

Simulated Annealing Algorithm for Solving Sequence-Dependent Disassembly

Line Balancing Problem

Can B. Kalayci*. Surendra M. Gupta.**


* Department of Industrial Engineering, Pamukkale University, Denizli, 20070

TURKEY (Tel: +90-544-6176177; e-mail: cbkalayci@pau.edu.tr).

** Mechanical and Industrial Engineering Department, 334 Snell Engineering Building, Northeastern University,

360 Huntington Avenue, Boston, MA 02115, USA (Tel: +1-617-373-4846; e-mail:gupta@neu.edu)

Abstract: In this paper, we consider a sequence-dependent disassembly line balancing problem

(SDDLBP) with multiple objectives that concerns with the assignment of disassembly tasks to a set of

ordered disassembly workstations while satisfying the disassembly precedence constraints and

optimizing the effectiveness of several measures considering sequence-dependent time increments among

disassembly tasks. Due to the high complexity of the SDDLBP, there is currently no known way to

optimally solve even moderately sized instances of the problem; therefore an efficient methodology

based on the simulated annealing is proposed to solve the SDDLBP.

Keywords: Product recovery, disassembly, sequence-dependent disassembly line balancing,

metaheuristics, simulated annealing



1. INTRODUCTION

Product recovery seeks to obtain materials and parts from old

or outdated products through recycling, refurbishing and

remanufacturing in order to minimize the amount of waste

sent to landfills. See Gungor and Gupta (1999) and Ilgin and

Gupta (2010) for an extensive review of product recovery.

The first crucial and the most time consuming step of product

recovery is disassembly. Disassembly operations can be

performed at a single workstation, in a disassembly cell or on

a disassembly line. Although a single workstation and

disassembly cell are more flexible, the highest productivity

rate is provided by a disassembly line and hence is the best

choice for automated disassembly processes, a feature that

will be essential in the future disassembly systems (Gungor

and Gupta, 2002). Disassembly Line Balancing Problem

(DLBP) is a multi-objective problem that is described by

Gungor and Gupta (2002) and has mathematically been

proven to be NP-complete by McGovern and Gupta (2007)

making the goal to achieve the optimal balance

computationally expensive. Exhaustive search works well

enough in obtaining optimal solutions for small sized

instances; however its exponential time complexity limits its

application on the large sized instances. An efficient search

method needs to be employed to attain a (near) optimal

condition with respect to objective functions. Although some

researchers have formulated the DLBP using mathematical

programming techniques, it quickly becomes unsolvable for a

practical sized problem due to its combinatorial nature. For

this reason, there is an increasing need to use metaheuristic

techniques such as genetic algorithms (GA) (Kalayci and

Gupta, 2011a, McGovern and Gupta, 2007), ant colony

optimization (ACO) (Kalayci and Gupta, 2012a, McGovern

and Gupta, 2005), simulated annealing (SA) (Kalayci et al.,

2012), tabu search (TS) (Kalayci and Gupta, 2011b), artificial

bee colony (ABC) (Kalayci et al., 2011) and particle swarm

optimization (PSO) (Kalayci and Gupta, 2012b). See

McGovern and Gupta (2011) for more information on DLBP.

Sequence-dependency concept is introduced by (Scholl et al.,

2006) to assembly line balancing literature while it was

adapted to disassembly by (Kalayci and Gupta, 2012a). Since

the sequence-dependent disassembly line balancing problem

(SDDLBP) is NP-complete, it cannot be solved in

polynomial time in any known way. NP-complete or NP-hard

expression represents a way of showing that certain classes of

problems are not solvable in realistic time (Tovey, 2002). For

this reason, efficient methodologies are necessary to reach

near optimal solutions of SDDLBP. SA was selected as a

solution approach for solving SDDLBP.

2. NOTATION

c
Cycle time (Maximum time available at each

workstation)

id Demand; quantity of part i requested

0F

Fitness values vector of initial solution

bestF

Fitness values vector of best solution

cF

Fitness values vector of current solution

gF

Fitness values vector at iteration g

g
Current iteration (generation) number of the

algorithm

ih

Binary value; 1 if part i is hazardous, else 0.

