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ABSTRACT Bandwidth guarantee is a critical feature to enable performance predictability in cloud data-
centers. This process is expected to achieve three requirements: work conservation, fairness, and simplicity.
However, the distributed nature of datacenters raises significant challenges to attaining those requirements
at the same time. In this paper, we propose an efficient approach that can satisfy the three requirements
simultaneously. Our scheme takes advantage of multipath TCP (MPTCP) to generate explicit bandwidth
guarantee (BG) traffic and work conservation (WC) traffic. We further prioritize the BG traffic over the WC
traffic in the network fabric. Due to the priority setting, WC cannot harm bandwidth guarantees and thus
is effectively supported. We show that the MPTCP fits this direction well but presents some new issues
when the WC subflows own a low priority. We thus adapt the MPTCP to handle these issues through
a customized scheduler (which strictly prioritizes BG subflow during packet scheduling) and adopting
a large receive buffer. In addition, we enable tenants to share unused bandwidth fairly by managing the
overall aggressiveness of the WC traffic. The proposed system can be easily implemented with commercial
off-the-shelf servers and switches.We have implementedwith the Linux kernelMPTCP for experiments. The
extensive experiments in a small cluster (including oneMapReduce experiment) and trace-driven simulations
show that our scheme achieves the design goals effectively.

INDEX TERMS Datacenter network, bandwidth guarantee, work conservation, MPTCP, fairness.

I. INTRODUCTION
Cloud computing has become an emerging computing
paradigm that can efficiently, scalably, and flexibly provide
computing resources to tenants. It handles many problems
faced by installing and maintaining dedicated computing
infrastructures [1]. However, while computing and storage
resources of different tenants are clearly isolated in current
clouds, network bandwidth is generally shared among tenants
in a best-effort manner [2]. Such a sharing model causes
unpredictable network performance, which in turn affects the
performance of tenant applications [3]. Consequently, tenants
may have to rent the computing and storage resources for a
longer period of time and thus pay more. This not only lowers
the overall resource utilization efficiency of the cloud but also
imposes a high hidden cost to tenants, which may discourage
the migration to the cloud [4], [5]. As a result, it is desirable
to provide isolated and guaranteed network bandwidth to
tenants, just like the storage and computing resources.

The associate editor coordinating the review of this manuscript and
approving it for publication was Muhammad Maaz Rehan.

Due to the limitation of current cloud network architecture,
bandwidth guarantees are implemented by rate limiting at
VMs. Particularly, when VMs sharing a link all send up to the
allocated share (note that the sum of shares is smaller than the
link capacity), everyone’s guarantee is respected. However,
such a static reservation strategy makes idled bandwidth not
accessible to others, which would greatly lower the utilization
efficiency of network bandwidths. To this end, we believe
that the following three requirements need to be satisfied for
bandwidth guarantee in datacenters.

• Work conservation: unused bandwidths can be re-used
by other tenants in a way that does not hurt any one’s
guaranteed bandwidths.

• Fairness: tenants should be share un-used bandwidth
by following a certain fairness policy. The policy can
be easily specified by the cloud administrator (e.g., for
preventing free riding).

• Simplicity: the proposed system should be easily imple-
mentable over commercial off-the-shelf hardware with-
out adding additional software or protocol layers to the
cloud stack.
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It is true that there are already extensive study on
enabling efficient bandwidth management in datacenters
[2], [4], [6]–[19]. However, current schemes are struggling
on achieving bandwidth guarantee and work conservation
simultaneously. First, a large group of methods can only
provide one of them. For example, the works in Oktopus [4],
SecondNet [8], Proteus [9], and CloudMirror [10] provide
only bandwidth guarantee, while the works in FairCloud
PS-L/N [2], NetShare [6], and Seawall [7] only support work
conservation. There are also works that only enable non-strict
bandwidth guarantee (e.g., Cicada [16] and SoftBW [18]).
Second, existing works that can achieve both bandwidth
guarantee and work conservation (e.g., FairCloud PS-P [2],
GateKeeper [11], EyeQ [12], and ElasticSwitch [13]) suffer
from either impractical assumptions or low efficiency.

The shortcomings of existing methods are caused by two
facts. First, the bandwidth resource is distributed across
the datacenter (i.e., not centralized). Second, the bandwidth
needs of tenants change dynamically. This indicates that it
is basically impossible to effectively and timely monitor the
bandwidth usage in datacenters for adapting the bandwidth
shares of tenants. Consequently, in order to achieve work
conservation, a large portion of existing approaches either
‘‘predict’’ network usage status by monitoring at end hosts
(e.g., relying on TCP feedback) or require the core network
to be congestion free. It is not hard to see that such a direction
can hardly be accurate and responsive. It also adds additional
complexity to end hosts or routers.

The above limitations drive the development of another
strategy that is more efficient. Particularly, first, we let end
hosts generate two types of network traffic explicitly: band-
width guarantee (BG) traffic and work conservation (WC)
traffic. The two types of traffic are used to achieve band-
width guarantee andwork conservation, respectively. Second,
we assign the BG traffic a higher priority than WC traf-
fic in datacenter routers, i.e., in-network separation. Such a
configuration allows WC traffic to take unused bandwidth
(i.e., achieve work conservation) aggressively without hurt-
ing the bandwidth of BG traffic. Consequently, bandwidth
guarantee and work conservation are attained simultaneously
and efficiently. We thus name this strategy as priority-based
bandwidth guarantee and work conservation.

The advantages of this strategy have been demonstrated in
two research studies (i.e., Trinity [14] and Harmonia [15]).
However, such a direction still is not worry-free. For example,
the WC traffic may easily get trapped or dropped due to the
low priority, which limits theWC traffic’s ability to take idled
bandwidth. Trinity simply split packets of a single TCP flow
to BG andWC traffic. Therefore, it is easier to suffer from the
above issue, as whatever happens on theWC traffic applies to
the TCP flow directly. For example, a packet loss in the WC
traffic would directly reduce the throughput of the TCP flow.
Harmonia adopts multipath TCP (MPTCP) [20] to generate
BG and WC traffic as two different subflows. This alleviates
the above issue. However, it distributes each TCP flow to
all paths, which increases the possibility of packet loss on

the WC traffic. Furthermore, how to achieve fair WC under
this strategy is not discussed in both works. Such a feature is
necessary for cloud providers to prevent tenants from abusing
work conservation.

Therefore, in this paper, we aim to develop a solution sys-
tem that can achieve all three requirements simultaneously.
Our solution also exploits MPTCP. Each TCP flow generates
two subflows: one is used for bandwidth guarantee (i.e., BG
subflow) and the other one is used for work conservation
(i.e., WC subflow). We adopt MPTCP because it presents
a good synergy with the goal of this paper. It has built-
in designs to handle the issues incurred by generating two
subflows from one TCP flow (i.e., retransmission, reordering,
and packet schedule). MPTCP has been employed to exploit
the path redundancy in datacenters [21], [22]. This work
differs from them by assigning different roles to MPTCP
subflows for bandwidth guarantee and work conservation.

We further adapt MPTCP to handle potential issues due
to the low priority of WC subflows. We modify the MPTCP
default scheduler to prioritize the BG subflow over the WC
subflow. We also find that a small receive buffer may throttle
the throughput of the WC traffic due to out-of-order packets
and propose to adopt a large receive buffer.

It can be seen that the priority-based work conservation
approach can easily motivate a VM to generate more WC
subflows for more idled bandwidth. Therefore, we further
develop a fair WC scheme by adapting the congestion control
of WC subflows. Our scheme manage the overall aggressive-
ness of all WC subflows on a VM by following a fairness
policy, thus ensuring fair sharing of idled bandwidth.

