; Manenti et al. 2016). This was previously shown for example, 

in the case of a thermally-driven switch in the association between longevity 

and body size in D. melanogaster (Khazaeli, Vanvoorhies & Curtsinger 

2005). We found that correlations between pigmentation components were 

stronger within abdomens which can be suggestive of a tighter link between 

the developmental networks of traits in this body part. Overall, the divergent 

responses to genetic and environmental factors that we found in the 

pigmentation components and in their associations are suggestive of a 

complex scenario in which the final phenotype is determined by trait-specific 

fine-tuning, eventually allowing them to evolve independently. 

 

Windows of sensitivity  

For the environment to affect development, external environmental cues 

need to be sensed and these signals need to be transmitted to the 

developing tissues where changes in, for example, gene expression will alter 

developmental processes, leading to the production of alternative 

phenotypes from the same genotype. Differences in plasticity between 

populations and/or species can affect any of the steps in this cascade. Here 

we have explored whether one of the ways in which different genetic 

backgrounds show differences in plasticity is by having different periods of 

sensitivity to temperature. Indeed, we see that not only the sensitive period 

varies between genetic backgrounds but also that different pigmentation 

components react to temperature at different time points. For instance, for 

OregonR, all treatments at low temperatures that individuals were exposed 

to, resulted in phenotypes resembling those of individuals that spent all of 

development at 17ºC. On the other hand, in CantonS only treatments during 

early developmental stages had such an effect. 

Because development is organized in internally fixed successive 

stages, that are contingent on previous steps, and dependent on the 

environment in which those occur (Lewontin 2000), these different windows 

of sensitivity to temperature have the potential to explain some of the 
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differences in plasticity found between traits and genotypes. It is yet unclear 

to what extent pigmentation plasticity in flies requires an active sensing of 

temperature or whether it is a more indirect effect. Environmental responses 

of both types have been described in flies and other organisms (see DeWitt 

& Scheiner 2004). A better understanding of the plastic responses should 

involve characterizing the genetic and molecular mechanisms underlying 

variation in plasticity in natural populations. 

 

Clinal variation in D. melanogaster pigmentation  

Our analysis of the pigmentation patterns from populations of a European 

cline (from Finland, Austria and Spain), showed darker pigmentation in the 

most northern population (i.e. Finland). This follows the expectation of the 

thermal melanism hypothesis whereby darker individuals tend to occur in 

areas with lower temperatures and lower solar radiation (Clusella Trullas et 

al. 2007; Clusella-Trullas & Terblanche 2010). However, the differences in 

pigmentation between Austria and Spain populations do not follow this. 

Because the sampling locations of our populations differ also in altitude 

(Spain>Austria>Finland), which is also associated with pigmentation in D. 

melanogaster (Pool & Aquadro 2007), it is possible that the combination of 

both latitude and altitude), with its corresponding ecological conditions, might 

lead to different pigmentation patterns.  

 

Diversification of Drosophila pigmentation 

Attempts to understand the general principles that govern adaptation and 

diversification of species have mainly focused on the genetics underlying 

phenotypic variation. Here we explored this problematic by characterizing 

variation at the phenotypic level between Drosophila species. From the 

species used in this study, D. melanogaster, D. simulans and D. 

malerkotliana belong to the melanogaster group, which originally inhabited 

tropical climates, though they have become cosmopolitan species. In 

contrast, D. mojavensis and D. repleta belong to the repleta group and which 
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inhabits desert climates. We explored whether the same type of responses 

found in D. melanogaster (e.g. sexual differences), are found in other 

Drosophila species and whether traits are affected in a similar way to genetic 

and environmental effects. We observed that the traits respond to sex and 

temperature in a species-specific manner. Altogether, these results suggest 

that different pigmentation traits contribute to the differences found between 

species and between sexes and those are also dependent on the body part. 

Overall, abdominal pigmentation traits show lower degree of sexual 

dimorphism in desert species while the level of plasticity is similar to the 

ones in cosmopolitan species (assessed by the effect size). However, 

thoracic traits in D. mojavensis subspecies seem to be more affected by 

temperature.  

All together, the patterns of variation in pigmentation components 

and their responses to genetic and environmental factors are suggestive of, 

at least some degree, of phenotypic independence between traits which 

might have influenced the evolution and diversity of body coloration in 

Drosophila.  

 

MATERIAL AND METHODS 

Fly stocks  

D. melanogaster genetic backgrounds CantonS and OregonR and 

Drosophila species D. simulans, D. malerkotliana, D. repleta, D. mojavensis 

baja and D. mojavensis mojavensis were obtained from C. Mirth’s lab. D. 

melanogaster lines from populations of Finland, Austria and Spain are part 

of the collections from the DrosEU consortium (www.droseu.net) and were 

obtained from E. Sucena’s lab.  

All stocks were maintained in molasses food (45 gr. molasses, 75gr 

sugar, 70gr cornmeal, 20 gr. Yeast extract, 10 gr. Agar, 1100 ml water and 

25 ml of Niapagin 10%) in incubators at 25ºC, 12:12 light cycles and 65% 

humidity until used in this study. For the experiments, we performed over-

night egg-laying from ~20 females of each stock in vials with ad libitum 
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molasses food. Eggs were then placed at either 17°C or 28°C throughout 

development. We controlled population density by keeping between 20 and 

40 eggs per vial. 

For the experiment of the windows of sensitivity for pigmentation, we 

exposed developing flies to 17°C or 28°C during one window of development 

while kept at 23°C for the remaining stages. We tested four different 

treatments at 17°C and at 28°C: T (flies always kept at constant 

temperature), L (late larval development; staging done by using traqueal and 

the mouth hooks morphology), p (only early pupal period; from white pupa to 

the onset of eye pigmentation), P (only late pupal period; from the onset of 

eye pigmentation until adult eclosion). 

 

Phenotyping pigmentation components 

Adult flies (8-10 days after eclosion) were placed in 2 ml Eppendorfs and 

frozen in liquid nitrogen. The tubes were shaken immediately after 

submersion in liquid nitrogen to remove wings, legs and bristles. Bodies of 

female flies were then mounted on 3% Agarose in Petri dishes, dorsal side 

up, and covered with water to avoid light reflection upon imaging. Images 

containing 10 to 20 flies were collected with a LeicaDMLB2 stereoscope and 

a Nikon E400 camera under controlled imaging conditions of light, contrast, 

and white-balance. Images were later processed with a customize 

Mathematica macro to extract pigmentation measurements. For this 

purpose, two transects were drawn for each fly, one in the thorax and one in 

the abdomen, using body landmarks (as shown in Figure 2.S1A) and 

extracted RGB (Red, Blue, Green) values from each pixel along the 

transects. For abdominal transects, when necessary, another step was 

performed and involved the removal of the pixels corresponding to the 

membranous tissue that occasionally is visible between abdominal 

segments. Using the customized Mathematica macro, RGB values were 

extracted from every pixel along the transect and these were used to define 

each of the five pigmentation components as follows. Overall darkness 
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(Odk) was calculated as the sum of the Euclidean distances of each pixel to 

black divided by the number of pixels. Color of the pattern element (Cpa) is 

the angle between the best-fitted line going through the pixels that 

correspond to the pattern element (trident in the thorax and darker bands in 

the abdomen) in the transect and the grey vector (a constant diagonal in the 

RGB space). Similarly, color of the background (Cbk) was calculated as the 

angle between the best-fitted line that goes through the background pixels in 

the transect and the grey vector. Pixels corresponding to pattern element 

and/or background were defined by dividing all RGB values in the transect 

into two clusters each containing 95% of the light or dark pixels respectively. 

Pattern (Pat) was extracted by calculating the proportion of pixels 

corresponding to the pattern element (thoracic trident and/or darker 

abdominal bands) relative to the transect length, being the number of pixels 

corresponding to the pattern element those above a threshold defined by an 

adjusted median line throughout all pixels. Range (Ran) was calculated as 

the Euclidean distance between the median value for the 20 darkest and the 

20 lightest pixels along the transects. 

 

Statistical analyses  

All statistical analyses were performed with R Statistical Package v 3.1.1 (R 

Development Core Team 2014). To assess whether parametric test could be 

performed for the analysis of data, the underlying assumptions of normality 

and homogeneity of variances among samples were checked by using the 

Shapiro-Wilk test and Bartlett’s test, respectively. Pearson’s correlations 

(confidence α = 0.95) were used to check correlations between traits and 

across temperatures. Linear regression models were used to test for the 

effect of genotype, sex, temperature and interaction terms (model lm (Trait ~ 

Genotype*Sex*Temperature) on each pigmentation trait of the two genetic 

backgrounds of D. melanogaster. A similar analysis was performed for the 

data on the sensitive stages of development, testing for the effects of 

genotype and treatment (model lm (Trait ~ Genotype*Treatment)), and for 
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the comparisons between Drosophila species, testing for the effects of 

species, sex and temperature (model lm (Trait ~ Species 

*Sex*Temperature)). Similarly, for the European populations, we used we 

used linear models (for each body part and pigmentation component), to test 

for the effect of genetic background, location and temperature. The models 

tested were lm (Trait ~ Location) for within-environment comparisons and lm 

(Trait ~ Location*Temperature) for plasticity comparisons. Post hoc multiple 

comparisons to identify differences between genotypes, sexes, temperatures 

and/or species were done using post-hoc Tukey’s honest significant 

differences (Tukey HSD). Cohen’s D coefficient was calculated using the R 

package effsize and Hedges’ correction was applied to control for 

differences in sample sizes. The size of effect of temperature and/or sex on 

each trait was calculated independently for every genotype or species. 
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SUPPLEMENTARY MATERIAL 

 

Figure 2.S1. Variation in abdominal pigmentation traits with genetic 

background, sex and temperature in Drosophila species.  

Figure 2.S2. Variation in thoracic pigmentation traits with genetic 

background, sex and temperature in Drosophila species.  

Table 2.S1. Effect of genotype, sex and temperature on pigmentation 

components in D. melanogaster.  

Table 2.S2. Effect of genotype and thermal treatment on abdominal 

pigmentation components in D. melanogaster. 

Table 2.S3. Effect of species, sex and temperature on pigmentation 

components of five Drosophila species.   
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Figure 2.S1. Variation in abdominal pigmentation traits with genetic 
background, sex and temperature in Drosophila species. Pigmentation 
trait values in females (open circles) and males (closed circles) reared at 
17°C (blue) or 28°C (red) degrees. The bar represents the mean value of all 
individuals per sex and temperature. We tested for the effect of sex and 
temperature on each trait Results of the post-hoc multiple comparisons 
using the Tukey honest significance test (significance 0.95) are indicated in 
the figure with letters.  
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Figure 2.S2. Variation in thoracic pigmentation traits with genetic 
background, sex and temperature in Drosophila species. Pigmentation 
trait values in females (open circles) and males (closed circles) reared at 
17°C (blue) or 28°C (red) degrees. The bar represents the mean value of all 
individuals per sex and temperature. We tested for the effect of sex and 
temperature on each trait Results of the post-hoc multiple comparisons 
using the Tukey honest significance test (significance 0.95) are indicated in 
the figure with letters.  
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Chapter 3 
 

Genetic bases of variation in thermal plasticity 
for body pigmentation in D. melanogaster 
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ABSTRACT 

Pigmentation is a classical example of adaptive evolution that shows great 

inter and intra-specific variation. This variation is the product of the 

combination of pigmentation elements, related with color and/or color 

pattern, that can be independently regulated and inherited and have 

divergent responses to environmental factors. We used a natural D. 

melanogaster population (the DGRP) to document effects of genotype, 

environment and genotype-by-environment in several pigmentation 

components of two body parts. We then performed genome wide association 

studies (GWAS) and unravel the genetic basis of variation in plasticity for 

these pigmentation components. First, we found that different QTLs 

contribute to variation in plasticity of different components (and body parts). 

Second, for any given pigmentation component, there is little overlap 

between loci contributing to variation between and within environments. 

Third, analyses of the identity of the loci underlying plastic responses, 

revealed QTL with diverse roles in the environmental regulation of 

pigmentation development. We then used different approaches to validate 

selected QTLs. Our results shed light onto the nature of genetic basis of 

inter-genotype variation for plasticity of pigmentation components. These are 

the loci that can provide the raw material for the evolution of pigmentation 

plasticity. 
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INTRODUCTION  

Body pigmentation is a compelling example of morphological diversity and 

adaptive evolution, including textbook cases such as mimicry (e.g. Nadeau 

2016) and/or industrial melanism (Cook & Saccheri 2013). Body coloration 

also provided examples of genetic dissection of intra and inter-species 

differences (Gompel et al. 2005; Mundy 2005; Hoekstra 2006). Pigmentation 

can influence thermoregulation, UV protection, predator avoidance (e.g. 

mimicry, aposematism, camouflage), mate choice (e.g. Llopart, Elwyn & 

Coyne 2002). In insects is also closely associated to various other traits 

including behavior and immunity (see Wittkopp & Beldade 2009). Studies in 

different organisms have provided insights into what shapes the patterns of 

variation in pigmentation found between species, populations, including 

seasonal and clinal variation, as well as differences between sexes (e.g. 

Honěk & Honek 1993; Scharf, Juanes & Rountree 2000; Yom-Tov & Geffen 

2006).  

Pigmentation diversity includes differences in actual color as well as 

in how color is distributed in space. It involves genes responsible for the 

biochemical synthesis of pigments, as well as genes that regulate those to 

determine where and when pigments are synthesized (see Hoekstra 2006; 

Wittkopp & Beldade 2009). Different pigmentation elements might differ 

between body parts and even regions within a given body part and have the 

potential to develop and evolve independently (e.g. butterfly eyespots 

coloration and/or different portions of vertebrate coat color; Beldade & 

Brakefield 2003; Linnen et al. 2013). Studies of body pigmentation in 

different species have provided many important lessons about the reciprocal 

interactions between evolutionary and developmental processes that shape 

variation as well as about developmental constraints (Gibert, Moreteau & 

David 2000) and modularity (Beldade & Brakefield 2003).  

 Studies of pigmentation have also provided important lessons about 

the genetic basis of intra-specific variation and inter-specific divergence, 

including examples of co-option (e.g. Shirai et al. 2012), cis-regulatory 
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evolution (e.g. Rogers et al. 2014) and of evolution in coding sequence at 

hotspot loci (Papa, Martin & Reed 2008). External factors, such as 

temperature and nutrition, have been shown to interact with the genotype 

and influence body pigmentation in different species (e.g. McGraw et al. 

2002; Hansson 2004; Rosenblum 2005), including many insects (e.g. 

Brakefield et al. 1996; Bernardo, Pedata & Viggiani 2007; Ethier et al. 2015). 

Such plasticity in body pigmentation can help organisms cope with 

environmental heterogeneity (see West-Eberhard 2003; Ghalambor et al. 

2007). Plasticity in pigmentation and in other traits can be considered as a 

heritable trait that is variable in populations and thus, can evolve (Scheiner 

1993). While we know about some of the genes and hormones that underlie 

plastic responses (Nijhout 1998; Beldade, Mateus & Keller 2011), we know 

relatively little about the naturally-segregating alleles responsible for 

variation in plasticity.  

 Drosophila is a particularly good system to study the genetic basis of 

pigmentation components and of plasticity therein. In addition to well-

characterized patterns of variation between species, populations and sexes, 

there is knowledge about the ecological relevance (Rajpurohit, Parkash & 

Ramniwas 2008; Parkash, Rajpurohit & Ramniwas 2008) and the genetic 

and developmental underpinnings (Pool & Aquadro 2007; Shakhmantsir, 

Massad & Kennell 2014; Massey & Wittkopp 2016). These patterns of 

variation are the product of different pigmentation components that can show 

diverse responses to genetic and environmental factors  (Chapter 2). We 

have knowledge about the enzymes that biosynthesize pigments (effector 

genes) and about the transcription factors that regulate the spatial and 

temporal expression of those enzymes (patterning genes).  We also know 

about the genetic basis of intra- and inter-species differences in 

pigmentation being assigned to patterning and effectors genes (e.g. 

Wittkopp, Carroll & Kopp 2003; Massey & Wittkopp 2016). Furthermore, 

there is insight about the molecular mechanisms regulating thermal plasticity 

in pigmentation (Gibert, Peronnet & Schlötterer 2007; Gibert, Mouchel-Vielh 
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& Peronnet 2017) and body-part specific genetic-by-environment effects. For 

instance, pigmentation of different abdominal tergites in D. melanogaster 

show differences in thermal reaction norms (David, Capy & Gauthier 1990).  

Genetic studies have identified major effect loci associated with 

variation in abdominal pigmentation (Dembeck et al. 2015). Much less 

attention has been paid to the genetic basis of variation for other aspects of 

body pigmentation components and for plasticity therein. In fact, we know 

relatively little about the identity of the loci contributing to naturally-

segregating variation in pigmentation plasticity, including their role in the 

development of different pigmentation components, and whether they are 

the same loci that contribute to intra-individual variation in pigmentation in 

one fixed environment. D. melanogaster is well suited to tackle these 

questions given the availability of tools that enable the genetic dissection of 

variation in plasticity and of methods to quantify variation in different 

pigmentation components (Gibert et al. 2007; Saleh Ziabari & Shingleton 

2017). 

 Here we used a panel of D. melanogaster genotypes representing 

naturally-segregating alleles (Mackay et al. 2012; Huang et al. 2014) to 

characterize genetic variation in thermal plasticity for five pigmentation 

components. The target traits relate to color and color pattern of two body 

parts (thoracic and abdominal). We used the ca.  196 isogenic sequenced 

genotypes that make up the DGRP mapping panel to document effects of 

genotype, developmental temperature, and genotype-by-temperature 

interactions on the different pigmentation components and to identify loci 

contributing to variation therein. We then used different approaches to 

validate the role of selected plasticity QTLs.  
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Figure 3.1. Pigmentation components. A. Thorax and abdomen of female adult fly 
showing the thoracic and abdominal transects and the corresponding pigmentation 
plots for the abdominal transect. Red, Blue, Green (RGB) plot shows all R,G,B 
values per pixel in the abdominal transect and the antero-posterior (AP) plot shows 
the distance from each pixel along the AP axis of the transect to the white vector 
(RGB 0,0,0). B-D. Pigmentation components extracted from DGRP adult females. 
From every pixel in the image, we extracted the RGB (red, blue, green) values to 
calculate the different pigmentation traits.  B. Overall darkness (Odk) was calculated 
as the sum of the Euclidean distances of each pixel to black (RGB coordinates 
(0,0,0)) divided by the number of pixels. C. Color of the pattern element (Cpa) and 
color of the background (Cbk) were extracted by calculating the angle between the 
best-fitted line going through the pixels that correspond to the band (or the 
background) in our transect and the grey vector. D. Pattern (Pat) was extracted by 
calculating the proportion of pixels corresponding to the pattern element (thoracic 
trident or darker abdominal bands) relative to the transect’s length. E. Schematic 
representation of each of the pigmentation components.  
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RESULTS 

We assessed variation in pigmentation between genotypes and 

environments, by analyzing five pigmentation properties of abdomens and 

thoraxes of adult females from ~196 DGRP genetic backgrounds reared at 

either 17°C or 28°C. The pigmentation components analyzed were overall 

darkness (Odk), pattern (Pat), color of the background (Cbk) and color of the 

pattern element (Cpa; which corresponds to the trident in the thorax and the 

longitudinal darker bands in the abdomen) (Figure 3.1). A fifth component 

we call Range (Ran) was also quantified and all analyses for this trait are 

available in Supplementary Material (Figure 3.S1 and 3.S2). A detailed 

description on how the pigmentation traits were quantified can be found in 

the Materials and Methods section (see also Chapter 2). 

 

Genetic and environmental effects on different pigmentation 

components  

We documented effects of genotype (DGRP lines) and environment 

(Temperature) on all pigmentation traits (Figures 3.2A, 3.S3 and 3.S4; Table 

3.1) and studied correlations between the different traits (Figure 3.2B). 

Correlations between traits were similar between temperatures, with all traits 

positively correlated in the abdomen but not in the thorax (Figure 3.2B). 

Overall, abdominal pigmentation was more affected by temperature (larger 

difference in mean value between 17°C and at 28°C) than thoracic 

pigmentation (Table 3.1). The most thermally responsive traits were 

abdominal pattern and thoracic and abdominal darkness, while the least 

affected ones were both color traits (Cbk and Cpa), particularly abdominal 

Cbk (Figure 3.3B, Table 3.1).  Analyses of the broad sense heritability 

estimates for each pigmentation component and at each temperature (Table 

3.1), revealed that estimates were overall, higher for measurements at 17°C 

than at 28°C and higher for measurements of abdominal components than 

thoracic, with the exception of Odk. 
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To explore whether there were several strategies to be darker, we looked at 

the relationship between different pigmentation components and overall 

darkness (Odk). The analyses of the other components (Pat, Cbk in Cpa) in 

genotypes with different darkness revealed that genotypes become more (or 

less) dark by altering different traits. For instance, some genotypes are very 

dark because of an increase in Pat (e.g. genotype highlighted in yellow in 

Figure 3.2B), while other genotypes are darker because either the color of 

the background (Cbk) or the color of pattern element (Cpa) is formed by 

darker pigment (e.g. genotypes highlighted in green in Figure 3.2B).  

