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Abstract

In the present paper, we establish general representations of continuous linear functionals, which play important roles in
Functional Analysis, of the absolute weighted spaces which have recently been introduced in Sarıgöl (2016, 2011), and also
determine their norms. Further making use of this we give adjoint operators of matrix mappings defined on these spaces.
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Any vector subspace of w, the space of all (real- or) complex valued sequences, is called a sequence space. A
sequence space X is a BK -space if it is a Banach space provided that each of the maps pn : X → C defined by
pn(x) = xn is continuous for all n ≥ 0. A BK -space X is said to have AK property if φ ⊂ X and {e(n)} is a basis
for X , where e(n) is a sequence whose only non-zero term is 1 in kth place for each n ≥ 0 and φ =span{e(n)}, the set
of all finitely non-zero sequences. For example, ℓk, the space of all k-absolutely convergent series, is AK -space for
k ≥ 1.

Let X, Y be sequence spaces and A = (anv) be an infinite matrix of complex numbers. If Ax = (An(x)) ∈ Y for
every x ∈ X, then we say that A defines a matrix transformation from X into Y, and denote it by A ∈ (X, Y ), where
An (x) =

∑
∞

v=0anvxv, provided that the series converges for n ≥ 0.

Now, let Σav be a given infinite series with nth partial sums (sn) and (θn) be a sequence of nonnegative terms.
Then the series Σav is said to be summable |A, θn|k, k ≥ 1, if

∞∑
n=0

θ k−1
n |∆An(s)|k < ∞, A−1(s) = 0,
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∆An(s) = An(s) − An−1 (s) [1]. If A is the matrix of weighted mean
(
N , pn

)
(resp. θn = Pn/pn) , then summability

|A, θn|k reduces to summability
⏐⏐N , pn, θn

⏐⏐
k (resp.

⏐⏐N , pn
⏐⏐
k , [2]), [3]. Further, if θn = n for n ≥ 1 and A is the matrix

of Cesàro mean (C, α), then it is the same as summability |C, α|k in Flett’s notation [4]. By a weighted mean matrix
we state

anv =

{
pv/Pn, 0 ≤ v ≤ n

0, v > n (1.1)

where (pn) is a sequence of positive numbers with Pn = p0 + p1 + · · · + pn → ∞ as n → ∞. In [5], the space⏐⏐⏐N θ

p

⏐⏐⏐
k
, k ≥ 1, was defined as the set of all series summable by

⏐⏐N , pn, θn
⏐⏐
k , i.e.,

⏐⏐⏐N θ

p

⏐⏐⏐
k

=

⎧⎨⎩a = (av) :

∞∑
n=1

⏐⏐⏐⏐⏐γn

n∑
v=1

Pv−1av

⏐⏐⏐⏐⏐
k

< ∞

⎫⎬⎭ ,

which is a BK-space with respect to the norm (see [6])

∥a∥⏐⏐⏐N θ
p

⏐⏐⏐
k

=

⎧⎨⎩|a0|
k
+

∞∑
n=1

⏐⏐⏐⏐⏐γn(p, θ)
n∑

v=1

Pv−1av

⏐⏐⏐⏐⏐
k
⎫⎬⎭

1
k

, (1.2)

where

γ0(p, θ) = θ
1/k′

0 , γn(p, θ) =
θ

1/k′

n pn

Pn Pn−1
, n ≥ 1. (1.3)

Hence it is clear that a ∈

⏐⏐⏐N θ

p

⏐⏐⏐
k

if and only if T (a) ∈ lk, the set of all k -absolutely convergent series, where ,

T0(a) = γ0(p, θ)a0, Tn(a) = γn(p, θ)
n∑

v=1

Pv−1av, (1.4)

1/k + 1/̃k = 1 for k > 1, and 1/̃k = 0 for k = 1.

2. Representations of functionals on the space
⏐⏐⏐N

θ

p

⏐⏐⏐
k

It is known that the continuous dual of a normed space X, denoted by X∗, is defined by the set of all bounded
linear functionals on U, and also it is a fundamental principle of functional analysis that investigations of spaces are
often combined with those of the dual spaces. In this connection duals of many spaces have been considered [7]. For
example, c∗ ∼= l1, l∗1 ∼= l∞, l∗k ∼= lk′ for 1 < k < ∞, where c, l∞ and lk′ are the sets of all convergent, bounded
sequences and k ′-absolutely convergent series, respectively. Also their representations and norms are as follows:

f (x) = a lim
n

xn +

∞∑
n=0

an xn, ∥ f ∥c∗ = |a| + ∥a∥l1

f (x) =

∞∑
n=0

an xn, ∥ f ∥l∗k
= ∥a∥∞ (0 < k ≤ 1)

f (x) =

∞∑
n=0

an xn, ∥ f ∥l∗k
= ∥a∥lk (1 < k < ∞) .

