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Abstract

Background: Studies were carried on the decolorization of the textile dye reactive blue 19 (RB 19) by a novel
isolate of Coprinus plicatilis (C. plicatilis) fungi. We describe an in vitro optimization process for decolorization and its
behavior under different conditions of carbon and nitrogen sources, pH, temperature and substrate concentration.

Results: The optimal conditions for decolorization were obtained in media containing intermediate concentrations
of ammonium oxalate and glucose (10 g/L) as nitrogen and carbon sources, respectively, at 26°C and pH = 5.5.
Maximum decolorization efficiency against RB 19 achieved in this study was around 99%. Ultra-violet and visible
(UV-vis) spectrophotometric analyses, before and after decolorization, suggest that decolorization was due to
biodegradation.

Conclusions: This effect was associated with laccase enzyme displaying good tolerance to a wide range of pH
values, salt concentrations and temperatures, suggesting a potential role for this organism in the remediation of
real dye containing effluents. In conclusion, laccase activity in C. plicatilis was firstly described in this study.
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Introduction
Treatment of synthetic dyes in wastewater is a matter of
great concern. Several physical and chemical methods
have been employed for the removal of dyes [1]. How-
ever, these procedures have not been widely used due to
high cost, formation of hazardous by products and in-
tensive energy requirement [2]. Worldwide over 10,000
different dyes and pigments are used in dyeing and prin-
ting industries. The total world colorant production is
estimated to be 8.00.000 tons per year and at least 10%
of the used dyestuff enters the environment through
wastes [3,4]. Wastewater from textile industries con-
stitutes a threat to the environment in many parts of
the world. Although some of the dyes are not them-
selves toxic, after release into the aquatic environment
their degradation products are often carcinogenic [5,6].
The existing technologies for decolorization of textile
dyeing effluents like adsorption, precipitation, membrane
filtration, chemical degradation and photochemical degra-
dation are relatively expensive and commercially unattrac-
tive [7,8]. Coagulation-flocculation has major operational
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problems as it generates large amounts of sludge. Adsorp-
tion technique is also more expensive as it involves
the use of powdered activated carbon as adsorbent and
disposal of spent adsorbent [9] is still a problem. Microbial
decolorization is a potential and an effective alternative
for the decolorization of wastewater. Microbial decoloriza-
tion methods of textile dye containing effluents have been
reviewed and reported. White-rot fungi such as Phanero-
chaete chrysosporium [10,11], Trametes versicolor [12,13],
Bjerkandera adusta [14], Pycnoporus cinnabarinus [15]
and Phanerochaete sordida [16] have been shown to de-
colorize textile dyes or coloured effluents [17].
In recent years, the utilization of biodegradative abili-

ties of some white rot fungi seems to be promising. They
do not require preconditioning to particular pollutants
and owing to their extracellular non-specific free radical-
based enzymatic system they can degrade to nondetec-
table levels or even completely eliminate a variety of
xenobiotics including synthetic dyes. Many white rot
fungi (Phanerochaete chrysosporium, Pleurotus ostrea-
tus, Bjerkandera adusta, Trametes versicolor, etc.) have
been intensively studied in connection with their lignino-
lytic enzyme production and their decolorization ability
[18-25]. This capability is due to extracellular non-specific
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Figure 1 UV-vis spectrum of a solution of RB19 before and
after incubation with C. plicatilis cultures.
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and non-stereoselective enzyme systems composed of lac-
cases (EC 1.10.3.2), lignin peroxidases (EC 1.11.10.14) and
manganese peroxidases (EC 1.11.1.13) [26]. Laccase based
decolorization treatments are potentially advantageous
to bioremediation Technologies since the enzyme is
produced in larger amounts mainly by numerous fungi
[27,28]. Laccase belongs to a family of multi-copper oxi-
dases that are widespread in nature. Laccases are related
to oxidation of a range of aromatic, toxic and environ-
mentally problematic substrates [29] and particular inter-
est with industrial applications. The potential applications
are in the textile industry [30], detoxification of pollutants
and industrial effluents [31], pulp and paper industry [32],
food and pharmaceutical industries [33] biosensor and
biofuel applications [34].
The aim of the present work was to characterize the

biodegradation of the textile dye Remazol reactive blue
19, by the action of soluble extracts from the white rot
fungus C. plicatilis. We describe an in vitro optimization
process for decolorization and its behavior under dif-
ferent conditions of carbon and nitrogen sources, pH,
temperature and substrate concentration.

