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A Comparative Study on Exergetic Performance
Assessment for Drying of Broccoli Florets in Three Different
Drying Systems

Filiz Icier,1 Neslihan Colak,2 Zafer Erbay,1 Ebru Hancioglu Kuzgunkaya,3 and
Arif Hepbasli4
1Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Turkey
2Department of Food Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey
3Geothermal Energy Research and Application Center, Izmir Institute of Technology, Izmir, Turkey
4Department of Mechanical Engineering, Faculty of Engineering, Ege University, Izmir, Turkey

This article deals with the exergy analysis and evaluation of
broccoli in three different drying systems. The effects of drying
air temperature on the exergy destruction, exergy efficiency, and
exergetic improvement potential of the drying process were investi-
gated. The exergy destruction rate for the drying chamber increased
with the rise in the drying air temperature at 1.5m/s, both in the tray
and the heat pump dryer. The highest exergy efficiency value was
obtained as 90.86% in the fluid bed dryer in comparison to the other
two drying systems and the improvement potential rate was the
highest in the heat pump dryer during drying of broccoli at the dry-
ing air temperature of 45�C and the drying air velocity of 1.0m/s.

Keywords Exergy analysis; Exergy performance; Fluidized bed
dryer; Heat pump dryer

INTRODUCTION

Large quantities of food products are dried to improve
shelf life, reduce packing costs, lower shipping weights,
enhance appearance, encapsulate original flavor, and main-
tain nutritional value. In this regard, the goals of drying
process research in the food industry may be classified in
three groups as follows: (a) economic considerations, (b)
environmental concerns, and (c) product quality aspects.[1]

Broccoli (Brassica oleracea) is a floral vegetable rich in
vitamins A and C, isothiocyanine, and especially glucora-
phanin and its derivative sulforaphane. Health-conscious
consumers have an increasing demand for young seedlings
and florets of broccoli to prevent breast cancer.[2] Par-
ticularly, the occurrence of anticancer principles in broccoli
(or Brassica oleracea) has been reported.[3–5] Fahey et al.[6]

reported the presence of a significant level of phase 2

activities among different samples of fresh broccoli, which
offer protective mechanism in carcinogenesis. Broccoli is a
rich source of phytomolecules such as sulphoraphane,
indoles, isothiocynates, etc.[7] Broccoli dehydration has
not been investigated to a great extent and few data are
available in the literature.[8–12]

The various kinds of energy display different qualities;
these differences manifest themselves in their ability to feed
and drive energy processes and their ability to be converted
into other kinds of energy. As indicated by Szargut et al.,[30]

the capacity for doing work refers to a measure of the
quality of energy. This fact is clarified by Dincer[31] as

high quality (or high temperature) energy sources such as fossil

fuels are used for relatively low temperature processes like

water and space heating or cooling, industrial drying, industrial

steam production, etc. and hence resulting in much lower

exergy efficiencies. In this regard, exergy efficiency permits a

better matching of energy sources and uses, leading to that

high quality energy must be used for performing high-quality

work.

Finally, drying is a low-temperature process. In this regard,
the drying systems with higher exergy efficiencies and lower
improvement potentials should be selected at the design
stage.

In evaluation of the performance of food systems,
energy analysis method has been widely used, whereas stu-
dies on exergy analysis, especially on exergetic assessment
of drying process, are relatively few in number.[13–17] In
these previous studies, the drying process was thermodyna-
mically modeled by Dincer and Sahin,[14] and drying of
different products such as wheat kernel,[18] pistachio,[13]

red pepper slices,[15] potato,[16,19] apple slices,[20]

pumpkin,[17] laurel leaves,[21,22] pasta,[23] green olive,[24]

and mint,[25] was evaluated in terms of energetic and exer-
getic aspects using various drying devices, such as fluidized
bed dryers, solar drying cabinets, cyclone-type dryers,
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convective-type hot air dryers, and heat pump dryers. In
addition, other exergetic studies on drying also included a
solar greenhouse,[26] a freeze-drying process,[27] a detailed
review,[28] and mathematical modeling.[29]

The present study differs from the previously conducted
ones as follows: The main objective of this contribution is
to perform exergy analyses of three drying processes in
terms of drying of broccoli under different operating con-
ditions and drying systems for the assessment of the drying
performance and to compare them with each other.

