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Abstract
The main purpose of this study is to present an approximation method based on the
Laguerre polynomials for fractional linear Volterra integro-differential equations. This
method transforms the integro-differential equation to a system of linear algebraic
equations by using the collocation points. In addition, the matrix relation for Caputo
fractional derivatives of Laguerre polynomials is also obtained. Besides, some
examples are presented to illustrate the accuracy of the method and the results are
discussed.
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1 Introduction
The fractional calculus represents a powerful tool in applied mathematics to study nu-
merous problems from different fields of science and engineering such as mathematical
physics, finance, hydrology, biophysics, thermodynamics, control theory, statistical me-
chanics, astrophysics, cosmology, and bioengineering [1]. Since the fractional calculus has
attracted much more interest among mathematicians and other scientists, the solutions of
the fractional differential and integro-differential equations have been studied frequently
in recent years [2–10]. The methods that are used to find the solutions of the fractional
Volterra integro-differential equations are given as Adomian decomposition [11], Bessel
collocation [12, 13], CAS wavelets [14], Chebyshev pseudo-spectral [15], cubic B-spline
wavelets [16], Euler wavelet [17], fractional differential transform [18], homotopy analysis
[19], homotopy perturbation [20–23], Jacobi spectral-collocation [24, 25], Legendre col-
location [26], Legendre wavelet [27], linear and quadratic interpolating polynomials [28],
modification of hat functions [29], multi-domain pseudospectral [30], normalized sys-
tems functions [31], novel Legendre wavelet Petrov–Galerkin method [32], operational
Tau [33], piecewise polynomial collocation [34], quadrature rules [35], reproducing ker-
nel [36], second Chebyshev wavelet [37], second kind Chebyshev polynomials [38], sinc-
collocation [39, 40], spline collocation [41], Taylor expansion [27], and variational iteration
[20, 23].

Laguerre polynomials are used to solve some integer order integro-differential equa-
tions. These equations are given as Altarelli–Parisi equation [42], Dokshitzer–Gribov–
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Lipatov–Altarelli–Parisi equation [43], pantograph-type Volterra integro-differential
equation [44], linear Fredholm integro-differential equation [45, 46], linear integro-
differential equation [47], parabolic-type Volterra partial integro-differential equation
[48], nonlinear partial integro-differential equation [49], delay partial functional differen-
tial equation [50]. Besides, Laguerre polynomials are used to solve the fractional Fredholm
integro-differential equation [51]. However, there has not been a method in the literature
for fractional Volterra integro-differential equations in terms of Laguerre polynomials.
That is why, in this paper, a method based on the Laguerre polynomials is presented to
find the solutions of linear fractional Volterra integro-differential equation in the form

Dαy(x) + p(x)y(x) = g(x) + λ

∫ x

0
K(x, t)y(t) dt, 0 ≤ x ≤ b,α > 0 (1)

with the initial conditions

y(j)(0) = cj, j = 0, 1, . . . , n – 1, and n – 1 < α < n. (2)

Here, n ∈ Z
+, λ∈R, K(x, t), p(x), and g(x) are given functions, y(x) is the unknown function

to be determined, Dαy(x) indicates the Caputo fractional derivative of y(x). Now, we give
the definition and the basic properties of the Caputo fractional derivative as follows.

Definition ([52]) The Caputo fractional differentiation operator Dα of order α is defined
as follows:

Dαf (x) =
1

Γ (n – α)

∫ x

0

f (n)(t)
(x – t)α+1–n dt, α > 0,

where n – 1 < α < n, n ∈ Z
+.

Besides, the Caputo fractional derivative of a constant function is zero and the Caputo
fractional differentiation operator is linear [53].

The aim of this study is to give an approximate solution of problem (1)–(2) in the form

y(x) ∼= yN (x) =
N∑

i=0

aiLi(x), (3)

where ai are unknown coefficients, N is chosen any positive integer such that N ≥ n, and
Li(x) are the Laguerre polynomials of order i defined in Ref. [54] as

Li(x) =
i∑

k=0

(–1)k i!
(i – k)!(k!)2 xk .