 
Genotype-by-environment effects on different pigmentation 

components 

We explored the extent and properties of thermal plasticity of pigmentation 

components by analyzing the reaction norms (RN) of the different traits in 

the two body parts (Figure 3.3A). For each genotype and trait, we calculated 

the slope of the regression of each pigmentation trait across temperatures 

(see Material and Methods). From each reaction norm, we then extracted 

two properties of the thermal plasticity: the absolute value of the slope as a 

measurement of thermal sensitivity, describing only the magnitude of the 

response to temperature, and the raw value of the slope as a measurement 

which describes also the direction of that response. 

We documented genetic variation for the intercept and slope of the 

thermal reaction norms of our pigmentation traits in each body part (Figure 

3.3A). For some components, most DGRP genotypes were plastic (i.e. 81% 

of the thoracic Odk RNs with slope significantly different from zero) while for 

others, few genotypes were plastic (i.e. 19% of the RNs for the color thoracic 

trident) (Figure 3.3A). In most cases, thoraxes and abdomens of flies reared 

at low temperature (17°C) showed darker pigmentation components. 

However, we also found genotypes in which plasticity was in the opposite 

direction (Figure 3.3A). Differences in thermal plasticity were also evident 

between body parts. For instance, 80% of the DGRP genotypes were plastic 
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in relation to abdominal pattern while only 34% were plastic in relation to 

thoracic pattern (Figure 3.3A).  
 

 

 

 
Figure 3.2. Variation in pigmentation components between genotypes and 
temperatures. A. Means and confidence intervals of overall darkness (Odk) in 
thoraxes (squares) and abdomens (circles) of the DGRP lines (X axis) reared at 
17°C (blue) and 28°C (red). DGRP lines are ranked by the mean thoracic darkness 
at 17°C. Horizontal bars represent the mean Odk in thoraxes (dashed lines) and 
abdomens (solid line) of all DGRP lines at each temperature. B. Heat map of 
Pearson’s correlation coefficients between pigmentation components at each 
temperature. Correlations at 17°C are shown in cells in the lower left off-diagonal 
and correlations at 28°C are given in the upper right off-diagonal. Positive 
correlations are denoted in blue and negative correlations in red. Non-significant 
correlations (p-value > 0.01) are indicated with an ‘X’. C. Means values of the 
pigmentation components in thoraxes and abdomens of DGRP lines reared at 17°C 
and at 28°C. Horizontal bars represent the mean value of all DGRP lines at each 
temperature. 
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The correlations between properties of reaction norms for the 

different pigmentation components in the two body parts revealed few 

significant correlations within a given body part, and even fewer across body 

parts (Figure 3.3B).  

 

 

Figure 3.3. Variation in plasticity for pigmentation components. A. Reaction 
norms of each pigmentation component (Y axis) across temperatures (X axis) 
plotted as the regression fit for the model lm (Trait ~ Temperature) for each DGRP 
line. Colored lines are significantly different from zero (plastic) (positive slopes in 
orange, negative slopes in brown) while grey lines are non-significant (p-
value>0.05). The percentage of plastic DGRP lines and among those, the 
percentage of lines with plasticity in the opposite direction, is shown in each plot. B. 
Heat map of Pearson’s correlation coefficients between plasticity of pigmentation 
components. Correlations for the raw slopes of reaction norms are shown in cells in 
the lower left off-diagonal and correlations for the absolute slopes of reaction norms 
are given in the upper right off-diagonal. Positive correlations are denoted in blue 
and negative relationships in red. Non-significant correlations (p-value > 0.01) are 
indicated with an ‘X’. 
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Genetic basis of variation in plasticity for pigmentation components  

We explored the genetic basis of variation in thermal plasticity for our 

pigmentation components by running a GWAS using as quantitative trait the 

raw and absolute values of the slopes of the reaction norms (Figure 3.S6A). 

This was done for each pigmentation trait and body part independently.  We 

did not find significant associations of Wolbachia infection nor inversion 

karyotype on any of our pigmentation components. We identified candidate 

QTLs significantly associated (p<10e-5) with variation in plasticity that were 

specific to each property of the reaction norm (raw and absolute slope), 

pigmentation component (Odk, Pat, Cbk, Cpa; Figures 3.4 and 3.5), and 

body part (thorax and abdomen) as well as QTLs associated with variation in 

plasticity that were common among traits and/or body parts. Table 3.S3 

provides details about each of the significant SNPs/InDels (p<10e-5), 

including which genes they are putatively associated to as well as which 

gene regions they fall within (e.g. UTR, intronic, coding). Significant QTLs 

affecting variation in pigmentation plasticity corresponded to genes assigned 

to diverse functions (Table 3.S3, Figure 3.S6B), including genes well-

documented effects on pigmentation biosynthesis, such as ebony (e) and 

yellow (y) and GO classes representing neuronal development and behavior 

(Figure 3.S6B). 

Most significant QTLs where unique to trait (Odk, Pat, Cbk and Cpa), 

body part (thorax and abdomen) and plasticity property (raw and absolute 

slopes of reaction norms) (Figure 3.6A, Table 3.S3). The largest extent of 

overlap in identity of significant QTLs was found for plasticity between 

pigmentation traits more tightly correlated (Figures 3.3 and 3.6) and between 

the raw and absolute slopes of the reaction norms for several pigmentation 

components (Figures 3.4 and 3.5). Allelic variants influencing plasticity could 

do so by either buffering or increasing environmental responsiveness. To 

explore this, we looked at the effects and allele frequencies of our candidate 

plasticity QTLs in the DGRP and found that, in most cases, alleles that 

associated with increased plasticity tended to be at lower frequencies in the 
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population (assessed by the difference in mean value between the slope of 

all DGRP lines with the minor allele and the slope of all DGRP with the major 

allele at the candidate SNPs/InDels) (Figure 3.6C). 

In order to assess to what extent the loci that carry allelic variation for 

pigmentation plasticity are the same as those contributing to within-

environment pigmentation variation, we performed GWAS analyses on the 

pigmentation traits measured at each temperature (17°C and 28°C) (Figures 

3.S7 and 3.S8). There was little overlap between QTLs contributing to 

variation in plasticity and QTLs contributing to within-environment variation 

for most traits, relatively higher when comparing thoracic vs. abdominal traits 

(Figure 3.S9). Analyses of the within-environment GWAS also revealed 

mostly “private” candidate QTLs; i.e. QTLs that were trait-specific, body-part-

specific and environment-specific variation (Figures 3.S7 and 3.S8). There 

were few common QTLs, contributing to variation in multiple traits (Figure 

3.6B) or body parts or temperatures (Figures 3.S7, 3.S8). Among the 

candidate QTLs affecting within-environment variation in pigmentation we 

found, once again, both genes previously implicated in pigmentation 

development (e.g. bab1, y and e) and genes not been previously associated 

with pigmentation (Table 3.S4). We did not find a phylogenetic signal on the 

genetic relatedness among DGRP lines (estimated by Blomberg’s K and 

Pagel’s λ coefficients) for any of our traits except for thoracic traits Odk and 

Pat. These traits also showed irregular Manhattan Plots with many highly 

significantly associated SNPs in chromosomal arm 3R (Figures 3.S7 and 

3.S8), likely explained by a cluster of 16 DGRP lines harboring a particular 

haplotype with at least some, SNPs significantly associated to variation in 

these two traits (Figure 3.S12B).  

  



 

96 

3 

 

 

 
Figure 3.4. GWAS for variation in plasticity of overall darkness (Odk) and 
pattern (Pat). Manhattan plots and Venn diagrams corresponding to the GWAS 
performed for variation in plasticity of overall darkness (Odk) and Pattern (Pat). In 
the Manhattan plots, the significance level for each SNP along the chromosomal 
arms is shown as the log10 p-value. Horizontal lines are p-value < 10e-5 (blue) and 
p-value < 10e-8 (red). Some of the gene names associated to SNPs/InDels with a p-
value < 10e-5 are shown in the plots. For each trait, upper and lower panels 
correspond to GWAS for thoracic and abdominal traits respectively, and left and 
right panels correspond to GWAS for raw and absolute slopes of reaction 
respectively. All GWAS were done testing the model lm (Trait Slope ~ Allele + 
(1|Wolb|DGRP)). Venn diagrams show overlaps in the identity of the SNPs/InDels 
with a p-value < 10e-5  (in black) and the putatively associated genes (in orange). 
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Figure 3.5. GWAS for variation in plasticity of color of the background (Cbk) 
and color of the pattern element (Cpa). Manhattan plots and Venn diagrams 
corresponding to the GWAS performed for variation in plasticity of color of the 
background (Cbk) and color of the pattern element (Cpa). In the Manhattan plots, 
the significance level for each SNP along the chromosomal arms is shown as the 
log10 p-value. Horizontal lines are p-value < 10e-5 (blue) and p-value < 10e-8 (red). 
Some of the gene names associated to SNPs/InDels with a p-value < 10e-5 are 
shown in the plots. For each trait, upper and lower panels correspond to GWAS for 
thoracic and abdominal traits respectively, and left and right panels correspond to 
GWAS for raw and absolute slopes of reaction respectively. All GWAS were done 
testing the model lm (Trait Slope ~ Allele + (1|Wolb|DGRP)). In the Venn diagrams 
show overlaps in the identity of the SNPs/InDels with a p-value < 10e-5  (in black) 
and the putatively associated genes (in orange). 
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Validation of selected GWAS hits 

We selected a total of 18 SNPs/genes from our GWAS (based on their 

location, GWAS P-value, and putative SNP/gene function) for validation 

using two methods: a gene-centered method using available null mutants, or 

a SNP-centered method we are calling Mendelian Randomization (MR). 

While the former tests the hypothesis that abolishing protein production has 

an effect on phenotype, the later tests the hypothesis that individuals with 

one versus the other allele at the candidate SNP differ for the corresponding 

quantitative trait regardless of the genetic background. The MR approach 

involved, for each of the candidate SNPs, randomizing the genetic 

background between 10 same-allele genotypes and comparing the 

quantitative trait between flies carrying the minor versus the major allele (see 

Material and Methods).   

 Using these methods we confirmed the role of 12 out of 18 targeted 

SNPs/genes associated with either variation in pigmentation plasticity and/or 

with variation in pigmentation within-environment (Table 3.2). Using MR, we 

validated (i.e. significant difference in trait between major and minor allele 

when background is randomized) the role of 3 SNPs in thorax pigmentation 

plasticity (Figure 3.7A, Table 3.2) -- SNP-1 (in gene sala) for pattern, SNP-2 

(in gene gce) for trident color and SNP-3 (in gene CG14759) for background 

color -- and 3 other SNPs in abdomen pigmentation plasticity (Figure 3.9B) -- 

SNP-4 (in gene PVRAP) in overall darkness, SNP-5 (in gene CG9109) in 

band color, SNP-6 (in gene Cerk) in background color (Figure 3.7B, Table 

3.2). We did not validate the role in plasticity of 2 other SNPs:  SNP-7 (in 

gene qua) and SNP-8 (in gene CG12093) (Figure 3.S4F, Table 3.2). Using 

available mutants, we confirmed (i.e. significant difference in trait between 

mutant and wild-type genotypes) the role of ebony (e) in plasticity of thoracic 

background color (Figure 3.S10A) but failed to validate the role of gene gce 

in plasticity of thoracic pattern (Figure 3.S10G). We attempted to perform 

validations for plasticity candidate genes yellow (y), fruitless (fru) and  
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Figure 3.6. Overlaps between QTLs for within and between-environment 
variation in pigmentation components. A. Venn diagrams showing overlaps in the 
identity of the SNPs/InDels with a p-value < 10e-5  (in black) and the putatively 
associated genes (in orange) for our different GWAS for variation in plasticity of 
pigmentation components. B. Venn diagrams showing overlaps in the identity of the 
SNPs/InDels with a p-value < 10e-5  (in black) and the putatively associated genes 
(in orange) for our different GWAS for within-environment variation in pigmentation 
components. C. For each pigmentation component, property of the reaction norms 
(raw and absolute (abs)) and body part (thorax and abdomen), the table shows the 
total number of significant candidate SNPs/InDels and out of those, the number of 
SNPs in which the mean slope of the reaction norms for DGRP lines with the minor 
allele was higher than the mean slope of the reaction norm for DGRP lines with the 
major allele (column named “Number minor>major”).  
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phantom (phm) but did not succeed due to high mortality of these genetic 

backgrounds at 28°C. Notably, for all our candidate SNPs, alleles that 

increase plasticity were always at lower frequency in the DGRP (Figure 

3.S11). We also analyzed potential cross-trait effects of our candidate 

SNPs/genes and found that, in some cases, QTLs for plasticity in any given 

trait, also affected plasticity in other pigmentation components (Table 3.3). 

 We also validated 6 SNPs/genes implicated in within-environment 

pigmentation variation. Via MR, we confirmed the role of SNP-10 (in gene  
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Dop1R1) in thoracic pattern at 28°C and the role SNP-11 (in gene e) in 

overall darkness at 28°C (Figure 3.7C) and in thorax Ran at 17°C (Figure 

3.S10C). We failed to validate the role of SNP-9 (in gene Gr22d) in thoracic 

pattern element at 17°C (Figure 3.S10H). Using mutants, we validated the 

role of genes ebony (e) in thoracic pattern at 17°C (Figure 3.S10B), bric a 

brac 1 (bab1) in abdominal background color at 28°C (Figure 3.S10D), and 

yellow (y) in abdominal darkness at 17°C (Figure 3.S10E) and failed to 

validate the role of gce in color of thoracic pattern element at 17°C. 

 

 
 
Figure 3.7. Functional validations of GWAS results. A-C. Validation via 
Mendelian Randomization (MR). In all the plots the two populations fixed for the 
major allele are shown in black and the two populations for the minor allele are 
shown in magenta. A. Validations for plasticity QTLs in thoracic pigmentation traits 
via MR. From left to right: individual phenotypic values and reaction norms for the 
traits: pattern, color of pattern element and color of background, in females from 
different MR populations corresponding to SNP-1 (in gene sala), SNP-2 (in gene 
gce) and SNP-3 (in gene CG14759). B. Validations for plasticity QTLs in abdominal 
pigmentation traits via MR. From left to right: individual phenotypic values and 
reaction norms for the traits: darkness, color of pattern element and color of 
background, in females from different MR populations corresponding to SNP-4 (in 
gene PVRAP), SNP-5 (in gene CG9109) and SNP-6 (in gene Cerk). C. Validations 
for within-environment QTLs. From left to right: individual phenotypic values for 
thoracic pattern at 28°C and abdominal pattern at 28°C in females from different MR 
populations corresponding to SNP-10 and SNP-11, respectively.  For the validations 
of plasticity SNPs/genes (panels A and B), we tested the model lm (Trait Slope ~ 
Genotype*Temperature) and for the validations of within-environment SNPs/genes 
(panel C) we tested the model lm (Trait ~ Genotype). Results from the models are 
shown above each plot. In all cases, significant differences among groups were 
estimated by post hoc comparisons (Tukey’s honest significant differences) and are 
indicated by different letters in each plot. D. Schematic representation of the 
Mendelian Randomization approach.  For each candidate SNP, we first selected 10 
DGRP lines with the minor allele and 10 with the major allele, not fixed for any other 
significant SNPs. These lines were used to generate four populations, two fixed for 
the major allele and two for the minor allele. Each population was established by 
crossing 8 virgin females from each of 5 of the same-allele lines to 8 males of the 
other 5 lines. The reciprocal crosses were used to set two independent populations 
per allele. These populations were allowed to cross for eight generations to 
randomize genetic backgrounds.  
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Beyond our pigmentation traits in the DGRPs 

Widespread use of DGRPs, with multiple phenotypes measured 

independently for the same set of genotypes, allowed us to look at 

correlations between our pigmentation traits and a number of other DGRP 

traits, including pigmentation of last abdominal tergites (Dembeck et al. 

2015) and a number of other traits fitness-related traits potentially associated 

to pigmentation (i.e. radiation resistance (Vaisnav et al. 2014), chill coma 

recovery (Mackay et al. 2012) and immune-defense traits (tolerance to 

infection with Providencia rettgeri bacteria (Howick & Lazzaro 2017) and 

resistance to infection with Metarhizium anisopliae fungi or with 

Pseudomonas aeruginosa bacteria (Wang, Lu & St. Leger 2017)).  

We found significant (positive) correlations between abdominal 

pigmentation in tergites T5 and T6 and most of our abdominal pigmentation 

traits, but not thorax pigmentation traits (Figure 3.S12A), and we also found 

overlap between the candidate QTLs for variation in pigmentation in tergites 

5 and 6 and at 25°C and some of our candidate QTLs for various 

pigmentation traits on the two body parts (14 SNPs and 34 genes). We also 

found that only chill coma recovery and resistance to Pseudomonas 

aeruginosa bacteria were significantly (negatively) correlated with our traits 

abdominal background color and overall thoracic darkness at 17°C, 

respectively (Figure 3.S12A). 

 
DISCUSSION  

Body pigmentation plays important roles in the survival and reproduction of 

many organisms (e.g. Llopart, Elwyn & Coyne 2002; Steiner, Weber & 

Hoekstra 2007; Ahlgren et al. 2013). In addition to genetic effects (e.g. 

Nachman, Hoekstra & D’Agostino 2003; Greenwood et al. 2011), 

pigmentation is also controlled by environmental factors, such as 

temperature (e.g. Solensky & Larkin 2009) or nutrition (e.g. Ethier et al. 

2015), which have been shown to influence body color in different species, 

including Drosophila (David et al. 1990; Shakhmantsir et al. 2014). This 
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plasticity is heritable and adaptive, and, thus, can evolve. Intra-specific 

variation and inter-specific divergence in body pigmentation can be due to 

differences in color composition and/or color pattern that occur across the 

entire body and/or in specific body regions (Mundy 2005). Each of these 

components of body pigmentation can respond to internal and external 

factors more or less independently. 

 

Partitioning variation in body pigmentation: genetic, environmental and 

genetic-by-environmental effects on pigmentation components  

We have documented variation in different pigmentation components of two 

body parts and variation for thermal plasticity in those components in a 

population of D. melanogaster representing naturally segregating genetic 

variation. The DGRP showed substantial variation for the different 

pigmentation components with contributions of genetic (i.e. different DGRP 

lines) and environmental (i.e. temperature) effects having trait and body part-

specific properties.  

Analyses of trait-associations revealed few significant correlations 

between pigmentation components at any given environment, as well as 

between plasticity properties of the different pigmentation components. 

However, we did find that some traits were more tightly correlated; namely 

color traits (Cpa and Cbk) showed more similar responses to genetic and 

environmental inputs, and so did different pigmentation components within a 

given body part. The few significant correlations we found between 

pigmentation components and plasticity therein are suggestive of a potential 

for independent evolution and development of traits. A more detailed 

analysis of the differences between genotypes revealed that pigmentation 

components can contribute in different ways to the overall darkness. Flies 

can be overall darker because of darker color of background and/or of 

pattern element (trident in thorax or bands in abdomen) or because of larger 

area occupied by the darker pattern element.  



 

104 

3 

T
a
b

le
 3

.2
. 

