
Turk J Elec Eng & Comp Sci

(2016) 24: 639 – 655

c⃝ TÜBİTAK
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Abstract: In this study, an improved particle swarm optimization (PSO) algorithm, including 4 types of new velocity

updating formulae (each is equal to the traditional PSO), was introduced. This algorithm was called the reverse direction

supported particle swarm optimization (RDS-PSO) algorithm. The RDS-PSO algorithm has the potential to extend the

diversity and generalization of traditional PSO by regulating the reverse direction information adaptively. To implement

this extension, 2 new constants were added to the velocity update equation of the traditional PSO, and these constants

were regulated through 2 alternative procedures, i.e. max–min-based and cosine amplitude-based diversity-evaluating

procedures. The 4 most commonly used benchmark functions were used to test the general optimization performances of

the RDS-PSO algorithm with 3 different velocity updates, RDS-PSO without a regulating procedure, and the traditional

PSO with linearly increasing/decreasing inertia weight. All PSO algorithms were also implemented in 4 modes, and their

experimental results were compared. According to the experimental results, RDS-PSO 3 showed the best optimization

performance.
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1. Introduction

Particle swarm optimization (PSO) is a biologically and sociologically inspired swarm intelligence method.

The authors of [1] introduced it as a search and optimization method. The modeling of PSO is based on the

simulation of certain social animal behaviors.

PSO begins the algorithm with a randomly created population, similar to many evolutionary computation

methods. According to the information shared between particles, the next positions of each particle are

computed iteratively. Unlike other mathematical algorithms, PSO does not require gradient information. It has

acquired increasing popularity due to its superior properties, such as convergence to optimal solutions quickly,

adaptation to different problems easily, and its basic implementation. Therefore, many PSO algorithms and

many hybrid methods including PSO have been implemented in numerous fields such as power systems [2,3],

field effect transistor design [4], and team-orienteering problems [5].

Despite these superior properties, the general performance of PSO is not as good as what other optimiza-

tion methods can accomplish. Since the PSO algorithm is conducted on the particles by considering only their

personal best position and the best position of the population, PSO could not converge to the global optimal

solution in optimization problems involving many local optimal solutions. This directs all particles to a local

optimal solution [6]. Besides, PSO cannot enhance its convergence ability, especially in its last iterations, and
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for this reason it converges to the local optimal solution prematurely, i.e. by conducting a way of PSO for the

particles.

In recent years, PSO has also been implemented for solving dynamic and multiobjective optimization

problems. PSO used in dynamic optimization problems can adapt to dynamically changing optimization

conditions [7]. To add this property to PSO, new approaches were integrated into the traditional method [8].

Traditional PSO cannot solve a multiobjective optimization problem such as dynamic optimization problems.

Two improvements must be integrated into the traditional PSO to solve such problems. The first is related to

the selection of the global and local best particles for velocity updating. The second concerns how to maintain

information about these particles [9].

There are numerous studies in the literature about how to design improved PSO approaches that solve

different types of optimization problems. The authors of [10] suggested integrating genetic operators with

improved binary particle swarm optimization (IBPSO) to attain solutions with more alternatives and thus

reduce the risk of premature convergence. In addition, IBPSO was carried out in a maintenance scheduling

problem. A modified binary particle swarm optimization (MBPSO) algorithm was demonstrated for solving

knapsack problems (KPs) in [11]. Unlike traditional BPSO, it was based on a probability function, prolonging

the diversity in the swarm and supporting PSO to be more explorative, effective, and efficient in the KPs. When

the cost functions of the searching spaces are not known well, finding the most suitable PSO model subjects

the searching process to many computational burdens. To avoid this demerit, [12] introduced a self-adaptive

learning-based PSO, and [13] proposed a hybrid approach to integrating PSO and the differential evolution

algorithm so as to efficiently conduct the positions of the next generations and improve convergence.

In order to reduce loss of diversity in the first generations of PSO, diversity augmentation and neighborhood-

based search strategies were developed in [14]. These strategies supply a trade-off between the exploration and

exploitation capacities of the population. In [15], the authors handled every particle’s dimension individually

instead of handling it as a whole. To prevent premature convergence and loss of diversity in PSO, a new idea

based on an analysis of visual modeling and 2 parameters (particle distribution degree and particle dimension

distance) was asserted. A rank-based particle swarm optimizer, PSOrank , changed the selection strategy of the

global best particle in PSO [16]. It determined a group of best particles according to a strength function for

updating the velocities of the remaining particles.

In addition to the studies discussed in the above paragraphs, several other studies were dedicated to

regulating the trade-off between the global and local searching ability of PSO. For example, [17] attached an

inertia weight parameter to PSO to regulate this trade-off. As the dynamic adjustment of the inertia weight is

very difficult, [18] used linearly decreasing inertia weight, whereas [19,20] used linearly increasing inertia weight.

According to the results of these studies, the general performance of PSO depends not only on changing the

inertia weight, but also on the type of optimization problem. A similar study of reverse direction supported

particle swarm optimization (RDS-PSO) introduced antipredatory activity to the original PSO and was proposed

to solve economic dispatch problems in [21]. However, both the cognitive and social parts of the velocity update

equation were divided into 2 parts, and there was no procedure controlling the diversity of the population in

that study.

