
D
P

h
Network Comparison
and Node Ranking
in Complex Networks

David Oliveira Aparício
Programa Doutoral em Informática das
Universidades do Minho, Aveiro e Porto
Departamento de Ciência de Computadores
2018

Orientador
Pedro Ribeiro, Professor Auxiliar, Faculdade de Ciências (UP)

Coorientador
Fernando Silva, Professor Catedrático, Faculdade de Ciências (UP)

Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

2018

i

ii

Para os meus pais

iii

iv

Acknowledgments

First and foremost, I want to thank my advisors, who guided me through this journey.

They were always ready to propose and discuss new ideas. One of the things I am

most grateful for is the intellectual liberty they always gave me, which made me a

much more autonomous researcher and person. I want to thank Professor Fernando

Silva for his guidance and interest in my scientific and personal development. Through

his connections I was able to spend time abroad with different research groups, which

were always very enriching experiences. I truly feel indebted for all his help and trust.

I also want to thank Professor Pedro Ribeiro. Before I met him I just wanted to finish

my bachelor’s degree and go work in Sweden or something, then he proposed that

I applied for a junior research grant, and suddenly I was in academia. I’ve worked

with him for seven years and he’s the most ”natural professor” I ever had. He has

an enormous passion for teaching, and he is always in a cheerful mood. It is a great

privilege to be your student, collaborator, and friend.

I want to thank MAP-i’s organization for providing me a good research environment.

This allowed me to meet many PhD students and share our ideas, pains, and ambi-

tions. I also want to thank MAP-i for awarding me a four-year FCT Doctoral grant

[PD/BD/105801/2014].

Throughout my PhD I had the opportunity to visit UT-Austin and the Newcastle

University. I want to thank them for their hospitality and for giving me the opportunity

to work with such diverse groups. In particular, I thank Professor Keshav Pingali,

Andrew Lenharth and Sreepathi Pai, from UT-Austin, and Professor Marcus Kaiser

from Newcastle.

Although I didn’t visit the University of Notre Dame, I want to give my very special

thanks to Professor Tijana Milenkovic. We were having difficulties entering a new

topic (network alignment) and decided to contact Tijana, with only an initial draft of

v

a paper. We only expected some minor comments but received detailed feedback and

started a collaboration. I want to thank her for all her time and guidance, and for

somehow fitting me in her busy schedule.

I met many colleagues during my time in Porto. I want to thank my old time pals

João Patŕıcio and Rafael Nunes, now playing in the big leagues in Amazon and UBS,

respectively. I want to thank my office mates for all the interesting discussions at lunch

time, namely Miguel Araújo, Pedro Paredes, Miguel Silva, Pedro Ferreira, Christopher

Harrison, Sadeeq, Daniel Loureiro, Jorge Silva and Nuno Guimarães.

I have some friends outside the department too. I want to thank Diogo Dietl and Ana

Rodrigues for helping me fill my time with things beyond Computer Science, mostly

movies, art, literature, and Youtube videos. While you were not directly involved in

any part of this thesis, you kept me sane (enough) and your company is invaluable.

Quero agradecer às minhãs irmãs que, apesar de estarem longe, enviam apoio fre-

quentemente. Sou um irmão mais novo muito mimado. Quero agradecer aos meus

pais por tudo o que fazem por mim. Obrigado por toda a segurança e conforto que

me dão. A minha mãe é a pessoa mais forte que conheço, depois de tudo o que passou

mantém a energia para reger a famı́lia. O meu pai é a minha maior inspiração. O maior

elogio que me podem fazer é dizerem-me que sou parecido com ele, o que, felizmente,

ouço com frequência. Obrigado por tudo, sem vocês não teria sido posśıvel concluir

esta fase da minha vida.

Finally, just some random thoughts. Recently I was browsing through my high school

notebooks at my parents’ house and, somewhere between angry teen texts and not-so-

great drawings, I found my portfolio for ”Área de Projecto”, basically a course where

students made a year-long group project; mine was to design and build a software

catalog to organize movies. The idea was to learn some programming, since me and

the other three guys wanted to follow software engineering. Unsurprisingly, I got so

bored out of that project that I switched to another one mid-term: build a videogame

about AIDS. It didn’t go anywhere. At the end of the year, I concluded in my final

report that ”Este projecto foi muito útil para perceber que, definitivamente, não quero

seguir informática”. So I decided to apply for Biology.

Ten years later, I want to thank my old self for not studying for the Biology exam,

since this Computer Science thing turned out to be great.

vi

Abstract

Networks are widely used to represent biological data, social relations, and many other

systems. To make sense of complex networks, network science studies their topology.

Numerous topological measures have been proposed, with subgraph-based measures

receiving attention due to the rich structural information that they offer.

Here we address two major tasks in network science: network comparison and node

ranking. Network comparison consists in analyzing the structural similarities between

two networks. Comparing different networks allows for the transfer of knowledge from

a well-known system to a less studied one. Node ranking consists in finding important

nodes in a network, e.g., influential information spreaders or points of failure (i.e., if

these nodes are removed from the network, the system collapses).

We divide network comparison into two tasks: network classification and network

alignment. Regarding network classification, we extend subgraph-based measures,

namely graphlets, to support both edge direction and temporal information. Regarding

network alignment, we propose a new method to align temporal networks. Our results

show that we outperform state-of-the-art both in terms of accuracy and running time.

We propose a measure of node centrality based on graphlets and the notion of domi-

nance. We show that our measure gives different topological information from tradi-

tional node centrality measures and is more well-suited to discover dominant nodes.

We verify this on a sports network and on a citations network. We also propose a

PageRank-like method that uses, not only network topology, but also features from

the citation network, such as author and venue information. Our feature enriched

topology method outperforms state-of-the-art when ranking scientific authors.

We believe that our work leads to a better understanding of network structure and

puts forward many research threads for the future.

vii

viii

Resumo

As redes são utilizadas para representar ligações biológicas, relações sociais e muitos

outros sistemas. Para analisar redes complexas, tipicamente estudamos a sua topolo-

gia. Métricas topológicas baseadas em subgrafos são prevalentes, dado o grande volume

de informação estrutural que contêm.

Nesta tese focamo-nos em duas tarefas de Network Science: comparação de redes e

ranking de nós. A comparação de redes consiste em encontrar semelhanças estruturais

entre duas redes. Comparar redes permite transferir conhecimento de uma rede

para outra. Ranking de nós consiste em encontrar nós importantes numa rede, p.e.,

propagadores de informação numa rede social ou pontos de falha (i.e., nós que, se

forem retirados da rede, o sistema entra em colapso).

Abordamos dois tipos de comparação de redes: classificação e alinhamento. Em termos

de classificação de redes, propomos novas métricas baseadas em graphlets que têm em

conta a direção das ligações e a sequência temporal. Em termos de alinhamento de

redes, propomos um novo método para redes temporais. Os nossos resultados indicam

que os nossos métodos são mais rápidos e têm maior precisão do que o estado da arte.

Propomos também uma métrica para capturar dominância de nós baseada em graphlets.

Mostramos que a nossa métrica extrai informação da rede mais adequada para encon-

trar nós dominantes do que métricas de centralidade de nós tradicionais. Comprovamos

os resultados em redes de desporto e redes de citações. Propomos ainda um método

baseado em PageRank que usa, para além da informação topológica, atributos da rede

de citações, nomeadamente informação dos autores e das conferências. Este método é

mais eficaz a encontrar autores de renome do que outros métodos do estado da arte.

Acreditamos que o nosso trabalho potencia uma melhor análise e compreensão da

estrutura de redes complexas, e que abre linhas de investigação para o futuro.

ix

x

Contents

Abstract vii

Resumo ix

List of Tables xv

List of Figures xvii

List of Algorithms xix

List of Acronyms xxi

1 Introduction 1

1.1 Thesis motivation . 4

1.1.1 Network comparison . 4

1.1.2 Node ranking . 5

1.2 Main contributions . 6

1.3 Thesis organization . 7

1.4 Bibliographic note . 8

2 Background 11

2.1 Network concepts and terminology . 11

2.2 Subgraph counting . 16

2.2.1 Enumeration approaches . 18

2.2.1.1 G-Tries . 19

2.2.2 Analytic approaches . 21

2.2.3 Parallel approaches . 22

2.2.4 Sampling approaches . 24

xi

CONTENTS

2.2.5 Related problems . 26

2.2.5.1 Network motifs . 26

2.2.5.2 Frequent Subgraph Mining 27

2.2.6 Subgraph counting on temporal networks 29

2.3 Network classification . 31

2.4 Network alignment . 34

2.5 Node ranking . 36

3 Network classification 39

3.1 Network classification of directed networks 40

3.1.1 Motivation . 40

3.1.2 Overview of our contribution . 41

3.1.3 Directed graphlets . 42

3.1.4 Graphlet-tries . 45

3.1.4.1 Graphlet-trie creation 46

3.1.4.2 Graphlet-trie enumeration 48

3.1.5 Classification accuracy on synthetic networks 50

3.1.5.1 Synthetic directed networks 50

3.1.5.2 Methodology . 51

3.1.5.3 Classification accuracy 51

3.1.6 Performance on real biological networks 54

3.1.6.1 Real-world directed networks 54

3.1.6.2 Classification accuracy 54

3.1.6.3 Speed comparison . 56

3.1.7 Summary . 60

3.2 Network classification of temporal networks 60

3.2.1 Motivation . 60

3.2.2 Overview of our contribution . 62

3.2.3 Graphlet-Orbit Transitions (GoTs) 62

3.2.4 Orbit-transition Agreement (OTA) 65

3.2.5 Classifying synthetic data . 66

3.2.5.1 Synthetic networks . 67

3.2.5.2 Measures . 68

3.2.5.3 Accuracy and speed comparison 68

3.2.6 Grouping and analyzing real data 69

3.2.6.1 Network overview . 72

3.2.6.2 Network motifs . 74

3.2.6.3 Static graphlets . 76

xii

CONTENTS

3.2.6.4 Graphlet-orbit Transitions 77

3.2.7 Summary . 78

4 Network alignment 81

4.1 Motivation . 81

4.2 Related work . 82

4.3 Overview of our contribution . 84

4.4 Static and temporal GPNA . 85

4.5 GoTs as node conservation features . 86

4.6 GoT-WAVE . 86

4.7 Experimental Evaluation . 87

4.7.1 Evaluation using synthetic networks 88

4.7.1.1 Synthetic networks . 88

4.7.1.2 Performance on synthetic networks 89

4.7.2 Evaluation using real-world networks 92

4.7.2.1 Real-world temporal networks 93

4.7.2.2 Performance on real undirected networks 93

4.7.2.3 Performance on real directed networks 99

4.8 Summary . 101

5 Node ranking 103

5.1 Graphlet dominance (GD) . 104

5.1.1 Methodology . 105

5.2 Comparison with node centrality measures 107

5.3 Tennis players ranking . 110

5.3.1 Motivation . 110

5.3.2 Network description . 111

5.3.3 Network analysis . 113

5.3.4 Results . 114

5.4 Scientific authors ranking . 120

5.4.1 Motivation . 120

5.4.2 Network description . 121

5.4.3 Topology-based ranking . 122

5.4.3.1 Results . 122

5.4.4 Feature enriched topology ranking 124

5.4.4.1 Notation . 125

5.4.4.2 OTARIOS . 127

5.4.4.3 Results . 129

xiii

CONTENTS

5.5 Summary . 131

6 Conclusions and future work 133

6.1 Main contributions . 133

6.2 Future work . 135

6.3 Closing remarks . 136

A Graphlet-tries 137

B Temporal network randomization 139

B.1 Undirected randomization . 139

B.2 Directed randomization . 140

B.3 Pure directed randomization . 140

References 141

xiv

List of Tables

2.1 Number of non-induced occurrences of each undirected graph of size 4 in

each other. 26

2.2 Similarity matrices between two instances of two classes. 32

2.3 Evaluation measures used to build Precision-Recall and ROC curves 34

2.4 Example of node ground-truth and ranking. 36

3.1 Graphlet-degree distribution (GDD) matrix. 42

3.2 Number of graphlets and orbits depending on the size of the graphlets . . . 44

3.3 Set of biological networks used for experimental evaluation: cell signaling,

metabolic and transcriptional regulatory networks. 55

3.4 Subgraph occurrences and different subgraphs found in each directed bio-

logical network. 57

3.5 Execution time of algorithms for subgraph counting in directed and undi-

rected biological networks. 58

3.6 Performance comparison between GT-Scanner and other algorithms 59

3.7 Set of random network models used for evaluation. 67

3.8 Time comparison of our method (GoTs) against dynamic graphlets (DG). . 70

3.9 Set of temporal networks grouped by category. 71

3.10 Execution times of GoTs with four nodes (GoTs), of DG with four nodes

and five events (DG-5), and of DG with four nodes and six events (DG-6). 72

4.1 Set of graph models used in our experiments. 90

4.2 Results on synthetic networks when only node conservation is optimized or

when both node and edge conservation are optimized. 90

4.3 Average time to align two networks when using DGDVs or GoTs. 91

4.4 Real-world temporal networks used in our experiments. 93

4.5 Node correctness when aligning an undirected real network to itself. 95

xv

List of Tables

4.6 Feature extraction times and number of subgraph occurrences on undi-

rected real networks using DGDVs or GoTs. 98

4.7 Average execution time to align two networks using DGDVs or GoTs. . . . 98

4.8 Node correctness when aligning a directed network to itself. 100

4.9 Feature extraction times on directed real networks using DGDVs or GoTs. 101

5.1 Set of directed networks used to compare centrality measures. 107

5.2 Correlation between GD and node centrality measures. 108

5.3 Correlation between GD (without considering dominated connections) and

node centrality measures. 109

5.4 Correlation between GD (without considering different levels of dominance)

and node centrality measures. 109

5.5 Correlation between the complete GD variant with 4-node graphlets and

simpler GD variants. 109

5.6 Global statistics of the tennis networks, discriminated by surface. 112

5.7 Ranking obtained by varying λ: the relative weight between dominating

(out-edges) and being dominated (in-edges). 116

5.8 GD ranking of tennis players. 117

5.9 GD ranking of tennis players by surface. 118

5.10 GD ranking of tennis players by year. 119

5.11 Set of citation networks used for experimental evaluation. 122

5.12 Comparison of GD variants on two networks by varying k. 123

5.13 Comparison of GD variants on two networks by varying λ. 123

5.14 Comparison of GD variants on two networks by varying β. 124

5.15 Comparison of GD against PageRank. 124

5.16 List of features used for OTARIOS’ author rank initialization. 128

5.17 List of features used for OTARIOS’ author score term calculation. 128

5.18 Comparison of OTARIOS variants on network NET. 129

5.19 Comparison of competing methods against OTARIOS over all networks. . 130

5.20 Features considered by the 20 best OTARIOS variants as evaluated by the

mean NDCG metric. 130

xvi

List of Figures

1.1 A food-web network decomposed into two distinct subgraphs 3

2.1 Two isomorphic graphs G and H and their bijection. 12

2.2 Induced and non-induced subgraph isomorphism. 13

2.3 Set of automorphisms and orbits of graph G. 14

2.4 Graphlet-degree vectors (GDV) and graphlet-degree distribution (GDD). . 15

2.5 All undirected graphlets of up to 5 nodes and respective orbits. 16

2.6 Example of a g-trie containing all 4-node undirected subgraphs. 19

2.7 Common topology of three graphs. 20

2.8 Example of a biased subgraph counting estimator. 25

2.9 Example of a feed-forward-loop motif. 27

2.10 Example of why the DCP is not valid in subgraph counting. 28

2.11 Example of two temporal motifs. 30

2.12 Dynamic graphlets with up to 3-events. 31

2.13 Network alignment of two graphs with four nodes. 34

2.14 Edge conservation between two aligned networks. 35

2.15 Topological properties of a node x. 35

3.1 Comparison of different GDA measures. 45

3.2 A graphlet-trie containing all 2, 3, 4 and 5-node undirected graphlets. . . . 46

3.3 A subset of dG4 containing all 2 and 3-node directed graphlets and the

4-node directed graphlets that have no bidirectional edges. 46

3.4 Graphlet-trie creation process. 47

3.5 Subgraph census using a graphlet-trie. 49

3.6 MDS representation applied to the GDA matrices obtained for undirected

graphlets and directed graphlets. 51

3.7 Precision-recall curves for undirected and directed graphlets. 52

xvii

List of Figures

3.8 Reciprocity and degree distribution in three networks. 53

3.9 Network similiarity matrices using undirected and directed graphlets. . . . 55

3.10 All 3-node undirected graphlet-orbit transitions. 63

3.11 Graphlet-orbit transitions of node x . 64

3.12 Obtained precision-recall curves on synthetic data. 69

3.13 Network growth according to its number of nodes – grouped by type. . . . 73

3.14 Average degree of the networks by time – grouped by type. 73

3.15 Characteristic path length of the networks by time – grouped by type. . . 74

3.16 Motif-fingerprints of the networks by time – grouped by type 75

3.17 Similarity matrices according to motif-fingerprints’ Euclidean distance (ED),

graphlet-degree-agreement (GDA) and orbit-transition-agreement (OTA). 76

3.18 Orbit-transition matrices of a collaboration network and of a physical in-

teraction network for all 4-node orbits. 78

3.19 Orbit-transition fingerprints for collaboration, physical interaction, crime

and bipartite networks. 79

4.1 Comparison between GoT-WAVE and DynaWAVE on undirected networks

in terms of how well their alignments’ objective scores match the objective

scores of ideal alignments. 94

4.2 Comparison between GoT-WAVE and DynaWAVE on undirected networks

in terms of node correctness. 96

4.3 Advantages of DynaWAVE over GoT-WAVE when both node and edge

conservation are considered. 97

4.4 Comparison between GoT-WAVE and DynaWAVE on directed networks

in terms of how well their alignments’ objective scores match the objective

scores of ideal alignments, using the pure directed randomization scheme. . 99

4.5 Comparison between GoT-WAVE and DynaWAVE on directed networks in

terms of node correctness and how well their alignments’ objective scores

match the objective scores of ideal alignments, using the directed random-

ization scheme. 100

5.1 Graph transitivity of 3 subgraphs. 105

5.2 Matches played per year. 112

5.3 Tennis dominance networks. 115

5.4 Creation of an author citation network. 121

A.1 A graphlet-trie containing the 39 non-bidirectional directed graphlets of

sizes 2, 3 and 4. 137

xviii

List of Algorithms

3.1 Populate a graphlet-trie T with subgraphs Gi ∈ G 47

3.2 Count all orbits from graphlet-trie T in network G 49

3.3 Enumerate GoTs of orbits Ok on temporal network G. 65

3.4 Compute network similarity of set N using k-node GoTs 66

xix

xx

List of Figures

List of Acronyms and Symbols

GDD Graphlet-Degree Distribution
GDV Graphlet-Degree Vector
GDA Graphlet-Degree Agreement
GCD Graphlet Correlation Distance

DGDV Dynamic GDV
SG Static Graphlet

STG Static Temporal Graphlet
DG Dynamic Graphlet
SM Static Motif

GoT Graphet-orbit Transitions
OTA Orbit-Transition-Agreement

NA Network Alignment
GPNA Global Pairwise NA

ER Erdős-Rényi graphs
SF Scale-Free graphs
FF Forest Fire graphs

PPI Protein-Protein-Interaction networks
DC Degree Centrality
BC Betweenness Centrality
CC Closeness Centrality
SC Sugraph Centrality
PR PageRank
GD Graphlet Dominance

NDCG Normalized Discounted Cumulative Gain
MRR Mean Reciprocal Rank

V(G),E(G) vertices and edges of graph G
O(G) orbits of graph G
S(G) snapshots of temporal graph G

Fr(H,G) frequency of graph H in G

k-graph graph with k vertices
Gk all non-isomorphic k-graphs
Ok all orbits of graphs Gk

dGk, uGk directed Gk and undirected Gk
dOk, uOk directed Ok and undirected Ok

xxi

Chapter 1

Introduction

Data Mining collects data in various forms best suited for different purposes [Agg15].

In networks (or graphs), data corresponds to nodes, and the relationships among the

data correspond to edges. Network science studies properties of the network (i.e., the

system) and properties of the nodes (i.e., the agents).

Networks are used to model all kinds of data. Social networks, for instance, rep-

resent people as nodes and their interactions as edges. These interactions can be

undirected (such as friendships, i.e., two people are friends) or directed (such as

follow-relationships, i.e., one user follows another, but maybe not the other way

around). These interactions can be static (such as genealogy, i.e., two women are

sisters) or temporal (such as marital status, i.e., two people were married, and now

they are divorced). Many studies try to understand social phenomena and dynamics

by analyzing social networks [WF94, LBKT08, HW09, MPK11a, CRBS12, RSF+15].

However, the scope of network science is much broader than the study of social

networks. For instance, in the field of computational biology different types of cellular

networks are modeled as graphs with nodes representing specific biological components

such as proteins or genes, and the physical, chemical or functional interactions between

them modeled as edges [Prž07a, KMM+10, KKK+12, WLY14]. Networks are also,

but not only, used to model telephone or e-mail communication, trading networks,

internet routing, paper citations, air/road transportation, power transmission systems,

or linguistic networks [COJT+11].

Nowadays we are flooded with information. For instance, with the advent of high-

1

CHAPTER 1. INTRODUCTION

throughput cell biology technologies, such as DNA microarrays [SSDB95], we increased

the amount of data pertaining to molecular interactions exponentially [Mar13]. While

this recent flood of information has greatly contributed to a more accurate understand-

ing of molecule-level organization, it has also created the need to find ways to filter

and model this data so that it is rendered intelligible to the practitioner. The benefits

(and problems) of Big Data [KWG13, CZ14] are true for almost any other field, such

as chemistry [ÁMDGL+14], finance [HBEJF14], or computer vision [MDF+12].

However, just a few decades ago, data was much scarcer. Network scientists, in partic-

ular, did not have access to large network databases which are now available [RA18].

Paul Erdős and Alfréd Rényi proposed a graph model in 1960 that assumed that each

possible edge in the network was equally likely [ER60]. At the time, it was not possible

to verify if their model was an adequate representation of real-world networks. By the

end of the 20th century, with much more data available, Albert-László Barabási and

Réka Albert showed that, in real-world networks, nodes with many connections are

more likely to gain new connections than nodes with few connections (i.e., the principle

of ”the rich get richer”) [BA99], and Duncan J. Watts and Steven Strogatz showed

that, in real-world networks, nodes are never too far from each other (i.e., networks are

”small-world”, e.g., we all know someone, who knows someone, who knows someone,

who knows President Donald Trump) [WS98].

Inspecting the network’s topological features can yield valuable information about

the network and, thus, of the original system. If a network has topological features

that are not expected to occur in neither purely random nor purely regular graphs

it is considered to be a complex network, and most real-world networks are found to

be complex. As discussed above, singular characteristics commonly associated with

complex networks include having a small-world structure [WS98] and/or a degree

distribution that follows a power-law (scale-free networks) [BA99]. Brain networks,

for instance, have been identified as small-world networks [SCKH04]. Furthermore,

the distance of the average path length between nodes in the brain (representing either

a brain region in mesoscale connectomes or a neuron in microscale connectomes) has

been negatively correlated with a person’s IQ [vdHSKP09], suggesting the importance

of a small-world organization in networks’ efficiency. Other statistics such as the

number of connected components and the clustering coefficient are also frequently

used to characterize a network. [ARS+07] provided a tool to generate a large set of

such statistics.

Another approach to uncover the underlying structure of complex networks is to de-

compose them into their smaller components or subgraphs (see Figure 1.1). Obtaining

2

(a)

(b)

A

A

B

B

C

C

Figure 1.1: A food-web network highlighting two distinct subgraph occurrences. In
the context, subgraph (a) means that ”two animals eat the same animal or plant”,
while subgraph (b) means that ”A eats C, C eats B, and B eats A, what is going on?”.
Subgraph (a) is much more common than subgraph (b). Thus, subgraph (a) might
be regarded as a characteristic subgraph of food-web networks, i.e., other food-web
networks also have higher frequency of subgraph (a) than subgraph (b). This example
showcases the type of information that subgraphs offer.

the frequency of each type of subgraph offers detailed topological information which

can be used to summarize and compare networks.

Frequent subgraph mining (FSM) algorithms can identify subgraphs that appear in

many networks (of the same type) [JCZ13]. For instance, FSM can uncover bio-

logical pathways prevalent in many species or common fragments shared by distinct

molecules [BB02].

The aim of FSM is to find subgraphs that appear frequently in an ensemble of

networks; however, depending on the researcher’s goal, it might be more insightful

to discover subgraphs that are over-represented just on a single network. Network

motifs are small over-represented subgraphs described by Milo et al. [MSOI+02] as

the building blocks of large complex networks. Network motifs have been used to

characterize different types of networks, namely transcription networks of microor-

ganisms, linguistic networks, or social networks [MIK+04]. Network motifs have

been particularly useful to analyze cellular biological networks, such as as protein-

protein interaction networks [AA04], transcriptional regulatory networks [SOMMA02],

metabolism networks [SBS13] or cell signaling networks [LCL+13].

In conclusion, subgraphs are a powerful tool to characterize networks and nodes.

3

CHAPTER 1. INTRODUCTION

1.1 Thesis motivation

This thesis focuses on two distinct but related network problems: network comparison

and node ranking. Network comparison consists in measuring topological properties of

multiple networks and measuring the networks’ topological similarity. Node ranking

consists in measuring topological properties of multiple nodes and measuring the nodes’

topological superiority.

We use similar topological properties for both tasks, namely graphlet-based measures.

Each task is motivated next.

1.1.1 Network comparison

It is often useful to compare networks against each other, particularly because if a

given network’s properties are known it allows for knowledge transfer based on the

similarity or difference between two networks [MNHP10, VKMM17].

One way to perform this comparison is to evaluate the similarity between the subgraphs

that each network contains. Network motif fingerprints [MSOI+02] and graphlet-based

metrics [Prz07b] are possible choices for this task. Both approaches compute the

frequency of a set of small non-isomorphic subgraphs (this task is called subgraph

counting, or subgraph census) but, in addition to that, graphlets also evaluate the

contribution of each individual node from the network, producing a graphlet degree

distribution (GDD) that can be seen as an extension of the node degree concept.

Furthermore, enumerating graphlets is computationally less expensive than calculating

network motifs since, in the case of graphlets, the subgraphs are only counted in the

original network while, in the case of motifs, the subgraphs are also counted in a large

set of randomized networks in order to assess motif significance [RSK09].

Both motifs and graphlets can be effectively used to analyze any network, such as social

networks [JHK12], chemical networks [BCF+10], or image networks [ZHY+13], since

they are general concepts and provide rich topological information [YMP15]. Despite

being general, both motifs and graphlets are most often used to analyze biological

networks such as protein-protein interaction [KP09], disease genes [SGLP14], age-

related genes [YFCM17], or brain networks [KWNP09].

Subgraph-based measures are powerful tools to summarize and compare networks.

However, subgraph-based measures, and graphlet-based measures in particular, were

4

1.1. THESIS MOTIVATION

mostly limited to undirected and static networks. This is mostly due to the time com-

plexity of subgraph counting, which is necessary to extract subgraph-based measures,

and also due to the difficulty in analyzing more complex sets of graphlets (e.g., counting

graphlets that consider edge direction and time is more computationally expensive).

Despite the focus on undirected and static networks, we observe that graphlets are a

general concept that can be extended to directed and temporal networks. Our work

aims precisely at creating new graphlet-based measures that can be used to compare

networks efficiently, both in terms of accuracy and running time.

1.1.2 Node ranking

Many applications aim to find important nodes in a network [LCR+16]. One common

assumption about important nodes is that they are crucial for the quick diffusion of

the information in the network. Thus if one wants to spread information quickly (e.g.,

news in social networks) we only need to pass that information to a few important

nodes (e.g., influencers). Similarly, if one removes just a few important nodes from a

network (e.g., an essential protein in a biological system), the whole system collapses.

Based on the idea of information diffusion, important nodes are commonly associated

with central nodes [LCR+16]. Many node centrality measures have been proposed,

such as degree centrality, betweenness centrality, or PageRank, and they have relatively

high correlations between them [OFP+18].

A different way to view important nodes is to associate them with dominant nodes. As

far as we know, this view is not very common in network science. A dominant node is

not necessarily a central node, since a dominant node should dominate many others

(i.e., have many out-going edges, paths, or subgraphs) but be dominated by few (i.e.,

have few in-going edges, paths, or subgraphs).

The notion of dominance is important in social ethology, for instance, where the goal

is to order a set of individuals into a dominance hierarchy [Vri98, SdV13]. In fact,

dominance hierarchies are present in many species, such as the lobsters [Pet18], and

there are network datasets with relations between different species1.

Dominance networks are not restricted to social ethology, we can build dominance

networks from many sources, such as sports data (e.g., good players beat other players),

school hierarchy (e.g., professors advise PhD students, who themselves advise MSc

1http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm

5

http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm

CHAPTER 1. INTRODUCTION

students), or politics (e.g., a politician wins debates against other politicians).

We aim to develop new tools for node ranking in dominance networks that are more

suitable than current node centrality measures.

1.2 Main contributions

This work consists of the design, implementation and evaluation of network comparison

and node ranking methods. Our methods for network comparison target both directed

and temporal networks. Most previous work targeted undirected and static networks,

which are limited versions for most real world systems, where edge direction and

temporal information are crucial. Our methods are consistently faster and more

accurate than similar (i.e., graphlet-based measures) state-of-the-art solutions when

we test them both on synthetic and real-world networks. We make our tools available

for practitioners, which are of great use to computational biologists where graphlets

are often used for network classification and network alignment. However, our methods

are general and not limited to computational biology. We also propose new methods

for node ranking that outperform state-of-the-art node centrality measures. Next, we

give a more detailed description of our contributions.

Directed graphlets. We extend the concept of undirected graphlets to take into ac-

count the edge direction of the subgraphs. We hypothesize that, in the case of directed

graphlets, edge direction captures relevant information than undirected graphlets

ignore. We test our hypothesis on (a) a set of synthetic network pertaining to different

directed graph models and on (b) real-world data corresponding to directed biological

networks. We verify that directed graphlets achieve higher accuracy than undirected

graphlets when classifying both types of networks.

Graphlet-tries. Related to directed graphlets, we extend the concept of g-tries to

take into account the orbits of the subgraphs stored in the g-trie. Graphlet-tries are an

efficient structure to store and enumerate graphlets. In our experiments, we verify that

our method consisting of directed graphlets and graphlet-tries, named GT-Scanner,

outperforms state-of-the-art algorithms in terms of running time.

Graphlet-orbit Transitions (GoTs). We propose GoTs, which are graphlet-based

features of temporal networks. Most graphlet-based features are static or only allow

for one new event per graphlet transition. Thus, GoTs captures complex subgraph

transitions that other graphlet-based measures do not. Like for directed graphlets, we

6

1.3. THESIS ORGANIZATION

show that GoTs improve upon state-of-the-art both in terms of accuracy and running

time when classifying synthetic and real temporal networks.

GoT-WAVE. We propose GoT-WAVE, a method for temporal network alignment

(NA). We combine WAVE [SCTM15], a fast algorithm for static NA, with GoTs, the

set of temporal graphlet-based features previously discussed. GoT-WAVE outperforms

state-of-the-art temporal NA algorithms for most tests that we perform on synthetic

and real data, in terms of accuracy and running time.

Graphlet-based node ranking. We propose graphlet dominance (GD), a measure

of node ranking, based on the notion of node dominance, that takes into account the

graphlets that the nodes appear at, i.e., different graphlets have different scores, and

nodes that appear in high score graphlets have higher score. GD can also be regarded

as a node centrality measure. We compare GD with other node centrality measures

and apply it to real-world test cases: (a) player dominance in a sports network and

(b) author impact in citations networks. While we focus on these two test-cases, our

method is applicable to any dominance network, i.e., networks where edges indicate

dominance of one node over the other.

OTARIOS. We propose a PageRank-based measure for node ranking, named OTAR-

IOS. OTARIOS is specific to author citations networks and uses features beyond the

network. This contrasts with GD, which only uses the topology of the network. OTAR-

IOS takes into consideration multiple factors (e.g., venue prestige, year) concerning

the authors’ productivity (i.e., their publications) and the authors’ impact (i.e., their

citations). OTARIOS outperforms state-of-the-art algorithms in terms of how well its

ranking matches the ground-truth ranking (i.e., rank more highly authors with more

best paper awards) on several real networks, each comprised of citations in conferences

on a given topic.

1.3 Thesis organization

This thesis is structured into six major chapters. A brief description of each is provided

below.

1. Introduction presents the main context of this thesis, introducing networks,

subgraph-based measures, network comparison, and node ranking. This chapter

also enumerates the main contributions of this work, namely the proposed meth-

7

CHAPTER 1. INTRODUCTION

ods for network classification, network alignment, and node ranking. Finally, it

presents an overview of the thesis’ contents and a bibliographic note.

2. Background introduces necessary network terminology used throughout this

thesis. It also discusses subgraph counting since it is a crucial task to obtain

subgraph-based features of a network. The three main problems addressed in

this thesis are also formally described, namely network classification, network

alignment, and node ranking.

3. Network classification motivates the problem and presents related work. The

chapter is divided in directed network classification and temporal network classi-

fication. On the first, we present GT-Scanner, our method that utilizes graphlet-

tries to store and enumerate directed graphlets. On the second, we present GoTs,

our temporal graphlet-based features. We test both on sets of synthetic and real-

world networks, measuring their classification accuracy and running time against

state-of-the-art approaches .

4. Network alignment motivates the problem and presents related work. This

chapter builds upon the previous one: we use GoTs to create a new temporal

NA algorithm, GoT-WAVE. We evaluate the node correctness of GoT-WAVE’s

produced alignments and how closely these produced alignments match its ideal

alignments. We compare our results with those of state-of-the-art approaches.

5. Node ranking motivates the problem and presents related work. Here we

present our graphlet-based node centrality measure, compare it with state-of-

the-art measures, and apply it to two different real-world ranking problems:

(a) player dominance in a sports network and (b) author impact in citations

networks.

6. Conclusions and future work discusses the research done, summarizes con-

tributions, and gives directions for future work.

1.4 Bibliographic note

Parts of the work of this thesis have already been published in international confer-

ences, workshops, and journals. A list of those is given next:

• Network classification. An extension of undirected graphlets to directed

graphlets. We also extend g-tries [RS14b] to graphlet-tries, incorporating the

8

1.4. BIBLIOGRAPHIC NOTE

concept of orbits. We evaluate our approach on both synthetic models and

real-world networks and verify that our approach, named GT-Scanner, outper-

forms state-of-the-art algorithms when classifying directed biological networks,

both in terms of accuracy and running time. This work was published in

the IEEE/ACM Transactions on Computational Biology and Bioinformatics

(TCBB) journal [ARS17].

• Network classification. A new network fingerprint for temporal networks,

named GoTs, as well as a measure to compare networks based on GoTs, named

orbit-transition agreement (OTA). We show that GoTs outperform both static

and dynamic subgraph-based measures of network similarity on synthetic and

real-world networks. This work was published in the PloS One journal [ARS18].

• Network alignment. A new method for temporal network alignment, named

GoT-WAVE. We show that GoT-WAVE outperforms existing methods for tem-

poral network alignment on synthetic and real-world networks. This work was

published in Oxford Bioinformatics [ARMS19]. An extended version is available

in arXiv [ARMS18].

• Node ranking. A graphlet-based measure of node centrality, named GD. We

apply it to a sports network. This work was published in the 7th International

Workshop on Complex Networks (CompleNet 2016) [ARS16].

• Node ranking. A PageRank-based measure of node centrality, named OTAR-

IOS. We apply it to a citation network. This work was published in the 7th

International Conference on Complex Networks and their Applications (Com-

plex Networks 2018) [SAS18]. An extended invited submission to the Applied

Network Science journal is currently being reviewed.

9

10

Chapter 2

Background

The main goal of this work is to improve the efficiency of network comparison and node

ranking algorithms. This chapter introduces the reader to network science concepts,

gives an overview of subgraph counting algorithms, and formally defines the three

tasks that we tackle: network classification, network alignment, and node ranking. It

is the basis for understanding the remaining chapters.

2.1 Network concepts and terminology

This section introduces relevant concepts and notation from network theory, used

throughout this thesis.

Network (or graph). A mathematical representation of a set of objects and their

relations. A graph G is an ordered pair G = (V , E) comprising a set V of vertices (or

nodes) together with a set E of their edges (or connections). Notation V(G) and E(G)

is used when it is necessary to clarify that V and E are the vertex set and the edge

set, respectively, of G.

Vertices (or nodes). Set of objects in a graph, represented by V . A vertex v can

represent a person in a social network, a protein in a protein-protein-interaction (PPI)

network, or an animal in a food web network. We typically use ”size of a network” to

mean ”its number of nodes”, represented by |V|. Thus, a k-graph (or graph of size k)

has |V| = k.

11

CHAPTER 2. BACKGROUND

Edges (or connections). Set of interactions between vertices, represented by E .

Edges can be connections in a social network, interactions between proteins in a PPI

network, or eating habits in a food web network. Edges are represented by a tuple

(u, v), where u and v are vertices. In directed networks, the order of the tuple is

relevant, e.g., in a directed food web network (u, v), represents that ”u eats v”. Node

u is thus the ”head” of the edge and node v is the ”tail”. In undirected networks, the

order is irrelevant, e.g., in an undirected social network, (u, v) represents that ”u is a

friend of v and vice-versa”. The number of edges in a network is represented by |E|.

Temporal network. Temporal networks used throughout this thesis consist of s

consecutive snapshots of a network G. The set of all snapshots of G is referred to as

S(G). An edge (u, v) exists in snapshot Si(G) ∈ S(G) if nodes u and v are connected

in the interval [IG+ρ× i, IG+ρ× (i+1)[, where IG is the starting time of the network

(e.g., 1st October of 2012) and ρ is the time-interval (e.g., 2 years). A temporal edge is

also referred to as an event. Parameters ρ and s depend on the network; for instance,

in scientific co-authorship networks one or two years are the more suitable value for ρ,

while in conference interaction networks ρ is a few hours or a couple of days. Networks

can gain (or lose) new edges (or new nodes) from Si(G) to Si+1(G).

Neighborhood and exclusive neighborhood. The neighborhood of vertex v ∈ V ,

denoted as N(v), is composed by the set of vertices u ∈ V such that (v, u) ∈ E . Each

node u ∈ N(v) is a neighbor of v. The exclusive neighborhood of a vertex u in relation

to a set of vertices Vs ⊂ V , denoted by Nexc(v,Vs), are the neighbors u of v that are

not neighbors of any w ∈ Vs. More formally, Nexc(v,Vs) = {u : u ∈ N(v),∀w ∈ Vs, u 6∈
N(w)}.

Graph isomorphism. Task of detecting if two graphs are topologically equivalent.

More formally, two graphs are isomorphic if there exists a bijection (or mapping) of

their vertex sets, f : V(G) → V(H), such that ∀(u, v) ∈ E(G) : (f(u), f(v)) ∈ E(H).

Notation u ∼ u′ represents that u ∈ V(G) was mapped to u′ ∈ V(H) (i.e., f(u) = u′),

and (u, v) ∼ (u′, v′) represents that edge (u, v) ∈ E(G) was mapped to (u′, v′) ∈ E(H).

Figure 2.1 gives an example of two isomorphic graphs.

Figure 2.1: Two isomorphic graphs G and H and their bijection.

12

2.1. NETWORK CONCEPTS AND TERMINOLOGY

Subgraph. A subgraph of G is represented as SG, where V(SG) ⊆ V(G) and E(SG) ⊆
E(G).

Subgraph isomorphism. Task of detecting if graph G contains a subgraph SG

isomorphic to graph H. H is induced by SG if all edges (u, v) ∈ E(H), and only

those, are present in its bijection to SG, i.e., ∀(u, v) ∈ E(H) : (f(u), f(v)) ∈ E(SG).

Figure 2.2 illustrates induced and non-induced subgraph isomorphism.

Figure 2.2: Induced and non-induced subgraph isomorphism. The gray edge (0, 2) ∈
E(SG) is not mapped to any (u′, v′) ∈ E(H) in the non-induced subgraph.

Subgraph counting. Task of counting how many subgraphs SG of G are isomorphic

to graph H. A match of H in G is referred to as an ”occurrence”. The number of

occurrences of H in G is its ”frequency”, represented by Fr(H,G). (more details in

Section 2.2).

Graphlets. Set of small non-isomorphic graphs (i.e., every graphlet in the set is not

isomorphic to any other). We use Gk to represent all possible k-graphlets. dGk and uGk
denote directed and undirected k-graphlets, respectively. For simplicity, when terms

are applicable to both directed and undirected graphlets, the more general notation

Gk is used.

Automorphism and Orbit. An isomorphism of a graph into itself is an automor-

phism, and the set of all possible automorphisms of G is denoted by A(G). Figure 2.3

illustrates all four automorphisms of G. Two vertices u and v are equivalent when

there exists some automorphism that maps u into v (i.e., they are in the same orbit).

13

CHAPTER 2. BACKGROUND

Figure 2.3: On the top figure: set of automorphisms of graph G. Arrows indicate
nodes that, when exchanged, the resulting graph is isomorphic to G. On the bottom
figure: set of orbits of graph G. Node colors and letters identify orbits.

For instance, u into z are in the same orbit since at least one automorphism maps one

into the other. G has three different orbits in total (a, b and c), constituting O(G).

More informally, orbits are the unique positions that a node can occupy in a graph.

Node-degree and Degree distribution. In undirected graphs, the node-degree of u

is the number of edges that node u participates in (i.e., the size of its neighborhood).

The degree distribution of a network is the number of nodes in the network with

degree d, with d ∈ [1,+∞[. In practice, real networks do not have nodes with infinite

connections. Thus, the degree distribution is a vector with size max(d). In directed

graphs, the node-outdegree is the number of edges where u is the head, and the

node-indegree is the number of edges where u is the tail. The in-degree (out-degree)

distribution of a network is the number of nodes in the network with in-degree (out-

degree) d, with d ∈ {1,+∞}.

Graphlet-degree vector and Graphlet-degree distribution. Graphlet-degree

vector (GDV) is a generalization of the node-degree. Consider graph G and orbit

a from Figure 2.4. The node-degree of v ∈ V(G) is the number of times v appears

in a subgraph of G isomorphic to A in orbit a (which is the only possible orbit in

A). GDVs consider not only the node-degree (orbit a) but also orbits from bigger

graphlets (Figure 2.4). The GDV of a single node v ∈ V(G), represented by GDV (v),

is obtained by:

1. Performing subgraph counting of each individual graphlet on network G (e.g.,

obtaining all occurrences of graphlets A, B, and C on G).

2. For each occurrence that contains v, evaluate in which orbit o node v is and

increment GDV (v)[o].

14

2.1. NETWORK CONCEPTS AND TERMINOLOGY

Figure 2.4: Graphlet-degree vectors (GDV) and graphlet-degree distribution (GDD).