MATERIALS AND PROCEDURE

Material

Fresh broccoli (Brassica oleracea) was purchased from a
local market in Izmir. It was processed within 24 h. Broc-
coli samples were washed with water, and then the excess
water on the surface of broccoli was removed with filter
paper. Afterwards, florets of broccoli were separated. The
average diameter of broccoli florets was 1.2 cm with a
sphericity of 0.85.

Experimental Setup

Broccoli was dried in the three different drying
systems: in a laboratory-type tray dryer (Armfield UOP8,
Hampshire, UK) shown schematically in Fig. 1, in a
laboratory-type fluid bed dryer (Sherwood Scientific,
Cambridge, UK) indicated schematically in Fig. 2, and in
an air source heat pump conveyor dryer designed and
constructed in the Department of Mechanical Engineering,
Faculty of Engineering, Ege University, Izmir, Turkey,
which is illustrated schematically in Fig. 3.

In the tray dryer, the drying air velocity was adjusted by
an axial flow fan and fan speed control unit. The air was
heated with an electric 3 kW heater placed inside the duct
and air temperature was controlled by a heater power
control unit. Drying compartment dimensions were
0.3m� 0.3m� 0.4m. The dryer included four sample trays.

In the fluid bed dryer, the air was drawn through a mesh
filter in the base of the cabinet and blown by a centrifugal
fan over a 2kW finned electrical heater. It flowed through
stainless steel filter gauze before being delivered to the
distributor gauze at the base of the dryer body. This distribu-
ted the air uniformly to the bed and also supported it. The air
blower was controlled by a thyristor circuit to give a smooth
vibration over a wide range of motor speeds and fine control
of the drying temperature. The tub unit locked into position
on the cabinet top by a simple bayonet fitting. A filter bag
was employed to retain any stray particles of the sample being
fluidized while allowing the passage of exit gases.

In the heat pump conveyor dryer, thedrying system con-
sists of two main parts: (a) a heat pump and (b) a drying
chamber. The air was heated by the heat pump system,
which included a scroll compressor, two condensers (an
internal and an external ones), an expansion valve, an

FIG. 1. Schematic illustration of the tray dryer.

FIG. 2. Schematic illustration of the fluid bed dryer.

FIG. 3. Schematic illustration of the heat pump dryer.
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evaporator, and a heat recovery unit. Air temperature was
controlled by a control unit, and R407C was used as
refrigerant in the heat pump system. The drying air velocity
was regulated by a fan and fan speed control unit, and dry-
ing air was recycled. The drying compartment dimensions
were 3m� 1m� 1m and the drying material was moved
by a conveyor band system worked by a motor.

Drying Procedure and Measurements

Broccoli florets were spread onto the trays as a thin layer
and drying experiments were carried out at drying air ve-
locities of 0.5, 1.0, or 1.5m=s in the tray dryer. In the fluid
bed dryer, the drying air velocities were chosen as 1.7 and
2.7m=s. Drying temperatures were 50, 60, or 70�C for both
dryers. In the heat pump dryer, the drying air velocities
were chosen as 0.5, 1.0, or 1.5m=s and drying air tempera-
tures were set at 45, 50, or 55�C. The drying air tempera-
tures mentioned in the text were the mean dry bulb air
temperatures, which were constant in the drying cabinet
during drying.