The proposed scheme can be easily and practically imple-
mented. It does not modify current cloud software stack
nor need any hardware support that is not available in cur-
rent commodities. Particularly, it can be built with three
easily-implementable techniques: MPTCP, priority queues
on switches, and rate control on hosts. MPTCP has already
been implemented in the Linux kernel [23]. Our scheme only
requires two priority queues per switch port, which can be
easily provided on current commodity switches [24], [25].
The Linux tc commands can implement the rate control on
end hosts [26].

Moreover, though our scheme is built on a customized
version of MPTCP, it can be deployed in real clouds easily.

First, thanks to the backward compatibility of MPTCP,
users can choose to use MPTCP or just the legacy TCP
(by enabling or disabling MPTCP). When a user chooses
to not use MPTCP, they just cannot enjoy the benefit of
work conservation enabled by our system. They can even
use a different WC scheme that achieves WC by dynamically
adjusting bandwidth guarantee upon congestion monitoring,
e.g., ElasticSwitch [13]. This is because the WC traffic in our
scheme has a low priority and will not interrupt BG traffic.
Second, cloud providers may be interested in adopting our
system due to its safe work conservation. The work conserva-
tion traffic in our scheme cannot hurt the bandwidth guarantee
because of the low priority. Thus, our system can be regarded

VOLUME 7, 2019 109135



B. S. Ali et al.: Toward Efficient, Work-Conserving, and Fair BG in Cloud Datacenters

as a safe step to offer BG and WC at the same time in cloud
datacenters.

In summary, the contributions of this paper include:
1) We novelly exploit MPTCP to provide transparent

work conservation upon rate-limiting based bandwidth
guarantee in cloud datacenters.

2) We have proposed the concept of fair work conserva-
tion and proposed a scheme to support this function.

3) We have studied how to further improve MPTCP to
better support the design goal of this paper, which
includes a customized scheduler.

4) The proposed system is easily implementable since it
only requires protocols and techniques that are avail-
able on current commodities.

We organize the rest of the paper as follows. Related work
is presented in Section II. The system design is introduced
in Section III. Section IV introduces the implementation of
the proposed system on a small testbed. Section V presents
the performance evaluation. Finally, we conclude the paper
in Section VI.

II. RELATED WORK
There are extensive studies regarding efficient bandwidth
management in datacenters. However, to the best of our
knowledge, current studies fail to achieve the three afore-
mentioned requirements (i.e., bandwidth guarantee, fair work
conservation, and design simplicity) simultaneously.

Many early studies only enable bandwidth guarantee in
datacenters without work conservation [4], [8]–[10], [27].
SecondNet [8] and Oktopus [4] allows tenants to reserve
bandwidth guarantee through the concept of virtual network-
ing abstraction. A central network manager thus is proposed
to coordinate VM placement and bandwidth guarantee allo-
cation. Proteus [9] improves the efficiency of bandwidth
guarantee by modeling and exploiting tenants’ time-varying
bandwidth demands (i.e., through amodel called temporarily-
interleaved virtual clusters or TIVC). However, the model
cannot dynamically re-allocate idled bandwidths. CloudMir-
ror [10] also improves the modeling of VMs’ bandwidth
needs (i.e., for the purpose of bandwidth guarantee) through
a novel abstraction named tenant application graph (TAG).
SpongeNet [27] proposes a network abstraction model called
Fine-grained Virtual Cluster (FGVC) to allow tenants to
specify refined bandwidth demands. We can see that these
methods only provide static bandwidth reservation without
work conservation.

Some other works, e.g., Seawall [7], NetShare [6] and
FairCloud (PS-L/N) [2], only support work conservation.
Specifically, these methods allocate bandwidths to VMs pro-
portionally. Thus, all bandwidths are allocated as long as there
are demands, which improves network utilization efficiency.
However, since there is no guarantee regarding the mini-
mal bandwidth, tenants cannot achieve predictable network
performance.

It is not hard to see that both bandwidth guarantee and
work conservation are necessary for efficient bandwidth
management in datacenters. Thus, many works have been
devoted to enabling the two functions simultaneously. Gate-
keeper [11] and EyeQ [12] allocates bandwidth guarantees
to VM pairs through the hose model. However, in order
to provide work conservation, they assume that the dat-
acenter core network is congestion free. This assumption
may not hold in real datacenters [28], [29]. FairCloud
(PS-P) [2] achieves both functions by requiring an unrealistic
amount of priority queues on each switch (i.e., one queue per
tenant/VM). Hadrian [30] provides per VM bandwidth guar-
antee for intra-tenant communication and an aggregate band-
width guarantee per tenant for inter-tenant communications
using a hierarchical hose model based framework. However,
it requires switches to be able to track flow weights and add
rate allocations to packets, which are not readily available
now. ElasticSwitch [13] and eBA [31] achieves work conser-
vation by adjusting bandwidth guarantees dynamically. They
use the feedbacks of TCP connections to deduce whether
there are idled bandwidths in the network. However, since the
network usage status changes dynamically, the observation on
end hosts can hardly be responsive and accurate.

The above discussion shows that it is a challenging task
to provide work conservation on top of bandwidth guar-
antee. Two methods [14], [15] thus propose to handle this
issue by generating explicit low-priority WC traffic, which
can take idled bandwidth without hurting bandwidth guar-
antees. While this direction handles the battle between BG
and WC, it still suffers from some issues. The low priority
WC traffic may be easily trapped or dropped in the network
fabric, particularly when there is less idled bandwidth. This
may backfire to the throughput of the WC traffic. Trinity
just logically labels packets from a TCP flow as BG traf-
fic or WC traffic. As a result, all packet losses (including
those on the WC traffic) will lower the throughput of the
TCP flow. This makes the WC traffic (which is prone to
have packet loss due to the low priority) easily affect the
performance of bandwidth guarantee. Harmonia, on the other
side, adopts MPTCP to generate explicit BG subflow and
WC subflow for each TCP flow. Since each subflow in
MPTCP handles packet loss separately, the aforementioned
problem is effectively alleviated. However, MPTCP still suf-
fers some issues such as the choice of the scheduler and out-
of-order packets at the receiver, which are not addressed in
Harmonia.

In a brief summary, most current works cannot efficiently
provide bandwidth guarantee and work conservation simulta-
neously. The idea of priority-based BG and WC is promising
but still suffers from some issues that are not completely
handled. Furthermore, how to achieve fair work conservation
is largely missing in current works. Those facts motivate
us to design a scheme that can achieve the three critical
requirements simultaneously.
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III. SYSTEM DESIGN
A. DESIGN OVERVIEW
The high-level idea of our approach is to 1) let VMs gen-
erate explicit BG traffic and WC traffic and 2) physically
isolate them by assigning a higher priority to the BG traffic.
Consequently, the BG traffic fulfills the bandwidth guarantee,
and the WC traffic takes idled bandwidths without affecting
bandwidth guarantees. In addition, the aggressiveness of WC
traffic is dynamically adapted to achieve the goal of fairness.
Further, as shown later, these functions can be implemented
with components that are readily available on commodity
servers/switches without additional software or hardware
supports. Thismakes the proposed scheme satisfy the require-
ment of simplicity.

FIGURE 1. System overview (note that details of switch and VM in the
figure apply to every switch and VM in the datacenter).

The architecture of our method is plotted in Figure 1.
The detailed components in the figure are introduced in the
following subsections. The proposed system does not depend
on any particular network topology. Therefore, it can work
with all state-of-art datacenter topologies, e.g., VL2 [32], fat
tree [33], and BCube [34]. Since the WC traffic is transparent
to BG traffic in the proposed scheme, a VM can achieve
effective and fair work conservation regardless of how band-
width guarantee is implemented. Therefore, the proposed
scheme supports both pipe model and hose model bandwidth
guarantee.