For instance, consider orbits a, b, c and d from Figure 2.4. Node v has degree equal to

2 (orbit a ∈ A) and appears in 1 triangle (orbit d ∈ C). Graphlet B has two possible

orbits, and v appears at the chain-periphery (orbit c ∈ B) 2 times, and never at the

chain-center (orbit b ∈ B). The GDV of all nodes from G is represented by GDV (G).

Each row of the GDV (G) matrix can be used as the node’s features, and is useful

for node comparison. A graphlet-degree distribution (GDD) of orbit o, is the number

of nodes in the network that appear d times in orbit o. Notice from Figure 2.4 that

GDD(a) is the same as the degree-distribution. The GDD of all orbits is represented

by GDD(G). Typically, all possible k-graphlets of a given size k are used to obtain

GDD(G), e.g., all undirected graphlets with at most five nodes (Figure 2.5).

Network comparison. General task of comparing two networks according to their

topological similarities. Here we subdivide network comparison into two concrete

tasks: network classification (Section 2.3) and network alignment (Section 2.4).

Node ranking. General task of obtaining a rank (i.e., score) for each node in a given

network. In Section 2.5 we describe this task formally.

15

CHAPTER 2. BACKGROUND

Figure 2.5: All undirected graphlets of up to 5 nodes and respective orbits [adapted
from [Prž07a]].

2.2 Subgraph counting

In this section we describe the task of subgraph counting and give an overview of

subgraph counting methods. Subgraph counting is required to obtain graphlet-based

measures, which we use for both network comparison and node ranking.

Input. A set Gk of non-isomorphic k-subgraphs and a graph G.

Problem statement. Determine the frequency FrG(Gi) of all induced occurrences

of the subgraphs Gi ∈ Gk in G. Two occurrences are considered different if they have

at least one node or edge that they do not share. Other nodes and edges can overlap.

Output. The frequency FrG(Gi) of each Gi ∈ Gk in graph G.

Subgraph counting, as defined above, is sometimes also referred to as subgraph cen-

sus [WF94, RS14b], and we use the two terms interchangeably. An important distinc-

tion exists between subgraph counting and subgraph enumeration: subgraph enumer-

ation requires the actual subgraph occurrences to be listed while subgraph counting

only requires the subgraph frequencies. Since the input is a single graph, subgraph

counting differs from Frequent Subgraph Mining (FSM) where the input is, typically,

a collection of graphs [JCZ13] (FSM is discussed in Section 2.2.5.2).

In this work we typically count large and general sets of small graphs. However, ap-

proaches that target specific subgraphs can also be valuable depending on the context,

such as algorithms that count triads [SW05], cliques [FFF15] or stars [GRS11]. Net-

16

2.2. SUBGRAPH COUNTING

works used throughout this thesis have no edge colors nor node colors1, but subgraph

counting algorithms targeting them do exist [GS13, GRSJRMK13, RS14a, KS18].

Subgraph counting approaches are typically divided into three categories [RSK09,

MNSK12, RS14b]. On one end of the spectrum, network-centric approaches [MSOI+02,

WR06a, KAE+09] first extract all k-node subgraph occurrences in G and only after

evaluate which graph Gi ∈ Gk is isomorphic to each subgraph occurrence found. On

the other end of the spectrum, subgraph-centric methods first pick a Gi ∈ Gk and

then only count subgraph occurrences in G isomorphic to Gi. Therefore, subgraph-

centric methods [OSMN09, GK07] are preferable to network-centric algorithms when

Gk consists of just one or a few graphs. Set-centric approaches [PR13, KSD+13, RS14b]

are in the middle of the spectrum: they take as input a set of interesting graphs and

only count those in G, thus, they count not just one but not necessarily all.

We focus on the network-centric approach because it is intrinsically the most general

approach since all subgraph information is collected and, opposing approaches, require

hand-picking an (ensemble of) interesting subgraph(s), which might be hard and

heavily dependent on our knowledge of the network.

Despite its usefulness, subgraph counting is often limited to small networks and small

subgraphs due to its computational complexity. Determining if just one graph is

contained in another (i.e., subgraph isomorphism [Ull76]) is a NP-complete problem.

Furthermore, millions or billions of subgraph occurrences are found even in relatively

small networks, and the number of occurrences increases exponentially with k [Rib11].

Algorithms that perform a full subgraph enumeration (Section 2.2.1) rely on techniques

to efficiently traverse the search space, avoid counting the same instance more than

once, and enumerate multiple subgraphs at the same time, which is possible due to

topological similarities between different subgraphs. Other algorithms avoid doing a

full k-graph enumeration and use analytic methods to speed up computation (Sec-

tion 2.2.2). However, these analytic methods have limitations in their scope, i.e.,

usually they are applicable only to small undirected subgraphs. Exploiting parallelism

has also been put forward by many researchers as a way to reduce computational

time (Section 2.2.3). However, subgraph counting induces unbalanced search trees,

thus requiring care in how work is divided and shared among parallel workers. Count-

ing only approximate subgraph frequencies is another possibility that greatly reduces

computational time (Section 2.2.4), with the additional challenge of managing a trade-

off between speed and accuracy.

1This type of networks are also commonly referred to as multilayer networks [KAB+14].

17

CHAPTER 2. BACKGROUND

Next, we discuss some of these strategies and give an overview of subgraph counting

methods. We give a particular focus to g-tries [RS14a] since we use them for subgraph

counting in later sections. Finally, we discuss related problems to subgraph counting.

2.2.1 Enumeration approaches

In the seminal work in network motif analysis [MSOI+02], Milo et al. proposed a

recursive backtracking algorithm to count subgraphs. The algorithm, named mfinder,

begins by picking a single edge from the network. Then, it expands the edge to a 3-

node connected subgraph by choosing a neighboring edge, and so forth until obtaining

a k-node connected subgraph. mfinder repeats this process until the neighborhood

of the initial edge is fully explored. Then, a new initial edge is chosen and the

same process is followed. mfinder stops when every edge has been explored as an

initial 2-node subgraph. mfinder produces many repeated occurrences since different

initial edges reach the same k-node subgraph(s). For instance, in a network with

just three fully connected nodes (i.e., a clique) a, b and c, mfinder finds six subgraph

occurrences ({a, b, c}, {a, c, b}, {b, a, c}, {b, c, a}, {c, a, b} and {c, b, a}). However, they

are not different occurrences – they all represent the same isomorphic graph. To

avoid counting the same subgraph occurrence multiple times, mfinder uses a graph

isomorphism tool (such as nauty [MP14]) to obtain a canonical representation of the

subgraph occurrences (e.g., all six occurrences mentioned have canonical class {a, b, c}).
In practice, mfinder stores the first occurrence of the canonical class in an hashtable

and, when a repeated occurrence is found, it does not increase its frequency. Thus,

while the subgraph frequencies are correct, mfinder performs redundant computation.

ESU [Wer06] greatly improved upon mfinder by never finding the same subgraph

occurrence twice, thus saving time and also space since it does not need mfinder’s

hashtable. ESU applies a recursive method to each vertex v of the input graph G: it

uses two sets VS (the subgraph occurrence) and VE (the possible extensions), which

initially are set as VS = {v} and VE = N(v). Then, for each vertex u in VE, it

removes it from VE and makes VS = VS ∪ {u}, effectively adding it to the subgraph

being enumerated and VE = VE ∪ {u ∈ Nexc(u,VS) : u > v} (where v is the original

vertex to be added to VS). The Nexc here makes sure that ESU only grows the

list of possibilities with vertices not already in VS and the condition u > v is used

to break symmetries, consequently preventing any subgraph from being found twice.

This process is repeated until VS has k elements, which means a k-subgraph was found.

Like mfinder, at the end of the process ESU performs isomorphism tests (using nauty)

18

2.2. SUBGRAPH COUNTING

to compute the canonical class of each subgraph occurrence, which is a considerable

bottleneck.

2.2.1.1 G-Tries

A<B

 or

B<C

A<B

 or

B<C

B<C

C<D

A<B A<B

A<D

B<C

B<C A<B

C<D

A<B

B<C

C<D

DA

B C

DA

B C

DA

B C

DA

B C

DA

B C

DA

B C

A

B C

A

B C

A

B C

A

Figure 2.6: Example of a g-trie containing all 4-node undirected subgraphs.

A g-trie (Figure 2.6) is a data-structure to store and enumerate subgraphs [RS10b,

RS14c]. Its efficiency is mostly due to two main algorithmic ideas.

First, the search space is heavily constrained by identifying common subtopologies

between the set of subgraphs Gk before enumerating them. Figure 2.7 illustrates this

base concept by showing three small graphs that share a common subtopology. In

practice this means that instead of enumerating each subgraph, GS1, GS2 and GS3,

individually, a g-trie starts by looking for occurrences of the smaller common subgraph

GS0 and then performs the necessary expansions for each larger subgraph. This also

means that g-tries already know the isomorphic class of the subgraph occurrence during

enumeration, removing the need to use nauty (or similar tools) to assess the canonical

class of the subgraph occurrence after it has been found.

Second, symmetry breaking conditions are automatically generated to eliminate au-

tomorphisms, thus avoiding redundancies and guaranteeing that each occurrence is

found only once. Consider Figure 2.6: a 4-node clique {A = 1, B = 2, C = 3, D = 4}
is valid but a 4-node clique {A = 2, B = 1, C = 3, D = 4} is not valid because

(A < B) → (2 < 1), which is false. Thus, the second example is not found. Now

19

CHAPTER 2. BACKGROUND

Figure 2.7: Common topology of three graphs. G-Tries use common structures
between the graphs of Gs to heavily constrain the search space.

consider {A = 2, B = 3, C = 1, D = 4}: the g-trie does not even reach a 4-node

clique because its parent node has conditions A < B ∨ B < C, which is false since

2 < 3 ∨ 3 < 1 is false. Symmetry breaking at intermediate stages greatly reduce

computation time. G-Tries were shown to be one or two orders of magnitude faster

than ESU [Rib11].

A g-trie receives as input the list of graphs that the user wants to enumerate, which

can be all undirected graphlets with up to five nodes, a set of directed graphs, specific

interesting patterns (such as cliques or stars), or any other desired graphs. However,

due to the nature of the g-trie, which relies on common subtopologies between graphs

to construct a compact search tree, g-tries are better suited for tasks where one wants

to count the occurrences of many small graphs inside a large network. Since we want

to enumerate all k-subgraphs, g-tries are an appropriate choice. G-Tries can be fully

constructed before enumeration and stored in files, one for each set of subgraphs to

enumerate (e.g., build a g-trie containing uG5 and use it to compute the frequencies

of uG5 on several networks.)

Other tree-based approaches have been proposed. FASE builds a graph-tree struc-

ture on-the-fly, thus avoiding pre-building a full g-trie [PR13]. Quatexelero builds a

different type of graph-tree (i.e., a quad-tree) which is more specialized in directed

graphs [KSD+13]. Both Quatexelero and FaSE have potential memory issues, since

there may be several tree-nodes representing the same graph, which is not a problem

for g-tries since it only stores one copy of each possible graph. Thus, g-tries are still

the data-structure that results in the fastest algorithm for general subgraph counting,

i.e., subgraph counting of any graph set, without targeting a specific set.

20

2.2. SUBGRAPH COUNTING

2.2.2 Analytic approaches

The previous section focused on general approaches. In some cases, when one chooses a

set of subgraphs of interest (e.g., 4-node or 5-node undirected subgraphs are a common

choice [Prž07a, MP08, JHK12, MDP14]), it might be faster to use a specialized tool.

Some approaches [HD14, OB16] relate the frequency of each subgraph with the fre-

quencies of smaller subgraphs, which are thus less computationally expensive to count.

They construct a matrix of linear equations between subgraphs frequencies that can be

solved using traditional linear algebra methods. Other approaches [MS12, MMFDC14,

ANR+17, PSV17] decompose subgraphs into several smaller patterns of graph prop-

erties, like common neighbors, or triangles that touch two vertices.

ORCA [HD14] is an example of the first kind of approaches. ORCA begins by

building a system of linear equations relating the orbit frequencies of 5-node undirected

orbits with 4-node undirected orbits. Then, only the 4-node undirected orbits are

enumerated, and the linear equations are solved to obtain the frequencies of the 5-

node undirected orbits. In practice, due to the way ORCA’s equations are built, the

system also requires the enumeration of a single 5-node undirected orbit. Usually, the

orbit pertaining to the clique is chosen, since there are efficient algorithms to count

this orbit [JS17, ERS18] and, for sparse enough networks, it is usually the one with

fewest occurrences, making it less expensive to count. ORCA was shown to be one

order of magnitude faster than enumeration based approaches [HD14]. Addressing

size limitation, [HD17] suggested a way of producing efficient equations for arbitrary

sized undirected subgraphs. However, as far as we know, an extension for directed

graphlets has not been proposed yet.

ESCAPE [PSV17] is an example of the second kind of approaches. ESCAPE is

based on a divide and conquer approach that identifies substructures of each counting

subgraph to partition them into smaller patterns (e.g., triangles, paths). It is a

very general method, but with the correct choices for decomposition, it is possible

to describe a set of formulas to compute the frequency of each subgraph. The original

paper only describes the resulting formulas up to 5-node undirected subgraphs. For

most test cases, ESCAPE is one order of magnitude faster than state-of-the-art, namely

ORCA. As far as we know, ESCAPE is the most efficient algorithm to count undirected

subgraphs and orbits up to size 5.

Another intrinsic limitation of these approaches is that, since they do not enumerate

all subgraph occurrences, they can not be used when one needs not only subgraph

21

CHAPTER 2. BACKGROUND

counts but also subgraph listings. For instance, one might want to analyze interesting

subgraph occurrences, e.g., communities, blacklisted patterns, nodes with unusual

GDV, etc.

2.2.3 Parallel approaches

The availability of parallel environments, such as multicores, hybrid clusters, and

GPUs gave rise to strategies that leverage on these resources. One key aspect necessary

to achieve a scalable parallel computation is finding a balanced work division (i.e.,

splitting work-units evenly between workers, e.g., parallel processors, threads). A

naive possibility for subgraph counting is to assign |V|
|P | nodes from network G to each

worker p ∈ P . This egalitarian division is a poor choice since two nodes induce

very different search spaces; for instance, hub-like nodes induce many more subgraph

occurrences than nearly-isolated nodes.

Instead of performing an egalitarian division, [WTZ+05] discriminate nodes by their

degree and distribute them among workers, the idea being that each worker gets

roughly the same amount of hard and easy work-units. Despite achieving a more

balanced division than the naive version, there is no guarantee that the node-degree

is sufficient to determine the actual complexity of the work-unit. Distributing work

immediately (without runtime adjustments) is called a static division. Wang et al.

did not assess scalability in [WTZ+05], but they showed that their parallel algorithm

was faster than mfinder [MSOI+02] in an E. Coli transcription regulation network.

MPRF [LJC+09] is implemented following a MapReduce model [DG08]. In MPRF,

mappers extend size k occurrences to size k + 1 and reducers remove repeated oc-

currences. At each level, MPRF divides work-units evenly among workers. We

still consider this to be a static division since no adjustments are made in runtime.

Overhead caused by reading and writing to files reduces MRPF’s efficiency, but the

authors report speedups of ≈ 7x on a 48-node cluster, when compared to the execution

on a single-processor.

In both cases previously discussed, a worker has to finish a work-unit before proceeding

a new one. Therefore, it is possible that a worker gets stuck processing a very

computationally heavy work-unit while other workers are idle.

[RSL10] was the first to implement work sharing during parallel subgraph counting.

Workers have a splitting threshold that dictates how likely it is to, instead of fully

processing a work-unit, putting part of it in a global work queue. A work-unit is

22

2.2. SUBGRAPH COUNTING

divided using diagonal work splitting which gathers unprocessed nodes at level k

(i.e., nodes that are reached by expanding the current work-unit) and recursively

goes up in the search tree, also gathering unprocessed nodes of level k − i, i < k,

until reaching level 1. This process results in a set of finer-grained work-units that

induces a more balanced search space than static and first-fit divisions. [RSL10] uses

ESU as their core enumeration algorithm and propose a master-worker architecture

where a master-node manages a work-queue and distributes its work-units among slave

workers. This strategy was the first to achieve near-linear speedups (≈128x on a 128-

node cluster) on a set of heterogeneous networks. A subsequent version [RS10a] used

g-tries as their base algorithm and implemented a work stealing architecture. The

approach by [RS10a] was more efficient since it uses a faster enumeration algorithm

(g-tries vs ESU) and has all workers perform subgraph enumeration (without wasting

a node in work queue management). A similar implementation (based on W-W

sharing and diagonal splitting) of g-tries were also developed for shared memory (SM)

environments, which achieved near-linear speedups in a 64-core machine [ARdS14].

The main advantages of SM implementations is that work sharing is faster (since

no message passing is necessary) and SM architectures (such as multicores) are a

commodity while distributed memory (DM) architectures (such as a cluster) are not.

Other approaches use graphics processing units (GPUs). GPUs are processors spe-

cialized in image generation, but numerous general purpose tasks have been adapted

to them [FLL+08, HOO11, MGG12]. GPUs are appealing due to their large num-

ber of cores, reaching hundreds or thousands of parallel threads whereas commodity

multicores typically have no more than a dozen. However, algorithms that rely on

graph traversal are not best suited for the GPU framework due to branching code,

non-coalesced memory accesses and coarse work-unit granularity [MGG12].

[LXXL17] put forward a GPU algorithm mostly targeted at network motif discovery

(thus, counting subgraphs in many networks in parallel) but also with some emphasis

on efficient subgraph enumeration. [LXXL17] avoids duplicate in a similar fashion to

ESU [Wer06] and auxiliary arrays are used to mitigate uncoalesced memory accesses.

A BFS-style traversal is used (extending each subgraph 1 node at a time) to better

balance work-units among threads. [LXXL17] their GPU-algorithm running on a 2496-

core GPU (Tesla K20) against parallel CPU algorithms and report a speedup of ≈10x

to a 6-core execution of the fastest CPU algorithm [RS10a].

[RZ16] proposed a subgraph counting algorithm that combines multiple GPUs and

CPUs. Their method dynamically distributes work between CPUs and GPUs, where

few (but complex) work-units are given to the CPU whereas many (but simple) work-

23

CHAPTER 2. BACKGROUND

units are given to the GPUs. When compared to a sequential version, their hybrid

CPU-GPU version achieves speedups of ≈ 20x to ≈ 200x, depending largely on the

network. However, their approach is limited to 4-node subgraphs, while g-trie based

parallel implementations [RS10a, ARdS14] are general approaches.

2.2.4 Sampling approaches

In some cases, extracting exact subgraph counts is too computationally expensive

and/or unnecessary, and just an approximation of the frequencies is enough [KIMA04,

RS10a]. For instance, one might want to estimate the magnitude of certain subgraphs

(e.g., the network contains billions of 3-node cliques, or just millions).

Some approaches estimate subgraph concentrations [BRAH12, WLR+14] while oth-

ers estimate subgraph frequencies [Wer05, RS10a, WZZ+18]. Estimating subgraph

concentrations is computationally easier since it only requires an estimation of the

different proportions of each subgraph in the network (e.g., 30% 3-node undirected

cliques and 70% 3-node undirected chains), while estimating subgraph frequencies

requires an estimation of the magnitude (e.g., consider the same concentrations as

before: it is different to estimate 3 ·103 cliques and 7 ·103 chains than estimating 3 ·106

cliques and 7 · 106 chains).

Regarding subgraph concentration estimation, ESA (Edge SAmpling) [KIMA04] is a

random walk method that picks a random seed edge from the network and grows that

2-node subgraph up to a k-subgraph. The process is repeated with different seed edges

until the desired sample size is computed. It is a subgraph concentration estimation

because, at the end of computation, ESA does not know what area of the network

it has actually explored (the same subgraphs might even be found multiple times), it

only knows how frequently each subgraph appeared. Furthermore, ESA is a biased

estimator since edges in denser areas of the network are more likely to be sampled

in a k-subgraph (Figure 2.8). Instead of sampling edges, GUISE [BRAH12] samples

a seed graphlet and then counts (a portion of) its neighboring graphlets. GUISE

obtains neighboring k-node graphlets from the original k-node graphlet by removing

a node from the seed one and, if the other k − 1 nodes still form a connected graph,

a node from their neighborhood is picked (i.e., the new graphlet is also a connected

k-graphlet). This process is repeated for different seed graphlets until a predefined

number of samples is taken from the graph. The idea is that, instead of counting all

subgraph occurrences from the network, GUISE only looks at a few local subgraph

occurrences and assumes that the global subgraph concentration is similar to that of

24

2.2. SUBGRAPH COUNTING

its sample. They address the bias problem by introducing an acceptance probability

that rejects denser neighboring graphlets with higher probability than sparser ones.

This strategy has the drawback of producing computation that is then ignored since

some subgraphs are found but not counted, making the algorithm slower. [WLR+14]

proposes a similar strategy to GUISE where no samples are disregarded.

Figure 2.8: Example of a biased subgraph counting estimator. In this toy example,
each edge has 20% probability of being picked as a seed edge by ESA. However,
subgraph {a, b, c} has 60% probability of being sampled by ESA while {x, y} has 40%.
An unbiased estimator should give them equal probability of being sampled, since
their exact frequency is the same, otherwise it is overestimating denser subgraphs.

Regarding subgraph frequency estimation, [Wer05] proposed an approximate version

of ESU (described in Section 2.2.1). Recall that ESU maintains two sets VS (the

set of vertices in the subgraph) and VE (the set of candidate vertices to extend the

subgraph). A vertex is added from VE to VS with probability p(|VS|), where |VS|
is the size of the subgraph already found. In the exact solution p(|VS|) is always

100%, while in the sampling solution p(|VS|) depends on |VS|. Typically, p(|VS|) is

lower for larger |VS|, reducing computational time since larger graphlets are harder

to count [Wer05, RS10a]. [Wer05], and similar strategies, give an estimation not

only of subgraph concentration but also of subgraph frequency, because they know

(approximately) how much of the network was explored. [RS10a] proposed a similar

but more efficient strategy since it uses g-tries to store and enumerate the subgraphs.

Path sampling approaches [JSP15, SPK13, WZZ+18] follow a different strategy. Paths

are subgraphs composed of 2 exterior nodes and k − 2 interior nodes arranged in a

single line. Examples of these are the subgraphs G1, G3 and G9 from Figure 2.5.

Instead of counting all subgraphs, these algorithms relate the number of non-induced

occurrences between k-node subgraphs. For example, when k = 4, there are 4 non-

induced occurrences of G3 in G5 or 12 non-induced occurrences of G3 in G8. Table 2.1

shows this full relationship when k = 4. Then, path sampling approaches enumerate

only the path subgraphs and estimate the others using their non-induced occurrences

relations. To the best of our knowledge, MOSS-5 [WZZ+18] is the algorithm that

achieves the best trade-off between accuracy and time to estimate the frequency of

5-node subgraphs, as it is able to reach errors of ≈ 10−2 with a few samples, even for

25

CHAPTER 2. BACKGROUND

g3 g4 g5 g6 g7 g8

g3 0 1 2 4 6 12
g4 1 0 1 0 2 4
g5 0 0 0 1 1 3
g6 0 0 1 0 4 12
g7 0 0 0 0 1 6
g8 0 0 0 0 0 1

Table 2.1: Number of non-induced occurrences of each undirected graph of size 4
in each other. Position (i, j) in the table indicates the number of times that graph i
occurs non-induced in graph j.

big networks. However the ideas behind MOSS-5 are not easily extendable to directed

subgraphs and larger sized undirected subgraphs due to the ever increasing number

of dependencies between the number of non-induced occurrences, making it harder to

use the information contained in a table similar to Table 2.1 for these cases.

2.2.5 Related problems

2.2.5.1 Network motifs

Finding recurrent patterns in a large network can give us insights into how the real

system works, and network motifs (or simply motifs) [MSOI+02] are an example of

recurrent structural patterns. Motif discovery counts a set of small non-isomorphic

subgraphs G (typically all k-node subgraphs) in a large network G. This is exactly the

problem of subgraph counting. However, motif analysis also assesses which subgraphs

H ∈ G are over-represented in G, i.e., which subgraphs are network motifs of G.

Motif analysis thus consists of two steps: (i) subgraph counting is performed on the

original graph G, and (ii) motif significance is assessed on a null model [MSOI+02].

Numerous null models can be used, such as the one by [MSOI+02] which generates

a set R(G) of randomized networks that keep G’s degree sequence. Subgraph count-

ing is then performed on each R ∈ R(G). Typically, |R(G)| ≈ 100 to guarantee

statistical significance, and increasing the number of randomized networks greatly

increase necessary computational time The average frequency of a subgraph H ∈ G
on the randomized networks is represented by <Fr(H,R(G))>, and H is considered

a network motif if it appears with a significantly higher frequency in G than in R(G).

Motif scores, represented by δ(H,G), are computed for each subgraph H (Eq 2.1). As

26

2.2. SUBGRAPH COUNTING

Figure 2.9: Example of a feed-forward-loop (FFL) motif. FFLs speed up the response
time of the target gene expression following stimulus steps in one direction (a) but not
in the other (b) [MA03]. Network motif analysis identified this subgraph as a motif in
biological networks, namely gene regulation networks [MSOI+02].

was proposed in [MIK+04], motif scores are normalized, represented by ∆(H,G) (Eq 2.2).

δ(H,G) =
Fr(H,G) −<Fr(H,R(G))>

Fr(H,G) +<Fr(H,R(G))>
(2.1)

∆(H,G) =
δ(H,G)√∑
(δ(H,G))2

(2.2)

Graph H is considered a motif of G if both Fr(H,G) and ∆(H,G) are above certain

thresholds [Rib11], guaranteeing minimum frequency and over-representation. The

motif-fingerprint of G is a vector containing all ∆(H,G).

On the application side, network motif analysis has identified the feed-forward-loop

(FFL) (Figure 2.9) as an intrinsic part of the gene regulation of C. elegans and S.

cerevisiae [MSOI+02], suggesting a fundamental similarity in the design of these

biological networks. Network motifs have also been used as a network fingerprint

to compare networks of different families [MIK+04], distinguishing social, linguistic,

and biological networks. Similar studies have been carried out to classify metabolic

networks [ZQ05], co-authorship networks [CRBS12] or articles [WHC12].

2.2.5.2 Frequent Subgraph Mining

Frequent Subgraph Mining (FSM) has similarities with network motif analysis, but it

also has differences. Like network motif analysis, FSM’s aim is to discover recurrent

subgraph patterns but, unlike network motif analysis, FSM’s input is an ensemble of

networks instead of a single network2. Furthermore, FSM only checks for the presence

2 Some studies separate single-graph FSM from ensemble FSM [JCZ13]. Single-graph FSM
consists of subgraph counting on the network and checking which subgraphs have frequency above a
support threshold. This can be seen as a simplification of network motif analysis since no null model
is used. We use FSM to refer to ensemble FSM, which is the standard definition in the literature.

27

CHAPTER 2. BACKGROUND

or absence of a subgraph in each network of the ensemble, instead of computing how

many times the subgraph appears in each3. Then, a subgraph is considered frequent if

it is found in many networks of the ensemble (i.e., above a certain support threshold).

This major algorithmic difference, i.e., only checking for presence instead of counts,

allows FSM algorithms to use pruning strategies that, in other frequent subgraph

analysis tasks, one can not use. By the downward closure property (DCP), if a graph

is frequent in an ensemble of networks (i.e., it is present in many networks of the

ensemble), then the subgraphs of that graph are also certainly frequent and checking

if they are frequent is not needed, thus saving computational time. However, the DCP

is not valid when checking if a graph is frequent in a single network (i.e., it appears

many times in the network), as exemplified in Figure 2.10. Thus, subgraph counting

algorithms [MSOI+02, Wer06, RS10a] are not very efficient in a FSM setting, and

FSM algorithms [YH02, BB02, HWP03, NK05, JYW10] are not usable in a subgraph

counting setting.

Figure 2.10: Example of why the DCP is not valid in subgraph counting. While H
is a subgraph of I, I has higher frequency in G than I. Thus, it is not guaranteed
that the subgraphs of a frequent graph are also frequent.

Like graphlets and network motifs, FSM is a general concept and it has been applied

to biological, e-mail, chemistry, and linguist networks [JCZ13].

In this thesis, we are mainly concerned with actual subgraph counts and not just

subgraph presence. One can compare networks by dividing them according to the

subgraphs that appear in them, but we feel that subgraph counting is more general

and offers more detailed topological information of the network.

3 Some approaches perform subgraph counting on each network of the ensemble, but this is not
the most typical case of FSM [JCZ13].

28

2.2. SUBGRAPH COUNTING

2.2.6 Subgraph counting on temporal networks

In many cases, it might be useful to analyze not only the structure of the system at

a given time but also how said structure is evolving. Temporal network analysis is an

ever-growing field with applications in various domains [HS12, NTM+13].

There are several approaches that incorporate the temporal evolution of subgraphs

to study and characterize networks. Given the computationally demanding nature

of the involved computations, very small or very specific classes of subgraphs are

typically used. One example of this are triangles, which are meaningful for many

applications since they are the simplest communities. Buriol et al. [BFL+06] and

Pavan et al. [PTTW13] put forward a method to extract approximate and exact counts

of all triangles in graph streaming environments. Finocchi et al. [FFF14] proposed

an algorithm to count cliques for sizes slightly larger than 3. Instead of triangles,

Aliakbarpour et al. [ABG+16] focused on star shaped graphs. In this thesis, we are

more interested in approaches that count any type of subgraphs, and not just specific

subgraphs.

Counting subgraphs in temporal networks requires a definition of what temporal

subgraphs are. In our case, we use temporal networks as a sequence of network

snapshots (as defined at the start of Section 2.1). Thus, a direct translation of

subgraph counting from static networks to temporal networks is to simply count

subgraphs in each network snapshot and consider a time-series of the results. Then,

the time-series of the subgraph counts (e.g., motifs or graphlets) of different networks

are compared [BBY09, FM14]. This approach, however, does not offer a real inter-

snapshot relation since the subgraphs are static.

Another option is to, instead of treating each snapshot individually, consider structural

changes between snapshots. This is the approach that we follow in Chapter 3.2.

In short, instead of computing static subgraphs in each snapshot, we compute each

subgraph individually and analyze how it evolves (i.e., how its structure changes or

stabilizes) in subsequent snapshots (more details on the appropriate chapter).

Martin et al. [MDCR+16] proposed a metric to evaluate network similarity based

on how their triplets are evolving over time. Their metric is based on the loss or

gain of edges from one state to the next. They differentiate networks by increase

or decrease of total edges between states (i.e. different pair-wise transitions are not

differentiated as long as they affect the same number of edges). The approach by

Doroud et al. [DBWF11] is more similar to our own since they enumerate all transitions

29

CHAPTER 2. BACKGROUND

between 3-node directed subgraphs in network snapshots. That information is used in

order to estimate the probability of a given transition in a social network and predict

network changes. Kim et al. [KKK+12] also count all 3-node directed subgraphs

to assess which motifs are present in different states of developing gene networks in

different regions. These approaches are however limited to 3-node subgraphs and do

not consider the roles of the individual nodes, that is, the orbits.

Other approaches do not represent temporal networks as snapshots but instead as a

sequence of events. Using this definition, Zhao et al. [ZTH+10] propose communication

motifs, an extension of network motifs. Each edge has an ”alive” period of ∆t time-

units and, likewise, a subgraph is ”alive” when all of its edges are ”alive”. If a subgraph

is persistently ”alive”, it is considered a communication motif.

Temporal motifs [KKK+11] extend communication motifs to account for the order

of the events. When the order of the events is ignored, the two temporal subgraphs

shown in Figure 2.11 are the same, but temporal motifs recognize the two as different.

Like static network motifs, temporal motifs require null models to evaluate over-

representation4. Developing suitable null models for temporal networks is even harder

than for static networks. For instance, if the events are sparse enough, and the

null model simply randomly reshuffles edges, any larger temporal subgraphs will be

considered over-represented by temporal motifs, thus not much information is gained

from applying the null model [HS12]. Significant care is needed to guarantee that

meaningful properties of the original temporal network are kept in the randomized

networks, and remains an important research topic.

Figure 2.11: Temporal motifs, like communication motifs, have a threshold ∆t of
”aliveness” for each event (i.e., edges from t0 are only ”alive” until t0 + ∆t). A set of
touching events (i.e., events that share vertices) are considered a subgraph if all of its
edges are ”alive”. Temporal motifs are richer than communication motifs since they
account for the order of the events (e.g., the two temporal motifs shown represent the
same communication motif).

4 [PBL17] propose fast algorithms for temporal motif discovery and they do not assess motif
over-representation on a null model. However, this definition deviates from the original one by Milo
et al. [MSOI+02].

30

2.3. NETWORK CLASSIFICATION

Dynamic graphlets [HCM15], like static graphlets, do not use a reference null model.

Like temporal motifs, dynamic graphlets consider the order of the events, but dynamic

graphlets also consider the temporal orbits that the nodes occupy in the subgraph.

Dynamic GDVs (DGDVs) describe the node’s neighborhood in a temporal network

(Figure 2.12). Comparing nodes’ DGDVs yields a measure of similarity between the

nodes’ evolving neighborhoods.

Figure 2.12: Dynamic graphlets with up to 3-events. Edge numbers represent the
order of events and node colors represent temporal orbits [adapted from [HCM15]].

2.3 Network classification

Input. A network set N , where each network G ∈ N is labeled with one class

cn ∈ C, represented by c(G). Different sets of features, each represented by Fi. The

dimension of Fi (i.e., its number of features) is represented by |Fi|. The superset of

all Fi is represented as F̂ . Features can be any node properties, such as the clustering

coefficient, average path length, or GDVs.

Problem statement. For each Fi ∈ F̂ and for each G ∈ N , compute feature vector

fi(G). Then, for each pair of networks Ga, Gb ∈ N , compute the similarity φi of their

respective fi, represented by:

φi = φ(fi(Ga), fi(Gb)) (2.3)

We assume that φi ∈ [0..1], thus either (a) the similarity measure itself should produce

values between 0 and 1 or (b) min-max normalization needs to be performed. For most

31

CHAPTER 2. BACKGROUND

tests we use the cosine similarity (cos), defined as:

φ(fi(Ga), fi(Gb)) = cos(fi(Ga), fi(Gb)) =

|Fi|∑
d=1

fi(Ga)[d]× fi(Gb)[d]√√√√ |Fi|∑
d=1

(fi(Ga)[d])2 ×

√√√√ |Fi|∑
d=1

(fi(Gb)[d])2

(2.4)

We compute a similarity matrix SMi between all Ga, Gb ∈ N for each Fi, resulting in

|F̂ | similarity matrices, each with dimension |N |×|N |. Each network G is represented

by its class c(G). Thus, a good Fi should lead to high similarity φi between networks

of the same class and low similarity φi between networks of different classes.

Output: The feature vector Fi ∈ F̂ that classifies networks more accurately.

As an example, suppose that we have two classes c1 and c2, each comprised of two

networks as input ({C1,1, C1,2} and {C2,1, C2,2}, respectively). Now suppose that one of

the feature vectors Fi produces a perfect similarity matrix (i.e., networks of the same

class are identical and networks of different classes are opposite) and another feature

vector Fj produces a regular similarity matrix (i.e., networks are indistinguishable)

(Table 2.2). The cell coloring indicates that the networks are of the same class cn and

thus should have high similarity, i.e., φi ≈ 1, while white cells are networks of different

classes and thus should have low similarity, i.e., φi ≈ 0.

C1,1 C1,2 C2,1 C2,2

C1,1 1 1 0 0
C1,2 1 1 0 0
C2,1 0 0 1 1
C2,2 0 0 1 1

(a) Perfect.

C1,1 C1,2 C2,1 C2,2

C1,1 1 0.5 0.5 0.5
C1,2 0.5 1 0.5 0.5
C2,1 0.5 0.5 1 0.5
C2,2 0.5 0.5 0.5 1

(b) Regular.

Table 2.2: Similarity matrices between two instances of two classes c1 and c2: (a)
perfectly separates the two classes and (b) can not distinguish between them.

In this toy example, the feature vector that produced matrix (a) is better than the

one that produced matrix (b). We describe next how we evaluate classification in a

multi-class problem since, in general, our datasets comprise more than two classes.

Evaluation: If two networks have the same class (c(Ga) = c(Gb)), a positive value

is added to the true set (True(Ga, Gb)
+). Otherwise, a negative value is added

32

2.3. NETWORK CLASSIFICATION

(True(Ga, Gb)
−). The true set is thus comprised of |N | × |N | labels, one for each

pair of networks.

If the similarity score φi (Equation 2.3) between two networks is high, the prediction

is that they belong to the same class, thus a positive value is added to the predicted

set (Pred(Ga, Gb)
+). Otherwise, the prediction is that they belong to different classes,

thus a negative value is added (Pred(Ga, Gb)
−). The predicted set is thus also com-

prised of |N | × |N | labels, one for each pair of networks.

We use similar multi-class evaluation measures as Godbole, S. and Sarawagi, S. [GS04].

Precision =
|Pred(Ga, Gb)

+ ∩ True(Ga, Gb)
+|

|Pred(Ga, Gb)+|
,∀Ga, Gb ∈ N

(2.5)

Recall/True Positive Rate (TPR) =
|Pred(Ga, Gb)

+ ∩ True(Ga, Gb)
+|

|True(Ga, Gb)+|
,∀Ga, Gb ∈ N

(2.6)

False Positive Rate (FPR) =
|Pred(Ga, Gb)

+ ∩ True(Ga, Gb)
−|

|True(Ga, Gb)−|
,∀Ga, Gb ∈ N

(2.7)

Since it is subjective to say that similarity is high, we compute Precision-Recall and

ROC curves. A variable ε dictates if two networks’ similarity is high, i.e., if they are

predicted to be of the same class. To obtain the curves, ε is incremented in small steps

s, such that ε ∈ [0..1] and, at each step, the predictions are made:

Pred(Ga, Gb, φi, ε) =

Pred(Ga, Gb)
+, if φi ≥ ε

Pred(Ga, Gb)
−, otherwise

(2.8)

In the extreme cases: (a) if ε = 1, the two networks have to be exactly alike to be

considered of the same class and (b) if ε = 0, the networks are always considered to

be of the same class. In our experiments, we increase ε in increments of 0.001, thus

taking 1000 steps to traverse the full range between 0 and 1.

Precision, Recall/TPR and FPR are calculated for each level (Table 2.3). Then, we

calculate area under (i) the Precision-Recall curve (AUPR) and (ii) the ROC curve

(AUROC). The best feature vector Fi is the one that produces similarities φi with

highest AUPR and AUROC.

33

CHAPTER 2. BACKGROUND

ε Precision Recall
0 Precision(ε) Recall(ε)

0.001 Precision(ε) Recall(ε)
0.002 Precision(ε) Recall(ε)
· · · · · · · · ·

1 Precision(ε) Recall(ε)

(a) Precision × Recall.

ε TPR FPR
0 TPR(ε) FPR(ε)

0.001 TPR(ε) FPR(ε)
0.002 TPR(ε) FPR(ε)
· · · · · · · · ·

1 TPR(ε) FPR(ε)

(b) TPR × FPR.

Table 2.3: Evaluation measures computed for different ε, used to build (a) Precision-
Recall curves and (b) ROC curves. Note that parameter ε affects the predicted set but
not the true set from Equations 2.5, 2.6, and 2.7.)

2.4 Network alignment

Input. Two networks G and H, where |V(H)| ≤ |V(G)|.

Problem statement. Produce a mapping f : V(G) → V(H) that maximizes struc-

tural conservation. Graph isomorphism is a specific case of network alignment (NA)

where |V(H)| = |V(G)|, and G and H need to be perfectly conserved after alignment,

i.e., all their edges match must match, otherwise G and H are not isomorphic (see

Section 2.1).

Consider two non-isomorphic graphs with four nodes (Figure 2.13); NA aims to find

the best possible mapping out of the 4! possible ones.

Figure 2.13: Network alignment of two graphs with four nodes.

Output. A value between 0 and 1 of how similar the aligned networks are.

Evaluation. Structural conservation can be measured in different ways. Typically,

edge conservation is used in combination with node conservation.

Regarding edge conservation, recall that graph isomorphism aims to obtain f : V(G)→
V(H), such that ∀(u, v) ∈ E(G) : (f(u), f(v)) ∈ E(H), i.e., all edges are conserved. In

34

2.4. NETWORK ALIGNMENT

NA, not all edges are necessarily conserved. Consider Ec as the number of conserved

edges, i.e., Ec = |{(u, v) ∈ E(G) : (f(u), f(v)) ∈ E(H)}|, and Enc as the number

of non-conserved edges, i.e., Enc = |{(u, v) ∈ E(G) : (f(u), f(v)) 6∈ E(H)}|. Simple

measures, such as S3 [SM14], compute the ratio of conserved and non-conserved edges

(Figure 2.14).

Figure 2.14: Edge conservation between two aligned networks. Green edges are
conserved and red edges are non-conserved.

Regarding node conservation, NA aims to preserve the topological features of aligned

nodes. Each node u ∈ V(G) and v ∈ V(H) is represented by a set of node features

F . For instance, F can contain the node degree, the clustering coefficient, and the

betweenness centrality. Thus, each node x is represented by feature vector fv(x) =

{degree(x), clust-coef(x), betweenness(x)}. When aligning two nodes u ∈ V(G) and

v ∈ V(H), node conservation measures how similar fv(u) and fv(v) are, computing

their Euclidean distance or cosine distance, for instance.

Figure 2.15: Topological properties of a node x.

Choosing a set of features to evaluate node conservation can be challenging, since

numerous measures exist. A possibility is to choose a large set of mostly unrelated

features, extract them, and do feature selection to analyze desired properties [CPS+16].

Another option is to extract graphlets up to a certain size and use them as fea-

tures [MNHP10, SM14, SCTM15].

NA maximizes an objective function c(G,H) which measures both edge conservation

(ec) and node conservation (nc),

c(G,H) = α · ec(G,H) + (1− α) · nc(G,H) (2.9)

35

CHAPTER 2. BACKGROUND

α is a parameter between 0 and 1, controlling the relative importance of node conser-

vation against edge conservation, e.g., if α = 0, only node conservation is considered;

if α = 1
2
, edge and node conservation are considered equally; etc. High c(G,H) means

that the aligned networks are similar.

2.5 Node ranking

Input. A network G = {V , E}. A ground-truth score Gs(v) for each node v ∈ V .

Problem statement. Calculate a produced score Ps(v) for each node v ∈ V without

knowing the Gs(v).

Output. A produced ranking Pr, which is a vector of the positions of each node in

the ranking, ordered from highest to lowest Ps(v).

Evaluation. We compare the produced ranking Pr with the ground-truth score

Gs using normalized discounted cumulative gain (NDCG) and the mean reciprocal

rank (MRR). Both NDCG and MRR are computed in relation to the Top-n nodes,

represented by NDCG@n and MRR@n, respectively (e.g., NDCG@5 is computed only

for the Top-5 ranked nodes of the produced ranking).

Consider a toy example with five nodes v with a certain ground-truth Gs(v) (Ta-

ble 2.4). The ideal ranking is represented as Ir(v) and a produced ranking is repre-

sented as Pr(v).

v Gs(v) Ir(v) Pr(v)
1 6 #2 #5
2 5 #3 #4
3 5 #4 #3
4 8 #1 #2
5 2 #5 #1

Table 2.4: Example of node ground-truth and ranking.

