
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Application of majority voting and consensus
voting algorithms in N-version software
To cite this article: R Yu Tsarev et al 2018 J. Phys.: Conf. Ser. 1015 042059

View the article online for updates and enhancements.

Related content
Set Theory for Physicists: Equivalence
relations and classes
N A Pereyra

-

The Midlife Crisis of the Nuclear
Nonproliferation Treaty: The NPT in crisis
P Pella

-

The pseudo-Boolean optimization
approach to form the n-version software
structure
I V Kovalev, D I Kovalev, P V Zelenkov et
al.

-

This content was downloaded from IP address 193.255.53.203 on 21/10/2019 at 07:57

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/227074101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/1742-6596/1015/4/042059
http://iopscience.iop.org/book/978-1-64327-650-2/chapter/bk978-1-64327-650-2ch6
http://iopscience.iop.org/book/978-1-64327-650-2/chapter/bk978-1-64327-650-2ch6
http://iopscience.iop.org/book/978-1-6817-4389-9/chapter/bk978-1-6817-4389-9ch5
http://iopscience.iop.org/book/978-1-6817-4389-9/chapter/bk978-1-6817-4389-9ch5
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012013
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012013
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012013
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuX5W0BHLHgudIMCzJe5A_g7EenBM0bvgI1ivjbG6ohZjv2eGA5T50pnPa4YGTKNsgEGsXoZW-CD3O08ysHb7yJtGelnL-OSdN4i02sO0TXac2JWFvJppldLOi5rtl3MSvB0-5NNFY8fQXxc1sCOzle7n_e1WZ0YY0ylnINQDSQxwcMrVOl3DlyvsftnzgkHv_OHa6ogqPYHDEYfYBAI6ashQ9wFiMMeAVifBWT4nH5ewdyAyfH&sig=Cg0ArKJSzNQJLc33cqGL&adurl=http://iopscience.org/books

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

International Conference Information Technologies in Business and Industry 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1015 (2018) 042059 doi :10.1088/1742-6596/1015/4/042059

Application of majority voting and consensus voting
algorithms in N-version software

R Yu Tsarev1, M S Durmuş2, I Üstoglu3, V A Morozov1

1 Siberian Federal University, 79, Svobodny pr., Krasnoyarsk, 660041, Russia
2 Pamukkale University, Kinikli Campus, Denizli, 20070, Turkey
3 Yıldız Technical University, Davutpasa Mah., Esenler, Istanbul, 34220, Turkey

E-mail: tsarev.sfu@mail.ru

Abstract. N-version programming is one of the most common techniques which is used to
improve the reliability of software by building in fault tolerance, redundancy and decreasing
common cause failures. N different equivalent software versions are developed by N different
and isolated workgroups by considering the same software specifications. The versions solve
the same task and return results that have to be compared to determine the correct result.
Decisions of N different versions are evaluated by a voting algorithm or the so-called voter. In
this paper, two of the most commonly used software voting algorithms such as the majority
voting algorithm and the consensus voting algorithm are studied. The distinctive features of N-
version programming with majority voting and N-version programming with consensus voting
are described. These two algorithms make a decision about the correct result on the base of the
agreement matrix. However, if the equivalence relation on the agreement matrix is not satisfied
it is impossible to make a decision. It is shown that the agreement matrix can be transformed
into an appropriate form by using the Boolean compositions when the equivalence relation is
satisfied.

1. Introduction
N-version programming provides a high level of reliability and fault tolerance for software and
prevents the software from getting into fatal failures [1]. N-version programming has proven the
efficiency in solving a wide range of software engineering problems [2, 3]. N-version programming
assumes independent generation of a number of functionally equivalent versions according to the
software input-output specification. Software versions in the N-version software implement different
methods and algorithms solving the same problem. This approach ensures that an error or a fault of
one of the software versions will not lead to disruption of the work of the software in general [4]. This
property is very important for the systems which are characterized by high demands on reliability and
availability. Thus, N-version execution of software allows one to compensate and mask failures or
faults of certain software versions, and thus provide fault tolerance and guarantee the achievement of
the objective functions of the software.

N-version programming is based on software redundancy. N different software versions are
implemented by applying the principle of diversity. When using the N-version approach, there is a
possibility that the versions may return different results (outputs). In this case, there arises the problem
to determine which results are valid and which are faulty. This problem can be solved by the use of
appropriate voting algorithms. It is obvious that the decision of the voting algorithm determines the

http://creativecommons.org/licenses/by/3.0

2

1234567890 ‘’“”

International Conference Information Technologies in Business and Industry 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1015 (2018) 042059 doi :10.1088/1742-6596/1015/4/042059

result of N-version software.
At present, many voting algorithms have been proposed in the literature. Voting algorithms differ

from each other in the work scheme and the dependency to initial data. Selecting the suitable voting
algorithm for the given data set is vital. It may be noted that the voting algorithms based on a
comparison of the versions’ output are efficient and intuitive. However, the application of such
algorithms requires partitioning data into subsets where elements are equivalent to each other. Such
partition in some cases is difficult due to inconsistency of partitions.