Materials and methods
Dyes and chemicals
Textile Remazol dye: reactive blue 19 (RB 19) was sup-
plied by Dystar (Kocaeli, Turkey). 2,2-Azino-bis (3-ethyl-
benzothiazoline-6-sulfonic acid) (ABTS) was obtained
from Sigma Chemical Company (St. Louis, MO, USA).
All chemicals used were of the highest purity available
and of analytical grade.

Culture conditions
Mycelial suspension of Coprinus plicatilis isolated in our
university fungus research Laboratory. The white rot
fungi Coprinus plicatilis (C. plicatilis) were maintained
on 2% (w/v) malt agar slants at 4°C and were then acti-
vated at 26°C for 3 days. The mycelium were harvested
with a sterile 0.9% NaCl solution and were then inocu-
lated into 100 mL of 2% malt extract broth (pH = 4.5) in
250 mL Erlenmeyer flasks at 26°C and 175 rpm for
4 days. Pellets were inoculated into the medium consis-
ting of 10 g/L glucose, 1.0 g/L of NH4H2PO4, 0.05 g/L of
MgSO4.7H2O, 0.01 g/L of CaCl2, 0.025 g/L of yeast ex-
tract. Cultivation was carried out in an orbital shaker
incubator, at 26°C, 175 rpm [35]. At the beginning of
the fourth day of incubation, dye solution was added
to the flasks, aseptically, at desired concentrations. Ali-
quots were assayed for laccase activity. Experiments were
performed in 250 mL Erlenmeyer flasks containing 50 mL
of liquid medium. For biomass calculation, mycelia were
filtered through previously dried and tared Whatman
No. 1 filter papers, washed with distilled water and dried
at 50°C to constant weight.
Spectrophotometric analysis
Aliquots of 1–2 mL volume of clear dye solution were
taken from each reaction flask at regular time intervals
and measured immediately using a UV-vis recording
double beam spectrophotometer (Shimadzu UV-1601).
Decolorization was determined spectrophotometrically
by monitoring the absorbance at the wavelength max-
imum for this dye, and by the reduction of the major
peak area in the visible region for dye. The percentage
of in culture decolorization was calculated as;
Decolorization percentage, R (%)

R ¼ Co −Cð Þ
Co

� �
: 100 ð1Þ

Biodegradation Rate = (C0-C)/Incubation day
C0: Initial concentration of dye, C: Last concentration

of dye

Optimization of carbon and nitrogen content for enzyme
production
Six different carbon substrates (glucose, sucrose, starch,
maltose, fructose and glycerol) and nitrogen sources (so-
dium nitrate, urea, ammonium tartrate, ammonium car-
bonate, ammonium oxalate and peptone) were used to
substitute the original carbon and nitrogen sources. The
assessed concentrations were 5, 10 and 15 g/L. All inoc-
ulated media were incubated for 15 days at 26°C in the
dark and the supernatant or eluted extracts collected for
further analysis.

Effect of pH, temperature and copper supplementation
on enzyme production
Cultures optimized for carbon and nitrogen content were
supplemented with copper sulfate (0.1-5 mM) and incu-
bated for 15 days at 26°C. Supernatants or soluble extracts
were then submitted to decolorization. Additionally, des-
taining activity was measured in samples derived from



Figure 2 Decolorization of RB19 and growth of C. plicatilis in liquid minimal medium containing 50 mg/L dye. The absorbance of the
culture supernatant was determined at 585 nm.
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cultures grown at 26, 30 and 35°C for 15 days and at
pH values from 5.5 to 7.0 at 26°C for 15 days.

Enzyme assays
Laccase (Lac) (EC 1.10.3.2) production was assessed by a
measurement of the enzymatic oxidation of 2, 22-azinobis-(3
ethylbenzothiazoline- 6-sulphonic acid) (ABTS) at 420 nm
(ε= 3.6 × 104 cm-1 M-1) [36]. The reaction mixture con-
tained 300 μL of extracellular fluid, 300 μL of 1 μM ABTS
and 0.1 M Na Acetate buffer (pH = 4.5, 400 μL). One unit
of enzyme activity is defined as the amount of enzyme that
oxidizes 1 μmol ABTS in one minute.

Effect of pH, temperature and salt concentration on
decolorization
Soluble extracts derived from 15-day-old solid or liquid
cultures, carried out under optimized conditions, were tes-
ted for decolorization. Decolorization of RB 19 (50 mg/L)
was carried out at pH values from 2 to 9 (intervals of 0.5
units), adjusted by using 50 mM citrate-phosphate buffer.
Figure 3 Effect of dye concentration on fungal growth and in culture
of culture.
The temperatures assessed were 20, 30, 40, 50, 60 and
70°C. For testing susceptibility to salt, different NaCl con-
centrations (0.05, 0.1, 0.2, 0.4 and 0.6 M) were used
in the assay.