NDCG is computed in two steps [JK02]. In the first step, the DCG is calculated as

shown in Equation 2.10. For each position p ∈ {1..n}, we find the node v ranked in

position p in the produced ranking Pr. Then, we use the ground-truth score Gs(v)

as an indicator of a good or bad rank (i.e., a Pr that puts nodes with high Gs in

the top-n positions has higher DCG). This value is divided by log(p + 1) because,

36

2.5. NODE RANKING

otherwise, placing a node in any of the top-n positions would be valued equally.

DCG@n =
n∑
p=1

Gs(v)

log(p+ 1)
, P r(v) = p (2.10)

In the second step, NDCG is obtained by normalizing the value of the produced ranking

by that of the ideal ranking (Equation 2.11), thus NDCG@n ∈ [0, 1].

NDCG@n =

n∑
p=1

Gs(v)
log(p+1)

, P r(v) = p

n∑
p=1

Gs(u)
log(p+1)

, Ir(u) = p
(2.11)

MRR@n is obtained by computing the average ground-truth rank of the top-n ranked

nodes by the produced ranking (Equation 2.12).

MRR@n =

n∑
p=1

Ir(v), P r(v) = p

n
(2.12)

Typically, MRR is not normalized; thus MRR@n ∈ [
∑n
p=1 p

n
,
∑n
p=1 V(G)−p+1

n
].

Considering the toy example from Table 2.4:

NDCG@5 =

2
log(2)

+ 8
log(3)

+ 5
log(4)

+ 5
log(5)

+ 6
log(6)

8
log(2)

+ 6
log(3)

+ 5
log(4)

+ 5
log(5)

+ 2
log(6)

≈ 14.02

17.21
≈ 0.81

MRR@2 =
5 + 1

2
= 3

MRR@4 =
5 + 1 + 4 + 3

4
= 3.25

Rankings that have higher NDCG@n and lower MRR@n are better.

37

38

Chapter 3

Network classification

It is believed that network structure (or topology) and network function are intrinsi-

cally related [vdHSKP09]. For instance, social networks have similar network motifs,

and linguistic networks also have similar network motifs, but social and linguistic

networks have different network motifs between them [vdHSKP09]. Network motifs

are just one possibility to compare network structure.

Here we assume that the hypothesis ”topological similarity indicates functional sim-

ilarity” is true. Thus, a method that measures topological similarity should yield

high values for functionally similar networks (i.e., networks of the same class) and low

values for functionally dissimilar networks (i.e., networks of different classes). In the

previous example, network motifs were a good method because different networks (i.e.,

social versus linguistic networks) had clear topological differences.

In this chapter we propose new methods to measure topological similarity in directed

and temporal networks. We evaluate the methods both on synthetic networks and

on real networks. On synthetic networks we know for certain that topology indicates

function, thus these tests are necessary to evaluate the methods, while tests on real

networks might lead to new findings.

39

CHAPTER 3. NETWORK CLASSIFICATION

3.1 Network classification of directed networks

3.1.1 Motivation

Numerous measures can be used to evaluate and compare network topology. Simple

statistics such as the degree distribution, clustering coefficient, or the average path

length are often used to get an initial feel of the network’s structure [ARS+07].

Subgraph-based measures offer rich topological information. Motifs and graphlets are

small non-isomorphic subgraphs, but graphlets account for the position (or orbit) of

the nodes in the subgraph while network motifs do not. Another difference between

graphlets and networks motifs is that the latter require a null model to verify if

the subgraphs are over-represented. Usually the null model is an artificial random

network that maintains the original network’s node degree sequence. On the other

hand, graphlets do not require a null model and use the information of all subgraphs

to perform a full-scale network comparison.

Graphlets are induced subgraphs. Sometimes network motifs are used as partial

occurrences [SS04] however, like graphlets, researchers use them more commonly

to account only for induced occurrences [MSOI+02, RS10b]. Contrarily to partial

occurrences, induced occurrences are not ambiguous because existing and non-existing

edges are given equal importance, leading to more revealing and less convoluted results.

Graphlet usage is often restricted to analyzing only the set of 30 undirected graphs

of up to five nodes (Figure 2.5), originally presented by [Prž07a], due to computa-

tional limitations. However, a substantial gain in topological information might be

attained by examining different sets of graphlets. One possibility is to enumerate

larger graphlets since, by definition, they capture more topological information about

the network’s structure than smaller graphlets, and this added information might be

valuable. For instance, Hulovatyy et al. observed that larger graphlets of 6 or 7 nodes

led to a higher accuracy for node classification in dynamic networks than smaller

ones [HCM15]. Additionally, in directed networks, edge direction should be taken into

account since it can potentially reveal information about the network’s structure that

undirected graphlets do not capture. Despite the fact that graphlets are a general

model, at the time of our proposed extension for directed networks [ARS15], the only

other extensions to the original concept were relative to ordered graphlets [MDP14]

and dynamic graphlets [HCM15]. The latter work by Hulovatyy also goes beyond

the usual 5-node graphlets (up to size 7). Since then, another extension for directed

40

3.1. NETWORK CLASSIFICATION OF DIRECTED NETWORKS

networks was proposed [SMDYP16].

In the case of biological networks, for instance, many cellular biological networks

are intrinsically directed such as metabolic, cell signaling, and gene transcriptional

regulation networks. Methods and metrics that ignore the edge direction of these

networks might be losing important information. Garlaschelli and Lofredo [GL04]

proposed a new measure ρ to calculate the link reciprocity of a network, which can be

used to assess if its edge direction is important or not. Their measure is an absolute

quantity ranging from -1 (no reciprocity) to 1 (completely reciprocal). Networks with

ρ ≈ −1 are purely directional networks, meaning that edge direction is an intrinsic

aspect of these networks and removing it makes them meaningless. On the other hand,

networks with ρ ≈ 1 can be safely transformed into topologically equivalent undirected

networks without losing much information since their edges are always reciprocally

connected. Garlaschelli and Loffredo calculated that cellular and food web networks

rank closer to the middle of the scale (ρ ≈ 0) meaning that edge direction in these

networks is significant. Additionally, some specific small directed graphs, such as

feed-forward loops, have been shown to play a fundamental role in the organization of

distinct networks [MA03].

Network motifs have been extensively used to study directed biological networks such

as neural, transcriptional, and signal networks [WLY14]. Graphlets on the other

hand are mostly restricted to undirected networks since, as mentioned previously,

they consist of a set of undirected graphs. Park et al. [PHHT10] examined numerous

directed biological networks using both directed motifs and undirected graphlets. Such

studies could have been enriched if a tool for enumerating directed graphlets was

available at the time.

3.1.2 Overview of our contribution

In this chapter we present GT-Scanner1, an efficient general-purpose tool to enumerate

and compare both directed and undirected GDVs. Furthermore, GT-Scanner can be

used to enumerate arbitrarily large subgraphs (as long as they fit into memory) since

it is not targeted for specific graphlets. Previous approaches either restricted the

application of graphlets to undirected networks or had to ignore edge direction in

directed networks, in practice reducing them to undirected networks. To achieve this

objective we extend both i) the original concept of graphlets to directed graphlets

(Section 3.1.3) and ii) upgrade a tree data-structure specialized in efficiently storing

1 GT-Scanner is available at www.dcc.fc.up.pt/~daparicio/software.

41

www.dcc.fc.up.pt/~daparicio/software

CHAPTER 3. NETWORK CLASSIFICATION

graphs, the g-trie, to a graphlet-trie (Section 3.1.4). GT-Scanner can thus be used to

enumerate directed and undirected graphlets as well as network motifs. GT-Scanner

is an extension of a previous tool2 which did not consider orbits.

To assess the applicability and performance of GT-Scanner, we organize a set of exper-

iments into two parts: i) classification accuracy on synthetic data (Section 3.1.5) and

ii) performance evaluation on real biological data (Section 3.1.6). The first measures

how well directed graphlets can group a set of directed networks and compares it with

undirected graphlets, while the latter analyses the performance of our tool on a set of

directed biological networks of different types (biological functions) by comparing its

execution time with state-of-the-art approaches.

3.1.3 Directed graphlets

Graphlets [Prž07a] are small induced non-isomorphic subgraphs that include informa-

tion about the position or orbit that nodes occupy in the graphlet (more details in

Section 2.1). For instance, considering graphlet G11 from Figure 2.5, a node in the

center of a star-graph (i.e., in orbit O23) is different from the nodes on its periphery

(i.e., in orbit O22). A set containing a specific set of graphlets is referred to as G, and

the corresponding set of orbits as O. Again, considering only G11, then G = {G11} and

O = {O22, O23}. In practice, G contains not just a single graphlet but all graphlets with

≤ k nodes, represented by Gk. We use notation dGk and dOk for directed graphlets

and directed orbits, respectively, and uGk and uOk for the undirected counterparts.

We use graphlets to obtain a graphlet-degree distribution (GDD) of a network (Sec-

tion 2.1). A GDD can be regarded as a set of (topological) features that describe a

given network (Table 3.1). For a given network G, dGj (k) from GDDG denotes how

many nodes appear k times in orbit j. k ranges from 0 (i.e., no nodes appear k times

in orbit j) to +∞ (i.e., not numerically bounded).

GDDG =

d0G(1) d0G(2) · · · d0G(+∞)
d1G(1) d1G(2) · · · d1G(+∞)

...
...

. . .
...

dmG (1) dmG (2) · · · dmG (+∞)

Table 3.1: Graphlet-degree distribution (GDD) matrix.

2 Available at www.dcc.fc.up.pt/gtries.

42

www.dcc.fc.up.pt/gtries

3.1. NETWORK CLASSIFICATION OF DIRECTED NETWORKS

We compare two networks G and H by measuring the distance between their respec-

tive GDD matrices. GDD-agreement (GDA) is typically used for this task [Prž07a,

ZYHW13, YFCM17]. Other possible measures to compare graphlets include rela-

tive graphlet frequency distance (RGFD) [PCJ06] and graphlet correlation distance

(GCD) [YMDD+14]. However, RGFD disregards orbits (i.e., it only considers graphlets’

frequencies) and GCD requires a pre-processing step where a set of equations is

calculated for G (i.e., obtain the correlations between graphlets in G). Thus, we

use GDA to compare networks in our experiments. GDA consists in four steps: (1)

reduce the weight of high degrees (Equation 3.1), (2) normalize the GDD matrices by

row/orbit (Equation 3.2), (3) for each row/orbit, compute the orbit-GDA between the

two networks (Equation 3.3), and (4) average out the orbit-GDA into a global GDA

(Equation 3.4). Step 1 acts as a decay function, reducing the weight of nodes in the tail

of the graphlet-distribution. Step 2 ensures that all orbits have the same weight (i.e.,

∀j,∑ lim
k
sjG(k) = 1), thus, rare orbits are as important for the GDA as common orbits

(otherwise common orbits would dominate the GDA). Thus, GDA’s assumption (and

ours) is that rare orbits are important to differentiate two networks. Step 3 computes

the Euclidean distance of G’s and H’s GDDs for each orbit and normalizes it between

0 and 1 (i.e., GDA(G,H)j ∈ [0, 1]). Finally, step 4 computes the arithmetic mean of

the orbit-GDAs, thus GDA(G,H) ∈ [0, 1].

sjG(k) =
djG(k)

k
(3.1)

njG(k) =
sjG(k)∑
k

sjG(k)
(3.2)

GDAj(G,H) =
1√
2

√∑
k

(njG(k)− njH(k))2 (3.3)

GDA(G,H) =
1

|O|
∑
O

GDA(G,H)j (3.4)

When GT-Scanner compares two (or more) networks, it outputs GDA(G,H) as well

as GDDG and GDDH . A high GDA(G,H) means that G and H are topologically

similar. Since GT-Scanner can calculate both directed and undirected GDAs, uGDAk

and dGDAk represent the GDAs when comparing undirected and directed graphlets,

respectively, of size k.

We adjust the original GDA measure to only consider orbits that appear in at least one

of the networks. For simplicity and clarity, we refer to the original measure as GDA′

and our own as GDA. This modification in GDA is necessary since non-appearing

orbits lead to unreasonably high GDA′s when a large number of orbits are enumerated

43

CHAPTER 3. NETWORK CLASSIFICATION

Undirected graphlets Directed graphlets

k u|Gk| |uOk| |dGk| |dOk|
2 1 1 2 3 (1.5 × |dGk|)
3 3 4 15 33 (2.3 × |dGk|)
4 9 15 214 730 (3.5 × |dGk|)
5 30 73 9,578 45,637 (4.8 × |dGk|)
6 142 480 1,540,421 9,121,657 (5.9 × |dGk|)
7 965 4,786 882,011,563 ≈ 7 × |dGk|
8 12,082 77,275 1,793,355,966,869 ≈ 8 × |dGk|
9 273,162 2,188,288 13,027,955,038,433,121 ≈ 9 × |dGk|

Table 3.2: Number of undirected and directed graphlets, as well as their respective
orbits, depending on the size of the graphlets. For each case, we count all graphlets
of sizes 2..k. It is impractical to enumerate all possible orbits for dGk when k is larger
than 6 due to the size of |Ok|.

or when small networks are used. This happens because, by definition, the GDA′ of

two networks increases if the orbit frequency is zero in both networks. Hulovatyy et al.,

which used bigger graphlets than the usual 5-node undirected subgraphs, suggested

a similar explanation [HCM15]. This is not very problematic when few orbits are

enumerated, such as the original 73 undirected ones (Figure 2.5); however, bigger

undirected graphlets (k > 5) and directed graphlets require thousands or millions of

orbits to be enumerated (Table 3.2). For these cases with more orbits, it is likely

that many of the possible orbits do not appear in either network, which may result

in higher GDA′s than expected. For instance, on tests comparing pairs of small food

webs [BM06], we obtained an average GDA′ of ≈ 0.5 when enumerating dG4, and an

average GDA′ of ≈ 0.85 when enumerating dG5. This does not mean that two food

webs are much more alike when looking at their larger graphlets but rather that the

GDA′ measure is not well-suited, because there are many orbits that do not appear

in either food web. Figure 3.1 illustrates the difference in agreement values given by

the original GDA′ metric and our own GDA.

Another problem lies in the huge number of possible orbits (i.e., |Ok|) that directed

graphlets with more than 5 nodes have (i.e., k > 5). For instance, when k = 6 there

are more than 1 million potential orbits (Table 3.2). Assuming that the frequency

of each orbit is stored in an 4-byte integer, computing Ok requires |V (G)| × 4 · |Ok|
bytes of memory. Therefore, enumerating dG5 on a network with 105 nodes requires ≈
4GB of RAM, which is still feasible in most modern PCs; however, enumerating dG6

is only possible on networks with a few hundred nodes, and if k ≥ 6 the enumeration

is simply unfeasible. A possible way to reduce the memory footprint is to deal with

44

3.1. NETWORK CLASSIFICATION OF DIRECTED NETWORKS

Figure 3.1: Comparison of different GDA measures. The original GDA′ was found
to produce unreasonably high values for small networks (in the example) or when
many graphlets are enumerated. This makes the measure inappropriate to compare
directed graphlets since the number of orbits is very high. In our modified GDA only
orbits appearing in either G, H or both are considered, discarding non-present orbits.

orbit redundancies [MP08]. Nonetheless, larger values of k still produce too many non-

redundant orbits that make the computation unfeasible in terms of memory. Another

option is to avoid generating all possible graphlets and orbits before the enumeration

and instead build their representation during the enumeration phase as they occur in

the network [PR13] since it is reasonable to expect that only a fraction of all possible

graphlets/orbits actually appear in a given network. This strategy introduces an

overhead in computational time but makes it attainable to analyze larger graphlets.

3.1.4 Graphlet-tries

A g-trie [RS14c](Section 2.2.1.1) is a tree-like data-structure, initially created to cal-

culate network motifs (Section 2.2.5.1), but which efficiently solves the more general

subgraph counting problem (Section 2.2). Ribeiro and Silva [RS10b] presented a

g-trie algorithm that was one or two orders of magnitude faster than previous ap-

proaches, showcasing its efficiency. Since then, faster algorithms have been proposed

(Section 2.2.2) but they are specific to certain subgraphs, while g-tries remain one of

the fastest algorithms for general subgraph counting (i.e., they can be used to count

any subgraph set efficiently).

Graphlet-tries are an extension of g-tries that also consider the nodes’ orbits. The

broader term g-trie is used whenever a concept applies to both g-tries and graphlet-

tries. A graphlet-trie containing all 30 undirected graphlets (Figure 2.5) is shown in

Figure 3.2. The original graphlet and orbit numbers from [Prž07a] are kept only for

convenience since they are generated automatically in our implementation. All 2 and

3-node directed graphlets are illustrated in Figure 3.3 as well as the non-bidirectional 4-

node directed graphlets (the bidirectional graphlets were removed for space concerns).

An additional graphlet-trie containing them is presented in Appendix A.

45

CHAPTER 3. NETWORK CLASSIFICATION

Figure 3.2: A graphlet-trie containing all 2, 3, 4 and 5-node undirected graphlets
G0, ..., G29 as they were presented in [Prž07a]. In a g-trie the common topologies
between graph(let)s of different sizes become evident.

0
1

7
8

12
10

11
2

5
6

2
3
4

20
21

32

33

34

36
35

37
38
39
40

41

42 4443

60
57

58 59

124

125
126

7372 74

75

76
77 78

79

8180

82 85
84

83 86 87

88 89 90
91

92
93

94
95

96 97

98 99

100 101

102 103
104

105

127
128

129 130
134

133

131 132

49
50

51 52

144
143

141 142 146145

147

53

54 55 56
45 46

47 48 63
62

64 61 67
65 66

71

68 6970

110
111112 113

117
116

114 115 118
119 120

121

122

123

137
138

139 140

135
136

107106 108

109

. . .

3-node Directed Graphlets2-node
Directed
Graphlets

4-node Directed GraphletsG0
G1

G3G2
G4 G5 G6 G7 G8 G9 G10 G12 G13 G14

G19 G20 G21G15 G16 G17 G18 G22 G25G23 G24

G27 G28 G29 G30 G31 G32 G33 G34

G39 G40 G41 G42 G43 G44 G45 G46

G36 G37 G38

9

13 14
15 16

17 18
19

22

23

24 25

26

27
28

29
30 31

G26

G11

G35

G47 G48

Figure 3.3: A subset of dG4 containing all 2 and 3-node directed graphlets and the
4-node directed graphlets that have no bidirectional edges (for space concerns).

3.1.4.1 Graphlet-trie creation

A graphlet-trie is built by iterative insertion; Figure 3.4 illustrates the process and

Algorithm 3.1 contains the pseudo-code. When graph G15 is inserted into an initially

empty graphlet-trie (lines 2–4) no common subtopologies are found (lines 6–7) and

46

3.1. NETWORK CLASSIFICATION OF DIRECTED NETWORKS

Empty
G-Trie

Insert Insert Insert

a0
a1

c0

c1

c2
c3 c4

c2
c3 c4

a0
a1

b2
b3
b4

b0
b1

c5c6 c7c8

b1 b1

G15 G16 G17
A

B

C

D

a0
a1

b0

A

B

C

c0

c1

D E

a0
a1

A

B

b0C

c0

c1

D

F

GE

Figure 3.4: Iterative insertion of 3 graphlets to a graphlet-trie. Graphlet-trie vertices
colored in gray represent the path to the newly added graphlet. Vertices with dotted
contours were added in the most recent insertion.

Algorithm 3.1 Populate a graphlet-trie T with subgraphs Gi ∈ G
1: procedure CreateGraphletTrie(G)
2: T ← EmptyGraphletTrie()
3: for all Gi ∈ G do
4: Insert(T.root,Gi, 1)

5: procedure Insert(N,Gi, depth)
6: for all Ci ∈ N.children do
7: if ShareCommonTopology(Ci, Gi, depth) then
8: Insert(Ci, Gi, depth+ 1)
9: return

10: NewChild← N.addChild(Gi, depth)
11: Insert(NewChild,Gi, depth+ 1)

four new graphlet-trie nodes need to be created (lines 10–11), A, B, C and D, each

containing a subgraph of size equal to the depth level of the graphlet-trie (A has 1

vertex, B has 2 vertices, and so forth). A graphlet-trie, unlike a traditional g-trie, also

evaluates the subgraph orbits and stores them alongside the graphlet. When G16 is

inserted to the graphlet-trie, only node E needs to be added to it since G15, which was

previously inserted, and G16 share the common path A⇒ B ⇒ C in the graphlet-trie

(lines 6–9). Finally, G17 requires two nodes to be created, F and G, because G17 only

shares the path A⇒ B with the other two graphlets already in the graphlet-trie.

In this very short example, the compression rate achieved by the graphlet-trie is 7
12
≈

47

CHAPTER 3. NETWORK CLASSIFICATION

42% since each 4-node graphlet would require 4 different subgraphs to be added (one

for each k ∈ {1, 2, 3, 4}, giving a total of 12 graphlet-trie nodes for the 3 subgraphs)

but, by using the common topology of the graphlets, only 7 subgraphs are added to

the graphlet-trie. Inserting all 4-node undirected graphlets gives a higher compression

ratio of ≈ 80% since there are more opportunities for the graphlet-trie (and g-tries in

general) to find common topologies between the subgraphs [RS14c].

Usually graphlet enumeration requires subgraph counting of not only size k but also

all sizes s < k. Traditional g-tries enumerate subgraphs all of the same size k, so we

had to adapt graphlet-tries to support s ≤ k enumeration. G-Tries guarantee that all

subgraphs on the g-trie leaves are non-isomorphic, however the same is not true for non-

leaf g-trie nodes (illustrated in Figure A.1 of Appendix A). Thus, repeated occurrences

can be found for s < k graphlets. To avoid counting them, we consider isomorphic

graphlets as being the same subgraph, and thus only one of them is considered the

non-isomorphic class (i.e., while two or more isomorphic graphlets might appear in a

graphlet-trie, and all are used for enumeration, only the frequency of one of them is

considered). Like g-tries, the set of subgraphs/graphlets that the user wants to query

on the network is fully customizable and given as input, making graphlet-tries a very

flexible approach.

3.1.4.2 Graphlet-trie enumeration

Figure 3.5 illustrates how we use the graphlet-trie from Figure 3.4 to perform subgraph

enumeration. The graphlet-trie search algorithm, GT-Scanner, is essentially a depth-

first search algorithm, mapping the input network to the graphlet-trie. Notation

(N, {v1, v2, ..., vk}) represents that vertices v1, v2, ..., vk from the input network are

mapped to node N on the graphlet-trie. For simplicity, N refers to both the graphlet-

trie node and its respective subgraph.

At the start, GT-Scanner maps each of the seven vertices of the network, one at a

time, to the root of the graphlet-trie, which is node A (lines 2–4 of Algorithm 3.2).

Starting from (A, {a}), the search descends on the graphlet-trie and looks for valid

candidates (line 7). For an efficient graph traversal, GT-Scanner picks the vertex

from Vused that is connected to the newly added node in graphlet-trie T (line 12)

that has the smallest neighborhood (line 13). At the beginning A is the only possible

choice. The candidate vertices c ∈ Vcand are the neighbors of A that respect both

the graphlet-trie connections (in this case, candidate c only needs to have an incoming

edge from A) and symmetry breaking conditions, which are needed to avoid isomorphic

48

3.1. NETWORK CLASSIFICATION OF DIRECTED NETWORKS

Subgraph
Census on

b c f
e

a

d

g

b
b

d

b
a b c

d

b c
ed

b c
d

b
c

d

b
e

d

b
ed

b

ed

b
a

d

b a

d

b

a

a

c

b

d

b

b

d

A A

B

C F

G

B

C F

D E D

a b

a

E

. . .

c2

c3 c4

a0
a1

b2
b3
b4

c5c6 c7c8

b1

a0
a1

A

B

b0C

c0

c1

D

F

GE

gc d e f

Figure 3.5: Subgraph census using a graphlet-trie. Nodes in red mean that no
candidate was found for that particular graphlet. The dotted arrows represent the
search path.

Algorithm 3.2 Count all orbits from graphlet-trie T in network G

1: procedure countAll(T,G)
2: for all vertex v of G do
3: for all children c of T.root do
4: count(c, {v})
5: procedure count(T, Vused)
6: if T.isNonIsomorphic() then
7: T.orbits(Vused)++

8: V ← GetValidCandidates(T, Vused)
9: for all vertex v of V do

10: for all children c of T do
11: count(c, Vused ∪ {v})
12: function GetValidCandidates(T, Vused)
13: Vconn← vertices connected to the vertex being added
14: m ← vertex of Vconn with smallest neighborhood
15: Vcand← neighbors of m that respect both
16: connections to ancestors and
17: symmetry breaking conditions
18: return Vcand

cases (lines 14–17). The first viable candidate is vertex B, so GT-Scanner finds the

mapping (B, {a, b}) and increments the frequency of orbits a and b since B is a valid

non-isomorphic graphlet-trie node (line 6). The search process continues in depth-first

fashion (lines 8–10) and finds that no valid mapping exists between C and {a, b, vi}
since no vi can be joined to {a, b} so that the resulting subgraph forms a subgraph

isomorphic to C. Therefore, GT-Scanner backtracks to (B, {a, b}) and instead looks

for a valid mapping of F , finding (F, {a, b, d}) and incrementing the respective orbit

frequencies. GT-Scanner finds no valid mappings for (G, {a, b, d, vi}) and backtracks,

49

CHAPTER 3. NETWORK CLASSIFICATION

finding no further alternatives for (F, {a, b}). GT-Scanner backtracks again and, since

it finds no other mappings for (B, {a, vi}), it moves on to vertex b. GT-Scanner finds

(A, {b}), (B, {b, d}), (C, {b, d, c}), and (D, {b, d, c, e}) until it has to backtrack since

there are no more alternatives for (D, {b, d, c, vi}). There are also no occurrences of

(E, {b, d, c, vi}) so GT-Scanner proceeds and finds (C, {b, d, e}). When GT-Scanner

reaches D, (D, {b, d, e, c}) is a valid mapping topologically, however it would be the

same occurrences as the previously found (D, {b, d, c, e}). In practice graphlet-tries,

and g-tries in general, do not find repeated occurrences thanks to symmetry breaking

mechanisms embedded in the g-trie nodes (line 16): vertices that appear later in the

same orbit are only valid if they have a bigger index than the previous vertices of the

same orbit (for more details, see Section 2.2.1.1). After failing to find a valid mapping

for (D, {b, d, e, vi}), the search also fails for (E, {b, d, e, vi}) and keeps backtracking

until it proceeds to (A, {c}), etc.

3.1.5 Classification accuracy on synthetic networks

3.1.5.1 Synthetic directed networks

We evaluate the advantages of using directed graphlets over using undirected graphlets

by comparing them in the task of network classification of synthetic networks. We

perform these tests on synthetic networks pertaining to different graph models: Erdős-

Rényi random graphs (ER) [ER60], scale-free networks (SF) [GKK01], and Forest Fire

graphs (FF) [LKF05]. All ER and SF graphs have ≈ 1% edge density, mimicking real

world networks such as PPIs, internet routing, and email networks [Mel06]. We create

five classes, described next.

We create two classes of directed ER networks, ERρ=0.2 and ERρ=0.8, where ρ is the

probability of edges to be reciprocal. In ERρ=0.2 edges are reciprocal 20% of the times,

and in ERρ=0.8 edges are reciprocal 80% of the times. For both classes, non-reciprocal

edges of v have an equal chance of being an in-edge (u, v) or an out-edge (v, u). While

these two classes are indistinguishable if one disregards their edge direction, they

are different when we consider it. Thus, an appropriate method should be able to

distinguish between the two.

We create two classes of directed SF networks, SFORD and SFRAND. In SFORD we

transform each undirected edge (u, v) into a similar edge (u, v) if u < v or (v, u) if

v < u, and in SFRAND we randomly shuffle edge direction (i.e., (u, v) is kept as (u, v)

or shuffled to (v, u) with 50% probability). Networks from these two classes have very

50

3.1. NETWORK CLASSIFICATION OF DIRECTED NETWORKS

similar node-degree distributions but very different in- and out-degree distributions.

Finally, we create one class of directed FF networks, FF , with p = 0.37 (forwards

burning probability) and pb = 0.32 (backwards burning probability), as suggested by

Leskovec et al. [LKF05] in order to build the most realistic networks.

We generate 20 networks of each of the 5 classes, with 500, 1000 or 2000 nodes, for a

total 300 networks.

3.1.5.2 Methodology

Section 2.3 describes in detail how network classification is performed and evaluated.

In short, for three distinct sets of graphlets (i.e., features), namely uG4, dG4 and dG5,
we compute the GDA for all pairs of networks (i.e., we obtain the respective similarity

matrices). We evaluate the performance of each set of graphlets by comparing their

obtained precision-recall when classifying the networks. This methodology was pre-

viously adopted by [YMDD+14] to demonstrate how well their metric (GCD) could

group different undirected networks using undirected graphlets.

3.1.5.3 Classification accuracy

... ..

. . ..ERρ=0.2. . ..ERρ=0.8. . ..SFrand
. . ..SFord

. . ..FF

a

�✶
✵

✁
✷

�✂✿✺

✄

☎✿✆

�✝

✞

✟

(a) uG4

�✷
�✶

✵
✁ �✂✿✺

✄

☎✿✆

�✝

✞

✟

(b) dG4
Figure 3.6: MDS representation applied to the GDA matrices obtained for
undirected graphlets uG4 and directed graphlets dG4. (a) Undirected graphlets can
not appropriately cluster the different networks whereas (b) directed graphlets clearly
group the networks correctly.

51

CHAPTER 3. NETWORK CLASSIFICATION

We illustrate the classification capabilities of both directed and undirected graphlets

using multidimensional scaling (MDS) [CC00] in a 3-dimensional space (Figure 3.6).

We plot the 300 networks in the MDS-space using (a) uG4 and (b) dG4. Visually,

undirected graphlets uG4 successfully distinguish between different directed graph

models (i.e., ER vs SF vs FF) despite ignoring their edge direction. This is possible

since the topology of the different models is so distinct that edge direction can be

disregarded. However, as expected, when the undirected topology of the networks

is similar but the directed topology is not, undirected graphlets fail to separate the

classes. Directed graphlets dG4 successfully separate networks of different models

(i.e., ER vs SF vs FF) and also successfully separate networks of the same model

but of different classes, i.e., they separate networks with different levels of reciprocity

(ERρ=0.2 from ERρ=0.8) and with distinct in/out-degree distributions (SFORD from

SFRAND). Furthermore, undirected graphlets inadequately separate FF networks by

size while directed graphlets do not.

✵ �✿✷ ✁✿✹ ✂✿✻ ✄✿✽ ✶
☎

✆✿✝

✞✿✟

✠✿✡

☛✿☞

✌

❆❯✍✎ ❂ ✏✑✒✓✔

❆❯✍✎ ❂ ✏✑✕✏✖

❆❯✍✎ ❂ ✏✑✗✘✙

❆❯✍✎ ❂ ✏✑✗✔✓

❘✚✛✜✢✢

P
✣
✤
✥
✦✧
✦★
✩

✉●✘ ❞●✘ ❞●
✪
✔ ❞●✔

Figure 3.7: Precision-recall curves for undirected graphlets (uG4) and directed
graphlets (dG4, dG5 and dG ′5). Undirected graphlets can not correctly group the
networks (AUPR = 0.385). Directed graphlets (dG4 and dG5) correctly cluster the
networks (AUPR ≈ 0.75). Non-appearing orbits undermine larger directed graphlets’
(dG ′5) capability to classify the networks (AUPR = 0.601 < AUPR = 0.758).

We show precision-recall curves for undirected (uG4) and directed graphlets (dG4 and

dG5) in Figure 3.7. They are obtained by computing the similarity matrices using

similarity function φ as the GDA between each pair of networks and calculating

precision-recall for varying thresholds (Section 2.3). The AUPR for dG4 is 0.749,

which is ≈ 95% higher than the AUPR for uG4, which is 0.385. We perform two

sample Welch t-tests and verify that the results for directed graphlets are statistically

52

3.1. NETWORK CLASSIFICATION OF DIRECTED NETWORKS

significant (p-values ≤ 0.01). We also measure the effect of keeping non-appearing

orbits or removing them from the GDA (i.e., usingGDA′ orGDA, respectively). When

GT-Scanner enumerates dG5 and uses traditional GDA′ [Prž07a] (for distinction, this

test is referred to as dG ′5) its AUPR is 0.601, and when GT-Scanner enumerates dG5
and uses our proposed GDA its AUPR is 0.758, a gain of ≈ 26%.

In conclusion, our best results on synthetic data were obtained by (i) using directed

graphlets instead of undirected graphlets (i.e., dG > uG), (ii) removing non-appearing

orbits from the GDA calculation (i.e., GDA > GDA′), and (iii) using larger graphlets

(i.e., dG5 > dG4). These experiments show that directed graphlets can be successfully

used to group directed networks pertaining to the same class and likewise distinguish

between directed networks of different types.

It could be argued that directed graphlets are not necessary to correctly cluster these

types of networks since one could simply analyze their reciprocity and the in- and out-

degrees to be able to separate them. In these experiments our main concern was to

show that undirected graphlets are not suitable to study directed networks. However,

directed graphlets offer much richer topological information than reciprocity or degree

distributions, in the same way that undirected graphlets give much more details on

the network’s structure than just the node-degree. In fact, reciprocity and in- and out-

degrees are embedded in the 2-node directed graphlets (G0 and G1 from Figure 3.3) in

the same way that the undirected node-degree is embedded in the 2-node undirected

graphlet (G0 from Figure 2.5). Enumerating directed graphlets of more than 2-nodes

captures not only these two basic measures but also the more intricate connections

between the nodes.

G G''G'

Figure 3.8: Reciprocity or degree distribution information is not sufficient to separate
these graphs: G and G′ have the same reciprocity, and G and G′′ have the same in-
and out-degree distributions.

Consider Figure 3.8: networks G and G’ have the same reciprocity (ρ = 1
3
) but they are

not isomorphic, while networksG andG” have the same in and out-degree distributions

but they are also not isomorphic. Therefore, reciprocity can not separate G from G’

and the degree distribution can not separate G from G”. Undirected graphlets can

not separate G from G′ but they can separate G from G” since their undirected

53

CHAPTER 3. NETWORK CLASSIFICATION

topology is not the same. On the other hand, directed graphlets are capable of

distinguishing all three cases since they are more general than a) undirected graphlets,

b) reciprocity, and c) in- and out-degree distributions. In fact, directed graphlets

combine all three measures, providing a powerful way to analyze directed networks’

topology and overcoming the limitations of undirected graphlets for such networks.

3.1.6 Performance on real biological networks

3.1.6.1 Real-world directed networks

We apply GT-Scanner to biological networks because graphlets are often used in

computational biology, thus demonstrating a real practical use of our method since

practitioners might want methods that capture more information from their data.

Nevertheless, our method is general and thus applicable to any directed network.

There are numerous kinds of intra-cellular networks, such as metabolic, transcriptional

regulatory, and cell signaling networks, where edge direction is intrinsically related to

its function. Metabolic networks represent the set of biochemical reactions occurring

within a cell that allow the organism to grow, reproduce, respond to the environment,

and other biological functions essential for the organism’s survival. These reactions

are catalyzed by enzymes that act upon substrates. Therefore, in metabolic networks

a node can be an enzyme or a substrate and the connections are directed edges going

from enzymes to substrates. Transcriptional regulatory networks model the process by

which the information in the genes is transcribed into proteins or RNA, also called gene

expression. In these networks nodes are either transcription factors or proteins that

are connected by directed edges representing how the transcription factors influence

the gene by stimulating or repressing its expression. A cellular signaling network is

comprised of a sequence of biochemical reactions between cells of the same organism. A

great number of tasks such as the development, repair and immunity of cells depend

on the proper functioning of cell signaling networks. Nodes in these networks are

proteins and edges exist between activator and receptor proteins that communicate

through signals from the first to the latter.

3.1.6.2 Classification accuracy

The computational networks used in these experiments, detailed in Table 3.3, are evi-

dently a translation of real biological networks, thus potentially making the process of

54

3.1. NETWORK CLASSIFICATION OF DIRECTED NETWORKS

G SIG NCI SIG NH SIG SH SIG SM MET BS MET DR MET TY TR EC TR YST

|V (G)| 15,533 1,634 529 477 453 2,280 2,361 99 688

|E(G)| 23,682 4,665 1,223 1,056 2,025 5,588 5,822 212 1,078

Type Signaling Metabolic Transcriptional

Source [SAK+09] [CMJ+07] [MJW+09] [JTA+00] [MA03] [MSOI+02]

Table 3.3: Set of biological networks used for experimental evaluation: cell signaling,
metabolic and transcriptional regulatory networks.

finding their similarities harder since their real structure may not be fully represented.

Nevertheless, as stated in the introduction to this chapter, it is usually assumed that

network structural similarity of computational networks may also indicate functional

similarity in the systems. Thus, one can expect that networks belonging to the same

type to be more topologically similar than networks of different types.

In order to verify if that is the case for these specific networks we assess their topological

similarity in terms of their relative graphlet distributions. We perform this comparison

for each pair of networks (G,H) from Table 3.3 by first enumerating all graphlet orbits

of both G and H and then comparing their GDDs by computing the dGDA4(G,H)

and uGDA5(G,H). We show results for (a) dG4, since 4-node directed graphlets were

already successful in correctly clustering the networks by type, removing the need to

look for larger and more computationally expensive graphlets, and (b) uG5, since they

are the set of (undirected) graphlets most often used in the literature.

100 95 94 61 68 64 71 66 67

95 100 95 61 68 63 70 66 67

94 95 100 61 69 64 70 66 67

61 61 61 100 66 72 78 81 80

68 68 69 66 100 75 79 78 78

64 63 64 72 75 100 82 79 80

71 70 70 78 79 82 100 88 88

66 66 66 81 78 79 88 100 93

67 67 67 80 78 80 88 93 100

100 85 86 51 57 53 57 50 52

85 100 88 50 56 53 57 49 51

86 88 100 51 57 53 57 50 51

51 50 51 100 59 52 52 52 54

57 56 57 59 100 52 52 52 54

53 53 53 52 52 100 59 56 55

57 57 57 52 52 59 100 57 56

50 49 50 52 52 56 57 100 78

52 51 51 54 54 55 56 78 100

(a) uGDA5 (b) dGDA4

Figure 3.9: Heatmaps and dendrograms of the uGDA5 (a) and dGDA4 (b) obtained
for the tested networks. Undirected graphlets accurately clustered the metabolic
networks (blue) but incorrectly grouped cell signaling (purple) with transcriptional
regulatory networks (red). Directed graphlets were able to cluster all networks by
type without error.

We study the network similarity matrices for uGDA5(G,H) and dGDA4(G,H) along

with their corresponding dendrogram and heatmap (Figure 3.9). We observe that net-

works of the same type are correctly grouped by their GDA using directed graphlets.

55

CHAPTER 3. NETWORK CLASSIFICATION

This is an indicator that directed graphlets can detect topological similarities between

real directed biological networks of the same type and can likewise find structural dif-

ferences between networks of different types. We also find that undirected graphlets do

not correctly separate cell signaling from transcriptional regulatory networks. Again,

since the networks come from distinct sources and noise is embedded in the data, it is

not guaranteed that these networks are actually being separated by function and not

by bias in their representation. Nevertheless, graphlets are a powerful tool to assess

functional similarity and directed graphlets, by definition, capture more functional

similarity in directed networks than undirected ones.

3.1.6.3 Speed comparison

Taking edge direction into account augments the complexity of the already computa-

tionally demanding subgraph counting process (Section 2.2). Furthermore, it might be

interesting to count k-graphlets (both directed and undirected) that have more than

the typical five nodes, but execution time grows exponentially with k. Therefore, a

very efficient tool is required for this task to be feasible.

We compare our tool, GT-Scanner, with other subgraph counting tools.

Our experimental results were gathered on a 8-core machine consisting of two quad-

core Intel Xeon Processor E5620 processors at 2.4GHz with a total of 12GB of memory.

We developed GT-Scanner in C++11 and compiled it using gcc 4.8.2. The tools we

compare GT-Scanner against were also developed in C++ and are available as open-

source: GraphCrunch[KSHP14], ORCA [HD15], Kavosh [Moh14] and ESU [WR06b].

The execution times of each tool are relative only to the graphlet enumeration phase,

not taking into account the time taken to load the graph into memory nor perform

other initialization or finalization tasks.

GraphCrunch is one of the most popular graphlet discovery tools [MLP08]. By

observing its source code one notices that the possible 30 subgraphs are enumerated

manually, therefore it is not possible to enumerate a different set of graphlets. Until

recently it performed a full enumeration of all graphlets of up to size 5 in order to

calculate their orbit frequency. A more recent tool, ORCA [HD14], was shown to

perform one or two orders of magnitude faster than the original GraphCrunch and

has since been integrated into it. Henceforth, when GraphCrunch is referenced we are

alluding to its version before adopting ORCA’s algorithm to perform the enumeration.

ORCA achieves its performance by observing that, given a limited set of graphs of size

56

3.1. NETWORK CLASSIFICATION OF DIRECTED NETWORKS

k, it is possible to build a system of equations to calculate their frequencies by using

the frequencies of the size k − 1 graphs and the frequency of a single graph of size

k. This greatly reduces execution time (more details in Section 2.2.2). Similarly

to GraphCrunch, ORCA manually counts each subgraph, thus it does not allow for

different sets of subgraphs to be enumerated. These two tools do not support edge

direction, being only applicable for undirected graphlets.

Numerous tools have been proposed for network motif discovery. In our tests, these

tools only perform the census on the original network (and not on the randomized

networks) because we are only concerned with the subgraph enumeration itself and

not with assessing motif significance. In this setting, tools for network motif discovery

perform less computational work than graphlet tools since they do not calculate orbit

frequencies specific to each node. Kavosh [KAE+09] and Fanmod [WR06a] are two

well-known motif tools, the latter being an implementation of the ESU algorithm

(more details in Section 2.2.1); in our work we use a more efficient implementation of

ESU than Fanmod [Rib11].

Because i) GraphCrunch, ii) ORCA and iii) ESU/Kavosh methodologies are not

directly comparable, we create three distinct versions of GT-Scanner and use them

accordingly: i) a version that enumerates all graphlets and orbits of up to size k, ii)

a version that enumerates up to size k − 1 graphlets and orbits and then computes a

set of equations to calculate the frequencies of the size k graphlets and iii) a version

that only enumerates the subgraphs (and not the orbits) of size k.

#Occurrences (millions) #Subgraphs
uG5 uG6 dG4 dG5 uG5 uG6 dG4 dG5

SIG NCI 1754 7883 24 1754 17 74 89 842
SIG NG 4 1078 2 4 21 112 191 5219
SIG SH 3 41 0.2 3 20 103 79 789
SIG SM 2 27 0.1 2 20 102 70 677
MET BS 1455 1510 17 1455 5 15 36 371
MET DR 1782 2799 20 1782 5 16 37 271
MET TY 1953 960 21 1953 5 16 37 217
TR EC 0.01 0.04 0.002 0.01 21 98 24 217

TR YST 3 32 0.3 3 20 81 34 174

Table 3.4: Number of subgraph occurrences and different subgraphs found in each
directed biological network.