Moisture loss was recorded at 5-min intervals during the
drying process for obtaining drying curves. The sample
moisture content was determined with a vacuum-oven
method.[32] The initial moisture content of the broccoli
florets samples was determined to be 87% on a wet basis.
The protein, ash, oil, carbohydrate, and fiber contents of
the broccoli florets were determined.[33–36] The composition
of broccoli florets used in this study is given in Table 1. The
broccoli florets were dried to the final moisture content of
8% because the equilibrium moisture content was taken as
8% for all drying conditions. The change of dimensionless
moisture ratio (MR) during drying was calculated as
MR ¼ Mt �Me

Minitial �Me
.

Humidities, temperatures, and velocities were measured
with robust humidity probes (Testo, 0636.2140, Freiburg,
Germany), vane=temperature probes (Testo, 0635.9540,
Freiburg, Germany), and aprofessional telescopic handle
for plug-in vane probes (Testo, 0430.0941, Freiburg,
Germany), respectively. Measurements of drying air tem-
perature, velocity, and relative humidity were recorded at
inlet and outlet holes at every 10min for the tray dryer

and 5min for the fluid bed dryer. The surface temperature
of the equipment was measured with a digital multimeter
(Metex ME-32, Seoul, Korea) and the surface temperature
of broccoli florets during drying was measured with an
infrared thermometer with laser sighting (Testo 525-T2,
Freiburg, Germany). A digital balance (Scaltec SBA 61,
Goettingen, Germany) was used to measure the weight loss
of sample during drying experiments. The ambient tem-
perature and the relative humidity were observed and
recorded with a multifunction instrument (Testo 350-XL=
454, Control unit, Freiburg, Germany). The relative
humidity of the air was also measured at the inlet and
outlet of the dryer, and they were taken into account in
calculations.

Experimental Uncertainty

Uncertainty analysis is needed to prove the accuracy of
the experiments. Errors and uncertainties in the experi-
ments can arise from the instrument selection, condition,
calibration, environment, observation and reading, and test
planning.[37] An uncertainty analysis was performed using
the method described by Holman:[38]

UF ¼ @F

@z1
u1

� �2

þ @F

@z2
u2

� �2

þ � � � þ @F

@zn
un

� �2
" #1=2

ð1Þ

ANALYSIS

Mass Balance Equation

The mass balance equation can be expressed in the rate
form as X

_mmin ¼
X

_mmout ð2Þ

where _mm is the mass flow rate, and the subscript in stands
for inlet and out for outlet.

Energy Balance Equations

Balance equations were applied for a general steady-
state, steady-flow process to find the work and heat
interactions, the rate of exergy decrease, the rate of irre-
versibility, and the energy and exergy efficiencies.[39,40]

The general energy balance was written as

X
_EEin ¼

X
_EEout or _QQþ

X
_mmin

_hhin ¼ _WW þ
X

_mmout
_hhout

ð3Þ

where _mm is the mass flow rate and the subscripts in and out
stand for inlet and outlet, respectively. _EEin is the rate of net
energy transfer in, _EEout is the rate of net energy transfer out
by heat, work, and mass. _QQ ¼ _QQnet;in ¼ _QQin � _QQout is the rate
of net heat input, _WW ¼ _WWnet;out ¼ _WWout � _WWin is the rate of
net work output, and h is the enthalpy per unit mass.

TABLE 1
Composition of broccoli florets

Component Amount (%)

Water 86.44
Protein 2.91
Oil 0.38
Carbohydrate 6.69
Fibre 2.68
Ash 0.90
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Exergy Balance and Exergy Improvement
Potential Equations

The general exergy balance was expressed in the rate
form asX

_EExin �
X

_EExout ¼
X

_EExdest orX
1� T0

Ts

� �
_QQloss � _WW þ

X
_mminw�

X
_mmoutw ¼ _EExdest

ð4Þ

w ¼ ðh� h0Þ � T0ðs� s0Þ ð5Þ

where _QQloss is the heat transfer rate through the boundary
at temperature Ts at location s, _WW is the work rate, w is
the flow (or specific) exergy, s is the specific entropy, and
the subscript 0 indicates properties at the dead state of P0

and T0.
[41]

The exergy destroyed or the irreversibility was expressed
as follows:

