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Faculty of Arts and Sciences, Department of Mathematics, Pamukkale University, Denizli, Turkey

Received 3 February 2011; revised 18 July 2011; accepted 6 August 2011

Available online 14 October 2011
13

an

Pe

U

do

*

E-
KEYWORDS

Haar wavelets;

Nonlinear PDE;

Generalized Burgers–

Huxley equation;

Approximate solution
19-5166 ª 2011 King

d hosting by Elsevier

er review under re

niversity.

i:10.1016/j.ajmsc.2011

Tel.: +90 2582963619

mail address: i.celik@
S

B

sp

.0

; f

pa
Abstract In this paper, an efficient numerical method for the solution of non-

linear partial differential equations based on the Haar wavelets approach is pro-

posed, and tested in the case of generalized Burgers–Huxley equation.

Approximate solutions of the generalized Burgers–Huxley equation are com-

pared with exact solutions. The proposed scheme can be used in a wide class

of nonlinear reaction–diffusion equations. These calculations demonstrate that

the accuracy of the Haar wavelet solutions is quite high even in the case of a

small number of grid points. The present method is a very reliable, simple, small

computation costs, flexible, and convenient alternative method.
ª 2011 King Saud University. Production and hosting by Elsevier B.V.

All rights reserved.
1. Introduction

In this paper, following approximate solutions of the following nonlinear diffusion
equation is considered:
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by the Haar wavelet method. Where a, b, c and d are parameters, b P 0, c > 0,
c 2 ð0; 1Þ. Eq. (1) is a generalized Burgers–Huxley equation. When a = 0, d = 1,
Eq. (1) is reduced to the Huxley equation which describes nerve pulse propagation
in nerve fibers and wall motion in liquid crystals [22,23]. When b = 0, d = 1, Eq.
(1) is reduced to the Burgers equation describing the far field of wave propagation
in nonlinear dissipative systems [26]. When a = 0, b = 1, d = 1, Eq. (1) becomes
the FitzHugh–Nagumo (FN) equation which is a reaction–diffusion equation used
in circuit theory, biology and the area of population genetics [1]. At d = 1 and
a „ 0, b „ 0, Eq. (1) is turned into the Burgers–Huxley equation. This equation,
which shows a prototype model for describing the interaction between reaction
mechanisms, convection effects and diffusion transport, was investigated by Sat-
suma [21].

Various numerical techniques were used in the literature to obtain numerical
solutions of the Burgers–Huxley equation. Wang et al. [24] studied the solitary
wave solution of the generalized Burgers–Huxley equation while Estevez [7] pre-
sented nonclassical symmetries and the singular modified Burgers and Burgers–
Huxley equation. Also Estevez and Gordoa [8] applied a complete Painleve test
to the generalized Burgers–Huxley equation. In the past few years, various math-
ematical methods such as spectral methods [5,14,15], Adomian decomposition
method [11–13], homotopy analysis method [19], the tanh-coth method [25], var-
iational iteration method [2,3], Hopf-Cole transformation [6] and polynomial dif-
ferential quadrature method [20] have been used to solve the equation.

In solving ordinary differential equations (ODEs), Chen and Hsiao [4] derived
an operational matrix of integration based on the Haar wavelet method. By using
the Haar wavelet method, Lepik [16], Lepik [17] solved higher order as well as
nonlinear ODEs and some nonlinear evolution equations. Lepik [18] also used this
method to solve Burgers and sine-Gordon equations. Hariharan et al. [10], Harih-
aran and Kannan [9] introduced the Haar wavelet method for solving both Fish-
er’s and FitzHugh–Nagumo equations.

In the present paper, a new direct computational method for solving generalized
Burgers–Huxley equation is introduced. This method consists of reducing the
problem to a set of algebraic equation by first expanding the term, which has max-
imum derivative, given in the equation as Haar functions with unknown coeffi-
cients. The operational matrix of integration and product operational matrix
are utilized to evaluate the coefficients of the Haar functions. Identification and
optimization procedures of the solutions are greatly reduced or simplified. Since
the integration of the Haar functions vector is a continuous function, the solutions
obtained are continuous. This method gives us the implicit form of the approxi-
mate solutions of the problems. In this method, a few sparse matrixes can be ob-
tained, and there are no complex integrals or methodology. Therefore, the present
method is useful for obtaining the implicit form of the approximations of linear or
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nonlinear differential equations, and round off errors and necessity of large com-
puter memory are significantly minimized. Therefore, this paper suggests the use
of this technique for solving the generalized Burgers–Huxley equation problems.
Illustrative examples are given to demonstrate the application of the proposed
method.