From Table 3.4 we observed that, even though the networks from Table 3.3 are

relatively small, sometimes more than a 1 billion occurrences are found, showcasing

the computational complexity of subgraph counting and the necessity of an efficient

tool. The number of occurrences of uG5 and dG5 for the same networks is necessarily

57

CHAPTER 3. NETWORK CLASSIFICATION

the same, however there will probably be many more different directed than undirected

graphlets types (e.g., only 17 different uG5 appear in SIC NCI, while 842 different dG5
appear in it). This highlights the gain in topological information brought by using

directed graphlets that is disregarded by undirected graphlets. For instance, directed

graphlets {G2–G5,G8–G10} (Figure 3.3), correspond to the same undirected graphlet

G1 (Figure 2.5) when edge direction is ignored.

G G

SIG NCI

uG5
uG6
dG4
dG5

SIC NH

uG5
uG6
dG4
dG5

SIG SH

uG5
uG6
dG4
dG5

SIG SM

uG5
uG6
dG4
dG5

MET BS

uG5
uG6
dG4
dG5

MET DR

uG5
uG6
dG4
dG5

MET TY

uG5
uG6
dG4
dG5

TR EC

uG5
uG6
dG4
dG5

TR YST

uG5
uG6
dG4
dG5

GT-Scanner GraphCrunch

60.73 481.45
4,233.55 n/a
1.70 n/a

112.09 n/a
1.70 6.08
44.29 n/a
0.13 n/a
3.71 n/a
0.11 0.45
2.94 n/a
0.01 n/a
0.22 n/a
0.08 0.34
1.30 n/a
0.01 n/a
0.15 n/a
42.2 409.04

3,592.02 n/a
1.03 n/a
96.99 n/a
51.12 504.06

4,768.99 n/a
1.18 n/a

117.64 n/a
56.9 551.73

5,177.37 n/a
1.26 n/a

132.26 n/a
< 0.01 0.03
0.01 n/a
< 0.01 n/a
< 0.01 n/a
0.09 0.73
1.39 n/a
0.01 n/a
0.18 n/a

GT-Scanner ORCA

3.07 3.08
n/a n/a
n/a n/a
n/a n/a
0.23 0.26
n/a n/a
n/a n/a
n/a n/a
0.02 0.08
n/a n/a
n/a n/a
n/a n/a
0.02 0.07
n/a n/a
n/a n/a
n/a n/a
1.69 1.83
n/a n/a
n/a n/a
n/a n/a
1.93 2.06
n/a n/a
n/a n/a
n/a n/a
2.09 2.21
n/a n/a
n/a n/a
n/a n/a

< 0.01 < 0.01
n/a n/a
n/a n/a
n/a n/a
0.02 0.07
n/a n/a
n/a n/a
n/a n/a

GT-Scanner Kavosh ESU

34.08 3,524.57 2,894.99
2,051.04 > 1 day > 1 day
1.13 27.20 26.16
70.26 3,669.29 3,103.47
0.96 56.51 45.86
24.28 1,887.67 1,557.45
0.10 1.57 1.40
2.61 56.16 53.79
0.06 3.74 3.06
1.10 76.13 62.38
0.01 0.18 0.16
0.17 4.18 3.78
0.05 2.66 2.15
0.72 50.00 40.38
0.01 0.14 0.12
0.12 3.02 2.66
22.11 2,500.87 2,436.82

1,695.38 > 1 day > 1 day
0.75 17.43 15.66
62.93 2,555.38 2,334.01
27.79 3,725.94 3,002.90

2,317.72 > 1 day > 1 day
0.86 19.89 18.81
79.9 3,076.25 2,852.23
30.47 4,113.44 3,506.87

2,473.07 > 1 day > 1 day
0.93 22.06 19.45
82.26 3,352.5 3,141.3
< 0.01 0.02 0.01
0.01 0.09 0.06
< 0.01 < 0.01 < 0.01
< 0.01 0.02 0.01
0.05 5.00 4.04
0.71 90.28 74.05
0.01 0.23 0.21
0.14 5.13 4.74

(a) Input (b) {2, ..., k}-graphlets (c) {2, ..., k − 1}-graphlets
+ k−equations

(d) k-subgraphs

Table 3.5: Execution time (in seconds) of algorithms for subgraph counting (a) over
nine directed biological networks and four graphlet sets, both directed and undirected.
We compare the three versions of GT-Scanner with algorithms that perform the same
tasks: (b) {2, ..., k}-graphlet enumeration, (c) {2, ..., k − 1}-graphlet enumeration
followed by solving a system of equations to obtain the frequencies of the k-size
graphlets and (d) k-subgraph enumeration without computing orbits.

Tables 3.5 (b), (c) and (d) show the results for each different version of GT-Scanner

58

3.1. NETWORK CLASSIFICATION OF DIRECTED NETWORKS

and competing tools. Results showing the average (mean) speedup obtained in all

nine networks for different sets of graphlets, uG5, uG6, dG4 and dG5, are presented

in Table 3.6. Neither GraphCrunch nor ORCA are capable of enumerating either

directed graphlets or undirected graphlets with more than 5 nodes. GT-Scanner counts

subgraphs faster than the two aforementioned tools and, in addition to that, can

enumerate directed graphlets as well as undirected graphlets with more than 5 nodes.

Kavosh and ESU can also perform the census for the cases presented here but they

are much slower than GT-Scanner. For instance, for some networks GT-Scanner takes

little over a minute to enumerate uG6 while both Kavosh and ESU need more than a

day to complete the same task. On average, GT-Scanner is almost 100 times faster

for undirected graphs and about 20 times faster for directed graphs than tools that

perform simple subgraph enumeration (Kavosh and ESU). The speedups are lower

for directed graphs because the search space is harder to constrain due to the higher

number of graphlets sharing less common subtopologies between them. It is noticeable

that the speedups of GT-Scanner relative to motif tools are much higher than those

relative to graphlet tools. This is due to tools for motif discovery being general, since

they can be used to count any set of subgraphs of a given size, while tools to find

graphlets can only enumerate undirected graphlets of up to 5 nodes. This allows

graphlet tools to have specialized optimizations that motif tools can not match. We

also observe that uG5 takes significantly longer to enumerate than dG4 since increasing

the size of the graphlets greatly increases the computational time. Using GT-Scanner,

the time necessary to compute directed graphlets and undirected graphlets of the same

size is not substantially different.

G |G| |O|
uG5 30 73
uG6 142 480
dG4 214 730
dG5 9,578 45,637

(a)

GraphCrunch

7.15± 2.56
n/a
n/a
n/a
(b)

ORCA

2.04± 1.27
n/a
n/a
n/a
(c)

Kavosh ESU

95.00± 30.97 80.11± 27.85
85.89± 24.07 70.31± 19.88
20.61± 3.80 18.73± 3.86
35.00± 9.77 31.75± 8.30

(d)

Table 3.6: Performance comparison of GT-Scanner against other algorithms. (a)
shows a description of the set of subgraphs being enumerated, as well as the total
number of graphlets (|G|) and orbits (|O|). (b), (c) and (d) show average speedups of
GT-Scanner against other algorithms over all networks.

From these experiments we can conclude that GT-Scanner can both perform faster

than state-of-the-art graphlet tools and also provide a more general approach which

supports any directed or undirected subgraph size, as long as the set of subgraphs fits

59

CHAPTER 3. NETWORK CLASSIFICATION

into memory.

3.1.7 Summary

In this chapter we highlighted the importance of extending graphlets to support edge

direction with the task of network classification in mind.

We have presented an efficient tool, GT-Scanner, that is able to compute directed

and undirected graphlets of arbitrary size, as well as network motifs, as long as they

fit into memory. GT-Scanner also allows the user to customize the set of graphs to

be counted, further demonstrating the flexibility of our tool. We assess GT-Scanner’s

performance on a set of synthetic network models and on real-world directed biological

networks.

On synthetic networks, where the ground-truth is well-defined, we observe that di-

rected graphlets classify networks more accurately than undirected graphlets, with a

gain of ≈ 95% in accuracy (AUPR).

On real-world networks, where new insight can be gained, we observe that GT-Scanner

is the fastest available tool for subgraph counting, despite being a general approach

that does not target any specific subgraphs.

Therefore, we believe that we have broadened the applicability of graphlets by extend-

ing them to directed graphlets and by providing an efficient tool and methodology.

3.2 Network classification of temporal networks

3.2.1 Motivation

Networks are widely used to model real-world systems as a way to uncover their

topological features [COJT+11]. Most of these systems are not static; they exhibit a

dynamic nature that can only be captured and truly understood by taking into account

the network’s temporal evolution [HS12]. Consider for instance a co-authorship net-

work, where nodes are authors and edges represent joint publications. By narrowing

our focus to static network snapshots we cannot answer relevant questions such as:

how stable are connections over time? How is collaboration emerging and dissolving?

How did we get to the current state of the network? Can we predict how the network

60

3.2. NETWORK CLASSIFICATION OF TEMPORAL NETWORKS

will look like in the future?

Shah et al. [SKZ+15] propose an algorithm that concisely summarizes temporal net-

works by their characteristic temporal subnetworks. Similarly to their work, we also

aim for interpretability, but we do graph comparison instead of graph summarization

and our method does not require a null model to assess how a certain interesting

pattern deviates from randomness. Yu et al. [YAW17] put forward a matrix factor-

ization method that characterizes the correlations of network’s edges as a function

of time. Their representation builds a dynamic profile of the network that can be

used to predict future states. Here we do not specifically target link prediction; our

graphlet-orbit transitions could possibly be used for the task but that is out of the

scope of this work. Another task related with both network comparison and network

visualization is network condensation [AZBP17]; its aim is to reduce the size of the

temporal network significantly without much loss of information. Here we aim for

interpretability but we do not address the problem of network condensation directly.

Subgraph-based measures, such as network motifs and static graphlets, have been

successfully used to compare static networks [MIK+04, Prž07a, CRBS12, ARS17].

However, measures such as these disregard temporal information which can be crucial

for a better understanding of network topology and function. Two extensions of

graphlets for dynamic networks have been proposed (described below). For an overview

of subgraph counting in temporal network we refer the reader to Section 2.2.6.

Faisal and Milenkovic [FM14] integrate graphlet frequency distributions on the analysis

of temporal biological networks, but they only look at the global distribution in each

snapshot, without offering the possibility to observe how each individual connected

set of nodes is evolving. By contrast, we provide a direct transition matrix.

The work by Hulovatyy et al. [HCM15] provides an extension of graphlets to temporal

networks, called dynamic graphlets. However, dynamic graphlets, and the respective

dynamic graphlet degree vectors (DGDVs), only allow for a single event (i.e., temporal

edge) at each snapshot (i.e. just one edge addition between two nodes), therefore

limiting the scope of possible graphlet transitions. Our method differs from these

because our transition matrix establishes direct relations between snapshots, and we

allow for any number of edge additions or removals in each snapshot, aiming for a

broader and fully general set of possible transitions between two consecutive snapshots.

61

CHAPTER 3. NETWORK CLASSIFICATION

3.2.2 Overview of our contribution

In this work we propose graphlet-orbit transitions (GoTs) as features for characterizing

and comparing temporal networks. Note that we use the terms ”orbit” and ”graphlet-

orbit” interchangeably. Our method incorporates the rich topological information

provided by graphlets and extends them to the temporal domain. Orbit-transition

matrices encapsulate not only how graphlets change but also how the roles of the

nodes themselves change, leading to a more detailed fingerprint of the network. We also

introduce the Orbit-Transition-Agreement (OTA) as a suitable measure to compare

transition matrices of heterogeneous networks.

Next we underline our main contributions:

– Effectiveness: GoTs achieves over 30% higher precision (AUPR) on a set of

well-known network models than other subgraph-based methods. On real data

it classifies networks more accurately than competing approaches.

– Interpretability: Results produced by GoTs are very easy to visualize (i.e.,

analyze specific transition frequencies between orbits). Therefore, GoTs can be

used as interpretable fingerprints of temporal networks.

– Generability: Our method is used to compare heterogeneous networks from

different domains and of different sizes. Furthermore, GoTs is general and

easily extensible to directed and multilayered networks, but these extensions

are demanding in terms of storage and execution time.

3.2.3 Graphlet-Orbit Transitions (GoTs)

In this section we describe our method and specify how it is used to measure temporal

network similarity. Temporal network similarity assumes that there is a set of temporal

patterns used as features; in our case those features are graphlet-orbit transitions

(GoTs). A measure of similarity is also necessary to compare the networks’ feature

space; for this purpose we develop orbit-transition agreement (OTA). Thus, from

Section 2.3, Fi are GoTs and φi is OTA(GoTs(G), GoTs(H)).

Essentially, GoTs are obtained by performing subgraph counting for each snapshot

of a given temporal network, also registering the orbits of each node in the subgraph

occurrence, and computing how those orbits evolved over time. Our aim is to analyze

how the roles of nodes are evolving between snapshots.

62

3.2. NETWORK CLASSIFICATION OF TEMPORAL NETWORKS

Only connected graphlets are taken into account because our focus is to study how

groups evolve and, when a group becomes disconnected, that set of nodes is no longer

a group. We should point out that disconnected graphlets would be very useful to

analyze group formation, but computing their frequencies would require considering

all possible
(
n
k

)
subsets of nodes, effectively making it only feasible for small networks

and very small k-graphlets.

Possible algorithms to count subgraphs and orbits are discussed in Section 2.2. Note

that, since we need to list subgraph occurrences and not only count them, our method

performs subgraph enumeration. Here we use graphlet-tries (Section 3.1.4) due to

their general applicability and efficiency [RS14c, ARS17].

Figure 3.10: All possible orbit transitions of 3-node undirected graphlets and
corresponding orbit-transition matrix. Node x is the node being currently considered
and black nodes are nodes in the same orbit as x.

As an example of GoTs, consider the two 3-node undirected graphlets, uG3, and their

respective three orbits, uO3, from Figure 3.10. The chain-graph has two possible orbits

(i.e., the node can be either at its center or in one of its two leaves) while all nodes in a

triangle-graph are topologically equivalent. Given those three orbits, the GoTs are the

possible transitions of node x from one orbit to another. There are 3× 3 = 9 possible

orbit transitions for uO3: x can remain in its previous orbit, be it a (A) chain-center,

(E) chain-periphery or (I) triangle-node; x can transition from the chain-center to the

chain-periphery (B) or to a triangle-node (C), etc., all possibilities are shown in the

GoTs transition matrix of Figure 3.10.

Given a set of GoTs, we want to compute the frequency of each transition for each

node in the network, i.e., the node’s GoTs frequency matrix. Figure 3.11 shows an

63

CHAPTER 3. NETWORK CLASSIFICATION

Figure 3.11: Graphlet-orbit transitions of node x. Note that transitions to (and
from) disconnected graphlets are not considered.

example of a temporal network and the GoTs frequency matrix of a single node x. The

network’s GoTs frequency matrix is the sum of its nodes’ GoTs frequency matrices.

Algorithm 3.3 gives an overview of the enumeration process that builds the GoTs

frequency matrix FGoT (G) = |Ok| × |Ok|. Our method enumerates, for each snapshot

St(G) ∈ S(G), all k-node subgraph occurrences SG, where V(SG) = {n1, n2, ..., nk} ⊆
V(G) (lines 3-5), as well as the orbits of each node on that subgraph O(SG) =

{o1, o2, ..., ok} (line 6) – i.e., in snapshot St(G), node n1 from network G appears

in subgraph SG in orbit o1, etc.. Our algorithm pushes each occurrence into a vector

Fr(G) of the form {n1, n2, ..., nk, t, o1, o2, ..., ok} (line 7). When all occurrences have

been enumerated in every St(G), we sort Fr(G) (line 9) and check if two consecutive

vector positions contain the same subgraph SG (i.e., SG was found in consecutive

snapshots) (lines 10-11). As an example, occurrences {5, 8, 10, 12, t = 1, x, x, y, y} and

{5, 8, 10, 12, t = 2, x, y, x, y} increment FGoT (G)[x, x], FGoT (G)[x, y], FGoT (G)[y, x] and

FGoT (G)[y, y] all by 1 (lines 12-14).

GoTs frequency matrices offer rich topological information that can be used for net-

work summarization, Data Mining (e.g. they can be used as features for prediction

tasks), network comparison and model fitting. In this chapter we compare and classify

different networks according to GoTs frequency matrices.

64

3.2. NETWORK CLASSIFICATION OF TEMPORAL NETWORKS

Algorithm 3.3 Enumerate GoTs of orbits Ok on temporal network G.

1: procedure enumerateOrbitTransitions(G, Ok)
2: Fr = ∅
3: for all snapshots St(G) ∈ S(G) do
4: while enumerateSubgraph(St(G),Ok) finds an occurrence SG do
5: V(SG) = {n1, n2, ..., nk}
6: O(SG) = {o1, o2, ..., ok} = getOrbits(SG)
7: Fr.append({n1, n2, ..., nk, t, o1, o2, ..., ok})
8: FGoT (G) : fill with |Ok| × |Ok| zeros
9: sort(Fr)

10: for all i < |Fr|;Occ1 = Fr[i], Occ2 = Fr[i+ 1] do
11: if V(Occ1) == V(Occ2) and t(Occ1) == t(Occ2)− 1 then
12: for j ∈ {1, ..., k} do
13: (oa, ob) : (O(Occ1)[j],O(Occ2)[j])
14: FGoT (G)[oa, ob] + +

15: return FGoT (G)

3.2.4 Orbit-transition Agreement (OTA)

Next we describe OTA, our measure of network similarity based on the networks’ GoTs

frequency matrices.

First, we normalize FGoT (G) for each G ∈ N in order to reduce bias induced by

different network sizes. Normalization is performed by row, as shown in Equation 3.5.

This normalization gives the same importance to common and rare orbits. Normalizing

FGoT (G) both by row and column could be performed instead, if the scale of the original

values was important. However, the second normalization proposed would give high

importance to common orbits and low importance to rare orbits. To us, it seems more

reasonable to expect that rare orbits are equally important to distinguish networks,

thus we chose normalization by row only. Recall that FGoT (G)[oa, ob] is the number

of times that any node x from G transitioned from orbit oa to orbit ob in subsequent

snapshots.

nFGoT (G)[oa, ob] =
FGoT (G)[oa, ob]
|O|∑
oc

FGoT (G)[oa, oc]

(3.5)

The OTA similarity of two networks G and H is given by the average similarity of

65

CHAPTER 3. NETWORK CLASSIFICATION

their normalized GoTs frequency matrices NFGoT (Equation 3.6).

OTA(G,H) =
1

|O|2 ×
|O|∑
oa

|O|∑
ob

(
1− |nFGoT (G)[oa, ob]− nFGoT (H)[oa, ob]|

)
(3.6)

Equation 3.6 produces an absolute value of agreement, i.e., OTA(G,H) is always the

same regardless of N . However, for our purposes a relative value of agreement is

more suitable since we want to compare networks within a specific set. Consider

max(OTAN) and min(OTAN) as the highest and lowest OTA between any two

networks in set N : we normalize the OTA matrix to values between 0 and 1 (Equa-

tion 3.7). Using the normalized nOTA, the two most similar networks on the set N
have nOTA = 1, and the two most different have nOTA = 0, while the other pairs

have a normalized nOTA between 0 and 1. Henceforth, when we mention OTA we

are referring to nOTA.

nOTA(G,H) =
OTA(G,H)−min(OTAN)

max(OTAN)−min(OTAN)
(3.7)

Algorithm 3.4 shows our overall methodology.

Algorithm 3.4 Compute network similarity of set N using k-node GoTs

1: procedure computeNetworkSimilarity(N , k)
2: Ok : generate all k-node orbits.
3: for all networks N ∈ N do
4: FGoT (G) = enumerateOrbitTransitions(G,Ok)
5: nFGoT (G) = normalize(FGoT (G)) (Eq. 3.5)

6: for all pairs {(G,H) | G,H ∈ N} do
7: OTA(G,H) = getOTA(FGoT (G), FGoT (H)) (Eq. 3.6)

8: for all pairs {(G,H) | G,H ∈ N} do
9: nOTA(G,H) = normalize(OTA(G,H)) (Eq. 3.7)

3.2.5 Classifying synthetic data

We assess GoTs classification efficiency on a set of well-known graph models, and

compare it against other subgraph-based methods. Our assumption is that an efficient

method should report networks from the same model as more topologically alike than

networks from different models due to their inherent structure (a similar approach was

followed in [HCM15]).

66

3.2. NETWORK CLASSIFICATION OF TEMPORAL NETWORKS

All of the following experiments were conducted on an Intel i7-6700 CPU with 4 cores

at 3.40 GHz; nevertheless, all programs were executed using a single-thread. Our

code was written in C++11 and compiled with gcc 6.3.1 with O3 optimizations, while

dynamic graphlets [HCM15] were computed using the executable available at http:

//www3.nd.edu/~cone/DG/. Network motifs, graphlets and static-temporal graphlet

vectors were obtained using our own code, available at http://www.dcc.fc.up.pt/

~daparicio/software. The source code for graphlet-orbit transitions computation,

as well as the data used for experimental purposes, can be found at http://www.dcc.

fc.up.pt/got-wave/.

3.2.5.1 Synthetic networks

We developed dynamic versions of three random-graph models: Erdos-Rényi [ER60],

Baràbasi-Albert [BA99] and Watts-Strogratz [WS98]. All synthetic networks have

5 snapshots and start with 250 nodes; these values were chosen in order to obtain

results from every method in a reasonable time. New nodes and edges arrive in

the networks [LBKT08], while the network’s density remains stable throughout all

snapshots (this behavior was observed in online social networks [HW09], for instance).

New edges are created according to the model’s criteria: either randomly [ER60], by

preferential attachment [BA99], or through rewiring of past edges [WS98]. Noise is also

injected in some of the networks by having edges randomly deleted: if P (e−) = 0.5,

half of the edges from St(G) are removed in St+1(G), whereas if P (e−) = 0, all edges

are permanent. Strogratz models control how much rewiring is performed; we use

either no rewiring (β = 0) to build regular ring-networks or some rewiring (β = 0.2)

to create small-world networks.

From these different models and parameters, we obtain a total of six different network

classes (see Table 3.7) and generate 25 networks of each.

Table 3.7: Set of random network models used for evaluation.

|S(G)| |V(S1(G))| |V(St+1(G))| |E(G)|
|V(G)|2 P(e−) P(e+) P(β)

Erdos 5 250 1.1× |V(St(G))| 0.01
0.0

Random –
0.5

Barábasi 5 250 1.1× |V(St(G))| 0.01
0.0

Degree –
0.5

Strogratz 5 250 1.1× |V(St(G))| 0.01 –
Ring creation 0.0
and Rewiring 0.2

67

http://www3.nd.edu/~cone/DG/
http://www3.nd.edu/~cone/DG/
http://www.dcc.fc.up.pt/~daparicio/software
http://www.dcc.fc.up.pt/~daparicio/software
http://www.dcc.fc.up.pt/got-wave/
http://www.dcc.fc.up.pt/got-wave/

CHAPTER 3. NETWORK CLASSIFICATION

3.2.5.2 Measures

In our experiments we assess GoTs’ classification accuracy and compare it against

other subgraph-based measures. All methods perform subgraph counting (Section 2.2),

thus an appropriate set of k-subgraphs needs to be chosen. Hulovatyy et al. [HCM15]

reported that dynamic graphlets with 4-nodes and 6-events achieved the best results

for node classification tasks, and that increasing their size did not improve results

significantly while greatly increasing computational time. Therefore, 4-node and 6-

event dynamic graphlets are enumerated and, for results to be directly comparable,

4-node subgraphs are enumerated for every other method. For generability, all possible

4-node subgraphs are enumerated instead of just a specific set.

• Static motifs (SM) – 4-node network motifs (Section 2.2.5.1) are enumerated

on a single aggregate network, and their motif score is evaluated on a set of 100

similar randomized networks (see [MIK+04]).

• Static graphlets (SG) – 4-node graphlet-orbits are enumerated on a single

aggregate network (see [Prz07b]).

• Static-temporal graphlets (STG) – 4-node graphlet-orbits are enumerate

on each network snapshot (see [FM14]).

• Dynamic graphlets (DG) – 4-node graphlets with at most 5 events are

enumerated on the temporal network (see [HCM15]).

• Graphlet-orbit transitions (GoTs) – 4-node graphlet-orbit transitions are

enumerated. However, for the methods to be more easily comparable, the OTA

is not computed.

3.2.5.3 Accuracy and speed comparison

For each node, we compute its SM, SG, STG, DG and GoTs and use them as the

node’s features. For instance, when considering GoTs, each node is represented by

its graphlet-orbit transitions. The feature vectors over all nodes in a network form a

#Nodes × #Features matrix. For two networks being compared, this results in two

corresponding matrices with the same number of columns, whose rows are then joined

together. Due to high dimensionality and sparsity of the joined matrix, we perform

dimensionality reduction on the matrix using principal component analysis, keeping

68

3.2. NETWORK CLASSIFICATION OF TEMPORAL NETWORKS

99% of its variance. Then, we compute the topological similarity between every two

networks as the Euclidean similarity between their PCA-reduced matrices.

Precision-recall curves were calculated for each measure and presented in Figure 3.12

(for details on how they are calculated as well as their areas, we refer the reader to

Section 2.3).

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Recall

P
re
ci
si
on

SM (0.58)

SG (0.45)

STG (0.48)

DG (0.73)

GoT (0.96)

Figure 3.12: Obtained precision-recall curves on synthetic data (AUPR inside
parentheses).

Our method (GoT) achieves the highest AUPR and has a gain of ≈ 30% when

compared to the second best (DG). STG obtains a higher AUPR than SG, but only by

a small fraction, while DG performs significantly better than both, corroborating the

results from [HCM15]. Table 3.8 compares the execution times of the two approaches

that achieve highest AUPR: GoTs and DG [HCM15]. For Barábasi networks times are

comparable; this is due to the high density of Baràbasi networks that induce a larger

number of GoTs transitions.

In our experiments it is clear that our method is both faster and more accurate than

competing measures on a set of well-known temporal graph models. For the Strogratz

model with no rewiring (P (β) = 0.0), in particular, our method is over 400 times faster

than DG [HCM15]. This high efficiency comes from the data-structure and algorithm

that we use, based on graphlet-tries [RS14c, ARS17].

3.2.6 Grouping and analyzing real data

In this section we show the effectiveness of our proposed method in (a) grouping a set

of real-world temporal networks by predetermined categories and (b) visualizing their

69

CHAPTER 3. NETWORK CLASSIFICATION

Table 3.8: Time comparison of our method (GoTs) against dynamic graphlets (DG).
We show the speed gain of GoTs over DG inside parentheses (e.g., 2x means 2 times
faster).

Erdos: P (e−) Baràbasi: P (e−) Strogratz: P (β)
0.0 0.5 0.0 0.5 0.0 0.2

DG 5.92s 17.84s 5.96s 471.68s 52.44s 33.84s

GoTs 0.76s (8x) 0.84s (21x) 4.50s (1.3x) 5.36s (88x) 0.12s (437x) 0.52s (65x)

characteristics. Therefore, our goals are to assess grouping capabilities but also inter-

pretability. The set of real-world networks N comprises (i) co-authorship, (ii) crime,

(iii) e-mail communication, (iv) physical interaction, (v) bipartite, (vi) soccer transfers

and (vii) social media friendship networks, as shown on Table 3.9.

We start by analyzing how networks are evolving over time (growing vs. shrinking,

becoming more-connected vs. less-connected) as well as some of their global metrics,

namely the average-degree, the clustering-coefficient and the characteristic path-length.

These measures are easy to analyze visually and give some temporal information about

the networks, but they are not successful when grouping the networks due to their

limitations.

We also conduct static network motif (SM) and graphlet (SG) analyses since they cap-

ture richer topological information than aforementioned global metrics. We compare

the networks’ motif-fingerprints and graphlet-degree distributions for 4-node subgraphs

and assess how well the networks are being grouped using these metrics. We assess

the clustering capabilities of static graphlet-orbits by computing the graphlet-degree-

agreement (GDA) for each pair of networks and clustering setN accordingly: networks

with high agreement are grouped together.

We proceed in a similar fashion for our own GoTs by computing the orbit-transition-

agreement (OTA) for each pair of networks. Finally, we show that graphlet-orbit

transition matrices offer highly interpretable information which displays both (a) clear

differences between networks of different categories and (b) characteristic transitions

in networks of the same category.

Here we do not show results for static temporal graphlets (STG) [FM14] because they

did not show significant improvement in our synthetic data (Table 3.7) and they are

harder to visualize than static graphlets. Dynamic graphlets (DG) [HCM15] with

4 nodes and 5 or 6 events were computed in our set of networks N but, for some

networks, the method did not output graphlet counts in a manageable time, making

it impossible to compare with our method. Table 3.10 shows a comparison of the

70

3.2. NETWORK CLASSIFICATION OF TEMPORAL NETWORKS

Table 3.9: Set of temporal networks N grouped by category.

Name |V(G)| |E(G)| ρ |S(G)| Source

Authenticus
authors co-author a paper

1 year 16 Our own.
7k 120k

arXiv
authors co-author a paper

1 year 7 [LKF07]
2k 357k

Minneapolis
streets crime in intersection

3 months 16 [Ris18]
454 12k

Philadelphia
streets crime in intersection

3 months 16 [Chi18]
1k 10k

Emails
workers sends email

1 month 9 [MPK11b]
167 83k

Enron
workers sends email

2 months 16 [LLDM09]
6k 51k

Gallery
visitors physical interaction

4 days 16 [ISB+11]
420 43k

Conference
visitors physical interaction

12 hours 6 [ISB+11]
113 21k

School
students physical interaction

1 day 5 [SVB+11]
327 189k

Workplace
workers physical interaction

10 days 10 [GVF+15]
92 10k

Escorts
clients + escorts hires

3 months 16 [RLH10]
10k + 7k 51k

Twitter
users + tags tweet in hashtag

3 months 16 [DCLS+10]
12k + 16k 327k

Transfers
soccer teams player transfer

1 year 16 Our own.
2k 20k

Facebook
friends post on the wall

3 months 16 [VMCG09]
47k 877k

execution times between our method (GoTs) and dynamic graphlets (DG). All possible

4-node graphlets were enumerated by both methods. Dynamic graphlets have the

number of events as an additional parameter; thus, dynamic graphlets with 5 events

(DG-5) or 6 events (DG-6) were separately computed. For some of the largest networks

from Table 3.9 neither DG-5 nor DG-6 produced an output in a reasonable time

(we allowed it to run for over a week). For the networks that both GoTs and DG

finished their computation it is clear that DG is much more computationally heavy.

Furthermore, growing the number of events from 5 to 6 greatly increased computational

time. For these reasons, dynamic graphlets were not included in our discussion of real-

world networks.

71

CHAPTER 3. NETWORK CLASSIFICATION

Table 3.10: Execution times of GoTs with four nodes (GoTs), of DG with four nodes
and five events (DG-5), and of DG four nodes and six events (DG-6). An asterisk (*)
means that the method did not finish in the maximum running time of 1 week.

GoTs DG-5 DG-6

Escorts 8 sec 2 hours 4 hours

Philadelphia 0.5 sec 25 hours *

Minneapolis 2 sec 12 hours *

Enron 2 min 1 day 4 days

Gallery 24 sec 16 hours 3 days

Escorts 8 sec 2 hours 4 hours

Transfers 3 sec 40 min 1 hours

3.2.6.1 Network overview

We collect a set of 14 temporal networks N from various sources (Table 3.9). N is

comprised of active-edge networks, meaning that edges are only present in the snapshot

St(G) in which they appear at and need to be re-activated in subsequent snapshots.

The number of snapshots |S(G)| depends on the amount of available data of G. Long-

term networks, such as co-authorship networks, have a bigger time-interval ρ when

compared with short-term networks, such as physical interactions in social events.

Figure 3.13 shows how the networks are evolving size-wise. Most of them are growing

as time goes by. The fastest growing networks are arXiv, Twitter, Facebook and

Enron, which start at only ≈ 10% of their largest state, but Enron begins shrinking at

t = 11 and almost disappears by t = 16. Authenticus, Escorts and Transfers are

also growing networks but they grow at a slower rate and become almost stagnant at

the end, where they might have reached their full potential in terms of growth. Crime,

physical interaction networks and Emails stay relatively stable in size.

Figure 3.14 presents the evolution of the networks’ average degree. arXiv, Emails

and physical interaction networks are the ones with higher average degree. arXiv,

Twitter and Facebook are the fastest growing in terms of their average degree and

most networks have a stable average degree.

By observing Figure 3.15 one can conclude that all networks from N are small-world

since their characteristic-path-length at latter stages (t ≈ 16) is between 2 and 7.

No clear correlation linking category with characteristic-path-length evolution, growth

or average degree is observed from Figure 3.13, 3.14 and 3.15, respectively. Clustering

coefficients were also computed for each network snapshot and it was found that they

do not change with t. Co-authorship networks have the highest clustering coefficient at

72

3.2. NETWORK CLASSIFICATION OF TEMPORAL NETWORKS

Figure 3.13: Network growth according to its number of nodes – grouped by type.

Figure 3.14: Average degree of the networks by time – grouped by type.

0.5 while crime, bipartite, Facebook and Tranfers networks have near-zero clustering

coefficient. The clustering coefficient is capable of grouping co-authorship networks

together despite only considering 3-node subgraphs (triangles and 3-node chains).

However, it does not distinguish between crime and bipartite networks, for instance. In

these cases, one option to differentiate between networks with similar 3-node subgraphs

is to analyze their 4-node network motifs and graphlets.

73

CHAPTER 3. NETWORK CLASSIFICATION

Figure 3.15: Characteristic path length of the networks by time – grouped by type.

3.2.6.2 Network motifs

We enumerate subgraphs with k = 4 and k = 5 and present results only for the

smaller subgraphs since no significant differences were observed between the two sets.

We use GT-Scanner (described in Chapter 3.1) for both subgraph counting and to

analyze motif significance. We count subgraphs in a single aggregate state of each

network G from Table 3.9 and calculate motif scores ∆(H,G) for each graph H ∈
Gk (Equation 2.1 and Equation 2.2). Motif fingerprints between two networks are

compared by computing their Euclidean distance.

Figure 3.16 shows the obtained motif-fingerprints for all 4-node undirected subgraphs

(uG4), evaluated against 100 randomized networks. Co-authorship networks have a

similar motif-profile where cliques and near-cliques are the most unexpectedly preva-

lent groups. This comes from the fact that scientific collaboration communities tend to

be tightly connected [CRBS12]. The two crime networks have a similar network profile,

with cliques and near-cliques being underrepresented while squares (G3) are very over-

represented. This result was expected since our crime networks are geographical graphs

with near-zero clustering coefficient and cities have a grid-like structure. Motif-profiles

of the email networks are also relatively alike. Similar to co-authorship networks,

cliques and near-cliques are the most over-represented subgraphs. However, that is

much more obvious in Enron than in Emails. This is probably because Emails is too

small for the over-representation to become obvious since the small random networks

are also capable of generating cliques and near-cliques. Physical interaction networks

74

3.2. NETWORK CLASSIFICATION OF TEMPORAL NETWORKS

have a similar motif-fingerprint but it seems indistinguishable from co-authorship

networks. Both types of networks have cliques and near-cliques as the most over-

represented subgraphs but those groups have different meanings. In co-authorship

networks they might indicate communities but in the short-term networks they seem

to simply indicate that everyone communicates with everyone by the end of the time-

frame. Analyzing just the final aggregate network ignores relevant information, it is

often more insightful to study how networks evolve. Bipartite networks have similar

motif-fingerprints but they are also identical to those of crime networks. It should

be pointed out that these networks are not pure bipartite networks but only nearly

bipartite, otherwise subgraphs with cycles would never occur (G3, G4, G5 andG6). The

Transfer network’s motif fingerprint is also similar to the ones of crime and bipartite

networks. Finally, Facebook’s motif-profile is alike co-authorship network except G3

is also overrepresented. Since Facebook’s density is so low (N
E2 ≈ 183000

640002
≈ 0.004%)

randomized networks have almost exclusively stars (G1) and chains (G2). By observing

Figure 3.17 (a) it is clear that motifs can only separate the networks into two big

groups.

Figure 3.16: Motif-fingerprints of the networks by time – grouped by type

75

CHAPTER 3. NETWORK CLASSIFICATION

(a) (b)

(c)

Figure 3.17: Similarity matrices according to (a) motif-fingerprints’ Euclidean dis-
tance (ED), (b) graphlet-degree-agreement (GDA) and (c) orbit-transition-agreement
(OTA). Clustering is performed using hierarchical clustering with complete linkage.

3.2.6.3 Static graphlets

Like we did for network motifs, we perform subgraph counting of uG4. We obtain the

GDD matrices for all G ∈ N and compute the GDA for all network pairs. We thus

obtain a GDA = |N | × |N | matrix, where GDA(G,H) ≈ 0 means that networks G

and H are very different and GDA(G,H) ≈ 1 means that G and H are very similar.

Figure 3.17 (b) shows the obtained GDA matrix where each cell is colored according

to the GDA value and similar networks have a darker cell. Graphlets group bipartite

networks and most of the physical interactions networks correctly. By comparison,

motif-fingerprints were only capable of finding two large groups, as discussed in the

previous section. Neither motifs nor graphlets were able to cluster the set of networks

correctly, which might indicate that temporal information is relevant to understand

these networks.

76

3.2. NETWORK CLASSIFICATION OF TEMPORAL NETWORKS

3.2.6.4 Graphlet-orbit Transitions

We consider all possible GoTs of 4-node graphlets. Enumerating larger subgraphs was

unnecessary since our method already achieves an adequate grouping for k = 4.

Previous studies analyzed graphlet transitions [DBWF11, KKK+12], but orbit tran-

sitions give more information since they account for changes of position in the same

graphlet, for instance.

Figure 3.18 shows the transition matrices of Authenticus, a collaboration network,

and Conference, a physical interaction network. To simplify visualization, OTA

values were discretized into three intervals, indicating rare ([0, 1
3
]), common (]1

3
, 2
3
])

and frequent transitions (]2
3
, 1]). The main diagonal of the matrix suggests that all

orbits are relatively stable in Authenticus except for the square-orbit O5. This is

expected from collaboration networks since groups forming a square-graph are only

loosely connected, therefore these groups tend to either become tighter (transition

from O5 to orbits 6-11) or nearly break apart (transition from O5 to orbits 1-4).

On the other hand, orbits in Conference are very unstable, i.e. they almost always

change to another orbit. This is explained by the fact that, in short-term physical

interaction groups, connections are mostly temporary and not a strong indicator

of community. In this example, people meet in a conference and they might meet

people that their ”group” already met, but they are mostly interested in meeting

more people than establishing strong groups. As another example, O1 shows the

effect of hubs in collaboration networks: it is more likely that a hub-like group will

gain a new edge between previously unconnected authors (transition from O1 to O6)

than for to remain unconnected. It is also common that not only one but two new

edges appear (transition from O1 to O9). However, stars (O1/O2) becoming cliques

(O11) is rare in Authenticus. Interestingly, Figure 3.19 shows that star-to-clique

transitions are common in the other collaboration network, arXiv. This might come

from the fact that, while Authenticus data covers multiple areas, arXiv only has

publications pertaining to physicists; therefore, the observed differences may hint

that physicists form tighter connections sooner than the average. It also seems that

transitions are relatively slow in collaboration networks since it is rare for a loosely

connected subgraph to become a densely connected subgraph in just a single jump.

The same cannot be said about Conference, where behavior is almost chaotic. These

are only some of the possible observations about transition matrices that highlight

their interpretive power.

Figure 3.17 (c) clearly shows that graphlet-orbit transitions are able to correctly

77

CHAPTER 3. NETWORK CLASSIFICATION

group our set of temporal networks while motifs and static graphlet-orbits could not

(Figure 3.17 (a) and 3.17 (b)).

Figure 3.18: Orbit-transition matrices of (a) a collaboration network and of (b) a
physical interaction network for all 4-node orbits.

For completeness, Figure 3.19 presents orbit transitions for collaboration, physical

interaction, crime and bipartite network. Matrices are discriminated by starting

orbit (each matrix) and by network (each matrix-row) for an easier comparison. For

instance, the first matrix from Figure 3.19 shows, for each network, the transitions

of O1 to all Ok ∈ uO4, the second one of O2 to all Ok ∈ uO4, and so forth. To

help visualization we inserted red lines that separate networks of different categories.

It is clear that, while networks of the same category have some differences in their

orbit-transition profile, they are more alike than networks from different categories.

As an example: the transitions of O1 clearly distinguish co-authorship from physical

interaction networks, and also co-authorship from crime and bipartite networks. How-

ever, O1 transitions are very similar for crime and bipartite networks. Distinguishing

these two types of networks can be achieved by instead looking at O5, for instance.

Orbit-transition fingerprints are a visual way of interpreting how a network evolves

and present very detailed topological and temporal information.

3.2.7 Summary

We put forward a new extension of graphlets for temporal networks (GoTs), as well

as a novel metric (OTA) to compare them.

The effectiveness of our proposed method was assessed on (a) synthetic networks

pertaining to well-studied graph models and (b) a set of temporal networks with

predetermined categories. Our method was shown to be more accurate than competing

78

3.2. NETWORK CLASSIFICATION OF TEMPORAL NETWORKS

Figure 3.19: Orbit-transition fingerprints for collaboration, physical interaction,
crime and bipartite networks. Frequency values are discretized into rare, common
and frequent transitions.

approaches on synthetic data. For real networks, we began by analyzing how global

metrics evolved over time, namely the average-degree, clustering-coefficient and the

characteristic path-length. While these metrics give insight into the topological struc-

ture of the networks, we could not visualize that networks of different categories are

79

CHAPTER 3. NETWORK CLASSIFICATION

distinguishable using them. Static network motif and graphlet analyses were also con-

ducted since they capture richer topological information than aforementioned global

metrics. However, since they do not take temporal information into account, they are

not adequate for temporal network comparison. Our method correctly clustered the

set of networks by category, showcasing both the importance of temporal information

in these networks and our method’s clustering capabilities. Furthermore, our method

produces highly interpretable results, leading to a better understanding of network

evolution and differences between transitions of distinct networks.

80

Chapter 4

Network alignment

Network alignment can be used for knowledge transfer from a well-known system to a

poorly-studied system between their conserved network regions [ECK16]. For exam-

ple, in computational biology, network alignment can be used to identify topologically

similar (and possibly also sequence-similar) regions of molecular networks of different

species and to predict functions of currently unannotated proteins based on functions

of their aligned partners in another network [FZM15].

In this chapter we propose a new method to align temporal networks, named GoT-

WAVE. We evaluate GoT-WAVE on both synthetic and real networks and compare it

with state-of-the-art approaches.