I ¼ _EExdest ¼ T0
_SSgen ð6Þ

where _SSgen is the rate of entropy.
Van Gool[42] proposed that maximum improvement in

the exergy efficiency for a process or system was obviously
achieved when the exergy loss or irreversibility ð _EExin�
_EExoutÞ was minimized. Consequently, he suggested that
it was useful to employ the concept of an exergetic
improvement potential when analyzing different processes
or sectors of the economy. This improvement potential in
the rate form, denoted I _PP, was given by:[43]

I _PP ¼ ð1� gÞð _EExin � _EExoutÞ ð7Þ

g is the exergy efficiency, which is explained in the section
Exergy Efficiencies for Drying in detail.

Determination of Thermal Properties of Broccoli

Determination of Specific Heats

The protein, fat, carbohydrate, ash, and fiber contents
of broccoli were determined and used in the calculation
of specific heat of broccoli samples:[44]

Cp ¼CprotXprot þ CfatXfat þ CcarbXcarb þ CashXash

þ CfibreXfibre þ CwXw

ð8Þ

Determination of Specific Enthalpies

The specific enthalpy of broccoli was written in terms of
specific heat as[44]

h ¼
X

hiXi ¼
XZ T2

T1

CiXi dT ð9aÞ

where h is the specific enthalpy of the individual food
components andXi is the mass fraction of food components.

Assuming a constantC over the temperature range, Eq. (9a)
reduced to:

h ¼
X

CiXiðTm � T0Þ ð9bÞ

where T0 is the reference temperature, which was taken
to be 0�C in this study; and Tm is the temperature of food
item in degrees Celsius. Equation (9b) was applied for the
temperature range of 0–70�C in this study.

Determination of Entropies

The specific entropies of food were given by[45]

sm;in � smo ¼ Cpm;in
lnðTm;in=ToÞ ð10Þ

sm;out � smo ¼ Cpm;out
lnðTm;out=T0Þ ð11Þ

where T0 is the reference temperature, and Tm is the
temperature of food item in K.

Performing Exergy Analyses

Total exergy inflow, outflow, and losses of the tray and
the drying chamber were estimated based on the exergy
analysis, which determined the exergy values at steady-
state points and the reason for exergy variation for the
process. A schematic illustration of the dryer systems is
given in Figs. 1–3, and the exergy analysis was performed
according to this scheme using the relations presented in
this subsection:[15,45]

The enthalpy of drying air was

hda ¼ cPdaT þ xhsat@T ð12Þ

where cPda defines the specific heat of drying air, T is the
drying air temperature, x is the absolute humidity, and
hsat@T is the enthalpy of the saturated vapor at the
temperature T.

To evaluate the entropy of moist air, the contribution
of each component in the mixture was determined at
the mixture temperature and the partial pressure of the
component:

sda ¼ sa � Ra ln
Pa

P0
þ w sv � Rv ln

Pv

P0

� �
ð13Þ

The exergy balance equation for the dryer was

_EExm;in � _EExm;out ¼ _EExda;in � _EExda;out þ _EExevap

� _EExloss � _EExD
ð14Þ

where _EExm is the exergy transfer rate of the material, _EExda
is the exergy transfer rate of the drying air, _EExevap is the
exergy evaporation rate of the dryer, _EExloss is the rate of
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exergy loss the surrounding, and _EExD is the rate of exergy
destruction in the dryer.

The specific exergies at inlets (wm,in) and outlets (wm;out)
of the material are given by:

wm;in ¼ ðhm;in � hm;0Þ � T0ðsm;in � sm;0Þ ð15Þ

wm;out ¼ ðhm;out � hm;0Þ � T0ðsm;out � sm;0Þ ð16Þ

The specific exergies with a stream of drying air entering
and leaving the dryer were as follows:

wda;in ¼ ðhda;in � h0Þ � T0ðsda;in � sda;oÞ ð17Þ

wda;in ¼ ðhda;out � hda;oÞ � T0ðsda;out � sda;oÞ ð18Þ

where wda,in and wda,out are the specific exergy transfers at
inlets and outlets, respectively; h0, s0 denote the specific
enthalpy and specific entropy at the temperature of dead state
(T0), respectively; hda,in and sda,in denote the specific enthalpy
and the specific entropy at the temperature of drying air
entering the dryer (Tda,in), respectively; and hda,out and sda,out
denote the specific enthalpy and the specific entropy of drying
air at the temperature of the drying air exiting, respectively.
The potential and kinetic exergies were negligible.