Most studies in the literature are dedicated to avoiding the loss of diversity in progressive iterations and

thus to improving the convergence ability of PSO. This study aims to improve the same targets and handles

this subject as a whole set of the population distribution, changing the effects of the inertia weight and sharing

types of information among particles. Although the traditional PSO algorithm controls the movement of the
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ÇOMAK/Turk J Elec Eng & Comp Sci

particles by depending only on their personal best and the population’s best positions, proposed algorithms

such as RDS-PSO control it by depending on their personal best and worst, and also on the population’s best

and worst positions. By adjusting the trade-off between these 4 positions, an RDS-PSO algorithm with 4

different formulas was created. In addition, 2 alternative procedures were used to implement the RDS-PSO

algorithm adaptively. Finally, the effects of linearly changed inertia weight on RDS-PSO were analyzed through

experimental results.

The remaining of the study is organized as follows. A superficial description of the PSO, the cosine

amplitude method, and the max–min method is presented in Section 2. Both the proposed RDS-PSO algorithm

and its adaptive regulation procedure are explained in Section 3. Section 4 gives the experimental results of

all algorithms, including the RDS-PSO algorithm and the traditional PSO with linearly increasing/decreasing

inertia weight in 4 modes. Section 5 discusses and concludes the study.

2. Materials and methods

Two alternative regularization methods (the cosine amplitude and max–min methods) that are used to control

the values of the alpha and beta in RDS-PSO and the traditional PSO are clarified in this section.

Many techniques are available for computing numerical values that describe a relationship between 2 or

more data points. Such techniques are generally based on Cartesian products, linguistic rules, classification, and

data manipulation. In this study, 2 alternative methods, the cosine amplitude and max–min methods, which

do not incur much computational cost and belong to the data manipulation category, were used to regulate the

alpha and beta constants of RDS-PSO.

2.1. Cosine amplitude

The cosine amplitude method is manipulated on a collection of n data samples. The collected data set is

represented as follows:

X = {x1,x2, ...,xn} (1)

Each of the n samples is represented as a vector with m dimensions:

xi = {xi1,xi2, ...,xim} (2)

The position of each datum in space is represented by m feature values. Relation value r ij reflects a similarity

relationship between x i and x j data. For n data samples, the size of the relation matrix will be n × n. The

relation matrix always obeys the rules of reflexivity and symmetricity, and thus it is a tolerance relation. All r ij

values are always in the interval of [0,1] in this method, and they are calculated through the following equation:

rij =

∣∣∣∣ m∑
k=1

xikxjk

∣∣∣∣√(
m∑

k=1

x2
ik

)(
m∑

k=1

x2
jk

) , i, j = 1, 2, ..., n. (3)

If x i and x j are very similar to each other, r ij becomes close to one. Unlike this situation, if they are very

dissimilar to each other, r ij becomes close to zero.
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2.2. Max–min method

Another method that is an alternative to the cosine amplitude method is the max–min method. The max–min

method is preferred to the cosine amplitude method due to computational cost. Except for the calculation

of r ij , this method is similar to the cosine amplitude method. In this method, r ij is calculated through the

following equation:

rij =

m∑
k=1

min (xik, xjk)

m∑
k=1

max (xik, xjk)
, i, j = 1, 2, ..., n. (4)

2.3. PSO

PSO is a modeling of sociological and biological populations [1]. In PSO, a population comprises N particles

and each particle is a step to close in on the target solution. Since the searching space is the D-dimensional

coordinate axis, each particle is represented as a vector with the number of D parts. The actual position of the

ith particle is represented by xi = (xi1, xi2, ..., xiD), and its velocity is represented by vi = (vi1, vi2, ..., viD).

Moreover, pi = (pi1, pi2, ..., piD) indicates the best visited position for the ith particle until time t, and

pg = (pg1, pg2, ..., pgD) indicates the best visited position among N particles or local neighbors of p i (depending

on the type of information-sharing between particles) until time t. This time index can also be accepted as

an iteration number. The movement of the particles in the search space is conducted by Eqs. (5) and (6),

iteratively:

vid = w ∗ vid + c1 ∗ rand1 ( ) ∗ (pid − xid) + c2 ∗ rand2 ( ) ∗ (pgd − xid) (5)

xid = xid + vid (6)

Here, i = 1, 2, ..., N and d = 1, 2, ..., D . Parameters c1 and c2 are positive constants denoting cognitive and

social impacts in the PSO, respectively. The functions of rand1 and rand2 generate random numbers in the

interval of [0,1] uniformly. Positive parameter w is the inertia weight. As discussed in Section 1, this parameter

regulates the trade-off between the global and local searching abilities of the PSO. Moreover, variables p id , pgd ,

and x id indicate the personal best, global best, and present position of the particles, respectively.

PSO starts the solution with a randomly created population and velocities, as in many population-based

methods. The velocities and next positions of the particles are determined iteratively by using Eqs. (5) and (6).

Iteration number, improvement, and stability-based criteria have been used to terminate the PSO algorithm.

As an exceptional cases, Vmax value is determined in PSO to prevent particles from exceeding the search space.