Statistical analysis
Standard deviations of the results of triplicate samples
from the flask studies were calculated using the Micro-
soft Excel Spreadsheet Program.

Results
Screening using reactive dyes
C. plicatilis cultures were initially exposed to RB 19 tex-
tile dye. In culture decolorization occurred only with RB
19. The total flattening of the UV-vis spectra of the
samples indicates that decolorization was accompan-
ied by biodegradation since the smoothening of absorb-
ance peaks at 600 and at 280 nm is consistent with the
reduction of azo linkages and the loss of aromatic rings
(Figure 1).
decolorization. Absorbance at 585 nm was assessed after 15 days
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Effect of dye concentration and water content on fungal
growth
When C. plicatilis was cultured in malt extract me-
dium containing 50 mg/L RB 19, the percentage deco-
lorization increased over time, reaching a peak of 99%
decolorization after 15 days of incubation (Figure 2). The
decolorization was not directly associated with fungal
growth since over the period of 5–10 days the biomass
Figure 4 Effect of carbon and nitrogen on decolorization. A; Effect of
B; Effect of nitrogen source and concentraation on decolorization in solid m
level fell while the percentage decolorization was still in-
creasing rapidly. In culture decolorization tests were then
done with increasing concentrations of RB 19. Although
these concentrations delayed fungal growth slightly, L. cri-
nitus was able to develop in RB 19 concentrations as high
as 200 or even 250 mg/L, giving percentage in culture de-
colorizations of 93.7% and 77.4%, respectively, after 15 days
(Figure 3).
carbon type and concentration on decolorization in solid medium.
edia containing fructose (10 g/L) and glucose (10 g/L) as carbon source.



Table 1 Effect of pH, temperature and copper
concentration on decolorization (initial dye concentration;
50 mg/L)

T°C
% Decolorization

26
95.1 ± 0.6

30
21.4 ± 2.3

35
0.04 ± 0.04

Cu2+ (mM)
% Decolorization

0
79.7 ± 2.2

0.1
84.3 ± 3.6

1.0
51.2 ± 1.3

2.0
49.6 ± 1.1

pH
% Decolorization

5.5
99.2 ± 0.6

6
81.3 ± 1.2

6.5
68.7 ± 2.4

7
11.4 ± 1.7
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In order to determine whether the fungal products
responsible for dye decolorization were secreted or
mycelium-associated, supernatants and mycelia from
dead liquid cultures and eluted extracts from dead solid
cultures were subjected to decolorization. Decolorization
was highest in supernatants and eluted extracts, with rela-
tively low decolorization being detected in mycelia (results
not shown). Decolorization eluted from solid cultures was
very similar to that obtained in the supernatants obtained
from liquid cultures. Also, an RB 19 concentration of
50 mg/L was selected. At this concentration the dye was
totally consumed and slightly higher decolorizations were
obtained in the culture extracts.
Figure 5 Alteration of laccase enzyme activities.
Effect of carbon and nitrogen content on decolorization
In the case of white rot fungi, it has been reported that
the production of lignin modifying enzymes (LMEs) and
decolorization varies greatly, according to the type and
concentration of carbon and nitrogen sources in culture
media. These effects were therefore investigated. C. pli-
catilis was grown on solid minimal media that contained
glucose, fructose, maltose, starch, sucrose or glycerol as
the sole carbon source. For each substrate, three concen-
trations (5, 10 and 15 g/L) were tested. After 15 days of
incubation, decolorization was performed using extracts
from the solid medium. Drastic differences in the deco-
lorization were observed. C. plicatilis produced the high-
est levels of decolorization when grown in 10 g/L glucose;
5 g/L maltose or 10 g/L fructose, with the decolorization
ranging from 63.7% to 84.8%. Higher concentrations of
these carbon sources did not lead to higher decolorization.
With some carbon sources the yield of decolorization
was very low. For example, with 15 g/L glycerol and
10 g/L starch decolorization of only 5-15% were pro-
duced (Figure 4A).
When nitrogen sources were assessed, using fructose