B. BANDWIDTH GUARANTEE AND WORK CONSERVATION
Our scheme achieves the design goals by exploiting MPTCP,
priority queues on switches, and rate limiter on VMs. Partic-
ularly, we use MPTCP to make every TCP flow generate two
subflows. We use the two subflows for bandwidth guarantee
(i.e., BG subflow) and work conservation (i.e., WC subflow),
respectively. In other words, we treat BG subflows as BG
traffic and WC subflows as WC traffic. Meanwhile, since
UDP flows do not generate two subflows, they are regarded
as BG traffic directly. Consequently, each VM generates two
types of traffic explicitly. Furthermore, we isolate the two

types of traffic by assigning BG traffic a higher priority than
WC traffic on every switch.

Following the same idea as in almost all bandwidth guaran-
tee works, the bandwidth guarantee is achieved through limit-
ing the rate of VMs. Therefore, even clients that only transfer
UDP flows cannot send at a rate higher than the guaranteed
bandwidth. We assume that there is already an admission
mechanism that accepts tenants and places VMs according
to their bandwidth requests and bandwidth availability in
the datacenter. After the placement of VMs, the number of
rate limiter needed on each VM depends on the bandwidth
guarantee model. If the hose model is adopted, each VM only
needs one rate limiter. However, if we adopt the pipe model,
each VM needs to configure a rate limiter for each pair of
VMs with a bandwidth guarantee (i.e., each pipe). In this
paper, we present our system design with the hose model for
its simplicity in illustration.

Our novel handling of WC traffic enables work conser-
vation in a safe and efficient manner without any tradeoff
needed. First, all switches strictly prioritize the BG traffic
overWC traffic (note that only two priority levels are needed).
As a result, each WC subflow can only obtain unused band-
width on its path and has no chance to affect the bandwidth
guarantees allocated over the path. Second, with the safety
in hand, there is no need to limit the rate for WC subflows.
Thus, work conservation can be efficiently achieved. As a
result, a WC subflow can take idled bandwidth as efficient
as a normal TCP flow. In this paper, we adopt the ToS value
inside the IP header to differentiate BG traffic andWC traffic,
i.e., assigning BG subflows and UDP flows a ToS value
that is different from that for WC subflows. Note that this
differentiation method is mandatory. Other labeling methods
may serve this function too as long as they are supported by
switches and VMs.

Since all UDP flows are regarded as BG traffic in the
current design, UDP applications can only obtain bandwidth
through bandwidth guarantee, i.e., cannot get extra bandwidth
through work conservation. However, the WC function for
UDP applications can be supported similarly by adopting the
multi-path UDP protocol, which is left to future work.

FIGURE 2. Illustration of the bandwidth guarantee and work
conservation.

Figure 2 illustrates an example of the proposed scheme
in a simplified scenario. In this example, both server A and
server B have a bandwidth guarantee of 500Mbps to server C
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(note that every link has a capacity of 1 Gbps in the
figure). This guarantee is implemented by limiting the rate
of BG traffic on servers A and B to 500 Mbps. Consequently,
when both server A and server B demand at least 500 Mbps
bandwidth when sending data to server C, no bandwidth is
left on the link connecting server C to the switch. In this
case, the WC subflows from both servers cannot gain any
bandwidth. However, if one of them, say server A, has a
bandwidth demand smaller than 500 Mbps, server B’s WC
subflow will grab the idled bandwidth immediately.

C. ADAPTING MPTCP FOR BG AND WC
While the high-level idea mentioned in the previous sub-
section is not complex, the usage of MPTCP leads to many
unique questions and challenges that need thorough studies,
which include 1) why use MPTCP to generate two types of
traffic; 2) what is the appropriate number of WC subflows
for each TCP flow; 3) how to choose the MPTCP congestion
control algorithm; 4) how to improve the MPTCP scheduler;
and 5) preventing the throughput degradation resulted from
out-of-order packets. We explain our thoughts and solutions
for these problems in the following.

1) WHY MPTCP
Multipath TCP (MPTCP) is an extension to the TCP proposed
by the Internet Engineering Task Force (IETF). It enables a
single TCP connection to transparently sending over multiple
available interfaces/paths through parallel subflows. More-
over, it is designed in a way that is transparent to upper-layer
applications [35].

There are two major reasons that motivate us to use
MPTCP in this paper. First, MPTCP allows a TCP flow to
generate multiple subflows transparently. Such a characteris-
tic directly satisfies the goal of generating two types of traf-
fic in our design. More importantly, current MPTCP design
comprehensively handles issues that could be caused by the
split of traffic. The issues include the scheduling of packets
to subflows, packet retransmission, packet reordering, and
the management of buffers. Second, MPTCP is already sup-
ported in the Linux kernel [23]. The current implementation
provides a rich set of configuration options to assist our sys-
tem. Particularly, we can configure the number of subflows
of each TCP flow, select the congestion control algorithm,
select the scheduler to distribute traffic over active subflows.
We discuss these options and how to adaptMPTCP to achieve
efficient BG and WC in the following.

2) NUMBER OF WC SUBFLOWS
Our approach only requires one network interface on each
VM, which can be easily satisfied in practice. We can still
generate two subflows over the single network interface since
current MPTCP allows a TCP flow to generate multiple sub-
flows over the same pair of source and destination IPs [23].
These subflows have different TCP ports.

When a TCP flow owns the ability to generate multiple
subflows, the next question is what should be the appropriate

number of WC subflows for a TCP flow. Intuitively, gener-
ating more WC subflows for a TCP flow would enhance its
ability to gain idled bandwidth. We claim that the number of
WC subflows should be decided cautiously. The reasons lie
in two aspects.

First, on one hand, allowing every TCP flow to generate
WC subflows excessively over different paths can easily
become destructive. This is because generating too manyWC
subflows would lead to severe competition among WC sub-
flows on any path. What’s worse, WC subflows own a lower
priority than BG subflows in our design and can only band-
width left by BG traffic. Consequently, in this case, WC sub-
flows easily get starved (i.e., packets get dropped or trapped)
in the network and experience a larger delay than BG sub-
flows. However, inMPTCP, packets of a flow are sequentially
scheduled to its subflows at the sender. Thus, for a particular
flow, packets may frequently arrive at the receiver out of order
due to the delay difference between the BG subflow and the
WC subflow. This would lower the efficiency of both the
WC and the BW in the cloud. For the former, WC subflows
would be punished by the current design of MPTCP to avoid
the throttling from the receive buffer, which makes them
unable to take all idled bandwidth. Section III-C5 presents
the details of this issue. For the latter, when the receive buffer
becomes full due to out-of-order packets, the BG subflow
will be held from sending packets too. This would lower the
throughput of the BG traffic, which has been proved in the
literature [20], [36]–[38].

Second, on the other hand, the number of WC subflows
also affects fairness in sharing unused bandwidth at the flow
level. Kindly note that we discuss the fairness at the VM level
later in Section III-D. For easy illustration, we assume that a
TCP flow owns M disjoint paths between its source VM and
destination VM. Then, there are four cases regarding the
number of WC subflows, denoted N , for the flow. We discuss
them one by one in the following.
• N = 1. This means that every TCP flow only generates
one WC subflow. Naturally, we want the path of the
WC subflow to be the same as that of the BG subflow.
This makes a TCP flow takes unused bandwidth on the
path of its BG subflow, which is consistent with legacy
work conservation schemes such as ElasticSwitch [13].
Further, putting the WC subflow on the same path as the
BG subflow also makes it easy to achieve fair sharing
of unused bandwidth between flows over the same path.
In detail, since each subflow essentially is a TCP flow in
MPTCP, WC subflows on the same path can fairly share
the unused by just adopting the standard TCP congestion
control that achieves fairness among flows without the
need of extra components.

• 1 < N < M . In this case, TCP flows between the same
pair of hosts (i.e., with the same source and destination
IPs) can hardly share unused bandwidth over the M
paths fairly. For example, the TCP flow that spreads its
subflows over paths that are less congested would gain
more advantages than others. Meanwhile, in this case,
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the definition of fairness becomes obscured, as TCP
flows may partially share their paths. Then, it is hard
to appropriately define fairness. Moreover, when this
configuration is adopted, tenants may be motivated to be
a ‘‘free rider’’ that hopes to find paths with more idled
bandwidth by repetitively generating and terminating
WC subflows. This would make the overall WC scheme,
i.e., the sharing of unused bandwidth, turn into chaos.

