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Abstract: In this paper, we consider a sequence-dependent disassembly line balancing problem 

(SDDLBP) with multiple objectives that concerns with the assignment of disassembly tasks to a set of 

ordered disassembly workstations while satisfying the disassembly precedence constraints and 

optimizing the effectiveness of several measures considering sequence-dependent time increments among 

disassembly tasks. Due to the high complexity of the SDDLBP, there is currently no known way to 

optimally solve even moderately sized instances of the problem; therefore an efficient methodology 

based on the simulated annealing is proposed to solve the SDDLBP. 

Keywords: Product recovery, disassembly, sequence-dependent disassembly line balancing, 

metaheuristics, simulated annealing 
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1. INTRODUCTION 

Product recovery seeks to obtain materials and parts from old 

or outdated products through recycling, refurbishing and 

remanufacturing in order to minimize the amount of waste 

sent to landfills. See Gungor and Gupta (1999) and Ilgin and 

Gupta (2010) for an extensive review of product recovery. 

The first crucial and the most time consuming step of product 

recovery is disassembly. Disassembly operations can be 

performed at a single workstation, in a disassembly cell or on 

a disassembly line. Although a single workstation and 

disassembly cell are more flexible, the highest productivity 

rate is provided by a disassembly line and hence is the best 

choice for automated disassembly processes, a feature that 

will be essential in the future disassembly systems (Gungor 

and Gupta, 2002). Disassembly Line Balancing Problem 

(DLBP) is a multi-objective problem that is described by 

Gungor and Gupta (2002) and has mathematically been 

proven to be NP-complete by McGovern and Gupta (2007) 

making the goal to achieve the optimal balance 

computationally expensive. Exhaustive search works well 

enough in obtaining optimal solutions for small sized 

instances; however its exponential time complexity limits its 

application on the large sized instances. An efficient search 

method needs to be employed to attain a (near) optimal 

condition with respect to objective functions. Although some 

researchers have formulated the DLBP using mathematical 

programming techniques, it quickly becomes unsolvable for a 

practical sized problem due to its combinatorial nature. For 

this reason, there is an increasing need to use metaheuristic 

techniques such as genetic algorithms (GA) (Kalayci and 

Gupta, 2011a, McGovern and Gupta, 2007), ant colony 

optimization (ACO) (Kalayci and Gupta, 2012a, McGovern 

and Gupta, 2005), simulated annealing (SA) (Kalayci et al., 

2012), tabu search (TS) (Kalayci and Gupta, 2011b), artificial 

bee colony (ABC) (Kalayci et al., 2011) and particle swarm 

optimization (PSO) (Kalayci and Gupta, 2012b). See 

McGovern and Gupta (2011) for more information on DLBP. 

Sequence-dependency concept is introduced by (Scholl et al., 

2006) to assembly line balancing literature while it was 

adapted to disassembly by (Kalayci and Gupta, 2012a). Since 

the sequence-dependent disassembly line balancing problem 

(SDDLBP) is NP-complete, it cannot be solved in 

polynomial time in any known way. NP-complete or NP-hard 

expression represents a way of showing that certain classes of 

problems are not solvable in realistic time (Tovey, 2002). For 

this reason, efficient methodologies are necessary to reach 

near optimal solutions of SDDLBP. SA was selected as a 

solution approach for solving SDDLBP. 

2. NOTATION 

c 
Cycle time (Maximum time available at each 

workstation) 

id  Demand; quantity of part i requested 

0F
 

Fitness values vector of initial solution 

bestF
 

Fitness values vector of best solution 

cF
 

Fitness values vector of current solution 

gF
 

Fitness values vector at iteration g 

g 
Current iteration (generation) number of the 

algorithm 

ih
 

Binary value; 1 if part i is hazardous, else 0. 

IP Set (i,j) of parts such that task i must precede task j 

i Part identification, task count (1,…,n) 

j Part identification, task count (1,…,n) 

k Workstation count (1,…,m) 

m Number of workstations required for a given 
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solution sequence 

m  Minimum possible number of workstations 

n Number of parts for removal 

N The set of natural numbers 

ps Population size 

iPS  thi part in a solution sequence 

r 
Uniformly distributed random number between 0 

and 1. 