4.1 Motivation

Network alignment (NA) aims to find similar (conserved) regions between compared

networks [ESDS16]. These regions are not expected to be perfect fits, and thus, NA

deviates from the traditional subgraph isomorphism problem [Ull76] (we formalize the

problem in Section 2.3).

Traditional NA methods align static networks [VKMM17]. However, because most

of real-world systems evolve over time and thus exhibit a dynamic nature, they are

intrinsically not static. As such, they can only be truly understood by accounting for

their evolution [HS12].

81

CHAPTER 4. NETWORK ALIGNMENT

The first methods for NA of temporal networks were proposed only recently [VM17b,

VCM17]. Since NA is widely applied to biological data (e.g., [MNHP10, SM14,

SCTM15]), the lack of NA methods for temporal networks could be due to limitations

of current biotechnologies for data collection, which have resulted in a lack of tempo-

ral network data on molecular systems, such as protein-protein-interaction networks

(PPIs), that are the systems to which static NA methods have been extensively

applied [KSK+03, MNHP10, VSM15]. However, as initial temporal PPI data begin

to emerge [FM14, YFCM15], and as other temporal network data become available,

e.g., brain, ecological, or social networks [GGG+11, BC18, OBEJ08, RA18], temporal

NA will gain increasing importance.

4.2 Related work

NA produces either: (a) a many-to-many mapping of highly conserved but small

network regions or (b) a one-to-one mapping that covers every node of the smaller

network and equally many nodes from the other network and is thus large, but is

often suboptimally conserved [ECK16, FMCM15]. Both NA types, called local and

global, respectively, have (dis)advantages [MSM16, GM17]. Recent work has tended

to focus on global NA [Kaz16] and that is the type we address.

Global NA can be pairwise [Kla09], resulting in aligned pairs of nodes between two

networks, or multiple [FND+09, VM17a], resulting in aligned node clusters between

three or more networks. Multiple NA is more computationally complex than pairwise

NA and, furthermore, recent work suggests that multiple NA is also less accurate than

pairwise NA [VKMM17]. So, here, we focus on pairwise NA, and in particular on

global pairwise NA (GPNA).

GPNA consists of two algorithmic components: 1) an objective function, typically node

conservation (a measure of node similarity) combined with edge conservation, and 2)

an optimization strategy (also called alignment strategy) that aims to maximize the

objective function.

Regarding the first component and specifically the node conservation part, graphlet

degree vectors (GDVs) [Prž07a, MP08] have been widely used as topological properties

(features) to measure node conservation in GPNA due to the rich topological informa-

tion that graphlets capture [MNHP10, MP12, VSM15]. GDV-based node conservation

was shown to be superior in the task of GPNA under the same optimization strategy to

other node conservation/similarity measures: IsoRank’s PageRank [SXB08, LLB+09]

82

4.2. RELATED WORK

and GHOST’s spectral signature measures [PK12] from the biological domain [FZM15,

CSM15], or node2vec [GL16] and struc2vec [RSF17] network embedding measures from

the social domain [GM18]. Regarding the first component and specifically the edge

conservation part, several established measures of edge conservation exist: S3, which

rewards an alignment when edges are aligned to each other and penalizes it when an

edge is aligned to a non-edge [SM14], and weighted edge conservation (WEC), which

is high if many edges are aligned to each other and the nodes of the aligned edges are

similar with respect to node conservation [SCTM15].

Regarding the second component, existing GPNA algorithms have one of two types

of optimization strategy. One type is seed-and-extend, where first two highly similar

nodes (with respect to node conservation) are aligned, i.e., seeded. Then, the seed’s

network neighbors that are similar are aligned, the seed’s neighbor’s neighbors that

are similar are aligned, and so on. The extension around the seed and exploration

of the seed’s neighbors aims to improve both node and edge conservation of the

resulting alignment. The extension continues until all nodes in the smaller network

are aligned, i.e., until a one-to-one (injective) node mapping is produced. WAVE is a

representative state-of-the-art seed-and-extend optimization strategy (that we focus on

for reasons discussed below), which by default optimizes GDV-based node conservation

and WEC [SCTM15]. The other type of optimization strategy is a search algorithm.

Here, instead of aligning node by node as with the seed-and-extend approach, entire

alignments are explored and the one with the best objective function score is returned.

MAGNA++ [VSM15] is a representative state-of-the-art search algorithm (that we

focus on for reasons discussed below), which uses a genetic algorithm to, by default,

optimize GDV-based node conservation and S3. Importantly, a typical optimization

strategy, including WAVE and MAGNA++, can optimize any objective function,

i.e., it is not limited to e.g., GDV-based node conservation and S3 or WEC. Note

that in a recent comprehensive evaluation of different methods [MSM16], WAVE and

MAGNA++ rose to the top, although newer GPNA methods have appeared since,

such as SANA [MH17].

The only temporal GPNA methods that were available before our contribution were

DynaMAGNA++ [VCM17] and DynaWAVE [VM17b], which are temporal extensions

of MAGNA++ and WAVE. DynaWAVE was shown to be more accurate and faster

than DynaMAGNA++ on medium- and large-size networks; DynaMAGNA++ was

more accurate (yet slower) on small-size (≈100-node) networks. Since most of real-

world networks are not small, we focus on DynaWAVE. This method uses the same

seed-and-extend optimization strategy as static WAVE, but it uses it to optimize

83

CHAPTER 4. NETWORK ALIGNMENT

dynamic node and edge conservation. As its dynamic node conservation, DynaWAVE

uses a temporal extension of GDVs, dynamic GDVs (DGDVs), which were originally

proposed for tasks of node and network classification by [HCM15]. DGDV of a node

uses dynamic graphlets to describe the node’s neighborhood in a temporal network.

Comparing nodes’ DGDVs yields a measure of similarity between the nodes’ evolving

neighborhoods, i.e., dynamic node conservation. As its dynamic edge conservation,

DynaWAVE uses dynamic WEC (DWEC), a temporal analog of WAVE’s WEC that

generalizes an aligned edge to an aligned event (temporal edge) [VM17b]. Just

as WAVE, DynaWAVE can use its optimization strategy in combination with any

objective function.

4.3 Overview of our contribution

We recently developed graphlet-orbit transitions (GoTs) [ARS18], a different temporal

graphlet measure of node similarity. GoTs describe how a node’s neighborhood is

evolving by measuring how its participation in different graphlet positions (orbits)

changes with time. For example, GoTs can capture when a node in the center of a

k-node star at time t becomes a part of a k-node clique at time t + 1. GoTs are

discussed in more detail in Section 4.5.

Here, we aim to use GoTs for temporal GPNA as a new dynamic node conservation

measure within DynaWAVE. We refer to our GoT-modified version of DynaWAVE as

GoT-WAVE.

We evaluate whether GoT-WAVE improves upon DynaWAVE by following the same

evaluation methodology from the DynaWAVE study [VM17b]. Namely, we evaluate on

synthetic data containing 50 temporal networks produced by dynamic versions of five

well known graph models. Here, we align all pairs of networks to each other. A good

temporal GPNA method should identify as similar those networks that originate from

the same model and as dissimilar those networks that originate from different models.

Also, we compare the methods on eight real-world networks from biological and social

domains. Here, we align each network to its noisy version, in which a percentage of the

original network’s edges is rewired. Since the aligned networks have the same nodes,

we know which nodes should be mapped to which nodes. The more nodes are correctly

mapped, the better the method. In all evaluation tests, we compare the two methods

when they optimize: 1) only their respective dynamic node conservation measures

(GoTs versus DGDVs), to fairly evaluate the two measures against each other, and 2)

84

4.4. STATIC AND TEMPORAL GPNA

both node and edge conservation, to give each method the best-case advantage (it was

already shown that DynaWAVE performs better when it optimizes both rather than

only one of node and edge conservation).

We find that on synthetic networks, under both the fair and best-case scenario, GoT-

WAVE is more accurate than DynaWAVE by 25% and faster by 64%. On real

networks, under the fair scenario, GoT-WAVE is more accurate that DynaWAVE for

four of the eight networks, performing better on the denser networks and worse on the

sparser ones. We observe the opposite in terms of their running times, i.e., GoT-WAVE

is slower than DynaWAVE for denser networks and faster for sparser networks. Thus,

the two methods are complementary. Under the best-case scenario, DynaWAVE’s

performance is more enhanced than GoT-WAVE’s when dynamic edge conservation

is considered as well, as DynaWAVE is now better for all eight networks. However,

because GoTs is the only current temporal graphlet-based measure of node similarity

that supports edge direction, GoT-WAVE is the only temporal GPNA method that

can deal with directed networks (DGDVs and thus DynaWAVE always assume that

edges are undirected).

Thus, GoT-WAVE is a promising new temporal GPNA method that efficiently opti-

mizes dynamic node conservation. Finding new measures of dynamic edge conservation

better suited for GoT-WAVE could further enhance its performance, which is the

subject of future work. Also, GoTs, when used as node conservation within any

newer or future GPNA optimization strategies, such as SANA, could yield further

improvements.

4.4 Static and temporal GPNA

Static GPNA produces an injection f : V (G)→ V (H), where V (G) is not bigger than

V (H), maximizing node or edge conservation between aligned node pairs (Section 2.4

offers more details). Temporal GPNA, extending static GPNA, aims to optimize

dynamic node or edge conservation. As dynamic node conservation, we optimize

similarity between nodes’ temporal graphlet-based features, namely GoTs, which we

define in Section 4.5. We compare nodes’ GoTs as described in Section 4.6. As

dynamic edge conservation, when we also optimize this measure, we use DWEC, just

as DynaWAVE does. That is, compared to DynaWAVE, the only aspect that we

modify is its DGV-based dynamic node conservation measure, replacing it with our

GoT-based measure. This ensures a fair comparison between GoTs and DGDVs as

85

CHAPTER 4. NETWORK ALIGNMENT

two different temporal graphlet-based node features.

4.5 GoTs as node conservation features

Just like DGDVs, GoTs only account for connected graphlets, because our focus is to

study how groups evolve. We should point out that considering transitions to/from

disconnected graphlets could be useful to study group formation, but computing their

frequencies requires considering
(
n
k

)
subsets for each snapshot, which is only feasible in

practice for small networks and very small k-graphlets. All possibilities for the 3-node

graphlets are illustrated in Figure 3.10; in practice, we use larger graphlets as well (see

below). The matrix from Figure 3.10 illustrates the GoTs of node x that we use as

x’s feature vector. For more details on GoTs, namely how they are extracted, we refer

the reader to Section 3.2.3. This matrix offers rich topological information that can

be used for various tasks [ARS18]. Here, we use it in the task of temporal GPNA.

Regarding the considered graphlet size, [HCM15] recommended the use of all DGDVs

with up to four nodes and six events (temporal edges). This is what we do, to give the

best-case advantage to DynaWAVE. For a fair comparison, to account for as similar

as possible amount of network topology with both DGDVs and GoTs, we also use all

undirected GoTs with up to four nodes, unless explicitly stated otherwise.

4.6 GoT-WAVE

For each node, we compute its GoTs frequency matrix, flatten the matrix to a vector,

and use the vector as the node’s features. The feature vectors over all nodes in a

network form a #Nodes×#Transitions matrix. For two networks being aligned, this

results in two corresponding matrices with the same number of columns, whose rows

are then joined together. Due to high dimensionality and sparsity of the joined matrix,

we perform dimensionality reduction on the matrix using principal component analysis,

keeping 99% of its variance. Then, we compute the topological similarity between

every two nodes from different networks as the cosine similarity between the nodes’

PCA-reduced feature vectors. GoT-WAVE uses the resulting node similarities as the

dynamic node conservation part of the objective function, which is then optimized

using WAVE. In all of the above steps, we do exactly what DynaWAVE does to

produce DGDV-based node similarities and perform DGDV-based temporal GPNA.

86

4.7. EXPERIMENTAL EVALUATION

GoT-WAVE, like DynaWAVE, can optimize dynamic node conservation (GoTs for

GoT-WAVE, DGDVs for DynaWAVE), dynamic edge conservation (DWEC), or both.

Its objective function is αSE + (1 − α)SN , where SE and SN are dynamic edge and

node conservation measures, respectively, and α ∈ [0, 1] controls how important each

measure is. We use: 1) α = 0, to fairly evaluate the two measures against each other,

meaning that only dynamic node conservation is considered, or 2) α = 1
2
, to give

each method the best-case advantage, since this α value seems to work the best for

DynaWAVE [VM17b].

4.7 Experimental Evaluation

Results were gathered on an Intel i7-6700 CPU at 3.4GHz with 16GB of RAM.

Execution times were obtained using a single core for computation.

In the following tests we measure potential improvement of GoT-WAVE over Dy-

naWAVE as follows.

Let us denote by SG the (accuracy or running time) score of GoT-WAVE, and by SD

the score of DynaWAVE. Also, let us denote by GA the relative gain of GoT-WAVE

over DynaWAVE in terms of accuracy, and by GT the relative gain GoT-WAVE over

DynaWAVE in terms of running time. Since for accuracy, a larger score is better,

we define GA = SG−SD
min(SG,SD)

× 100%. On the other hand, since for running time, a

lower score is better, we define GT = SD−SG
min(SG,SD)

× 100%. In both cases, positive

gain (i.e., a positive GA or GT value) would indicate improvement of GoT-WAVE

compared to DynaWAVE, and negative gain (i.e., a negative GA or GT value) would

indicate degradation of GoT-WAVE compared to DynaWAVE. For example, in terms

of accuracy, if GoT-WAVE has accuracy of 1 and DynaWAVE has accuracy of 0.7,

then GA = 1−0.7
0.7
× 100% = 43% (i.e., GoT-WAVE is superior to DynaWAVE). On the

other hand, if GoT-WAVE has accuracy of 0.7 and DynaWAVE has accuracy of 1, then

GA = 0.7−1
0.7
× 100% = −43% (i.e., GoT-WAVE is inferior to DynaWAVE). As another

example, in terms of running time, if GoT-WAVE takes 2 seconds and DynaWAVE

takes 6 seconds, then GT = 6−2
2
× 100% = 200% (i.e., GoT-WAVE is superior to

DynaWAVE). On the other hand, if GoT-WAVE takes 6 seconds and DynaWAVE

takes 2 seconds, then GT = 2−6
2
× 100% = −200% (i.e., GoT-WAVE is inferior to

DynaWAVE).

87

CHAPTER 4. NETWORK ALIGNMENT

4.7.1 Evaluation using synthetic networks

As often done [PKSH10, MNHP10, HCM15], we compare DynaWAVE and GoT-

WAVE on a set of synthetic networks from different graph models. We develop tem-

poral versions of well-known models: Erdős-Rényi random graphs [ER60], Barabási-

Albert preferential attachment [BA99], Watts–Strogatz small-world networks [WS98],

geometric gene duplication model with probability cutoff [PKSH10] and scale-free gene

duplication [VFMV03]. A good GPNA method should identify networks from the same

model as being more topologically alike (that is, a having higher alignment quality,

i.e., objective function score) than networks from different models.

4.7.1.1 Synthetic networks

We generate networks with 24 snapshots each (i.e., |S(G)| = 24). In each snapshot

St(G), new nodes arrive at the network and new edges are added to it until the desired

edge density is reached. For a more concise terminology, we use Nt = |V(St(G))|, where

t is the number of the snapshot. Node arrival is either linear (Nt = NT−N1

T−1 ·(t−1)+N1)

or exponential (Nt = N1 · e
(t−1)
10), T is the total number of snapshots, N1 is the number

of nodes at the start and Nt is the number of nodes at snapshot t. We set the arrival

function of each model according to what was reported as the observed node arrival

function for similar models [LBKT08]. How new edges are added (i.e., which nodes

they connect) is specific to each model.

• Erdős-Rényi (Random): Two nodes are chosen at random and connected.

Past edges are kept.

• Barabási-Albert (ScaleFree): Two nodes u and v are chosen at random

but they become connected only if max(deg(u),deg(v))
|E| > r, where r is a randomly

generated value ∈ [0, 1]. Therefore, nodes with higher degrees have a bigger

chance of gaining new connections (”the rich get richer”). Past edges are kept.

• Watts–Strogatz (Small-world): At t = 0 an initial ring network is created,

where each node is connected to ≈ k neighbors. Since N0 = 100 and the edge

density is 1%, k = 1 for t = 0. Edges are then randomly rewired with probability

β = 0.2. For t > 0, new nodes arrive and a ring is formed again (with a possibly

different k) while keeping the rewired connections previously added. Rewiring

is again performed, both on the new ring and on the old randomized edges.

Therefore, past edges might disappear.

88

4.7. EXPERIMENTAL EVALUATION

• Geometric gene duplication (Geo-GD): Initially k seed-nodes are placed

close-by in a two-dimensional space: d(u, v)2 < ε. As suggested by [PKSH10],

ε = 5 · 10−2 and k = 5 are used. Nodes are incrementally added to the network

one at a time, and each new node u is placed at a distance d(u, f)2 ≤ ε from a

random father-node f already in the network. The model includes parameter p

which controls how likely node u is to cut-off from f ; for our purposes p = 0.2

since it gives origin to realistic PPI networks [PKSH10]. When a node cuts-off

from its father, it is placed at a distance of 10ε at most. Node additions stop

when the desired number of nodes is achieved and the closest 1% edges are added

to snapshot t, while the other possible edges remain unactivated. It is possible

that past edges disappear since close edges in snapshot t are not guaranteed to

remain in the 1% closest edges of snapshot t+ 1.

• Scale-free gene duplication (ScaleFree-GD): After a few seed edges are

added to the network, each new node is (i) connected to a random father-node

and it (ii) copies the father’s connections. The model has two parameters: p

controls the likelihood of child- and father-nodes being connected by an edge,

and q sets the probability of the child-node keeping his father’s connections to

other nodes. For our purposes, p = 0.3 and q = 0.7 since these values generated

realistic PPI networks [PKSH10]. The model also sets a 50% chance that when

an edge is not successfully replicated from father to child either (a) the father

keeps the edge but the child does not copy it or (b) the child steals the connection

from the father; therefore, past edges can be lost.

Edge density is set at ≈ 1% for all models, mimicking real-world networks (such

as PPIs, internet routing and email networks [Mel06]), and remains stable for all

snapshots (e.g., this stability was observed in online social networks by [HW09]). Each

network starts with 100 nodes and grows to 1,000 nodes. We generate ten networks for

each of the five graph models, giving us 50 networks with 24 snapshots each, totaling

to 1200 snapshots. Details of each model in Table 4.1.

4.7.1.2 Performance on synthetic networks

With each of GoT-WAVE and DynaWAVE, we align all pairs of synthetic networks.

We compute objective function scores of all alignments. We compute the area under

the precision-recall (AUPR) or receiver operating characteristic (AUROC) curve. We

compare GoT-WAVE and DynaWAVE with respect to these measures. Note that given

89

CHAPTER 4. NETWORK ALIGNMENT

Table 4.1: Set of graph models used in our experiments. All networks (regardless of
the model) have 24 snapshots, start with 100 nodes, grow until they reach 1000 nodes,
and have edge density of = 1% in all snapshots. Node arrival (linear or exponential)
is set to what was reported in [LBKT08] for similar models. How nodes are connected
(i.e., how new edges are added) depends on the model.

Model Node arrival New edges
Random linear random
ScaleFree exponential preferential Attachment
Small-world linear ring + rewire (β = 0.2)

Geo-GD linear duplication w/ cut-off (p = 0.2)

ScaleFree-GD exponential duplication w/ edge loss (p = 0.3, q = 0.7)

the five graph models, the expected AUROC by chance is 0.2. Section 2.3 provides

more details on how the precision-recall, ROC curves, and their areas are obtained.

Table 4.2: Results on synthetic networks when only node conservation is optimized
(α = 0) or when node and edge conservation are optimized (α = 1

2
). In parentheses,

we show relative improvement (positive gain) or degradation (negative gain) in
performance of GoT-WAVE compared to DynaWAVE.

AUPR
α DynaWAVE GoT-WAVE

0 0.63 0.79 (+25%)
1
2

0.59 0.53 (-11%)

AUROC
α DynaWAVE GoT-WAVE

0 0.59 0.78 (+32%)
1
2

0.54 0.70 (+30%)

Model DGDVs GoTs
Random 26s 22s (+18%)

ScaleFree 22s 25s (-14%)

Small-world 23s 4s (+475%)

Geo-GD 34s 11s (+210%)

ScaleFree-GD 16s 12s (+33%)

Total 121s 74s (+64%)

(a) Accuracy. (b) Feature extraction times.

Under the fair-case scenario, when optimizing solely node conservation (α = 0),

GoT-WAVE’s AUPR and AUROC are higher by 25% and 32%, respectively, than

DynaWAVE’s (Table 4.2 (a)).

For this particular dataset, also optimizing edge conservation (i.e., α = 1
2
) decreases

performance of both methods, even though it was previously argued that α = 1
2

is the

best-case scenario [VM17b, VCM17]. Actually, we also verify that α = 1
2

is indeed

the best-case scenario on our considered real networks (Section 4.7.2). It is just that

on our considered synthetic networks, α = 0 happens to be both the fair and best-

case scenario for both methods, and under this scenario, GoT-WAVE is superior to

DynaWAVE.

90

4.7. EXPERIMENTAL EVALUATION

On synthetic networks, we also find that extracting GoT features is overall 64% faster

than extracting DGDV features (Table 4.2 (b)). Because both methods use their

features in the same alignment strategy (WAVE), their alignment times are similar,

as expected (Table 4.3).

Table 4.3: Average time to align two networks when using DGDVs or GoTs. We
compute the time of aligning each model (e.g., the time to align each of the Random
networks with any other networks). Since each of the 5 models m has 10 instances n

(i.e., networks), we consider (n−1)×n
2

= 45 alignments of a given network to networks
of its own model (e.g., align two Random networks) and n × (m − 1) × n = 400
alignments to networks of different models (e.g., align a Random network with a
ScaleFree network). For each model, we average the time over all 445 considered
alignments.

Model DGDVs GoTs
Random 6.219s 6.078s (+2%)

ScaleFree 6.196s 6.056s (+2%)

Small-world 6.181s 6.049s (+2%)

Geo-GD 6.027s 5.925s (+2%)

ScaleFree-GD 6.009s 5.868s (+2%)

Total 30.632s 29.976s (+2%)

We also performed a subset of all tests for synthetic networks, and specifically those

under the fair evaluation scenario (α = 0), using the other existing DGDV-based

temporal GPNA method, DynaMAGNA++, and a GoT-modified version of it, which

we refer to as GoT-MAGNA++. Here, we used the following values of MAGNA++’s

parameters: population size of 1000 and 1000 generations. These results are qualita-

tively similar to those reported above: GoT-MAGNA++’s AUPR and AUROC are

16% and 22% higher, respectively, than DynaMAGNA++’s. However, we maybe did

not give DynaMAGNA++ the best-case advantage, because this method was shown

to work the best for α = 1
2
, and under larger values of its parameters than those that

we were able to consider due to MAGNA++’s high running time. So, it is possible

that the performance of DynaMAGNA++ (and GoT-MAGNA++) could be improved.

However, testing this would be unnecessary, given that DynaWAVE was already shown

to outperform DynaMAGNA++ in terms of both accuracy and running time on all

networks but the smallest ones (with ≈100 nodes). So, we believe that our detailed

tests against DynaWAVE are sufficient.

91

CHAPTER 4. NETWORK ALIGNMENT

4.7.2 Evaluation using real-world networks

Section 4.7.1 studies GPNA at the network level (whether networks are from the same

model), while here we study GPNA at the node level (whether nodes are correctly

aligned). A typical process to evaluate GPNA at the node level on a real network is

to insert artificial noise into the network, that is, rewire a percentage of its temporal

edges (events), and align the original network to the noisy version [VM17b]. Then,

since the aligned networks have the same nodes, we can measure the percentage of all

nodes that are correctly aligned, i.e., node correctness.

To randomize a dynamic network, we use 3 different randomization schemes. For

undirected networks, we use an established randomization scheme [Hol15], which we

refer to as undirected randomization. This scheme chooses two random events and

swaps their time stamps with some probability. For directed networks, we use a

variation of the above scheme that has an additional parameter that controls the

probability of switching the edge directions of the events, which we refer to as directed

randomization. For directed networks, we use an additional randomization scheme

that only swaps the edge direction of events but not their time stamps, which we refer

to as pure directed randomization. More details on the randomization schemes are in

Appendix B. For a given scheme, we study 10 randomization (i.e., noise) levels, from

0% to 20% in increments of 2%. At each noise level, we produce five random network

instances and average the results over the five runs.

First, for a given method, at each noise level, for each alignment, we compute the

corresponding objective function score. Ideally, the objective score should decrease

as the network is aligned to progressively noisier versions. Furthermore, since we

know the perfect alignment between the original network and each of its randomized

versions (as their nodes are the same), we compute the ideal objective score – the

quality of the perfect alignment, as measured by DynaWAVE’s and GoT-WAVE’s

objective function. We denote the objective scores of the ideal and method-produced

alignments for noise n by Si,n and Sp,n, respectively. The expectation is that a good

method’s produced objective score should be similar to the method’s ideal objective

score, i.e., |Sp,n − Si,n| should be as close as possible to 0. Also, since we want to

account for scaling (e.g., the difference of 0.1 between 0.9 and 0.8 is not the same

as the difference of 0.1 between 0.3 and 0.2), we divide the difference between the

produced and ideal alignment by their maximum, i.e., max(Sp,n, Si,n). With these

points is mind, we compute the distance dis(Sp, Si) over all considered noise levels n

(from 0% to 20%) as: dis(Sp, Si) =
∑20%

n=0%
|Sp,n−Si,n|

max(Sp,n,Si,n)

92

4.7. EXPERIMENTAL EVALUATION

For each real network, we compute this distance for each of GoT-WAVE and Dy-

naWAVE. Then, we summarize gain of GoT-WAVE compared to DynaWAVE as

follows. Let us denote by SG the distance score of GoT-WAVE, and by SD the score

of DynaWAVE. Since a lower distance score is better, we compute the relative gain of

GoT-WAVE over DynaWAVE, denoted by GO, as: GO = SD−SG
min(SG,SD)

× 100%. Positive

gains mean than GoT-WAVE is superior to DynaWAVE and negative gains mean that

GoT-WAVE is inferior to DynaWAVE.

Second, we compare GoT-WAVE and DynaWAVE in terms of node correctness (see

above). Let us denote by SG the node correctness of GoT-WAVE, and by SD the

node correctness of DynaWAVE. Since higher node correctness is better, we compute

the relative gain of GoT-WAVE over DynaWAVE, denoted by GNC , as: GNC =
SG−SD

min(SG,SD)
× 100%. Again, positive gains mean than GoT-WAVE is superior to Dy-

naWAVE and negative gains mean that GoT-WAVE is inferior to DynaWAVE.

4.7.2.1 Real-world temporal networks

We analyze eight real networks (Table 4.4). Six of them are undirected, three of which

are biological networks from the DynaWAVE study [VM17b], and three are social

networks. We use two additional directed temporal networks.

Table 4.4: Real-world temporal networks used in our experiments.

Network Nodes Events Snapshots Description

U
n
d
ir

ec
te

d

zebra [RSF+15] 27 500 57 Zebra proximity network
yeast [VCM17] 1,004 10,403 8 Yeast PPI
aging [FM14] 6,300 76,666 38 Human aging PPI
school [GBC14] 327 7,388 5 School proximity network
gallery [ISB+11] 420 22,476 16 Gallery proximity network
arxiv [LKF07] 2,504 138,495 7 Paper co-authorships

D
ir

. emails [MPK11a] 167 8,771 9 E-mail communication
tennis [ARS16] 876 103,938 42 Player dominance network

4.7.2.2 Performance on real undirected networks

In terms of the objective score (Figure 4.1), both DynaWAVE and GoT-WAVE show

adequate behavior, i.e., the objective score decreases as we add more noise. When

optimizing solely node conservation (α = 0), we observe that: (i) for gallery and

zebra networks, both methods closely match their ideal alignments over all noise

levels; (ii) for yeast and aging networks, both methods closely match their ideal

93

CHAPTER 4. NETWORK ALIGNMENT

DynaWAVE Ideal DynaWAVE GoT-WAVE Ideal GoT-WAVE
(a

)
α

=
0

0 0.05 0.1 0.15 0.2

0.4

0.6

0.8

1

GO = +47%

Noise

O
b

je
ct

iv
e

S
co

re
gallery

0 0.05 0.1 0.15 0.2

GO = +375%

Noise

yeast

0 0.05 0.1 0.15 0.2

GO = +219%

Noise

arxiv

.

0 0.05 0.1 0.15 0.2

0.4

0.6

0.8

1

GO = +3%

Noise

O
b

je
ct

iv
e

S
co

re

zebra

0 0.05 0.1 0.15 0.2

GO = +73%

Noise

aging

0 0.05 0.1 0.15 0.2

GO = +11%

Noise

school

.

(b
)
α

=
1 2

0 0.05 0.1 0.15 0.2

0.4

0.6

0.8

1 GO = +9%

Noise

O
b

je
ct

iv
e

S
co

re

gallery

0 0.05 0.1 0.15 0.2

GO = −49%

Noise

yeast

0 0.05 0.1 0.15 0.2

GO = −67%

Noise

arxiv

0 0.05 0.1 0.15 0.2

0.4

0.6

0.8

1 GO = −39%

Noise

O
b

je
ct

iv
e

S
co

re

zebra

0 0.05 0.1 0.15 0.2

GO = +14%

Noise

aging

0 0.05 0.1 0.15 0.2

GO = −36%

Noise

school

Figure 4.1: Comparison between GoT-WAVE and DynaWAVE on undirected
networks in terms of how well their alignments’ objective scores match the objective
scores of ideal alignments, when (a) only node conservation is optimized (α = 0)
and (b) both node and edge conservation are optimized (α = 1

2
). Recall that GO is

the relative gain of GoT-WAVE over DynaWAVE (positive: GoT-WAVE is superior;
negative: DynaWAVE is superior).

94

4.7. EXPERIMENTAL EVALUATION

alignments for low noise levels, but for high noises levels, DynaWAVE drifts away from

its ideal alignments while GoT-WAVE still closely matches its ideal alignments; and

(iii) for arxiv and school networks, both methods are far from their ideal alignments

for low noise levels, but for high noise levels, GoT-WAVE closely matches its ideal

alignments while DynaWAVE is still far from its ideal alignments. In other words,

in terms of the total gain GO, GoT-WAVE improves upon DynaWAVE, more closely

matches its ideal alignments than DynaWAVE, for all six networks. When optimizing

both node and edge conservation (α = 1
2
), GoT-WAVE more closely matches its ideal

alignments for two out of the six networks (gallery and aging). So, the two methods

can be seen as complementary.

In terms of node correctness (Table 4.5 and Figure 4.2), for α = 0, the two methods

are again complementary - each is the best for three of the six networks. For α = 1
2
,

DynaWAVE’s node correctness improves more substantially than GoT-WAVE’s, which

is why now DynaWAVE is superior for most (though not all) of the networks. We

show an example of why that might be in Figure 4.3. In short, GoT-WAVE already

captures some of the information that DWEC captures and thus does not benefit much

from using it, while DynaWAVE captures different information from DWEC and thus

benefits more from using it. Note that the superiority of one method over the other

one is typically consistent over all noise levels, for both α = 0 and α = 1
2
.

In terms of running time (Table 4.6(a)), extracting GoT features is faster than extract-

ing DGDV features for the sparser networks (zebra, aging and school) and slower for

the denser networks (aging, arxiv and gallery). Denser networks induce more GoTs

than dynamic graphlets (Table 4.6(b)), and thus, GoTs are computationally heavier.

Just as for synthetic networks, because both methods use the same alignment strategy

(WAVE), their alignment times are similar (Table 4.7).

Table 4.5: Node correctness when aligning an undirected real network to itself (noise
= 0). In parentheses, we show relative improvement (positive gain) or degradation
(negative gain) in performance of GoT-WAVE compared to DynaWAVE. In bold, we
show the best result for each network.

(a) α = 0 (b) α = 1
2

Network DynaWAVE GoT-WAVE DynaWAVE GoT-WAVE

zebra 0.926 ± 0.05 0.578 ± 0.09 (-60%) 0.911 ± 0.04 0.615 ± 0.14 (-48%)

yeast 0.966 ± 0.01 0.924 ± 0.01 (-5%) 0.966 ± 0.01 0.919 ± 0.01 (-5%)

aging 0.912 ± 0.01 0.942 ± 0.01 (+3%) 0.959 ± 0.01 0.955 ± 0.01 (-0.4%)

arxiv 0.340 ± 0.02 0.446 ± 0.02 (+31%) 0.658 ± 0.01 0.602 ± 0.04 (-9%)

gallery 0.507 ± 0.03 0.485 ± 0.03 (-5%) 0.557 ± 0.01 0.531 ± 0.01 (-5%)

school 0.735 ± 0.03 0.861 ± 0.03 (+17%) 0.973 ± 0.01 0.971 +- 0.01 (-0.2%)

95

CHAPTER 4. NETWORK ALIGNMENT

DynaWAVE GoT-WAVE
(a

)
α

=
0

0 0.05 0.1 0.15 0.2
0

0.2
0.4
0.6
0.8
1

Noise

N
o
d
e

C
o
rr

e
ct

.

gallery

0 0.05 0.1 0.15 0.2
Noise

yeast

0 0.05 0.1 0.15 0.2
Noise

arxiv

0 0.05 0.1 0.15 0.2
0

0.2
0.4
0.6
0.8
1

Noise

N
o
d
e

C
o
rr

e
ct

. zebra

0 0.05 0.1 0.15 0.2
Noise

aging

0 0.05 0.1 0.15 0.2
Noise

school

(b
)
α

=
1 2

0 0.05 0.1 0.15 0.2
0

0.2
0.4
0.6
0.8
1

Noise

N
o
d
e

C
o
rr

e
ct

.

gallery

0 0.05 0.1 0.15 0.2
Noise

yeast

0 0.05 0.1 0.15 0.2
Noise

arxiv

0 0.05 0.1 0.15 0.2
0

0.2
0.4
0.6
0.8
1

Noise

N
o
d
e

C
o
rr

e
ct

. zebra

0 0.05 0.1 0.15 0.2
Noise

aging

0 0.05 0.1 0.15 0.2
Noise

school

Figure 4.2: Comparison between GoT-WAVE and DynaWAVE on undirected
networks in terms of node correctness, when (a) only node conservation is optimized
(α = 0) and (b) both node and edge conservation are optimized (α = 1

2
). The higher

the node correctness, the better the method.

96

4.7. EXPERIMENTAL EVALUATION

Figure 4.3: We observe that, when both node and edge conservation are considered
(α = 1

2
), in contrast to when only node conservation is considered (α = 0), DynaWAVE

has better results than GoT-WAVE consistently. Here we hypothesize why that might
the case with an example. When we use GoTs, node a from network G and node
a′ from network H are correctly identified as different (i.e., node a and node a′ have
different GoTs). When we use DGDVs, node a and node a′ are incorrectly identified
as similar/equal (i.e., node a and node a′ have the same DGDVs). For details on
DGDVs we refer the reader to [HCM15]. DGDVs can not distinguish between nodes
a and a′ because a dynamic graphlet only allows for one event per time-step. For
instance, the last graphlet in the DGDVs is not allowed (and not calculated). Thus,
for this case, DGDVs can only distinguish nodes a and a′ when edge conservation is
also considered. Cases such as these show why DGDVs have bigger benefits in using
DWEC than GoTs.

97

CHAPTER 4. NETWORK ALIGNMENT

Table 4.6: Results on undirected real networks in terms of (a) feature extraction
times and (b) number of subgraph occurrences (i.e., number of dynamic graphlets or
GoTs found on the network). GoTs induce many more occurrences than DGDVs, and
this is especially true for denser networks, such as aging, arxiv and school. Due to
our fast enumeration algorithm based on g-tries [RS14b], GoTs’ extraction is still faster
for the sparser networks, namely zebra, yeast and school. In parentheses, we show
relative improvement (positive gain) or degradation (negative gain) in performance
of GoT-WAVE compared to DynaWAVE. We assume that more occurrences means
degradation. Thus, GoT-WAVE shows a much higher degradation in terms of
number of occurrences than in execution time (-1,886% versus -142%), showcasing
our enumeration algorithm’s efficiency.

(a) (b)

Network
Execution time #Occurrences

DGDVs GoTs DGDVs GoTs
zebra 0.06s 0.02s (+200%) 9.676× 103 7.792× 103 (+24%)

yeast 86s 65s (+32%) 7.160× 106 5.815× 107 (-712%)

aging 202s 696s (-245%) 1.532× 107 5.510× 108 (-3,496%)

school 4s 2s (+100%) 3.765× 105 2.352× 106 (-525%)

arxiv 586s 1,360s (-132%) 6.178× 107 1.067× 109 (-1,627%)

gallery 6s 14s (-133%) 5.864× 105 1.432× 107 (-2,341%)

Total 884s 2,137s (-142%) 8.523× 107 1.693× 109 (-1,886%)

Table 4.7: Average execution time to align two networks using DGDVs or GoTs. We
compute the time of aligning a network with each of its randomized versions. Since
each network randomization has ten noise levels, each comprised of five networks, we
consider a total of 50 alignments per network, and average out the times.

Network DGDVs GoTs
zebra 4.50s 5.36s (-19%)

yeast 55.32s 82.46s (-49%)

aging 2,264.92s 1,209.58s (+87%)

arxiv 416.40s 249.98s (+67%)

gallery 20.36s 19.70s (+3%)

school 20.46s 14.72s (+39%)

Total 2,781.95s 1,586.79(75%)

98

4.7. EXPERIMENTAL EVALUATION

DynaWAVE Ideal DynaWAVE GoT-WAVE Ideal GoT-WAVE

0 0.05 0.1 0.15 0.2

0.4

0.6

0.8

1

Noise

O
b

je
ct

iv
e

S
co

re
emails

0 0.05 0.1 0.15 0.2

0.4

0.6

0.8

1

Noise

O
b

je
ct

iv
e

S
co

re

tennis

Figure 4.4: Comparison between GoT-WAVE and DynaWAVE on directed networks
in terms of how well their alignments’ objective scores match the objective scores of
ideal alignments, when only node conservation is optimized (α = 0). The noisy versions
are generated using the pure directed randomization scheme (i.e., time stamps of two
events are never swapped, only the edge direction is swapped). We observe, on one
hand, as expected, that DynaWAVE does not distinguish between the original and its
randomized versions because DGDVs do not take edge direction into account. On the
other hand, GoT-WAVE clearly distinguishes between the original and its randomized
versions because GoTs take edge direction into account.

4.7.2.3 Performance on real directed networks

Figure 4.4 shows objective score results for the pure directed randomization scheme.

As expected, since this scheme only rewires edge direction, the original network and

the noisy networks have identical topology when ignoring edge directions. Because of

this, and because DGDVs are undirected, DynaWAVE can not differentiate between

the networks, while GoT-WAVE can, since GoTs accounts for edge directions. The

rest of this section focuses on the other, directed randomization scheme, where not

only edge directions but also time stamps are rewired.

Unlike previous sections, we first address node correctness and only then objective

score. We choose this organization because, on directed networks, we do experiments

with different sets of GoTs (i.e., 4-node undirected GoTs, 3-node directed GoTs, and

4-node directed GoTs) in an effort to find the best set. For simplicity, we choose

the best GoTs as those with the highest node correctness when aligning the original

network to a noiseless version for α = 0. We find that 3-node directed GoTs are the

best for both of the directed networks (Table 4.8). Thus, henceforth, we use 3-node

directed GoTs (for DGDVs, we still use four nodes and six events, as recommended

by the DGDV authors).

99

CHAPTER 4. NETWORK ALIGNMENT

Table 4.8: Node correctness when aligning a directed network to itself (noise =
0), for α = 0. In parentheses, we show relative improvement (positive gain) or
degradation (negative gain) in performance of GoT-WAVE compared to DynaWAVE.
Node correctness results over all noise levels, using the best GoT-WAVE version (3-
node directed GoTs), are shown in Figure 4.5 (a) and (b) for α = 0 and α = 1

2
,

respectively.

Network
DynaWAVE GoT-WAVE
Undirected-4 Undirected-4 Directed-3 Directed-4

emails 0.85 ± 0.02 0.81 ± 0.03 0.83 ± 0.01 (-2%) 0.81 ± 0.02
tennis 0.74 ± 0.01 0.84 ± 0.03 0.85 ± 0.02 (+15%) 0.81 ± 0.02

DynaWAVE
GoT-WAVE

DynaWAVE Ideal DynaWAVE
GoT-WAVE Ideal GoT-WAVE

(a
)
α

=
0

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

N
o
d
e
C
o
rr
e
ct
n
e
ss

tennis

0 0.05 0.1 0.15 0.2

emails

(c
)
α

=
0

0 0.05 0.1 0.15 0.2

0.4

0.6

0.8

1

GO = 0%

O
b
je
ct
iv
e
S
co

re

tennis

0 0.05 0.1 0.15 0.2

GO = +118%

emails

(b
)
α

=
1 2

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Noise

N
o
d
e
C
o
rr
e
ct
n
e
ss

0 0.05 0.1 0.15 0.2
Noise

(d
)
α

=
1 2

0 0.05 0.1 0.15 0.20.2

0.4

0.6

0.8

1

GO = −80%

Noise

O
b
je
ct
iv
e
S
co

re

0 0.05 0.1 0.15 0.2

GO = −50%

Noise

Figure 4.5: Comparison between GoT-WAVE and DynaWAVE on directed networks
in terms of (a,b) node correctness and (c,d) how well their alignments’ objective scores
match the objective scores of ideal alignments, when (a,c) only node conservation is
optimized (α = 0) and (b,d) both node and edge conservation are optimized (α =
1
2
). For panels (a,b), the higher the node correctness value, the better the method.

For panels (c,d), recall that GO is the relative gain of GoT-WAVE over DynaWAVE
(positive: GoT-WAVE is superior; negative: DynaWAVE is superior).

In terms of node correctness, for α = 0, we observe that GoT-WAVE has higher

correctness than DynaWAVE for tennis over noise levels, and overall comparable node

correctness for emails, depending on the noise level (Figure 4.5 (a)). We hypothesize

that GoT-WAVE’s performance depends on subgraph overlap between (consecutive)

snapshots of the input network. Subgraph overlap is expected to be higher in the

tennis network than in the emails network, because tennis players tend to have the

same opponents every year, while one might not necessarily email the same people

in different time periods. Indeed, these are exactly the trends that our two networks

show. The same trend was already observed for an alternative email network [CM18].

100

4.8. SUMMARY

Networks with low subgraph overlap such as our emails network have fewer transitions

(i.e., lower GoTs frequencies), and thus provide less information to GoT-WAVE. For

α = 1
2
, DynaWAVE’s node correctness is higher for both networks over most noise

levels (Figure 4.5 (b)).

In terms of the objective score, for α = 0, GoT-WAVE more closely matches its ideal

alignments than DynaWAVE does for emails, and the two are comparable for tennis

(Figure 4.5 (c)). For tennis, GoT-WAVE mismatches the ideal alignments at lower

noise levels but matches them at higher noise levels, while DynaWAVE mismatches

the ideal alignments at both lower and higher noise level. For α = 1
2
, DynaWAVE’s

performance is again better for both networks (Figure 4.5 (d)).