Besides, the main purpose of the solution method presented in this paper is to obtain the
Caputo fractional derivative of the Laguerre polynomials in terms of the Laguerre polyno-
mials and to give a matrix representation for this relation. The Caputo fractional derivative
of the Laguerre polynomials is mentioned in Ref. [51, 55–57]. While these matrix relations
have been given depending on approximate matrices, the relation proposed in this paper
is new, exact, and simpler than the former ones.
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This paper is organized as follows: In Sect. 2, the main matrix relations of the terms in
Eq. (1) are established. In Sect. 3, the collocation method which is used to find the solution
is introduced. In Sect. 4, some numerical examples are solved and their comparison with
the existing results in the literature are presented to verify the accuracy and efficiency of
the proposed method. The conclusion is given in Sect. 5.

2 Main matrix relations
In this section, we construct the matrix forms of each term of Eq. (1). Firstly, we can write
the approximate solution (3) in the matrix form

yN (x) = L(x)A, (4)

where

L(x) =
[

L0(x) L1(x) · · · LN (x)
]

and A =
[

a0 a1 · · · aN

]T
.

Now, we will state a theorem that gives the Caputo fractional derivative of Laguerre
polynomials in terms of Laguerre polynomials.

Theorem Let Li(x) be Laguerre polynomial of order i, then the Caputo fractional deriva-
tive of Li(x) in terms of Laguerre polynomials is found as follows:

DαLi(x) = 0, i < �α�,

and otherwise

DαLi(x) = x1–α

i∑
k=�α�

k–1∑
j=0

(–1)j+k (k – 1)!
Γ (k + 1 – α)

(
i
k

)(
k – 1

j

)
Lj(x), (5)

where �α� denotes the ceiling function which is the smallest integer greater than or equal
to α.

Proof Let us begin deriving the Laguerre polynomials with the definition of them:

DαLi(x) = Dα

{ i∑
k=0

(–1)k i!
(i – k)!(k!)2 xk

}
.

By the linearity of Caputo fractional derivative, we get

DαLi(x) =
i∑

k=0

(–1)k i!
(i – k)!(k!)2 Dα

(
xk).

Using the Caputo fractional derivative of xk , k = 0, 1, 2, . . . ,

Dαxk =

⎧⎨
⎩

0, k < �α�,
Γ (k+1)

Γ (k+1–α) xk–α , k ≥ �α�,
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we obtain DαLi(x) = 0 for i < �α� and

DαLi(x) =
i∑

k=�α�

(–1)k

Γ (k + 1 – α)

(
i
k

)
xk–α , i = �α�, �α� + 1.

At this step, by taking x1–α out of the series and using the Laguerre series of the function
xk given by Lebedev [58]

xk = k!
k∑

j=0

(–1)j

(
k
j

)
Lj(x), 0 < x < ∞, k = 0, 1, 2 . . . ,

we have relation (5) and the proof is completed. �

2.1 Matrix relation for the differential part
Now, we will write the matrix form of the differential part of Eq. (1). The fractional part is
obviously seen as

DαL(x) =
[

DαL0(x) DαL1(x) · · · DαLN (x)
]

. (6)

The right-hand side of this equation can be expressed as

DαL(x) = x1–αL(x)Sα , (7)

where Sα is an (N + 1) dimensional square matrix denoted by

Sα =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 S1,1 ( 1
0)S1,2 + ( 2

0)S2,2 · · · ∑N
k=1( k–1

0 )Sk,N

0 0 –( 1
1)S2,2 · · · –

∑N
k=2( k–1

1 )Sk,N

0 0 0 · · · ∑N
k=3( k–1

2 )Sk,N
...

...
...

. . .
...

0 0 0 · · · (–1)N SN ,N

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, the Sk,i terms in the entries of Sα are defined as follows:

Sk,i =

⎧⎨
⎩

(–1)k (k–1)!
Γ (k+1–α) ( i

k ), if �α� ≤ k ≤ i,

0, otherwise.