0S
 

Initial solution 

cS
 

Current solution 

bestS
 

Best solution 

gS
 

Solution at iteration g 

ijsd  Sequence dependent time increment influence of i 

on j 

jST
 

station time; total processing time requirement in 

workstation j 

0T
 

Initial temperature 

gT
 

Temperature at iteration g 

it  Part removal time of part i 

it  
Part removal time of part i considering sequence 

dependent time increment 

tlimit Time limit of the algorithm to be executed 

3. PROBLEM DEFINITION AND FORMULATION 

The sequence dependent disassembly line balancing problem 

(SDDLBP) investigated in this paper is concerned with a 

paced disassembly line for a single model of product that 

undergoes complete disassembly. As opposed to the DLBP, 

in SDDLBP whenever a task interacts with another task, their 

task times may be influenced. Disassembling a particular 

component before another component may prolong (or 

curtail) the task time, as opposed to disassembling them in 

reverse order, because one component could hinder the other 

because it requires additional movements and/or prevents it 

from using the most efficient disassembly process. If task j is 

performed before task i, its standard time jt is incremented 

by ijsd . This sequence dependent increment measures the 

prolongation of task j forced by the interference of already 

waiting task i.  

Illustrative example: The precedence relationships (solid line 

arrows) and sequence dependent time increments (dashed line 

arrows) for an 8 part PC disassembly process are illustrated 

in Fig. 1 and their knowledge database is given in Table 1. 

This example is modified from (Gungor and Gupta, 2002). 

 
Fig 1. Precedence relationships (solid line arrows) and 

sequence dependent time increments (dashed line arrows) for 

the PC example 

Table 1: Knowledge database for the PC example 

Part Task Time Hazardous Demand 

PC top cover 1 14 No 360 

Floppy drive 2 10 No 500 

Hard drive 3 12 No 620 
Back plane 4 18 No 480 

PCI cards 5 23 No 540 

RAM modules 6 16 No 750 
Power supply 7 20 No 295 

Motherboard 8 36 No 720 

Sequence dependencies for the PC example are given as 

follows: 23 32 56 652, 4, 1, 3sd sd sd sd    . For a feasible 

sequence 1,2,3,6,5,8,7,4 ; since part 2 is disassembled 

before part 3, sequence dependency  32 4sd   takes place 

because when part 2 is disassembled, the obstructing part 3 is 

still not taken out, i.e., the part removal time for part 2 is 

increased which results in 2 2 32 14t t sd    ; similarly since 

part 6 is disassembled before part 5, sequence dependency  

56 1sd   takes place because when part 6 is disassembled, 

the obstructing part 5 is still not taken out, i.e., the part 

removal time for part 6 is increased which results in 

6 6 56 17t t sd    . In this paper, the precedence 

relationships considered are of AND type and are represented 

using the immediately preceding matrix [ ]ij n ny  , where 

1 if task  is executed after task 

0 if task  is executed before task 
ij

i j
y

i j


 


 (1) 

In order to state the partition of total tasks, we use the 

assignment matrix [ ]jk n mx  , where 

1 if part  is assigned to station 

0 otherwise
jk

j k
x


 


 (2) 

The matrix 
ij n n

sd


   holds the sequence-dependent time 

increments data: 

if part  prolongs removal time of part  

0 otherwise

ij

ij

sd i j
sd


 


 (3) 

The mathematical formulation of SDDLBP is given as 

follows: 

1min f m  (4) 

 
2

2
1

min
m

j
j

f c ST


   (5) 

3
1

1 hazardous
min ,

0 otherwisei i

n

PS PS
i

f i h h



   


 (6) 

4
1

min , ,
i i

n

PS PS i
i

f i d d N PS


     (7) 

Subject to:  

1

1, 1,...,
m

jk
k

x j n


   (8) 
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 (9) 

1 1

n n

j ij ij jk
j i

t sd y x c
 

 
     

 
 (10) 

1

, ( , )
m

ik jk
k

x x i j IP


  

 

(11) 