In terms of running time, results are qualitatively similar to those for undirected

networks (Table 4.9).

Table 4.9: Results on directed real networks in terms of feature extraction times
when using DGDVs or GoTs. For DGDVs, we extract dynamic graphlets with up
to four nodes and up to six events, as suggested in [HCM15]. For GoTs, we extract
undirected GoTs with up to four nodes, directed GoTs with up to three nodes, and
directed GoTs with up to four nodes. In parentheses, we show relative improvement
(positive gain) or degradation (negative gain) in performance of GoT-WAVE compared
to DynaWAVE. In bold, we show the best result for each network.

Network
DGDVs GoTs

Undirected-4 Undirected-4 Directed-3 Directed-4
tennis 29.09s 113.07s (-289%) 2.90s (+903%) 128.43s (-341%)

emails 5.19s 5.65s (-9%) 0.21s (+2,371%) 7.84s (-51%)

Total 34.28s 118.72s (-246%) 3.11s (+1,002%) 136.27s (-297%)

4.8 Summary

We present GoT-WAVE as a new algorithm for temporal GPNA. Our results suggest

that GoTs are an efficient measure of dynamic node conservation. While DynaWAVE

benefits more from also optimizing dynamic edge conservation, only GoT-WAVE can

support directed edges.

Future work on better incorporating dynamic edge conservation into GoT-WAVE

may yield further improvements. Also, GoTs could be used under newer alignment

strategies instead of WAVE. Further, on real networks, each of GoTs and DGDVs

is superior half the time and the two dynamic node conservation measures are thus

101

CHAPTER 4. NETWORK ALIGNMENT

complementary. So, a deep understanding of each measure’s (dis)advantages could

perhaps guide development of a new, improved measure. As more temporal real data

continue to become available, which is inevitable, dynamic network analyses, including

temporal GPNA, will continue to gain importance.

102

Chapter 5

Node ranking

Finding important nodes in a network can be useful for different tasks, such as

detecting potential points of failure or spreaders in social networks. Node centrality

measures have been widely used for this purpose. However, finding dominant nodes is

not necessarily the same as finding central nodes.

Our aim in this chapter is twofold.

First, we develop a measure of node dominance based on graphlets, which we name

graphlet dominance (GD). Our aim is to showcase that GD is superior to node

centrality measures when assessing node dominance. We test our hypothesis on a

sports network and on an author citations network.

Second, instead of relying purely on network topology, we develop OTARIOS (OpTi-

mizing Author Rankings using Insiders/Outsiders Subnetworks) which is a measure

also based on topology but which uses additional features to better assess node im-

portance.

In both cases, we measure the importance of nodes from the networks and produce

node rankings. Our aim is to produce node rankings that are closer to ground-truth

rankings that similar state-of-the-art algorithms.

103

CHAPTER 5. NODE RANKING

5.1 Graphlet dominance (GD)

A simple way to measure node dominance is to compare the node’s out-degree (i.e.,

its dominant edges) with its in-degree (i.e., its dominated edges). Using graphlet

terminology: a node is dominant if it appears many more times in orbit 0 than in orbit

1 (Figure 3.3). For instance: (i) a high-ranked tennis player ”beats” (dominates) more

players than the ones that ”beat” him (is dominated), or (ii) an important researcher

”is referenced” (dominates) by more researchers than the ones he ”references” (is

dominated).

In most real-world cases, a node is not connected to all other nodes, thus, there is no

direct dominance relation for all pairs of nodes. However, it is possible to extrapolate

dominance to indirect relations. Consider graphlet G2 from Figure 3.3: the node in

orbit 2 dominates the node in orbit 3, and the node in orbit 3 dominates the node

in orbit 4. For simplicity, henceforth we simply say that ”orbit x dominates orbit y”.

While there is no direct connection from orbit 2 and orbit 4, there is a path from orbit

2 to orbit 4. Thus, orbit 2 indirectly dominates orbit 4. Since paths can have different

lengths, we say that ”orbit x i-dominates orbit y”. In this case, orbit 2 2-dominates

orbit 4.

Graphlets give more information about node dominance than just directed paths.

Consider graphlets G5 and G6 from Figure 3.3: orbit 8 dominates orbit 9, and orbit

10 dominates orbits 11 and 12. Orbit 9 consists of two topologically equivalent nodes,

while orbits 11 and 12 consist of a single node each. Thus, both orbit 8 and orbit

10 dominate two nodes. However, arguably, orbit 10 is a more dominant orbit than

orbit 8 because orbit 10 dominates orbit 12 both directly and indirectly, i.e., orbit

10 dominates other dominant orbits, while orbit 8 only dominates two nodes directly.

Similarly, orbit 12 is an dominated orbit to orbit 9.

To be more general, our measure considers all k-node graphlets.

Computing k-graphlets does not guarantee that we find a dominance relation between

every two nodes x, y ∈ V(G) since the minimum path length between x and y might be

bigger than k. However, many real-world networks are small-world [WS98], thus even

small graphlets, such as 3- or 4-node graphlets, find connected graphs for most pairs

of nodes. Furthermore, subgraph counting for larger graphlets is very computationally

expensive (Section 2.2). For these reasons, we use directed graphlets with at most four

nodes.

104

5.1. GRAPHLET DOMINANCE (GD)

5.1.1 Methodology

First, our graphlet-based ranking method receives as input a set of graphlets and

calculates scores for their orbits. Then, during subgraph enumeration, we increase (or

decrease) the nodes’ scores according to the orbits that they appear at in the graphlet

occurrences. Finally, we compare the scores and produce a node ranking.

We calculate orbit scores using the transitive closure of the graphlet, as shown in

Figure 5.1, where distance d(ni, nj) is the minimum path length between nodes ni and

nj. Note that multiple nodes of a graphlet can be in the same orbit (e.g., orbit e

from subgraph GB), and those nodes have the same distance to all other nodes from

different orbits (e.g., orbits f and g have distance 1 to both nodes in orbit e).

a
b
c
d
a b c d

a
b
c
d

1
1

1

2 3
2-

-
-

-
- -
- - -

fe

g
e e f g

e
e
f
g

-
1

- -
-
- -

- - -
- -

1 1
1 1

h i j k
h
i
j
k - -

1 2

1 2 3
12 2

1
- -

k
j

h i

GBGA GC

- -
-
-

Figure 5.1: Graph transitivity of 3 subgraphs. Nodes with the same shade are in
the same orbit. Orbit scores are assessed using the transitivity matrix: row values
are positive points while column values are negative. Higher cell values mean that the
connection is less direct.

The three examples from Figure 5.1 show some aspects that our method captures and

takes into account when scoring orbits:

• Orbit f from GB is dominant since it has three out-edges and no in-edges, while

orbit e is dominated since it has no out-edges and two in-edges. Orbit g stands

somewhere in between since it dominates e but is dominated by f .

• Orbits a, b, c and d from GA constitute a 4-node chain where the orbits at its

start are more dominant than the ones at its end since they indirectly dominate

more orbits (e.g., orbit a dominates b, 2-dominates c, and 3-dominates d).

• Orbits h, i, and j of GC form a cycle and would, therefore, be considered

equivalent if orbit k was not considered. However, orbit j dominates k directly

while h and i dominate k indirectly. Also, orbit i dominates orbit k more directly

than orbit h does.

105

CHAPTER 5. NODE RANKING

S(o) =

(
λ×

∑
oi∈I(o)

βk−d(o,oi)

)
−
(

(1− λ)×
∑

oj∈S(o)

βk−d(oj ,o)

)
(5.1)

We calculate orbit scores S(o) for a given graphlet H as shown in Equation 5.1. For

each orbit o ∈ O(H), we subtract the negative dominance points
(∑

(oj∈S(o)) β
k−d(oj ,o)

)
from the positive ones

(∑
(oi∈I(o)) β

k−d(o,oi)
)

. Set I(o) ∈ O(H) is the set of orbits

dominated to orbit o while S(o) ∈ O(H) is the set of orbits superior to it. The

distance between oi and oj is given by d(oi, oj) and it can be at most k − 1, where

k is the size of the subgraph. Equation 5.1 gives higher relevance to direct dominant

connections than to indirect dominant connections and, conversely, direct dominated

connections take more points away than indirect dominated connections.

Parameter β controls the relative importance of the directness, i.e., a small β (closer

to 1) gives roughly the same importance to direct and indirect dominances, while a

high β means that direct dominances are more important. Notice that if β is too big

the score becomes almost equivalent to the degree since distant dominances are almost

irrelevant. Parameter λ ∈ [0, 1] controls the relative importance of dominating versus

not being dominated. Using λ ≈ 1 means that a node is evaluated mostly by how

many nodes he dominates (out-edges) while the amount of nodes that dominate him

(in-edges) does not have a big impact in the rankings, and vice-versa when λ ≈ 0, i.e.,

the node is ranked higher if he is dominated by few nodes. These parameters produce

a flexible scoring mechanism.

S(v) =
∑
o∈O

Fr(v, o)× S(o) (5.2)

We calculate node scores S(v) for all nodes v ∈ V(G) as shown in Equation 5.2. First,

we perform subgraph counting on the network, listing the occurrences and the orbits

where the nodes appear in each occurrence. Then, for each orbit o, S(v) is increased

by the score of the orbit S(o) multiplied by the number of times v appeared in orbit

o, represented by Fr(v, o).

Finally, nodes are ordered from the lowest to the highest score to produce the ranking.

106

5.2. COMPARISON WITH NODE CENTRALITY MEASURES

5.2 Comparison with node centrality measures

Here we propose a measure of node dominance. As far as we know, there is no directly

comparable measure in the literature. However, node centrality measures, similarly to

our node dominance measure, evaluate how important a node is in a network. Dozens

of node centrality measures have been proposed [LCR+16, OFP+18], with different

definitions of what makes a node important/central.

Some measures, such as the degree centrality (DC), relate the node’s importance to its

direct neighborhood, i.e., important nodes have many connections. Others, such as the

closeness centrality (CC), betweenness centrality (BC), and subgraph centrality (SC),

relate the node’s importance to the paths that traverse it, i.e., important nodes have

many paths traversing them. A node has (i) high CC if it is close to all other nodes

in the network (i.e., it has a small average shortest path length), (ii) high BC if it

is a shortcut between many pairs of nodes (i.e., many nodes have shortest paths to

other nodes that traverse it), and (iii) high SC if it is part of many small groups (i.e.,

it is part of many small closed-loops, such as triangles or squares, e.g., G4 and G31

from Figure 3.3). These four measures have a common aspect: they are computed

individually for each node in the network. Iterative refinement measures, such as

PageRank (PR), compute centrality scores on step s and update them on step s + 1.

A node has high PR if it is important and also connected to important nodes (i.e., if

it has many connections to nodes with many connections themselves). We focus on

these five measures since they are some of the most widely used. [LCR+16] presents a

complete survey on subgraph centrality algorithms.

Strong correlations have been found between node centrality measures [WS03, OFP+18].

Here we analyze how our own measure, graphlet dominance (GD), correlates with the

five centrality measures (DC, BC, CC, SC, and PR) on a set of networks (Table 5.1),

in an effort to show how our measure differs from the state-of-the-art.

Name Node Edge |V(G)| |E(G)| Source
celegans Neuron Synapse 297 2,345 [New13]
tennis Player Beats 876 7,789 Our own
polblogs Blog Links 1,224 19,025 [New13]
goodreads Writer Influences 1,420 4,245 Our own

Table 5.1: Set of directed networks used to compare centrality measures.

Our GD measure has three parameters: λ, β, and k. We use two values for λ: 1

and 1
2
; λ = 1 only considers dominant edges and ignores dominated edges, and λ = 1

2

gives equal importance to both. With this variation in λ we intend to show that

107

CHAPTER 5. NODE RANKING

considering dominated edges greatly affects the node scores and that other measures

do not use this information. We use two values for β: 1 and 3
2
; β = 1 gives equal

importance to direct and indirect dominance, and β = 3
2

gives more importance to

direct dominance. With this variation in β we intend to show that other measures

do not account for direct/indirect dominance. Finally, we use three values for k:

2, 3, and 4. With this variation we intend to show that bigger graphlets capture

different information that smaller ones, and that smaller graphlets are more similar to

other node centrality measures than bigger graphlets. We create three major variants,

GD(1
2
, 3
2
, k), GD(1

2
, 1, k), and GD(1, 3

2
, k), and compare them with the five centrality

measures previously discussed using Pearson correlations.

We first analyze the variant of GD that takes into account (i) both dominant and

dominated connections and (ii) distinguishes between direct and indirect dominance,

i.e., GD(1
2
, 3
2
, k). From Table 5.2 we observe that, for most cases, path-based measures

(i.e., BC, SC, and CC) are weakly correlated with GD. This is expected since these

measures give high scores to nodes with many paths traversing them, while GD lowers

the score of nodes with many incoming edges. We consistently observe that the

correlation between DC and GD decreases as k increases. Again, this is expected

since GD(1
2
, 3
2
, 2) only considers 2-node subgraphs, like the degree. The correlation

is not very high because of the way GD handles dominated connections. PR is, for

most cases, the centrality measure more correlated with GD. Unlike other measures,

and like GD, PR is more suited to find important nodes than central nodes, hence

the higher correlation is also expected. Nevertheless, it is clear from these tests that

GD captures different information from the centrality measures, and the differences

increase for larger graphlets.

celegans polblogs tennis goodreads
k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

DC 0.36 0.17 0.11 0.31 0.20 0.14 0.72 0.67 0.64 0.70 0.75 0.70
BC 0.03 0.04 0.03 -0.19 -0.26 -0.28 0.52 0.52 0.53 0.24 0.29 0.27
SC 0.33 0.18 0.12 0.21 0.13 0.08 0.59 0.61 0.63 0.18 0.16 0.14
CC 0.40 0.23 0.17 0.18 0.11 0.09 0.23 0.18 0.17 0.37 0.36 0.33
PR 0.40 0.19 0.13 0.29 0.22 0.18 0.78 0.74 0.72 0.41 0.42 0.40

Table 5.2: Comparison between GD(1
2
, 3
2
, k) and node centrality measures.

We now analyze how GD changes when it considers (i) only dominant connections,

ignoring dominated connections, and (ii) distinguishes between direct and indirect

dominance, i.e., GD(1, 3
2
, k). From Table 5.3 we observe that, for most cases, the

correlation between GD and the other measures increases. This happens because

now GD, like the other measures, is also not considering the weight of dominated

108

5.2. COMPARISON WITH NODE CENTRALITY MEASURES

connections. The correlation of DC and GD with k = 2 now is almost 1, thus there

is little gain of using this variant of GD over DC. As we increase k, GD becomes less

correlated with the degree, particularly for larger networks.

celegans polblogs tennis goodreads
k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

DC 0.98 0.92 0.86 0.93 0.96 0.94 0.94 0.89 0.87 0.96 0.92 0.86
BC 0.51 0.58 0.58 0.36 0.54 0.63 0.67 0.68 0.70 0.45 0.43 0.39
SC 0.57 0.54 0.50 0.62 0.63 0.57 0.67 0.71 0.74 0.13 0.11 0.09
CC 0.65 0.52 0.44 0.52 0.50 0.49 0.46 0.40 0.38 0.31 0.28 0.25
PR 0.65 0.55 0.47 0.64 0.71 0.73 0.95 0.92 0.90 0.45 0.41 0.38

Table 5.3: Comparison between GD(1, 3
2
, k) and node centrality measures.

Finally, we analyze how GD changes when it considers (i) both dominant and domi-

nated connections and (ii) does not distinguish between direct and indirect dominance,

i.e., GD(1
2
, 1, k). From Table 5.4 we observe that this variant produces very similar

results to GD(1
2
, 3
2
, k), but produces slightly higher correlations to other centrality

measures. This indicates that direct/indirect dominance adds some information but

so much as dominant/dominated connections.

celegans polblogs tennis goodreads
k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

DC 0.36 0.19 0.14 0.31 0.20 0.15 0.72 0.69 0.67 0.70 0.76 0.70
BC 0.03 0.04 0.04 -0.19 -0.26 -0.27 0.52 0.53 0.55 0.24 0.31 0.27
SC 0.33 0.21 0.15 0.21 0.13 0.09 0.59 0.63 0.66 0.18 0.17 0.15
CC 0.40 0.25 0.20 0.18 0.12 0.10 0.23 0.20 0.19 0.37 0.38 0.36
PR 0.40 0.23 0.16 0.29 0.23 0.20 0.78 0.76 0.75 0.41 0.45 0.42

Table 5.4: Comparison between GD(1
2
, 1, k) and node centrality measures.

Table 5.5 complements the results previously discussed as is included for completeness:

we correlate the fuller version of GD, GD(1
2
, 3
2
, 4), with other variants.

k celegans polblogs tennis goodreads

GD(1
2 ,

3
2 , k)

2 0.816 0.851 0.944 0.826
3 0.992 0.983 0.993 0.982
4 1 1 1 1

GD(1
2 , 1, k)

2 0.816 0.851 0.944 0.826
3 0.986 0.978 0.990 0.983
4 0.999 0.999 0.996 0.997

GD(1, 32 , k)
2 0.115 0.253 0.799 0.727
3 0.079 0.180 0.880 0.829
4 0.072 0.128 0.897 0.858

Table 5.5: Correlation between the complete GD variant with 4-node graphlets (i.e.,
GD(1

2
, 3
2
, 4)) and simpler GD variants.

109

CHAPTER 5. NODE RANKING

5.3 Tennis players ranking

In this section we apply our GD measure to rank tennis players. We analyze how GD

produces different rankings by varying its parameters and interpret the results.

5.3.1 Motivation

Debating who is the best player (or team) is one of the most discussed topics in any

competitive sport. Academia has proposed different ranking systems [Elo61, Mar02,

Rad11], analyzed which variables are good indicators of form [SC88, Mel01, ML14],

and tried to predict who will be successful [SH95, CGW99, VY09]. Here we focus on

the first problem.

Objectively quantifying player achievements is not straightforward since multiple cri-

teria can be used to compare players. Furthermore, the sports themselves evolve

throughout the years, making it hard to compare players from different eras. Never-

theless, many competitive sports require a ranking system used for player seeding in

tournaments.

Most official ranking systems by major sports organizations such as FIFA, ATP, etc.,

base their rankings on performances in tournaments (e.g., first-round elimination,

Top-20, winner) over a certain time-frame (e.g., one year, five years) [Ste97]. We

refer to these rankings as tournament-based since they also differentiate important

tournaments (e.g., the FIFA World Cup, or Wimbledon) from minor events. Thus, in

these rankings, a player (or team) is good if she/he wins many important tournaments.

Tournament-based approaches are problematic since (i) players’ perception of tourna-

ments evolve (e.g., the Australian Open was not considered a top tournament before

the 1980s, thus many top players did not participate in it), (ii) the points given per

round/tournament change, thus we can not compare points given in different seasons,

and (iii) they give no weight to head-to-head results directly.

The approach that we follow is a dominance-based ranking system; here we are as-

suming that head-to-head results are more important than tournament performances.

We do not look at head-to-head results solely because (i) not every pair of players has

faced each other and (ii) analyzing the problem as a network gives more information

about the intricate connections between the players.

The work by Radicchi et al. [Rad11] proposes a PageRank-like [PBMW99] ranking

110

5.3. TENNIS PLAYERS RANKING

system for tennis players. Dingle et al [DKS12] also used Radicchi’s ranking system

to produce a more up-to-date ranking of both male and female tennis players. The

network that Raddicchi et al. built is different from our own since a) their edges are

weighted (wij: number of times that pi beats pj) while ours are simple directed edges

reflecting win-percentages, b) they used match information from 1969 until 2010 whilst

our networks are relative to matches from 1974 to 2015 and c) they only considered

matches played on either Grand Slam tournaments or ATP Masters 1000 whereas we

use information from all official ATP tournaments. Traditional PageRank does not

decrease the node’s rank with respect to its out-edges (in this case, meaning loses

against) and is therefore not suitable to determine player dominance relations. The

prestige score presented in [Rad11] lowers the wij according to pj’s out-degree (the

number of times pj loses against someone); therefore, dominating a dominated node

gives less prestige than dominating a more dominant player. However, the prestige

score is not decreased according to pi’s out-edges, which may result in dominated

players having a high score as long as they dominate a few dominant players. Our

scoring system increases the players’ score in respect to the players that they dominate

and, likewise, decreases their score when they are themselves dominated. Another

approach was followed by Motegi and Masuda [MM12] where they use a dynamic win-

ratio that takes into account temporal information and fluctuations in the ranking.

They not only consider direct wins and losses but also indirect ones, namely those

corresponding to directed paths of size 3. Our work differs because we use subgraphs

of size 4, which encapsulate more information than paths of size 3. Furthermore, we

consider global dominance relations to obtain an earned ranking, while their work

focuses on obtaining a temporal snapshot for a particular point in time and use it for

prediction purposes.

5.3.2 Network description

In order to construct the dominance network we first collected the names of all tennis

players that have been ranked, at least once, in the Top-100 of the ATP year-end

rankings from 1974 until 2015 and then extracted their match information from Tennis

Abstract1. Players below the Top-100 only enter a few major tournaments, thus we

did not consider them. A total of 856 tennis players have been in the Top-100 in the

time-interval chosen and they have played ≈ 140, 000 matches between themselves.

We observe that the amount of matches played annually increased significantly in the

1www.tennisabstract.com

111

w

CHAPTER 5. NODE RANKING

1990s but has dropped in recent years (Figure 5.2). This is possibly due to changes in

the ranking system that encourage players to only participate in the most prestigious

tournaments and also due to an increased awareness of the sport’s physical demands.

Nowadays, most tennis tournaments are contested on clay or hard courts, with only

a few matches played on grass each year. Carpet was a popular surface until the

mid-1990s but it was discontinued from the ATP Tour in the late 2000s. The surface

characteristics affect the pace of the game, favoring different playing styles. Usually,

grass is the fastest surface to play on, followed by carpet, hard and finally clay.

1970 1980 1990 2000 2010

0

1000

2000

3000

4000

Hard Clay Carpet Grass

Figure 5.2: Matches played per year.

Table 5.6: Global statistics of the tennis
networks, discriminated by surface.

Surface |V| |E|
|E| |E⇒|
|V| |E|

Hard 301 868 2.88 0.64

Clay 289 793 2.74 0.65

Carpet 97 188 1.94 0.72

Grass 140 173 1.24 0.90

Overall 585 3279 5.61 0.68

After extracting match data, we create match tensors M(s) = |P| × |P| × |Y| and

win-ratio tensors W (s) = |P| × |P| × |Y|, one for each surface s and one for overall

matches (thus, five match tensors and win-ratio tensors in total), where P is the set

of player and Y is the set of years. Thus, m(s)i,j,t is the number of matches player

pi played against pj on surface s in year t, and w(s)i,j,t is the win-ratio of player pi

against pj on surface s in year t.

Then, we create dominance networks where nodes are players and the orientation of

the edges between two players depends on their head-to-head win-ratio on a given

surface: we create an edge (pi, pj) if pi won at least δ% of the matches against pj on

surface s in a given year t (Equation 5.3) and if they played a minimum φ matches on

surface s during their careers (Equation 5.4).

w(s)i,j,t ≥ δ% (5.3)

(
2015∑
t=1974

m(s)i,j,t

)
≥ φ (5.4)

We use δ = 2
3
, meaning that one player dominates another if he has defeated him in

more than 66% of their matches, and φ = 3 on grass courts and φ = 5 for all other

112

5.3. TENNIS PLAYERS RANKING

surfaces (since grass matches are fewer), meaning that we only create an edge if they

played at least 3/5 matches.

We build career dominance networks by calculating dominances using the career win-

percentage, instead of yearly results (Table 5.6). The number of ”overall” edges is not

simply the sum of the edges from all surfaces since an overall dominance is established

by playing a minimum φ matches on any surface (i.e., one player can dominate another

in overall matches without having φ encounters with him in any particular surface).

Notice that only 585 of the original 856 players are represented in the network since

the others did not play the required φ matches against any other Top-100 player, and

consequently have no edges.

Since we require the win-ratio to be > δ% for a dominance relation to be established,

the networks contain bidirectional (or reciprocal) edges, meaning that two players

met in at least φ matches but neither one dominates the other. The dominant

(unidirectional) edges and non-dominant (bidirectional) edges are represented as E⇒
and E⇔, respectively, where E = (E⇒ ∪ E⇔).

5.3.3 Network analysis

In regard to career dominance networks, Jimmy Connors dominates the most other

players overall (63), followed by Roger Federer (60), and Ivan Lendl (59). On individual

surfaces, Roger Federer leads with 46 out-edges on hard courts and 17 on carpet,

Guillermo Vilas with 37 on clay, and John McEnroe with 23 on carpet.

We present two visual representations of our networks in Figure 5.3.

Figure 5.3 (a) shows the giant component of the career dominance network, where

edge color represents surface: blue for hard, brown for clay, green for grass, pink for

carpet and black for overall. Node size grows with the number of out-edges, e.g., Roger

Federer corresponds to the largest node since he has the most out-edges (132).

Figure 5.3 (b) shows the relations between all 25 players that have been ranked as the

ATP Top-1 player. Edges represent overall dominance and line thickness reflects how

unbalanced the relation is. Boris Becker, Andre Agassi and Roger Federer dominate

the highest number of ATP Top-1 players (6), and Juan Carlos Ferrero is dominated the

most (5). Only Björn Borg, Gustavo Kuerten, and Rafael Nadal are not dominated by

any ATP Top-1 players. If surfaces are taken into account, Gustavo Kuerten and Björn

Borg remain as the only players not dominated by any Top-1 since Novak Djokovic

113

CHAPTER 5. NODE RANKING

and Roger Federer dominate Nadal on hard and grass courts, respectively. In fact, if

φ = 5, no ATP Top-100 player dominates Björn Borg regardless of δ since no one that

played at least 5 matches against him has a positive winning-ratio.

We notice that Jimmy Connors, one of the players with most out-edges, does not

dominate any Top-1 player. The fact that he faced the other Top-1 players when they

were closer to their prime than himself might be the main reason for this. Comparing

players from different eras might seem unfair if one inspects only individual relations

but here we analyze the global scope of their careers, i.e., their head-to-head results

against (i) players from their own era, (ii) players from the era preceding theirs, and

(iii) players from the subsequent era. However, we note that this choice penalizes

players at the ends of the time-interval considered.

5.3.4 Results

We use our GD measure presented in Section 5.1 to rank tennis players and analyze

the rankings obtained. Since the network is relatively small and it is easy to analyze

the results, we are more focused on interpreting the different rankings produced by GD

(depending on the parameters) than in evaluating our rankings against a ground-truth

ranking (such as the ATP ranking). Nevertheless, in our analysis, we correlate our

results with indicators of performance, such as the number of Grand Slam tournaments

won. In all results, we use 4-node directed graphlets.

Table 5.7 presents the 15 players with highest scores depending on λ. In the middle

column λ = 1
2
, meaning that dominating and not being dominated is equally important

for the players’ scores, and this value is used for comparison with the other λ.

When λ < 1
2
, our measure gives more importance to not being dominated that to

dominating other players. Players such as Björn Borg and Gustavo Kuerten benefit

from this parameter choice whereas Guillermo Vilas is penalized. For λ ≈ 0, Rafael

Nadal tops the ranking because very few players have a positive win-ratio against

him. However, for very low λ, the GD ranking is not very meaningful since players

that have only a few out-edges unrealistically climb in the rankings if they also have

few in-edges.

When λ > 1
2
, our measure gives more importance to dominating that to not being

dominated other players. Players such as Carlos Moya and Guillermo Vilas benefit

from this parameter choice whereas Björn Borg and Novak Djokovic are penalized.

Having λ ≈ 1 still produces meaningful results since the ranking very highly play-

114

5.3. TENNIS PLAYERS RANKING

(a)

(b)

Figure 5.3: Tennis dominance networks: in (a) blue edges are drawn for dominances
in hard courts, brown for clay, green for grass and pink for carpet. The nodes’ size
increases proportionally with their out-degree. (b) shows the relations between all
ATP Top-1 players, disregarding surface.

ers that dominate many others is reasonable; however, it completely disregards the

dominated edges.

We set λ = 1
3

in our subsequent analysis, giving a slight edge to players that are not

dominated by many others.

115

CHAPTER 5. NODE RANKING

#

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Player m

I. Lendl 1 N

R. Federer 1 H

J. Connors

R. Nadal 1 N

N. Djokovic 1 N

B. Becker

A. Agassi 3 H

B. Borg 5 N

S. Edberg 1 H

P. Sampras 2 N

J. McEnroe 1 H

A. Murray 4 N

L. Hewitt 2 H

G. Kuerten 7 N

G. Vilas 6 H

Player m

I. Lendl 1 N

R. Federer 1 H

J. Connors

A. Agassi

R. Nadal

N. Djokovic 1 N

B. Becker 1 H

S. Edberg

J. McEnroe 1 N

G. Vilas 1 H

L. Hewitt

P. Sampras

B. Borg

A. Murray 2 N

A. Roddick

Player

R. Federer

I. Lendl

J. Connors

A. Agassi

R. Nadal

B. Becker

N. Djokovic

S. Edberg

G. Vilas

J. McEnroe

L. Hewitt

P. Sampras

B. Borg

Y. Kafelnikov

A. Roddick

Player m

R. Federer

I. Lendl

J. Connors

A. Agassi

R. Nadal

B. Becker

S. Edberg 1 N

N. Djokovic 1 H

G. Vilas

J. McEnroe

L. Hewitt

P. Sampras

Y. Kafelnikov 1 N

C. Moya 3 N

B. Borg 2 H

Player m

R. Federer

I. Lendl

J. Connors

A. Agassi

R. Nadal

B. Becker

G. Vilas 2 N

S. Edberg

N. Djokovic 2 H

J. McEnroe

L. Hewitt

Y. Kafelnikov 2 N

P. Sampras 1 H

C. Moya 3 N

D. Ferrer 2 N

λ = 1
6 λ = 1

3 λ = 1
2 λ = 2

3
λ = 5

6

Table 5.7: Ranking obtained by varying λ: the relative weight between dominating
(out-edges) and being dominated (in-edges).

We set β = 3
2
, giving more weight to direct dominances that to indirect ones. To

illustrate the effect of β, consider graphlet GA from Figure 5.1: if β = 1, S(a) =

1(4−1) + 1(4−2) + 1(4−3) = 3, S(b) = 1, S(c) = −1 and S(d) = −3; if β = 2, S(a) =

2(4−1) + 2(4−2) + 2(4−3) = 14, S(b) = 4, S(c) = −4 and S(d) = −14. For instance, this

means that orbits a and b give similar scores when β = 1 but very different scores

when β = 2. Low β does not distinguish direct from indirect dominances while high β

penalizes indirect dominances too heavily, therefore we chose an intermediate value.

According to our ranking, Roger Federer is the most dominant player, followed by

Jimmy Connors and Ivan Lendl (Table 5.8 (a)). We observe that the number of Grand

Slam tournaments won by the player is correlated with higher positions in our ranking.

From the Top-25 players only David Ferrer, Tim Henman, and Robin Soderling did

not win any, but all three of them were Top-4 ATP players during their careers.

Table 5.8 (b) shows our rankings by surface of all 25 players that have been the Top-1

ATP player from 1974 until 2015. A dash (–) means that the player does not have

any edge on the dominance network for that particular surface, i.e., he did not play

the minimum φ matches against anyone. The position of the player is presented in

bold-face if he is ranked among the Top-25. We observe that most (76%) ATP Top-1

players are also ranked as one of the Top-25 most dominant players by our measure; the

exceptions are John Newcombe, Mats Wilander, Jim Courier, Marcelo Rios, Patrick

Rafter, and Marat Safin. Patrick Rafter is a notable outlier since he is ranked at the

116

5.3. TENNIS PLAYERS RANKING

Player #GS

1 R. Federer 17

2 J. Connors 8

3 I. Lendl 8

4 A. Agassi 8

5 R. Nadal 14

6 J. McEnroe 7

7 G. Vilas 4

8 N. Djokovic 10

9 B. Becker 6

10 P. Sampras 14

11 S. Edberg 6

12 A. Roddick 1

13 A. Murray 2

14 L. Hewitt 2

15 B. Borg 11

16 T. Muster 1

17 C. Moya 1

18 I. Năstase 2

19 D. Ferrer 0

20 G. Kuerten 3

21 Y. Kafelnikov 2

22 A. Ashe 3

23 JC. Ferrero 1

24 T. Henman 0

25 R. Soderling 0

Player Overall Hard Clay Grass Carpet

I. Nătase 18 26 9 – 18

J. Newcombe 38 – – 128 38

J. Connors 2 11 27 2 4

B. Borg 15 31 7 12 7

J. McEnroe 6 27 297 4 1

I. Lendl 3 10 10 90 3

M. Wilander 27 234 8 96 78

S. Edberg 11 12 118 7 70

B. Becker 9 192 55 6 2

J. Courier 41 13 37 32 73

P. Sampras 10 7 66 11 6

A. Agassi 4 3 63 28 41

T. Muster 16 178 3 – –

M. Rios 33 252 20 – –

C. Moya 17 190 149 – –

Y. Kafelnikov 21 269 321 22 49

P. Rafter 381 243 193 20 –

M. Safin 46 298 31 167 –

G. Kuerten 20 21 5 – –

L. Hewitt 14 8 177 496 –

JC. Ferrero 23 231 16 – –

A. Roddick 12 5 76 63 –

R. Federer 1 1 14 1 –

R. Nadal 5 6 2 118 –

N. Djokovic 8 2 35 8 –

(a) (b)

Table 5.8: GD ranking of tennis players with λ = 1
3
, β = 3

2
, and k = 4: (a) GD’s

Top-25 players and (c) GD’s ranking by surface of all Top-1 ATP players (ordered
chronologically). #GS is the number of Grand Slam tournaments won by the player.

bottom half (381th out of 585 players). We note that he was only ranked as the ATP

Top-1 for one week, the shortest period by any player.

Our GD measure detects surface specialists (e.g., Wilander, Muster, Rios, Kuerten,

and Ferrero on clay, Courier, Agassi and Hewitt on hard courts, and Newcombe and

Rafter on grass), all-round players (such as Năstase, Connors, and Federer) and players

with an Achilles-heel on a specific surface (such as Sampras and Djokovic on clay, Borg

on hard, and Lendl and Nadal on grass). We should note that Nadal has a low ranking

on grass despite having a win-ratio of ≈ 79% in that surface and winning two Grand

Slams tournaments played on grass. His low score comes primarily from the fact that

he is dominated by Roger Federer on that surface and, because Federer is a dominant

hub-like node in grass, Nadal appears in many different subgraphs with Federer and the

other players that Federer dominates. Since Nadal occupies a negative orbit in those

subgraphs his score is continuously decreased. This negative effect is primarily felt on

117

CHAPTER 5. NODE RANKING

small and sparse networks such as the grass network where even a single connection

has a very high impact.

Table 5.9 shows our Top-10 by surface and also the number of Grand Slam tournaments

won by the player on that surface. Roger Federer is the most dominant player both

on hard courts and grass, Guillermo Vilas on clay and McEnroe on carpet. Again, the

number of Grand Slam victories is correlated with the ranking (note that no grand

slam tournament was ever contested on carpet). Nadal is not the most dominant

player on clay despite winning nine Grand Slams on that surface. This is because

Vilas was a very prolific player in clay and won many tournaments there, dominating

most players of his time on that surface.

Player #GS

1 Federer 9

2 Djokovic 7

3 Agassi 6

4 Murray 1

5 Roddick 1

6 Nadal 3

7 Sampras 7

8 Hewitt 1

9 Berdych 0

10 Lendl 5

Player #GS

1 Vilas 2

2 Nadal 9

3 Muster 1

4 Bruguera 2

5 Kuerten 3

6 Orantes 1

7 Borg 6

8 Wilander 3

9 Nătase 1

10 Lendl 3

Player #GS

1 Federer 7

2 Connors 4

3 Edmondson 1

4 McEnroe 3

5 Tanner 1

6 Becker 3

7 Edberg 4

8 Djokovic 3

9 Cash 1

10 Sampras 7

Player

1 McEnroe

2 Becker

3 Lendl

4 Connors

5 Ivanisevic

6 Sampras

7 Borg

8 Ashe

9 Rosewall

10 Walts

Hard Clay Grass Carpet

Table 5.9: GD ranking of tennis players with λ = 1
3
, β = 3

2
, and k = 4 by surface.

#GS is the number of Grand Slam tournaments won by the player on that surface.

Finally, we analyze yearly rankings instead of career rankings (Table 5.10).

We observe that Federer dominates the most different years (6), followed by Connors

and Edberg (5), and Lendl and Djokovic (4). Federer and Edberg dominate the most

consecutive years (5), however, their GD scores are very different: Federer averages

≈ 360 points over the five years while Edberg averages ≈ 140 points. This indicates

that Edberg’s era was more balanced that Federer’s.

When we separate the time-interval into three different eras of 30 years each (e.g.,

Y1 = [1974, 1988[, Y2 = [1988, 2002[, and Y3 = [2002, 1987[), we observe that the

most dominant players of each era (as computed by our GD measure) have won 15

Grand Slams in Y1, 11 in Y2, and 28 in Y3, i.e., the number of Grand Slams won

by the dominant players has greatly increased in the last 30 years. Currently, tennis

players are judged by the number of Grand Slams, which was not the case in earlier

decades. Our results suggests that using Grand Slams to judge players’ dominance is

118

5.3. TENNIS PLAYERS RANKING

1974 1975 1976 1977 1978 1979 1980

Player Connors Ashe Connors Vilas Connors Connors McEnroe

GD 224.4 165.3 236.8 445.6 184.7 453.5 180.1

#GS 3 1 1 2 1 0 1

ATP #1 #4 #1 #2 #1 #2 #2

1981 1982 1983 1984 1985 1986 1987

Player Connors Lendl Lendl McEnroe Lendl Lendl Edberg

GD 122.1 307.0 149.7 150.0 146.7 152.4 118.0

#GS 0 0 0 2 1 2 1

ATP #2 #3 #2 #1 #1 #1 #2

1988 1989 1990 1991 1992 1993 1994

Player Edberg Edberg Edberg Edberg Becker Sampras Sampras

GD 61.1 127.8 185.6 213.0 86.0 186.8 289.2

#GS 1 0 1 1 0 2 2

ATP #5 #3 #1 #1 #5 #1 #1

1995 1996 1997 1998 1999 2000 2001

Player Agassi Chang Chang Agassi Agassi Hewitt Kuerten

GD 183.3 138.3 63.9 166.2 92.2 95.1 115.3

#GS 1 0 0 0 2 0 1

ATP #2 #2 #3 #6 #1 #7 #2

2002 2003 2004 2005 2006 2007 2008

Player Hewitt Federer Federer Federer Federer Federer Nadal

GD 98.7 121.3 379.7 542.6 445.0 316.0 349.0

#GS 1 1 3 2 3 3 2

ATP #1 #2 #1 #1 #1 #1 #1

2009 2010 2011 2012 2013 2014 2015

Player Nadal Nadal Djokovic Federer Djokovic Djokovic Djokovic

GD 249.5 276.0 261.5 216.7 275.9 229.2 119.8

#GS 1 3 3 1 1 1 3

ATP #2 #1 #1 #2 #2 #1 #1

Table 5.10: GD ranking of tennis players with λ = 1
3
, β = 3

2
, and k = 4 by year. GD

is the score of the player computed by our graphlet dominance measure, #GS is the
number of Grand Slam tournaments won by the player on that surface, and ATP is
the year-end ranking of the player in the ATP official rankings.

119

CHAPTER 5. NODE RANKING

not adequate for older eras.

Finally, our results suggest that the ATP ranking system might have a lag in deter-

mining who the most dominant player is. We observe multiple cases where the most

dominant player in a given year only becomes the ATP Top-1 in the following year:

Edberg was the most dominant player in 1989 and then the ATP Top-1 in 1990, Agassi

in 1998, Hewitt in 2000, Federer in 2003, Nadal in 2009, and Djokovic in 2013.

5.4 Scientific authors ranking

This section is divided in two main parts.

First, we use GD to rank scientific authors. GD is a topology based approach, thus

it only uses network structure to produce the rankings. Furthermore, since a citation

network is not a clear dominance network (i.e., the notion of dominance is not clear

in the edges), GD is not as well-suited for this task as it is when ranking nodes in

dominance networks, such as ranking tennis players.

Then, we develop a feature enriched topology approach, named OTARIOS, which

is less general than GD since it targets citations networks specifically, but produces

better results since it uses relevant information from the authors’ productivity and

citation information that topology based approaches ignore.

5.4.1 Motivation

Deciding scientific committees, research grants, or faculty promotions is still done

mostly by peer review. Nevertheless, bibliometrics have been proposed that assist the

peer review process [VCG14]. Bibliometrics typically rely on the author’s productivity

(i.e., statistics of author’s papers) and the author’s impact (i.e., statistics of author’s

citations) [B.V18], e.g., one of the most widely used bibliometrics is the author’s h-

index [Hir05], which measures the impact only of the author’s most relevant works.

However, traditional bibliometrics have the drawback of only assigning impact to

authors’ direct citations, thus they ignore indirect citations and fail to capture the

nature of scientific development since they disregard the fact that a new discovery is

not solely due to previous work directly referenced.

To address this limitation, graph algorithms have been developed for citation net-

120

5.4. SCIENTIFIC AUTHORS RANKING

works [Din09, RFMV09, DV12, WJD+13]. These algorithms are modifications of

PageRank [PBM+98] applied to citation networks. One of PageRank’s major ideas is

that not all nodes are equal, i.e., it is good to be referenced by any webpage but it is

better to be referenced by important webpages. This idea is general and applicable to

citation networks, i.e., it is important to be cited by important authors.

Citation networks have information about the authors, venues, and papers that give

important meta-information beyond the network structure. Traditional PageRank

is a topology-based measure, meaning that it only uses information from the network

structure. Algorithms extending PageRank have been proposed specifically for citation

networks that take some feature information into account, such as the productivity of

the author [RFMV09], the recency of the paper [HCKW10, DV12], and the venue

prestige [HCKW10]; these algorithms are referred to as feature enriched topology

measures.

Our goal is to improve the ranking of scientists using these two approaches: (a)

topology-based and (b) feature enriched topology.

5.4.2 Network description

A5

A4A1

A3

V1; Y1
; 0.5

V1; Y1; 0.5

A2

V1; Y1; 0.5

Paper citation network Author citation network

V1; Y1; 0.5

V2; Y2; 0.5

V2; Y2; 0.5V2; Y2; 0.5
V2;

 Y2
; 0.5

Authors: A1,A2
 Venue: V1
 Year: Y1

Authors: A2,A3
 Venue: V2
 Year: Y2

Authors: A4,A5
 Venue: V3
 Year: Y0

Figure 5.4: Creation of an author citation network.

Our data consists of paper citations of the form (ai, aj, pk, tl, vm), where authors ai, aj ∈
A and ai cites aj in paper pk ∈ P published in year tl in venue vm ∈ V .

There are two groups of author ranking methods: paper-level and author-level [WSC16].