3. RDS-PSO algorithms

RDS-PSO was structured according to the generalization idea. Two constants, alpha and beta, were added to

the traditional PSO to provide such a generalization. The parameter of alpha controls the trade-off between

the effects of the global best and global worst particles on velocity updating. On the other hand, beta controls

the trade-off between the effects of the personal best and personal worst particles on velocity updating. When

RDS-PSO is implemented with alpha = 1 and beta = 1, the traditional PSO is created. Unlike this situation,

when RDS-PSO is implemented with alpha = 0 and beta = 0, the velocities of all particles are controlled only

by their global worst and personal worst particles (but in the reverse direction).
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Such a generalization offers a controllable diversity management to PSO. If changing the values of these

constants is managed properly, the diversity and thus the convergence ability of PSO might be improved.

Four types of RDS-PSO were designed based on the different organization of the alpha and beta constants:

• RDS-PSO 1: This is the type of RDS-PSO with alpha = beta = 1; it can be called traditional PSO.

• RDS-PSO 2: This is the type of RDS-PSO with alpha [0,1] and beta = 1.

• RDS-PSO 3: This is the type of RDS-PSO with alpha = 1 and beta [0,1].

• RDS-PSO 4: This is the type of RDS-PSO with alpha [0,1] and beta [0,1].

By designing 4 types of RDS-PSO algorithms, the effects of the personal worst and the global worst

on the general convergence ability of PSO are investigated completely. The fundamental difference between

RDS-PSO and PSO lies in the way in which the velocity update is achieved. The velocity updating equation

for Algorithm 4 can be presented as follows:

vid = w ∗ vid + beta ∗ c1 ∗ rand1 ( ) ∗ (pid − xid) + (1− beta) ∗ c1 ∗ rand1 ( ) ∗ (xid − piwd)+
alpha ∗ c2 ∗ rand2 ( ) ∗ (pgd − xid) + (1− alpha) ∗ c2 ∗ rand2 ( ) ∗ (xid − pgwd)

(7)

RDS-PSO uses Eq. (7) instead of Eq. (5). Some parameters that are not presented in Eq. (5) are available in

Eq. (7). For instance, pgwd and p iwd represent the global worst particle in the population and the personal

worst position of the ith particle, respectively. Alpha and beta are also new added constants to Eq. (7).

Their functions were described in the above paragraph. In fact, pgwd and p iwd affect the next positions of all

particles in the reverse direction. Figure 1 illustrates the velocity update of the traditional PSO, and Figure 2

illustrates the velocity update for the RDS-PSO with alpha = 0.5 (without considering the personal best and

worst particles). When the diversity of the population starts to decrease significantly, a regularization procedure

decreasing the value of alpha can be executed to increase diversity.
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Figure 1. Velocity update of the original PSO. Figure 2. Velocity update of the RDS-PSO.

In this study, the constants of RDS-PSO were also changed adaptively by using the cosine amplitude and

max–min methods. Without these methods, which provide adaptability, the computational cost of RDS-PSO
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is almost identical to that of the traditional PSO. These adaptive methods bring a little more computational

cost to RDS-PSO. The pseudocode of RDS-PSO is illustrated in Figure 3.

RDS-PSO Algorithm with Adaptive Regulation 

 

1  // Initialization 

2     for i=1 to population size 

3         set Xi particle in interval of [Xmin, Xmax] randomly 

4         set Vi velocity in interval of [Vmin, Vmax] randomly 

5         Pi = Xi  

6     endfor 

7     Evaluate all population 

8     Determine the best particle pg and the worst particle pw 

9     alpha = beta = 1 

10 // PSO iteration loop 

11    while (termination criterion is not satisfied & iteration < maximum iteration) 

12        iteration = iteration + 1 

13        compute the diversity matrix of population by cosine amplitude or max-min 

14        compute average diversity value and save it 

15        if (iteration > 1) 

16           if (average diversity (iteration) – average diversity (iteration - 1)) > C 

17              alpha = alpha – ssize 

18              beta = beta – ssize 

19           elseif (average diversity (iteration) – average diversity (iteration - 1)) < -C 

20              alpha = alpha + ssize 

21              beta = beta + ssize 

22           else 

23              alpha = alpha 

24              beta = beta 

25           endif 

26        endif 

27        if (alpha > 1) 

28           alpha = 1 

29        elseif (alpha < 0.6) 

30           alpha = 0.6 

31        endif 

32        if (beta > 1) 

33           beta = 1 

34        elseif (beta <0.6) 

35           beta = 0.6 

36        endif 

37        update inertia weight (decrease or increase linearly) 

38        update velocity according to new equation, update new position of particle 

39        Evaluate all population 

40        update pg, pi and pw 

41    endwhile 

Figure 3. Pseudocode of the RDS-PSO with adaptive regulation procedure.

3.1. Regulation procedure for the constants of alpha and beta

As distinct from the original PSO, a few constants were added to RDS-PSO. Two of these constants are alpha

and beta, regulating the trade-off between the global best/worst particles and personal best/worst particles,

respectively. For instance, when alpha = 0 and beta = 1, only the global worst and personal best particles affect

the next positions. Another pair of constants are ssize and C, representing step size and threshold, respectively.

Step size is a measure of change in alpha and beta in each iteration. According to the C constant, ssize is

subtracted from or added to alpha and beta.
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A schedule to conduct the values of the alpha and beta constants is introduced in this part in order to set

these constants adaptively and improve the general performance of RDS-PSO. The pseudocode of the schedule

was illustrated in the lines between 15 and 36 in Figure 3.