2. The model problem

The analysis presented in this paper is based upon the generalized Burgers–
Huxley equation given by Eq. (1). Behaviors of many physical systems encoun-
tered in models of reaction mechanisms, convection effects and diffusion trans-
port give Eq. (1). The exact solution of the Eq. (1) subject to the initial
condition
uðx; 0Þ ¼ c
2
þ c
2
tanhða1xÞ

h i1
d ð2Þ
was derived by Wang et al. [24] using nonlinear transformations and is given by
uðx; tÞ ¼ c
2
þ c
2
tanhða1ðx� a2tÞÞ

h i1
d
; t P 0 ð3Þ
where
a1 ¼
�adþ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4bð1þ dÞ

p
4ð1þ dÞ c

a2 ¼
ac

1þ d
� ð1þ d� cÞð�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4bð1þ dÞ

p
2ð1þ dÞ

ð4Þ
This exact solution satisfies the following boundary conditions.
uð0; tÞ ¼ c
2
þ c
2
tanhð�a1a2tÞ

h i1
d
; t P 0

uð1; tÞ ¼ c
2
þ c
2
tanhða1ð1� a2tÞÞ

h i1
d
; t P 0

ð5Þ
The aim of this present study is to show that the Haar wavelet method is capable
of archiving high accuracy for the problems given by the generalized Burgers–
Huxley equation. The computed results are compared with the exact solutions
to show the effectiveness of current method.
3. Haar wavelet method

Haar wavelet is the simplest wavelet. The Haar wavelet transform, proposed in
1909 by Alfred Haar, is the first known wavelet. Haar transform or Haar wavelet
transform has been used as an earliest example for orthonormal wavelet transform
with compact support. The Haar wavelet family for x e [0,1] is defined as follows:
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hiðxÞ ¼
1 for x 2 ½n1;n2Þ;
�1 for x 2 ½n2; n3�;
0 elsewhere

8><
>: ð6Þ
where n1 ¼ k
m
; n2 ¼ kþ0:5

m
and n3 ¼ kþ1

m
. In these formulae integer m= 2j,

j= 0,1, . . .J indicates the level of the wavelet; k = 0,1, . . .m � 1 is the translation
parameter. Maximal level of resolution is J and 2J is denoted as M= 2J. The
index i in Eq. (6) is calculated from the formula i= m+ k + 1; in the case of
minimal values m= 1, k = 0 we have i = 2. The maximal value of i is
i= 2M= 2J+1. It is assumed that the value i= 1 corresponds to the scaling func-
tion for which h1(x) = 1 in [0,1].

It must be noticed that all the Haar wavelets are orthogonal to each other:
Z 1

0

hiðxÞhlðxÞdx ¼
2�j i ¼ l ¼ 2j þ k

0 i–l

(
ð7Þ
Therefore, they construct a very good transform basis. Any function y(x), which is
square integrable in the interval [0,1), namely

R 1

0
y2ðxÞdx is finite, can be expanded

in a Haar series with an infinite number of terms
yðxÞ ¼
X1
i¼1

cihiðxÞ; i ¼ 2j þ k; j P 0; 0 6 k 6 2j; x 2 ½0; 1Þ ð8Þ
Where the Haar coefficients,
ci ¼ 2j
Z 1

0

yðxÞhiðxÞdx ð9Þ
are determined in such a way that the integral square error
E ¼
Z 1