On one hand, paper-level ranking uses the papers’ citation network to diffuse scien-

tific credit to cited papers, and then author credit is derived from the credit of his

papers [HCKW10, DV12]. On the other hand, author-level ranking uses the authors’

citation network to diffuse scientific credit to cited authors, thus the authors’ credit

121

CHAPTER 5. NODE RANKING

is directly obtained [RFMV09, Din09, WJD+13]. In our case, we transform the paper

citation network into an author citation network (Figure 5.4) and calculate all measures

on the author citation network.

We create five networks, each consisting of publications in top-tier Computer Science

conferences in different topics (Table 5.11).

Network Conferences |V(G)| |E(G)| E(G)
V(G)2

CM AAAI, IJCAI, ICML, ACL, ICCV, CVPR 41.5k 3.0M 0.002
TC FOCS, SODA, STOC 5.6k 0.3M 0.010
NET INFOCOM, NSDI, SIGCOMM, MOBICOM, SIGMETRICS 17.2k 1.5M 0.005
IS KDD, CIKM, PODS, SIGMOD, VLDB, WWW, SIGIR 32.7k 2.8M 0.003
SE PLDI, FSE, ICSE, OSDI, SOSP 12.4k 0.7M 0.005

Table 5.11: Set of networks used for experimental evaluation. Data was taken from
[TZY+17, TZY+08]. The full DBLP dataset contains over 3M publications from 1936
to 2018. Each network is built using publications only from a set of conferences, e.g.,
network TC contains publications from FOCS, SODA and STOC.

To evaluate the methods, we need to compare their rankings with a ground-truth

(more details in Section 2.5). For each network, we use a ground-truth based on

peer-review using the best paper award information from every conference, i.e., each

rewarded paper has a unit of prestige which is equally divided by its authors. Thus,

each author has a certain ground-truth prestige that is the sum of the prestige of his

awards. As a result, we are assuming that authors that have won more awards with

fewer co-authors should be ranked higher.

In our experiments, we consider that methods that produce rankings more similar to

the ground-truth ranking are better. For this purpose, for each network and for each

method, we compare the method’s predicted ranking with the network’s ground truth

using NDCG@5, NDCG@10, NDCG@20, NDCG@50, and NDCG@100.

5.4.3 Topology-based ranking

5.4.3.1 Results

Here we use GD (described in Section 5.1) to rank scientific authors and compare it

with PageRank, since both are topology-based measures.

We set the damping factor of PageRank to its default value of 0.85 as described

in [PBM+98].

122

5.4. SCIENTIFIC AUTHORS RANKING

Like we did for the tennis network in Section 5.3, we analyze how parameters λ, β,

and k affect the rankings produced by GD. We performed parameter tuning on all five

networks but only show the results for two of the networks for brevity (Tables 5.12,

5.13, and 5.14). Results of the best GD variant over all networks are shown at the end

of the discussion (Table 5.15).

To analyze k, we set λ = 1 and β = 3
2
. Recall from Section 5.1 that this means

that only dominant edges are considered (and not dominated edges) and that indirect

dominances contribute less to the score of a node that direct dominances. We observe

that 3-node graphlets have consistently and significantly better results (i.e., higher

NDCG) that 2-node graphlets (Table 5.12). For most networks, 4-node graphlets did

not have significantly better results and, since 4-node graphlets take exponentially

longer to count, in the remaining tests we use 3-node graphlets.

GD(1, 3
2
, k)

NDCG NDCG
@5 @10 @20 @50 @100 Mean @5 @10 @20 @50 @100 Mean

k = 2 0,176 0,328 0,343 0,374 0,386 0,321 0,000 0,023 0,027 0,030 0,089 0,034
k = 3 0,265 0,346 0,378 0,394 0,437 0,364 0,042 0,046 0,050 0,037 0,104 0,056
k = 4 0,263 0,376 0,376 0,413 0,440 0,374 0,042 0,046 0,050 0,037 0,099 0,055

(a) SE (b) TC

Table 5.12: Comparison of GD variants on networks (a) SE and (b) TC by varying
k. For each GD variant we measure NDCG for the top-n ranked authors (@n), as well
as NDCG’s mean value. Bold highlights the highest score.

To analyze λ, we set k = 3 and β = 3
2
. Recall that when λ = 0, only dominated edges

are considered. In the case of citation networks, this means that authors that cite many

authors are heavily penalized. In practice this results in meaningless rankings (i.e.,

NCDG = 0) because dominant edges (i.e., received citations) are clearly important for

an author’s merit (Table 5.13). We observe that λ = 1 has higher NCDGs than λ = 1
2
,

meaning that penalizing authors for citing too many other authors does not produce

better rankings.

GD(λ, 3
2
, 3)

NDCG NDCG
@5 @10 @20 @50 @100 Mean @5 @10 @20 @50 @100 Mean

λ = 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
λ = 1

2
0,176 0,314 0,308 0,345 0,319 0,292 0,042 0,033 0,049 0,039 0,101 0,053

λ = 1 0,265 0,346 0,378 0,394 0,437 0,364 0,042 0,046 0,050 0,037 0,104 0,056
(a) SE (b) TC

Table 5.13: Comparison of GD variants on networks (a) SE and (b) TC by varying
λ. For each GD variant we measure NDCG for the top-n ranked authors (@n), as well
as NDCG’s mean value. Bold highlights the highest score.

To analyze β, we set k = 3 and λ = 1. Recall that when β = 1, direct and

indirect dominances are equally considered and, as β grows, indirect dominances are

123

CHAPTER 5. NODE RANKING

increasingly less considered. In our particular dataset, we do not observe significant

differences for the values of β that we tested (Table 5.14).

GD(1, β, 3)
NDCG NDCG

@5 @10 @20 @50 @100 Mean @5 @10 @20 @50 @100 Mean
β = 1 0,265 0,343 0,375 0,396 0,434 0,363 0,042 0,046 0,050 0,037 0,104 0,056
β = 3

2
0,265 0,346 0,378 0,394 0,437 0,364 0,042 0,046 0,050 0,037 0,104 0,056

β = 2 0,265 0,346 0,378 0,393 0,435 0,363 0,042 0,046 0,050 0,043 0,104 0,057
(a) SE (b) TC

Table 5.14: Comparison of GD variants on networks (a) SE and (b) TC by varying
β. For each GD variant we measure NDCG for the top-n ranked authors (@n), as well
as NDCG’s mean value. Bold highlights the highest score.

Finally, we compare the best variant of GD against PageRank (Table 5.15). GD

outperforms PageRank in four of the five networks for most cases (i.e., predicting the

Top-5, Top-10, etc.) and on average. PageRank outperforms GD significantly on the

CM network. We hypothesize that this might be because CM is the sparsest network

(|E(G)|
|V(G)|2 < 0.002), thus the number of graphlets found is relatively small, which does

not negatively affect PageRank.

Network
NDCG NDCG

@5 @10 @20 @50 @100 Mean @5 @10 @20 @50 @100 Mean
CM 0,119 0,153 0,129 0,253 0,250 0,181 0,056 0,041 0,062 0,074 0,083 0,064
TC 0,000 0,000 0,013 0,043 0,105 0,032 0,042 0,046 0,050 0,037 0,104 0,056

NET 0,264 0,256 0,220 0,208 0,209 0,231 0,364 0,315 0,295 0,245 0,254 0,294
IS 0,085 0,159 0,173 0,225 0,240 0,177 0,151 0,179 0,170 0,272 0,248 0,204

SE 0,291 0,326 0,356 0,338 0,379 0,338 0,265 0,346 0,378 0,394 0,437 0,364
(a) PageRank (b) GD(1, 3

2
, 3)

Table 5.15: Comparison of GD against PageRank on all five networks. For both
GD and PageRank we measure NDCG for the top-n ranked authors (@n), as well as
NDC’s mean value. Bold highlights the highest score.

5.4.4 Feature enriched topology ranking

In this section we aim to improve topology based ranking by introducing additional

features from the data. In the case of scientific author ranking, these features are

related to the author’s papers or the citations, such as the year and venue prestige.

In the previous section, using topology only, GD obtained better results than PageRank.

However, in this section, we extend PageRank instead of GD to a feature enriched

measure. We do this for several reasons: (i) the following tests (i.e., determining the

best combination of features) are extensive and GD (namely subgraph counting) is

much more computationally demanding than PageRank (see Section 2.2), (ii) this work

124

5.4. SCIENTIFIC AUTHORS RANKING

preceded our analysis of GD in author ranking (where we see that GD is superior), and

(iii) this is a joint work with Jorge Silva, who comes from the field of expert profiling

and expert recommendation, and PageRank-based algorithms are state-of-the-art for

author ranking, which is related to the aforementioned tasks.

Our PageRank-based method is named OTARIOS, from OpTimizing Author Ranking

for Insiders/Outsiders Subnetworks. OTARIOS’ efficiency comes from two aspects: (i)

how it efficiently combines different features and (ii) how it divides the network into

insider nodes and outsider nodes. For our purposes in this thesis, we are interested

in analyzing only the first aspect; for details on how OTARIOS handles the second

aspect, we refer the reader to OTARIOS original paper [SAS18].

We begin by introducing notation specific to the problem of ranking authors in a

feature enriched network. Then, we present OTARIOS and discuss results.

5.4.4.1 Notation

For consistency, we denote sets by calligraphic letters (e.g., S), elements of those sets

(i.e., entities) by the respective capital letter with an index (e.g., Si ∈ S), attributes

of entities (e.g., year, impact factor) as functions named in lower-case alphabetic or

Greek letters (e.g., a(Si) or α(Si)), and constants as single Greek letters (e.g., τ). The

cardinality of a given set S is denoted by |S|.

Recency of a paper Recency of an author

δ(Pj) =
(

max
Pj′∈P

y(Pj′)
)
− y(Pj) (5.5) δ(Ai) = min

Pj∈PAi
δ(Pj) (5.6)

Venue prestige Cited individuality

λ(Vk, y) =
c(Vk, y)

3∑
x=1

p(Vk, y − x)

(5.7) w(Ai′ → Ai, Pj) =
1

|APj |
, Ai ∈ APj (5.8)

Citation recency Citation prestige

a(Ai′ → Ai, Pj) = e
−δ(Pj)
τ , Ai′ ∈ APj

(5.9)

v(Ai′ → Ai, Pj) = v(Pj), Ai′ ∈ APj
(5.10)

125

CHAPTER 5. NODE RANKING

Given a set of papers P published in a set of venues V by a set of authors A, we

want to find the n top-ranked authors. A paper Pj ∈ P is co-authored by authors

APj ⊆ A. Likewise, an author Ai ∈ A is (one of) the author(s) of papers PAi ⊆ P . We

build citation networks G = {A, E} where nodes represent authors and edges represent

citations between authors, written as Ai′ → Ai.

Regarding node attributes, papers have metadata which we use as features, namely

their publication year, venue prestige, and the number of references, represented by

y(Pj), v(Pj) and rout(Pj), respectively. The recency of a paper, represented by δ(Pj),

is given by Equation 5.5. Similarly, the recency of an author, represented by δ(Ai),

is the recency of his most recent paper (Equation 5.6). The venue prestige of a paper

Pj depends on the venue Vk ∈ V where it was published and the year when it was

published, represented by v(Pj) = λ(Vk, y(Pj)). We estimate venue prestige with

CiteScore[B.V18] (Equation 5.7), where p(Vk, y) is the number of papers published in

Vk in year y and c(Vk, y) is the number of citations that all papers published in Vk in

year y received. Thus, venues with many citations per paper have higher prestige.

Regarding edges, citation networks can be unweighted and simple, i.e., two papers (or

authors) are connected by a single edge with weight equal to 1 [HCKW10, DV12], or

weighted and multiple, i.e., two authors are connected by multiple edges with different

weights. These multiple edges concern different edge attributes that depend on the

publication Pj where author Ai′ cites author Ai. The recency of an edge, represented

by a(Ai′ → Ai, Pj), gives more importance to recent citations (Equation 5.9). As

discussed in [HCKW10], which originally proposes this concept for author ranking

algorithms, we set the decay factor τ = 4. The venue prestige of an edge, represented

by v(Ai′ → Ai, Pj), gives more importance to citations in important venues (Equa-

tion 5.10). Finally, the individuality of an edge, represented by w(Ai′ → Ai, Pj), gives

more importance to citations received in papers where author Ai has few (or no) co-

authors (Equation 5.8). The author’s attribute total out-edge weight is obtained by

summing all of its out-edges, as shown below.

Citations recency total weight Cited individuality total weight

aout(Ai) =
∑

(Ai→Ai′ ,Pj)

a(Ai → Ai′ , Pj)

(5.11)

wout(Ai) =
∑

(Ai→Ai′ ,Pj)

w(Ai → Ai′ , Pj)

(5.12)

Citations prestige total weight

vout(Ai) =
∑

(Ai→Ai′ ,Pj)

v(Ai → Ai′ , Pj) (5.13)

126

5.4. SCIENTIFIC AUTHORS RANKING

5.4.4.2 OTARIOS

Here we propose a new feature enriched topology algorithm for citation networks,

named OTARIOS. OTARIOS divides the citation network in two subnetworks, insiders

(i.e., authors for which we have all their citations) and outsiders (i.e., authors that

cite insiders but for whom not all citations are known). Then, only insiders are ranked

while outsiders influence the ranks of insiders.

OTARIOS efficiently combines different publication/citation attributes in a multi-edge

weighted network (instead of a simple weighted network used by traditional PageR-

ank). Furthermore, OTARIOS is a flexible algorithm, allowing users to personalize

which publication/citation attributes are used to rank researchers (e.g., value venue

prestige highly or lowly).

Like traditional PageRank, OTARIOS consists of two steps: score initialization and

score diffusion.

During score initialization, OTARIOS computes an initial score for each author, repre-

sented by R(Ai). OTARIOS calculates R(Ai) by taking into account multiple features

that favor different author characteristics (Table 5.16). We divide the features into two

categories: productivity and outsiders influence. Productivity measures the value of

the author’s publications, while outsider influence measures the value of the author’s

citations coming from outsiders. Regarding productivity, OTARIOS takes three factors

into account: volume, recency and venues. Regarding outsiders influence, OTARIOS

takes another three factors into account: individuality, recency and venues. We

compute the author’s initial score R(Ai) as the sum of the two products of the factors

in each group (i.e., productivity (volume × recency × venues) + outsiders influence

(individuality × recency × venues)).

During score diffusion, OTARIOS improves author scores in an iterative process. Out-

siders are removed from the network since their presence degrades the score diffusion

step. In each iteration, OTARIOS updates an author’s score S(Ai) as ST (Ai) +

RR(Ai) + DN(Ai). We compute RR(Ai) and DN(Ai) in function of the initial rank

of each author (discussed in Table 5.16), and compute ST (Ai) in function of the

author’s citations coming from other insiders. OTARIOS considers three different

features to assess score term ST (Ai): individuality, recency and venues (Table 5.17).

The ST (Ai) at each iteration is the product of every features. (i.e., score term

(individuality×recency×venues)). Like PageRank, OTARIOS stops when it reaches

low variation in the node scores.

127

CHAPTER 5. NODE RANKING

Criteria Initialization: R(Ai) Description
P

ro
d
u
ct

iv
it

y Volume (P)

∑
(Pj∈PAi)

1
|APj |∑

(Ai′∈A)

∑
(Pj∈PAi′

)

1
|APj |

Favors publishing many
papers with few co-
authors.

Recency (A) e
−δ(Ai)

τ Favors publishing
recently.

Venues (V)
(∑

(Pj∈PAi)
v(Pj)

)
× |PAi |−1 Favors publishing in pres-

tigious venues.

O
u
ts

id
e
rs

In
fl
u
e
n
ce Individuality (W)

∑
(Ai′→Ai,Pj)

λ(Ai′)×w(Ai′→Ai,Pj)
wout(Ai′)

, Ai′ ∈ O Favors being cited by out-
siders that cite few au-
thors.

Recency (A)
∑

(Ai′→Ai,Pj)

λ(Ai′)×a(Ai′→Ai,Pj)
aout(Ai′)

, Ai′ ∈ O Favors being cited by out-
siders more recently.

Venues (V)
∑

(Ai′→Ai,Pj)

λ(Ai′)×v(Ai′→Ai,Pj)
vout(Ai′)

, Ai′ ∈ O Favors being cited by
outsiders in prestigious
venues.

Table 5.16: List of features used for OTARIOS’ author rank initialization: R(Ai).
OTARIOS considers both the authors’ productivity and the direct influence of
outsiders on the authors. We create different variants of these features, e.g., PV + V
uses volume (P) and venue prestige (V) to measure author productivity, and uses
venue prestige (V) to measure the direct influence of outsiders.

Criteria Score term: ST (Ai) Description

Individuality (W)
∑

(Ai′→Ai,Pj)

S(Ai′)×w(Ai′→Ai,Pj)
wout(Ai′)

, Ai′ ∈ I Favors being cited by in-
siders that cite few au-
thors.

Recency (A)
∑

(Ai′→Ai,Pj)

S(Ai′)×a(Ai′→Ai,Pj)
aout(Ai′)

, Ai′ ∈ I Favors being cited by in-
siders more recently.

Venues (V)
∑

(Ai′→Ai,Pj)

S(Ai′)×v(Ai′→Ai,Pj)
vout(Ai′)

, Ai′ ∈ I Favors being cited by
insiders in prestigious
venues.

Table 5.17: List of features used for OTARIOS’ author score term calculation:
ST (Ai). Combined with author initialization (Table 5.16), we create different variants,
e.g., PV+V+A combines initialization PV+V with score term A, i.e., using citation
recency. All variants use RR(Ni) = q × R(Ni) and DN(Ni) = (1 − q) × R(Ni), thus
we omit them from the table.

128

5.4. SCIENTIFIC AUTHORS RANKING

OTARIOS NDCG MRR
variant @5 @10 @20 @50 @100 Mean @5 @10 @20 @50 @100 Mean
∅ + A + ∅ 0.269 0.233 0.207 0.186 0.174 0.214 443 1125 903 1526 2066 1213
∅ + V + ∅ 0.269 0.233 0.207 0.186 0.185 0.216 412 1108 916 1522 2096 1211
∅ + AV + ∅ 0.269 0.233 0.207 0.186 0.177 0.215 419 1109 902 1511 2074 1203
AP + A + ∅ 0.288 0.246 0.259 0.218 0.241 0.250 350 500 440 1121 1502 783
AP + V + ∅ 0.288 0.246 0.258 0.218 0.239 0.250 344 489 439 1134 1527 787
AP + AV + ∅ 0.288 0.246 0.259 0.218 0.240 0.250 345 494 439 1143 1523 789
AP + A + A 0.380 0.297 0.283 0.282 0.280 0.304 385 647 472 1111 1416 806
AP + A + AV 0.407 0.345 0.291 0.291 0.274 0.322 242 614 473 1116 1455 780
AP + A + AW 0.381 0.369 0.313 0.302 0.288 0.330 219 386 328 879 1219 606

Table 5.18: Comparison of OTARIOS variants on network NET. For each OTARIOS
variant, we measure NDCG and MRR for the top-n ranked authors (@n), as well as
the metric’s mean value. Bold highlights the highest score for each metric. The best
OTARIOS variant is colored in blue.

5.4.4.3 Results

In our analysis we do not assume that combining all publication/citation information

(i.e., features) necessarily leads to the best results. Instead, we start with simple

OTARIOS variants and progressively add new features. We illustrate this process for

network NET (Table 5.18). We begin by comparing OTARIOS variants that only

consider outsiders influence (e.g., ∅+A+∅). For the best ones, we add productivity

features (e.g., AP+A+∅). In general, we see that results improve when merging out-

siders influence with productivity. Finally, we add score term calculation to OTARIOS

(e.g., AP+A+A). For the NET network, we see that AP+A+A is the variant that

obtains the best results, with a mean NDCG of 0.330 and a mean MRR of 606.

We compare OTARIOS against PageRank and CountRank (CR), a baseline bibliomet-

ric. CR counts the total citations received by each author. We use CR because our

DBLP dataset does not contain the authors’ h-index and collecting this information for

all 300k authors is not feasible. We create three CR variants: uniform, individuality

and position. For each citation an author receives, uniform assigns the same merit

to each co-author, individuality equally divides the merit by all co-authors (i.e., more

co-authors means that each one receives less credit), and position gives more credit to

authors whose name appears first in the publication (i.e., the first author gets double

the merit of the second author, triple of the third author, etc.).

We show that OTARIOS achieves significantly better results than topology-based

PageRank (by > 30%) and CR (by > 20%) (Table 5.19). We show results for the

five best OTARIOS variants, but we should note that 21 OTARIOS variants, of the

total 53, obtain better mean MRR and NDCG than the best competitor. The best

129

CHAPTER 5. NODE RANKING

NDGC MRR
Method CM TC NET IS SE Mean CM TC NET IS SE Mean
CRposition 0.097 0.049 0.189 0.176 0.261 0.154 1427 463 1009 892 324 823
CRuniform 0.138 0.045 0.278 0.189 0.222 0.174 1659 516 1066 1067 387 939
PageRank 0.180 0.032 0.231 0.176 0.338 0.191 1203 508 817 720 356 721
CRindividuality 0.129 0.043 0.247 0.211 0.372 0.200 1171 438 878 744 289 704
∅ + AVW + AW 0.143 0.081 0.323 0.213 0.315 0.215 1161 324 664 707 289 629
∅ + V + AW 0.148 0.080 0.321 0.214 0.314 0.215 1169 325 671 709 294 634
AP + VW + AW 0.150 0.087 0.330 0.268 0.383 0.244 1070 273 604 680 207 567
AV + VW + AW 0.143 0.085 0.356 0.264 0.383 0.246 1333 285 618 676 215 626
AP + A + AW 0.152 0.087 0.330 0.273 0.383 0.245 (+22%) 1079 272 606 688 207 570 (+24%)

Table 5.19: Comparison of competing methods against OTARIOS over all networks.
The value of each cell is the metric’s mean value for that network (e.g., the mean
NDCG and MRR of AP+A+AW for network NET is highlighted in Table 5.18). In
bold we highlight the highest score for each metric. The best competing method is
colored in red and the best OTARIOS variant is colored in blue. Inside parentheses
we show the gain of OTARIOS versus CRindividuality.

OTARIOS variant obtains a mean NDCG of 0.246 and a mean MRR of 567 over all

five networks. Our best OTARIOS variant overall (i.e., considering a combination of

NDCG and MRR) is AP+A+AW, which considers (i) the author’s publication volume

and publication recency, (ii) how recently his work is being cited by outsiders, and (iii)

how recently his work is being cited by insiders and how individual he his.

We analyze which features are typically more important by visualizing which features

the top OTARIOS variants use (Table 5.20). The best OTARIOS variants (i.e., all

top-9 variants) combine productivity, outsiders influence and score term, showing the

importance of considering multiple aspects of both publications and citations. Recency

(A) seems to be more relevant to evaluate productivity and insiders score term than

outsiders influence. On the other hand, venue prestige (V) seems to more relevant to

evaluate outsiders influence than author productivity and insiders score term. This is

expected because insiders tend to publish in the same venues, while outsiders might

cite insiders in any venues, thus the venue prestige of outsider citations varies greatly.

A
P

P
ro

d
.

V
A
VO

I

W
A
VS

T

W
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Table 5.20: Features considered by the 20 best OTARIOS variants (by mean NDCG).
Rows represent different features (related to productivity (Prod.), outsiders influence
(OI) and score term (ST)) and columns represent the OTARIOS variant ranked at
position n. Blue means that the feature is considered and red that it is not.

130

5.5. SUMMARY

5.5 Summary

Here we presented a novel measure for node dominance, named GD. We demonstrated

that GD captures different information from node centrality measures and is better

suited than those to find dominant nodes in a network. We also analyzed the impor-

tance of (a) giving different weights to dominant (good) and dominated (bad) edges,

(b) direct and indirect dominances, and (c) the size of the graphlets being enumerated.

Our ranking mechanism based on GD considers not only the subgraphs themselves but

also the position (or orbit) of the players in the subgraphs. GD differs PageRank, since

PageRank only considers one of the two possible edge directions, giving importance

to wins and almost disregarding losses, or vice-versa.

We use our GD measure to two applications: (a) ranking tennis players and (b) ranking

scientific authors. In (a) there is a clear notion of dominance while in (b) there is not.

Our results on the tennis networks showed that, even without any kind of meta-

information (e.g., tournament or round information), GD is able to produce consistent

and meaningful results using only the topology of the network. Our ranking system

produces results that agree with the ATP ranking while at same time offering a

different perspective since the intricate relations between players are also captured.

This approach gives a better idea of actual player dominance which is valuable when

trying to assess who are the best tennis players.

Our results on the citation networks showed that GD is superior to PageRank when

ranking scientists and comparing with a ground-truth of best paper awards. GD and

PageRank are topology-based approaches, which only use the topology of the network

to rank nodes.

We also presented a preliminary feature enriched topology ranked, named OTARIOS.

OTARIOS is based on PageRank and capable of combining publication and citation

information. Our tests showed that OTARIOS is ≈ 20% more efficient than biblio-

metric approaches and ≈ 30% more efficient than PageRank. How to adapt GD to

consider these features is left for future work.

131

132

Chapter 6

Conclusions and future
work

Networks are widely used to model systems. Extracting their topological features,

namely subgraphs, offers rich structural information that boosts our understating of

network function. Depending on the task, practitioners might want to study the whole

system (i.e., the network) or its agents (i.e., the nodes). Network comparison and node

ranking are thus fundamental tasks in network science. The purpose of this work was

to provide efficient methods for both network comparison and node ranking.

This chapter points out the main contributions, discusses limitations and proposes

directions for future research, and presents concluding remarks.

6.1 Main contributions

This work described in this thesis consisted of the design, implementation, and evalua-

tion of network comparison and node ranking methods. We proposed new methods for

network comparison and node ranking. Our methods were shown to be consistently

faster and more accurate than similar (i.e., graphlet-based measures) state-of-the-art

solutions when we tested them both on synthetic and real-world networks. Our tools

are available online for practitioners. Next, we give a more detailed description of our

contributions.

133

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Directed graphlets. We extended undirected graphlets to take into account the edge

direction of the subgraphs. We showed that, in the case of directed graphlets, edge

direction captures relevant information than undirected graphlets ignored. We tested

our hypothesis on (a) a set of synthetic network pertaining to different directed graph

models and on (b) real-world data corresponding to directed biological networks. We

verified that directed graphlets achieved higher accuracy than undirected graphlets

when classifying both types of networks.

Graphlet-tries. Related to directed graphlets, we extended the concept of g-tries

to take into account the orbits of the subgraphs stored in the g-trie. Graphlet-tries

are an efficient structure to store and enumerate graphlets. In our experiments, we

verified that our method consisting of directed graphlets and graphlet-tries, named

GT-Scanner, outperforms state-of-the-art algorithms in terms of running time. The

tool is made available online1.

Graphlet-orbit Transitions (GoTs). We proposed GoTs, which are graphlet-based

features of temporal networks. Most previously existing graphlet-based features were

static or only allowed for one new event per graphlet transition. We showed that

GoTs capture complex subgraph transitions that other graphlet-based measures do

not. We showed that GoTs improve upon state-of-the-art both in terms of accuracy

and running time when classifying synthetic and real temporal networks.

GoT-WAVE. We proposed GoT-WAVE, a method for temporal network alignment

(NA). We combined WAVE [SCTM15], a fast algorithm for static NA, with GoTs,

the set of temporal graphlet-based features previously discussed. GoT-WAVE outper-

formed state-of-the-art temporal NA algorithms for most tests that we performed on

synthetic and real data, in terms of accuracy and running time. The tool is made

available online2.

Graphlet-based node ranking. We proposed GD a measure of node ranking, based

on the notion of node dominance, that takes into account the graphlets that the nodes

appear at. GD can also be regarded as a new node centrality measure. We compared

GD with other node centrality measures and applied it to real-world test cases: (a)

player dominance in a sports network and (b) author impact in citations networks.

While we focused on these two test-cases, our method is applicable to any dominance

network.

OTARIOS. We proposed a PageRank-based measure for node ranking, named OTAR-

1http://www.dcc.fc.up.pt/~daparicio/software
2http://www.dcc.fc.up.pt/got-wave

134

http://www.dcc.fc.up.pt/~daparicio/software
http://www.dcc.fc.up.pt/got-wave

6.2. FUTURE WORK

IOS. OTARIOS is specific to author citations networks and uses features beyond the

network. This contrasts with GD, which only uses the topology of the network. OTAR-

IOS takes into consideration multiple factors (e.g., venue prestige, year) concerning

the authors’ productivity (i.e., their publications) and the authors’ impact (i.e., their

citations). We showed that OTARIOS outperformed competing methods in terms of

how well its ranking matches the ground-truth ranking on several real networks, each

comprised of citations in conferences on a given topic.

6.2 Future work

We hope that the work presented in this thesis can lead to future research in the

area. We put forward methods for three different tasks, namely network classification,

network alignment, and node ranking, and each of these areas is very broad and with

many research opportunities. Most of the work presented in this thesis relied on

efficient subgraph counting, and that is another area where research is active and with

many possible directions for future work. We give some pointers of future work next.

Extend graphlets and g-tries to multilayer networks. In our work, we extended

both g-tries and graphlets to directed and temporal networks. We did not address

multilayer networks. Work on multilayer layers is ever increasing, and extending the

techniques we presented to them might be an interesting research direction.

Use GoTs in other alignment algorithms. We used GoTs as node conservation

features in WAVE [SCTM15], resulting in GoT-WAVE. We also ran experiments for

MAGNA++ [VSM15], which is an alignment method inferior to WAVE. Recently,

SANA [MH17] has been proposed has been shown to have good results. Extending

SANA to temporal networks and using GoTs as node conservation features might lead

to a method superior to GoT-WAVE.

Better edge conservation with GoTs. In our experiments we observed that

GoT-WAVE’s performance was not augmented as much as DynaWAVE’s when edge

conservation was combined with node conservation. A possible direction is to find edge

conservation measures, different from DS3 and DWEC, that improve GoT-WAVE’s

performance.

Combine GoTs with DGDV. We performed preliminary experiments where we

combined GoTs with DGDV as node conservation features for temporal NA. We

did not observe a positive growth in accuracy; however, further research on how to

135

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

combine the two measure efficiently could lead to better results than when using them

separately.

GD for feature enriched topology ranking. We extended PageRank from a

topology based approach to a feature enriched topology approach. Due to time

limitations, we did not follow through with an extension of GD that also uses features

from the network besides its topology. In our experiments, we observed that GD was

superior to PageRank, thus a feature enriched version of GD might have better results

than OTARIOS.

CPU-GPU version of g-tries. We have some preliminary work on adapting g-tries

to the GPU [Apa14]. At the time, our results did not improve upon the CPU version.

However, combining CPU with GPU could have good results by following a strategy

similar to [RZ16]: many simple tasks are handed over to the GPU while the CPU

solves just a few complex tasks (to avoid branching problems in the GPU). Since the

focus of this thesis was not on efficient parallel solutions to subgraph counting, we left

this problem open for future research.

6.3 Closing remarks

When this dissertation started more than four years ago, its theme was the very broad

”Analysis of Complex Networks”. Throughout the years we managed to focus on just

two problems, which are almost as broad: network comparison and node ranking.

Subgraphs ended up being the common thread through (most) of this work and, at

the end, we feel that everything seems cohesive.

Researching these tasks was a very interesting undergoing, where we studied both

algorithmic aspects and applied our methods to real data. We hope that our tools are

of use to the scientific community and to practitioners. One of the most rewarding

aspects during this long process was to receive e-mails from strangers, who are also

studying the same problems, asking for clarifications or with help running our code.

Finally, we also hope that (at least some of) the opportunities for research are followed

through by other people.

136

Appendix A

Graphlet-tries

Figure A.1: A graphlet-trie containing the 39 non-bidirectional directed graphlets of
sizes 2, 3 and 4. The orbit numbers are generated automatically. While it is guaranteed
that the g-trie only has non-isomorphic graphs on the leafs (bottom-level nodes),
isomorphic graphs may appear in some of the top nodes (represented in grey). In
these cases only one of the graphs is considered for orbit counting while the others are
only used to efficiently traverse the search space, using symmetry breaking conditions
to guarantee that each occurrence is only counted once.

137

138

Appendix B

Temporal network ran-
domization

B.1 Undirected randomization

This randomization scheme was proposed in [Hol15] and used in [VCM17, VM17b].

Given the original undirected dynamic network SN a randomization percentage p, one

randomly picks edge e1 to be rewired. We then pick another random edge e2 and,

with probability p, we rewire the two events. That is, given e1 = (u, v, Si, Sf) and

e2 = (u′, v′, S ′i, S
′
f) (where Si and S ′i are the starting snapshots, and Sf and S ′f are the

ending snapshots) we do one of the following transformations with 50% probability:

• e1 = (u, v, Si, Sf) → e1 = (u, v′, Si, Sf) and

e2 = (u′, v′, S ′i, S
′
f) → e2 = (u′, v, Si, Sf), or

• e1 = (u, v, Si, Sf) → e1 = (u, u′, Si, Sf) and

e2 = (u′, v′, S ′i, S
′
f) → e2 = (v, v′, Si, Sf), or

If the transformation was performed, e1 and e2 are both taken out of the list of edges

to be rewired. Otherwise, only e1 is taken out. The process is followed until no edges

are to be rewired.

139

APPENDIX B. TEMPORAL NETWORK RANDOMIZATION

B.2 Directed randomization

This randomization scheme is adapted from [Hol15] to directed networks. Given the

original directed dynamic network SN a randomization percentage p, one randomly

picks edge e1 to be rewired. We then pick another random edge e2 and, with probability

p, we rewire the two events. That is, given e1 = (u, v, Si, Sf) and e2 = (u′, v′, S ′i, S
′
f)

(where Si and S ′i are the starting snapshots, and Sf and S ′f are the ending snapshots)

we do one of the following transformations with 50% probability:

• e1 = (u, v, Si, Sf) → e1 = (u, v′, Si, Sf) and

e2 = (u′, v′, S ′i, S
′
f) → e2 = (u′, v, Si, Sf), or

• e1 = (u, v, Si, Sf) → e1 = (u, u′, Si, Sf) and

e2 = (u′, v′, S ′i, S
′
f) → e2 = (v, v′, Si, Sf), or

If the transformation was performed, an additional parameter γ controls edge reversal.

So, with probability γ, one performs the transformation for each edge:

• ek = (x, y, Sn, Sm) → ek = (y, x, Sn, Sm)

Then, e1 and e2 are both taken out of the list of edges to be rewired. Otherwise, only

e1 is taken out. The process is followed until no edges are to be rewired.

B.3 Pure directed randomization

Given the original dynamic directed network SN , one randomly picks edge e1 to

be rewired. That is, given e1 = (u, v, Si, Sf) (where Si is the starting snapshot,

and Sf is the ending snapshot), and a randomization percentage p, we the following

transformations with p% probability:

• e1 = (u, v, Si, Sf) → e1 = (v, u, Si, Sf)

Otherwise, e1 is kept as it was. e1 is taken out of the list of edges to be rewired and

the process is followed until no edges are to be rewired.

140

References

[AA04] István Albert and Réka Albert. Conserved network motifs allow

protein–protein interaction prediction. Bioinformatics, 20(18):3346–

3352, 2004.

[ABG+16] Maryam Aliakbarpour, Amartya Shankha Biswas, Themistoklis

Gouleakis, John Peebles, Ronitt Rubinfeld, and Anak Yodpinyanee.

Sublinear-time algorithms for counting star subgraphs with applica-

tions to join selectivity estimation. arXiv preprint arXiv:1601.04233,

2016.

[Agg15] Charu C Aggarwal. Data mining: the textbook. Springer, 2015.

[ÁMDGL+14] M Álvarez-Moreno, Cornelis De Graaf, Nuria Lopez, Feliu Maseras,

Josep M Poblet, and Carles Bo. Managing the computational

chemistry big data problem: the iochem-bd platform. Journal of

chemical information and modeling, 55(1):95–103, 2014.

[ANR+17] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, Nick G Duffield,

and Theodore L Willke. Graphlet decomposition: Framework,

algorithms, and applications. Knowledge and Information Systems,

50(3):689–722, 2017.

[Apa14] David Oliveira Apaŕıcio. Pattern discovery in complex networks using

parallelism. 2014.

[ARdS14] David Oliveira Apaŕıcio, Pedro Manuel Pinto Ribeiro, and Fernando

Manuel Augusto da Silva. Parallel subgraph counting for multicore

architectures. In Parallel and Distributed Processing with Applications

(ISPA), 2014 IEEE International Symposium on, pages 34–41. IEEE,

2014.

141

REFERENCES

[ARMS18] David Apaŕıcio, Pedro Ribeiro, Tijana Milenković, and Fernando

Silva. Got-wave: Temporal network alignment using graphlet-orbit

transitions. arXiv preprint arXiv:1808.08195, 2018.

[ARMS19] David Apaŕıcio, Pedro Ribeiro, Tijana Milenković, and Fernando

Silva. Temporal network alignment via GoT-WAVE. Bioinformatics,

2019.

[ARS+07] Yassen Assenov, Fidel Ramı́rez, Sven-Eric Schelhorn, Thomas

Lengauer, and Mario Albrecht. Computing topological parameters

of biological networks. Bioinformatics, 24(2):282–284, 2007.

[ARS15] David Apaŕıcio, Pedro Ribeiro, and Fernando Silva. Network com-

parison using directed graphlets. arXiv preprint arXiv:1511.01964,

2015.

[ARS16] David Apaŕıcio, Pedro Ribeiro, and Fernando Silva. A subgraph-based

ranking system for professional tennis players. In Complex Networks

VII, pages 159–171. Springer, 2016.

[ARS17] David Apaŕıcio, Pedro Ribeiro, and Fernando Silva. Extending the

applicability of graphlets to directed networks. IEEE/ACM Transac-

tions on Computational Biology and Bioinformatics, 14(6):1302–1315,

2017.

[ARS18] David Apaŕıcio, Pedro Ribeiro, and Fernando Silva. Graphlet-orbit

transitions (got): A fingerprint for temporal network comparison.

PloS one, 13(10):e0205497, 2018.

[AZBP17] Bijaya Adhikari, Yao Zhang, Aditya Bharadwaj, and B Aditya

Prakash. Condensing temporal networks using propagation. In

Proceedings of the 2017 SIAM International Conference on Data

Mining, pages 417–425. SIAM, 2017.

[BA99] Albert-László Barabási and Réka Albert. Emergence of scaling in

random networks. Science, 286(5439):509–512, 1999.

[BB02] Christian Borgelt and Michael R Berthold. Mining molecular frag-

ments: Finding relevant substructures of molecules. In Data Mining,

2002. ICDM 2003. Proceedings. 2002 IEEE International Conference

on, pages 51–58. IEEE, 2002.

142

REFERENCES

[BBY09] Dan Braha and Yaneer Bar-Yam. Time-dependent complex networks:

Dynamic centrality, dynamic motifs, and cycles of social interactions.

In Adaptive Networks, pages 39–50. Springer, 2009.

[BC18] Alain Barrat and Ciro Cattuto. Sociopatterns. http://www.

sociopatterns.org/datasets/, 2018. Accessed: 2018-08-11.

[BCF+10] Luc Brun, Donatello Conte, Pasquale Foggia, Mario Vento, and Didier

Villemin. Symbolic learning vs. graph kernels: An experimental

comparison in a chemical application. In ADBIS (Local Proceedings),

pages 31–40, 2010.

[BFL+06] Luciana S Buriol, Gereon Frahling, Stefano Leonardi, Alberto

Marchetti-Spaccamela, and Christian Sohler. Counting triangles in

data streams. In Proceedings of the twenty-fifth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems,

pages 253–262. ACM, 2006.

[BM06] Vladimir Batagelj and Andrej Mrvar. Pajek datasets. http://vlado.

fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm,

2006. [Online; accessed 20-September-2018].

[BRAH12] Mansurul A Bhuiyan, Mahmudur Rahman, and M Al Hasan. Guise:

Uniform sampling of graphlets for large graph analysis. In Data

Mining (ICDM), 2012 IEEE 12th International Conference on, pages

91–100. IEEE, 2012.

[B.V18] Elvesier B.V. Research Metrics Guidebook. Elvesier, 2018.

[CC00] Trevor F Cox and Michael AA Cox. Multidimensional scaling.

Chapman and hall/CRC, 2000.

[CGW99] Edward M Condon, Bruce L Golden, and Edward A Wasil. Predicting

the success of nations at the summer olympics using neural networks.

Computers & Operations Research, 26(13):1243–1265, 1999.

[Chi18] Mike Chirico. Phildelphia crime data.

https://www.kaggle.com/mchirico/philadelphiacrimedata, 2018.

Accessed: 2018-03-02.

[CM18] Joseph Crawford and Tijana Milenković. Cluenet: Clustering a tem-

poral network based on topological similarity rather than denseness.

PloS one, 13(5):e0195993, 2018.

143

http://www.sociopatterns.org/datasets/
http://www.sociopatterns.org/datasets/
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm

REFERENCES

[CMJ+07] Qinghua Cui, Yun Ma, Maria Jaramillo, Hamza Bari, Arif Awan,

Song Yang, Simo Zhang, Lixue Liu, Meng Lu, Maureen O’Connor-

McCourt, and Others. A map of human cancer signaling. Molecular

systems biology, 3(1):152, 2007.

[COJT+11] Luciano da Fontoura Costa, Osvaldo N Oliveira Jr, Gonzalo Travieso,

Francisco Aparecido Rodrigues, Paulino Ribeiro Villas Boas, Lucas

Antiqueira, Matheus Palhares Viana, and Luis Enrique Correa Rocha.

Analyzing and modeling real-world phenomena with complex net-

works: a survey of applications. Advances in Physics, 60(3):329–412,

2011.

[CPS+16] Cesar H Comin, Thomas K Peron, Filipi N Silva, Diego R Aman-

cio, Francisco A Rodrigues, and Luciano da F Costa. Complex

systems: features, similarity and connectivity. arXiv preprint

arXiv:1606.05400, 2016.

[CRBS12] Sarvenaz Choobdar, Pedro Ribeiro, Sylwia Bugla, and Fernando

Silva. Comparison of co-authorship networks across scientific fields

using motifs. In Advances in Social Networks Analysis and Mining

(ASONAM), 2012 IEEE/ACM International Conference on, pages

147–152. IEEE, 2012.

[CSM15] Joseph Crawford, Yihan Sun, and Tijana Milenković. Fair evaluation

of global network aligners. Algorithms for Molecular Biology, 10(1):19,

2015.

[CZ14] CL Philip Chen and Chun-Yang Zhang. Data-intensive applications,

challenges, techniques and technologies: A survey on big data.

Information Sciences, 275:314–347, 2014.

[DBWF11] Mina Doroud, Prantik Bhattacharyya, S Felix Wu, and Diane Felmlee.

The evolution of ego-centric triads: A microscopic approach toward

predicting macroscopic network properties. pages 172–179, 2011.