Id
e
n

ti
ty

 o
f 

c
a
n

d
id

a
te

 S
N

P
s
/g

e
n

e
s
 p

u
rs

u
e
d

 f
o

r 
fu

n
c
ti

o
n

a
l 

v
a
li
d

a
ti

o
n

. 
In

fo
rm

a
ti
o

n
 f

o
r 

e
a
c
h
 o

f 
th

e
 S

N
P

s
/g

e
n
e
s
 

p
u
rs

u
e
d

 f
o
r 

fu
n
c
ti
o
n

a
l 

v
a
lid

a
ti
o

n
s
 i

n
c
lu

d
in

g
 d

e
ta

ils
 o

f 
th

e
 g

e
n

o
m

ic
 p

o
s
it
io

n
, 

th
e
 p

u
ta

ti
v
e
ly

 a
ff
e
c
te

d
 g

e
n

e
 a

n
d

 g
e

n
e

 r
e
g
io

n
, 

a
n
d

 
th

e
 S

N
P

 i
d

e
n
ti
ty

 a
n

d
 a

lle
le

 f
re

q
u
e

n
c
ie

s
 i
n
 t

h
e
 D

G
R

P
. 
 T

a
b

le
  

 

M
R

S
N

P
_1

sa
la

ye
s

Pa
t

pl
as
ti
ci
ty

Th
or
ax

2L
:1
14
86
32
3

T 
[1
40
] -

 A
 [5
4]

m
is
se
ns
e 

 

M
R

S
N

P
_2

gc
e

ye
s

C
pa

pl
as
ti
ci
ty

Th
or
ax

X:
15
31
10
88

T 
[1
87
] -

 A
 [1
3]

m
is
se
ns
e 

 

M
R

S
N

P
_3

CG
14

75
9

ye
s

C
bk

pl
as
ti
ci
ty

Th
or
ax

2R
:8
26
03
91

C 
[1
51
] -

 A
 [
45
]

m
is
se
ns
e 

 

M
R

S
N

P
_4

PV
R

A
P

ye
s

O
dk

pl
as
ti
ci
ty

A
bd
o
m
en

3L
:6
02
91
81

A
 [1
84
] 
- G

 [
14
]

do
w
n
st
re
am

  

M
R

S
N

P
_5

CG
91

09
ye
s

C
pa

pl
as
ti
ci
ty

A
bd
o
m
en

2L
:6
02
47
48

G
 [1
85
] 
- T

 [1
4]

up
st
re
am

M
R

S
N

P
_6

Ce
rk

ye
s

C
bk

pl
as
ti
ci
ty

A
bd
o
m
en

3R
:5
36
17
01

C
 [1
78
] -

 G
 [2
0]

m
is
se
ns
e 

 

M
R

S
N

P
_7

qu
a

n.
s 

C
bk

pl
as
ti
ci
ty

Th
or
ax

2L
:1
74
88
87
5

T 
[1
86
] -

 C
 [
16
]

m
is
se
ns
e 

 

M
R

S
N

P
_8

CG
12

09
3

n.
s 

C
bk

pl
as
ti
ci
ty

A
bd
o
m
en

3L
:2
77
35
39

A
 [
11
4]

 - 
C
 [8
2]

m
is
se
ns
e 

 

M
R

S
N

P
_9

G
r2

2d
n.
s 

C
pa

17
C

Th
or
ax

2L
:1
79
03
36

C
 [1
90
] -

 G
 [1
2]

m
is
se
ns
e 

 

M
R

S
N

P
_1

0
D

op
1R

1
ye
s

Pa
t

28
C

Th
or
ax

3R
:1
41
86
49
7

C
 [1
90
] -

 G
 [1
2]

in
tr
on
ic

M
R

S
N

P
_1

1
e

ye
s

O
dk

28
C

Th
or
ax

3R
:2
12
40
07
1

C
 [1
68
] -

 G
 [2
7]

up
st
re
am

m
ut
an
t

eb
on

y
e

ye
s

C
bk

pl
as
ti
ci
ty

Th
or
ax

m
ut
an
t

eb
on

y
e

ye
s

C
bk

17
C

Th
or
ax

m
ut
an
t

br
ic

-a
-b

ra
c

ba
b1

ye
s

C
bk

28
C

A
bd
o
m
en

m
ut
an
t

ye
llo

w
y

ye
s

O
dk

17
C

A
bd
o
m
en

m
ut
an
t

ye
llo

w
y

n.
a 
(m
or
ta
lit
y 
at

 2
8C
)

O
dk

pl
as
ti
ci
ty

A
bd
o
m
en

m
ut
an
t

gc
e

gc
e

n.
s

C
pa

pl
as
ti
ci
ty

Th
or
ax

m
ut
an
t

gc
e

gc
e

n.
s

C
pa

17
C

Th
or
ax

m
ut
an
t

fr
u

fr
ui

tl
es

s
n.
a 
(m
or
ta
lit
y 
at

 2
8C
)

R
an

pl
as
ti
ci
ty

A
bd
o
m
en

m
ut
an
t

ph
m

ph
an

to
m

n.
a 
(m
or
ta
lit
y 
at

 2
8C
)

C
pa

pl
as
ti
ci
ty

A
bd
o
m
en

A
ff
ec

te
d     

R
eg

io
n     

se
ve
ra
l (
se
e 
Ta
bl
es

 S
3 
an
d 
S4
)

V
al

id
at

io
n     

        
        
    

M
et

ho
d

SN
P/

G
en

e     
co

de
G

en
e     

A
ff

ec
te

d
Po

si
ti
ve

    v
al

id
at

io
n

Ta
rg

et
    t
ra

it
    

G
W

A
S     

cl
as

s
B
od

y     
pa

rt
G
en

om
ic

    p
os

it
io

n     
A
lle

le
    [
fr

eq
ue

nc
y]



 

105 

3 

We also documented variation in plasticity (genotype-by-

environment) in different pigmentation components. All pigmentation 

components showed differences in properties of the reaction norms (raw and 

absolute values of the reaction norms) across DGRP genotypes (and 

heritabilities) different from zero.  

 

Genetic basis of thermal plasticity in body pigmentation  

Mutational screenings and/or mapping studies have provided considerable 

insight on the genetic underpinnings of inter- and intra-specific variation in 

pigmentation in Drosophila (Jeong, Rokas & Carroll 2006; Pool & Aquadro 

2007; Rogers et al. 2014), including the effects disrupting canonical 

pigmentation genes on pigmentation plasticity (Gibert et al. 2007, 2017). 

Much less attention has been paid to unraveling the genetic basis of 

variation pigmentation plasticity in natural populations.  

We were able to identify loci associated with variation in plasticity for 

several pigmentation components. Genes involved in plastic responses 

could potentially mediate environmental regulation of phenotypes by acting 

at the level of sensing (i.e. genes perceiving external cues), modulating (i.e. 

genes interpreting and/or transmitting external signals to developing organs) 

and/or executing (i.e. genes involved in pigmentation development, including 

patterning and effector genes). We report some polymorphisms that 

contribute to natural variation in plasticity of different pigmentation 

components, affecting canonical pigmentation genes (i.e. effector genes 

such as e and y and and/or patterning genes such as bab1), but many more 

genes not previously associated to pigmentation development. Gene-

ontology enrichment analyses showed an overrepresentation of genes for 

neuronal development while some of our validated QTLs for plasticity are 

players of hormonal signaling, such as the juvenile hormone receptor gce. 

We also described a role in thermal pigmentation plasticity for genes for 

which there was very little prior information (i.e. genes sala, CG14759 or 

CG9109).   
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We have characterized a genetic architecture for pigmentation 

plasticity that is, to a large extent, different between pigmentation 

components, between body parts (thorax and abdomen) and even, between 

properties of the plastic response (raw and absolute slopes of the reaction 

norm). Moreover, these loci are not necessarily the same that underlie 

variation in pigmentation components at any given environment.  

 

Evolution of thermal plasticity in body pigmentation 

Pigmentation plasticity is quite common in nature, including seasonal 

differences in body color associated to seasonally-variable selective 

environments. Such plasticity can be triggered by different environmental 

factors (e.g. temperature, nutrition and photoperiod) that can differentially 

affect different pigmentation traits; color and color pattern of different body 

parts.  

Pigmentation has been associated with increased fitness under 

different ecological pressures, such as predation, ultraviolet radiation, 

thermal stress, and pathogen resistance (Slagsvold, Dale & Andrzej 1995; 

Hill & McGraw 2006; Clusella-Trullas et al. 2008; Protas & Patel 2008). For 

instance, patterns of local adaption in Drosophila, where temperature and 

humidity worked as selective forces, suggest that a darker body can absorb 

solar radiation more efficiently, improve thermoregulation, and makes cuticle 

thicker, decreasing water loss under low humidity (Rajpurohit et al. 2008; 

Parkash et al. 2008). Despite this, we did not find evidence of a correlation 

between our pigmentation traits and radiation resistance, chill coma 

recovery, or immune-related responses. However, it is noteworthy that those 

phenotypes were measured in different environments than ours and are 

likely environmentally-sensitive. 

There has been extensive debate of whether the genetic basis for 

plasticity was determined by the same or different loci than the ones 

controlling mean values at a given environment (see Via 1993). Our results 

shed light onto this discussion; most of the QTLs we identified for 
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pigmentation plasticity were not QTLs for pigmentation variation either 17°C 

or at 28°C. This suggests that the genetic basis of trait plasticity is, to a large 

extent, independent of genetic basis of the trait itself.  

We found that allelic variants associated with increased plasticity (for 

any of the pigmentation components) were often at lower frequencies in the 

DGRPs, relative to the alleles associated with reduced plasticity. These 

allelic variants, likely to be different from the ones unraveled by mutational 

screenings (ref sleep in DGRP and Mackay SSE), have survived natural 

selection and are putative targets for the evolution of plasticity on this and 

possibly, other populations. Altogether the little degree of overlap between 

loci contributing to variation in plasticity for different pigmentation 

components, body parts and for between and within-environment QTLs, 

suggests a strong potential for independent development and evolution of 

traits under conditions of environmental heterogeneity. Both phenotypic and 

genetic data variation revealed a modular organization for pigmentation with 

body-part-specific and trait-specific responses to genetic and environmental 

factors and shed light onto the genetic basis by which external and internal 

information is integrated into functional, developmental and/or evolutionary. 

 

MATERIALS AND METHODS  

Fly stocks and rearing conditions 

Data for the GWAS was collected from adult female flies of the Drosophila 

Genetic Reference Panel (DGRP) obtained from Bloomington Stock Center. 

The DGRP is a set of fully sequenced inbred lines collected from a single 

population in Raleigh, NC, USA (Mackay et al. 2012; Huang et al. 2014). 

The number and the details of the lines included in the GWAS for each trait 

can be found in Table 3.S2. Mutant stocks for the functional validations 

were: 1658 for ebony, 3039 for yellow, 37298 for bric-a-brac, 684 for fruitless 

and 2208 for phantom, all from Bloomington. Mutant line for gce was 

obtained from Marek Jindra’s lab. Control genetic backgrounds were w1118 

(stock 5905, from Bloomington) and Canton-S (obtained from CK Mirth lab). 
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Data for the European cline was obtained from adult females flies of five 

isogenic lines from Finland, Austria and Spain. These lines are part of the 

collections from the DrosEU consortium (www.droseu.net) and were 

obtained from Elio Sucena’s lab. 

 

Experimental rearing of flies 

Fly stocks were maintained in molasses food (45 gr. molasses, 75gr sugar, 

70gr cornmeal, 20 gr. Yeast extract, 10 gr. Agar, 1100 ml water and 25 ml of 

Niapagin 10%) in incubators at 25ºC, 12:12 light cycles and 65% humidity 

until used in this study. For the experiments, we performed over-night egg 

lays from ~20 females of each stock in vials with ad libitum molasses food. 

Eggs were then placed at either 17°C or 28°C throughout development. We 

controlled population density by keeping between 20 and 40 eggs per vial. 

We quantified thorax and abdomen size of 5 to 20 females per line, per 

temperature and replicate. For 130 DGRP lines, we ran two replicates and 

for a subset of 33 lines we ran three replicates. The total number of flies 

used varied between lines due to mortality of some stocks at one of the 

temperatures. For some specimens, we could only quantify size of one body 

part but not of the other, for instance if part of the individual was not properly 

positioned in the image or if part of the body was damaged. Details on the 

stocks used and the number of flies used per stock and temperature can be 

found in Tables 3.S1 and 3.S2. Rearing conditions for the validations of 

candidate QTLs were similar to those used for the DGRP lines.  

 

Phenotyping body pigmentation components  

Adult female flies (8-10 days after eclosion) were placed in 2ml Eppendorf 

and killed in liquid nitrogen followed by shaking the tubes to remove wings, 

legs and bristles. Bodies were then mounted on 3% Agarose in Petri dishes, 

dorsal side up, and covered with water to avoid light reflection upon imaging. 

Images containing 10 to 20 flies were collected with a LeicaDMLB2 

stereoscope and a Nikon E400 camera under controlled imaging conditions 
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of light, contrast, and white-balance. Images were later processed with a 

customize Mathematica macro to extract pigmentation measurements. For 

this purpose, we drew two transects per fly, one in the thorax and one in the 

abdomen, using body landmarks (as shown in Figure 3.S1A) and extracted 

RGB (Red, Blue, Green) values from each pixel along the transects. Those 

RGB values than were later used to define five pigmentation components 

(see also Chapter 2). Overall darkness (Odk) was calculated as the sum of 

the Euclidean distances of each pixel to black divided by the number of 

pixels. Color of the pattern element (Cpa) is the angle between the best-

fitted line going through the pixels that correspond to the pattern element 

(trident in the thorax and darker bands in the abdomen) in the transect and 

the grey vector (a constant diagonal in the RGB space). Similarly, color of 

the background (Cbk) was calculated as the angle between the best-fitted 

line that goes through the background pixels in the transect and the grey 

vector. Pixels corresponding to pattern element and/or background were 

defined by diving all RGB values in the transect into two clusters each 

containing 95% of the light or dark pixels respectively. Pattern (Pat) was 

extracted by calculating the proportion of pixels corresponding to the pattern 

element (thoracic trident and/or darker abdominal bands) relative to the 

transect’ length, being the number of pixels corresponding to the pattern 

element those above a threshold defined by an adjusted median line 

throughout all pixels. Range (Ran) was calculated as the Euclidean distance 

between the median value for the 20 darkest and the 20 lightest pixels in the 

transects. 

 

Statistical analyses of G and E effects on body pigmentation 

All statistical analyses were performed with R Statistical Package v 3.1.1 (R 

Development Core Team 2017). We checked assumptions of parametric test 

by using Shapiro test for normality and Bartlett test of homocedasticity. For 

each body part and pigmentation component, we used linear models to test 

for the effect of genotype (model lm (Trait ~ DGRP genotype)) or the 
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interaction between genotype and temperature (model lm (Trait ~ DGRP 

genotype * Temperature)). Reaction norms for each DGRP line were 

calculated by using the regression model lm (Trait ~Temperature). From that 

model we extracted two properties of the reaction norms per DGRP line and 

body part: the absolute value of the slope as a measurement of thermal 

sensitivity, describing only the magnitude of the response to temperature, 

and the raw value of the slope as a measurement which describes also the 

direction of that response. Linear mixed models were calculated using lme4 

R package.  

 Broad sense heritability for pigmentation components at each 

temperature was estimated as H2 = σ2
A/(σ2

A + σ2
W) where σ2

A and σ2
W are 

the among-line and within-line variance components, respectively. 

Heritability of plasticity for each pigmentation components was calculated, as 

proposed in Scheider and Lyman (1989), as H2 = σ2
G*E/σ2

TOTAL where σ2
G*E 

and σ2
TOTAL are the variance associated with the genotype by environment 

interaction and total variance components, respectively. Variance 

components were extracted using varcomp R package. 

 For the functional validations of within-environment SNPs and genes 

we tested the model lm (Trait ~ Allele) and lm (Trait ~ Genotype), 

respectively. For the validations of plasticity SNPs and genes we tested the 

model we tested the model lm (Trait ~ Genotype*Temperature) and lm (Trait 

~ Allele*Temperature), respectively. In all cases, significant differences 

among groups were estimated by post hoc comparisons (Tukey’s honest 

significant differences).  

 

Genome-Wide Association Study  

For each pigmentation component (Odk, Pat, Cbk, Cba and Ran) and body 

part (thorax and abdomen), we performed four independent genome wide 

analyses (GWAS): two for thermal plasticity (raw and absolute values of the 

slopes of the reaction norms used as target quantitative trait), and two for 

within-environment variation (pigmentation at 17°C and 28°C as quantitative 
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traits). The GWAS for variation in thermal plasticity were testing the model 

lm (Slope ~ allele + (1|Wolb|DGRP)), Wolb being the Wolbachia status of the 

DGRP lines. The GWAS analyses for within-environment variation (at either 

17°C or 28°C) were done by testing the model lm (Trait ~ allele + 

(1|Wolb|DGRP)). All the GWAS were performed by using SNPs where we 

had information for at least ten lines per allele. We did not find an effect of 

Wolbachia in any of our GWAS analysis.  

 We also tested for the effect of the chromosomal inversions that were 

present in at least 8 DGRP lines, namely inversions In_3R_K, In_3R_P, 

In_2L_t, In_2R_NS and In_3R_Mo, on each of our traits by using the models 

lm (Mean Trait ~ inversion) for within-environment (at 17°C and 28°C) 

variation in size or lm (Slope ~ inversion) for size plasticity, in each body 

part.  

 Genetic distance matrix for the DGRPs was obtained from 

http://dgrp2.gnets.ncsu.edu/data.html and was used to perform a cluster 

hierarchical dendogram using ape and phylobase R packages. We 

estimated the phylogenetic signal and statistical significance for each of our 

traits using Blomberg’s K (Blomberg, Garland & Ives 2003) and Pagel’s λ 

(Pagel 1999) metrics with the phylosig function in the phytools  R package 

(Revell 2012). For each of the GWAS we annotated the SNPs with a p-value 

< 10e-5 using the FlyBase annotation (release 6; ref). Gene-ontology 

enrichment analysis was done with SNPs of p-value < 10e-5 using the 

publicly available GOrilla Software (ref 2x Eden). 

 

Functional validations  

SNPs with p-value < 10e-5 considered in relation to Manhattan plots (clear 

peaks prioritized), putative effect (missense and regulatory variants 

prioritized over inter-genic variants), associated genes (annotated and 

known function prioritized) were selected for functional validations. Two 

methods for validation were used: null mutants and Mendelian 

randomization. Validations by null mutants were done by comparing the 



 

113 

3 

phenotype in the homozygous or heterozygous mutant stock with its 

respective genetic background. Validations by Mendelian randomization 

(MR) were done by selecting for each candidate SNP, 10 DGRP lines with 

the minor allele and 10 with the major allele, not fixed for any other 

significant SNPs. These lines were used to generate four populations, two 

fixed for the major allele and two for the minor allele. Each population was 

established by crossing 8 virgin females from each of 5 of the same-allele 

lines to 8 males of the other 5 lines. The reciprocal crosses were used to set 

two independent populations per allele. These populations were allowed to 

cross for eight generations to randomize genetic backgrounds. We 

confirmed by Sanger sequencing that those populations had our candidate 

allele fixed.  
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SUPPLEMENTARY MATERIAL 

 

Figure 3.S1. Variation in Range between genotypes and temperatures. 

Figure 3.S2. GWAS for variation in range.  

Figure 3.S3. Phenotypic variation in darkness (Odk) and pattern (Pat).  

Figure 3.S4. Phenotypic variation in color of the background (Cbk) and 

color of the pattern element (Cpa).  

Figure 3.S5. Differences in pigmentation components between genotypes.  

Figure 3.S6. Slope of the reaction norm as a quantitate trait. 

Figure 3.S7. GWAS for in overall darkness (Odk) and pattern (Pat).  

Figure 3.S8. GWAS for color of the background (Cbk) and color of the 

pattern element (Cpa).  

Figure 3.S9. Overlaps between QTLs for within and between-environment 

variation in pigmentation components.  

Figure 3.S10. Functional validations of GWAS results 

Figure 3.S11. Effects of candidate SNPs in the reaction norms of the DGRP 

Figure 3.S12. Variation in plasticity for pigmentation components. 

 
 
The following documents are included in the digital supplement that 

accompanies this thesis. 

 

Table 3.S1.  Phenotypic variation in pigmentation components. 

Raw data for measurements of Odk, Pat, Cbk, Cpa and Ran in thoraxes and 

abdomens of flies from DGRP lines reared at 17°C and at 28°C. 
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Table 3.S2. Summary of phenotypic variation in pigmentation components 

and plasticity of those.  

Summary data from measurements of pigmentation components in thoraxes and 

abdomens of DGRP lines. Number of phenotyped flies (N), mean and standard 

deviation (SD) per temperature, DGRP line and body part. 

Table 3.S3.  GWAS for variation in plasticity of pigmentation components.  

Nominally significant SNPs (p-value threshold of 10e-5) from GWAS for the raw 

slope of the reaction norms (Value=Raw) and absolute slope of the reaction norms 

(Value=Absolute) per body part and pigmentation component. The genomic position 

(from Genome Releases v.5 and v.6), type of SNP/InDel, potential impact, 

associated gene name (Flybase Gene ID) and putative consequence are also 

shown. 

Table 3.S4.  GWAS for variation in pigmentation components.  

Nominally significant SNPs (p-value threshold of 10e-5) from GWAS for variation at 

17°C and at 28°C per body part and pigmentation component. The genomic position 

(from Genome Releases v.5 and v.6), type of SNP/InDel, potential impact, 

associated gene name (Flybase Gene ID) and putative consequence are also 

shown.  

Table 3.S5.  Functional validations of GWAS candidates.  

Raw data for measurements of Odk, Pat, Cbk, Cpa and Ran in thoraxes or 

abdomens of flies reared at 17°C and at 28°C from the different genetic 

backgrounds corresponding to each functional validation. 