In this study, two fundamental voting algorithms that can be applied in N-version software are
discussed. These algorithms are N-version programming with majority voting (NPV-MV) and N-
version programming with consensus voting (NVP-CV). For detailed information about these
algorithms, the readers can be referred to [3], [5-18].

2. Distinctive features of the voting algorithms
The distinctive features of N-version programming with majority voting and N-version programming
with consensus voting are as follows.

Feature 1. The most important point in making the decision on selecting the correct set of outputs
relies on the construction and analysis of the agreement matrix. The agreement matrix is a square
Boolean matrix with N × N dimensions (where N is the number of versions). The agreement matrix
reflects the equivalence of each output to other outputs. The elements of agreement matrix R are
calculated as follows:







>−
≤−

=
ε, when,0

,ε when,1

ji

ji
ij

xx

xx
r (1)

where i indicates the row and j indicates the column of the agreement matrix; xi and xj are the outputs;
ε is the tolerance value, checked for equivalence.

Feature 2. The following additional requirements are applied to the agreement matrix. Equivalence
relation on agreement matrix R should be satisfied. This relation includes reflexivity, symmetry and
transitivity properties, respectively:

,,1 irii ∀= (2)

,, jirr jiij ≠∀= (3)

.,,1 then1 and 1 if jirrr ijkjik ∀=== (4)

Performing such requirement is necessary to solve the inconsistent partitioning problem [10].
Feature 3. If the equivalence ratio (2)-(4) is not satisfied, the Boolean compositions must be applied

to the agreement matrix [19]. Execution of the Boolean compositions should be realized as long as the
equivalence relation is not satisfied. In fact, reflexivity and symmetry properties in the agreement
matrix are always performed. In the general case, only the one feature of transitivity cannot be
realized. The relation, in which only the properties of reflexivity and symmetry are realized, is called
tolerance relation [19]. In work [19], it is shown that if a valid relation is performed on the agreement
matrix and then no more than N – 1 of the Boolean matrixes, we get the agreement matrix, on which
the equivalence relation (2)-(4) is satisfied. Here, N is the number of versions, and accordingly the
number of columns and rows in the agreement matrix.

3. Boolean compositions on the agreement matrix
The aim of the Boolean compositions on the agreement matrix is to transform the agreement matrix
into a proper form where the equivalence relation is satisfied. In general, the operation of the Boolean
composition which is defined for matrixes is as follows:

For given matrixes A and B; all elements of matrix A, aij takes values 0 or 1, and all elements of
matrix B, bij takes values 0 or 1. Then the Boolean composition of matrixes A and B is as follows:

3

1234567890 ‘’“”

International Conference Information Technologies in Business and Industry 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1015 (2018) 042059 doi :10.1088/1742-6596/1015/4/042059

)(where,
1

kjik

N

k
ij bacBAC ⊗⊕==

=
�

where cij represents the elements of the resulting matrix, ⊕ represents a function of logical “or” and
⊗ represents a function of logical “and”.

To satisfy the equivalence relation (2)-(4) on agreement matrix R, it is necessary to have the
consequent implementation of Boolean compositions of R with itself based on the following principle:

11 ,...321 −≤≤∪∪∪∪= NQRRRRE Q , (5)
where Е is the agreement matrix, on which the equivalence relation is satisfied, Q is the number of

consequent Boolean compositions, N is the number of versions; RR =1 , RRR �=2 , ,…
Thus, if the equivalence relation is not satisfied on agreement matrix R, then it is necessary to

perform one Boolean composition:

RRRE �∪=2 . (6)
In case if the equivalence relation is not satisfied on resulting modified agreement matrix E2, then it

is necessary to perform the following Boolean composition:
323 RERRRRRRE ∪=∪∪= ��� .

The application of Boolean compositions is illustrated by an example in the next section.

4. Application of Boolean compositions
Let us suppose that for some module of N-version software, the number of versions is N = 5, the
tolerance value is ε = 0.0005, and the following outputs have been obtained: {1.5531; 1.5533; 1.5544;
1.5546; 1.5537}. The agreement matrix calculated according to formula (1) is shown in Figure 1.

R =

 x1 x2 x3 x4 x5

x1 1 1 0 0 0

x2 1 1 0 0 1

x3 0 0 1 1 0

x4 0 0 1 1 0

x5 0 1 0 0 1

Figure 1. The agreement matrix.