• N = M . In this case, it is not hard to see that it is better to
scatter the N WC subflows to the N disjoint paths. This
would solve the issues in the previous case. First, since
TCP flows between the same pair of hosts own a WC
subflow over every path between the two hosts, these
flows can share the unused bandwidths over these paths
evenly by following the TCP fairness. Second, since
repetitively starting new WC subflows cannot bring a
new path to a TCP flow, the aforementioned ‘‘free rider’’
behavior does not work either. However, the problem is
that on average, the competition for unused bandwidth
on each path is M times severer than that when N = 1.
Thus, as mentioned above, this could easily starve WC
subflows and hurt the efficiency of both BG and WC,
especially when the amount of unused bandwidth is
limited.

• N > M . It is not hard to find that making the number of
WC subflows (i.e., N ) larger than the number of disjoint
paths (i.e.,M ) is meaningless. This does not make a TCP
flow to gain unused bandwidth frommore paths. Instead,
in this case, some WC subflows of a TCP flow would
overlap over the same path and compete for unused
bandwidth with each other. As a result, some TCP flows
may own more WC subflows over a particular path than
others. This makes it hard to achieve fair sharing of
unused bandwidth, as it requires to recognize whichWC
subflows belong to which TCP flow.

Based on the above analysis, we prefer N = 1 and
N = M . This is because they both make it easier to achieve
fair sharing of unused bandwidth among flows. When com-
paring the two options, making N equal to 1 provides the
safest WC conservation but limits the range of WC to a
single path. However, on the other side, setting N toM could
enhance the efficiency of WC (i.e., allow a flow to take
unused bandwidth from multiple paths) but risk making WC
subflows starved due to intensified competition. Such starva-
tion could reduce the efficiency of WC and BG, as explained
later in Section III-C5. Therefore, the selection depends on
the context. For example, a cloud provider may leave a suffi-
cient amount of headroom in reserving bandwidth guarantees
on each path. In this case, letting N = M is better as
there is always sufficient unused bandwidth forWC subflows.
However, if the provider does not reserve bandwidth for WC
subflows, directly making N = M may not be appropriate
due to its potential destructive effect on WC and BG.

Therefore, in summary, we think there is no definite answer
regarding the appropriate number of WC subflows for a TCP
flow. The cloud provider can choose the value of N based

its needs. We recommend N = 1 by default and N = M
if the provider leaves enough headroom for WC subflows.
We further propose to integrate explicit path control schemes
such as [39] to control the path for WC subflows. The WC
subflow(s) will be on the same path as the BG subflow if
N = 1 and be distributed to all disjoint paths between the
source and destination if N = M .

3) MPTCP CONGESTION CONTROL ALGORITHM SELECTION
In this subsection, we analyze the selection of MPTCP con-
gestion control algorithm. MPTCP currently has two classes
of congestion control (CC): uncorrelated CC and correlated
CC. Uncorrelated CC algorithms let each subflow handle
congestion control independently with a legacy TCP conges-
tion algorithm such as TCP Reno, TCP Vegas, etc. Correlated
CC algorithms, on the other hand, correlate the congestion
control of subflows of the same TCP flow. The goal of the
correlation is to provide fairness and friendliness to TCP
flows over the shared bottleneck link, while ensuring the fair-
ness to MPTCP. Representative algorithms include LIA [40],
OLIA [41] and BALIA [42].

We found that uncorrelated CC is more suitable for sup-
porting BG and WC in datacenters for two major reasons.
Firstly, BG subflows and WC subflows are conceptually
uncorrelated in our design. As introduced in Section III-B,
BG subflows are responsible for receiving the guaranteed
bandwidth, while WC subflows are designed to take idled
bandwidth (i.e., work conservation). Meanwhile, BG sub-
flows own a higher priority than WC subflows. There-
fore, the two types of subflows should not be correlated.
Otherwise, they will not be able to achieve the functions of
bandwidth guarantee and work conservation effectively.

We have conducted an experiment to demonstrate this
point. Specifically, we let three servers, denoted S1, S3,
and S4, share a link and configure different bandwidth guar-
antees for them (i.e., 100 Mbps, 200 Mbps, and 300 Mbps).
Meanwhile, after allocating the bandwidth guarantee, there
is about 300 Mbps idled bandwidth left over the link. We let
every server generates one TCP flow with MPTCP over the
link. In other words, each of the three servers has one BG
subflow and one WC subflow running over the link. We then
measured the throughput of each server’s WC subflow under
both correlated and uncorrelated congestion control algo-
rithms. We have plotted the results in Figure 3. We see from
the figure that when LIA, OLIA, and BALIA are adopted,
the idled bandwidth is shared in a chaos manner among the
three WC subflows. They all fail to share the idled band-
width evenly among the three servers. This is because, due to
the correlated congestion control, the increase/decrease of the
congestion window of the WC subflow is correlated with the
bandwidth of the BG subflows. Thus, when BG subflows of
the three servers take different guaranteed bandwidths, their
WC subflows present different levels of aggressiveness in
competing for unused bandwidth.

Secondly, the rate limit based bandwidth guarantee and the
strict prioritization of BG subflows over WC subflows can
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FIGURE 3. Throughput of WC subflows under different congestion control algorithms.

handle the unfairness to single-path TCP flows. An MPTCP
flow takes the guaranteed bandwidth through its BG subflow
and only obtains idled bandwidth through its low-priorityWC
subflow. Therefore, there is no unfairness issue to normal
TCP flows in the datacenter with our scheme deployed. Due
to these reasons, we choose an uncorrelated congestion con-
trol algorithm, i.e., TCP Reno, in this paper. Other state-of-art
TCP congestion control algorithms such as Vegas and Cubic
can be adopted directly too.

4) IMPROVING THE MPTCP SCHEDULER
MPTCP internally relies on a scheduler to distribute data
from the upper layer application to different subflows in a
transparent manner. Current MPTCP implementation offers
three schedulers: ‘‘LeastRTT’’, ‘‘RoundRobin’’ and ‘‘Redun-
dant’’. ‘‘LeastRTT’’, which is the default scheduler, priori-
tizes the subflow based on their RTTs. The remaining two
distribute packets to subflows in sequentially (i.e., round-
robin) and redundantly, respectively. As different subflows in
this paper carry different roles, it is necessary to examine the
suitability of scheduling strategies.
Problem: It is not hard to find that the BG subflow, which

is supposed to take the guaranteed bandwidth and owns a
high priority, should be prioritized over the WC subflow in
the scheduling. Thus, the ‘‘RoundRobin’’ scheduler and the
‘‘Redundant’’ scheduler do not suit our design. The default
‘‘LeastRTT’’ scheduler appears to indirectly satisfy this goal.
This is because WC subflows own a low priority in switches
and thereby tend to have a longer RTT than BG subflows.
Thus, the BG subflows are prioritized. However, this is not
always the case even in our small scale tests. We find that,
with the ‘‘LeastRTT’’ scheduler, the BG subflow often cannot
achieve the guaranteed bandwidth, and the WC subflow may
obtain more bandwidth than the idled bandwidth, especially
when there is substantial idled bandwidth.

FIGURE 4. The setup for evaluating the influence of MPTCP scheduler.

FIGURE 5. Default scheduler: 1) server A’s BG subflow fails to take the
guaranteed bandwidth initially; 2) server A takes 2 seconds to shift its
traffic from WC subflow to BG subflow after server B starts transmitting.