In this section showing that
⏐⏐⏐N θ

p

⏐⏐⏐∗
k

and
⏐⏐⏐N θ

p

⏐⏐⏐∗
1

are isometrically isomorphic to lk′ and l∞, respectively, we give general
representations of linear functionals on them and determine their norms.

First we characterize the property AK of the space
⏐⏐⏐N θ

p

⏐⏐⏐
k
, which plays important role to prove the theorems.
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Theorem 2.1. Let 1 ≤ k < ∞ and θ = (θn) be a sequence of nonnegative numbers. Then, in order that
⏐⏐⏐N θ

p

⏐⏐⏐
k

is a
BK -space with property AK , it is necessary and sufficient

sup
m

∞∑
n=m

⏐⏐⏐⏐ γn(p, θ)
γm(p, θ)

⏐⏐⏐⏐k < ∞. (2.1)

Proof.
⏐⏐⏐N θ

p

⏐⏐⏐
k

is a BK -space (see [6]). Now, if x ∈ φ, then there exists a positive integer m such that x =

(x0, x1, xm, 0, . . .) , and so φ ⊂

⏐⏐⏐N θ

p

⏐⏐⏐
k

iff

∞∑
m=n

⏐⏐⏐⏐⏐γm(p, θ)
n∑

v=1

Pv−1xv

⏐⏐⏐⏐⏐
k

=

⏐⏐⏐⏐⏐
n∑

v=1

Pv−1xv

⏐⏐⏐⏐⏐
k ∞∑

m=n

|γm(p, θ)|k < ∞,

and
(
e(n)
)

is a base of
⏐⏐⏐N θ

p

⏐⏐⏐
k

iffx −

m∑
n=0

xne(n)

⏐⏐⏐N θ
p

⏐⏐⏐
k

→ 0 as m → ∞.

On the other hand, if T (x) ∈ lk for any x ∈

⏐⏐⏐N θ

p

⏐⏐⏐
k
, then it follows from Minkowski’s inequality thatx −

m∑
n=0

xne(n)

⏐⏐⏐N θ
p

⏐⏐⏐
k

=

{
∞∑

n=m+1

⏐⏐⏐⏐Tn(x) − γn(p, θ)
Tm(x)

γm(p, θ)

⏐⏐⏐⏐k
} 1

k

→ 0 as m → ∞

if and only if
∞∑

n=m+1

⏐⏐⏐⏐γn(p, θ)
Tm(x)

γm(p, θ)

⏐⏐⏐⏐k = |Tm(x)|k
∞∑

n=m+1

⏐⏐⏐⏐ γn(p, θ)
γm(p, θ)

⏐⏐⏐⏐k → 0 as m → ∞,

or, equivalently, (2.1) holds, which states x =
∑

∞

n=0xnen. Further, by triangle inequality, it has a unique expression.
This proves the result.

Theorem 2.2. (i -) Let 1 < k < ∞ and θ = (θn) be a sequence of nonnegative numbers. If (pn) is a sequence of
nonnegative numbers satisfying (2.1), then,

⏐⏐⏐N θ

p

⏐⏐⏐∗
k

is isometrically isomorphic to lk′ , i.e.,
⏐⏐⏐N θ

p

⏐⏐⏐∗
k

∼= lk′ . Moreover if

f ∈

⏐⏐⏐N θ

p

⏐⏐⏐∗
k

f (x) = λ0x0 +

∞∑
v=1

(
∞∑

n=v

λnγn(p, θ)

)
Pv−1xv; x ∈

⏐⏐⏐N θ

p

⏐⏐⏐
k

(2.2)

and

∥ f ∥⏐⏐⏐N θ
p

⏐⏐⏐∗
k

= ∥λ∥lk′
(2.3)

where λ ∈ lk′ .