According to the author’s previous experiments, RDS-PSO without such a schedule showed its best

performance with the alpha and beta constants in the range of [0.6,1.0]. Therefore, the values for alpha and

beta outside this range could not be allocated to these constants [22]. Average diversity value in pseudocode

was computed by 2 alternative methods explained in Sections 2.1 and 2.2.

Each RDS-PSO type was carried out in 8 modes (4 in the cosine amplitude method and 4 in the max–min

method). In other words, each initial population was implemented 32 times (for 4 types and 8 modes). These

implementation modes are explained below:

- Mode 1: In this mode, the RDS-PSO algorithm was implemented with 1000 maximum iterations and

decreasing inertia weight.

- Mode 2: In this mode, the RDS-PSO algorithm was implemented with 2000 maximum iterations and

decreasing inertia weight.

- Mode 3: In this mode, the RDS-PSO algorithm was implemented with 1000 maximum iterations and

increasing inertia weight.

- Mode 4: In this mode, the RDS-PSO algorithm was implemented with 2000 maximum iterations and

increasing inertia weight.

To clarify the RDS-PSO types and implementation modes, an example can be given. Let us assume that

we select alpha and beta constants as alpha [0,1] and beta [0,1] (referring to type 4). In addition to this

selection, we implement the algorithm with 1000 maximum iterations and increasing inertia weight (referring

to Mode 3). Thus, it can be said that RDS-PSO 4 is carried out in Mode 3.

4. Benchmark functions and experimental results

Benchmark functions used to test the performance of RDS-PSO algorithms are explained in Section 4.1, and

experimental results are presented in Section 4.2.

4.1. Benchmark functions

To compare the performances of RDS-PSO algorithms (RDS-PSO 1 is similar to the traditional PSO with

linearly decreasing/increasing inertia weight), the 4 most commonly used benchmark functions were preferred.

Table 1 summarizes the basic properties of these benchmark functions.

Terms lb and ub in Table 1 represent the lower bound and upper bound, respectively.

Table 1. Properties of the benchmark functions.

Function Name lb ub Optimum point Modality
Griewangk –600 600 0 Multimodal
Rastrigin –5.12 5.12 0 Multimodal
Rosenbrock –2.048 2.048 0 Unimodal
Sphere –100 100 0 Unimodal
Ackley –32.768 32.768 0 Multimodal
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4.1.1. Griewangk function

The Griewangk function has many local optima. Consequently, finding its global optimum point is not easy

[23]. This function is described in Eq. (8):

f (x) =

30∑
i=1

(
x2
i

4000

)
−

30∏
i=1

cos

(
xi√
i

)
+ 1 (8)

wherexi ∈ [−600, 600], the global minimal point of the function is at x = (0, 0, . . . , 0), and f(x) = 0.

4.1.2. Rastrigin function

This function is obtained by adding the cosine component to the De Jong function. Such a component makes

it highly multimodal [24], and it is defined in Eq. (9):

f (x) = 10× 30 +

30∑
i=1

(
x2
i − 10 · cos (2πxi)

)
(9)

where xi ∈ [−5.12, 5.12], the global minimal point of the function is at x = (0, 0, . . . , 0), and f(x) = 0.

4.1.3. Rosenbrock function

The Rosenbrock function is also known as the banana function due to its shape. Owing to the difficulty in

converging its global optimal, this function is commonly used to test the performances of many optimization

algorithms [25]. It is described in Eq. (10):

f (x) =
30∑
i=1

100
(
xi+1 − x2

i

)2
+ (1− xi)

2
(10)

where xi ∈ [−2.048, 2.048], the global minimal point of the function is at x = (1, 1, . . . , 1), and f(x) = 0.

4.1.4. Ackley function

The Ackley function is also one of the most commonly used test functions in optimization. It is defined in Eq.

(11):

f (x) = −a · exp

−b ·

√√√√ 1

n

n∑
i=1

x2
i

− exp

(
1

n

n∑
i=1

cos (cxi)

)
+ a+ exp (1) (11)

where xi ∈ [−32.768, 32.768], a = 20, b = 0.2, and c = 2π . The global minimal point of the function is at x =

(0, 0, . . . , 0), and f(x) = 0.

4.1.5. Sphere function

The sphere function is also one of the most commonly used test functions in optimization. It is defined in Eq.

(12):

f (x) =
10∑
i=1

x2
i (12)

wherexi ∈ [−100.0, 100.0]. The global minimal point of the function is at x = (0, 0, . . . , 0), and f(x) = 0.
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4.2. Experimental results

The performances of the RDS-PSO algorithm were compared to the traditional PSO with linearly decreas-

ing/increasing inertia weight, and to RDS-PSO with static alpha value in 4 modes and 4 algorithms. MATLAB

was used as the implementation platform. By comparing the results of RDS-PSO with adaptive procedures

to RDS-PSO with static alpha value, the efficiency of the regularization methods, i.e. cosine amplitude and

max–min methods, was evaluated. The effects of various approaches, such as the linear change of inertia weight

value, global/personal best and global/personal worst particles, and cosine amplitude-based or max–min-based

regularization for the alpha and beta constants on the general performance of PSO were detected for 4 commonly

used benchmark functions. Thus, comprehensive experiments were carried out on the mentioned benchmark

functions. Table 2 describes the shared properties of the variables that were used with the same value in all

compared algorithms. All compared methods were executed 50 times, i.e. with 50 different initial conditions,

but the same 50 for all methods. Therefore, the average and standard deviation data were computed objectively.