Then, by using relations (4) and (7), the fractional differential part of Eq. (1) can be ex-
pressed as

Dαy(x) ∼= DαL(x)A = x1–αL(x)SαA. (8)

2.2 Matrix relation for conditions
The relation between L(x) and its derivatives of integer order is given by Yüzbaşı[44] as

L(i)(x) = L(x)Mi, i = 0, 1, 2, . . . , (9)
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where the matrix M is defined by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 –1 –1 · · · –1
0 0 –1 · · · –1
0 0 0 · · · –1
...

...
...

. . .
...

0 0 0 · · · –1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By using relation (9), the corresponding matrix forms of the conditions defined in (2)
can be written as

yj(0) ∼= L(0)MjA = cj, j = 0, 1, . . . , n – 1. (10)

Here, the matrix L(0)Mj is named Uj where it is an 1× (N + 1) dimensional matrix. Hence,
Eq. (10) becomes

UjA = cj, j = 0, 1, . . . , n – 1.

3 Method of solution
To obtain the approximate solution of Eq. (1), we compute the unknown coefficients by
using the following collocation method. Firstly, let us substitute the matrix forms (4) and
(8) into Eq. (1), and thus we obtain the matrix equation

x1–αL(x)SαA + p(x)L(x)A = g(x) + λ

∫ x

0
K(x, t)L(t)A dt. (11)

By substituting the collocation points xs > 0 (s = 0, 1, . . . , N ) into Eq. (11), we have a system
of matrix equations

{
x1–α

s L(xs)Sα + p(xs)L(xs) – λv(xs)
}

A = g(xs), (12)

where v(xs) =
∫ xs

0 K(xs, t)L(t) dt. This system can be written in the compact form:

{XαLSα + PL – λV}A = G, (13)

where

Xα =

⎡
⎢⎢⎢⎢⎣

x1–α
0 0 · · · 0
0 x1–α

1 · · · 0
...

...
. . .

...
0 0 · · · x1–α

N

⎤
⎥⎥⎥⎥⎦ , P =

⎡
⎢⎢⎢⎢⎣

p(x0) 0 · · · 0
0 p(x1) · · · 0
...

...
. . .

...
0 0 · · · p(xN )

⎤
⎥⎥⎥⎥⎦ ,

L =

⎡
⎢⎢⎢⎢⎣

L(x0)
L(x1)

...
L(xN )

⎤
⎥⎥⎥⎥⎦ , V =

⎡
⎢⎢⎢⎢⎣

v(x0)
v(x1)

...
v(xN )

⎤
⎥⎥⎥⎥⎦ , G =

⎡
⎢⎢⎢⎢⎣

g(x0)
g(x1)

...
g(xN )

⎤
⎥⎥⎥⎥⎦ .
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Denoting the expression in parenthesis of Eq. (13) by W, the fundamental matrix equation
for Eq. (1) is reduced to WA = G, which corresponds to a system of (N + 1) linear algebraic
equations with unknown Laguerre coefficients a0, a1, . . . , aN .

Finally, to obtain the solution of Eq. (1) under conditions (2), we replace or stack the
n rows of the augmented matrix [W; G] with the rows of the augmented matrix [Uj; cj].
In this way, the Laguerre coefficients are determined by solving the new linear algebraic
system.

4 Numerical examples
In this section, we apply the proposed method to four examples existing in the literature
and to a test example constructed for this method. We have performed all of the numerical
computations using Mathcad 15. We also use the collocation points by using the formula
xs = [1 – cos( (s+1)π

N+1 )]/2, s = 0, 1, . . . , N .

Example 1 Consider the following fractional integro-differential equation:

D
1
2 y(x) = y(x) +

8
3Γ (0.5)

x1.5 – x2 –
1
3

x3 +
∫ x

0
y(t) dt

subject to y(0) = 0 with the exact solution y(x) = x2.
Applying the procedure in Sect. 3, the main matrix equation of this problem and the

conditions are given by

{X1/2LS1/2 – L – V}A = G

and

U0A = 0.