The equivalence relation for the agreement matrix given in Figure 1 is not satisfied, because the
property of transitivity is not satisfied (r12 = 1 and r25 = 1, but r15 ≠ 1). On the basis of agreement
matrix R, it is not possible to make a decision using NVP-MV or NVP-CV algorithms. Therefore, an
operation of Boolean compositions shall be performed according to formula (6). Calculation of R2 is as
follows:

1)()()()()(51154114311321121111
2

11 =⊗⊕⊗⊕⊗⊕⊗⊕⊗= rrrrrrrrrrr ;

1)()()()()(52154214321322121211
2

12 =⊗⊕⊗⊕⊗⊕⊗⊕⊗= rrrrrrrrrrr ;

0)()()()()(53154314331323121311
2

13 =⊗⊕⊗⊕⊗⊕⊗⊕⊗= rrrrrrrrrrr ;

0)()()()()(54154414341324121411
2

14 =⊗⊕⊗⊕⊗⊕⊗⊕⊗= rrrrrrrrrrr ;

1)()()()()(55154514351325121511
2

15 =⊗⊕⊗⊕⊗⊕⊗⊕⊗= rrrrrrrrrrr ;

1)()()()()(51254124312321221121
2

21 =⊗⊕⊗⊕⊗⊕⊗⊕⊗= rrrrrrrrrrr ;

1)()()()()(52254224322322221221
2

22 =⊗⊕⊗⊕⊗⊕⊗⊕⊗= rrrrrrrrrrr ;

0)()()()()(53254324332323221321
2

23 =⊗⊕⊗⊕⊗⊕⊗⊕⊗= rrrrrrrrrrr ;

4

1234567890 ‘’“”

International Conference Information Technologies in Business and Industry 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1015 (2018) 042059 doi :10.1088/1742-6596/1015/4/042059

0)()()()()(54254424342324221421
2

24 =⊗⊕⊗⊕⊗⊕⊗⊕⊗= rrrrrrrrrrr ;

1)()()()()(55254524352325221521
2

25 =⊗⊕⊗⊕⊗⊕⊗⊕⊗= rrrrrrrrrrr ;

0)()()()()(51354134313321321131
2

31 =⊗⊕⊗⊕⊗⊕⊗⊕⊗= rrrrrrrrrrr ;

0)()()()()(52354234323322321231
2

32 =⊗⊕⊗⊕⊗⊕⊗⊕⊗= rrrrrrrrrrr ;
…

1)()()()()(55554554355325521551
2

55 =⊗⊕⊗⊕⊗⊕⊗⊕⊗= rrrrrrrrrrr .

.

10011

01100

01100

10011

10011

10011

01100

01100

10011

10011

10010

01100

01100

10011

00011

22























=























∪























=∪= RRE

On modified agreement matrix E2, the equivalence relation (2)-(4) is performed, and hence, the

decision can be made using the NVP-MV or NVP-CV algorithm.

5. N-version programming with majority voting algorithm (NVP-MV)
Let us assume that there are N different software versions for the use of N-version programming. The
output values returned by each version are indicated with x1, x2, …, xN. After setting tolerance value ε,
the algorithm is as follows:

Step 1. Construct agreement matrix R.
The agreement matrix is constructed according to formula (1).
Step 2. Check the equivalence relations on agreement matrix R.
On the agreement matrix, the equivalence relation must be satisfied in accordance with (2)-(4). If

the equivalence relation is satisfied, then go to step 4, otherwise, go to step 3.
Step 3. Perform the Boolean compositions.
The Boolean composition (5) is performed until the equivalence ratio (2)-(4) for agreement matrix

R will not be satisfied.
Step 4. Define the set of correct outputs.
In each row of the agreement matrix, the number of units is calculated. Yi indicates the number of

units in row i. If there is such row i, which satisfies:






 +≥
2

1N
Yi , (7)

then the set of correct results is generated from those results, which correspond to units in row i.
Operator   in (7) means “ceiling”, its result is greater than or equal to the argument of the ceiling
operator. The principle of selecting the results of the versions is illustrated in Figure 2, where A is the
set of correct results.

5

1234567890 ‘’“”

International Conference Information Technologies in Business and Industry 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1015 (2018) 042059 doi :10.1088/1742-6596/1015/4/042059

Figure 2. Selecting the correct answers from the agreement matrix.

6. N-version programming with the consensus voting algorithm (NVP-CV)
Let us assume once again that there are N different software versions for the use of N-version
programming. The output values returned by each version are indicated with x1, x2, …, xN. After
setting tolerance value ε, the algorithm is as follows:

Steps 1-3 of this algorithm are similar to steps 1-3 of the majority voting algorithm (NVP-MV).
Step 4. Define the set of correct outputs.
In each row of the agreement matrix, the number of units is calculated. Yi indicates the number of

units in row i. Next, the row in which the Yi is maximal is selected. The set of correct results is
generated from those results which correspond to the units in row i. The main reason of selecting the
results of the versions is similar to the one that is illustrated in Figure 2. If the agreement matrix
contains more than one row in which the number of units is maximal, then the row can be selected
randomly.