0

yðxÞ �
X2M
i¼1

cihiðxÞ
" #2

dx ð10Þ
is minimized.
In general, the series expansion of y(x) contains infinite terms. If y(x) is a piece-

wise constant or may be approximated as a piecewise constant during each subin-
terval, then y(x) will be terminated at finite terms, that is
yðxÞ ffi
X2M
i¼1

cihiðxÞ ¼ cTh2MðxÞ ð11Þ
where the coefficient and the Haar function vectors are defined as:
cT ¼ ½c1; c2; . . . c2M�; h2MðxÞ ¼ ½h1ðxÞ; h2ðxÞ; . . . h2MðxÞ�T
respectively and x 2 ½0; 1Þ.
The integrals of Haar function hi(x) can be evaluated as:
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pi;1ðxÞ ¼
Z x

0

hiðxÞdx ð12Þ

pi;tðxÞ ¼
Z x

0

pi;t�1ðxÞdx; t ¼ 2; 3; . . . ð13Þ
Carrying out these integrations with the aid of Eq. (6), it is found that
pi;1ðxÞ ¼
x� n1 for x 2 ½n1; n2�;
n3 � x for x 2 ½n2; n3�;
0 elsewhere

8><
>: ð14Þ

pi;2ðxÞ ¼

0 for x 2 ½0; n1�;
ðx�n1Þ2

2
for x 2 ½n1; n2�;

1
4m2 � ðn3�xÞ

2

2
for x 2 ½n2; n3�;

1
4m2 for x 2 ½n3; 1�

8>>>><
>>>>:

ð15Þ

pi;3ðxÞ ¼

0 for x 2 ½0; n1�;
ðx�n1Þ3

6
for x 2 ½n1; n2�;

x�n2
4m2 � ðn3�xÞ

3

6
for x 2 ½n2; n3�;

x�n2
4m2 for x 2 ½n3; 1�

8>>>>><
>>>>>:

ð16Þ

pi;4ðxÞ ¼

0 for x 2 ½0; n1�;
ðx�n1Þ4

24
for x 2 ½n1; n2�;

ðx�n2Þ2
8m2 � ðn3�xÞ

4

24
þ 1

192m4 for x 2 ½n2; n3�;
ðx�n2Þ2
8m2 þ 1

192m4 for x 2 ½n3; 1�

8>>>>><
>>>>>:

ð17Þ
Let us define the collocation points xl = (l � 0.5)/(2M), l= 1,2, . . ., 2M. By
these collocation points, a discretizised form of the Haar function hi(x) can be ob-
tained. Hence, the coefficient matrix H(i, l) = (hi(xl)), which has the dimension
2M · 2M, is achieved. The operational matrices of integrations Pt, which are
2M square matrices, are defined by the equation Pt(i, l) = pi,t(xl), where t shows
the order of integration.
4. Method of solution of generalized Burgers–Huxley equation

Consider the generalized Burgers–Huxley Eq. (1) with the initial condition
u(x, 0) = f(x) and the boundary conditions u(0, t) = g0(t) and u(1, t) = g1(t).

It is assumed that _u00ðx; tÞ can be expanded in terms of Haar wavelets as
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_u00ðx; tÞ ¼
X2M
i¼1

cihiðxÞ ¼ cTh2MðxÞ ð18Þ
where ‘‘·’’ and ‘‘00’’ means differentiation with respect to t and x, respectively, the
row vector cT is constant in the subinterval t 2 ½ts; tsþ1�.

By integrating Eq. (18) with respect to t from ts to t and twice with respect to x
from 0 to x, following equations are obtained
u00ðx; tÞ ¼ ðt� tsÞ
X2M
i¼1