 



 

121 

3 

 

Figure 3.S1. Variation in Range between genotypes and temperatures. A. 
Range (Ran) was calculated as the Euclidean distance between the median value 
for the 20

th
 darkest and the 20

th
 lightest pixels in the transect. Antero-posterior (AP) 

plot shows the distance from each pixel along the AP axis of the transect to the 
white vector (RGB 0,0,0) highlighting the maximum and minimum values used to 
extract Ran. B. Reaction norms for Ran (Y axis) across temperatures (X axis) 
plotted as the regression fit for the model lm (Ran ~ Temperature) for each DGRP 
line. Colored lines are significantly different from zero (plastic) (positive slopes in 
orange, negative slopes in brown) while grey lines are non-significant (p-
value>0.05). C. Means and confidence intervals of Ran in thoraxes (squares) and 
abdomens (circles) of the DGRP lines (X axis) reared at 17°C (blue) and 28°C (red). 
DGRP lines are ranked by the mean thoracic darkness at 17°C. Horizontal bars 
represent the mean darkness in thoraxes (dashed line) and abdomens (solid line) for 
all DGRP lines at each temperature. 
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Figure 3.S2. GWAS for variation in range. Manhattan plots and Venn diagrams 
corresponding to the eight GWAS performed for variation in range (Ran). The 
significance level for each SNP along the chromosomal arms is shown as the log10 

p-value. Horizontal lines are p-value < 10e-5 (blue) and p-value < 10e-8 (red). Some 
of the gene names associated to SNPs/InDels with a p-value < 10e-5 are shown in 
the plots. In the Venn diagrams show overlaps in the identity of the SNPs/InDels 
with a p-value < 10e-5  (in black) and the putatively associated genes (in orange).  
A. Manhattan plots and Venn diagrams corresponding for the four GWAS performed 
for variation in plasticity for Ran in thoraxes (upper panels) and abdomens (lower 
panels) and for either the raw (left panels) or the absolute (right panels) slopes of 
the reaction norms. For each body part and plasticity property, the GWAS was done 
testing the model lm (Slope Ran ~ Allele + (1|Wolb|DGRP)). B. Manhattan plots and 
Venn diagrams corresponding for the four GWAS performed for variation Ran in 
thoraxes (upper panels) and abdomens (lower panels) at 17°C (left panels) or 28°C 
(right panels). For each body part and temperature, the GWAS was done testing the 
model lm (Ran ~ Allele + (1|Wolb|DGRP)). 
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Figure 3.S3. Phenotypic variation in darkness (Odk) and pattern (Pat). Means 
and confidence intervals (Y axis) for Odk and Pat in thoraxes and abdomens of 
females from the DGRP lines (X axis) reared at 17°C (blue) and 28°C (red). DGRP 
lines are ranked by their mean size at 17°C. Dashed horizontal bar represents the 
mean value for all DGRP lines at a given temperature. 
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Figure 3.S4. Phenotypic variation in color of the background (Cbk) and color 
of the pattern element (Cpa). Means and confidence intervals (Y axis) for Cbk and 
Cpa in thoraxes and abdomens of females from the DGRP lines (X axis) reared at 
17°C (blue) and 28°C (red). DGRP lines are ranked by their mean size at 17°C. 
Dashed horizontal bar represents the mean value for all DGRP lines at a given 
temperature.  
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Figure 3.S5. Differences in pigmentation components between genotypes. 
Mean values of the pigmentation components in thoraxes and abdomens of DGRP 
lines reared at 17°C. Three genotypes with different trait contributions are 
highlighted. 
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Figure 3.S6. Slope of the reaction norm as a quantitate trait. A. Histograms for 
the raw value of the slope of the reaction norms for each of our pigmentation traits 
(Odk, Pat, Cbk, Cpa and Ran) in the DGRP lines, calculated as the slope of the 
regression lm (Trait ~ Temperature) per line. B.  Results from the gene-ontology 
analysis performed with software GOrilla, using all the SNPs/InDels with a p-value < 
10e-5 associated with variation in plasticity. Results from the GWAS for both raw 
and absolute slopes of the reaction norms of all pigmentation components were 
pooled for this analysis.  
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Figure 3.S7. GWAS for in overall darkness (Odk) and pattern (Pat). Manhattan 
plots and Venn diagrams corresponding to the GWAS performed for variation in 
overall darkness (Odk) and Pattern (Pat). In the Manhattan plots, the significance 
level for each SNP along the chromosomal arms is shown as the log10 p-value. 
Horizontal lines are p-value < 10e-5 (blue) and p-value < 10e-8 (red). Some of the 
gene names associated to SNPs/InDels with a p-value < 10e-5 are shown in the 
plots. For each trait, upper and lower panels correspond to GWAS for thoracic and 
abdominal traits respectively, and left and right panels correspond to GWAS for 
17°C and 28°C respectively. All GWAS were done testing the model lm (Trait ~ 
Allele + (1|Wolb|DGRP)). Venn diagrams show overlaps in the identity of the 
SNPs/InDels with a p-value < 10e-5  (in black) and the putatively associated genes 
(in orange). 
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Figure 3.S8. GWAS for color of the background (Cbk) and color of the pattern 
element (Cpa). Manhattan plots and Venn diagrams corresponding to the GWAS 
performed for variation in color of the background (Cbk) and color of the pattern 
element (Cpa). In the Manhattan plots, the significance level for each SNP along the 
chromosomal arms is shown as the log10 p-value. Horizontal lines are p-value < 10e-
5 (blue) and p-value < 10e-8 (red). Some of the gene names associated to 
SNPs/InDels with a p-value < 10e-5 are shown in the plots. For each trait, upper and 
lower panels correspond to GWAS for thoracic and abdominal traits respectively, 
and left and right panels correspond to GWAS for 17°C and 28°C respectively. All 
GWAS were done testing the model lm (Trait ~ Allele + (1|Wolb|DGRP)). Venn 
diagrams show overlaps in the identity of the SNPs/InDels with a p-value < 10e-5  
(in black) and the putatively associated genes (in orange). 
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Figure 3.S9. Overlaps between QTLs for within and between-environment 
variation in pigmentation components. Venn diagrams showing overlaps in the 
identity of the SNPs/InDels with a p-value < 10e-5  (in black) and the putatively 
associated genes (in orange) for our different GWAS for variation in plasticity and for 
within-environment variation of all pigmentation components.  
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Figure 3.S10. Functional validations of GWAS results. A. Reaction norms for 
color of the thoracic pattern element in ebony homozygote mutants (e/e; magenta 
filled circles, solid line), ebony heterozygote (e/+; magenta empty circles, dashed 
line) and wild-type Canton-S (CS; black). B. Thorax pattern at 17°C in ebony 
homozygote mutants (e/e; magenta filled circles), ebony heterozygote (e/+; magenta 
empty circles) and wild-type Canton-S (CS; black). C. Thorax range at 17°C in 
females from MR populations corresponding to SNP-11 (genomic position 
3R:21236915). D. Color of abdomen background in bric-a-brac heterozygote 
mutants (bab1/+; magenta) and wild-type Canton-S (CS; black). E.  Abdominal 
darkness in flies reared at 17°C from yellow homozygote mutants (y/y; magenta) 
and wild-type Canton-S (CS; black). F. Negative validations for QTLs associated 
with variation in plasticity. From left to right: individual phenotypic values and 
reaction norms for the traits: color of thorax background and color of abdomen 
background, in females from different MR populations corresponding to SNP-7 
(genomic position 2L:17488875) and and SNP-8 (genomic position 3L:2773539), 
respectively. G-I: Negative validations for QTLs associated with within-environment 
variation. G.  Phenotypic values and reaction norms for the color of thoracic pattern 
element in gce homozygote mutants (gce/gce; magenta filled circles, solid line), gce 
heterozygote mutants (gce/+; magenta empty circles, dashed line) and wild-type 
Canton-S (CS; black). H. Individual phenotypic values for the color of thoracic 
pattern element at 17°C in females from different MR populations corresponding to 
SNP-9. I. Phenotypic values for the color of thoracic pattern element in gce 
homozygote mutants (gce/gce; magenta filled circles, solid line), gce heterozygote 
mutants (gce/+; magenta empty circles, dashed line) and wild-type Canton-S (CS; 
black).   
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Figure 3.S11. Effects of candidate SNPs in the reaction norms of the DGRP. 
For each candidate SNP/gene, plots show the slope of the reaction norm for 
correspondent trait in the DGRP lines with the major (black) and the minor 
(magenta). Details about the SNP position and identity can be found in Table 3.2 
and Tables 3.S3 and 3.S4. The result of the model lm (Slope ~ 
Genotype*Temperature) is shown above the plot. The significant differences among 
groups were estimated by post hoc comparisons (Tukey’s honest significant 
differences) and are indicated by different letters in each plot. 
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Figure S12. Variation in plasticity for pigmentation components. A. Heat map of 
Pearson’s correlation coefficients between pigmentation components at each 
temperature and traits quantified in the DGRPs by others – this includes traits 
previously associated with pigmentation differences (radiation resistance, chill coma 
recovery and immune related traits) as well as quantifications from abdominal 
pigmentation (in tergites T5 and T6) from Dembeck et al (Dembeck et al. 2015). 
Positive correlations are denoted in blue and negative relationships in red. Non-
significant correlations (p-value > 0.01) are indicated with an ‘X’.  B. Cluster 
analysis of the genetic relatedness among DGRP lines represented as an unrooted 
tree. Continuous variation in Odk at 28°C (upper panel) and Pat at 17°C (lower 
panel) is mapped on the branches based on the mean trait values of each DGRP 
line. The clade containing DGRP lines 819, 352, 712, 59, 324, 28, 437, 555, 810, 
374, 239, 714, 861, 908, 707 and 820 is encircled; these lines have relatively high 
values of Odk and Pat at 17°C. 
 

 
 



 

133 

4 

 

 

 

 

 

 

 

 

 

Chapter 4 
 

Genetic basis of inter-genotype variation in 
environmentally-sensitive development: body 

size and body size plasticity in D. melanogaster 
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ABSTRACT 

Body size is a quantitative trait closely related to fitness that is under the 

control of both genetic and environmental factors. In insects, it is well known 

to be affected by the temperature at which development occurs. 

Developmental plasticity for this and other traits is heritable and under 

selection, but little is known about the genetic basis for variation in plasticity, 

which provides the raw material for its evolution. We quantified genetic 

variation for body size and body size plasticity in Drosophila melanogaster 

by measuring thoraxes and abdomens of females from a panel representing 

naturally segregating allelic variants, the DGRP. We found variation between 

genotypes for the size of both body parts, and also for the levels and 

direction of thermal plasticity therein. We also found few significant 

correlations between our traits, as well as with other fitness-associated traits 

measured for the same genotypes in other studies. We then performed 

genome wide association studies (GWAS) to unravel the genetic basis of 

variation in body size plasticity. We found that different QTLs contribute to 

variation in: 1) size plasticity in the thorax versus abdomen, 2) size versus 

size plasticity, 3) level and the direction of the plastic response. We used 

different approaches to validate selected QTLs and explore pleiotropic 

effects of the plasticity candidates. Our data sheds light onto the nature of 

the inter-individual variation in size plasticity, necessary for the evolution of 

plasticity under heterogeneous environments.  
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INTRODUCTION 

Body size can have a great impact on individual performance (Peters 1986; 

Kingsolver & Huey 2008), as well as on species’ extinction rate (Ripple et al. 

2017). Diversity in body size is shaped by the reciprocal interactions 

between the developmental processes that regulate individual growth, and 

the evolutionary forces that determine which phenotypes increase in 

frequency across generations (see Smith & Lyons 2013). Studies in different 

animal models have provided insight about the molecular mechanisms for 

proper regulation of body size and body proportions during development 

(e.g. Twombly & Tisch 2000; Glazier 2008; Gokhale & Shingleton 2015; 

Nagashima, Ishiura & Suo 2017), and about the selection agents that shape 

the evolution of body size. The latter includes predators (Lafferty & Kuris 

2002; Barnes et al. 2010), mates (e.g. Head, Kozak & Boughman 2013) and 

thermal regimes (Gibert & DeLong 2014; Mitchell et al. 2017). Body size is 

controlled by both genetic and environmental factors (D’Amico, Davidowitz & 

Nijhout 2001; Gadau, Page & Werren 2002; Nijhout 2003; Mirth & Shingleton 

2012) and varies greatly within and between populations (Peters 1986; 

Woodward et al. 2005).  

 Body size is plastic in relation to different external factors, such as 

nutrition and temperature, and is a prime example of the environmental 

regulation of development, or developmental plasticity. Plasticity can provide 

the means by which organisms cope with environmental heterogeneity and 

thus, it can have important implications for population persistence. Thermal 

plasticity in body size has been described for different species of insects 

(see Harrison, Woods & Roberts 2012). Presumably advantageous for 

thermal-regulation, the development under colder temperatures results in 

larger bodies (Angilletta Jr et al. 2002; Kingsolver & Huey 2008). Thermal 

plasticity can be described in the form of thermal reaction norms (Schlichting 

& Pigliucci 1998) whose properties might vary between genotypes (Newman 

1994; Lardies 2008). The genes underlying variation in plasticity (e.g. those 

affecting properties of reaction norms) can provide the raw material for the 
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evolution of plasticity. Little is known about what these genetic variants are 

and what functions they perform (e.g. perception of external environment, 

conveying information about that to developing organs, or effector genes 

expressed in plastic organs). It is also unclear to what extent the same loci 

contribute to thermal plasticity in size of different body parts, and whether 

the loci contributing to variation for size plasticity are the same that 

contribute to size variation within environments. 

 Studies in D. melanogaster have provided much insight about the 

evolution and development of body size and body size plasticity (Partridge et 

al. 1994; French, Feast & Partridge 1998; Robinson & Partridge 2001; 

Bochdanovits & de Jong 2003). The regulation of body size and body 

proportions involves the coordinated action of different endocrine systems 

(Oldham & Hafen 2003; Colombani et al. 2005; McBrayer et al. 2007; Mirth 

et al. 2014). Differences between populations, including latitudinal clines and 

seasonal differences, and among individuals within a population, are due to 

effects of genes, environment, as well as to genotype-by-environment 

interactions (French et al. 1998; Gockel et al. 2002; De Jong & Bochdanovits 

2003; Mendes & Mirth 2016). We have knowledge on the genetic basis of 

adaptation and of natural variation for many adaptive traits (e.g. Orr & Irving 

1997; Takahashi & Ting 2004; Pool & Aquadro 2007). More recently, widely-

accessible mapping panels (e.g. DGRP and DSPR) allow characterization of 

correlations between different traits and their genetic basis (King, Macdonald 

& Long 2012; Mackay et al. 2012; Huang et al. 2014). This has been done 

for many traits (e.g. Mackay et al. 2012; Huang et al. 2014; Ivanov et al. 

2015; Wang, Lu & St. Leger 2017), including size (Vonesch et al. 2016), 

typically under a single environment. Therefore, we still have little knowledge 

about the genetic basis under different environments as well as genetic 

basis of plasticity. These series of genotypes can be reared under different 

conditions to characterize reaction norms and ask about the genes that 

harbor allelic variation for their properties.  
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 Here, we used a panel of isogenic lines representing naturally 

segregating alleles from one natural population, the DGRP, to characterize 

genetic variation for thermal plasticity in thorax and abdomen size, and to 

identify loci contributing to variation in the slope of thermal reaction norms. 

We document correlations between body size and body size plasticity, as 

well as correlations between these and other traits investigated in the same 

lines in other studies. We also ask about the extent of overlap between 

QTLs for size and for size plasticity, and between QTLs for size plasticity of 

the different body parts. We then use different approaches to validate the 

role of selected QTLs in body size at different temperatures.  

 
RESULTS 

We measured thorax and abdomen size in adult females from different 

genotypes reared at two different temperatures. We documented effects of 

genotype, environment and genotype-by-environment interactions on body 

size (Figure 4.1), and explored correlations between body parts and 

between temperatures (Figure 4.2). A GWAS then identified DNA sequence 

polymorphisms associated with variation in body size plasticity (Figure 4.3). 

Ensuing functional analyses of candidate QTLs validated and clarified their 

role in body size variation at different temperatures (Figure 4.4).  

 

Between and within genotype variation for body size and body size 

plasticity 

To assess body size variation and the contribution of genetic and 

environmental factors, we quantified length of abdomens and thoraxes 

(Figure 4.1A, Figure 4.S1A) of adult females from ~196 DGRP genetic 

backgrounds reared at either 17°C or 28°C (Table 4.S1 and Table 4.S2). We 

found significant differences between genotypes (DGRP) and developmental 

environments (rearing temperature), as well as significant genotype-by-

environment interaction effects (thermal plasticity) for both thorax and 

abdomen sizes (Figure 4.1A, 4.S1C). We also found appreciable differences  
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between individuals of (presumably) the same genotype and same rearing 

temperature; the coefficients of variation (CV), a measure of relative 

variation that accounts for the fact that variance increases with the mean, 

were, in average, lower for thorax (i.e. CV=6.25 at 17°C and CV=6.8 at 

28°C) than for abdomen size (i.e. CV=7.1 at 17°C and CV=7.7 at 28°C). 

Broad-sense heritabilities calculated based on variance components (Table 

4.S3) were of the same order but, to some extent, lower for thorax relative to 

abdomen size, lower for 17°C relative to 28°C, and lower for plasticity 

(between-environment variation) relative to within-environment variation.  

 To explore how the sizes of the body parts are related to each other 

and whether temperature influences their association, we investigated the 

correlations between different traits (Figure 4.2). First, we estimated 

correlations between body parts measured at the same temperature and 

found significant positive correlations between thorax and abdomen size 

(Figure 4.2A), both considering the mean for each DGRP line (Pearson 

correlation) and considering all individuals measured, controlling for 

genotype (partial Pearson correlation). Second, we investigated correlations 

between the extent of inter-individual variation, measured as the coefficient 

of variation (CV), across body parts and temperatures. We found thorax and 

abdomen size CV to be positively correlated for measurements at 28°C, but  

 

Figure 4.1. Phenotypic variation in size and size plasticity. Phenotypic variation 
for thorax size is shown in the upper panels for abdomen size in the lower panels. A. 
Means and confidence intervals (Y axis) for size in the DGRP lines (X axis) reared at 
17°C (blue) and 28°C (red). DGRP lines are ranked by their mean size at 17°C. 
Dashed horizontal bar represents the mean value for all DGRP lines at a given 
temperature. Mean values (µ) and broad sense heritability estimates (H

2
)
 
were: µ = 

0.59 mm; H
2 

= 0.34 (thorax at 17°C), µ = 0.55 mm; H
2 

= 0.36 (thorax at 28°C), µ = 
1.11 mm; H

2  
= 0.46 (abdomen at 17°C) and µ = 1.05 mm; H

2 
= 0.52 (abdomen at 

28°C). B. Reaction norms for size (Y axis) across temperatures (X axis) plotted as 
the regression fit for the model lm (Size ~ Temperature) for each DGRP line. 
Colored lines are significantly different from zero (positive slopes in orange, negative 
slopes in brown) while grey lines are non-significant (p-value>0.05). Broad sense 
heritability estimates, H

2
, were: 0.33 (thorax plasticity) and 0.49 (abdomen 

plasticity). C. Histograms for the raw value of the slope of the regression lm (Size ~ 
Temperature) in the DGRP lines. Mean value for the raw slope of all DGRP lines is 
indicated with a green arrowhead. 
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not 17°C (Figure 4.2B). Within temperatures, we found that the CV was 

negatively correlated with mean size for the thorax (both at 17°C and 28°C), 

but not abdomen (Figure 4.2B). Finally, we estimated correlations across 

temperatures and found a significant positive correlation for thorax but not 

for abdomen size (Figure 4.2B). 

 

 

Figure 4.2. Phenotypic co-variation in size and size plasticity. A. Thoracic (X 
axis) and abdominal (Y axis) mean size per DGRP line and estimated for Pearson’s 
correlation coefficient at 17°C (blue) and at 28°C (red). Partial Pearson correlation 
coefficient was r= 0.34 (p-value = 1.02e-06) for 17°C and r=0.33 (p-value < 2e-16) 
for 28°C. B. Heat map of Pearson’s correlation coefficients between our traits: mean 
size and coefficient of variation (CV) per temperature and body part and plasticity 
(raw and absolute slopes of the reactions norms) per body part. Positive correlations 
are denoted in blue and negative correlations in red. Non-significant correlations (p-
value > 0.01) are indicated with an ‘X’. 
 

Thermal reaction norms for body size    

We studied the extent and properties of thermal plasticity for body size in the 

DGRP lines by analyzing thermal reaction norms (Figure 4.1B). We 

calculated the slope of the regression for size across temperatures for each 

body part and DGRP line and found genetic variation for both the intercept 

and slope of the reaction norms (Figure 4.1B, Table 4.S2). Taking into 

account the reaction norms obtained for 191 DGRP lines (those for which we 

could obtain sufficient individuals at both temperatures), we identified plastic 

and non-plastic genotypes; slope significantly different from zero (p-
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value<0.05) for 55% for the thorax and 57% for the abdomen, with most of 

the plastic genotypes having smaller sizes for flies reared at higher 

temperature. However, we also found genotypes with plasticity in the 

opposite direction (i.e. smaller flies at lower temperature), corresponding to a 

positive significant slope for the thermal reaction norms: 8% for the thorax 

and 22 % for the abdomen. Note that there was not necessarily a match in 

thermal plasticity for the two body parts: genotypes could be plastic for only 

one body part and also plastic in different directions for the two body parts. 

(Figure 4.1B).  

 From each reaction norm, we extracted two properties of the thermal 

plasticity in body size: the absolute value of the slope, as a measurement of 

thermal sensitivity, describing only the magnitude of the response to 

temperature, and the raw value of the slope as a measurement which 

describes also the direction of that response (Figure 4.1C, Figure 4.S1D). 

We then estimated correlations between plasticity traits and a number of 

other traits (Figure 4.2B). For thorax but not abdomen size, we found that 

genotypes with higher levels of inter-individual variation (for same 

temperature and same genotype) had reaction norm slopes that were more 

negative. This was reflected in a correlation between CV that was negative 

for the raw values of the slope and positive for the absolute values. Finally, 

analysis of the genotypes individually showed that lines more plastic for one 

body part were not necessarily more plastic for the other body part (Figure 

4.S1B). When considering all the DGRP lines together, we saw a significant 

positive correlation between the raw value of the slope of the thorax and 

abdomen reaction norms (Pearson correlation r=0.36, p-value<0.0001). 