The heat transfer rate due to phase change was

_QQevap ¼ _mmw � hfg ð19Þ

The rate of exergy transfer due to evaporation of the
dryer was as follows:

_EExevap ¼ 1� T0

Tm

� �
_QQevap ð20Þ

Heat transfer rate to the environment was given by

_QQloss ¼ _QQevap � _mmmðhm;out � hm;inÞ þ _mmdaðhda;in � hda;outÞ
ð21Þ

The following equation was used to calculate the rate
of exergy loss to the surrounding, where Ts is the surface
temperature

_EExL ¼ 1� T0

Ts

� �
_QQloss ð22Þ

Exergy Efficiencies for Drying

There are two ways of formulating exergetic efficiency
for drying systems.[13,17,18,45] The first one can be defined
as the ratio of the product exergy to exergy inflow as
follows:[13,17]

gex1 ¼
Exergy inflow� Exergy loss

Exergy inflow
¼ 1�

_EExloss
_EExin

ð23aÞ

The second may be defined on the product=fuel basis. The
product is the rate of exergy evaporation and the fuel is the
rate of exergy drying air entering the dryer chamber. In this
regard, exergy efficiency may be written as follows:[18,45]

gex2 ¼
_EExevap
_EExda

ð23bÞ

In this study, the exergy efficiency values were calculated
using Eq. (23a) and compared to those calculated by
Eq. (23b) in the literature.

Equations were solved using Microsoft Excel. The ther-
modynamic properties of water and air were found using
the Engineering Equation Solver software package.[46]

RESULTS AND DISCUSSION

The thermodynamic analyses of drying process of broc-
coli were carried out by using data from the experiments
conducted at different drying air temperatures for each
system. A detailed uncertainty analysis was performed
for experimental measurements of parameters and total
uncertainties of predicted values. Results of uncertainty
analysis are listed in Table 2.

Figure 4 presents the typical variation of moisture
content during drying at the constant drying air tempera-
ture as an example of 50�C. The drying rate decreased con-
tinuously with the drying time (Fig. 4). Because there was
no constant rate drying period in these curves, all the dry-
ing operations occurred in the falling rate period. Because
the capacity, dimensions, and characteristic parameters for
each drying system were different, the system parameters
were as close as possible to each other to make the compar-
isons accurate. The exergy efficiency was compared at the
constant drying air temperature of 50�C, because it was
the shared temperature for all systems used. However,
the drying air velocity was 1.5m=s for the tray dryer and
the heat pump dryer, whereas it was 1.7m=s for the fluid
bed dryer, which was the lowest air velocity possible in
the fluid bed dryer. Because the air velocity for the fluid
bed dryer was higher than the others, the fast drying for
this dryer could be due to the effect of velocity. The dryer
efficiencies could not be compared by this plot (Fig. 4). The
variations of the exergy efficiency values obtained from
Eq. (23a), exergy destruction, and improvement potential
rates with various drying air temperatures and velocities
in different drying systems were investigated to make the
comparison more accurate (Figs. 5 and 6).