IP Set (i,j) of parts such that task i must precede task j

i Part identification, task count (1,…,n)

j Part identification, task count (1,…,n)

k Workstation count (1,…,m)

m Number of workstations required for a given

7th IFAC Conference on Manufacturing Modelling, Management,
and Control
International Federation of Automatic Control
June 19-21, 2013. Saint Petersburg, Russia

978-3-902823-35-9/2013 © IFAC 93 10.3182/20130619-3-RU-3018.00064

solution sequence

m Minimum possible number of workstations

n Number of parts for removal

N The set of natural numbers

ps Population size

iPS thi part in a solution sequence

r
Uniformly distributed random number between 0

and 1.

0S

Initial solution

cS

Current solution

bestS

Best solution

gS

Solution at iteration g

ijsd Sequence dependent time increment influence of i

on j

jST

station time; total processing time requirement in

workstation j

0T

Initial temperature

gT

Temperature at iteration g

it Part removal time of part i

it
Part removal time of part i considering sequence

dependent time increment

tlimit Time limit of the algorithm to be executed

3. PROBLEM DEFINITION AND FORMULATION

The sequence dependent disassembly line balancing problem

(SDDLBP) investigated in this paper is concerned with a

paced disassembly line for a single model of product that

undergoes complete disassembly. As opposed to the DLBP,

in SDDLBP whenever a task interacts with another task, their

task times may be influenced. Disassembling a particular

component before another component may prolong (or

curtail) the task time, as opposed to disassembling them in

reverse order, because one component could hinder the other

because it requires additional movements and/or prevents it

from using the most efficient disassembly process. If task j is

performed before task i, its standard time jt is incremented

by ijsd . This sequence dependent increment measures the

prolongation of task j forced by the interference of already

waiting task i.

Illustrative example: The precedence relationships (solid line

arrows) and sequence dependent time increments (dashed line

arrows) for an 8 part PC disassembly process are illustrated

in Fig. 1 and their knowledge database is given in Table 1.

This example is modified from (Gungor and Gupta, 2002).

Fig 1. Precedence relationships (solid line arrows) and

sequence dependent time increments (dashed line arrows) for

the PC example

Table 1: Knowledge database for the PC example

Part Task Time Hazardous Demand

PC top cover 1 14 No 360

Floppy drive 2 10 No 500

Hard drive 3 12 No 620
Back plane 4 18 No 480

PCI cards 5 23 No 540

RAM modules 6 16 No 750
Power supply 7 20 No 295

Motherboard 8 36 No 720

Sequence dependencies for the PC example are given as

follows: 23 32 56 652, 4, 1, 3sd sd sd sd    . For a feasible

sequence 1,2,3,6,5,8,7,4 ; since part 2 is disassembled

before part 3, sequence dependency 32 4sd  takes place

because when part 2 is disassembled, the obstructing part 3 is

still not taken out, i.e., the part removal time for part 2 is

increased which results in 2 2 32 14t t sd    ; similarly since

part 6 is disassembled before part 5, sequence dependency

56 1sd  takes place because when part 6 is disassembled,

the obstructing part 5 is still not taken out, i.e., the part

removal time for part 6 is increased which results in

6 6 56 17t t sd    . In this paper, the precedence

relationships considered are of AND type and are represented

using the immediately preceding matrix []ij n ny  , where

1 if task is executed after task

0 if task is executed before task
ij

i j
y

i j


 


 (1)

In order to state the partition of total tasks, we use the

assignment matrix []jk n mx  , where

1 if part is assigned to station

0 otherwise
jk

j k
x


 


 (2)

The matrix
ij n n

sd


   holds the sequence-dependent time

increments data:

if part prolongs removal time of part

0 otherwise

ij

ij

sd i j
sd


 


 (3)

The mathematical formulation of SDDLBP is given as

follows:

1min f m (4)

 
2

2
1

min
m

j
j

f c ST


  (5)

3
1

1 hazardous
min ,

0 otherwisei i

n

PS PS
i

f i h h



   


 (6)

4
1

min , ,
i i

n

PS PS i
i

f i d d N PS


    (7)

Subject to:

1

1, 1,...,
m

jk
k

x j n


  (8)