 

Genetic basis of variation in body size plasticity 

We used a Genome-Wide Association Study (GWAS) approach to unravel 

the genetic basis of thermal plasticity for thorax and abdomen size (Materials  

and Methods). First, because the loci carrying allelic variation for the  
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Figure 4.3. GWAS for variation in size and size plasticity. Manhattan plots and 
Venn diagrams corresponding to the eight GWAS performed for variation in size. 
The significance level for each SNP along the chromosomal arms is shown as the 
log10 p-value. Horizontal lines are p-value < 10e-5 (blue) and p-value < 10e-8 (red). 
Some of the gene names associated to SNPs/InDels with a p-value < 10e-5 are 
shown in the plots.  A. Manhattan plots and Venn diagrams corresponding to the 
four GWAS performed for variation in size plasticity in thoraxes (upper panels) and 
abdomens (lower panels) and for either the raw (left panels) or the absolute (right 
panels) slopes of the reaction norms. For each body part and plasticity property, the 
GWAS was done testing the model lm (Slope ~ Allele + (1|Wolb|DGRP)). B. 
Manhattan plots and Venn diagrams corresponding for the four GWAS performed for 
variation in size in thoraxes (upper panels) and abdomens (lower panels) at 17°C 
(left panels) or 28°C (right panels). For each body part and temperature, the GWAS 
was done testing the model lm (Size ~ Allele + (1|Wolb|DGRP)). 
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direction and extent of environmental responsiveness are not necessarily the 

same, we used both the raw and absolute values of the slopes of the DGRP 

reaction norms as our quantitative traits (Figure 4.3A, Figure 4.S3). Second, 

to explore to what extent loci carrying allelic variation for plasticity in body 

size also contribute to within-environment variation in body size, we ran 

GWAS analysis using as quantitative traits body size for flies reared at 17°C 

and body size for flies reared at 28°C (Figure 4.3B, Figure 4.S4).  

 Even though natural variation in size had been previously shown to be 

affected by chromosomal inversions (Fernández Iriarte, Norry & Hasson 

2003; De Jong & Bochdanovits 2003; Kapun et al. 2016), we did not find an 

effect on our traits (model lm (Trait ~ Inversion); p-value > 0.01). We 

confirmed that genetic relatedness among DGRP lines was not significantly 

associated with any of our traits (assessed by low and non-significant 

coefficients of phylogenetic signal Blomberg’s K and Pagel’s λ (Figure 

4.S2C). 

 We identified candidate QTLs significantly associated (p<10e-5) with 

variation in size and size plasticity (raw and absolute slope) for both body 

parts (thorax and abdomen). Analysis of the overlap between significant 

SNPs/InDels and corresponding genes for raw versus absolute values of 

slopes of reaction norms, as well as for plasticity versus within-environment 

variation (Figure 4.3) revealed private QTLs were putatively associated with 

trait-specific, body-part-specific and environment-specific variation as well as 

common QTLs. For the two measurements of plasticity, the largest extent of 

overlap was seen for hits for raw versus absolute slopes of thorax reaction 

norms (4 SNPs, 15 genes). We had much less overlap for abdominal 

reaction norms (2 SNPs, 3 genes), and essentially no overlap between body 

parts (0 SNPs, 1 gene: Sdc for absolute slopes of thorax and abdomen). We 

also saw very little overlap for hits affecting body size variation in between 

the two temperatures, as well as for hits for plasticity and those for within-

environment variation. Comparing hits for body size variation at 17°C and at 

28°C, we found different SNPs (affecting gene RunxB) putatively affecting 
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thorax size at both temperatures and abdomen size at 17°C, and different 

SNPs (affecting gene Dif) putatively affecting abdomen and thorax size (at 

17°C). Finally, we also compared candidate QTLs for plasticity variation with 

candidate QTLs for within-environment variation. We found 2 shared SNPs 

and 7 shared genes for the thorax, 2 shared SNPs and 50 shared genes for 

the abdomen, and no shared SNP or gene across body parts. 

 Figure 3 shows the number and overlap between significant 

SNPs/InDels (p-value threshold of 10e-5) for the eight different GWAS 

analyses. Tables S4 and S5 provide details about each of the significant 

SNPs/InDels, including which genes they are putatively associated to as well 

as which gene regions they fall within (e.g. UTR, intronic, coding). Note that 

not only can different SNPs/InDels affect the same gene (multiple sequence 

polymorphisms in the same locus), but the same SNP can also be 

associated to different genes (when there is no certainty of its putative effect 

based on the genome annotation). For the polymorphisms significantly 

associated with variation in our size and size plasticity traits, a protein-

protein interaction network and gene ontology enrichment analyses revealed 

an over representation of genes from the Wnt and Notch pathways for the 

plasticity traits (Figure 4.S5A), and of genes involved in proteolytic 

processes and Wnt signaling for the within-environment size variation 

(Figure 4.S4B).  

 Finally, to explore whether allelic variants influencing plasticity tend to 

do so by either buffering or increasing environmental responsiveness, we 

looked at the effects and frequencies of the alleles at our candidate plasticity 

QTLs and found that, in most cases, alleles associated to increased 

environmental responsiveness were at lower frequency (Figure 4.S6).  

 

Validation of selected GWAS hits 

Potential false-positives require validation of GWAS hits. We selected a 

number of significant SNPs and significant genes for validation via different 

approaches. Available null mutants and inducible gene knock-down (with 
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RNAi-Gal4 system) were used to test the role of selected candidate genes in 

quantitative trait variation. To test specific significant SNPs (putatively 

associated to multiple genes) we used an approach we are calling 

Mendelian Randomization. For each of those SNPs, this involved 

randomizing the genetic background between different same-allele 

genotypes and comparing the quantitative trait between flies carrying the 

minor versus the major allele (see Material and Methods). This approach 

tests the hypothesis that individuals with one versus the other allele at the 

candidate SNP differ for the quantitative trait for which that SNP was 

identified as a GWAS hit and this effect is independent of the genetic 

background.  

 Upon validation, we confirmed a role in thermal plasticity for four of five 

candidate genes and for two of three candidate SNPs tested. Using mutants, 

we confirmed a role for plasticity in abdomen size for gene Hsp60 (Figure 

4.4A, Figure 4.S7A) and for plasticity in thorax size for gene Men (Figure 

4.4B, Figure 4.S7A, 4.S7B). Using RNAi, we confirmed the role of btv in 

thermal plasticity for thorax size (Figure 4.4C, Figure 4.S7C) and of Eip75B 

in thermal plasticity for abdomen size (Figure 4.4D, Figure 4.S7C, 4.S7D). 

Using the Mendelian Randomization approach we validated the effect of two 

candidate SNPs (SNP-1 and SNP-2) on thorax plasticity (Figure 4.4E and 

4.4F, Figure 4.S7E and 4.S7F) and did not validate the effect of one 

candidate SNP (SNP-3) on abdomen plasticity (Figure 4.S8, Table 4.S5). 

For all the confirmed candidates for plasticity, the mutants were more plastic 

than the respective controls, and the DGRP genotypes carrying the minor 

allele were more plastic than those carrying the major allele in the DGRPs 

(Figure 4.S7).  For all these genes we found several SNPs (i.e. 8 different 

SNPs and 1 MNP in Men, 2 different SNPs in btv and 14 SNPs in Eip75), 

with the exception of Hsp60, for which we only found an insertion in the 

5’UTR (Table 4.S4). 
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 We also validated hits for within-temperature variation in body size: 

one of two candidate genes and one of one candidate SNP. The RNAi 

approach confirmed the role of gene Nmdmc in thorax size at 28°C (Figure 

4.4G, Figure 4.S7G), knock-down had smaller thorax than controls, but not 

of gene wings apart-like (wapl) in abdomen size at 28°C (Table 4.S5), as we 

found no difference between knock-down and controls. The Mendelian 

Randomization approach validated the contribution of one SNP (SNP-4, in 

gene CG14688) to variation in thorax size at 28°C (Figure 4.4H and Figure 

4.S7H).  

 In order to explore the pleiotropic effect of our candidate plasticity 

QTLs, we investigated whether the plastic response was also seen in the 

other body part, for which the SNP/gene had not been significantly 

associated to in the GWAS analysis (Figure 4.S7). For instance, for a  

 

Figure 4.4. Functional validation of GWAS results. A. Thoracic reaction norms 
for size in mutant Hsp60A/+ (magenta) and control lines Canton-S (filled circles, 
solid line) and Fm7a/Canton-S (empty circles, dashed line). B. Abdominal reaction 
norms for size in Men mutants MenEx3/+ (magenta; filled circles, solid line) and 
MenEx55/+ (magenta; empty circles, dashed line) and control line w1118 (black). C. 
Thoracic reaction norms for size in btv-RNAi/bab-Gal4 (magenta) and control lines 
KK (black; filled circles, solid line) and mCherry-RNAi/bab-Gal4 (black; empty 
circles, dashed line).  D. Abdominal reaction norms for size in Eip75B-RNAi/bab-
Gal4 (magenta) and control lines KK (black; filled circles, solid line) and mCherry-
RNAi/bab-Gal4 (black; empty circles, dashed line).  E. Thoracic reaction norms for 
size in the four Mendelian Randomization populations corresponding to SNP-1 (in 
gene CG43902). The two populations fixed for the major allele are shown in black 
and the two populations for the minor allele are shown in magenta. F. Thoracic 
reaction norms for size in the four Mendelian Randomization populations 
corresponding to SNP-2 (in gene ACC). The two populations fixed for the major 
allele are shown in black and the two populations for the minor allele are shown in 
magenta. G. Thorax size at 28°C in Nmdmc-RNAi/tub-Gal4 (magenta) and control 
lines GD (black; filled cicles) and mCherry-RNAi/tub-Gal4 (black; filled circles). H. 
Thorax size at 28°C in the four Mendelian Randomization populations corresponding 
to SNP-4 (in gene CG14688). The two populations fixed for the major allele are 
shown in black and the two populations for the minor allele are shown in magenta. 
For the validations of plasticity SNPs/genes (panels A-F), we tested the model lm 
(Size ~ Genotype*Temperature). For the validations of within-environment 
SNPs/genes (panels G and H), the result from the model lm (Trait ~ Genotype). 
Results from the models are shown above each plot. In all cases, significant 
differences among groups were estimated by post hoc comparisons (Tukey’s honest 
significant differences) and are indicated by different letters in each plot. 
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SNP/gene that became a candidate in the GWAS for variation in thorax 

plasticity, we quantified the effect of that SNP/gene in abdomen plasticity. 

We only found cross-body part effects for gene btv (Figure 4.S7); btv-

knockdown flies showed differences in abdomen plasticity in comparison to 

control flies (Figure 4.S7C).  

 

Relationship between size, size plasticity and ecological pressures  

We benefited from the widespread use of D. melanogaster as a model 

organism to explore the correlation between our traits and other relevant 

phenotypes collected for the DGRPs. We also investigated the overlap 

between candidate QTLs for our traits and those identified in DGRP GWAS 

for other traits, as well as those identified underlying adaptation to different 

thermal regimes in experimental populations of D. melanogaster (Figure 

4.S2). 

 First, we explored how our body size measurements related with 

previous quantifications of size in D. melanogaster DGRPs, by investigating 

correlations between our thorax and abdomen lengths (at 17°C and at 28°C) 

and measurements of head, wing, and thorax size (at 25°C) (Vonesch et al. 

2016). We found significant positive correlations between our measurements 

of thorax but not abdomen size (both temperatures) and the size of those 

different body parts (Figure 4.S2A), and no overlap in the genes containing 

nominal SNPs underlying variation in head size, the trait for which there was 

available GWAS data.  

 Second, we explored the correlations between our traits and various 

fitness-related traits measured in the DGRPs (Figure 4.S2B), including life-

history traits (longevity (Ivanov et al. 2015); starvation resistance, chill coma 

recovery (Mackay et al. 2012)) and immune-defense traits (tolerance to 

infection with Providencia rettgeri bacteria (Howick & Lazzaro 2017) and 

resistance to infection with Metarhizium anisopliae fungi or with 

Pseudomonas aeruginosa bacteria (Wang et al. 2017)). We found no 

significant correlation between our measurements of thermal plasticity in 
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body size and any of these traits. For our measurements of body size within-

temperature, we found significant negative correlations only with chill coma 

recovery (thorax size at both temperatures and abdomen size at 28°C), and 

positive correlation with resistance to M. anisopliae fungi (abdomen size at 

17°C).  

 Third, we asked about overlap in our candidate QTLs for body size and 

body size plasticity and the loci putatively selected in experimental 

populations of D. melanogaster evolving under different fluctuating thermal 

regimes (Tobler, Hermisson & Schlötterer 2015). Among our 210 candidate 

QTLs for thermal plasticity (both body parts and both raw and absolute 

values of thermal reaction norms), 8 genes (including btv) had changes in 

the populations evolving under hot and under cold temperatures fluctuations, 

9 genes (including Men) had changes in the populations evolving under hot 

fluctuations, and 25 genes had changes in the populations evolving under 

cold temperatures fluctuations. 

 

DISCUSSION  

Body size and body size proportions are key life-history traits, closely 

associated to fitness (Peters 1986; Woodward et al. 2005). They show much 

diversity between species and populations, as well as between sexes and 

individuals of the same sex (e.g. Honěk & Honek 1993; Valenzuela-

Sánchez, Cunningham & Soto-Azat 2015).  Environmental conditions, such 

as temperature or food availability, can work both as inter-generational 

selective agents that filter body size variation and affect its evolution, and as 

intra-generational instructive agents that affect body size during 

development (Nunney & Cheung 1997; French et al. 1998; Nijhout 2003; 

Mirth & Shingleton 2012). Many studies have explored what shapes inter 

and intra specific differences in size for various species, including studies on 

the physiological basis of body size regulation (e.g. D’Amico et al. 2001) as 

well as the genetic basis of variation in body size (e.g. Robertson 1959; 

Gadau et al. 2002). 
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Partitioning (phenotypic) variation in body size 

Studying a population representing naturally-segregating alleles, we 

quantified effects of genotype, environment, and genotype-by-environment 

interactions on the size of two body parts (thorax and abdomen), and we 

identified loci contributing to variation in size and in size plasticity. The 

correlations between size of different body parts and plasticity therein, are 

likely to be reflecting the tight regulation of body proportions, which is key for 

organismal performance (see Shingleton et al. 2007; Mirth & Shingleton 

2012).  In insects, low temperature and high protein content typically 

associates to larger bodies. We found this same pattern with most 

genotypes showing larger bodies at our lower temperatures and we also 

documented cases of no plasticity (i.e. robustness) and of plasticity with the 

opposite direction in the DGRPs. The relationship between plasticity levels 

and trait variance, by which genotypes with increased levels of plasticity also 

showed higher inter-individual variation in thorax size, could be reflecting an 

association between the responsiveness of some genotypes to micro 

environmental differences and their response to macro environmental 

differences (i.e. plasticity). Recent work using the DGRP, showed that inter-

individual intra-environmental variation (also refer to as micro-environmental 

plasticity) can differ across traits and be under genetic control (Morgante et 

al. 2015).  This inter-individual intra-environmental variation could also be 

explained by micro-environmental differences (i.e. due to small fluctuations 

in the developmental or social environment among flies), by micro-genetic 

variation (i.e. due to a certain degree of somatic mutations undergoing within 

lines) and/or stochasticity in phenotype expression, but could also be 

attributable to measurement error.  

 The widespread use of D. melanogaster as a model organism has built 

up extensive data for many phenotypes as well as for the genetic basis of 

phenotypic variation and of adaptation (e.g. Pool & Aquadro 2007; Tobler, 

Hermisson & Schlötterer 2015). Despite well-established associations 

between body size and fitness (Kingsolver & Huey 2008), we found no 
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correlations with longevity, starvation resistance or immune defense. 

Noteworthy, those phenotypes had been measured in different environments 

and are all environmentally-sensitive. The importance of the environment in 

which a trait is measured is illustrated in our results by weak correlations 

between body size measurements at different temperatures (e.g. no 

significant correlation between abdomen size measured at 17°C and 

measured at 28°C). In fact, trait associations, such as trade-offs, are 

dependent on genetic and environmental factors, as was shown for instance, 

for a thermally-driven switch in the association between longevity and body 

size in D. melanogaster (Norry & Loeschcke 2002). The extent to which 

internal and external factors influence these trait associations can have 

important implications for adaptation (Chevin 2013; Manenti et al. 2016).  

 

Mostly private QTLs for size and size plasticity of different body parts 

The physiological mechanisms affecting body size can change the duration 

of growth period or alter growth rates and can be affected by different genes 

(e.g. Robertson 1959, 1960; Partridge et al. 1994). Our GWAS identified 

candidate loci for inter-genotype variation in body size with little overlap 

between candidates QTLs for size at different temperatures (17°C versus 

28°C), and between candidate QTLs for different body parts (thorax versus 

abdomen) at any specific temperature. Sex, body part and environment-

specific QTL effects had been documented for various traits (e.g. Beldade, 

Brakefield & Long 2002; Linnen et al. 2013), including quantitative traits in 

Drosophila (e.g. Vonesch et al. 2016; Wang, Lu & St. Leger 2017). Different 

loci have been associated to bristle number of various body parts (Dilda & 

Mackay 2002), to thorax size in several environments (Norry & Gomez 2017) 

and even to fitness traits at different ages (Durham et al. 2014) in D. 

melanogaster.  Such private QTLs can presumably facilitate the potential for 

independent evolution of the traits.  

 Our functional validations of candidate SNPs/genes were positive in 

most cases and the different approaches test different hypotheses: while 
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mutant and RNAi test that no or low levels of peptide affect variation in the 

quantitative trait for which the gene was identified as a candidate QTL, the 

Mendelian Randomization tests for sufficiency and independence from 

genetic background of the specific allele. The former is timely when there 

are several SNPs on the same genes (such as in gene Men) while the latter 

is a better approach to test specifically the effect of a given allele, as it is 

allelic replacement.  

 Previous work exploring the loci underlying genotype-by-environment 

interactions have mostly focused on investigating QTLs whose effect vary 

across environments (QTL-by-environment interactions) and this has been 

studied for a variety of traits in several species (e.g. Fry et al. 1998; 

Gurganus et al. 1998; Vieira et al. 2000; Leips & Mackay 2000; Bergland et 

al. 2008). Much less attention has been paid to unraveling the allelic variants 

contributing to differences in plasticity itself (but Ungerer et al. 2003; 

Gutteling et al. 2007). Expanding our knowledge about the natural allelic 

variation conferring differences in size plasticity is of key importance as 

those loci can provide the raw material for selection to act on during the 

evolution of environmentally-sensitive development.  

 We used the raw and absolute slopes of the reaction norms as 

quantitative traits in a GWAS, and identified loci associated with variation in 

size plasticity of two body parts. We documented very little overlap between 

QTLs for different properties of the reaction norms (raw versus absolute 

value of slopes) and for plasticity in different body parts (thorax versus 

abdomen), suggesting no general “plasticity QTLs”. The genes influencing 

size plasticity had diverse functions, potentially mediating environmental 

effects on size at different levels such as the perception of the environmental 

cue (e.g. btv), the transmission of that information to developing tissues (e.g. 

Eip75B) and/or the execution of the information on those tissues (e.g. Men 

and Hsp60A). Genetic variants affecting different aspects of the 

environmental response, such as different properties of reaction norms, 

have been previously shown in other systems. In Manduca sexta, for 
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instance, the acquisition of a single mutation in the juvenile hormone 

pathway conferred environmental sensitivity and enabled ensuing 

experimental evolution of a larval color polyphenism (Suzuki & Nijhout 

2006). 

 We documented little overlap between candidate QTLs for body size 

and body size plasticity and for different properties of the plastic response 

(extent versus direction). There has been extensive discussion on the nature 

of the genetic basis for plasticity. Some models propose that the genetic 

control of phenotypic plasticity happens via specific loci determining plastic 

responses (Bradshaw, 1965, Scheiner and lyman 1989, 1991) while others 

suggest that plasticity could be regulated by the same loci that control trait 

values at a given environment (Via and Lande, 1985). Our results are 

suggestive of a genetic basis for plasticity very much independent of the one 

underlying trait variation.  

 

Potential for independent evolution of size and size plasticity 

Plasticity can help populations coping with environmental heterogeneity and 

can promote phenotypic and taxonomic diversification (West-Eberhard 

2005). Theoretical models highlight the ecological conditions that should 

favor the evolution of plasticity, such as the predictability of the 

environmental fluctuations (Chevin & Lande) and the costs for plasticity (see 

Murren et al. 2015) and empirical work has provided evidence on the 

multigenic basis evolved differences in reaction norms (Wijngaarden & 

Brakefield 2000).  Plasticity is generally presumed to be costly and only 

selected for in predictably heterogeneous environments, such as seasons. 

The absence of a correlation between our thermal plasticity traits and 

various fitness-related traits measured for the same genotypes could not 

identify any such cost for plasticity.  We have identified loci contributing to 

variation in size plasticity that can provide the raw material for the evolution 

of plasticity under heterogeneous environments.  
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 Loci can contribute to variation in plasticity by either increasing or 

decreasing environmental responsiveness; promoting robustness or 

plasticity, respectively.  In the DGRPs, we found that the alleles contributing 

to increased levels of plasticity are most often at lower frequencies. Even 

though some degree of environmental responsiveness is maintained in this 

population, the alleles that provide robustness to body size in relation to 

variation in temperature are more frequent. The ability to respond or resist 

environmental perturbation, and the balance between both processes, can 

be for crucial for fitness in variable environments.  Moreover, these loci are 

different of the ones that underlie variation in size and thus, size and size 

plasticity can have the potential to evolve independently. It is conceivable 

that different QTLs contribute to variation in plasticity in other populations. 