Table 2. Variable values for all PSO methods.

Parameter Value
Population size 25
Maximal iteration 1000/2000
Maximal weight value 1.2
Minimal weight value 0.1
C1 2.0
C2 2.0
Dimension 10
Error goal 1*10−6

The value of alpha changed from 0.05 to 1.0 with a 0.05 step size, and the best result among these

20 results was determined as a final result in RDS-PSO with static alpha value. In RDS-PSO with adaptive

procedures, 20 experimental results (10 with static step constant and variable C constant, and another 10 with

the opposite) were also obtained. For changing intervals of the variable constant, the value was set between

0.01 and 0.1, and a value of 0.05 was set for the static constant. The best performance was determined in the

RDS-PSO with the static alpha value. The final results, indicated in the relevant figures, were also computed

in this way.

Tables 3–7 indicate the experimental results for the Rosenbrock, Rastrigin, Griewangk, Ackley, and

Sphere benchmark functions, respectively. All methods were implemented in 4 modes. The modes with different

iteration numbers and inertia weight-changing strategies were discussed in Section 3.1. In addition, constant

alpha values for the best performance were presented in parentheses for RDS-PSO with the constant alpha value

method.

RDS-PSO 3, using the max–min method, provided the best results in Modes 1, 3, and 4. However, in

Mode 2, RDS-PSO 3, using the cosine amplitude method, was the best for the Rosenbrock function, as detailed

in Table 3. The worst results for this function were obtained in the RDS-PSO with constant alpha value and

in the traditional PSO with the linearly changing inertia weight methods.

As detailed in Table 4, RDS-PSO 3 using the max–min method provided the best results in Modes 2, 3,

and 4. However, in Mode 1, RDS-PSO 3 using the cosine amplitude method provided the best results. Similarly

to the Rosenbrock function results, the worst results for the Rastrigin function were obtained in RDS-PSO with

constant alpha value and in traditional PSO with linearly changing inertia weight methods. For all methods,

the Rosenbrock function results were better than the Rastrigin results.
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Table 3. Results of the Rosenbrock function.

Method Implementation mode Average best fitness Standard deviation

RDS-PSO 1 Mode 1 (5.61 s) 10.271 10.102

(traditional Mode 2 (9.92 s) 6.7966 1.9175

PSO with Mode 3 (7.74 s) 82.034 54.526

linearly dec/inc w) Mode 4 (13.56 s) 91.338 61.71

Mode 1 (5.69 s) 23.123 (0.95) 21.315 (0.95)

RDS-PSO Mode 2 (9.88 s) 19.451 (0.9) 18.205 (0.9)

with constant alpha Mode 3 (7.86 s) 142.65 (0.7) 138.38 (0.7)

Mode 4 (13.77 s) 95.203 (0.95) 64.71 (0.95)

Mode 1 (6.61 s) 6.7702 1.8599

RDS-PSO 2 Mode 2 (11.13 s) 5.3516 2.4352

(max–min) Mode 3 (7.01 s) 11.835 10.899

Mode 4 (11.64 s) 8.838 9.4348

Mode 1 (8.06 s) 6.0067 1.7905

RDS-PSO 2 Mode 2 (15.77 s) 5.0138 2.2994

(cosine amplitude) Mode 3 (7.93 s) 66.399 46.244

Mode 4 (15.44 s) 84.357 61.957

Mode 1 (6.82 s) 2.1678 1.9446

RDS-PSO 3 Mode 2 (11.52 s) 1.7604 1.4560

(max–min) Mode 3 (7.14 s) 4.9949 4.4553

Mode 4 (12.21 s) 4.8297 5.7400

Mode 1 (8.13 s) 2.4372 1.8678

RDS-PSO 3 Mode 2 (16.15 s) 1.3787 1.4498

(cosine amplitude) Mode 3 (8.19 s) 68.8936 50.2128

Mode 4 (16.23 s) 88.5538 62.9101

Mode 1 (7.21 s) 6.0122 1.8446

RDS-PSO 4 Mode 2 (12.08 s) 5.1950 2.7938

(max-min) Mode 3 (7.82 s) 11.686 13.991

Mode 4 (12.67 s) 8.1571 7.6614

Mode 1 (8.57 s) 5.9690 1.6221

RDS-PSO 4 Mode 2 (17.44 s) 5.1275 1.8526

(cosine amplitude) Mode 3 (8.68 s) 64.033 48.338

Mode 4 (17.89 s) 87.721 62.791

Ladder PSO (LPSO) — 1.495 1.584

Mutation PSO (MPSO) — 2.077 1.992

Linearly decreasing
— 3.721 3.054

inertia weight PSO

Table 5 presents the results of the Griewangk function. According to this table, RDS-PSO 3 (max–min),

RDS-PSO 3 (cosine amplitude), and RDS-PSO 4 (max–min) methods produced the best results in Modes 1, 2,

and 3 and 4 together, respectively. RDS-PSO with constant alpha value and the traditional PSO with linearly

changing inertia weight methods showed the poorest results in Modes 1-2 and 3-4 together for this function,

respectively.
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Table 4. Results of the Rastrigin function.