The first objective given in equation (4) is to minimize the 

number of workstations for a given cycle time (the maximum 

time available at each workstation). The second objective 

given in equation (5) is to aggressively ensure that idle times 

at each workstation are similar, though at the expense of the 

generation of a non-linear objective function (McGovern and 

Gupta, 2007). As the third objective (see equation (6)), a 

hazard measure developed to quantify each solution 

sequence’s performance, with a lower calculated value being 

more desirable (McGovern and Gupta, 2007). This measure 

is based on binary variables that indicate whether a part is 

considered to contain hazardous material (the binary variable 

is equal to 1 if the part is hazardous, else 0) and its position in 

the sequence. A given solution sequence hazard measure is 

defined as the sum of hazard binary flags multiplied by their 

position number in the solution sequence, thereby rewarding 

the removal of hazardous parts early in the part removal 

sequence. As the fourth objective (equation (7)), a demand 

measure was developed to quantify each solution sequence’s 

performance, with a lower calculated value being more 

desirable (McGovern and Gupta, 2007). This measure is 

based on positive integer values that indicate the quantity 

required of a given part after it is removed (or 0 if it is not 

desired) and its position in the sequence. A solution sequence 

demand measure is then defined as the sum of the demand 

value multiplied by the position of the part in the sequence, 

thereby rewarding the removal of high demand parts early in 

the part removal sequence. The constraints given in; equation 

(8) ensures that all tasks are assigned to at least and at most 

one workstation (the complete assignment of each task), 

equation (9) guarantees that the number of work stations with 

a workload does not exceed the permitted number, equation 

(10) ensures that the work content of a workstation cannot 

exceed the cycle time and equation (11) imposes the 

restriction that all the disassembly precedence relationships 

between tasks should be satisfied. 

4. PROPOSED SIMULATED ANNEALING ALGORITHM 

DLBP was proven to be NP-complete (McGovern and Gupta, 

2007). Since SDDLBP is a generalization of DLBP (setting 

all sequence dependent time increments to zero, SDDLBP 

reduces to DLBP), SDDLBP is NP-complete, too. Since 

SDDLBP falls into the NP-Complete class of combinatorial 

optimization problems, when the problem size increases, the 

solution space is exponentially increased and an optimal 

solution in polynomial time cannot be found as it can be time 

consuming for optimum seeking methods to obtain an 

optimal solution within this vast search space. Therefore, it is 

necessary to use alternative methods in order to reach (near) 

optimal solutions faster. In this regard, nature has inspired 

many heuristic algorithms to obtain reasonable solutions to 

complex problems. For this reason, a fast and effective 

simulated annealing based solution approach is proposed to 

solve SDDLBP. Simulated annealing is an iterative random 

search technique that has been applied to many optimization 

problems in a wide variety of areas, including the assembly 

line balancing (ALBP).  Simulated annealing is a stochastic 

approach used for solving many combinatorial optimization 

problems by inspiration from the physical annealing process 

of metals. Simulated Annealing gets its name from the 

physical annealing of solid that is heated to a very high 

temperature and then cooled at a slow rate, spending a 

relatively large amount of time near the freezing point of the 

solid. 

The proposed approach starts with an initial solution that is 

defined as the current solution. Then, a neighbour solution is 

obtained from the current solution. The cost of the neighbour 

solution is calculated and compared with the cost of the 

current solution. If the objective function value is inferior to 

that of the current solution, the neighbouring solution 

becomes the new current solution. If the neighbouring 

solution provides an objective function value superior to that 

of the current solution, the neighbouring solution may still 

become the current solution with a probability if a certain 

acceptance criterion is met. Otherwise the current solution 

remains unchanged. A distinctive feature of Simulated 

Annealing is that inferior solutions are sometimes accepted as 

the current solution to try and so, prevent getting trapped at 

local optima. 

A configuration is a solution to a given problem. In the 

proposed SA algorithm, elements of the solution string are 

integers. Each element represents a task assignment to work 

station. The strategy of building a feasible balancing solution 

is the key issue to solve the SDDLBP. We use station-

oriented procedure for a solution constructing strategy in 

which solutions are generated by filling workstations 

successively one after the other (Ding et al., 2010). The 

procedure is initiated by the opening of a first station. Then, 

tasks are successively assigned to this station until more tasks 

cannot be assigned and a new station is opened. In each 

iteration, a task is randomly chosen from the set of candidate 

tasks to assign to the current station. When no more tasks 

may be assigned to the open station, this is closed and the 

following station is opened. The procedure finalizes when 

there are no more tasks left to assign. A new solution 

obtained from a current solution by using a specific move is 

called a neighbourhood solution. In the proposed SA 

algorithm, interchanging two tasks (SWAP) or inserting a 

task to a different work station (INSERT) is implemented as 

a moving strategy such that the new neighbouring solutions 

are ensured to be feasible. By guaranteeing feasibility in each 

operation, the necessity of the repair function is prevented. In 

SWAP, two randomly selected tasks from two randomly 

selected workstations are exchanged and in INSERT, a 

randomly selected task from a randomly selected workstation 

is inserted into another randomly selected workstation while 

satisfying the precedence constraints. Examples for SWAP 

and INSERT operators are given in Fig. 2 and Fig. 3, 
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respectively. Flow diagram of the proposed approach is given 

at Fig. 4. 