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

94

1

n

i
i

t

m n
c



 
 

  
 
  

 (9)

1 1

n n

j ij ij jk
j i

t sd y x c
 

 
     

 
 (10)

1

, (,)
m

ik jk
k

x x i j IP


  

(11)

The first objective given in equation (4) is to minimize the

number of workstations for a given cycle time (the maximum

time available at each workstation). The second objective

given in equation (5) is to aggressively ensure that idle times

at each workstation are similar, though at the expense of the

generation of a non-linear objective function (McGovern and

Gupta, 2007). As the third objective (see equation (6)), a

hazard measure developed to quantify each solution

sequence’s performance, with a lower calculated value being

more desirable (McGovern and Gupta, 2007). This measure

is based on binary variables that indicate whether a part is

considered to contain hazardous material (the binary variable

is equal to 1 if the part is hazardous, else 0) and its position in

the sequence. A given solution sequence hazard measure is

defined as the sum of hazard binary flags multiplied by their

position number in the solution sequence, thereby rewarding

the removal of hazardous parts early in the part removal

sequence. As the fourth objective (equation (7)), a demand

measure was developed to quantify each solution sequence’s

performance, with a lower calculated value being more

desirable (McGovern and Gupta, 2007). This measure is

based on positive integer values that indicate the quantity

required of a given part after it is removed (or 0 if it is not

desired) and its position in the sequence. A solution sequence

demand measure is then defined as the sum of the demand

value multiplied by the position of the part in the sequence,

thereby rewarding the removal of high demand parts early in

the part removal sequence. The constraints given in; equation

(8) ensures that all tasks are assigned to at least and at most

one workstation (the complete assignment of each task),

equation (9) guarantees that the number of work stations with

a workload does not exceed the permitted number, equation

(10) ensures that the work content of a workstation cannot

exceed the cycle time and equation (11) imposes the

restriction that all the disassembly precedence relationships

between tasks should be satisfied.

4. PROPOSED SIMULATED ANNEALING ALGORITHM

DLBP was proven to be NP-complete (McGovern and Gupta,

2007). Since SDDLBP is a generalization of DLBP (setting

all sequence dependent time increments to zero, SDDLBP

reduces to DLBP), SDDLBP is NP-complete, too. Since

SDDLBP falls into the NP-Complete class of combinatorial

optimization problems, when the problem size increases, the

solution space is exponentially increased and an optimal

solution in polynomial time cannot be found as it can be time

consuming for optimum seeking methods to obtain an

optimal solution within this vast search space. Therefore, it is

necessary to use alternative methods in order to reach (near)

optimal solutions faster. In this regard, nature has inspired

many heuristic algorithms to obtain reasonable solutions to

complex problems. For this reason, a fast and effective

simulated annealing based solution approach is proposed to

solve SDDLBP. Simulated annealing is an iterative random

search technique that has been applied to many optimization

problems in a wide variety of areas, including the assembly

line balancing (ALBP). Simulated annealing is a stochastic

approach used for solving many combinatorial optimization

problems by inspiration from the physical annealing process

of metals. Simulated Annealing gets its name from the

physical annealing of solid that is heated to a very high

temperature and then cooled at a slow rate, spending a

relatively large amount of time near the freezing point of the

solid.

The proposed approach starts with an initial solution that is

defined as the current solution. Then, a neighbour solution is

obtained from the current solution. The cost of the neighbour

solution is calculated and compared with the cost of the

current solution. If the objective function value is inferior to

that of the current solution, the neighbouring solution

becomes the new current solution. If the neighbouring

solution provides an objective function value superior to that

of the current solution, the neighbouring solution may still

become the current solution with a probability if a certain

acceptance criterion is met. Otherwise the current solution

remains unchanged. A distinctive feature of Simulated

Annealing is that inferior solutions are sometimes accepted as

the current solution to try and so, prevent getting trapped at

local optima.