Notably, some of our candidate genes for plasticity where selected in 

populations evolving under fluctuation environments. Altogether, our results 

shed light onto the nature of the inter-individual variation in plasticity, 

necessary for the evolution of plasticity under heterogeneous environments. 

 Our data highlights the potential for independent evolution of trait and 

trait plasticity, whereby plasticity of different body parts and even properties 

of the environmental response, can be under distinct genetic control, and 

thus have the potential to respond to selection independently.    

 

MATERIALS AND METHODS 

Fly stocks and rearing conditions 

Data for the GWAS was collected from adult female flies of the Drosophila 

Genetic Reference Panel (DGRP) obtained from Bloomington Stock Center. 

The DGRP is a set of fully sequenced inbred lines collected from a single 

population in Raleigh, NC, USA (Mackay et al. 2012; Huang et al. 2014). 

The number and the details of the lines included in the GWAS for each trait 

can be found in Table S2. Mutant stocks for the functional validations were:  

Hsp60A (stock 4689 from Bloomington), MenEx3 and MenEx55 (obtained 

from the T. Merritt lab).  Control genetic backgrounds were w1118 (stock 
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5905, from Bloomington) and Canton-S (obtained from C. Mirth lab). UAS-

Gal4 and UAS-RNAi lines used for validations were: stocks 6803 for bab-

Gal4, 5138 for tub-Gal4, 28737 for btv-RNAi, and 35785 for mCherry-RNAi, 

all from Bloomington stock center and stock v108399 for Eip75B, from 

VDRC stock center. 

 Fly stocks were maintained in molasses food (45 gr. molasses, 75gr 

sugar, 70gr cornmeal, 20 gr. Yeast extract, 10 gr. Agar, 1100 ml water and 

25 ml of Niapagin 10%) in incubators at 25ºC, 12:12 light cycles and 65% 

humidity until used in this study. For the experiments, we performed over-

night egg laying from ~20 females of each stock in vials with ad libitum 

molasses food. Eggs were then placed at either 17°C or 28°C throughout 

development. We controlled population density by keeping between 20 and 

40 eggs per vial.  We reared 200 DGRP lines and quantified thorax and 

abdomen size of 5 to 20 females per line, per temperature and replicate. For 

130 DGRP lines, we ran two replicates and for 33 lines we ran three 

replicates. The total number of flies used varied between DGRP lines due to 

differences in mortality at one of the temperatures. For some specimens, we 

could only quantify size of one body part if, for example, the individual was 

not properly positioned in the image or was damaged. Full details on the 

stocks used and the number of flies used per stock and temperature can be 

found in Tables S1 and S2. Rearing conditions for the validations of 

candidate QTLs were similar to those used for the DGRP lines.  

 

Phenotyping: body size and plasticity  

Adult female flies (8-10 days after eclosion) were placed in 2ml Eppendorf 

and killed in liquid nitrogen followed by shaking the tubes to remove wings, 

legs and bristles. Bodies were mounted on Petri dishes with 3% Agarose, 

dorsal side up, and covered with water to avoid light reflections. Images 

containing 10 to 20 flies were collected with a LeicaDMLB2 stereoscope and 

a Nikon E400 color camera under controlled imaging conditions of light, 

contrast and white-balance. Images were later processed with a customized 
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Mathematica macro to extract size measurements. For this purpose, we 

drew two transects per fly, one in the thorax and one in the abdomen, using 

body landmarks (as shown in Figure 4.S1A). Size on each body part was 

quantified as the number of pixels in the transect, and converted to mm. For 

abdominal transects, when necessary, we performed another step to remove 

the pixels corresponding to the membranous tissue that is sometimes visible 

between abdominal segments.  

 

Genome-Wide Association Study  

For each body part (thorax and abdomen), we performed four independent 

genome wide analyses (GWAS): two for thermal plasticity (raw and absolute 

values of the slopes of the reaction norms), and two for within-environment 

variation (length at 17°C and length at 28°C). Slopes of the reaction norm 

were calculated as the slope of the regression model lm (Size ~ 

Temperature) for each body part and DGRP line. The GWAS for variation in 

thermal responsiveness were done by using the raw and absolute value of 

the reaction norms, testing the model lm (Slope ~ Allele + (1|Wolb|DGRP)), 

Wolb being the Wolbachia status of the DGRP lines (Mackay et al. 2012; 

Huang et al. 2014). The GWAS analyses for within-environment variation (at 

either 17°C or 28°C) were done by testing the model lm (Size ~ Allele + 

(1|Wolb|DGRP)). All the GWAS were performed by using SNPs where we 

had information for at least ten lines per allele. We did not find an effect of 

Wolbachia in any of our GWAS analyses.  

 We tested for the effect of the chromosomal inversions (In_3R_K, 

In_3R_P, In_2L_t, In_2R_NS and In_3R_Mo) on our thorax and abdomen 

traits by using the models lm (Mean Size ~ Inversion) for within-environment 

size variation and lm (Slope ~ Inversion) for size plasticity. 

 For each of the GWAS we annotated the SNPs with a p-value<10e-5 

using the FlyBase annotation (release 6; ref). For the same SNPs, gene-

enrichment and pathway-enrichment analyses were done using the publicly 

available NetworkAnalyst Software (Xia, Benner & Hancock 2014; Xia, Gill & 
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Hancock 2015); using all nodes from first order network generated with 

IrefIndex Interactome settings. 

 Genetic distance matrix for the DGRPs was obtained from 

http://dgrp2.gnets.ncsu.edu/data.html and was used to perform a cluster 

hierarchical dendogram using ape and phylobase R packages. We 

estimated the phylogenetic signal and statistical significance for each of our 

traits using Blomberg’s K (Blomberg, Garland & Ives 2003) and Pagel’s λ 

(Pagel 1999) metrics with the phylosig function in the phytools  R package 

(Revell 2012). 

 

Functional validations  

Selection of significant SNPs (p-value<10e-5) to validate was based on: 

corresponding peaks in the Manhattan plots (clear peaks prioritized), 

putative effect (missense and regulatory variants prioritized over intergenic 

variants), associated genes (annotated and known function prioritized). We 

used three methods for validation, depending on SNP properties: null 

mutants and RNAi (Gal4-UAS system) for genes containing several 

significant SNPs and/or containing SNPs corresponding to missense 

variants, and Mendelian randomization for SNPs in genes with little or no 

information available. Following these criteria we tested a total of 10 

candidate SNPs/genes. 

 Validations by null mutants were done by comparing the phenotype in 

the heterozygous mutant stock with its respective genetic background. 

Validations by RNAi were done by comparing, for each Gal4 driver line, the 

phenotype of the gene of interest knockdown with the corresponding control 

cross using UAS-mCherryRNAi. We always used three different driver lines 

for our validations by RNAi: tub-Gal4 which is ubiquitously expressed, bab2-

Gal4 which has been described to resemble partially bab2 expression in 

different developing tissues but not in the nervous system (ref), and y-Gal4 

which has been described to fully resemble the expression of yellow gene in 

different developing tissues, including the nervous system (ref). For all 
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candidate genes selected for RNAi validation, except Nmdmc, the crosses 

between RNAi line and tub-Gal4 were lethal.  

 We used Mendelian randomization to validate the effect of three SNPs. 

For each candidate SNP, we first selected 10 DGRP lines with the minor 

allele and 10 with the major allele, not fixed for any other significant SNPs. 

These lines were used to generate four populations, two fixed for the major 

allele and two for the minor allele. Each population was established by 

crossing 8 virgin females from each of 5 of the same-allele lines to 8 males 

of the other 5 lines. Reciprocal crosses were used to set two independent 

populations per allele. These populations were allowed to cross for eight 

generations to randomize genetic backgrounds. The identity of the SNPs 

tested by MR is given by their annotation with Genome Release v6. We 

confirmed by Sanger sequencing that those populations had our candidate 

allele fixed. Primer sequences used to confirm the allele in each population 

were: 

Gene CG43902   forward primer:  ACCACCAACATCAGCGTTTC; 

reverse primer: TGGTTTCGGCGTAGTTGTTG. 

Gene ACC  forward primer: CGCTGGAGTTGTCTGTAAGC;  

reverse primer: TGGCCACCAGATAGCAGATT. 

Gene CG43117  forward primer: TAAGCAAAATGTGGCGTGCA;  

reverse primer: TTAACATGGATCCTGCGCAC 

Gene CG14688  forward primer: CATACTTTGACAGACGGCCG;  

reverse primer: CGGCTACATTGTCATCGAGG 

 

Statistical analyses 

All statistical analyses were performed with R Statistical Package v 3.1.1 (R 

Development Core Team 2014). We checked assumptions of parametric test 

by using Shapiro test for normality and Bartlett test of homocedasticity. For 

each body part, we used linear models to test for the effect of genotype 

(model lm (Size ~ DGRP)) or the interaction between genotype and 

temperature (model lm (Size ~ DGRP*Temperature)) on size. Reaction 
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norms for each DGRP line were calculated by using the regression model lm 

(Size ~ Temperature). From that model we extracted two properties of the 

reaction norms per DGRP line and body part: the absolute value of the slope 

as a measurement of thermal sensitivity, describing only the magnitude of 

the response to temperature, and the raw value of the slope as a 

measurement which describes also the direction of that response. Linear 

mixed models were calculated using lme4 R package.  

 We used Pearson correlations (α=0.99) to test for linear correlation in 

size between body parts, controlling for DGRP lines. We also used Pearson 

correlations to test for linear correlations among our measured traits and 

between those and other available datasets for the DGRPs. For this, we 

used the mean value per DGRP line for each trait and the corrplot R 

package. We report both correlation coefficient and significance levels 

(α=0.99). Available DGRP phenotypes that were used to correlate with our 

traits were: size measurements at 25°C (Vonesch et al. 2016), longevity 

(Ivanov et al. 2015), starvation resistance, chill coma recovery (Mackay et al. 

2012), tolerance to infection with Providencia rettgeri bacteria (Howick & 

Lazzaro 2017) and resistance to infection with Metarhizium anisopliae fungi 

or with Pseudomonas aeruginosa bacteria (Wang et al. 2017).  We also 

looked at the genes that contained SNPs significantly appeared under 

selection during evolution in fluctuating environments (Tobler et al. 2015). 

 Broad sense heritability for size at each temperature was estimated as 

H2 = σ2
A/(σ2

A + σ2
W) where σ2

A and σ2
W are the among-line and within-line 

variance components, respectively. Heritability of plasticity was calculate as 

H2 = σ2
G*E/σ2

TOTAL where σ2
G*E and σ2

TOTAL are the variance associated with 

the genotype by environment interaction and total variance components, 

respectively, as proposed in Scheider and Lyman (1989). Variance 

components were extracted using varcomp R package. 

 For the functional validations of within-environment SNPs and genes 

we tested the model lm (Size ~ Allele) and lm (Size ~ Genotype), 

respectively. For the validations of plasticity SNPs and genes we tested the 
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model we tested the model lm (Size  ~ Genotype*Temperature) and lm (Size 

~ Allele*Temperature), respectively. In all cases, significant differences 

among groups were estimated by post hoc comparisons (Tukey’s honest 

significant differences). 
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SUPPLEMENTARY MATERIAL 

 

Figure 4.S1.  Variation in size plasticity in the DGRP lines.  

Figure 4.S2.  Phenotypic co-variation in size and size plasticity with fitness 

and genetic distance.   

Figure 4.S3.  GWAS for variation in size plasticity per chromosomal arm. 

Figure 4.S4.  GWAS for variation in size per chromosomal arm.  

Figure 4.S5.  Candidate genes underlying variation in size and size 

plasticity.  

Figure 4.S6.  Effect and frequency of candidate SNPs/InDels for variation in 

size plasticity.  

Figure 4.S7. Effect and pleiotropy of validated SNPs/genes.  

Figure 4.S8.  Non-validated candidates  

 

The following documents are included in the digital supplement that 

accompanies this thesis. 

 

Table 4.S1.  Phenotypic variation in size.  

Raw data for size measurements in thoraxes and abdomens of flies from DGRP 

lines reared at 17°C and at 28°C. 

Table 4.S2.  Phenotypic variation in size and size plasticity.  

Summary data from size measurements in thoraxes and abdomens of DGRP lines. 

Number of phenotyped flies (N), mean and starndard deviation (SD) per temperature 

and raw and absolute values of the slope of the reaction norms (calculated by using 

the regression model lm (Size ~ Temperature), per DGRP line and body part). 
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Table 4.S3.  Heritability calculations. 

Variance components and broad-sense heritability estimates for size at 17°C and at 

28°C and for plasticity per body part.  

Table 4.S4.   GWAS for variation in size plasticity.  

Nominally significant SNPs (p-value threshold of 10e-5) from GWAS for the raw 

slope of the reaction norms (Value=Raw) and absolute slope of the reaction norms 

(Value=Absolute) per body part. The genomic position (from Genome Releases v.5 

and v.6), type of SNP/InDel, potential impact, associated gene name (Flybase Gene 

ID) and putative consequence are also shown. 

Table 4.S5.   GWAS for variation in size.  

Nominally significant SNPs (p-value threshold of 10e-5) from GWAS for size 

variation at 17°C and at 28°C per body part. The genomic position (from Genome 

Releases v.5 and v.6), type of SNP/InDel, potential impact, associated gene name 

(Flybase Gene ID) and putative consequence are also shown.  

Table 4.S6.   Functional validations of GWAS candidates.  

Raw data for size measurements in thoraxes and abdomens of flies reared at 17°C 

and at 28°C from the different genetic backgrounds corresponding to each 

validation. 
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Figure 4.S1. Variation in size plasticity in the DGRP lines. A. Image of an adult 
female D. melanogaster fly showing the thoracic and abdominal transects. B. Slope 
and 95% confidence interval of the reaction norms in the DGRP lines, calculated as 
the regression model lm (Size ~ Temperature) in the thoraxes (grey) and abdomens 
(green) of each DGRP line (Y axis). Slopes are ranked by their value in the thorax. 
Horizontal bars represent the mean of all DGRP lines for the raw slope of the 
reaction norm (dashed bar) and the absolute slope of the reaction norm (solid bar) 
per body part. C. Histograms showing the frequency of the size values in thoraxes 
and abdomens of the DGRP lines reared at 17°C (blue) and 28°C (red). Dashed line 
represents the mean value for all DGRP lines at a given temperature. D: Histograms 
for the absolute slope of the reaction norms (calculated as the absolute value for the 
slope of the regression lm (Size ~ Temperature) in thoraxes and abdomens. Mean 
value for the absolute slope of all DGRP lines is indicated with a green arrowhead.  
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Figure 4.S2. Phenotypic co-variation in size and size plasticity with fitness and 
genetic distance. A. Heat map of Pearson’s correlation coefficients between our 
within-environment size measurements (17°C and at 28°C) and size measurements 
at 25°C. Positive correlations are denoted in blue and negative correlations in red. 
Non-significant correlations (p-value > 0.01) are indicated with an ‘X’. B. Heat map of 
Pearson’s correlation coefficients between our traits (mean size at each temperature 
and raw and absolute slopes of the reaction norms) and fitness-related traits. 
Positive correlations are denoted in blue and negative correlations in red. Non-
significant correlations (p-value > 0.01) are indicated with an ‘X’. C. Dendogram of 
the genetic distance between DGRP lines. Corresponding trait values are shown as 
a heat map and scaled for each trait independently. Coefficients of Blomberg’s K 
phylogenetic signal were: K=0.24; p-value=0.17 (thorax at 17°C), K=0.23; p-
value=0.37 (thorax at 28°C), K=0.22; p-value=0.78 (thorax raw slope), K=0.24; p-
value=0.20 (thorax absolute slope), K=0.24; p-value=0.24 (abdomen at 17°C), 
K=0.22;p-value=0.67 (abdomen at 28°C), K=0.23; p-value=0.55 (abdomen raw 
slope) and K=0.21; p-value=0.89 (abdomen absolute slope). Pagel’s λ coefficient of 
phylogenetic signal was λ =6.88e-05; p-value= 1, for all the traits in both body parts.   
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Figure 4.S3. GWAS for variation in size plasticity per chromosomal arm. 
Manhattan plots corresponding to the four GWAS performed for variation in size 
plasticity: raw slopes of the reaction norms (grey dots) and absolute slope of the 
reaction norms (black dots) for thorax (left side) and abdomen (right side) size. For 
each trait and body part, the GWAS was done testing the model lm (Slope ~ Allele + 
(1|Wolb|DGRP)). The significance level for each SNP along the chromosomal arms 
is shown as the log10 p-value. Some of the genes associated to SNPs/InDels with a 
p-value < 10e-5 are shown.   
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Figure 4.S4. GWAS for variation in size per chromosomal arm. Manhattan plots 
corresponding to the four GWAS performed for within-environment variation in size: 
at 17°C (blue dots) and at 28°C (red dots) for thorax (left side) and abdomen (right 
side) size. For each trait and body part, the GWAS was done testing the model lm 
(Size ~ Allele + (1|Wolb|DGRP)). The significance level for each SNP along the 
chromosomal arms is shown as the log10 p-value. Some of the genes associated to 
SNPs/InDels with a p-value < 10e-5 are shown.   
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Figure 4.S5. Candidate genes underlying variation in size and size plasticity. 
A. KEGG gene enrichment analyses with associated p-value and false discovery 
rate (FDR) (upper panel) and gene network analyses (lower panel) for the putative 
genes associated with size plasticity. SNPs with p-value < 10e-5 from the GWAS for 
the raw and absolute slopes of the reaction norms were pooled to perform this 
analysis. B. KEGG gene enrichment analyses with associated p-value and false 
discovery rate (FDR) (upper panel) and gene network analyses (lower panel) for the 
putative genes associated with within-environment variation in size. SNPs with p-
value < 10e-5 from the GWAS for variation at 17°C and for variation at 28°C were 
pooled to perform this analysis. 
 

 
 
 
Figure 4.S6. Effect and frequency of candidate SNPs/InDels for variation in 
size plasticity. A. Mean and confidence interval of the absolute slope of the 
reaction norms (Y axis) per allele (minor in grey, minor in magenta) for each 
candidate plasticity SNP/InDel along the chromosomal arms (X axis) per body part. 
B. Mean and confidence interval of the raw slope of the reaction norms (Y axis) per 
allele (minor in grey, minor in magenta) for each candidate plasticity SNP/InDel 
along the chromosomal arms (X axis) per body part. 
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Figure legend given on previous page 
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Figure legend given on next page 
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Figure 4.S7. Effect and pleiotropy of validated SNPs/genes. For each SNP/gene 
the effect of the minor and major alleles in the DGRPs are shown in the left panels 
and the pleitropic effect is shown in the right panels. A. Left panel: slope of the 
reaction norms for thorax size in the DGRP lines with the major (black) and the 
minor (magenta) alleles for insertion X:11108613_INS within gene Hsp60. Right 
panel: Abdominal reaction norms for size in mutant Hsp60A/+ (magenta) and 
controls Canton-S (filled circles, solid line) and Fm7a/Canton-S  (empty circles, 
dashed line). B. Left panel: slope of the reaction norms for abdomen size in the 
DGRP lines with the major (black) and the minor (magenta) alleles for SNP 
3R:12720159 within gene Men. Right panel: thoracic reaction norms for size in Men 
mutants MenEx3/+ (magenta; filled circles, solid line) and MenEx55/+ (magenta; 
empty circles, dashed line) and control line w1118 (black). C. Left panel: slope of the 
reaction norms for thorax size in the DGRP lines with the major (black) and the 
minor (magenta) alleles for SNP 2L:17961008 within gene btv. Right panel: 
abdominal reaction norms for size in btv-RNAi/bab-Gal4 (magenta) and control lines 
KK (black; filled circles, solid line) and mCherry-RNAi/bab-Gal4 (black; empty 
circles, dashed line). D.  Left panel: slope of the reaction norms for thorax size in the 
DGRP lines with the major (black) and the minor (magenta) alleles for SNP 
3L:17999272 within gene Eip75B. Right panel: thoracic reaction norms for size in 
Eip75B-RNAi/bab-Gal4 (magenta) and control lines KK (black; filled circles, solid 
line) and mCherry-RNAi/bab-Gal4 (black; empty circles, dashed line).  E. Left panel: 
slope of the reaction norms for thorax size in the DGRP lines with the major (black) 
and the minor (magenta) alleles for SNP-1 (X:1019230). Right panel: abdominal 
reaction norms for size in the four Mendelian Randomization populations 
corresponding to SNP-1. The two populations fixed for the major allele are shown in 
black and the two populations for the minor allele are shown in magenta. F. Left 
panel: slope of the reaction norms for thorax size in the DGRP lines with the major 
(black) and the minor (magenta) alleles for SNP-2 (2R:7983239). Right panel: 
abdominal reaction norms for size in the four Mendelian Randomization populations 
corresponding to SNP-2. The two populations fixed for the major allele are shown in 
black and the two populations for the minor allele are shown in magenta. G. Left 
panel: thorax size at 28°C in the DGRP lines with the major (black) and the minor 
(magenta) alleles for SNP 3R:9049187 within gene Nmdmc. Right panel: abdomen 
size at 28°C in Nmdmc-RNAi/tub-Gal4 (magenta) and control lines GD (black; filled 
circles) and mCherry-RNAi/tub-Gal4 (black; filled circles). H. Left panel: thorax size 
at 28°C in the DGRP lines with the major (black) and the minor (magenta) alleles for 
SNP-4 (genomic position 3R:2645482). Right panel: abdomen size at 28°C in the 
four Mendelian Randomization populations corresponding to SNP-4. For the 
validations of plasticity SNPs/genes (panels A-F), we tested the model lm (Trait ~ 
Genotype*Temperature). For the validations of within-environment SNPs/genes 
(panels G and H), we tested the model lm (Trait ~ Genotype). Results from the 
models are shown above each plot. In all cases, significant differences among 
groups were estimated by post hoc comparisons (Tukey’s honest significant 
differences) and are indicated by different letters in each plot. 
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Figure 4.S8. Non-validated candidates. A. Left panel: slope of the reaction norm 
for abdomen size in the DGRP lines with the major (black) and the minor (magenta) 
alleles for SNP-3 (in gene CG43117, position X:1019230). Right panel: Abdominal 
reaction norms for size in the four Mendelian Randomization populations 
corresponding to SNP-3 The two populations fixed for the major allele are shown in 
black and the two populations for the minor allele are shown in magenta. The result 
of the model lm (Trait ~ Genotype*Temperature) is shown above the plot. The 
significant differences among groups were estimated by post hoc comparisons 
(Tukey’s honest significant differences) and are indicated by different letters in each 
plot.  B.  Left panel: slope of the reaction norms for abdomen size in the DGRP lines 
with the major (black) and the minor (magenta) alleles for SNP X:2152985 within 
gene Wapl. Right panel: abdominal reaction norms for size in Wapl-RNAi/bab-Gal4 
(magenta) and control lines KK (black; filled circles, solid line) and mCherry-
RNAi/bab-Gal4 (black; empty circles, dashed line). The result from the model lm 
(Trait ~ Genotype) is shown above the plot. The significant differences among 
groups were estimated by post hoc comparisons (Tukey’s honest significant 
differences) and are indicated by different letters in each plot.   
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Synthesis, discussion and perspectives 
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ABSTRACT 