 

Fig 2. SWAP operation 

 

Fig 3. INSERT operation 

 

 

Fig 4. Flow diagram of the proposed SA approach 

The steps of the proposed approach are given below: 

Step 1: Start. 

Step 2: Read disassembly data, initialize parameters, 

construct vectors and matrices and start iteration 

Step 3: Generate initial solution ( 0S ) by selecting the best 

solution found by heuristics such as Greatest Ranked 

Positional Weight, Greatest Number of Successors, Longest 

Processing Time, Smallest Task Number and Smallest Upper 

Bound, repair generated solutions if necessary, calculate the 

fitness values of the initial solution and set to 0F  vector. 

Step 4: Set initial solution ( 0S ) to current cS and best 

solution bestS , initial fitness values vector 0F  to current cF  

and best fitness value vectors bestF  and set iteration g to 1. 

Step 5: Generate a neighbour solution gS  by applying 

INSERT or SWAP with the probability of .5, repair the 

solution found if necessary and calculate its fitness values 

and set to gF  vector. 

Step 6: Checking fitness values 1f , 2f , 3f , 4f  according to 

the priorities defined, if the fitness values in gF vector of the 

solution gS  is less than or equal to the fitness values in cF  

vector of the current solution cS , go to step 8. 

Step 7: Generate a uniform random number r and go to Step 

9. 

Step 8: Accept the neighbour solution found as current 

solution. Set solution gS  to current solution cS  and gF  to 

current fitness values vector cF . Go to Step 10. 

Step 9: If 
( )

 where i
T

g cr e F F


     go to Step 8, 

otherwise go to Step 11. Please note that   value is 

calculated considering the second objective ( 2f ) only, since 

this objective not only dominates the first objective ( 1f ), but 

also there is a priority of objectives in the following order: 

1 2 3 4, , ,f f f f . This means that second objective controls the 

algorithm. 

Step 10: Checking fitness values 1f , 2f , 3f , 4f  according 

to the priorities defined, if the fitness values in cF  vector of 

the solution cS  is less than the fitness values in vector of the 

current solution bestS , go to step 12. 

Step 11: If time limit is exceeded, go to Step 14, otherwise go 

to Step 13. 

Step 12: Accept the neighbour solution found as the best 

solution. Set current solution cS  to best solution bestS  found 

so far and cF  to best fitness values vector bestF . 

Step 13: Adjust the cooling schedule as given in the 

following: 

0

(1 ln( ))g

T
T

g



 (12) 

And increase iteration number, go to Step 5. 

Step 14: Stop. 

Thus, SA algorithm decides whether a solution is better than 

another or not by comparing the objective values of each 

solution one by one. Since the objective values has infinite 

priorities with a goal programming perspective, first, second, 

third and fourth objectives are compared respectively from 

one to another. Once a solution with a lower objective value 

for the objective function that has higher priority is obtained, 

the new solution is accepted as a better solution since the new 

solution is superior to the current solution. Please note that 

the second objective is significant in terms of algorithm 

performance. 

5. NUMERICAL RESULTS 

The proposed algorithm was coded in MATLAB and tested 

on Intel Core2 1.79 GHz processor with 3GB RAM. The 
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software is investigated on two different scenarios.. A full 

factorial set of experiments was conducted to find the best 

0T which was found to be 2000 (
0 2000T  ). The first 

scenario is for a product consisting of n=10 components. The 

knowledge database and precedence relationships for the 

components are given in Table 2 and Fig. 5, respectively. The 

problem and its data were modified from (McGovern and 

Gupta, 2006) with a paced disassembly line operating at a 

speed which allows c=40 s for each workstation to perform 

its required disassembly tasks. The sequence dependencies 

for the 10 part product are given as: 

14 1,sd  23 2,sd  32 3,sd  41 4,sd  45 4,sd  54 2,sd 

56 2,sd  65 4,sd  69 3,sd  96 1sd  . While the exhaustive 

search method was able to find optimal solution in 215t time 

on average, the proposed approach was able to successfully 

find the optimal solution ( 1 2 3 45, 67, 5, 9605f f f f    ) 

in less than t time on average under the restriction of the 

system specifications given above. Table 3 depicts an optimal 

solution sequence. 