If we take N = 2, the collocation points become x0 = 0.25, x1 = 0.75, x2 = 1. Then the
matrices mentioned above are

X1/2 =

⎡
⎢⎣

1
2 0 0
0

√
3

2 0
0 0 1

⎤
⎥⎦ , L =

⎡
⎢⎣

1 3
4

17
32

1 1
4 – 7

32
1 0 – 1

2

⎤
⎥⎦ , S1/2 =

⎡
⎢⎣

0 –2√
π

–8
3
√

π

0 0 –4
3
√

π

0 0 0

⎤
⎥⎦ ,

V =

⎡
⎢⎣

1
4

7
32

73
384

3
4

15
32

33
128

1 1
2

1
6

⎤
⎥⎦ , G =

⎡
⎢⎢⎣

1
3
√

π
– 13

192√
3√
π

– 45
64

8
3
√

π
– 4

3

⎤
⎥⎥⎦ , U0 =

[
1 1 1

]
.

By solving this system, we get a0 = 2, a1 = –4, a2 = 2. When we substitute the determined
coefficients into Eq. (3), we get the exact solution.

Using the homotopy analysis method, this problem was also solved by Awawdeh et al.
[19]. They found the approximate solution for N = 5, but they did not state the numeri-
cal results of the errors of their method. Besides, Sahu et al. [32] found the approximate
solution with the maximum absolute error 4.2 × 10–15 by the Legendre wavelet Petrov–
Galerkin method for N = 6. If the results are compared, it can be said that the proposed
method is better than the other methods since the exact solution is found for N = 2.
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Example 2 Consider the following fractional integro-differential equation:

D0.75y(x) =
1

Γ (1.25)
x0.25 + (x cos x – sin x)y(x) +

∫ x

0
x sin ty(t) dt, 0 ≤ x ≤ 1,

subject to y(0) = 0 with the exact solution y(x) = x.
Applying the procedure in Sect. 3, the main matrix equation of this problem and the

conditions are given by

{X3/4LS3/4 – PL – V}A = G

and

U0A = 0.

If we take N = 1, the collocation points become x0 = 0.5, x1 = 1. Then the matrices men-
tioned above are

X3/4 =

[ 4√8
2 0
0 1

]
, L =

[
1 1

2
1 0

]
, S3/4 =

[
0 2

√
2Γ ( 3

4 )
–π

0 0

]
,

G =
Γ ( 3

4 )
π

[
2 5

4

2
√

2

]
, U0 =

[
1 1

]
,

V =

[
[sin( 1

4 )]2 sin2( 1
4 )

2 – sin( 1
2 )

2 + 1
4

1 – cos(1) 1
2 – sin(1)

2

]
, P =

[
cos( 1

2 )
2 – sin( 1

2 ) 0
0 cos(1) – sin(1)

]
.

By solving this system, we get a0 = 1, a1 = –1. When we substitute the determined coef-
ficients into Eq. (3), we get the exact solution.

This problem was also solved by Awawdeh et al. [19] with the homotopy analysis
method. They found the approximate solution for N = 5, but they did not state the numer-
ical results of the errors of their method. Besides, Sahu et al. [32] found the approximate
solution with the maximum absolute error 1.1 × 10–16 by the Legendre wavelet Petrov–
Galerkin method for N = 6. If the results are compared, it can be said that the proposed
method is better than the other methods since the exact solution is found for N = 1.

Example 3 Consider the following fractional integro-differential equation:

D
√

3y(x) =
2

Γ (3 –
√

3)
x2–

√
3 + 2 sin x – 2x +

∫ x

0
cos(x – t)y(t) dt,

subject to y(0) = 0, y′(0) = 0 with the exact solution y(x) = x2.
Applying the solution method given in Sect. 3, the main matrix equation of this problem

and the conditions are given by

{X√
3LS√

3 – V}A = G

and

U0A = 0.
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Let N = 2, the collocation points become x0 = 0.25, x1 = 0.75, x2 = 1. Here, the matrices
in the main matrix relation of this problem are given as follows:

X√
3 =

⎡
⎢⎣

4
√

3–1 0 0
0 ( 4

3 )
√

3–1 0
0 0 1

⎤
⎥⎦ , S√

3 =

⎡
⎢⎣

0 0 1
Γ (3–

√
3)

0 0 –1
Γ (3–

√
3)