Our experiments in a simple scenario shown in Figure 4
illustrates this point. In this configuration, all links are
1 Gbps. Servers A, B and C own a bandwidth guarantee
of 500 Mbps, 250 Mbps and 150 Mbps on the link to server
D, respectively. In the test, servers A, B, and C start sending
traffic to server D (through iperf) at 0s, 60s, and 120s, respec-
tively. Figure 5 illustrates the throughput of each server’s BG
subflow. We see that server A’s BG subflow initially only
achieves around 200 Mbps, while the guaranteed share is
500 Mbps. At this moment, there is much idled bandwidth
available. As a result, the WC subflow’s packets can get
through switches easily, though they own a low priority due to
our configuration. This makes theWC subflow do not always
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present a higher RTT than the BG subflow. Consequently,
the BG subflow is not strictly prioritized at the scheduler.
Such an explanation is further confirmed by the fact that when
servers B andC start sending packets, their BG subflows grow
to the guaranteed share directly. This is because the amount
of idled bandwidth is quite small at this time.

Kindly note that such an effect does not break the band-
width guarantee. When the amount of idled bandwidth
reduces, BG subflows would take back their guaranteed
shares due to the priority setting, as shown for server A in
the previous example. However, this causes instability to data
transfer may also cause packet drops on WC subflows.
Solution: In order to handle the issue illustrated above,

we modified the default scheduler to strictly prioritize the
BG subflow whenever it is available regardless of the RTT.
Onlywhen the BG subflow is not available, i.e., its congestion
window is full, and theWC subflow is available, the scheduler
would dispatch a segment over the WC subflow. Algorithm 1
presents the pseudo-code of the BG-prioritizing scheduler. Its
performance will be evaluated in Section V-D1. Furthermore,
replacing the ‘‘LeastRTT’’ scheduler with the BG-prioritizing
scheduler does not make the receiver receive more out-of-
order packets in the context of this work. The major reason is
that the BG subflow strictly owns a higher priority than the
WC subflow. Thus, packets dispatched to the WC subflow
suffer from a higher chance of loss, though the WC subflow
may temporarily present a smaller RTT. This indicates a
higher chance of causing out-of-order packets. Consequently,
the WC subflow is always an inferior option for controlling
out-of-order packets due to the low priority. This means that
the BG-prioritizing scheduler would not perform worse than
the default ‘‘LeastRTT’’ scheduler in terms of out-of-order
packets.

Algorithm 1 BG Subflow Prioritization
1: procedure check_to_send(sk_buff* skb)
2: if the master subflow is available then
3: send it on master subflow
4: else if the slave subflow is available then
5: send it on slave subflow
6: else
7: return NULL
8: end if
9: end procedure

5) INFLUENCE OF RECEIVE BUFFER
MPTCP schedules packets of a TCP flow to different sub-
flows at the sender side [20]. When different subflows go
through paths with different delays, packets can easily arrive
the receiver out of order. We thus analyze how this effect
affects the proposed bandwidth guarantee scheme.
Problem: When the path heterogeneity is not significant,

the receive buffer can effectively handle out-of-order packets
and allow all subflows to achieve at its attainable bandwidth.

However, this is not assured all the time. When the receive
buffer is filled with out-of-order packets that can not be deliv-
ered to the application, the receive window size (i.e., RWND
in TCP) advertised to the sender would throttle subflows
from transmitting. As a result, the host is unable to attain
available bandwidths on employed paths and may even gain
a throughput that is lower than that from only using TCP
over the best path. Such an effect is particularly critical in
our design as WC subflows may easily lead to out-of-order
packets due to its low priority.

MPTCP handles this issue by penalizing the slow path
(i.e., halving its congestion window) and re-injecting packets
from the slow path to the fast path when the throttling caused
by receive window happens [20]. While such a scheme is
effective in avoiding the fast path from being throttled due
to out-of-order packets, it loses some bandwidth on the slow
path due to the penalty. This would make the WC subflow
unable to take idled bandwidth effectively.

FIGURE 6. Setup used to show the effect of buffer size on WC subflow.

TABLE 1. Receive buffer sizes (in bytes) in the 1 ms delay scenario.

TABLE 2. Receive buffer sizes (in bytes) in the 2 ms delay scenario.

To illustrate the above drawback, we conducted an exper-
iment with an exemplary setup shown in Figure 6. In this
setup, a sending server sends two subflows (1 BG subflow and
1 WC subflow) to a receiving server over a single link with
1Gbps capacity. As the setup cannot lead to enough delay
difference between the BG subflow and the WC subflow,
we purposely added additional 1ms and 2ms delay to the
WC subflow through netem. We varied the receive buffer size
as shown in Tables 1 and 2. We tested under two configu-
rations of bandwidth guarantee: 200 Mbps and 500 Mbps.
We measured the throughput of the two subflows under the
two configurations and plotted the results in Figures 7 and 8.
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FIGURE 7. Effect of the receive buffer size on the throughput under
200 Mbps bandwidth guarantee.

FIGURE 8. Effect of the receive buffer size on the throughput under
500 Mbps bandwidth guarantee.

We see from the four figures that in both configurations,
when the receive buffer size is small, the average throughput
of the WC subflow is very small, even though there is idled
bandwidth available. This is caused by the penalty imposed
by current MPTCP, which aims to prevent throttling the fast
subflow (i.e., the BG subflow) when the receive buffer is full.
When the receive buffer size increases, the throughput of the
WC subflow increases substantially. This is because a large
receive buffer size can tolerate more out-of-order packets,
which makes MPTCP less likely to trigger the penalty to the
WC subflow. We see from the four figures that in all tests,
the WC subflow can take all idled bandwidth left by the BG
subflow when the receive buffer size is large enough.
Solution: Based on the above observation, it is preferable

to have a large receive buffer in our context, thus allowing
more efficient work conservation. However, always using a
large receive buffer is a wastage of the memory resource.

Therefore, we propose to dynamically determine the size of
the receive buffer that is enough to tolerate out-of-order pack-
ets without holding both subflows from sending. Specifically,
we require the receive buffer size (denoted B) to satisfy the
following requirement.

B > β ∗ max
{
RTTi

}
∗

n∑
i=1

BWi (1)

where max
{
RTTi

}
is the maximal RTT of all subflows, and

BWi is the bandwidth of the i-th subflow, β ≥ 1 is a safety
factor. The rationale of this equation is that in case a packet
is lost in the slowest subflow, the receive buffer should be
large enough to hold all subsequent out-of-order packets until
the packet is retransmitted. In other words, the retransmission
of the packet takes the max

{
RTTi

}
amount of time in the

worst case. The value of β should be decided according to
the dynamism of network load in the cloud. The severer the
network load dynamism is, the larger it should be. The work
in [43] adopts 3 in the Internet context. The performance of
such a solution will be evaluated later in Section V-D2.

D. FAIR WORK CONSERVATION
Unused bandwidth maybe unfairly shared when MPTCP
is adopted directly for WC. We demonstrate this issue and
propose a solution in this subsection.

FIGURE 9. Unfair work conservation.

1) UNFAIR SHARE OF UNUSED BANDWIDTH
As shown in Section III-C3, we adopt an uncorrelated con-
gestion control algorithms, e.g., TCP Reno, in this paper.
Therefore, the allocation of unused bandwidth follows flow-
level fairness, as defined in TCP congestion control. This
indicates that a VM can obtain more bandwidth over a bottle-
neck link by generating more WC subflows on the link. Such
an effect is demonstrated in the scenario shown in Figure 9.
In this scenario, both server A and server B own 400 Mbps
guaranteed bandwidth on the path to server C. Therefore,
there is 200 Mbps idled bandwidth on the link connecting the
switch and server C. Furthermore, server B creates 3 TCP
flows (and subsequently 3 WC subflows) towards server C,
while server A just has one. Consequently, three WC sub-
flows from server B compete for idled bandwidth with the
WC subflow from server A. Note that the competition onWC
bandwidth does not compromise the bandwidth guarantee.
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Due to the flow-level fairness, server Bw would get 2 times
more work conservation bandwidth than server A.