cihiðxÞ þ u00ðx; tsÞ ð19Þ

u0ðx; tÞ ¼ ðt� tsÞ
X2M
i¼1

cipi;1ðxÞ þ u0ðx; tsÞ � u0ð0; tsÞ þ u0ð0; tÞ ð20Þ

uðx; tÞ ¼ ðt� tsÞ
X2M
i¼1

cipi;2ðxÞ þ uðx; tsÞ � uð0; tsÞ � x½u0ð0; tsÞ � u0ð0; tÞ� þ uð0; tÞ

ð21Þ

_uðx; tÞ ¼
X2M
i¼1

cipi;2ðxÞ þ x _u0ð0; tÞ þ _uð0; tÞ ð22Þ
From the initial condition and boundary conditions, we have the following equa-
tion as:
uðx; 0Þ ¼ fðxÞ; uð0; tÞ ¼ g0ðtÞ; uð1; tÞ ¼ g1ðtÞ; uð0; tsÞ ¼ g0ðtsÞ; uð1; tsÞ
¼ g1ðtsÞ; _uð0; tsÞ ¼ g00ðtsÞ; _uð1; tsÞ ¼ g01ðtsÞ
At x= 1 in the formulae (21) and (22) and by using conditions, we have
u0ð0; tÞ � u0ð0; tsÞ ¼ �ðt� tsÞ
X2M
i¼1

cipi;2ð1Þ þ g1ðtÞ � g1ðtsÞ þ g0ðtsÞ � g0ðtÞ ð23Þ

_u0ð0; tÞ ¼ �
X2M
i¼1

cipi;2ð1Þ � g00ðtÞ þ g01ðtÞ ð24Þ
It is obtained from Eq. (15) that
pi;2ð1Þ ¼
0:5 if i ¼ 1
1

4m2 if i > 1

(

If the Eqs. (23) and (24) are substituted into the Eqs. (19)–(21) and the results are
discriticised by assuming x fi xl, t fi ts+1 , we obtain
u00ðxl; tsþ1Þ ¼ ðtsþ1 � tsÞ
X2M
i¼1

cihiðxlÞ þ u00ðxl; tsÞ
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u0ðxl; tsþ1Þ ¼ ðtsþ1 � tsÞ
X2M
i¼1

cipi;1ðxlÞ � ðt� tsÞ
X2M
i¼1

cipi;2ð1Þ þ u0ðxl; tsÞ þ g1ðtsþ1Þ

� g1ðtsÞ þ g0ðtsÞ � g0ðtsþ1Þ

uðxl; tsþ1Þ ¼ ðtsþ1 � tsÞ
X2M
i¼1

cipi;2ðxlÞ þ uðxl; tsÞ þ g0ðtsþ1Þ � g0ðtsÞ � xl½ðtsþ1

� tsÞ
X2M
i¼1

cipi;2ð1Þ � g1ðtsþ1Þ þ g1ðtsÞ � g0ðtsÞ þ g0ðtsþ1Þ�

_uðxl; tsþ1Þ ¼
X2M
i¼1

cipi;2ðxlÞ � xl

X2M
i¼1

cipi;2ð1Þ þ g00ðtsþ1Þ � g01ðtsþ1Þ
" #

þ g00ðtsþ1Þ
We can also show matrix representation of these equations as:
U00sþ1ðlÞ ¼ Dt cTHði; lÞ þUsðlÞ00 ð25Þ

U0sþ1ðlÞ ¼ Dt cT ½P1ði; lÞ � 1l � P2ði; 1Þ� þU0sðlÞ þ g1ðtsþ1Þ � g1ðtsÞ
þ g0ðtsÞ � g0ðtsþ1Þ ð26Þ

Usþ1ðlÞ ¼ Dt cT ½P2ði; lÞ � xl � P2ði; 1Þ� þUsðlÞ þ g0ðtsþ1Þ � g0ðtsÞ
� xl½�g1ðtsþ1Þ þ g1ðtsÞ � g0ðtsÞ þ g0ðtsþ1Þ� ð27Þ

_Usþ1ðlÞ ¼ cT ½P2ði; lÞ � xlP2ði; 1Þ� þ xl½g00ðtsþ1Þ � g01ðtsþ1Þ� þ g00ðtsþ1Þ ð28Þ
where 1l is a unit function, which is shown as 1l = e(xl) = 1, P2(i, 1) is a 2M-
dimensional column vector and � is a Kronecker product.