(10 g/L) and glucose (10 g/L) as carbon sources (maltose
was omitted due to its high cost), soluble extracts de-
rived from cultures containing 5 g/L sodium nitrate,
15 g/L ammonium tartrate and 10 g/L ammonium oxa-
late performed the highest decolorization (Figure 4B).
Again, some substrates promoted the decolorization and
some of them, such as urea and ammonium chloride,
were inhibitory. A significant observation is that the ef-
fect of a nitrogen source can depend on the accompa-
nying carbon substrate. Thus, soluble extracts derived
from cultures containing 5 g/L urea led to a 10% deco-
lorization of this dye when combined with 5 g/L fructose
in the culture medium, but when combined with 5 g/L
glucose, this same concentration of urea gave a 5-fold
higher decolorization. A similar effect was observed for
10 and 15 g/L ammonium oxalate with fructose and
glucose.
Effect of pH, temperature and copper amount of cultures
on decolorization of dye
Cultures were done in solid medium with optimized car-
bon and nitrogen contents (10 g/L glucose and 10 g/L
ammonium oxalate) in five different initial pH values
(at 26°C) and three different temperatures (with initial
pH = 5.5). Other cultures were performed (at 26°C and
initial pH = 5.5) in the presence of three different copper
sulfate concentrations. Extracts from 4 day cultures were
tested for decolorization. Decolorization of dye was better
in extracts derived from cultures incubated at 26°C and
with initial pH values ranging from 5.5 to 6.5 (Table 1).
Extracts derived from copper supplemented cultures did
not display an improvement in decolorization and at cop-
per sulfate concentrations above 1 mM the decolorization
was relatively low (Table 1).

Laccase activities
Figure 5 shows variations of laccase activities during
decolorization within the ten days period for this organ-
ism. In an attempt to determine the possible role of lig-
ninolytic enzymes on dye decolorization, laccase enzyme
activity was monitored during the decolorization of this
dye. In dye containing liquid cultures, laccase specific
activity of this fungi was observed to have decreased
by increasing dye concentration. These results empha-
sized the role of laccase in RB 19 decolorization.
At higher concentrations levels than 50 mg/L RB 19,
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considered enzyme activities were diminished sharply,
which is likely due to the toxicity of synthetic dyes as
mentioned before (Figure 5).

Discussions
Several species and strains have been assessed for bio-
degradation of different pollutants such as crude oil [37],
pentachlorophenol [38], DDT [39], trinitrotoluene [40]
and some textile dyes [41,42]. Here we report laccase
activity in C. plicatilis, a relatively unexplored Coprinus
species, and its participation in the decolorization of the
textile dye reactive blue 19. Reactive blue 19 (RB 19) is a
vinyl sulfone azo dye. Laccase activity in C. plicatilis was
firstly described. Copper supplementation can stimulate
laccase synthesis since the enzyme uses copper as cofac-
tor, but the ion can also inhibit the growth of the orga-
nism [43]. Previous attempts to degrade it have focused
on photo-catalytic and chemo-oxidative processes [44-46].
Although these processes may degrade the dye partially or
even totally, they have several drawbacks such as the gen-
eration of by-products, including chemical sludge, and
high investment and operating costs [1].
It used to be generally accepted that carbon and nitro-

gen limitation favored the production of lignolytic en-
zymes in white rot fungi [47]. However, more recent
results are somewhat contradictory. For example, in L.
edodes, Buswell et al. [48] obtained 5-fold higher lac-
case levels under high nitrogen conditions than in low-
nitrogen cultures, while Hatvani and Mécs [49], working
on the biodegradation of dyes by Lentinus sp. grown in
solid media, found that faster decolorization occurred at
very low NH4Cl, peptone and malt extract concentra-
tions. On the other hand, the lignolytic activity of L.
edodes grown in liquid culture was stimulated by high N
concentrations [50]. In the present work, the decolo-
rization was affected by the type and concentration of
the nitrogen source, but different trends occurred for
different sources: higher concentrations of ammonium
salts resulted in higher decolorization, while for sodium
nitrate and urea higher production levels were obtained
at the lower concentrations. Moreover, the final result
varied drastically with the type of carbohydrate present
in the culture medium. For example, the high deco-
lorization obtained in cultures containing 5 g/L urea was
almost lost when glucose was replaced with fructose as
the main carbon source. A similar effect was observed
for ammonium oxalate.

Conclusions
C. plicatilis cultures were able to decolorize and biode-
grade the textile dye reactive blue 19. The decolorization
was highly influenced by medium composition and
culture conditions, being higher in media containing
intermediate concentrations of ammonium oxalate and
glucose. Decolorization of dye was associated with laccase
displaying good tolerance to a wide range of pH values
and temperatures, suggesting a potential role for this
organism and enzyme in the remediation of real dye
containing effluents. In conclusion, laccase activity in
C. plicatilis was firstly described in this study.
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