(i i-) Let k = 1 and supn Pn/pn < ∞. Then,
⏐⏐N p

⏐⏐∗
1 is isometrically isomorphic to l∞, i.e.,

⏐⏐⏐N θ

p

⏐⏐⏐∗
1

∼= l∞, and if

f ∈
⏐⏐N p

⏐⏐∗
1, then it is defined by (2.2) and

∥ f ∥⏐⏐⏐N θ
p

⏐⏐⏐′
1

= ∥λ∥∞ (2.4)

where λ ∈ l∞.
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Proof. (i) Define T : lk′ →

⏐⏐⏐N θ

p

⏐⏐⏐∗
k

by T (λ) = f, where f is as in (2.2). Trivially, T is well defined by (2.1), linear

and injective. Also, T is surjective. In fact, take f ∈

⏐⏐⏐N θ

p

⏐⏐⏐∗
k
. By Lemma 1.6 in [1] we see that (1.4) defines an isometry

between
⏐⏐⏐N θ

p

⏐⏐⏐
k

and lk with respect to the norms (1.2) and ∥x∥lk =
{∑

∞

n=0|xn|
k}1/k

. This means that x ∈

⏐⏐⏐N θ

p

⏐⏐⏐
k

if and

only if T (x) ∈ lk, and ∥x∥⏐⏐⏐N θ
p

⏐⏐⏐
k

= ∥T (x)∥lk . Further, f ∈

⏐⏐⏐N θ

p

⏐⏐⏐∗
k

if and only if F ∈ l ′k, where

f (x) = F(T (x)) = F(T ), for all x ∈

⏐⏐⏐N θ

p

⏐⏐⏐
k
,

and also

∥ f ∥ = sup
∥x∥⏐⏐⏐Nθ

p
⏐⏐⏐
k
=1

| f (x)| = sup
∥T ∥lk =1

|F(T )| = ∥F∥ .

It is well known from [6] that l ′k ∼= lk′ , which shows that F ∈ l∗k if and only if there exists λ ∈ lk′ such that

F(T ) =

∞∑
n=0

λnTn(x), for all T (x) ∈ lk,

∥F∥ = ∥λ∥lk′
. (2.5)

So it follows that for every x ∈

⏐⏐⏐N θ

p

⏐⏐⏐
k

f (x) = λ0x0 +

∞∑
n=1

λnγn(p, θ)
n∑

v=1

Pv−1xv. (2.6)

To get (2.2), it is sufficient to show that the order of summation in (2.6) can be interchanged. Now, by (2.1), since the
series

∑
∞

n=vλnγn(p, θ) is convergent, we write this sum as

f (x) = λ0x0 + lim
K→∞

K∑
n=1

λnγn(p, θ)
n∑

v=1

Pv−1xv

= λ0x0 + lim
K→∞

K∑
v=1

Pv−1xv

K∑
n=v

λnγn(p, θ).

= λ0x0 + lim
K→∞

K∑
v=1

Pv−1xv

{
∞∑

n=v

−

∞∑
n=K+1

}
λnγn(p, θ).

Thus it remains to show that⏐⏐⏐⏐⏐
K∑

v=1

Pv−1xv

∞∑
n=K+1

λnγn

⏐⏐⏐⏐⏐ → 0 as K → ∞.

But, it is easily seen from Hölder’s inequality and (2.1) that⏐⏐⏐⏐⏐
K∑

v=1

Pv−1xv

∞∑
n=K+1

λnγn

⏐⏐⏐⏐⏐ ≤ |TK (x)|
∞∑

n=K+1

⏐⏐⏐⏐ γn

γK
λn

⏐⏐⏐⏐
≤ M

(
∞∑

n=K+1

|λn|
k′

) 1
k′

→ 0 as K → ∞

where

M = sup
K

|TK (x)|

(
∞∑

n=K+1

⏐⏐⏐⏐ γn(p, θ)
γK (p, θ)

⏐⏐⏐⏐k
) 1

k

.

Thus (2.2) holds, and also ∥L(λ)∥⏐⏐⏐N θ
p

⏐⏐⏐∗
k

= ∥ f ∥⏐⏐⏐N θ
p

⏐⏐⏐∗
k

= ∥λ∥lk′
by (2.5), which completes the proof.
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The proof of part (ii) follows from lines in part (i) considering that l∗1 ∼= l∞ and (2.1) reduces to supn (Pn/pn) < ∞.

Also, using Theorem 2.2, we give a general representation of adjoint operator. We first recall related concepts. Let

X, Y be normed spaces and A : X → Y be a bounded linear operator. Then, adjoint operator of A, denoted by A∗, is

defined A∗
: Y ∗

→ X∗ such that A∗( f ) = f oA.