External environmental cues can influence development, leading to the 

production of different phenotypes from the same genotype. This plasticity 

can result in a better match between the adult phenotype and the selective 

environment, thus helping organisms to cope with environmental 

heterogeneity. Plasticity can, itself, be thought of as a complex trait that is 

heritable, subject to selection and therefore can evolve. However, little is 

known about the loci contributing to natural variation in plasticity. In this 

thesis we have focused on body size and pigmentation in Drosophila to 

explore the developmental and genetic mechanisms underlying inter-

genotypic variation in thermal plasticity. In this concluding chapter, I 

summarize our main findings, discuss them in a broader perspective, and 

comment on some of the limitations of this work. In addition, throughout my 

PhD project, I conducted several pilot studies and complementary 

experiments which will add to our understanding of how developing 

organisms integrate different environmental cues and of the potential role of 

RNA editing in thermal plasticity. Some of these the preliminary results are 

presented and discussed in this chapter, and hopefully can inspire future 

research.  
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BACKGROUND AND OPEN QUESTIONS 

Environmental conditions can work as selective agents by filtering 

phenotypic variation across generations and can induce the production of 

phenotypic variation through the environmental regulation of development 

(i.e. developmental plasticity) (Bradshaw 1965). This developmental 

plasticity is ubiquitous and diverse in nature, as is demonstrated by a vast 

number of insightful studies that have reported environmentally induced 

changes in many organisms (e.g. plant and animal kingdoms; vertebrates 

and invertebrates), for a wide variety of traits (e.g. behavioral, morphological, 

life-histories), with very diverse inductive (and selective) environmental cues 

(biotic and abiotic) (Schlichting & Pigliucci 1998; Nijhout 2003; Beldade, 

Mateus & Keller 2011; Shingleton & Tang 2012; Huang et al. 2016). Genetic 

variation for plasticity, affecting different properties of the reaction norms, 

has also been documented in different systems (e.g. Robinson & Wilson 

1996; Smekens & van Tienderen 2001; Crispo & Chapman 2010), showing 

that plasticity is heritable and can be subjected to selection. Despite the 

prevalence of plasticity in nature and its potential consequences for the 

evolution and ecology of populations, several key questions regarding the 

evolution and regulation of developmental plasticity remain unresolved, 

including some addressed in this thesis. We have used two iconic traits 

closely related to organismal fitness, Drosophila body size and pigmentation, 

as a model to explore the genetic basis and regulation of developmental 

plasticity. For example, we analyzed how genetic and environmental factors 

may affect the integration of suites of “related” plastic traits, such as color 

and color pattern components of body pigmentation or the sizes of different 

body parts within the same organism. Moreover, we explored the genetic 

basis for thermal plasticity in body size and body pigmentation by identifying 

(and validating) loci contributing to variation in plasticity and by addressing 

their potential function (i.e. sensing, modulation and/or executing 

environmental inputs; Figure 1.2) in the regulation of plasticity. Noteworthy, 

the molecular mechanism underlying plasticity include genes bearing allelic 
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variants that are responsible for inter-genotype differences in plasticity (e.g. 

accounting for genotype-by-environment interaction effects) and genes 

whose expression and/or function is environmentally-dependent. This 

distinction is crucial in the light of our results and we have used different 

approaches to explore both. Here, we discuss our results in the context of 

how organisms integrate complex environmental information to cope with 

environmental change and how this may affect the evolution of plasticity.  

 

PARTITIONING COMPONENTS OF PHENOTYPIC VARIANCE 

Phenotypic variation is the result of a complex integration of different levels 

of information, where the developmental environment includes more than 

one single inductive cue, the phenotype is more than one particular trait, and 

the selective environment presents more than one ecological challenge. 

Thus, the establishment of general principles about how genotypes are 

translated into phenotypes is a particularly challenging problem in biology. 

This situation is aggravated by the limited number of methods available to 

accurately quantify phenotypes, in contrast to the very sophisticated 

analytical tools available for genomic data. In classical evolutionary genetics, 

phenotypic variation is often partitioned into different components (and the 

interactions among them), thus helping to assess them individually (Figure 

1.3A). The effect of the external environment on phenotypic variation, partly 

accounted for by the environment and the genetic-by-environment 

components (Figure 1.3), is one of the recurrent topics of this thesis and is 

further discussed in this section.  

 

Effects of genotype, environment, and genotype-by- environment 

In Chapter 2 we developed a method to quantify body color and color pattern 

components and we showed how these traits vary between body parts, 

sexes, genotypes and temperatures in D. melanogaster. We expand some 

of our findings to natural populations of D. melanogaster that were collected 

along a latitudinal cline and to closely related Drosophila species. In 
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Chapters 3 and 4 we characterized the genetic variation for pigmentation 

components and size, respectively, in a different wild-caught D. 

melanogaster population: the Drosophila Genetic Reference Panel (DGRP) 

(Mackay et al. 2012; Huang et al. 2014). These data allowed us to 

characterize genetic correlations across traits, body parts and environments 

for a series of plastic phenotypes.  

Taken together, we show that the effects of genotype (G) and 

environment (E) differ across body parts within an organism (e.g. size of the 

thorax and of the abdomen in Chapter 4; Figure 4.1A) and across related 

traits for a given body part (e.g. different pigmentation components in 

Chapters 2 and 3; e.g. Figures 2.2A and 3.2). Moreover, the associations 

between traits are themselves dependent on genetic and environmental 

conditions (e.g. Figures 2.2A, 4.2 and 3.2B). We reported cases in which 

traits showed similar responses to genetic or environmental effects. The size 

of the two body parts can be taken as an illustration of the latter. Regardless 

of the environment at which flies were reared, thoracic and abdominal sizes 

were always positively correlated (Figure 4.2B). This implies that selection 

for a bigger abdomen will lead to a correlated increased thorax size (Chapter 

4; Figure 4.2) and presumably reflects constraints associated with 

maintaining body proportions (Mirth & Shingleton 2012).  Similarly, we 

highlighted how related traits (e.g. color traits in Chapter 3) behave in a 

modular way, with tight correlations across genetic backgrounds or rearing 

temperatures. These results suggest that, for example, selection on the 

background color of the abdomen will lead to correlated responses of the 

color, but not the width of the abdominal bands (Chapter 3; Figure 3.2B). 

However, we also reported cases in which related traits show divergent and 

independent responses to either genetic or environmental factors. For 

instance, correlations between some pigmentation components were 

different in females and males of a given genetic backgrounds and so was 

the association between traits across environments (e.g. darkness in relation 

to other pigmentation traits; Figure 2.2A). 
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Notably, the genotype-by-environment effect also differed among 

related plastic traits. The extent and properties of the plastic responses (raw 

and absolute slopes of reaction norms) for various traits revealed different 

types of associations, some of which reflect a tight integration among traits 

while others showed greater independence between traits. For instance, 

plastic responses of abdominal pigmentation components were positively 

correlated (Figure 3.3B), while plasticity in pigmentation traits across body 

parts was not (Figure 3.3B). In summary, we showed that the effects of 

genotype (G), environment (E), and genotype-by-environment (GxE) differ 

among related plastic traits (Chapters 3 and 4).   

The extent of integration or independence among traits has important 

implications for phenotypic variation and diversification as it affects how 

individual traits respond to selection. For example, plastic traits that are 

integrated into functional suites, thus enabling a concerted response to local 

environmental variability, may not be able to respond independently to the 

selective forces experienced in novel environments. Thus, the plastic 

responses of some of the integrated traits may be adaptive while responses 

of others may be maladaptive (e.g. van Bergen et al. 2017). A classical 

example of correlated plastic responses is the effect of temperature on 

different phenotypes, such as development time (e.g. diapause), body size, 

and other life-history traits in many arthropods. While diapause is thought to 

be an adaptive plastic response, this may not be true for correlated traits 

whose developmental rates are affected by availability of energy resources 

(Gotthard, Nylin & Nylin 1995). Our data suggest that thermally plastic traits 

in Drosophila, such as pigmentation components, might be able to respond 

independently to the selective forces experienced in nature.  

We also documented and characterized inter-individual variation 

presumably un-accountable by the effects of G, E or GxE. This corresponds 

to phenotypic variation for individuals of the same genotype and reared 

under the same environmental conditions. We saw intra-genotype and intra-

environmental variation for some of our traits (e.g. coefficient of variation for 
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size in Chapter 4; Figure 4.2B). This component of phenotypic variance, that 

has often been overlooked but is getting increased attention (see Debat, 

Debelle & Dworkin 2009), could reflect small genetic differences between 

individuals (e.g. due to somatic mutation), micro-environmental variation 

(e.g. due to differences within a vial) or stochasticity in phenotype 

expression (e.g. via developmental noise). Notably, this component of 

phenotypic variance could have its own genetic basis, independent of the 

one controlling trait expression (Morgante et al. 2015), something that will, 

undoubtedly, be a topic of future research. 

 

Effects of environment-by-environment interactions  

Plastic responses can be triggered by different types of environmental cues, 

often in combination (Braendle & Félix 2008) and result in simultaneous 

changes in different traits. In fact, not only can the same cue affect different 

traits but also the same trait can be affected by several cues (Chevin 2013; 

Piggott, Townsend & Matthaei 2015). Most experimental studies of 

developmental plasticity have focused on the effects of single environmental 

cues (but Braendle & Félix 2008; Rodrigues et al. 2017). This is in contrast 

with what is the complexity of natural environments, with several 

environmental cues acting on multiple traits that might (or not) respond in the 

same way.  

We have begun to explore environment-by-environment interaction 

effects on phenotypic variation by looking at the combined effects of 

variation in nutrition and in temperature in D. melanogaster. We know that 

each of these in isolation can affect body size and pigmentation as well as 

development time (Chapters 2-4 and e.g. David, Capy & Gauthier 1990; 

Nunney & Cheung 1997), but we know very little about their combined 

effects. Do the two factors in combination have redundant, additive or other 

types of interaction effects on phenotype expression? To investigate that, we 

reared a subset of ten DGRP genotypes under conditions representing a  
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combination of low-medium-high nutrition and low-medium-high temperature 

ranges, and we quantified thorax and abdomen size and pigmentation in 

adults from both sexes. For each of the sexes and genotypes, we tested 

whether food levels, temperature and the interaction between them could 

account for variation in phenotype. We found evidence for environment-by-

environment interaction effects for development time (Figure 5.1A) and 

pigmentation traits but not for size (Figure 5.1B,C). The combined effect of 

temperature and nutrition is largely additive for body size, with lower 

temperatures and poor nutritional conditions both reducing body size. In 

contrast, for overall darkness the effect of temperature was dependent on 

the nutritional environment. Hence, thermal plasticity for pigmentation is 

stronger in poor nutritional environments, and vice versa. We also found 

evidence for GxExE effects which implies that DGRP lines differed in their 

response to combinations of temperature and nutrition levels during 

development (Figure 5.1C). In fact, levels of thermal plasticity were not 

necessarily correlated with levels of nutritional plasticity; genotypes that 

were more plastic in relation to one environmental cue (e.g. temperature)  

 

Figure 5.1. Combined effects of temperature and food levels on D. 
melanogaster body size and body pigmentation. A. Reaction norms for the mean 
development time of the 10 DGRP genotypes reared under low, medium and high 
nutrition (X axis) and at 17°C (blue), 23°C (yellow) or 28°C (red). Females and males 

are pooled in this analysis. Development time was affected by genotype, nutrition, 
temperature and the interaction between the two environments (model lm 
(Development time ~ Genotype*Temperature*Nutrition); p-value < 0.01). B. 
Reaction norms for thorax and abdomen size and overall darkness in females and 
males from 10 DGRP genotypes. The lines represent the best-fitted regression lines 
across temperatures for all DGRP genotypes reared at low (light green line), 
medium (green line) or high (dark green line) nutritional conditions. Shading 
represents the 95% confidence interval for each slope. C. Mean size and darkness 
of thorax (Y axis) produced by a given genotype in response to different 
combinations of the two environmental factors; temperature and nutrition. Variation 
in temperature is represented by red (28°C) and blue (17°C) symbols. Variation in 
nutrition is represented by closed (high) and open (low) symbols. Purple lines 
connect the different temperature treatments within the same nutrition, thus 
representing thermal plasticity. Green lines connect the different nutritional 
treatments within the same temperature, thus representing nutritional plasticity. The 
thicker lines connect the mean trait values, averaged over all DGRP lines, within 
each experimental treatment. 
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were not necessarily more plastic in relation the other environmental cue 

(e.g. nutrition). 

Further analysis of these results and more studies in this area will 

help to elucidate the extent and the mechanisms by which environment-by-

environment interactions contribute to phenotypic variation and might shed 

light onto how organisms deal with multi-factorial changes in their 

environments.  

 

GENETIC BASIS OF PLASTICITY  

Heritable phenotypic variation is the raw material for evolution by natural 

selection. We have great knowledge about the genetic architecture of many 

adaptive traits and of the genomic modifications that lead to inter- and 

intraspecific variation in many different organisms and for a variety of traits 

(e.g. Honěk & Honek 1993; Williams 1994; Enard et al. 2002; Greenwood et 

al. 2011). Even though it is known that plasticity can be heritable and subject 

to selection, like other quantitative traits, studies of the genetic basis of 

plasticity are relatively scarce (but see Scheiner & Callahan 1999; Brommer 

et al. 2005). The genetic basis of plasticity includes loci involved in 

environmental-responsiveness as well as loci responsible for variation 

therein. The latter corresponds to the genotype-by-environment component 

of phenotypic variance in a population which can be studied, within a 

classical quantitative genetics framework, by comparing reaction norms 

between genetic backgrounds (Figure 1.3), as has been done in this thesis. 

Genetic variation for plasticity can affect different aspects of the plastic 

response such as the extent of plasticity resulting from environmental 

heterogeneity (Lind & Johansson 2007), the environmental threshold that 

triggers phenotypic changes (Moczek & Nijhout 2003), or the period of 

development that is responsive to environmental variation (i.e. the window of 

environmental sensitivity). In Chapter 2, we showed that genetic 

backgrounds of D. melanogaster vary in their window of thermal sensitivity 

for pigmentation development. Moreover, we showed that (putatively) 



 

193 

5 

functionally related traits, such as body color and pattern, are sensitive to 

developmental temperature during different periods of pre-adult 

development (Figure 3.3). 

 In Chapters 3 and 4, we unraveled the genetic basis of variation in 

thermal plasticity by taking advantage of the availability of the DGRP 

mapping panel. This panel consists of more than 200 inbred fully-sequenced 

lines derived from a natural population in Raleigh, USA (Mackay et al. 2012; 

Huang et al. 2014). The DGRP has been frequently used to characterize 

correlations between traits and to uncover the genetic basis of phenotypic 

variation in different quantitative traits (e.g. Vaisnav et al. 2014; Wang, Lu & 

St. Leger 2017), but had not been used before to identify loci underlying 

differences in plasticity. We documented genetic variation for plasticity in 

body pigmentation and in body size in the DGRP (Chapters 3 and 4). Most 

genotypes were thermally plastic and responded in the direction that had 

been previously reported in other studies (e.g. the body size of about 60% of 

the genotypes was larger when raised at low temperature; Figure 4.1B). 

However, we also found traits for which only few genotypes were plastic 

(e.g. only 19% of the genotypes showed differences in thoracic color 

between the two temperatures; Figure 3.3A) and traits for which the plastic 

response showed the opposite direction than what had been previously 

described (e.g. 8% of the genotypes had smaller thoraxes when raised at 

low temperatures; Figure 4.1B).  

 Upon characterization of variation in size and pigmentation plasticity in 

the DGRP, we performed a genome wide association study (GWAS) to 

unravel the genetic basis of variation in plasticity, using as quantitative traits 

of interest the raw and absolute values of the slopes of the thermal reaction 

norms. We identified a number of putative QTLs (and validated some of 

them) associated with variation in plasticity for body pigmentation (Chapter 

3; e.g. Figure 3.7) and size in D. melanogaster females (Chapter 4; e.g. 

Figure 4.4). The changes in DNA sequences that underlie differences in 

these (and other) traits represent the targets of selection. Therefore, 
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determining the nature and identity of these changes is of key importance for 

a better understanding of the regulation and evolution of plasticity. This has 

been a central topic throughout this thesis and our major findings as well as 

the limitations of our approach will be discussed in the following subsections.  

 

The genetic basis of variation in trait and in trait plasticity  

The different models proposed to explain the genetic underpinnings of 

plasticity (Via et al 1995) either argue that plasticity itself has a genetic 

basis, independent of the one controlling the trait values themselves, or that 

plasticity is accounted for by alleles that differ in effect across environments: 

QTL-by-environment interactions (e.g. Via & Lande 1985; Scheiner 1993, 

Via et al. 1995; de Jong 2005). Most research on the genetic basis of 

plasticity has focused on the latter, identifying loci that showed QTL-by-

environment interactions (but see Scheiner & Callahan 1999; Brommer et al. 

2005). Examples of this include studies in Drosophila exploring the effects of 

temperature on bristle number (Gurganus et al. 1998), lifespan (Vieira et al. 

2000) and other fitness related traits (Fry et al. 1998). Similarly to what we 

reported for variation in body pigmentation (Chapter 3) and in body size 

(Chapter 4), those studies found QTLs with environment-specific effects, as 

well as QTLs with fixed effects across environments. The implicit assumption 

made in some of those studies was that QTLs showing a QTL-by-

environment interaction affect phenotypic plasticity and, therefore, could 

represent, at least partly, the genetic basis of plasticity. However, alleles 

whose effects vary across environments do not necessarily contribute to 

variation in plasticity (i.e. to differences in slope of reaction norms between 

genotypes; Figures 3.3A and 4.1B). Figure 5.2 illustrates a set of scenarios 

under which a particular QTL can contribute to variation in trait values and 

show QTL-by-environment interaction while not contributing to variation in 

plasticity (Figure 5.2A). Scenarios in which a QTL contributes to variation in 

plasticity, with or without affecting trait values within environments, are 

depicted in Figure 5.2C and 5.2D. In this thesis, we focused on loci carrying 
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allelic variants associated to inter-genotype differences in plasticity for body 

pigmentation (Chapter 3) and size in D. melanogaster females (Chapter 4). 

Our work, using the slopes of the reaction as a quantitative trait (Chapter 3 

and 4), revealed that the genetic basis for trait plasticity, to a large extent, 

differs from the genetic basis for phenotypic variation in the trait itself (at any 

given environment). This finding holds for loci underlying variation in 

pigmentation plasticity (Chapter 3) and for loci affecting thermal plasticity in 

body size (Chapter 4) as well as for putative and validated QTLs. These loci 

are presumably the ones that provide the raw material for selection to act 

upon during the evolution of plasticity under heterogeneous environments. 

 

Different loci contribute to variation in plasticity of different traits 

Many studies have explored the mechanistic basis of trait variability (or its 

counterpart, canalization) and its relationship with environmental variability. 