A configuration is a solution to a given problem. In the

proposed SA algorithm, elements of the solution string are

integers. Each element represents a task assignment to work

station. The strategy of building a feasible balancing solution

is the key issue to solve the SDDLBP. We use station-

oriented procedure for a solution constructing strategy in

which solutions are generated by filling workstations

successively one after the other (Ding et al., 2010). The

procedure is initiated by the opening of a first station. Then,

tasks are successively assigned to this station until more tasks

cannot be assigned and a new station is opened. In each

iteration, a task is randomly chosen from the set of candidate

tasks to assign to the current station. When no more tasks

may be assigned to the open station, this is closed and the

following station is opened. The procedure finalizes when

there are no more tasks left to assign. A new solution

obtained from a current solution by using a specific move is

called a neighbourhood solution. In the proposed SA

algorithm, interchanging two tasks (SWAP) or inserting a

task to a different work station (INSERT) is implemented as

a moving strategy such that the new neighbouring solutions

are ensured to be feasible. By guaranteeing feasibility in each

operation, the necessity of the repair function is prevented. In

SWAP, two randomly selected tasks from two randomly

selected workstations are exchanged and in INSERT, a

randomly selected task from a randomly selected workstation

is inserted into another randomly selected workstation while

satisfying the precedence constraints. Examples for SWAP

and INSERT operators are given in Fig. 2 and Fig. 3,

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

95

respectively. Flow diagram of the proposed approach is given

at Fig. 4.

Fig 2. SWAP operation

Fig 3. INSERT operation

Fig 4. Flow diagram of the proposed SA approach

The steps of the proposed approach are given below:

Step 1: Start.

Step 2: Read disassembly data, initialize parameters,

construct vectors and matrices and start iteration

Step 3: Generate initial solution (0S) by selecting the best

solution found by heuristics such as Greatest Ranked

Positional Weight, Greatest Number of Successors, Longest

Processing Time, Smallest Task Number and Smallest Upper

Bound, repair generated solutions if necessary, calculate the

fitness values of the initial solution and set to 0F vector.

Step 4: Set initial solution (0S) to current cS and best

solution bestS , initial fitness values vector 0F to current cF

and best fitness value vectors bestF and set iteration g to 1.

Step 5: Generate a neighbour solution gS by applying

INSERT or SWAP with the probability of .5, repair the

solution found if necessary and calculate its fitness values

and set to gF vector.

Step 6: Checking fitness values 1f , 2f , 3f , 4f according to

the priorities defined, if the fitness values in gF vector of the

solution gS is less than or equal to the fitness values in cF

vector of the current solution cS , go to step 8.

Step 7: Generate a uniform random number r and go to Step

9.

Step 8: Accept the neighbour solution found as current

solution. Set solution gS to current solution cS and gF to

current fitness values vector cF . Go to Step 10.

Step 9: If
()

 where i
T

g cr e F F


    go to Step 8,

otherwise go to Step 11. Please note that  value is

calculated considering the second objective (2f) only, since

this objective not only dominates the first objective (1f), but

also there is a priority of objectives in the following order:

1 2 3 4, , ,f f f f . This means that second objective controls the

algorithm.

Step 10: Checking fitness values 1f , 2f , 3f , 4f according

to the priorities defined, if the fitness values in cF vector of

the solution cS is less than the fitness values in vector of the

current solution bestS , go to step 12.

Step 11: If time limit is exceeded, go to Step 14, otherwise go

to Step 13.

Step 12: Accept the neighbour solution found as the best

solution. Set current solution cS to best solution bestS found

so far and cF to best fitness values vector bestF .

Step 13: Adjust the cooling schedule as given in the

following:

0

(1 ln())g

T
T

g



 (12)

And increase iteration number, go to Step 5.

Step 14: Stop.

Thus, SA algorithm decides whether a solution is better than

another or not by comparing the objective values of each

solution one by one. Since the objective values has infinite

priorities with a goal programming perspective, first, second,

third and fourth objectives are compared respectively from

one to another. Once a solution with a lower objective value

for the objective function that has higher priority is obtained,

the new solution is accepted as a better solution since the new

solution is superior to the current solution. Please note that

the second objective is significant in terms of algorithm

performance.