Making use of Theorem 2.2 we can prove the following theorem which establishes representation of adjoint
operator of matrix operator on

⏐⏐⏐N θ

p

⏐⏐⏐
k

for k ≥ 1.

Theorem 2.3. Let (pn) and (qn) be sequences of nonnegative numbers satisfying supn Pn/pn < ∞ and (2.1),
respectively. If A ∈

(⏐⏐N p
⏐⏐ , ⏐⏐⏐N θ

q

⏐⏐⏐
k

)
, k ≥ 1, then the adjoint operator A∗

:

⏐⏐⏐N θ

q

⏐⏐⏐∗
k

→
⏐⏐N p

⏐⏐∗ is defined by

g(x) = A∗( f )(x) =

∞∑
j=0

µ j x j ; x ∈
⏐⏐N q

⏐⏐
where λ ∈ lk′ , µ ∈ ℓ∞ and

µ0 = ε0a00, µ j =
θ

−1/k′

j

p j

∞∑
v=1

Qv−1
(
Pj av j − Pj−1av, j+1

) ∞∑
n=v

λnqn

Qn Qn−1
, j ≥ 1.

Proof. Since
⏐⏐⏐N θ

q

⏐⏐⏐
k

is a BK-space, by Banach–Steinhaus theorem, A :
⏐⏐N p

⏐⏐ →

⏐⏐⏐N θ

q

⏐⏐⏐
k

is a bounded linear operator.

Now, given f ∈
⏐⏐N q

⏐⏐∗. Then g ∈

⏐⏐⏐N θ

p

⏐⏐⏐∗
k
. So, by Theorem 2.2, there exist λ ∈ l∞ and µ ∈ ℓk′ such that

f (x) = λ0x0 +

∞∑
v=1

(
∞∑

n=v

λnγn(q, 1)

)
Qv−1xv; x ∈

⏐⏐N q
⏐⏐

and

g(x) = µ0x0 +

∞∑
v=1

(
∞∑

n=v

µnγn(p, θ)

)
Pv−1xv; x ∈

⏐⏐⏐N θ

p

⏐⏐⏐
k
.

Also, by g(x) = f (A(x)),

g(x) = λ0 A0(x) +

∞∑
v=1

(
∞∑

n=v

λnγn(q, 1)

)
Qv−1 Av(x)

=

∞∑
v=0

∞∑
j=0

εvav j x j ,

where

ε0 = λ0, εv = Qv−1

∞∑
n=v

λnγn(q, 1), v ≥ 1.

Now if we put x = e( j)
∈
⏐⏐N p

⏐⏐ for j = 0, 1, . . . , then we have

µ0 = ε0a00, Pj−1

∞∑
n= j

µnγn(p, θ) =

∞∑
v=0

εvav j = AT
j (ε)



544 M.A. Sarıgöl / Transactions of A. Razmadze Mathematical Institute 172 (2018) 539–544

where AT is the transpose of the matrix A. This implies that

µ j =
1

γ j (p, θ)

(
AT

j (ε)

Pj−1
−

AT
j+1(ε)

Pj

)

=
θ

−1/k′

j

p j

∞∑
v=1

Qv−1
(
Pj av j − Pj−1av, j+1

) ∞∑
n=v

λnγn(q, 1)

=
θ

−1/k′

j

p j

∞∑
v=1

Qv−1
(
Pj av j − Pj−1av, j+1

) ∞∑
n=v

λnqn

Qn Qn−1

which completes the proof.

Also, following the lines in Theorem 2.4 we get the following theorem.

Theorem 2.4. Let (pn) and (qn) be sequences of nonnegative numbers satisfying supn Pn/pn < ∞ and (2.1),
respectively. If A ∈

(⏐⏐⏐N θ

q

⏐⏐⏐
k
,
⏐⏐N p

⏐⏐) , k > 1, then the adjoint operator A∗
:
⏐⏐N p

⏐⏐∗ →

⏐⏐⏐N θ

q

⏐⏐⏐∗
k

is defined by

g(x) = A∗( f )(x) =

∞∑
j=0

µ j x j ; x ∈

⏐⏐⏐N θ

q

⏐⏐⏐
k

where λ ∈ lk′ , µ ∈ ℓ∞ and

µ0 = ε0a00, µ j =
1
p j

∞∑
v=1

Qv−1
(
Pj av j − Pj−1av, j+1

) ∞∑
n=v

λnθ
1/k′

n qn

Qn Qn−1
, j ≥ 1.
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