The exergy efficiency in the tray dryer changed between
59.70 and 81.92% (Table 3). Maximum exergy efficiency in
the tray dryer was obtained at a drying air of 60�C with an
air velocity of 1.5m=s. Similarly, the exergy efficiency of
the fluid bed drying chamber varied between 74.23 and
90.86% (Table 3). In the heat pump dryer, exergy efficien-
cies altered between 75.59 and 88.66% (Table 3). The
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exergy efficiency decreased as the drying air temperature
increased for the air velocity of 0.5 and 1.5m=s, unlike
1.0m=s air velocity. The increasing air velocity in the

drying system improved the exergy efficiencies in general.
Interestingly, maximum exergy efficiencies in the fluid
bed dryer and tray dryer were obtained at 60�C. The high-
est value for all systems was 90.86%, which was obtained at
the drying air temperature of 60�C and velocity of 2.7m=s
(highest air velocity) in the fluid bed dryer.

A comparison in exergy efficiency values for various
products in the literature is given in Table 4. It is obvious
from this table that the exergy efficiency values calculated

FIG. 5. The change of exergy destruction rate value with drying

temperature during drying of broccoli florets in three different systems:

(a) tray dryer, (b) fluid bed, and (c) heat pump.

TABLE 2
Uncertainties of the experimental measurements and total

uncertainties for predicted values

Parameter Unit Comment

Experimental measurements
Uncertainty in the
temperature measurement

�C �0.224

Uncertainty in the weight
measurement

g �0.00051

Uncertainty in the air
velocity measurement

m=s �0.21

Uncertainty in the
measurement of relative
humidity of air

% �0.41

Uncertainty in the
measurement of moisture
content

g �0.0016

Uncertainty in the pressure
measurement

kPa �1.0%

Uncertainty in the surface
temperature measurement

�C �1.0

Predicted values
Total uncertainty for MR Dimensionless �2.48%a

Total uncertainty for g Dimensionless �1.10%b

Total uncertainty for _EExd kW �0.70%c

Total uncertainty for IP kW �5.76%d

aNominal value was taken as 0.030.
bNominal value was taken as 78.11.
cNominal value was taken as 0.061.
dNominal value was taken as 0.013.

FIG. 4. Moisture content of broccoli during drying (drying air tempera-

ture: 50�C, relative humidity: 13%, air velocity: 1.5m=s for tray and heat

pump dryer, 1.7m=s for fluid bed dryer).
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using Eq. (23a) were higher than those calculated by
Eq. (23b) in some studies. It may be concluded that it
was more meaningful, objective, and useful to assess the
performance of the drying process relative to the perform-
ance of similar drying processes on the product (or
benefit)=fuel basis.

Figure 5 shows the variation of the exergy destruction
ratios depending on the drying air temperature and the ve-
locity. Whereas the maximum exergy destruction rates were
obtained at the drying air temperature of 55�C in the heat

pump dryer, the minimum exergy destruction rates were
at the drying air temperature of 60�C in the fluid bed dryer.
Because the exergy efficiency was highest at 60�C for both
velocities in the fluid bed dryer, the best drying temperature
at the range studied could be concluded as 60�C. Further-
more, lowest exergy destruction rate at this temperature
presented the similar suggestion for fluid bed dryer
(Fig. 5b). In general, the exergy destruction rate was
decreased as the drying air velocity decreased in all drying
systems, whereas it increased as the drying temperature
increased in the heat pump dryer and tray dryer.

The variations of the improvement potential rates of the
drying chambers with drying air temperature and velocity
were similar to those of exergy destruction rates. Maximum
improvement potential rate was predicted as 0.072 kW at
the drying air temperature of 45�C and air velocity of
1m=s in the heat pump dryer.

FIG. 6. The change of improvement potential rate value with drying

temperature during drying of broccoli florets in three different systems:

(a) tray dryer, (b) fluid bed, and (c) heat pump.