[DCLS+10] Munmun De Choudhury, Yu-Ru Lin, Hari Sundaram, K Selcuk

Candan, Lexing Xie, Aisling Kelliher, et al. How does the data

sampling strategy impact the discovery of information diffusion in

social media? Icwsm, 10:34–41, 2010.

144

REFERENCES

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data

processing on large clusters. Communications of the ACM, 51(1):107–

113, 2008.

[Din09] Ying Ding. Applying weighted pagerank to author citation networks.

Journal of the American Society for Information Science and Tech-

nology, 62(2):236–245, 2009.

[DKS12] Nicholas Dingle, William Knottenbelt, and Demetris Spanias. On the

(page) ranking of professional tennis players. In European Workshop

on Performance Engineering, pages 237–247. Springer, 2012.

[DV12] Marcel Dunaiski and Willem Visser. Comparing paper ranking

algorithms. In Proceedings of the South African Institute for Computer

Scientists and Information Technologists Conference, pages 21–30.

ACM, 2012.

[ECK16] Ahed Elmsallati, Connor Clark, and Jugal Kalita. Global alignment

of protein-protein interaction networks: A survey. IEEE/ACM Trans-

actions on Computational Biology and Bioinformatics, 13(4):689–705,

2016.

[Elo61] AE Elo. New uscf rating system. Chess Life, 16:160–161, 1961.

[ER60] Paul Erdős and Alfréd Rényi. On the evolution of random graphs.

Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60, 1960.

[ERS18] Talya Eden, Dana Ron, and C Seshadhri. On approximating the

number of k-cliques in sublinear time. In Proceedings of the 50th

Annual ACM SIGACT Symposium on Theory of Computing, pages

722–734. ACM, 2018.

[ESDS16] Frank Emmert-Streib, Matthias Dehmer, and Yongtang Shi. Fifty

years of graph matching, network alignment and network comparison.

Information Sciences, 346:180–197, 2016.

[FFF14] Irene Finocchi, Marco Finocchi, and Emanuele G Fusco. Counting

small cliques in mapreduce, 2014.

[FFF15] Irene Finocchi, Marco Finocchi, and Emanuele G Fusco. Clique

counting in mapreduce: algorithms and experiments. Journal of

Experimental Algorithmics (JEA), 20:1–7, 2015.

145

REFERENCES

[FLL+08] Wenbin Fang, Ka Keung Lau, Mian Lu, Xiangye Xiao, Chi K Lam,

Philip Yang Yang, Bingsheng He, Qiong Luo, Pedro V Sander, and

Ke Yang. Parallel data mining on graphics processors. Hong Kong

Univ. Sci. and Technology, Hong Kong, China, Tech. Rep. HKUST-

CS08-07, 2008.

[FM14] Fazle E Faisal and Tijana Milenković. Dynamic networks reveal key

players in aging. Bioinformatics, 30(12):1721–1729, 2014.

[FMCM15] Fazle E Faisal, Lei Meng, Joseph Crawford, and Tijana Milenković.

The post-genomic era of biological network alignment. EURASIP

Journal on Bioinformatics and Systems Biology, 2015(1):3, 2015.

[FND+09] Jason Flannick, Antal Novak, Chuong B Do, Balaji S Srinivasan, and

Serafim Batzoglou. Automatic parameter learning for multiple local

network alignment. Journal of computational biology, 16(8):1001–

1022, 2009.

[FZM15] Fazle Elahi Faisal, Han Zhao, and Tijana Milenković. Global network

alignment in the context of aging. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 12(1):40–52, 2015.

[GBC14] Valerio Gemmetto, Alain Barrat, and Ciro Cattuto. Mitigation of

infectious disease at school: targeted class closure vs school closure.

BMC infectious diseases, 14(1):695, 2014.

[GGG+11] Wei Gao, John H Gilmore, Kelly S Giovanello, Jeffery Keith Smith,

Dinggang Shen, Hongtu Zhu, and Weili Lin. Temporal and spatial

evolution of brain network topology during the first two years of life.

PloS one, 6(9):e25278, 2011.

[GK07] Joshua A Grochow and Manolis Kellis. Network motif discovery

using subgraph enumeration and symmetry-breaking. In Annual

International Conference on Research in Computational Molecular

Biology, pages 92–106. Springer, 2007.

[GKK01] K-I Goh, B Kahng, and D Kim. Universal behavior of load distribution

in scale-free networks. Physical Review Letters, 87(27):278701, 2001.

[GL04] Diego Garlaschelli and Maria I Loffredo. Patterns of link reciprocity

in directed networks. Physical review letters, 93(26):268701, 2004.

146

REFERENCES

[GL16] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning

for networks. In Proceedings of the 22nd ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 855–864.

ACM, 2016.

[GM17] Pietro Hiram Guzzi and Tijana Milenković. Survey of local and global

biological network alignment: the need to reconcile the two sides of

the same coin. Briefings in bioinformatics, 19(3):472–481, 2017.

[GM18] Shawn Gu and Tijana Milenković. Graphlets versus node2vec

and struc2vec in the task of network alignment. arXiv preprint

arXiv:1805.04222, 2018.

[GRS11] Mira Gonen, Dana Ron, and Yuval Shavitt. Counting stars and

other small subgraphs in sublinear-time. SIAM Journal on Discrete

Mathematics, 25(3):1365–1411, 2011.

[GRSJRMK13] Ali Gholami Rudi, Saeed Shahrivari, Saeed Jalili, and Zahra Razaghi

Moghadam Kashani. Rangi: a fast list-colored graph motif finding

algorithm. IEEE/ACM Transactions on Computational Biology and

Bioinformatics (TCBB), 10(2):504–513, 2013.

[GS04] Shantanu Godbole and Sunita Sarawagi. Discriminative methods for

multi-labeled classification. In Pacific-Asia conference on knowledge

discovery and data mining, pages 22–30. Springer, 2004.

[GS13] Sylvain Guillemot and Florian Sikora. Finding and counting vertex-

colored subtrees. Algorithmica, 65(4):828–844, 2013.

[GVF+15] Mathieu Génois, Christian L Vestergaard, Julie Fournet, André

Panisson, Isabelle Bonmarin, and Alain Barrat. Data on face-to-face

contacts in an office building suggest a low-cost vaccination strategy

based on community linkers. Network Science, 3(3):326–347, 2015.

[HBEJF14] Benjamin T Hazen, Christopher A Boone, Jeremy D Ezell, and L Alli-

son Jones-Farmer. Data quality for data science, predictive analytics,

and big data in supply chain management: An introduction to the

problem and suggestions for research and applications. International

Journal of Production Economics, 154:72–80, 2014.

[HCKW10] Won-Seok Hwang, Soo-Min Chae, Sang-Wook Kim, and Gyun Woo.

Yet another paper ranking algorithm advocating recent publications.

147

REFERENCES

In Proceedings of the 19th international conference on World wide web,

pages 1117–1118. ACM, 2010.

[HCM15] Yuriy Hulovatyy, Huili Chen, and T Milenković. Exploring the

structure and function of temporal networks with dynamic graphlets.

Bioinformatics, 31(12):i171–i180, 2015.

[HD14] Tomaž Hočevar and Janez Demšar. A combinatorial approach to

graphlet counting. Bioinformatics, 30(4):559–565, 2014.

[HD15] Tomaž Hočevar and Janez Demšar. Orca. http://www.biolab.si/

supp/orca/, 2015. [Online; accessed 20-September-2018].

[HD17] Tomaž Hočevar and Janez Demšar. Combinatorial algorithm for

counting small induced graphs and orbits. PloS one, 12(2):e0171428,

2017.

[Hir05] Jorge E Hirsch. An index to quantify an individual’s scientific

research output. Proceedings of the National academy of Sciences,

102(46):16569–16572, 2005.

[Hol15] Petter Holme. Modern temporal network theory: a colloquium. The

European Physical Journal B, 88(9):234, 2015.

[HOO11] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. Efficient

parallel graph exploration on multi-core cpu and gpu. In Parallel Ar-

chitectures and Compilation Techniques (PACT), 2011 International

Conference on, pages 78–88. IEEE, 2011.

[HS12] Petter Holme and Jari Saramäki. Temporal networks. Physics reports,

519(3):97–125, 2012.

[HW09] Haibo Hu and Xiaofan Wang. Evolution of a large online social

network. Physics Letters A, 373(12):1105–1110, 2009.

[HWP03] Jun Huan, Wei Wang, and Jan Prins. Efficient mining of frequent

subgraphs in the presence of isomorphism. In null, page 549. IEEE,

2003.

[ISB+11] Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-

François Pinton, and Wouter Van den Broeck. What’s in a crowd?

analysis of face-to-face behavioral networks. Journal of theoretical

biology, 271(1):166–180, 2011.

148

http://www.biolab.si/supp/orca/
http://www.biolab.si/supp/orca/

REFERENCES

[JCZ13] Chuntao Jiang, Frans Coenen, and Michele Zito. A survey of frequent

subgraph mining algorithms. The Knowledge Engineering Review,

28(1):75–105, 2013.

[JHK12] Jeannette Janssen, Matt Hurshman, and Nauzer Kalyaniwalla. Model

selection for social networks using graphlets. Internet Mathematics,

8(4):338–363, 2012.

[JK02] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based

evaluation of ir techniques. ACM Transactions on Information

Systems (TOIS), 20(4):422–446, 2002.

[JS17] Shweta Jain and C Seshadhri. A fast and provable method for

estimating clique counts using turán’s theorem. In Proceedings of

the 26th International Conference on World Wide Web, pages 441–

449. International World Wide Web Conferences Steering Committee,

2017.

[JSP15] Madhav Jha, C Seshadhri, and Ali Pinar. Path sampling: A fast

and provable method for estimating 4-vertex subgraph counts. In

Proceedings of the 24th International Conference on World Wide Web,

pages 495–505. International World Wide Web Conferences Steering

Committee, 2015.

[JTA+00] Hawoong Jeong, Bálint Tombor, Réka Albert, Zoltan N Oltvai, and

A-L Barabási. The large-scale organization of metabolic networks.

Nature, 407(6804):651–654, 2000.

[JYW10] Ning Jin, Calvin Young, and Wei Wang. Gaia: graph classification

using evolutionary computation. In Proceedings of the 2010 ACM

SIGMOD International Conference on Management of data, pages

879–890. ACM, 2010.

[KAB+14] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P Gleeson,

Yamir Moreno, and Mason A Porter. Multilayer networks. Journal of

complex networks, 2(3):203–271, 2014.

[KAE+09] Zahra RM Kashani, Hayedeh Ahrabian, Elahe Elahi, Abbas Nowzari-

Dalini, Elnaz S Ansari, Sahar Asadi, Shahin Mohammadi, Falk

Schreiber, and Ali Masoudi-Nejad. Kavosh: a new algorithm for

finding network motifs. BMC bioinformatics, 10(1):318, 2009.

149

REFERENCES

[Kaz16] Ehsan Kazemi. Network alignment: Theory, algorithms, and applica-

tions. 2016.

[KIMA04] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. Efficient

sampling algorithm for estimating subgraph concentrations and de-

tecting network motifs. Bioinformatics, 20(11):1746–1758, 2004.

[KKK+11] Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész, and

Jari Saramäki. Temporal motifs in time-dependent networks. Journal

of Statistical Mechanics: Theory and Experiment, 2011(11):P11005,

2011.

[KKK+12] Man-Sun Kim, Jeong-Rae Kim, Dongsan Kim, Arthur D Lander, and

Kwang-Hyun Cho. Spatiotemporal network motif reveals the biolog-

ical traits of developmental gene regulatory networks in drosophila

melanogaster. BMC systems biology, 6(1):31, 2012.

[Kla09] Gunnar W Klau. A new graph-based method for pairwise global

network alignment. BMC bioinformatics, 10(1):S59, 2009.

[KMM+10] Oleksii Kuchaiev, Tijana Milenković, Vesna Memǐsević, Wayne Hayes,

and Nataša Pržulj. Topological network alignment uncovers biological

function and phylogeny. Journal of the Royal Society Interface, page

rsif20100063, 2010.

[KP09] Oleksii Kuchaiev and NATAŠA PRŽULJ. Learning the structure of

protein-protein interaction networks. In Biocomputing 2009, pages

39–50. World Scientific, 2009.

[KS18] Ema Kušen and Mark Strembeck. On message exchange motifs

emerging during human/bot interactions in multilayer networks: The

case of two riot events. 2018.

[KSD+13] Sahand Khakabimamaghani, Iman Sharafuddin, Norbert Dichter, Ina

Koch, and Ali Masoudi-Nejad. Quatexelero: an accelerated exact

network motif detection algorithm. PloS one, 8(7):e68073, 2013.

[KSHP14] Oleksii Kuchaiev, Aleksandar Stevanovic, Wayne Hayes, and Natasa

Przulj. GraphCrunch 2: Software tool for network modeling, align-

ment and clustering. http://www0.cs.ucl.ac.uk/staff/natasa/

graphcrunch2/, 2014. [Online; accessed 20-September-2018].

150

http://www0.cs.ucl.ac.uk/staff/natasa/graphcrunch2/
http://www0.cs.ucl.ac.uk/staff/natasa/graphcrunch2/

REFERENCES

[KSK+03] Brian P Kelley, Roded Sharan, Richard M Karp, Taylor Sittler,

David E Root, Brent R Stockwell, and Trey Ideker. Conserved

pathways within bacteria and yeast as revealed by global protein

network alignment. Proceedings of the National Academy of Sciences,

100(20):11394–11399, 2003.

[KWG13] Avita Katal, Mohammad Wazid, and RH Goudar. Big data: issues,

challenges, tools and good practices. In Contemporary Computing

(IC3), 2013 Sixth International Conference on, pages 404–409. IEEE,

2013.

[KWNP09] Oleksii Kuchaiev, Po T Wang, Zoran Nenadic, and Natasa Przulj.

Structure of brain functional networks. In Engineering in Medicine

and Biology Society, 2009. EMBC 2009. Annual International Con-

ference of the IEEE, pages 4166–4170. IEEE, 2009.

[LBKT08] Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins.

Microscopic evolution of social networks. In Proceedings of the 14th

ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 462–470. ACM, 2008.

[LCL+13] Wan Li, Lina Chen, Xia Li, Xu Jia, Chenchen Feng, Liangcai Zhang,

Weiming He, Junjie Lv, Yuehan He, Weiguo Li, et al. Cancer-

related marketing centrality motifs acting as pivot units in the

human signaling network and mediating cross-talk between biological

pathways. Molecular BioSystems, 9(12):3026–3035, 2013.

[LCR+16] Linyuan Lü, Duanbing Chen, Xiao-Long Ren, Qian-Ming Zhang, Yi-

Cheng Zhang, and Tao Zhou. Vital nodes identification in complex

networks. Physics Reports, 650:1–63, 2016.

[LJC+09] Yang Liu, Xiaohong Jiang, Huajun Chen, Jun Ma, and Xiangyu

Zhang. Mapreduce-based pattern finding algorithm applied in motif

detection for prescription compatibility network. In International

Workshop on Advanced Parallel Processing Technologies, pages 341–

355. Springer, 2009.

[LKF05] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over

time: densification laws, shrinking diameters and possible explana-

tions. In Proceedings of the eleventh ACM SIGKDD international

151

REFERENCES

conference on Knowledge discovery in data mining, pages 177–187.

ACM, 2005.

[LKF07] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph

evolution: Densification and shrinking diameters. ACM Transactions

on Knowledge Discovery from Data (TKDD), 1(1):2, 2007.

[LLB+09] Chung-Shou Liao, Kanghao Lu, Michael Baym, Rohit Singh, and

Bonnie Berger. Isorankn: spectral methods for global alignment of

multiple protein networks. Bioinformatics, 25(12):i253–i258, 2009.

[LLDM09] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Ma-

honey. Community structure in large networks: Natural cluster sizes

and the absence of large well-defined clusters. Internet Mathematics,

6(1):29–123, 2009.

[LXXL17] Wenqing Lin, Xiaokui Xiao, Xing Xie, and Xiao-Li Li. Network motif

discovery: A gpu approach. IEEE Transactions on Knowledge and

Data Engineering, 29(3):513–528, 2017.

[MA03] Shmoolik Mangan and Uri Alon. Structure and function of the feed-

forward loop network motif. Proceedings of the National Academy of

Sciences, 100(21):11980–11985, 2003.

[Mar02] Joseph Martinich. College football rankings: Do the computers know

best? Interfaces, 32(5):85–94, 2002.

[Mar13] Vivien Marx. Biology: The big challenges of big data, 2013.

[MDCR+16] Alberto JM Martin, Calixto Dominguez, Sebastián Contreras-

Riquelme, David S Holmes, and Tomas Perez-Acle. Graphlet based

metrics for the comparison of gene regulatory networks. PloS one,

11(10):e0163497, 2016.

[MDF+12] Sam Mavandadi, Stoyan Dimitrov, Steve Feng, Frank Yu, Richard

Yu, Uzair Sikora, and Aydogan Ozcan. Crowd-sourced biogames:

managing the big data problem for next-generation lab-on-a-chip

platforms. Lab on a chip, 12(20):4102–4106, 2012.

[MDP14] Noël Malod-Dognin and Nataša Pržulj. Gr-align: fast and flexible

alignment of protein 3d structures using graphlet degree similarity.

Bioinformatics, 30(9):1259–1265, 2014.

152

REFERENCES

[Mel01] Merrill J Melnick. Relationship between team assists and win-loss

record in the national basketball association. Perceptual and Motor

Skills, 92(2):595–602, 2001.

[Mel06] Guy Melancon. Just how dense are dense graphs in the real world?:

a methodological note. In Proceedings of the 2006 AVI workshop on

BEyond time and errors: novel evaluation methods for information

visualization, pages 1–7. ACM, 2006.

[MGG12] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable

gpu graph traversal. In ACM SIGPLAN Notices, volume 47, pages

117–128. ACM, 2012.

[MH17] Nil Mamano and Wayne B Hayes. Sana: simulated annealing far

outperforms many other search algorithms for biological network

alignment. Bioinformatics, 33(14):2156–2164, 2017.

[MIK+04] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai

Shen-Orr, Inbal Ayzenshtat, Michal Sheffer, and Uri Alon. Superfam-

ilies of evolved and designed networks. Science, 303(5663):1538–1542,

2004.

[MJW+09] Avi Ma’ayan, Sherry L Jenkins, Ryan L Webb, Seth I Berger,

Sudarshan P Purushothaman, Noura S Abul-Husn, Jeremy M Posner,

Tony Flores, and Ravi Iyengar. Snavi: Desktop application for

analysis and visualization of large-scale signaling networks. BMC

systems biology, 3(1):10, 2009.

[ML14] Plácido Moreno and Sebastián Lozano. A network dea assessment of

team efficiency in the nba. Annals of Operations Research, 214(1):99–

124, 2014.

[MLP08] Tijana Milenković, Jason Lai, and Nataša Pržulj. Graphcrunch: a

tool for large network analyses. BMC bioinformatics, 9(1):70, 2008.

[MM12] Shun Motegi and Naoki Masuda. A network-based dynamical ranking

system for competitive sports. Scientific reports, 2:904, 2012.

[MMFDC14] Luis AA Meira, Vińıcius R Máximo, Álvaro L Fazenda, and Arlindo F

Da Conceiçao. Acc-motif: accelerated network motif detection.

IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics (TCBB), 11(5):853–862, 2014.

153

REFERENCES

[MNHP10] Tijana Milenković, Weng Ng, Wayne Hayes, and Nataša Pržulj.

Optimal network alignment with graphlet degree vectors. Cancer

informatics, 9:121, 2010.

[MNSK12] Ali Masoudi-Nejad, Falk Schreiber, and Zahra Razaghi Moghadam

Kashani. Building blocks of biological networks: a review on major

network motif discovery algorithms. IET systems biology, 6(5):164–

174, 2012.

[Moh14] Shahin Mohammadi. Kavosh: a new algorithm for finding network

motifs. https://github.com/shmohammadi86/Kavosh, 2014. [On-

line; accessed 20-September-2018].

[MP08] Tijana Milenković and Nataša Pržulj. Uncovering biological network

function via graphlet degree signatures. Cancer informatics, 6:CIN–

S680, 2008.

[MP12] Vesna Memǐsević and Nataša Pržulj. C-graal: Common-neighbors-

based global graph alignment of biological networks. Integrative

Biology, 4(7):734–743, 2012.

[MP14] Brendan D McKay and Adolfo Piperno. Practical graph isomorphism,

ii. Journal of Symbolic Computation, 60:94–112, 2014.

[MPK11a] Rados law Michalski, Sebastian Palus, and Przemys law Kazienko.

Matching organizational structure and social network extracted from

email communication. In International Conference on Business

Information Systems, pages 197–206. Springer, 2011.

[MPK11b] Rados law Michalski, Sebastian Palus, and Przemys law Kazienko.

Matching organizational structure and social network extracted from

email communication. In Lecture Notes in Business Information

Processing, volume 87, pages 197–206. Springer Berlin Heidelberg,

2011.

[MS12] Dror Marcus and Yuval Shavitt. Rage–a rapid graphlet enumerator

for large networks. Computer Networks, 56(2):810–819, 2012.

[MSM16] Lei Meng, Aaron Striegel, and Tijana Milenković. Local versus

global biological network alignment. Bioinformatics, 32(20):3155–

3164, 2016.

154

https://github.com/shmohammadi86/Kavosh

REFERENCES

[MSOI+02] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri

Chklovskii, and Uri Alon. Network motifs: simple building blocks of

complex networks. Science, 298(5594):824–827, 2002.

[New13] Mark Newman. Mark newman’s network data. http://

www-personal.umich.edu/~mejn/netdata, 2013. Accessed: 2018-

08-11.

[NK05] Siegfried Nijssen and Joost N Kok. The gaston tool for frequent

subgraph mining. Electronic Notes in Theoretical Computer Science,

127(1):77–87, 2005.

[NTM+13] Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi,

Giovanni Russo, and Vito Latora. Graph metrics for temporal

networks. In Temporal networks, pages 15–40. Springer, 2013.

[OB16] Mark Ortmann and Ulrik Brandes. Quad census computation: Simple,

efficient, and orbit-aware. In International Conference and School on

Network Science, pages 1–13. Springer, 2016.

[OBEJ08] Jens M Olesen, Jordi Bascompte, Heidi Elberling, and Pedro Jordano.

Temporal dynamics in a pollination network. Ecology, 89(6):1573–

1582, 2008.

[OFP+18] Stuart Oldham, Ben Fulcher, Linden Parkes, Aurina Arnatkeviciute,

Chao Suo, and Alex Fornito. Consistency and differences between

centrality metrics across distinct classes of networks. arXiv preprint

arXiv:1805.02375, 2018.

[OSMN09] Saeed Omidi, Falk Schreiber, and Ali Masoudi-Nejad. Moda: an

efficient algorithm for network motif discovery in biological networks.

Genes & genetic systems, 84(5):385–395, 2009.

[PBL17] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in

temporal networks. In Proceedings of the Tenth ACM International

Conference on Web Search and Data Mining, pages 601–610. ACM,

2017.

[PBM+98] Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd, et al.

The pagerank citation ranking: Bringing order to the web. 1998.

155

http://www-personal.umich.edu/~mejn/netdata
http://www-personal.umich.edu/~mejn/netdata

REFERENCES

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

The pagerank citation ranking: Bringing order to the web. Technical

report, Stanford InfoLab, 1999.

[PCJ06] N Pržulj, Derek G Corneil, and Igor Jurisica. Efficient estimation

of graphlet frequency distributions in protein–protein interaction

networks. Bioinformatics, 22(8):974–980, 2006.

[Pet18] Jordan B Peterson. 12 Rules for Life: An Antidote to Chaos. Random

House Canada, 2018.

[PHHT10] Christopher Y Park, David C Hess, Curtis Huttenhower, and Olga G

Troyanskaya. Simultaneous genome-wide inference of physical, ge-

netic, regulatory, and functional pathway components. PLoS compu-

tational biology, 6(11):e1001009, 2010.

[PK12] Rob Patro and Carl Kingsford. Global network alignment using

multiscale spectral signatures. Bioinformatics, 28(23):3105–3114,

2012.

[PKSH10] Natasa Pržulj, Oleksii Kuchaiev, Aleksandar Stevanovic, and Wayne

Hayes. Geometric evolutionary dynamics of protein interaction

networks. In Pacific Symposium on Biocomputing, volume 2009, pages

178–189, 2010.

[PR13] Pedro Paredes and Pedro Ribeiro. Towards a faster network-centric

subgraph census. In Proceedings of the 2013 IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining,

pages 264–271. ACM, 2013.

[Prž07a] Nataša Pržulj. Biological network comparison using graphlet degree

distribution. Bioinformatics, 23(2):e177–e183, 2007.

[Prz07b] Nataša Przulj. Biological network comparison using graphlet degree

distribution. Bioinformatics, 23:177–183, 2007.

[PSV17] Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. Escape: Effi-

ciently counting all 5-vertex subgraphs. In Proceedings of the 26th

International Conference on World Wide Web, pages 1431–1440.

International World Wide Web Conferences Steering Committee,

2017.

156

REFERENCES

[PTTW13] Aduri Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-

Lung Wu. Counting and sampling triangles from a graph stream.

Proceedings of the VLDB Endowment, 6(14):1870–1881, 2013.

[RA18] Ryan Rossi and Nesreen Ahmed. Dynamic networks — network

repository. http://networkrepository.com/dynamic.php, 2018.

Accessed: 2018-08-11.

[Rad11] Filippo Radicchi. Who is the best player ever? a complex network

analysis of the history of professional tennis. PloS one, 6(2):e17249,

2011.

[RFMV09] Filippo Radicchi, Santo Fortunato, Benjamin Markines, and Alessan-

dro Vespignani. Diffusion of scientific credits and the ranking of

scientists. Physical Review E, 80(5):056103, 2009.

[Rib11] Pedro Ribeiro. Efficient and Scalable Algorithms for Network Motifs

Discovery. PhD thesis, Faculty of Science of the University of Porto,

June 2011.

[Ris18] Megan Risdal. Minneapolis incidents & crime.

https://www.kaggle.com/mrisdal/minneapolis-incidents-crime,

2018. Accessed: 2018-03-02.

[RLH10] Luis EC Rocha, Fredrik Liljeros, and Petter Holme. Information

dynamics shape the sexual networks of internet-mediated prostitution.

Proceedings of the National Academy of Sciences, 107(13):5706–5711,

2010.

[RS10a] Pedro Ribeiro and Fernando Silva. Efficient subgraph frequency

estimation with g-tries. In International Workshop on Algorithms

in Bioinformatics, pages 238–249. Springer, 2010.

[RS10b] Pedro Ribeiro and Fernando Silva. G-tries: an efficient data structure

for discovering network motifs. In Proceedings of the 2010 ACM

Symposium on Applied Computing, pages 1559–1566. ACM, 2010.

[RS14a] Pedro Ribeiro and Fernando Silva. Discovering colored network motifs.

In Complex Networks V, pages 107–118. Springer, 2014.

[RS14b] Pedro Ribeiro and Fernando Silva. G-tries: a data structure for

storing and finding subgraphs. Data Mining and Knowledge Discovery,

28(2):337–377, 2014.

157

http://networkrepository.com/dynamic.php

REFERENCES

[RS14c] Pedro Ribeiro and Fernando Silva. G-tries: a data structure for

storing and finding subgraphs. Data Mining and Knowledge Discovery,

28(2):337–377, 2014.

[RSF+15] Daniel I Rubenstein, Siva R Sundaresan, Ilya R Fischhoff, Chayant

Tantipathananandh, and Tanya Y Berger-Wolf. Similar but different:

dynamic social network analysis highlights fundamental differences

between the fission-fusion societies of two equid species, the onager

and grevy’s zebra. PloS one, 10(10):e0138645, 2015.

[RSF17] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo.

struc2vec: Learning node representations from structural identity. In

Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 385–394. ACM, 2017.

[RSK09] Pedro Ribeiro, Fernando Silva, and Marcus Kaiser. Strategies for

network motifs discovery. In e-Science, 2009. e-Science’09. Fifth IEEE

International Conference on, pages 80–87. IEEE, 2009.

[RSL10] Pedro Manuel Pinto Ribeiro, Fernando MA Silva, and Lúıs MB Lopes.

Parallel calculation of subgraph census in biological networks. In

BIOINFORMATICS, pages 56–65, 2010.

[RZ16] Ryan A Rossi and Rong Zhou. Leveraging multiple gpus and cpus

for graphlet counting in large networks. In Proceedings of the 25th

ACM International on Conference on Information and Knowledge

Management, pages 1783–1792. ACM, 2016.

[SAK+09] Carl F Schaefer, Kira Anthony, Shiva Krupa, Jeffrey Buchoff,

Matthew Day, Timo Hannay, and Kenneth H Buetow. Pid: the

pathway interaction database. Nucleic acids research, 37(suppl

1):D674–D679, 2009.

[SAS18] Jorge Silva, David Apaŕıcio, and Fernando Silva. OTARIOS: Op-

Timizing Author Ranking with Insiders/Outsiders Subnetworks. In

International Workshop on Complex Networks and their Applications.

Springer, 2018.

[SBS13] Erin R Shellman, Charles F Burant, and Santiago Schnell. Network

motifs provide signatures that characterize metabolism. Molecular

BioSystems, 9(3):352–360, 2013.

158

REFERENCES

[SC88] Richard Schulz and Christine Curnow. Peak performance and age

among superathletes: track and field, swimming, baseball, tennis, and

golf. Journal of Gerontology, 43(5):P113–P120, 1988.

[SCKH04] Olaf Sporns, Dante R Chialvo, Marcus Kaiser, and Claus C Hilgetag.

Organization, development and function of complex brain networks.

Trends in cognitive sciences, 8(9):418–425, 2004.

[SCTM15] Yihan Sun, Joseph Crawford, Jie Tang, and Tijana Milenković.

Simultaneous optimization of both node and edge conservation in

network alignment via wave. In International Workshop on Algorithms

in Bioinformatics, pages 16–39. Springer, 2015.

[SdV13] Volker S Schmid and Han de Vries. Finding a dominance order most

consistent with a linear hierarchy: an improved algorithm for the i&si

method. Animal Behaviour, 86(5):1097–1105, 2013.

[SGLP14] Kai Sun, Joana P Gonçalves, Chris Larminie, and Nataša Pržulj.

Predicting disease associations via biological network analysis. BMC

bioinformatics, 15(1):304, 2014.

[SH95] Barry M Staw and Ha Hoang. Sunk costs in the nba: Why draft

order affects playing time and survival in professional basketball.

Administrative Science Quarterly, pages 474–494, 1995.

[SKZ+15] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos

Faloutsos. Timecrunch: Interpretable dynamic graph summarization.

In Proceedings of the 21th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 1055–1064. ACM,

2015.

[SM14] Vikram Saraph and Tijana Milenković. Magna: maximizing accuracy

in global network alignment. Bioinformatics, 30(20):2931–2940, 2014.

[SMDYP16] Anida Sarajlić, Noël Malod-Dognin, Ömer Nebil Yaveroğlu, and

Nataša Pržulj. Graphlet-based characterization of directed networks.

Scientific reports, 6:35098, 2016.

[SOMMA02] Shai S Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network

motifs in the transcriptional regulation network of escherichia coli.

Nature genetics, 31(1):64, 2002.

159

REFERENCES

[SPK13] Comandur Seshadhri, Ali Pinar, and Tamara G Kolda. Triadic

measures on graphs: The power of wedge sampling. In Proceedings

of the 2013 SIAM International Conference on Data Mining, pages

10–18. SIAM, 2013.

[SS04] Falk Schreiber and Henning Schwobbermeyer. Towards motif detec-

tion in networks: Frequency concepts and flexible search. Proc. Intl.

Wsh. Network Tools and Applications in Biology (NETTAB’04), pages

91–102, 2004.

[SSDB95] Mark Schena, Dari Shalon, Ronald W Davis, and Patrick O Brown.

Quantitative monitoring of gene expression patterns with a comple-

mentary dna microarray. Science, 270(5235):467–470, 1995.

[Ste97] Raymond T Stefani. Survey of the major world sports rating systems.

Journal of Applied Statistics, 24(6):635–646, 1997.

[SVB+11] Juliette Stehlé, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Lorenzo

Isella, Jean-François Pinton, Marco Quaggiotto, Wouter Van den

Broeck, Corinne Régis, Bruno Lina, et al. High-resolution measure-

ments of face-to-face contact patterns in a primary school. PloS one,

6(8):e23176, 2011.

[SW05] Thomas Schank and Dorothea Wagner. Finding, counting and listing

all triangles in large graphs, an experimental study. In International

Workshop on Experimental and Efficient Algorithms, pages 606–609.

Springer, 2005.

[SXB08] Rohit Singh, Jinbo Xu, and Bonnie Berger. Global alignment of

multiple protein interaction networks with application to functional

orthology detection. Proceedings of the National Academy of Sciences,

105(35):12763–12768, 2008.

[TZY+08] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su.

Arnetminer: Extraction and mining of academic social networks. In

KDD’08, pages 990–998, 2008.

[TZY+17] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su.

Citation Network Dataset. https://aminer.org/citation, 2017.

[Online; accessed 14-September-2018].

160

https://aminer.org/citation

REFERENCES

[Ull76] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal

of the ACM (JACM), 23(1):31–42, 1976.

[VCG14] Elizabeth S Vieira, José AS Cabral, and José ANF Gomes. How

good is a model based on bibliometric indicators in predicting the

final decisions made by peers? Journal of Informetrics, 8(2):390–405,

2014.

[VCM17] Vipin Vijayan, Dominic Critchlow, and T Milenković. Alignment of

dynamic networks. Bioinformatics, 33(14):i180–i189, 2017.

[vdHSKP09] Martijn P van den Heuvel, Cornelis J Stam, René S Kahn, and Hilleke

E Hulshoff Pol. Efficiency of functional brain networks and intellectual

performance. Journal of Neuroscience, 29(23):7619–7624, 2009.

[VFMV03] Alexei Vázquez, Alessandro Flammini, Amos Maritan, and Alessandro

Vespignani. Modeling of protein interaction networks. Complexus,

1(1):38–44, 2003.

[VKMM17] Vipin Vijayan, Eric Krebs, Lei Meng, and Tijana Milenković. Pairwise

versus multiple network alignment. arXiv preprint arXiv:1709.04564,

2017.

[VM17a] V Vijayan and T Milenković. Multiple network alignment via

multimagna+. IEEE/ACM transactions on computational biology and

bioinformatics, 2017.

[VM17b] Vipin Vijayan and T Milenković. Aligning dynamic networks with

dynawave. Bioinformatics, page btx841, 2017.

[VMCG09] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P.

Gummadi. On the evolution of user interaction in Facebook. In Proc.

Workshop on Online Social Networks, pages 37–42, 2009.

[Vri98] Han de Vries. Finding a dominance order most consistent with a

linear hierarchy: a new procedure and review. Animal Behaviour,

55(4):827–843, 1998.

[VSM15] Vipin Vijayan, Vikram Saraph, and T Milenković. Magna++:

Maximizing accuracy in global network alignment via both node and

edge conservation. Bioinformatics, 31(14):2409–2411, 2015.

161

REFERENCES

[VY09] Nico W Van Yperen. Why some make it and others do not: Identifying

psychological factors that predict career success in professional adult

soccer. The Sport Psychologist, 23(3):317–329, 2009.

[Wer05] Sebastian Wernicke. A faster algorithm for detecting network motifs.

In International Workshop on Algorithms in Bioinformatics, pages

165–177. Springer, 2005.

[Wer06] Sebastian Wernicke. Efficient detection of network motifs. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 3(4),

2006.

[WF94] Stanley Wasserman and Katherine Faust. Social network analysis:

Methods and applications, volume 8. Cambridge university press, 1994.

[WHC12] Guangyu Wu, Martin Harrigan, and Pádraig Cunningham. Classi-

fying wikipedia articles using network motif counts and ratios. In

Proceedings of the Eighth Annual International Symposium on Wikis

and Open Collaboration, page 12. ACM, 2012.

[WJD+13] Jevin D West, Michael C Jensen, Ralph J Dandrea, Gregory J Gordon,

and Carl T Bergstrom. Author-level eigenfactor metrics: Evaluating

the influence of authors, institutions, and countries within the social

science research network community. Journal of the American Society

for Information Science and Technology, 64(4):787–801, 2013.

[WLR+14] Pinghui Wang, John Lui, Bruno Ribeiro, Don Towsley, Junzhou Zhao,

and Xiaohong Guan. Efficiently estimating motif statistics of large

networks. ACM Transactions on Knowledge Discovery from Data

(TKDD), 9(2):8, 2014.

[WLY14] Pei Wang, Jinhu Lü, and Xinghuo Yu. Identification of important

nodes in directed biological networks: A network motif approach. PloS

one, 9(8):e106132, 2014.

[WR06a] Sebastian Wernicke and Florian Rasche. Fanmod: a tool for fast

network motif detection. Bioinformatics, 22(9):1152–1153, 2006.

[WR06b] Sebastian Wernicke and Florian Rasche. FANMOD: a tool for fast

network motif detection. http://theinf1.informatik.uni-jena.

de/motifs/, 2006. [Online; accessed 20-September-2018].

162

http://theinf1.informatik.uni-jena.de/motifs/
http://theinf1.informatik.uni-jena.de/motifs/

REFERENCES

[WS98] Duncan J Watts and Steven H Strogatz. Collective dynamics of small-

world networks. Nature, 393(6684):440–442, 1998.

[WS03] Stefan Wuchty and Peter F Stadler. Centers of complex networks.

Journal of Theoretical Biology, 223(1):45–53, 2003.

[WSC16] Hao Wang, Hua-Wei Shen, and Xue-Qi Cheng. Scientific credit

diffusion: Researcher level or paper level? Scientometrics, 109(2):827–

837, 2016.

[WTZ+05] Tie Wang, Jeffrey W Touchman, Weiyi Zhang, Edward B Suh, and

Guoliang Xue. A parallel algorithm for extracting transcriptional

regulatory network motifs. In Bioinformatics and Bioengineering,

2005. BIBE 2005. Fifth IEEE Symposium on, pages 193–200. IEEE,

2005.

[WZZ+18] Pinghui Wang, Junzhou Zhao, Xiangliang Zhang, Zhenguo Li, Jiefeng

Cheng, John CS Lui, Don Towsley, Jing Tao, and Xiaohong Guan.

Moss-5: A fast method of approximating counts of 5-node graphlets in

large graphs. IEEE Transactions on Knowledge and Data Engineering,

30(1):73–86, 2018.

[YAW17] Wenchao Yu, Charu C Aggarwal, and Wei Wang. Temporally

factorized network modeling for evolutionary network analysis. In

Proceedings of the Tenth ACM International Conference on Web

Search and Data Mining, pages 455–464. ACM, 2017.

[YFCM15] Boyoung Yoo, Fazle Faisal, Huili Chen, and Tijana Milenković.

Improving identification of key players in aging via network de-noising

and core inference. IEEE/ACM transactions on computational biology

and bioinformatics, 2015.

[YFCM17] Boyoung Yoo, Fazle Elahi Faisal, Huili Chen, and Tijana Milenković.

Improving identification of key players in aging via network de-noising

and core inference. IEEE/ACM transactions on computational biology

and bioinformatics, 14(5):1056–1069, 2017.

[YH02] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern

mining. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE

International Conference on, pages 721–724. IEEE, 2002.

163

REFERENCES

[YMDD+14] Ömer Nebil Yaveroğlu, Noël Malod-Dognin, Darren Davis, Zoran

Levnajic, Vuk Janjic, Rasa Karapandza, Aleksandar Stojmirovic, and

Nataša Pržulj. Revealing the hidden language of complex networks.

Scientific reports, 4:4547, 2014.

[YMP15] Ömer Nebil Yaveroğlu, Tijana Milenković, and Nataša Pržulj. Proper

evaluation of alignment-free network comparison methods. Bioinfor-

matics, 31(16):2697–2704, 2015.

[ZHY+13] Luming Zhang, Yahong Han, Yi Yang, Mingli Song, Shuicheng Yan,

and Qi Tian. Discovering discriminative graphlets for aerial image

categories recognition. IEEE Transactions on Image Processing,

22(12):5071–5084, 2013.

[ZQ05] Dongxiao Zhu and Zhaohui S Qin. Structural comparison of metabolic

networks in selected single cell organisms. BMC bioinformatics, 6(1):1,

2005.

[ZTH+10] Qiankun Zhao, Yuan Tian, Qi He, Nuria Oliver, Ruoming Jin, and

Wang-Chien Lee. Communication motifs: a tool to characterize

social communications. In Proceedings of the 19th ACM international

conference on Information and knowledge management, pages 1645–

1648. ACM, 2010.

[ZYHW13] Lin Zhu, Zhu-Hong You, De-Shuang Huang, and Bing Wang. t-

lse: a novel robust geometric approach for modeling protein-protein

interaction networks. PLoS One, 8(4):e58368, 2013.

164

	Abstract
	Resumo
	List of Tables
	List of Figures
	List of Algorithms
	List of Acronyms
	Introduction
	Thesis motivation
	Network comparison
	Node ranking

	Main contributions
	Thesis organization
	Bibliographic note

	Background
	Network concepts and terminology
	Subgraph counting
	Enumeration approaches
	G-Tries

	Analytic approaches
	Parallel approaches
	Sampling approaches
	Related problems
	Network motifs
	Frequent Subgraph Mining

	Subgraph counting on temporal networks

	Network classification
	Network alignment
	Node ranking

	Network classification
	Network classification of directed networks
	Motivation
	Overview of our contribution
	Directed graphlets
	Graphlet-tries
	Graphlet-trie creation
	Graphlet-trie enumeration

	Classification accuracy on synthetic networks
	Synthetic directed networks
	Methodology
	Classification accuracy

	Performance on real biological networks
	Real-world directed networks
	Classification accuracy
	Speed comparison

	Summary

	Network classification of temporal networks
	Motivation
	Overview of our contribution
	Graphlet-Orbit Transitions (GoTs)
	Orbit-transition Agreement (OTA)
	Classifying synthetic data
	Synthetic networks
	Measures
	Accuracy and speed comparison

	Grouping and analyzing real data
	Network overview
	Network motifs
	Static graphlets
	Graphlet-orbit Transitions

	Summary

	Network alignment
	Motivation
	Related work
	Overview of our contribution
	Static and temporal GPNA
	GoTs as node conservation features
	GoT-WAVE
	Experimental Evaluation
	Evaluation using synthetic networks
	Synthetic networks
	Performance on synthetic networks

	Evaluation using real-world networks
	Real-world temporal networks
	Performance on real undirected networks
	Performance on real directed networks

	Summary

	Node ranking
	Graphlet dominance (GD)
	Methodology

	Comparison with node centrality measures
	Tennis players ranking
	Motivation
	Network description
	Network analysis
	Results

	Scientific authors ranking
	Motivation
	Network description
	Topology-based ranking
	Results

	Feature enriched topology ranking
	Notation
	OTARIOS
	Results

	Summary

	Conclusions and future work
	Main contributions
	Future work
	Closing remarks

	Graphlet-tries
	Temporal network randomization
	Undirected randomization
	Directed randomization
	Pure directed randomization

	References