In the following the scheme
_Usþ1ðlÞ ¼ U00s ðlÞ � aUd
s ðlÞU0s þ bUsðlÞð1�Ud

s Þ ðUd
s � cÞ ð29Þ
which leads us from the time layer ts to ts+1 is used.
Substituting Eqs. (25)–(28) into the Eq. (29), we have
cT ½P2ði; lÞ � xlP2ði; 1Þ� ¼ U00s ðlÞ � aUd
s ðlÞU0s þ bUsðlÞð1�Ud

s ÞðUd
s � cÞ

� xl½g00ðtsþ1Þ � g01ðtsþ1Þ� � g00ðtsþ1Þ: ð30Þ

From Eq. (30) the wavelet coefficients cT can be successively calculated. This solu-
tion process is started with
U0ðlÞ ¼ fðxlÞ
U00ðlÞ ¼ f0ðxlÞ
U000ðlÞ ¼ f00ðxlÞ:
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The solution of the resulting algebraic linear system of equations, which was con-
structed by applying the grid points, was obtained by the Maple software. Hence
we can obtain the implicit form of the approximate solution of the generalized
Burgers–Huxley equation as a Haar series.

5. Numerical results

Haar wavelet method is applied to solve the generalized Burgers–Huxley equation
Table

x

0.031

0.093

0.156

0.218

0.281

0.343

0.406

0.468

0.531

0.593

0.656

0.718

0.781

0.843

0.906

0.968
@u

@t
þ aud @u

@x
� @

2u

@x2
¼ buð1� udÞðud � cÞ
with the initial condition
uðx; 0Þ ¼ c
2
þ c
2
tanhða1xÞ

h i1
d

and boundary conditions
uð0; tÞ ¼ c
2
þ c
2
tanhð�a1a2tÞ

h i1
d
; uð1; tÞ ¼ c

2
þ c
2
tanhða1ð1� a2tÞÞ

h i1
d
; t P 0
for various values of a, b, c and d. Comparisons of the computed results with exact
solutions and approximate results, which is given in the Javidi and Golbabai [15]
and Sari and Guraslan [20], showed that the method has the capability of solving
the generalized Burgers–Huxley equation and also gives highly accurate solutions
with minimal computational effort for both time and space.

All of the examples, given in the following, J is taken as 3 or M is taken as 8 and
Dt is taken as 0.0001.
1 The absolute errors for various values of d and x with a = 1, b = 1, c = 10�3 and t = 0.8.

d = 1 d = 2 d = 4 d = 8

25 5.595048500e�9 2.60170e�7 1.83160e�6 5.10040e�6
75 1.585754820e�8 7.37310e�7 5.18900e�6 1.40414e�5
25 2.464804780e�8 1.14654e�6 8.05670e�6 2.17646e�5
75 3.197174720e�8 1.48748e�6 1.04554e�5 2.83351e�5
25 3.783204670e�8 1.76007e�6 1.23644e�5 3.34685e�5
75 4.222624610e�8 1.96449e�6 1.37580e�5 3.73524e�5
25 4.515634540e�8 2.10047e�6 1.47775e�5 3.99420e�5
75 4.662174470e�8 2.17497e�6 1.51994e�5 4.12351e�5
25 4.662274380e�8 2.17497e�6 1.52546e�5 4.12347e�5
75 4.515724300e�8 2.10054e�6 1.47283e�5 3.99412e�5
25 4.222824200e�8 1.96433e�6 1.38299e�5 3.73509e�5
75 3.783454090e�8 1.76033e�6 1.23582e�5 3.34663e�5
25 3.197443970e�8 1.48745e�6 1.04418e�5 2.83371e�5
75 2.465083840e�8 1.14629e�6 8.04390e�6 2.17548e�5
25 1.586053710e�8 7.37610e�7 5.17310e�6 1.40463e�5
75 5.596235600e�9 2.60370e�7 1.82170e�6 5.1034e�6
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Example 1. This present method is applied to Eq. (1) for a = 1, b = 1, c = 0.001
and the absolute errors for various values of d are given in Table 1. When the exact
and the current results are compared, the results are very accurate as indicated in
the table.