TABLE 3
The results of exergy analyses using Eq. (23a): (a) Tray

drier, (b) Fluid bed drier, and (c) Heat pump drier

Tda (
�C) V (m=s) ð _EExÞin (kW) ð _EExÞout (kW) gex (%)

(a)
50 1.5m=s 0.226 0.180 79.60
60 1.5m=s 0.413 0.339 81.92
70 1.5m=s 0.722 0.553 76.54

50 1.0m=s 0.166 0.124 74.76
60 1.0m=s 0.278 0.217 78.11
70 1.0m=s 0.518 0.360 69.58

50 0.5m=s 0.091 0.054 59.70
60 0.5m=s 0.138 0.109 78.99
70 0.5m=s 0.250 0.179 71.55

(b)
50 2.7m=s 0.014 0.088 74.23
60 2.7m=s 0.008 0.134 90.86
70 2.7m=s 0.018 0.208 88.19

50 1.7m=s 0.051 0.040 79.22
60 1.7m=s 0.084 0.075 88.25
70 1.7m=s 0.136 0.118 86.49

(c)
45 1.5m=s 1.961 1.739 88.66
50 1.5m=s 2.369 2.083 87.96
55 1.5m=s 2.911 2.469 84.81

45 1.0m=s 1.360 1.046 76.93
50 1.0m=s 1.778 1.511 85.00
55 1.0m=s 1.917 1.637 85.43

45 0.5m=s 0.716 0.604 84.34
50 0.5m=s 0.855 0.746 87.25
55 0.5m=s 1.037 0.784 75.59
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Because the heat pump dryer had higher capacity and
overall energy input, its improvement potential values for
50�C were higher than those of other drying systems. On
the other hand, it had adequately higher exergy efficiency
values for the same temperature and air velocity values
compared to other small-scale systems. This study pre-
sented that both exergy efficiency and the improvement
potential approach were used as comparative performance
variables for drying systems even if they had different
capacities.

CONCLUSION

The experimental data obtained from the measure-
ments were also utilized to perform a performance assess-
ment of the drying process through exergy efficiencies,
exergy destruction, and improvement potential. Some
concluding remarks obtained from the present study are
as follows:

� The exergy efficiency term found by the ratio of
the product exergy to exergy inflow gave more
meaningful and comparative results rather than
the term defined on the product=fuel basis.

� In evaluating the performance of various types of
drying systems using the exergy analysis method,
the relations selected are of importance. The
exergy efficiency of the drying chamber of tray
dryer increased with the rise in air velocity.

� In the fluid bed dryer, the highest exergy efficiency
value of the drying chamber was obtained at the
drying air temperature of 60�C and air velocity
of 2.7m=s.

� In the heat pump dryer, the exergy efficiency of
the drying chamber decreased as the drying air
temperature increased, whereas it increased as
the air velocity increased.

� According to the comparison of exergy efficiencies
of dryers during drying of broccoli florets, the
most efficient dryer was determined as fluid bed
dryer with higher exergy efficiencies and lower
improvement potentials.

� Performance analysis for different drying processes
can be made by using the improvement pot-
ential term even if drying systems have different
capacities.

NOMENCLATURE

C Specific heat (kJ kg�1K�1)
_EE Rate of net energy transfer (kJ s�1)
_EEx Exergy rate (kJ s�1)
F Function

h Specific enthalpy (kJ kg�1)
_II Rate of irreversibility (exergy destroyed) (kJ s�1)
I _PP Rate of improvement potential (kJ s�1)
M Weight of the sample
_mm Mass flow rate (kg s�1)
P Pressure (kPa)
_QQ Heat transfer rate (kJ s�1)
R Gas constant (J kg�1K�1)
_SS Rate of entropy (k J s�1K�1)
s Specific entropy (kJ kg�1K�1)
T Temperature (K)
U, u Uncertainty
_WW Work rate (kJ s�1)
X Weight fraction of dry matter
z Independent variable

Greek Symbols

g Exergy efficiency
w Flow (or specific) exergy (kJ kg�1)
x Specific humidity (g g�1)

Subscripts

0 Restricted dead state
a Air
D Destroyed, destruction
da Drying air
e At equilibrium
evap Evaporation
ex Exergetic, exergy
da Drying air
gen Generation
in Inlet
initial Initial
L Loss
m Food material
out Outlet
s Surface
sat@T Saturated
t At time t
v Vapor
w Water
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