Method Implementation mode Average best fitness Standard deviation

RDS-PSO 1 Mode 1 (5.12 s) 23.266 8.6419

(traditional Mode 2 (9.55 s) 22.707 13.931

PSO with Mode 3 (7.08 s) 47.313 17.193

linearly dec/inc w) Mode 4 (12.79 s) 45.939 18.918

Mode 1 (5.48 s) 45.364 (0.9) 11.061 (0.9)

RDS-PSO Mode 2 (9.68 s) 48.152 (0.9) 13.542 (0.9)

with constant alpha Mode 3 (7.94 s) 69.287 (0.75) 17.086 (0.75)

Mode 4 (14.04 s) 69.862 (0.95) 15.113 (0.95)

Mode 1 (6.17 s) 16.853 4.8218

RDS-PSO 2 Mode 2 (10.78 s) 17.175 6.5709

(max–min) Mode 3 (6.77 s) 29.9 9.2769

Mode 4 (10.84 s) 24.741 8.0494

Mode 1 (7.29 s) 13.62 5.3646

RDS-PSO 2 Mode 2 (14.55 s) 13.396 7.0449

(cosine amplitude) Mode 3 (7.88 s) 42.552 17.552

Mode 4 (14.93 s) 42.483 16.153

Mode 1 (6.41 s) 5.1775 1.6570

RDS-PSO 3 Mode 2 (11.49 s) 4.2010 1.5512

(max–min) Mode 3 (7.05 s) 13.754 6.6559

Mode 4 (11.94 s) 13.633 6.7645

Mode 1 (8.11 s) 4.9831 1.64

RDS-PSO 3 Mode 2 (16.02 s) 4.5245 1.6398

(cosine amplitude) Mode 3 (7.88 s) 40.3357 14.251

Mode 4 (15.85 s) 43.0649 17.9849

Mode 1 (7.08 s) 16.667 5.5726

RDS-PSO 4 Mode 2 (12.27 s) 16.302 6.3418

(max–min) Mode 3 (7.25 s) 25.719 6.6014

Mode 4 (12.14 s) 22.776 7.5412

Mode 1 (8.20 s) 15.776 6.8598

RDS-PSO 4 Mode 2 (16.33 s) 13.603 6.8112

(cosine amplitude) Mode 3 (8.45 s) 43.617 16.025

Mode 4 (17.12 s) 43.126 16.88

Ladder PSO (LPSO) — 4.509 1.79

Mutation PSO (MPSO) — 7.538 2.33

Linearly decreasing
— 6.066 2.46

inertia weight PSO

RDS-PSO 3, using the max–min method, provided the best results in Modes 2, 3, and 4. However, in

Mode 1, RDS-PSO 3 using the cosine amplitude method was the best for the Ackley function, as detailed in

Table 6. RDS-PSO with constant alpha value again showed the worst results in this function.
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Table 5. Results of the Griewangk function.

Method Implementation mode Average best fitness Standard deviation

RDS-PSO 1 Mode 1 (2.13 s) 0.10022 0.36159

(traditional Mode 2 (4.01 s) 0.01184 0.04185

PSO with Mode 3 (3.77 s) 10.77 16.388

linearly dec/inc w) Mode 4 (6.22 s) 11.249 17.383

Mode 1 (2.28 s) 0.5438 (0.9) 0.98088 (0.9)

RDS-PSO Mode 2 (4.29 s) 0.234 (0.9) 0.4359 (0.9)

with constant alpha Mode 3 (3.12 s) 4.9193 (0.7) 7.5322 (0.7)

Mode 4 (6.17 s) 5.4823 (0.7) 5.1925 (0.7)

Mode 1 (2.12 s) 0.02978 0.04899

RDS-PSO 2 Mode 2 (3.75 s) 0.00844 0.01336

(max–min) Mode 3 (2.31 s) 0.32909 0.7465

Mode 4 (4.46 s) 0.16767 0.43809

Mode 1 (2.29 s) 0.00229 0.01129

RDS-PSO 2 Mode 2 (3.98 s) 0.00156 0.00857

(cosine amplitude) Mode 3 (2.97 s) 6.6455 10.392

Mode 4 (5.00 s) 8.644 12.729

Mode 1 (2.03 s) 6.3408e-7 1.5415e-7

RDS-PSO 3 Mode 2 (3.22 s) 5.5347e-7 1.6521e-7

(max–min) Mode 3 (2.08 s) 0.3128 1.3909

Mode 4 (3.85 s) 0.25 1.2688

Mode 1 (2.36 s) 4.0133e-6 2.3107e-5

RDS-PSO 3 Mode 2 (4.00 s) 5.4805e-7 1.79e-7

(cosine amplitude) Mode 3 (2.79 s) 8.2152 13.178

Mode 4 (5.03 s) 9.3678 13.6926

Mode 1 (2.19 s) 0.01159 0.0293

RDS-PSO 4 Mode 2 (3.51 s) 0.00164 0.0044

(max–min) Mode 3 (2.17 s) 0.0692 0.1269

Mode 4 (4.01 s) 0.0551 0.1321

Mode 1 (2.58 s) 0.0048 0.0245

RDS-PSO 4 Mode 2 (4.11 s) 3.651e-5 1.5698e-4

(cosine amplitude) Mode 3 (2.99 s) 6.6461 10.5556

Mode 4 (5.32 s) 8.112 12.4279

Ladder PSO (LPSO) — 0.172 0.347

Mutation PSO (MPSO) — 0.844 0.911

Linearly decreasing
— 0.379 0.863

inertia weight PSO

RDS-PSO 3 using the max–min method provided the best results in Modes 3 and 4. However, in Modes