It is not hard to see that this feature can be exploited to
distort the share of idled bandwidth. A tenant can simply gen-
erate more TCP flows (and consequently moreWC subflows)
for its applications to gain more bandwidth through work
conservation, rather than paying fairly for guaranteed band-
width. Such behaviors would deteriorate the service model
in the datacenters. Consequently, it is necessary to further
regulate how idled bandwidths are shared among VMs under
the context of bandwidth guarantee.

2) FAIRNESS POLICY
To solve the aforementioned issue, we propose the concept
of ‘‘fairness policy’’ for work conservation. Note that the
‘‘fairness’’ does not refer to tenants but rather to the cloud
owner. The purpose of the policy is not to enforce abso-
lute fairness on allocating unused bandwidths but rather to
allow the cloud owner to enforce/extend the pricing model
beyond the guarantees by controlling how unused bandwidths
are shared. For example, a datacenter owner may choose to
allocate the unused bandwidth for free in proportional to the
number of purchased VMs. The owner may also sell ‘‘the
ability to obtain unused bandwidth’’ at a certain price and thus
better satisfy diverse tenant demands. As a result, the cloud
owner’s economic interest is better protected, which is critical
to the sustainability of the cloud ecosystem.

We enable the fairness policy by defining a WC compe-
tition level for each tenant. This level decides the tenant’s
ability to obtain unused bandwidths. The competition level of
a VM (denoted Al) is decided by the fairness policy adopted
by the datacenter owner. We further assume that competition
level Al is an integer and Al ∈ [1,Na]. We also only assume
integer level. We explain how this competition level is imple-
mented in the following subsection.

3) ENABLING THE FAIRNESS POLICY
Obviously, the rate limit at VMs cannot implement the
fairness policy in the dynamic cloud environment. We thus
adopt a solution that is inspired by how TCP works. TCP
ensures fair sharing of a link through its congestion control
that determines how fast a flow increases its sending rate
upon an ACK and how much to reduce upon a packet loss.
By adopting an additive increase and multiplicative decrease
(AIMD) strategy in the two processes, all TCP flows own
the same aggressiveness in competing for the bandwidth.
Therefore, we can enable the fairness policy by changing the
aggressiveness of WC subflows.

Specifically, we want the combined aggressiveness of a
VM’s WC subflows (denoted as its ability to obtain WC
bandwidth) equals to that of Al single-path TCP flows, where
Al is the VM’s WC competition level, no matter how many
WC subflows it has. As a result, idled bandwidth is allocated
to VMs in proportional to their Al (i.e., competition level).
Note that a tenant that wishes to use only spare bandwidth
will not receive any guaranteed bandwidth and will have its

Al set to the minimal value. Such an idea has been used in
literature such as [44].We present themathematical modeling
that shows how to achieve this goal.

We use Al and K to denote the WC competition level
and the number of WC subflows of a VM, respectively.
We use MSS to denote the maximum segment (packet) size,
and αs and βs to denote the increment and decrement factor
of the congestion control of a standard single-path TCP flow,
respectively. By default, αs = 1, i.e., increase congestion
window by oneMSS per round trip time (RTT), and βs = 0.5,
i.e., reduce the congestion window by half upon a packet
loss. Since the congestion window size denotes the through-
put of a TCP flow (i.e., a flow transmits a window of data
in every RTT), the two parameters essentially decide the
aggressiveness of aWC subflow in competing for bandwidth.
Thus, the aggressiveness of a WC subflow can be changed by
adapting the two parameters. Since they have the same effect,
we only change the increment factor in this paper.

FIGURE 10. Illustration of TCP congestion window under increment factor
α and decrement factor β.

To find the increment factor needed to achieve fair WC,
we first deduce the flow throughput under increment factor
α and decrement factor β by modeling how the congestion
window evolves, as adopted in the modeling of the Mathis
Equation [45]. As shown in Figure 10, we assume W as the
maximal window size the flow can achieve. In other words,
a packet loss would happen when the congestion window
reaches W . In this case, the window size will be dropped to
(1 − β)W . Afterward, the number of RTTs needed for the
flow to grow from (1−β)W toW is βW/α (i.e., the window
increases by α in each RTT). This process then repeats.
We can see that in each period, the number of packets trans-
mitted is (1−β)∗β∗W 2

α
+

β2W 2

2α =
(2−β)∗β∗W 2

2α . Since there is

one packet loss every (2−β)∗β∗W 2

2α packets transmitted, we can

get the packet loss rate p represented by 1
p =

(2−β)∗β∗W 2

2α .

We thereby get W =
√

2α
p∗(2−β)∗β . Then, the throughput of

the flow can be modeled as the following

T =
MSS ∗ (2−β)∗β∗W 2

2α

RTT ∗ β ∗ W
α

=
MSS
RTT

∗
(2− β)W

2

=
MSS
RTT

∗

√
α

p
∗

√
2− β
2β

(2)
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We then look at the design goal of the fairWC policy: make
K WC subflows obtain the same amount of bandwidth as Al
single-path TCP flows.We use Tw and Ts as the throughput of
a subflow and a standard single-path TCP flow on the same
path, respectively. The design goal indicates that we then need
to have

K ∗ Ts = Al ∗ Tw (3)

Based on Eq. (2), Ts can be modeled as the following.

Ts =
MSS
RTT

√
αs

ps

√
2− βs
2 ∗ βs

(4)

and Tw can be modeled as

Tw =
MSS
RTT

√
αw

ps

√
2− βs
2 ∗ βs

(5)

where αs and αw denote the increment factor of the standard
single-path TCP flow and the WC subflow, respectively. The
two flows both have a decrement factor of βs, since we did
not adapt the decrement factor. Further, RTT and Ps denote
the round trip time and loss rate of the path, respectively.

By replacing Ts and Tw in Eq. (3) with the above two
equations, we get the following.

K ∗
MSS
RTT

√
αw

ps

√
2− βs
βs
= Al ∗

MSS
RTT

√
αs

ps

√
2− βs
βs

(6)

By solving the above equation, we can obtain that

αw =
A2l
K 2αs (7)

Eq. (7) means that when the incremental factor of every WC

subflow is adjusted to
A2l
K2 of that of a standard single-path

TCPflow, i.e., increase the congestionwindow by
A2l
K2 (instead

of 1) per RTT, the K WC subflows in total obtain the same
bandwidth as Al standard single-path TCP flows. This exactly
achieves the goal of the fair WC policy.

4) FAIRNESS POLICY EXAMPLE
We further present an exemplary fairness policy. The policy
requires that VMs of a tenant share unused bandwidth in
proportion to the paid and guaranteed bandwidth, i.e., the Al
of each VM is proportional to its guaranteed bandwidth. The
next question is how to map the guaranteed bandwidths to
the competition level (i.e., Al). We adopted a mechanism that
counts how many bandwidth units the guaranteed bandwidth
share contains. Specifically, Al = Bg/U , where Bg and U
represent the guaranteed bandwidth share and the bandwidth
unit, respectively. For example, suppose U is 75 Mbps, then
400 Mbps yields to 5, 300 Mbps yields to 4, and 100 Mbps
yields to 1. The value of U can be decided according to
the bandwidth guarantee granularity in the cloud. We use
75 Mbps in the setup of this paper.

FIGURE 11. Testbed topology.

IV. IMPLEMENTATION OF OUR SOLUTION
We have implemented the proposed system on a small cluster
with eight servers, as shown in Figure 11. Each server runs
Ubuntu 14.04 and is installed with a 1 Gbps network card.
The three switches in the cluster are gigabit smart switch.
Therefore, every link in the topology has 1 Gbps bandwidth.
For simplicity, we treat each server as a VM directly.