Example 2. This present method is applied to Eq. (1) for a = 0.1, b = 0.001,
c = 0.0001 and the absolute errors for various values of d are given in Table 2.
Comparison between the exact and the current results indicated that the results
are very accurate.
Table 2 The absolute errors for various values of d and x with a = 0.1, b = 10�3, c = 10�4 and t = 1.

x d = 1 d = 2 d = 4 d = 8

0.03125 0 9.999995623e�13 9.999986950e�12 0

0.09375 9.999996436e�15 9.999995623e�13 1.000000083e�11 1.000000083e�10
0.15625 0 9.999995623e�13 0 0

0.21875 1.000000321e�14 0 0 0

0.28125 0 9.999995623e�13 1.000000083e�11 0

0.34375 0 1.000000430e�12 1.000000083e�11 0

0.40625 1.000000321e�14 0 1.000000083e�11 1.000000083e�10
0.46875 0 0 1.000000083e�11 0

0.53125 0 1.000000430e�12 0 0

0.59375 1.000000321e�14 1.000000430e�12 0 9.999995276e�11
0.65625 0 9.999995623e�13 1.000000083e�11 0

0.71875 9.999996436e�15 9.999995623e�13 1.000000083e�11 0

0.78125 0 0 1.000000083e�11 0

0.84375 1.000000321e�14 9.999995623e�13 0 0

0.90625 0 0 0 0

0.96875 9.999996436e�15 0 9.999986950e�12 0

Table 3 The absolute errors for various values of d and x with a = �0.1, b = 0.1, c = 10�3 and t= 0.9.

x d = 1 d = 2 d = 4 d = 8

0.03125 8.160000000e�10 3.373000000e�8 2.083000000e�7 5.822000000e�7
0.09375 2.353300000e�9 1.009300000e�7 6.480000000e�7 1.697400000e�6
0.15625 3.671100000e�9 1.585800000e�7 1.024800000e�6 2.653700000e�6
0.21875 4.768200000e�9 2.066800000e�7 1.338800000e�6 3.450300000e�6
0.28125 5.646400000e�9 2.451600000e�7 1.590100000e�6 4.087700000e�6
0.34375 6.305200000e�9 2.739900000e�7 1.778300000e�6 4.565500000e�6
0.40625 6.743800000e�9 2.932800000e�7 1.904100000e�6 4.884800000e�6
0.46875 6.962800000e�9 3.029700000e�7 1.966300000e�6 5.044500000e�6
0.53125 6.963000000e�9 3.031300000e�7 1.967900000e�6 5.051500000e�6
0.59375 6.743700000e�9 2.933900000e�7 1.905400000e�6 4.890800000e�6
0.65625 6.305400000e�9 2.741000000e�7 1.779300000e�6 4.570700000e�6
0.71875 5.646300000e�9 2.452300000e�7 1.591000000e�6 4.092000000e�6
0.78125 4.768200000e�9 2.067400000e�7 1.339300000e�6 3.453200000e�6
0.84375 3.671100000e�9 1.586300000e�7 1.025300000e�6 2.655700000e�6
0.90625 2.353500000e�9 1.009900000e�7 6.482000000e�7 1.698600000e�6
0.96875 8.160000000e�10 3.375000000e�8 2.085000000e�7 5.827000000e�7
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Example 3. The method presented in this paper is also applied to the Eq. (1) for
a = �0.1, b = 0.1, c = 0.001, for a = 1, d = 1, c = 0.001 and for a = 5, b = 10,
d = 2. The absolute errors for various values of d, b and c are given in Tables 3–5,
respectively. Very accurate results can be seen in the tables when the exact and the
current results are compared.

Example 4. Solutions of Eq. (1) at t = 1,2, . . ., 10 for a = 5, b = 10, c = 0.001,
d = 2 have been obtained, and results are shown in Fig. 1. For t = 10, graphical
presentation of the absolute error is depicted in Fig. 2.These tables and figures
demonstrate that the accuracy of the Haar wavelet solutions is quite high even
in the case of a small number of grid points.
Table 4 The absolute errors for various values of b and x with a = 1, d = 1, c = 0.001 and t = 0.9.