1 and 2, RDS-PSO 3 using the cosine amplitude method was the best for the Sphere function, as detailed in

Table 7. Again, RDS-PSO with constant alpha value showed the poorest results in this function.
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Table 6. Results of the Ackley function.

Method Implementation mode Average best fitness Standard deviation

RDS-PSO 1 Mode 1 (5.43 s) 6.688e-7 2.4318e-7

(traditional Mode 2 (9.71 s) 6.26e-7 2.018e-7

PSO with Mode 3 (7.37 s) 0.1599 0.6688

linearly dec/inc w) Mode 4 (12.94 s) 0.1308 0.6418

Mode 1 (5.53 s) 2.0897 (0.85) 2.1034 (0.85)

RDS-PSO Mode 2 (9.71 s) 2.1388 (0.85) 2.3734 (0.85)

with constant alpha Mode 3 (7.95 s) 1.8051 (0.95) 1.4431 (0.95)

Mode 4 (13.91 s) 1.5324 (0.95) 1.3832 (0.95)

Mode 1 (6.36 s) 0.1358 0.4985

RDS-PSO 2 Mode 2 (10.94 s) 0.0156 0.0444

(max–min) Mode 3 (6.89 s) 0.126 0.4071

Mode 4 (11.22 s) 0.0845 0.1758

Mode 1 (7.38 s) 0.0255 0.0968

RDS-PSO 2 Mode 2 (14.71 s) 0.0684 0.3745

(cosine amplitude) Mode 3 (7.93 s) 8.5197e-5 5.4861e-4

Mode 4 (15.19 s) 1.6195e-4 9.4053e-4

Mode 1 (6.47 s) 2.2347e-7 1.0848e-7

RDS-PSO 3 Mode 2 (11.43 s) 2.0387e-7 8.4127e-8

(max–min) Mode 3 (7.00 s) 1.9336e-7 1.0254e-7

Mode 4 (11.98 s) 1.7601e-7 9.6005e-8

Mode 1 (8.15 s) 1.7691e-7 8.9678e-8

RDS-PSO 3 Mode 2 (15.93 s) 2.0747e-7 9.7837e-8

(cosine amplitude) Mode 3 (8.01 s) 2.0687e-7 1.4653e-7

Mode 4 (16.11 s) 2.11e-7 1.4937e-7

Mode 1 (7.61 s) 0.1072 0.2994

RDS-PSO 4 Mode 2 (12.71 s) 0.0835 0.3247

(max–min) Mode 3 (7.38 s) 0.0319 0.0689

Mode 4 (12.69 s) 0.0365 0.0799

Mode 1 (8.59 s) 0.0308 0.0749

RDS-PSO 4 Mode 2 (16.69 s) 0.1007 0.4263

(cosine amplitude) Mode 3 (8.77 s) 0.0011 0.007

Mode 4 (17.34 s) 8.335e-6 4.9859e-5

Ladder PSO (LPSO) — 4.337e-7 6.827e-7

Mutation PSO (MPSO) — 3.519e-7 8.473e-7

Linearly decreasing
— 7.834e-7 1.043e-6

inertia weight PSO

Generally, RDS-PSO 3 with both max–min and cosine amplitude, and occasionally RDS-PSO 4 with

max–min, gave the best results in all implementations. RDS-PSO with constant alpha value showed the worst

results in almost all the implementations. These results proved that the regularization methods used to set the

values of alpha and beta constants are suitable and reliable for avoiding the diversity reduction problem. In
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all implementations using linearly increasing inertia weight, the methods using the max–min procedure achieve

better results than the methods using the cosine amplitude procedure. However, in the implementations using

the linearly decreasing procedure, these 2 procedures achieved a close performance.

Table 7. Results of the Sphere function.

Method Implementation mode Average best fitness Standard deviation

RDS-PSO 1 Mode 1 (4.29 s) 0.0335 0.661

(traditional Mode 2 (8.08 s) 0.0084 0.023

PSO with Mode 3 (6.13 s) 18.933 22.174

linearly dec/inc w) Mode 4 (11.54 s) 32.017 38.288

Mode 1 (4.77 s) 0.951 (0.85) 1.244 (0.85)

RDS-PSO Mode 2 (8.24 s) 0.046 (0.9) 0.483 (0.9)

with constant alpha Mode 3 (6.86 s) 26.291 (0.9) 31.104 (0.9)

Mode 4 (12.77 s) 34.619 (0.75) 41.577 (0.75)