We further installed Linux kernel MPTCP on all servers.
We set TCP Reno as the congestion control algorithm for
MPTCP. We adopted the ‘‘BG-Prioritized’’ scheduler pro-
posed in Section III-C4. We used ndiffports as the path man-
ager for MPTCP and set its value to 2. This means that each
TCP flow will generate two subflows. The two subflows are
differentiated by the ToS value in the IP header. We modified
the MPTCP source code to set the default ToS value of the
first and second subflow to 0 × 00 and 0 × 20, respectively.
Thus, the two subflows of each TCP flow have different ToS
values.We treat them as BG subflow (i.e., BG traffic) andWC
subflow (i.e., WC traffic), respectively. Furthermore, the ToS
value of all UDP flows is set to 0 × 00 by default, which
matches with our design that regards it as the BG traffic.
We further configured priority queues on each smart switch to
prioritize the BG traffic over WC traffic, i.e., packets whose
ToS value equals to 0× 00 are forwarded to the high-priority
queue.

We used Linux tc [26] (i.e., HTB queuing discipline) to
set up the rate limit on each server for implementing the
bandwidth guarantee. Note that the rate limit only applies to
BG traffic (i.e., by matching to ToS value 0 × 00). We also
developed a script on each server to be called (with an input
of bandwidth guarantee) for setting up the rate limit.

We have further modified the MPTCP code to imple-
ment the fairness policy for work conservation. We changed
the congestion window increment factor of each WC sub-
flow to ‘‘1 per K2

A2l
∗ RTT ’’. We have added two addi-

tional sysctl variables to receive the value of K and Al .
The two variables are named sysctl_num_parallel_subflows
and sysctl_wc_competition_level. A user space program is
developed to set the two variables.

The above implementation process only requires minor
modification of MPTCP code. It does not need to change
any hardware or other software. This demonstrates that our
approach can be easily deployed in current datacenters.
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FIGURE 12. Throughput of the four sending servers in evaluating the performance of bandwidth guarantee.

V. PERFORMANCE EVALUATION
In this section, we first conducted testbed based experiment
to evaluate the performance of the proposed system in terms
of bandwidth guarantee, work conservation, and fairness in
Sections V-A, V-B, and V-C, respectively. We then evaluated
the overall performance in a MapReduce task in Section V-E.
In these tests, we adopted the same testbed as the one imple-
mented in Section IV (i.e., Figure 11). In the test, traffic is
generated from the left branch to the right branch, i.e., servers
S1, S2, S3, and S4 send data to S5, S6, S7, S8, respectively.
Each one of the four left branch servers generates one flow to
its receiver with iperf3.Wemeasured the throughput achieved
by each server with iftop. Unless explicitly indicated, we set
the bandwidth guarantee of servers S1, S2, S3, and S4 to
350Mbps, 250Mbps, 200Mbps, and 100Mbps, respectively.

Due to the scale limit of the testbed, we further developed
a simulator to evaluate the performance of our system at a
large scale with 400 servers (i.e., Section V-F). We adopted
a Facebook datacenter MapReduce trace [46] to drive the
generation of MapReduce jobs in the simulation.

A. BANDWIDTH GUARANTEE
We evaluate the performance of our scheme on bandwidth
guarantee under both TCP and UDP traffic. We first let
servers generate only TCP traffic, i.e., each of the four left
branch servers creates a TCP flow. Afterward, we also tested
when each server further generates a UDP flow at the rate
of 50 Mbps. We then measured the BG subflow throughput
and the total throughput of each server in the two tests. The
measurement results are plotted in Figure 12.

The results show that the bandwidth guarantee is effec-
tively achieved. The four left servers obtain a bandwidth
of 350 Mbps, 250 Mbps, 200 Mbps, and 100 Mbps, respec-
tively, through the BG subflow. Furthermore, they shared the
30 Mbps idled bandwidth over the path from the left branch

to the right branch through their WC subflows. As a result,
the total throughput of the four servers is slightly higher than
their bandwidth guarantees, as shown in Figure 12(b).

Figures 12(c) and 12(d) show the BG subflow throughput
and total throughput of the four sending servers when the
50 Mbps UDP flow is added. By comparing Figure 12(c)
with Figure 12(a), we can see that the throughput of each
server’s BG subflow is 50 Mbps fewer than that without the
UDP flow. This means that the UDP flow is regarded as part
of BG traffic. Figure 12(d) further shows that the bandwidth
guarantee is still achieved on the four servers.

Summarizing the above results, we can see that bandwidth
guarantee is successfully enforced with the proposed scheme
when the flow generation does not set a rate limit.

B. WORK CONSERVATION
We further evaluate our scheme’s performance on work con-
servation. The experiment configuration is the same as in
the previous experiment. However, we stopped the TCP flow
between S2 and S4 between 50s and 80s. This leads to about
280 Mbps idled bandwidth over the path. We measured the
BG subflow throughput and the total throughput of the four
sending servers (i.e., S1 to S4) in this process. The measure-
ment results are plotted in Figures 13(a) and 13(b).

We see from Figure 13(b) that the idled bandwidth created
by stopping S2’s traffic can be efficiently taken by others.
When S2 recovers, its throughput increases to the guaranteed
bandwidth quickly, and other serves’ total throughput all fall
back to the amount before stopping S2’s traffic. We also see
from Figure 13(a) that the throughput of the BG subflow on
servers S1, S3, and S4 remains stable throughout the experi-
ment. This illustrates that the work conservation is achieved
solely by WC subflows. Consequently, by combining all
those results, we conclude that efficient and responsive work
conservation is achieved through the proposed scheme.
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TABLE 3. 3 servers sharing a 1 Gbps link proportionally. Each server gets a WC share that is proportional to its BG share.

FIGURE 13. Throughput of the four sending servers in evaluating the
performance of work conservation.

C. FAIR WORK CONSERVATION
In this subsection, we evaluate the fair work conservation
scheme proposed in Section III-D.

We have first used the same topology as in Figure 4 to
evaluate the effectiveness of our scheme for fair WC under
different bandwidth guarantees. We adopted the example
fairness policy presented in Section III-D4. The achieved
throughput of each server is recorded in Table 3. The results
show that the idled bandwidth is shared by the three servers
in proportion to their guaranteed bandwidth when different
configurations are adopted. Such a result shows that this
fairness policy is effectively enforced.

We then used the testbed topology (i.e., Figure 11) to
conduct evaluation in more realist scenarios. Specifically,
we stopped the traffic on S2 to create about 280 Mbps idled
bandwidth on the path. We then tested with and without the
fairness policy. In the former test, we adopted the fairness
policy that makes the three servers other than S2, i.e., S1, S3,
and S4, share the idled bandwidth evenly. To show that the
proposed scheme is resilient to the number of flows a server
generates, we start Nc TCP flows on S1 and only one TCP
flow on servers S3 and S4. We measured the throughput of
the three servers when Nc is set to 3 and 5. The results are
plotted in Figures 14 and 15, respectively.

The two figures show that, when the fairness policy is
not enforced, the three servers obtain the WC bandwidth

FIGURE 14. Evaluation of the performance of fair work conservation with
3 connections on S1.

FIGURE 15. Evaluation of the performance of fair work conservation with
5 connections on S1.

in proportional to the number of WC subflows. Particu-
larly, the WC throughput of S1 is 3 (or 5) times of that of
S3 and S4. This is because the idled bandwidth is allocated
fairly among all WC subflows. However, when the fairness
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policy is enforced, the idled bandwidth is shared by the three
servers by following the policy, regardless of the number
of WC subflows each server owns. Specifically, as shown
in Figures 14(b) and 15(b), all servers get the same amount
of WC throughput. More importantly, we see from the two
figures that the bandwidth guarantee is always enforced
(i.e., each server gets at least the guaranteed bandwidth) when
different fairness policies are adopted.

The above test results show that the proposed scheme can
achieve bandwidth guarantee and work conservation effec-
tively and simultaneously in cloud datacenters. Moreover, our
scheme can be easily deployed with current commodities,
as shown in Section IV.