Some of these studies hypothesized about the existence of a universal 

mechanism controlling whether phenotypes would respond to (or buffer) 

environmental variation (see Shingleton & Tang 2012). Correlated 

responses of groups of traits to different sources of environmental (or 

genetic) variation, have been taken as an indication for such a shared 

regulatory mechanism (e.g. Clarke 1998; Willmore, Klingenberg & 

Hallgrímsson 2005), while uncorrelated responses between traits have been 

taken as indication of the opposite (e.g. Debat, Debelle & Dworkin 2009; 

Pélabon et al. 2010). Our work intended to explore this matter beyond 

correlative inference, by comparing the genetic basis of plasticity of different 

traits. In the context of our data, it is conceivable, for instance, that genetic 

variation for thermal responses could be determined by allelic variants at the 

level of sensing (e.g. genetic polymorphisms leading to differential 

perception of temperature). In this situation we would expect to find a 

considerable overlap between QTLs contributing to variation in plasticity  

across traits. Instead, our data revealed mostly “private QTLs” (e.g. body  
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part and trait specific effects) but included also some shared QTLs 

contributing to plasticity in more than one single plastic trait. There was also 

little overlap between QTLs for different properties of the thermal response 

(i.e. raw versus absolute value of the slope of the reaction norm). These 

conclusions applied to QTLs underlying variation in pigmentation plasticity 

(Chapter 3) and to QTLs underlying variation in size plasticity (Chapter 4). 

For example, when looking at the loci underlying variation in plasticity for 

abdominal pigmentation components (Chapter 3), 2% of the genes were  

 

 
Figure 5.2. The relationship between allelic effects on trait mean and on trait 
plasticity. Schematic representation of the ways in which SNPs can affect 
phenotypic values under fixed environmental conditions (E1 or E2) and/or plasticity 
in relation to those environmental values (reaction norms). Colored lines represent 
reaction norms for different genotypes. Purple and orange represent genotypes that 
differ in which allele they bear at a specific SNP (A or B) whose association to 
phenotypic variation is illustrated in the Venn diagram. The “*” represents which 
trait(s) the SNP could be significantly associated with. A. Genotypes with the A allele 
have higher trait values than those with the B allele in environment E1 but not in 
environment E2. Genotypes with A and B alleles have reaction norms that can be 
flat and steep as well as to go in any direction. Thus, this SNP is associated to 
variation in environment E1, not affecting variation in environment E2 nor variation in 
plasticity. B. Genotypes with the A allele have higher trait values than those with the 
B allele both in environment E1 and E2, but both alleles have reaction norms of the 
same slope. This SNP is associated to variation in both enviromnets (E1 and E2) but 
not to variation in plasticity. Panel on the right is a QTL showing QTL-by-
environment interaction and not associated to variation in plasticity. C. Genotypes 
with the A allele have higher trait values than those with the B allele in environment 
E1 and lower trait values than those with the B allele in environment E2. Genotypes 
with the A allele have reaction norms with negative slopes while genotypes with the 
B allele have reaction norms with positive slopes. This SNP is associated to 
variation in both environment (E1 and E2) as well as to variation in variation in 
plasticity. D. Genotypes with the A allele and B alleles low or high trait values in both 
environments (E1 and E2) but different reaction norms. In left panel, genotypes with 
A allele have flat reaction norms while genotypes with B allele have steep reaction 
norms. In right panel genotypes with A allele have reaction norms with a positive 
slopes while genotypes with B allele have reaction norms with a negative slopes. 
This SNP is associated to variation in plasticity but not to within-environment 
variation (not to E1 or to E2). These type of QTL for variation in plasticity can affect 
different aspect of the thermal responses, such as the extent of plasticity (i.e. flat vs 
steep reacton norms on left panel) and/or the extent and direction of the plastic 
response (i.e. oppostite directions of the reaction norms on right panel). 
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common between darkness and pattern and 7% were common between 

color traits (Figure 3.6A). Al together the little degree of overlap between 

putative QTLs contributing to variation in plasticity of different body parts 

and/or different traits, is inconsistent with the idea of a universal mechanistic 

basis for plasticity and suggests the potential for independent evolution of 

plasticity of different traits (or of the same trait in two body parts).  

 

The identity of the genes contributing to variation in plasticity  

Studies in different model systems have taught us about the extent and 

magnitude of the effects that environmental variation can have on gene 

expression (Aubin-Horth & Renn 2009). However, whether specific gene 

classes and/or genomic regions are more likely to underlie environmentally-

induced phenotypic differences is not known. Our analyses of the genes and 

genomic regions harboring SNPs involved in variation in thermal plasticity 

did not provide evidence for an overrepresentation of specific genomic 

locations (i.e. intronic, coding, regulatory), gene classes (e.g. regulatory and 

structural genes), gene functions or biological processes (Figures 3.S6 and 

4.S5, Tables 3.S3 and 4.S4). Coming back to the example described before, 

if genetic variation for thermal plasticity would mostly occur at the level of 

sensing, one would expect to find, within our QTLs, an over-representation 

(e.g. in GO categories) of nervous system players. We found no such 

evidence of specific plasticity players (i.e. sensors, mediators, executors; 

Figures 3.S6 and 4.S5). Instead, we reported that genes influencing 

plasticity had a wide variety of known functions, potentially mediating 

environmental effects at different levels, such as the perception of the 

environmental cue (e.g. the gene btv for size plasticity), the transmission of 

that information to developing tissues (e.g. Eip75B for size plasticity; gce for 

pigmentation plasticity) and the execution of the information on those tissues 

(e.g. Men for size plasticity; ebony for pigmentation plasticity). Taken 

together, our results suggest that the environmental regulation of size and 

pigmentation is orchestrated by different molecular players, acting (and 
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possibly interacting) at several steps of development. This describes a 

scenario where variation in plasticity in different traits is not only controlled 

by different loci, but these can act at very different levels during the 

environmental regulation of development.  

 

Trait regulation, trait variation and plasticity therein 

One aim of this thesis was to shed light on the loci underlying differences in 

traits (and trait plasticity) between genotypes (Chapters 3 and 4). We used 

two iconic traits in Drosophila, for which there is extensive knowledge on 

their development, and this allowed us to explore the relationship between 

the genes underlying variation in trait (and trait plasticity) and the genes 

regulating trait development (or environmental responsiveness). Some of the 

genes we found to be underlying variation in plasticity are also known to play 

important roles in the development of the trait itself. These genes were a ‘hit’ 

in both the GWAS for variation in the trait at any given environment and in 

the GWAS for variation in trait plasticity. For instance, the development of 

pigmentation is likely to have many common players, if not most (e.g. 

melanogenesis genes). However, the differences between genotypes found 

in pigmentation traits, were due to allelic variants in those genes as well as 

other genes not previously associated with pigmentation. Gene ebony can 

be taken as an example; its function in the development of pigmentation, 

promoting the deposition of black pigments, is well-established (e.g. 

Wittkopp, True & Carroll 2002; Takahashi et al. 2007). Our analyses 

(including validations of the GWAS hits) confirmed that ebony is involved in 

variation in pigmentation as well as in variation in pigmentation plasticity 

(Figure 3.S10). Similarly, some of the genes we described to be underlying 

variation in plasticity are part of endocrine hormonal systems (e.g. gene gce; 

Figure 3.7), which had been described as intermediaries in linking external 

information with developmental trajectories (Nijhout 1998). In contrast, our 

analysis also identified putative QTLs, such as gene sala that, to our 

knowledge, have not been described as being involved in pigmentation 
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development or thermal plasticity in Drosophila. To sum up, our data on trait-

associations (discussed earlier) and the little of overlap between loci 

underlying thermal plasticity suggest that the potential for independent 

development and evolution of plasticity across traits is strong in D. 

melanogaster.   

 Aside from unraveling the genetic basis of inter-genotype variation in 

plasticity, a better understanding of the molecular mechanisms of plasticity 

would greatly benefit from the identification of genes that are involved in 

producing alternative phenotypes and whose expression is affected by the 

environment. Researchers have explicitly analyzed the effect of different 

environmental cues on gene expression (e.g. Levine, Eckert & Begun 2011; 

Zhou et al. 2012), however many of these studies lack the association 

between differential gene expression and distinct phenotypic outcomes (i.e. 

differences in plasticity). A possible way of exploring the relationship 

between environmentally-induced molecular changes and environmentally-

induced phenotypes, would be to characterize transcriptomic profiles in a 

stage and tissue specific manner (i.e. those relevant for the plastic 

phenotype under study). This will allow to identify candidate effector genes 

for plasticity; those whose expression varies between environments for lines 

with different reaction norms (e.g. flat vs. steep reaction norms). These 

genes, whose expression is regulated by the environment and show 

differential expression in plastic and robust genotypes, are expected to be 

the ones executing the environmental information during development. 

 

A potential role for RNA editing in thermal plasticity 

Aside our genome-wide search for genes putatively contributing to variation 

in plasticity, we also took a candidate gene approach in the search for 

molecular mechanisms involved in the regulation of the environmental 

sensitivity of development. A number of molecular mechanisms, such as 

methylation patterns and posttranscriptional modifications, have recently 

gained much attention in the context of plasticity, as their contribution to 
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inter-individual variation does not depend on variation in the nucleotide 

sequence of DNA. We investigated the potential role of one these 

mechanisms, RNA editing, in the regulation of developmental plasticity 

(Figure 5.1). RNA editing is a process that enables the production of 

different mRNA molecules from the same primary transcript, resulting in 

different peptide products (Bass 2002). This process is ubiquitous in 

metazoans and has been previously suggested to play an important role in 

thermal adaptation (see Garrett & Rosenthal 2012). In D. melanogaster, 

many transcripts are post-transcriptionally edited by the enzyme dAdar 

(which stands for Drosophila adenosine deaminase acting on RNA), and this 

editing occurs more frequently in mRNA molecules from genes related to 

immunity and the nervous system (see Stapleton, Carlson & Celniker 2006; 

Duan et al. 2017), both of which involve genes from melanogenesis 

biosynthesis. Importantly, it has been shown that the activity of dAdar is 

temperature-dependent (Rieder et al. 2015). We thus, set-out to investigate 

if Adar-mediated RNA editing could contribute to thermal plasticity in body 

pigmentation. 

In a pilot study, we used a semi-quantitative PCR approach to verify 

that dAdar was expressed at the stages and tissues that could potentially be 

relevant for pigmentation development (Figure 5.3A). After establishing that, 

we investigated whether genotypes with reduced ability for RNA editing 

would differ in their levels of thermal plasticity. To assess that, we compared 

thermal reaction norms for pigmentation traits between genotypes with 

normal and altered Adar function. If, upon reduction of Adar activity, 

plasticity had increased (i.e. a steeper reaction norm), we would conclude 

that RNA editing helps buffering environmentally-induced variation. 

Conversely, if, upon reduction of Adar activity, plasticity had reduced (i.e. a 

flatter reaction norm), we would conclude that RNA editing promotes 

environmentally-induced variation (Figure 5.3B). Our results suggest that 

reduced editing results in reduced plasticity for some thermally plastic traits  
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Figure 5.3. A potential role for RNA editing in thermal plasticity of D. 
melanogaster body pigmentation. A. dAdar gene structure showing: the exons 
(grey boxes) and the two alternative promoters (P1 and P2), as well as the nuclear 
localization signal (NLS), the two double stranded RNA binding domains (dsRBD-1 
and dsRBD-2) and the deamination domain (DEAM) (Chen et al. 2009). Color 
arrows correspond to the regions amplified by the seven primer combinations we 
used to detect some of the alternative spliced isoforms of dAdar (Marcucci et al. 
2009). B. Schematic representation summarizing the detection (filled circles) or no 
detection (empty circles) of each Adar isoform cDNA in different stages of 
development and in different body parts. Sexes were analyzed separately from 
pupal stage onwards. Different colors correspond to the different alternatively 
spliced isoforms on A. Stages depicted in the diagram are (from top to bottom): 
embryo, first instar larva, second instar larva, third instar larva, pupal head, thorax, 
wings, abdomen, and adult head, thorax, wings, and abdomen. Dark and light color 
intensities represent differences in expression levels (we use darker color circles 
when the PCR bands were at least 2 times thicker). C. Graph showing the 
quantification of pattern and color traits in an hypomorph Adar mutant with 80% 
reduction in expression and activity, and in its respective control. In each boxplot, 
black dots represent phenotypes of single individual females, red dots are the 
medians and the black lines are the means. Statistical significance for effect of 
temperature on pigmentation traits is indicated with letters above each boxplot 
(Pairwise Wilcoxon Rank Sum Test *** p <0.001, n.s: non-significant).  



 

203 

5 

(notably, width of dark abdominal bands) and increased plasticity for others 

(notably, color of abdominal dark bands) (Figure 5.3C). Thus, the effect of 

dAdar in the regulation of plasticity seems to be largely trait-dependent.  

These preliminary results suggest that RNA editing could play an 

import role in thermal plasticity in D. melanogaster. Further investigation of 

these results could involve more functional assays where the effect of RNA 

editing on plasticity could be tested on multiple genetic backgrounds with 

different levels of editing. Given that RNA editing is largely dependent on its 

enzymatic activity, it would be relevant to explore not only the effect of dAdar 

expression on plasticity but to also address its activity. Some well-known 

pigmentation genes, such as yellow and bric-a-brac, are putatively edited 

(Ramaswami et al. 2013). Exploring whether these and other candidate 

genes undergo temperature-dependent editing, ultimately leading to 

changes in reaction norms, would confirm the role of RNA editing in thermal 

plasticity for body pigmentation. 

 

EVOLUTION OF PLASTICITY 

Natural selection acting on genetic variation has led to differences between 

species (Scheiner 1993) and between populations (Crispo & Chapman 

2010) in the way they respond to environmental inputs. Evolutionary 

processes can drive transitions to and from environmentally sensitive 

development as well as adjust the extent and properties of plastic responses 

(e.g. Aubret & Shine 2009; Schwander et al. 2010). While plasticity can 

hinder adaptation in some circumstances (e.g. Langerhans & Dewitt 2002), it 

is commonly recognized that a certain extent of phenotypic plasticity can 

lead to increased population persistence in novel environments, providing 

time for adaptive evolution to take place. Moreover, phenotypic plasticity 

may even facilitate local adaptation when environmentally induced 

phenotypic variants bring the population closer to a peak in the fitness 

landscape (see Moran 1992; Price, Qvarnström & Irwin 2003; Ghalambor et 

al. 2007). 
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It has been proposed that if heritability of plasticity for a given trait is 

higher than heritability of the trait itself, one could expect evolution in 

heterogeneous environments to occur via plasticity (Scheiner & Lyman 

1989). Our estimates for heritability of plasticity in pigmentation (Chapter 3) 

and of plasticity in size (Chapter 4) were, in most cases, of the same order of 

magnitude as the heritability estimates of the trait itself. Noteworthy, 

estimates of heritability have clear limitations due to the fact that they can be 

dramatically influenced by environmental conditions in which data is 

collected (Chown et al. 2009). Therefore, comparisons across settings and, 

even more, comparisons between laboratory and natural conditions, can be 

arduous. 

 

Plasticity genes and the raw material for the evolution of plasticity 

The presence of genotype-by-environment interactions in a population 

ultimately implies that natural (or artificial) selection for a specific relationship 

between phenotypes and environments is possible (DeWitt & Scheiner 

2004). Studying one population of naturally segregating alleles, the DGRP, 

we documented considerable genetic variation for plasticity and identified 

loci associated with variation in plasticity for different traits. These are 

presumably the loci that selection can target for the evolution of thermal 

plasticity in size and in pigmentation components. However, these loci 

identified in the DGRP can be, but are not necessarily, the same that will 

underlie plastic responses in other natural populations. Moreover, the DGRP 

represents naturally segregating alleles but due to severe inbreeding and the 

potential effects that this may have on genetic phenomena, such as linkage 

and/or epistasis, they may not truthfully represent genotypic diversity. Our 

finding that some of these loci appeared to have been targets of selection in 

populations evolved under fluctuating thermal regimes (e.g. allelic variants in 

genes Men and btv; Chapter 4) is encouraging. However, in order to make 

generalizations regarding these loci and their effects on plastic responses, 

more comprehensive characterizations in other natural populations would be 
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required. Our data (Chapters 3 and 4) suggests that the evolution of 

plasticity can happen, to a large extent, through genetic and molecular 

mechanisms that are independent of the evolution of the trait itself. 

Moreover, we showed that different properties of the thermal response (i.e. 

direction and extent of plasticity) can have their own distinct genetic control. 

This can have important implications for the evolution of environmentally-

induced variation as plasticity, and plasticity properties, may be favored by 

selection independently (see Via & Lande 1985; Scheiner & Lyman 1991). 

 

Ecological scenarios favoring plasticity  

Environmental sensitivity of developmental processes is likely to be the 

ancestral state of most organisms, with selection acting on increased 

sensitivity or the ability to buffer environmental effects (Newman & Müller 

2000; Nijhout 2003). Theoretical models have proposed a variety of 

conditions that could favor the evolution plasticity, including the predictability 

of the environment (e.g. Leimar, Hammerstein & van Dooren 2006), the 

reliability of the environmental cue (e.g. van den Heuvel et al. 2013) and the 

potential (low) costs of plasticity (e.g. Callahan, Maughan & Steiner 2008; 

Murren et al. 2015).  

Some studies of developmental plasticity have shed light on the 

effects of seasonal environmental changes (e.g. Brakefield & Reitsma 1991) 

and the consequences of decoupling inductive cue and selective 

environment (e.g. Langerhans & Dewitt 2002). However, work that 

specifically tests which environmental conditions drive the evolution of 

plasticity is limited, possibly due to the challenge of designing appropriate 

experimental set-ups. The assumptions derived from theoretical models 

could potentially be tested using an experimental evolution approach, 

however, determining the exact conditions that should be used remains a 

contentious topic. Regarding the temporal component of environmental 

heterogeneity, for instance, it remains unclear whether the environment 

should fluctuate within a given generation (e.g. between different stages of 
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development; see Moran 1992) or between generations. Another challenge 

is finding the right match between an inductive environmental cue that 

accurately predicts the forthcoming environment and the factors that will act 

as selective agents therein. In some cases of adaptive plasticity, the 

inductive cue and the selective environment are different (e.g. photoperiod 

and reproductive opportunities in many species of butterfly) while in other 

cases, both environments are the same (e.g. predator presence and 

predation in Daphnia). Furthermore, the potential costs of plasticity can be 

difficult to assess (see Murren et al. 2015) and the extent to which these 

costs may constrain the evolution (and maintenance) of plasticity depend, to 

a large extent, on the interplay between fitness, phenotypes and 

environments (e.g. whether plasticity is beneficial or not).  

While interpretations of the relationship between the proximate and 

ultimate mechanisms of phenotypic variation are crucial for our 

understanding biological phenomena (Mayr 1963; Tinbergen 1963), they can 

often be complicated to assess. This is, at least in part, due to of the 

inadequacy of proxy measures for fitness (Scott-Phillips, Dickins & West 

2011). Assessing the adaptiveness of a trait may be particularly problematic 

when evaluating the adaptive significance of reaction norms (DeWitt & 

Scheiner 2004). In fact, with the exception of a few emblematic examples of 

adaptive developmental plasticity (e.g. Watt 1968; see Nijhout 2003), in 

many species little is known about the relationship between environmentally-

induced phenotypes and fitness. In the case of the traits used in this study, 

body size and body pigmentation, the inductive cue and the selective 

environment are likely to be the same; both thermally induced phenotypes 

are presumably related to thermoregulation needs (i.e. thermal melanism 

hypothesis and temperature-size rule) (e.g. Clusella-Trullas et al. 2008; 

Ghosh, Testa & Shingleton 2013). Our analyses of correlations between 

fitness-related traits and levels of plasticity (Figure 4.S2) provided no 

evidence for a cost of plasticity. Moreover, we found that the alleles 

associated with higher plasticity (i.e. steeper reaction norms) occurred at 
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lower frequency in the DGRP (Figures 3.6C and 4.S6). However, the 

adaptive value of different reaction norms in the DGRP as well as the 

prevalence of the identified molecular mechanisms in other Drosophila 

populations remains to be tested. Future work studying variation in plasticity 

in natural (or experimental) populations, induced by different thermal 

regimes, could help elucidate the ecological relevance and adaptive 

significance of plasticity in body size and body pigmentation. This could 

greatly contribute to our understanding of the ecological conditions that favor 

plastic or non-plastic development and of the mechanisms underlying 

transitions between the two.  

 

CONCLUDING REMARKS 

Genotype and environment are intricately linked in the production and 

evolution of phenotypes. The environment beyond filtering phenotypic 

variation during evolution by natural selection, can lead to the production of 

new phenotypic variants. This plasticity can help organisms exploit novel 

environments, provide the means of rapidly adjusting to external change, 

and even promote adaptive evolution. By studying the patterns of variation in 

different phenotypic characters, we were able to disentangle important 

aspects on how genetic, environmental and genetic-by-environmental effects 

impact phenotypic variation. Moreover, we unraveled the genetic basis for 

inter-individual variation in thermal plasticity that is necessary for the 

evolution of plasticity under heterogeneous environments. Studies on 

plasticity, such as ours, teach us about the proximate mechanisms 

underlying differences between individuals and about how these might affect 

evolutionary trajectories. More empirical work is needed in this field of 

research to bridge the gap between hypothetical scenarios derived from 

theory and the precise interplay between genotypes, phenotypes and fitness 

that takes place in natural environments. In this respect, I hope that the work 

presented in this thesis is a small step towards a better understanding of the 

regulation and evolution of plasticity.  
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