Mode 1 (4.88 s) 0.0142 0.061

RDS-PSO 2 Mode 2 (7.99 s) 0.00022 0.0094

(max–min) Mode 3 (5.35 s) 6.881 5.772

Mode 4 (8.11 s) 8.229 9.005

Mode 1 (4.99 s) 0.0067 0.0029

RDS-PSO 2 Mode 2 (8.28 s) 0.00005 0.00053

(cosine amplitude) Mode 3 (5.69 s) 127.38 143.401

Mode 4 (10.03 s) 623.71 736.067

Mode 1 (4.83 s) 5.5891e-7 3.6429e-7

RDS-PSO 3 Mode 2 (7.43 s) 7.5229e-7 5.8304e-7

(max–min) Mode 3 (5.27 s) 2.0684e-7 3.4627e-7

Mode 4 (8.04 s) 1.8167e-7 9.9213e-8

Mode 1 (5.07 s) 3.7354e-7 4.4937e-7

RDS-PSO 3 Mode 2 (8.17 s) 2.8723e-7 3.0572e-7

(cosine amplitude) Mode 3 (5.47 s) 4.5791e-7 5.8366e-7

Mode 4 (10.22 s) 4.7361e-7 7.5732e-8

Mode 1 (5.02 s) 0.0055 0.066

RDS-PSO 4 Mode 2 (7.56 s) 0.00016 0.0097

(max–min) Mode 3 (5.38 s) 3.3942 5.662

Mode 4 (8.29 s) 4.2125 7.0154

Mode 1 (5.15 s) 0.00091 0.0024

RDS-PSO 4 Mode 2 (8.31 s) 0.000061 0.00052

(cosine amplitude) Mode 3 (5.61 s) 68.191 72.058

Mode 4 (10.39 s) 15.446 13.552

Ladder PSO (LPSO) — 6.4881e-7 8.371e-7

Mutation PSO (MPSO) — 8.9221e-5 5.613e-4

Linearly decreasing
— 2.6441e-6 4.344e-5

inertia weight PSO
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In addition to these experimental studies, the history of the gbest values for RDS-PSO 2, 3, and 4 was

investigated in Figure 4. The constants of step size and C were set to 0.05. RDS-PSO 2, 3, and 4 were

implemented in Mode 2 (with 2000 maximum iterations and linearly decreasing inertia weight) with the max–

min technique for the Rastrigin test function. As indicated in Table 4, the gbest history of RDS-PSO 3 had

better convergence ability than the others for 50 trials. The results in Table 4 are more favorable than the

results in Figure 4 due to the selection of the constants of step size and C.
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Figure 4. The history of gbest in RDS-PSO 2, 3, and 4 for Mode 2 and the Rastrigin function.

5. Discussion

In this paper, a generalization idea for the PSO method was introduced by using 2 new constants, and the

generalized PSO was transformed into an adaptive method through 2 alternative regularization procedures.

The alpha constant sets a trade-off between the impact of the global best and global worst particles in the

velocity update process. Similarly, the beta constant sets the same regularization for the local best and worst

particles. In other words, when the values of the alpha and beta constants are equal to one, the traditional

PSO is constituted. Although RDS-PSO with constant alpha value showed worse results than the traditional

PSO, by using different values for these constants, generalization and diversity enhancement can be improved.

Thus, a procedure regulating the values of these constants is needed. According to the implementation results,

the max–min-based procedure has better diversity-representing properties than the cosine amplitude-based

procedure.

Generally, RDS-PSO 3, which regulates beta values while alpha is equal to one as an invariable parameter,

showed the best results among all methods. Nevertheless, RDS-PSO 4, which regulates both alpha and beta

constants, sometimes showed the best results. As the personal best and worst particles provide more diversity

than the global particles, regulating the beta constant properly is more important than alpha regulations. In

addition, the average performance of the max–min-based procedure is better than the cosine amplitude-based

procedure.

6. Conclusion

In this study, 4 types of RDS-PSO were designed based on a different organization of the alpha and beta

constants. The results of these types were also compared with the original PSO, ladder particle swarm
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optimization (LPSO), mutation particle swarm optimization (MPSO), linearly decreasing inertia weight particle

swarm optimization (LDWPSO), and linearly increasing inertia weight particle swarm optimization (LIWPSO).

According to the experimental results, RDS-PSO 3 showed the highest performance among almost all

benchmark functions. However, LPSO showed almost the same results as RDS-PSO 3. MPSO and LDWPSO

also showed better results than the other RDS-PSO modes.
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ÇOMAK/Turk J Elec Eng & Comp Sci

[19] Zheng YL, Ma LH, Zhang LY, Qian JX. On the convergence analysis and parameter selection in particle swarm

optimization. In: IEEE 2003 Machine Learning and Cybernetics International Conference; 2–5 November 2003;

Piscataway, NJ, USA. New York, NY, USA: IEEE. pp. 1802–1807.

[20] Zheng YL, Ma LH, Zhang LY, Qian JX. 2003b. Empirical study of particle swarm optimizer with an increasing

inertia weight. In: IEEE 2003 Evolutionary Computation Congress; 8–12 December 2003; Canberra, Australia. New

York, NY, USA: IEEE. pp. 221–226.

[21] Selvakumar AI, Thanushkodi K. Anti-predatory particle swarm optimization: solution to nonconvex economic

dispatch problems. Electr Pow Syst Res 2008; 78: 2–10.
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