It should be noted that NVP-CV algorithm produces a result in any case, even if there are no
consistent versions. The algorithm returns the output selected randomly.

7. Conclusion
N-version programming use redundant software components which are developed following design
diversity rules [20].Redundant software versions solve the same task in different ways implementing
diverse algorithms written in different programming languages by different developer teams. Diversity
of the versions brings us slightly or totally different results. Thus, it is necessary to analyze the
versions’ results and determine the correct one. This analyzing mechanism in N-version software is
the voter. Voting algorithm plays a crucial role as far as it determines the result of N-version software
in general.

This paper considers two well-known voting algorithms, N-version programming with majority
voting (NPV-MV) and N-version programming with consensus voting (NPV-CV) that can be
implemented in N-version software. Both these algorithms make a decision about the correct versions’
result based on the agreement matrix. The agreement matrix reflects the equivalence of the result of a
version to other versions’ results. In such case, the equivalence relation on the agreement matrix is
satisfied and it is impossible to make a decision. However, applying the Boolean compositions on the
agreement matrix it is possible to transform the agreement matrix into a proper form where the
equivalence relation is satisfied.

This paper describes the distinctive properties of N-version programming with majority voting and
N-version programming with consensus voting. It provides the theoretical basis of the Boolean
composition application and an example of the application of Boolean compositions to an agreement
matrix. Finally, the steps of the algorithms of N-version programming with majority voting and N-
version programming with the consensus voting are given. The authors support it with Boolean
composition application to allow one to decide on correct result of versions’ outputs.

6

1234567890 ‘’“”

International Conference Information Technologies in Business and Industry 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1015 (2018) 042059 doi :10.1088/1742-6596/1015/4/042059

References
[1] Avizienis A and Chen L 1977 Proc. Int. Conf. COMPSAC'77 (Chicago, IL) 149–155
[2] Eriş O, Yildirim U, Durmuş M S, Söylemez M T and Kurtulan S 2012 Proc. CTS 2012 (Sofia,
Bulgaria) 177–180
[3] Looker N, Munro M and Xu J 2005 Proc. COMPSAC 2005 (Edinburgh, Scotland, UK) 66–69
[4] Gruzenkin D V, Chernigovskiy A S and Tsarev R Y 2018 Advances in Intelligent Systems and
Computing 661 293–303
[5] Akhil K and Kavindra M 1991 IEEE Trans. Reliab. 40(5) 593–600
[6] Mohamed A and Zulkernine M 2007 Proc. IEEE Int. Symp. High Assurance Systems
Engineering (Dallas, TX) 267–274
[7] Yacoub S 2003 Reliab. Eng. Syst. Safe. 81(2) 133–145
[8] Ahamad M and Ammar M H 1989 IEEE Trans. Softw. Eng. 15(4) 492–496
[9] Blough D M and Sullivan G F 1990 Proc. 9th Symp. Reliable Distributed Systems (Huntsville,
AL) 136–145
[10] Brilliant S S, Knight J C and Leveson N G 1989 IEEE Trans. Softw. Eng. 15(11) 1481–1485
[11] Kuncheva L I, Whitaker C J, Shipp C A and Duin R P W 2003 Pattern Anal. Appl. 6(1) 22–31
[12] Lam L and Suen C Y 1997 IEEE Trans. Syst. Man Cybern. A, Syst. Humans 27(5) 553–568
[13] Levitin G 2001 Reliab. Eng. Syst. Safe. 73(1) 91–100
[14] Levitin G and Lisnianski A 2001 Reliab. Eng. Syst. Safe. 71(2) 131–138
[15] McAllister D F, Sun C E and Vouk M A 1990 IEEE Trans. Reliab. 39(5) 524–534
[16] McAllister D and Vouk M 1996 Handbook of Software Reliability Engineering Lyu M.
McGraw-Hill 577–603
[17] Parhami B 1994 Voting algorithms IEEE Trans. Reliab. 43(4) 617–629
[18] Xie M and Pham H 2005 Modeling the reliability of threshold weighted voting systems Reliab.
Eng. Syst. Safe. 87(1) 53–63
[19] Kim K, Vouk M A and McAllister D F 1998 Fault-tolerant software voters based on fuzzy
equivalence relations Proc. IEEE Aerospace Conf. (Snowmass at Aspen, CO) pp. 5–19
[20] Dubrova E 2013 Fault-Tolerant Design Springer 157–179