Table 2: Knowledge database for the 10 part product 

Task Time Hazardous Demand 

1 14 No 0 

2 10 No 500 

3 12 No 0 

4 17 No 0 

5 23 No 0 

6 14 No 750 

7 19 Yes 295 

8 36 No 0 

9 14 No 360 

10 10 No 0 

 

 

Fig. 5: Precedence relationships (solid line arrows) and 

sequence dependent time increments (dashed line arrows) for 

the 10 part product 

Table 3: An optimal solution sequence for 10 Part 

product disassembly 

  Workstations  
  I II III IV V  

P
art rem

o
v

al seq
u

en
ce

 

→
 

6 17     

T
im

e to
 rem

o
v

e p
arts 

(in
 seco

n
d

s) 

1 18     
10  10    

5  27    

7   19   
4   17   

8    36  

9     14 
2     13 

3     12 

 

The second scenario consists of a cellular telephone instance 

with n=25 components. The knowledge database and 

precedence relationships for the components are given in 

Table 4 and Fig. 6, respectively. The problem and its data 

were modified from Gupta et al. (2004) with a disassembly 

line operating at a speed which allows c=18 for each 

workstation to perform its required disassembly tasks. The 

sequence dependencies for the 25 part product are given as 

the follows: 
45 2,sd   

54 1,sd   
67 1,sd   

69 2,sd   
76 2,sd    

78 1,sd   
87 2,sd   

96 1,sd   
13,14 1,sd   

14,13 2,sd    

14,15 2,sd   
15,14 1,sd   

20,21 1,sd   
21,20 2,sd   

22,25 1,sd   

25,22 2sd    

 

Fig. 6: Precedence relationships (solid line arrows) and 

sequence dependent time increments (dashed line arrows) for 

the 25 part product 

Since within the vast search space (25!), the exhaustive 

search is prohibitive due to the exponential growth of the 

time complexity, i.e., the optimal solution is unknown. The 

proposed SA algorithm was able to find the best solution 

given in Fig. 7. It took less than 500t (tlimit) time to search 

for this solution under the restriction of the system 

specifications given above. 

 

Fig 7. A typical solution found using the cellular telephone 

instance 
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Table 4: Knowledge database for 25 part product 

disassembly 

Part Task Part Removal Time Hazardous Demand 

Antenna 1 3 Yes 4 

Battery 2 2 Yes 7 

Antenna guide 3 3 No 1 
Bolt (type 1) A 4 10 No 1 

Bolt (Type1) B 5 10 No 1 

Bolt (Type2) 1 6 15 No 1 
Bolt (Type2) 2 7 15 No 1 

Bolt (Type2) 3 8 15 No 1 

Bolt (Type2) 4 9 15 No 1 
Clip 10 2 No 2 

Rubber Seal 11 2 No 1 

Speaker 12 2 Yes 4 
White Cable 13 2 No 1 

Red/Blue Cable 14 2 No 1 
Orange Cable 15 2 No 1 

Metal Top 16 2 No 1 

Front Cover 17 2 No 2 
Back Cover 18 3 No 2 

Circuit Board 19 18 Yes 8 

Plastic Screen 20 5 No 1 
Keyboard 21 1 No 4 

LCD 22 5 No 6 

Sub-keyboard 23 15 Yes 7 
Internal IC Board 24 2 No 1 

Microphone 25 2 Yes 4 

 

6. CONCLUSIONS 

SDDLBP is a recently reported multi-objective NP-complete 

optimization problem. The main objective of this chapter was 

to solve sequence-dependent disassembly line balancing 

problem (SDDLBP) which aimed to minimize the number of 

disassembly workstations, minimize the total idle time of all 

workstations by ensuring similar idle time at each 

workstation considering sequence dependent time 

increments, maximize the removal of hazardous components 

as early as possible in the disassembly sequence and 

maximize the removal of high demand components before 

low demand components. A fast, near-optimal, simulated 

annealing approach was modified, developed and presented 

in this chapter to solve multi-objective SDDLBP.  
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