D. EVALUATION OF CRITICAL COMPONENTS
In this subsection, we evaluate two critical components
proposed in our scheme.

1) BG-PRIORITIZING SCHEDULER
We first evaluate the performance of the BG-prioritizing
scheduler proposed in Section III-C4. For direct comparison,
we conducted the same experiment used to illustrate the issue
of the default scheduler in Section III-C4, i.e., Figure 5. The
result is shown in Figure 16. We see from the figure that
server A keeps its throughput over the BG subflow up to
its guaranteed bandwidth all the time, even when no other
servers are sending data over the shared link. This is because
the prioritization of BG subflow helps avoid the throughput
degradation experienced when using the default scheduler,
as mentioned in Section III-C4.

FIGURE 16. BG-prioritizing scheduler: Server A maintains a constant
BG rate even in the initial stage.

2) DYNAMIC RECEIVE BUFFER ADAPTATION
We evaluate the performance of the dynamic receive buffer
adaptation method (presented in Section III-C5) in this sub-
section. We adopted the same configuration as in Figure 6 but
with the dynamic receive buffer adaptation scheme enabled
on both servers. In the test, we increased the additional delay
to the WC subflow by 1ms every 15 seconds and measured
its throughput every 1 second. The test lasts for 45 seconds.
The results are shown in Figure 17.

We see from the figure that whenever the delay added
to the WC subflow increases, the throughput of the WC
subflow decreases. This is because the sudden increase of
the delay causes out-of-order packets at the receiver, which
triggers the penalty on the WC subflow. However, as our

FIGURE 17. Effect of the dynamic receive buffer adaptation.

scheme could detect the change of the delay and dynamically
increase the receive buffer size, the reduction is recovered
quickly, which is shown in the figure too. Such a result
shows that dynamically adjusting the receive buffer size could
effectively prevent the penalty to the WC subflow due to the
receiver’s inability to handle all out-of-order packets, thereby
allowing it to effectively take idled bandwidth.

E. RUNNING HADOOP TESTDFSIO
In order to evaluate our system under real applications,
we compare the performance of a Hadoop task with and
without our scheme. We set up a Hadoop cluster that consists
of 1 namenode and 7 datanodes running Apache Hadoop
2.7.3 [47]. We use the same topology as the one shown
in Figure 11. TestDFSIO, which is a benchmark application,
is launched to measure the cluster performance in terms of
parallel write operations of a MapReduce job. The test writes
10 files with a size of 1 GB and a replication parameter of 3.
Because TestDFSIO is unable to generate enough traffic to
saturate the 1 Gbps links in the cluster, we have reduced
the capacity of the links to 128 Mbps by throttling the
switches port. We further run bidirectional background traffic
using iperf3 between the two branches of the topology.

With our solution in place, background flows are config-
ured with ToS = 0× 20, i.e., WC traffic. We adopt the
same software and settings on these servers as those used
in our initial implementation in Section IV. We assign each
server a bandwidth guarantee of 30 Mbps. In the test without
our solution, we run the same application using standard
TCP on Linux Ubuntu 14.04 servers. For a fair comparison
with the result obtained in the test with our scheme enabled,
the iperf3 background traffic is kept in this test. Then, due
to no bandwidth guarantee in place, the background traffic
and Hadoop task traffic compete for bandwidth following the
TCP fairness.

Table 4 compares the average task completion time of the
two tests out of 25 runs. Although every run gives slightly
different job completion time, the average job completion
time when our scheme is used is always less than that without
our scheme. The major reason is that our solution provides
bandwidth guarantee to Hadoop nodes, whichmakes sure that
they can transfer data robustly. In addition, they can compete
for unused bandwidth through the work conservation pro-
vided by our scheme. In the test without our scheme, Hadoop
nodes compete for bandwidth with background traffic, which
may delay the data transfer needed to complete the tasks.
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TABLE 4. Completion time (sec) of a Hadoop cluster running TestDFSIO
with and without the deployment of our solution.

FIGURE 18. Simulation Clos topology.

Such a result demonstrates the benefits of the proposed
scheme in supporting cloud applications.

F. REAL-TRACE DRIVEN LARGE SCALE SIMULATION
Since the testbed in our lab has a limited scale, we developed
a simulator to evaluate the performance of the proposed
system under datacenter traffic. We adopted a clos topology
with 400 hosts distributed in 4 pods, as shown in Figure 18.
The topology contains 2 core switches, 8 aggregate switches,
and 16 top-of-rack (ToR) switches. Each ToR switch serves
25 servers. The links between servers and ToR switches,
between ToR switches and aggregate switches, and between
aggregate switches and core switches have a bandwidth of 1
Gbps, 10 Gbps, and 20 Gbps, respectively.

We adopted the trace from Facebook datacenter [46] to
drive the generation of MapReduce jobs in the simulation.
By following the common configuration of Hadoop, we con-
verted each job to S/64 mappers and S/64 reducers, where
S is the input data size in MB. We also assume that each
server can hold 2 mappers and 2 reducers. We compared our
system with 3 schemes: FullCompetition, BGOnly, WCOnly,
which have no bandwidth guarantee nor work conservation,
only bandwidth guarantee, and only MPTCP based work
conservation, respectively. Note that the WCOnly method
attains work conservation also through a low priorityMPTCP
subflow. When bandwidth guarantee is enabled, we set every
server to have 800Mbps guaranteed bandwidth.Wemeasured
the amount of time for each job to finish the shuffle phase data
transfer in the test.

The CDF of the shuffle phase completion time for the first
1000 jobs under the four schemes are shown in Figure 19.
We also plot the average shuffle phase completion time in
Figure 20. We see that the majority of the jobs are quite small
and finish really quickly. However, there is a performance

FIGURE 19. CDF of the shuffle phase completion time (only the CDF for
completion time less than 5000ms is shown for better illustration).

FIGURE 20. Average shuffle phase completion time.

difference regarding large jobs, which follows ‘‘Our
System >WCOnly > FreeCompeition > BGOnly’’.
BGOnly has theworst performance because the strict band-

width guarantee (which is implemented through rate limiting)
wastes a great amount of idled bandwidth. WCOnly and
FreeCompetition perform better than BGOnly because flows
in these methods can fully utilize all bandwidth. WCOnly has
a slightly better performance than FreeCompeition because
the adoption of MPTCP allows each flow to grow faster
(i.e., since each flow has two subflows), which is another
advantage of employing MPTCP in datacenters. Our system
can also fully use the capacity of the network fabric due
to the work conservation feature. Meanwhile, the bandwidth
guarantee feature protects the performance of large jobs under
competition with other flows. Consequently, our system per-
forms the best.

The above results are consistent with our previous testbed
based experiments, which shows the effectiveness of the pro-
posed scheme.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel scheme that exploits
MPTCP to achieve efficient, fair, and work-conserving band-
width guarantee in cloud datacenters. The high-level ideas
include: 1) let every VM generates BG traffic and WC traffic
with MPTCP; and 2) conduct in-network separation of the
types of traffic by assigning the BG traffic a higher priority.
As a result, work conservation is efficiently supported since
theWC traffic can take idled bandwidth timely and efficiently
without deteriorating bandwidth guarantees. We also propose
to adapt MPTCP to better serve the design goals by strictly
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prioritizing the BG subflow in the MPTCP scheduler and
adopting a large receive buffer size. We further enable fair
work conservation by controlling the overall aggressiveness
of WC subflows on each VM. The system can be easily
deployed since it does not require any software or hardware
components that cannot be directly supported by current
commodities equipment and systems. The performance of the
proposed system has been demonstrated through real testbed
based experiments and trace-driven simulations. In the future,
we plan to study whether we can improve the efficiency of
bandwidth guarantee and work conservation by exploiting
redundant paths in datacenters and bandwidth demand pat-
terns from applications.
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