5. NUMERICAL RESULTS

The proposed algorithm was coded in MATLAB and tested

on Intel Core2 1.79 GHz processor with 3GB RAM. The

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

96

software is investigated on two different scenarios.. A full

factorial set of experiments was conducted to find the best

0T which was found to be 2000 (
0 2000T ). The first

scenario is for a product consisting of n=10 components. The

knowledge database and precedence relationships for the

components are given in Table 2 and Fig. 5, respectively. The

problem and its data were modified from (McGovern and

Gupta, 2006) with a paced disassembly line operating at a

speed which allows c=40 s for each workstation to perform

its required disassembly tasks. The sequence dependencies

for the 10 part product are given as:

14 1,sd  23 2,sd  32 3,sd  41 4,sd  45 4,sd  54 2,sd 

56 2,sd  65 4,sd  69 3,sd  96 1sd  . While the exhaustive

search method was able to find optimal solution in 215t time

on average, the proposed approach was able to successfully

find the optimal solution (1 2 3 45, 67, 5, 9605f f f f   )

in less than t time on average under the restriction of the

system specifications given above. Table 3 depicts an optimal

solution sequence.

Table 2: Knowledge database for the 10 part product

Task Time Hazardous Demand

1 14 No 0

2 10 No 500

3 12 No 0

4 17 No 0

5 23 No 0

6 14 No 750

7 19 Yes 295

8 36 No 0

9 14 No 360

10 10 No 0

Fig. 5: Precedence relationships (solid line arrows) and

sequence dependent time increments (dashed line arrows) for

the 10 part product

Table 3: An optimal solution sequence for 10 Part

product disassembly

 Workstations
 I II III IV V

P
art rem

o
v

al seq
u

en
ce

→

6 17

T
im

e to
 rem

o
v

e p
arts

(in
 seco

n
d

s)

1 18
10 10

5 27

7 19
4 17

8 36

9 14
2 13

3 12

The second scenario consists of a cellular telephone instance

with n=25 components. The knowledge database and

precedence relationships for the components are given in

Table 4 and Fig. 6, respectively. The problem and its data

were modified from Gupta et al. (2004) with a disassembly

line operating at a speed which allows c=18 for each

workstation to perform its required disassembly tasks. The

sequence dependencies for the 25 part product are given as

the follows:
45 2,sd 

54 1,sd 
67 1,sd 

69 2,sd 
76 2,sd 

78 1,sd 
87 2,sd 

96 1,sd 
13,14 1,sd 

14,13 2,sd 

14,15 2,sd 
15,14 1,sd 

20,21 1,sd 
21,20 2,sd 

22,25 1,sd 

25,22 2sd 

Fig. 6: Precedence relationships (solid line arrows) and

sequence dependent time increments (dashed line arrows) for

the 25 part product

Since within the vast search space (25!), the exhaustive

search is prohibitive due to the exponential growth of the

time complexity, i.e., the optimal solution is unknown. The

proposed SA algorithm was able to find the best solution

given in Fig. 7. It took less than 500t (tlimit) time to search

for this solution under the restriction of the system

specifications given above.

Fig 7. A typical solution found using the cellular telephone

instance

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

97

Table 4: Knowledge database for 25 part product

disassembly

Part Task Part Removal Time Hazardous Demand

Antenna 1 3 Yes 4

Battery 2 2 Yes 7

Antenna guide 3 3 No 1
Bolt (type 1) A 4 10 No 1

Bolt (Type1) B 5 10 No 1

Bolt (Type2) 1 6 15 No 1
Bolt (Type2) 2 7 15 No 1

Bolt (Type2) 3 8 15 No 1

Bolt (Type2) 4 9 15 No 1
Clip 10 2 No 2

Rubber Seal 11 2 No 1

Speaker 12 2 Yes 4
White Cable 13 2 No 1

Red/Blue Cable 14 2 No 1
Orange Cable 15 2 No 1

Metal Top 16 2 No 1

Front Cover 17 2 No 2
Back Cover 18 3 No 2

Circuit Board 19 18 Yes 8

Plastic Screen 20 5 No 1
Keyboard 21 1 No 4

LCD 22 5 No 6

Sub-keyboard 23 15 Yes 7
Internal IC Board 24 2 No 1

Microphone 25 2 Yes 4

6. CONCLUSIONS

SDDLBP is a recently reported multi-objective NP-complete

optimization problem. The main objective of this chapter was

to solve sequence-dependent disassembly line balancing

problem (SDDLBP) which aimed to minimize the number of

disassembly workstations, minimize the total idle time of all

workstations by ensuring similar idle time at each

workstation considering sequence dependent time

increments, maximize the removal of hazardous components

as early as possible in the disassembly sequence and

maximize the removal of high demand components before

low demand components. A fast, near-optimal, simulated

annealing approach was modified, developed and presented

in this chapter to solve multi-objective SDDLBP.