0 0 0

⎤
⎥⎦ ,

G =

⎡
⎢⎢⎢⎣

2 sin( 1
4 ) + 2(4)

√
3–2

Γ (3–
√

3) – 1
2

2 sin( 3
4 ) + 2( 3

4 )2–
√

3

Γ (3–
√

3) – 3
2

2 sin(1) + 2
Γ (3–

√
3) – 2

⎤
⎥⎥⎥⎦ , L =

⎡
⎢⎣

1 3
4

17
32

1 1
4 – 7

32
1 0 – 1

2

⎤
⎥⎦ , U0 =

[
1 1 1

]
,

V =

⎡
⎢⎣

sin( 1
4 ) cos( 1

4 ) + sin( 1
4 ) – 1 2 cos( 1

4 ) – 7
4

sin( 3
4 ) cos( 3

4 ) + sin( 3
4 ) – 1 2 cos( 3

4 ) – 5
4

sin(1) cos(1) + sin(1) – 1 2 cos(1) – 1

⎤
⎥⎦ .

By solving this system, we get a0 = 2, a1 = –4, a2 = 2. When we substitute the determined
coefficients into Eq. (3), we get the exact solution.

This problem was also solved by Awawdeh et al. [19] and they found the approximate
solution by the homotopy analysis method for N = 5. By the proposed method, we have
found the exact solution of the problem for N = 2. Apparently, our method is better than
the other method.

Example 4 Consider the following fractional Volterra integro-differential equation with
the given initial condition y(0) = 0 and with the non-polynomial exact solution y(x) = x3/2:

D
1
3 y(x) =

3
√

π

4Γ (13/6)
x7/6 –

2
63

x9/2(9 + 7x2) +
∫ x

0

(
xt + x2t2)y(t) dt.

The main matrix equation of this problem and the conditions are given as

{X1/3LS1/3 – V}A = G

and

U0A = 0.

The absolute errors of our method are compared with three methods: linear scheme,
quadratic scheme, and linear-quadratic scheme for the fractional integro-differential
equations of Kumar et al. [28] for N = 5 in Table 1. It is seen that our method gives better
results than the other methods.

Example 5 Consider the following linear fractional Volterra integro-differential equation
which is a test problem to the proposed method with a non-polynomial exact solution and
with a non-separable kernel:

D
1
2 y(x) + y(x) =

2
5

+
3
√

πx
4

+ x
3
2 – 2

ex
7
2

5
+

∫ x

0
xext2√

ty(t) dt
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Table 1 Comparison of the absolute errors of Example 4 for different methods

x Linear scheme Quadratic scheme Linear-quadratic scheme Our method

0.2 9.8× 10–3 9.8× 10–3 9.8× 10–3 2.9× 10–4

0.4 1.1× 10–2 4.8× 10–3 4.9× 10–3 7.3× 10–4

0.6 1.2× 10–2 2.9× 10–3 3.2× 10–3 9.5× 10–4

0.8 1.4× 10–2 2.6× 10–3 3.5× 10–3 8.3× 10–4

1 1.9× 10–2 3.3× 10–3 5.5× 10–3 4.5× 10–4

Table 2 Maximum errors of Example 5 for different N values

N 2 4 6 8 10

Maximum errors 1.3× 10–2 1.7× 10–3 5.5× 10–4 2.4× 10–4 1.3× 10–4

subject to the initial condition y(0) = 0 with the exact solution y(x) = x3/2.
Since the solution is not a polynomial, the exact solution cannot be obtained by the

proposed method. That is why approximate solutions are gained and maximum absolute
errors of this problem are given in Table 2 for the different N values.

5 Conclusion
In this study, a collocation method based on Laguerre polynomials has been developed for
solving the fractional linear Volterra integro-differential equations. For this purpose, the
matrix relation for the Caputo fractional derivative of the Laguerre polynomials has been
obtained for the first time in the literature. Using these relations and suitable collocation
points, the integro-differential equation has been transformed into a system of algebraic
equations. The method is faster and simpler than the other methods in the literature, and
better than the homotopy analysis and Legendre wavelet method.
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