x b = 1 b = 10 b = 50 b = 100

0.03125 5.582547900e�9 6.798773400e�8 3.60059750e�7 7.29591030e�7
0.09375 1.584504740e�8 1.909932160e�7 1.01050738e�6 2.04759917e�6
0.15625 2.463554700e�8 2.964153830e�7 1.56803746e�6 3.17739969e�6
0.21875 3.195924640e�8 3.842702350e�7 2.03265728e�6 4.11893700e�6
0.28125 3.781954570e�8 4.545315720e�7 2.40437064e�6 4.87220466e�6
0.34375 4.221374500e�8 5.072288940e�7 2.68315874e�6 5.43717907e�6
0.40625 4.514384420e�8 5.423647020e�7 2.86903276e�6 5.81384324e�6
0.46875 4.660924340e�8 5.599371920e�7 2.96198002e�6 6.00219464e�6
0.53125 4.661024240e�8 5.599423680e�7 2.96200600e�6 6.00222726e�6
0.59375 4.514474140e�8 5.423813270e�7 2.86910920e�6 5.81393500e�6
0.65625 4.221574020e�8 5.072559700e�7 2.68328143e�6 5.43732034e�6
0.71875 3.782203900e�8 4.545663960e�7 2.40451488e�6 4.87237838e�6
0.78125 3.196193760e�8 3.843046050e�7 2.03281662e�6 4.11913152e�6
0.84375 2.463833620e�8 2.964501980e�7 1.56818819e�6 3.17757672e�6
0.90625 1.584803470e�8 1.910167720e�7 1.01062166e�6 2.04773970e�6
0.96875 5.583733000e�9 6.799693000e�8 3.60105340e�7 7.29635830e�7

Table 5 The absolute errors for various values of c and x with a = 5, b = 10, d = 2 and t = 0.9.

x c = 10�2 c = 10�3 c = 10�4 c = 10�5

0.03125 7.409190e�5 2.39188e�6 7.45010e�8 3.13900e�9
0.09375 2.0808842e�4 6.69752e�6 2.11236e�7 7.85800e�9
0.15625 3.2311679e�4 1.039120e�5 3.28945e�7 8.38700e�9
0.21875 4.1912177e�4 1.347084e�5 4.26520e�7 1.32090e�8
0.28125 4.9605331e�4 1.593606e�5 5.04569e�7 1.71850e�8
0.34375 5.5386716e�4 1.778511e�5 5.63132e�7 1.73240e�8
0.40625 5.9252067e�4 1.901796e�5 6.02174e�7 1.80870e�8
0.46875 6.1199834e�4 1.963472e�5 6.26828e�7 1.93560e�8
0.53125 6.1224540e�4 1.963558e�5 6.24923e�7 1.93580e�8
0.59375 5.9324207e�4 1.902067e�5 6.04050e�7 1.80580e�8
0.65625 5.5497941e�4 1.778920e�5 5.62524e�7 1.73260e�8
0.71875 4.9746632e�4 1.593980e�5 5.03402e�7 1.72340e�8
0.78125 4.2063949e�4 1.347557e�5 4.23075e�7 1.32170e�8
0.84375 3.2454397e�4 1.039612e�5 3.26235e�7 8.39500e�9
0.90625 2.0920196e�4 6.70132e�6 2.06215e�7 7.94600e�9
0.96875 7.453704e�5 2.39340e�6 7.26800e�8 3.13500e�9



Figure 1 Solutions of Eq. (1) at different times for a = 5, b = 10, c = 0.001, d = 2.

Figure 2 The absolute error for a = 5, b = 10, c = 0.001, d = 2 and t = 10.
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6. Conclusion

In this paper, Haar wavelet approach is proposed for the generalized Burgers–
Huxley equation. Approximate solutions of the generalized Burgers–Huxley equa-
tion, obtained by computer simulation, are compared with exact solutions. Com-
parisons of the absolute errors of our methods with absolute errors given in Javidi
and Golbabai [15] and Sari and Guraslan [20] show that our method is efficient
method. These calculations demonstrate that the accuracy of the Haar wavelet
solutions is quite high even in the case of a small number of grid points. In this
method, there are no complex integrals or methodology except a few construction
of spars transform matrix. Applications of this method are very simple, and also it
gives the implicit form of the approximate solutions of the problems. These are the
main advantages of the method. This method is also very convenient for solving
the boundary value problems, since the boundary conditions in the solution are
taken care of automatically. Hence, the present method is a very reliable, simple,
fast, minimal computation costs, flexible, and convenient alternative method.
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