REFERENCES

Ding, L.-P., Feng, Y.-X., Tan, J.-R. & Gao, Y.-C. (2010) A

new multi-objective ant colony algorithm for solving the

disassembly line balancing problem. The International

Journal of Advanced Manufacturing Technology, 48, 761-

771.

Gungor, A. & Gupta, S. M. (1999) Issues in environmentally

conscious manufacturing and product recovery: a survey.

Computers & Industrial Engineering, 36, 811-853.

Gungor, A. & Gupta, S. M. (2002) Disassembly line in

product recovery. International Journal of Production

Research, 40, 2569-2589.

Gupta, S. M., Erbis, E. & McGovern, S. M. (2004)

Disassembly sequencing problem: A case study of a cell

phone. IN GUPTA, S. M. (Ed.) Environmentally

Conscious Manufacturing IV. Bellingham, SPIE-

International Society for Optical Engineering.

Ilgin, M. A. & Gupta, S. M. (2010) Environmentally

conscious manufacturing and product recovery

(ECMPRO): A review of the state of the art. Journal of

Environmental Management, 91, 563-91.

Kalayci, C. B. & Gupta, S. M. (2011a) A hybrid genetic

algorithm approach for disassembly line balancing.

Proceedings of the 42nd Annual Meeting of Decision

Science Institute (DSI 2011). Boston, MA, USA.

Kalayci, C. B. & Gupta, S. M. (2011b) Tabu search for

disassembly line balancing with multiple objectives. 41st

International Conference on Computers and Industrial

Engineering (CIE41). University of Southern California,

Los Angeles, USA.

Kalayci, C. B. & Gupta, S. M. (2012a) Ant colony

optimization for sequence-dependent disassembly line

balancing problem. Journal of Manufacturing Technology

Management, In press.

Kalayci, C. B. & Gupta, S. M. (2012b) A particle swarm

optimization algorithm for solving disassembly line

balancing problem. Proceedings of Northeast Decision

Sciences Institute 2012 Annual Conference. Newport,

Rhode Island, USA.

Kalayci, C. B., Gupta, S. M. & Nakashima, K. (2011) Bees

Colony Intelligence in Solving Disassembly Line

Balancing Problem. Proceedings of the 2011 Asian

Conference of Management Science and Applications

(ACMSA2011). Sanya, Hainan, China.

Kalayci, C. B., Gupta, S. M. & Nakashima, K. (2012) A

Simulated Annealing Algorithm for Balancing a

Disassembly Line. IN MATSUMOTO, M., UMEDA, Y.,

MASUI, K. & FUKUSHIGE, S. (Eds.) Design for

Innovative Value Towards a Sustainable Society. Springer

Netherlands.

McGovern, S. M. & Gupta, S. M. (2005) Ant colony

optimization for disassembly sequencing with multiple

objectives. The International Journal of Advanced

Manufacturing Technology, 30, 481-496.

McGovern, S. M. & Gupta, S. M. (2006) Ant colony

optimization for disassembly sequencing with multiple

objectives. The International Journal of Advanced

Manufacturing Technology, 30, 481-496.

McGovern, S. M. & Gupta, S. M. (2007) A balancing method

and genetic algorithm for disassembly line balancing.

European Journal of Operational Research, 179, 692-

708.

McGovern, S. M. & Gupta, S. M. (2011) The Disassembly

Line: Balancing and Modeling, New York, McGraw Hill.

Scholl, A., Boysen, N. & Fliedner, M. (2006) The sequence-

dependent assembly line balancing problem. OR

Spectrum, 30, 579-609.

Tovey, C. A. (2002) Tutorial on Computational Complexity.

Interfaces, 32, 30-61.

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

98

