Tables for Weights and Measurements
 Crops

William J. Murphy, Professor of Agronomy
College of Agriculture

These tables give weights per bushel, weights of grain by volume, moisture conversion and planting rates.

Table 1. Weights per Bushel.

Crop	Weight per B (lbs.)
Alfalfa	60
Barley	48
Clover, Alsike	60
Clover, Crimson	60
Clover, Ladino	60
Clover, White	60
Clover, Red	60
Clover, Sweet	60
Corn, shelled	56
Corn, ear	70
Cotton	32
Cowpeas	60
Flax	60
Grass, Brome (smooth)	14
Grass, Blue	14
Grass, Fescue (tall)	14
Grass, Orchard	14
Grass, Redtop	14
Grass, Timothy	45
Lespedeza	$40-50$
Millet	50
Oats	32
Rape	60
Rye	56
Sorghum, forage	50
Sorghum, grain	56
Soybeans	60
Sudan Grass	28
Sunflower (oil type)	$24-32$
Trefoil, Birdsfoot	60
Vetch	60
Wheat	60

Table 2. Calculating Approximate Weight of Grain by Volume

Standard Bushel Weight Pounds/Cubic Feet
(lbs.)
$60 \quad 48.18$

56 44.97

50
40.15

48
38.54

45
36.14
22.48
11.24
28.00*
*Varies greatly with ear size and moisture content.

Measuring Cubic Feet

Width in feet x length in feet x depth of grain in feet $=$ cubic feet in square or rectangular enclosures.

Example. 10 ft . width x 14 ft . length x 9 ft . grain depth $=$ 1,260 cu.ft.

In circular bins, the formula is: $\pi \mathrm{r}^{2} \mathrm{x}$ depth of grain $=\mathrm{cu} . \mathrm{ft}$.

Example. π (3.1416) $\mathrm{x} \mathrm{r}^{2}$ (Radius $=10 \mathrm{ft}$. in 20 ft . diameter bin) $\times 12 \mathrm{ft}$. depth $=3.1416 \times(10 \times 10) \times 12=$ 3769.92 cu. ft.

Obtaining Total Grain Weight

Multiply cu. ft . of volume by the appropriate figure from Table 2 under Pounds/Cubic Feet.

If actual bushel weight (test weight) is available, multiply actual bushel weight by 0.803 . This calculation will give a more accurate figure for $\mathrm{lbs} . / \mathrm{cu} . \mathrm{ft}$. than you can get from the table.

Table 3. Moisture Conversion for Ear and Shelled Corn.

Percent Moisture in Grain	Harvest Weight (lbs.) of Ear Corn to Yield 56 Shelled Corn at $\mathbf{1 5 . 5 \%}$ Moisture*	Shelled Corn (lbs.) Equivalent to 56 lbs. Shelled Corn at $\mathbf{1 5 . 5 \%}$ Moisture
10	63.49	52.56
10.5	63.86	52.87
11	64.25	53.16
11.5	64.65	53.46
12	65.06	53.77
12.5	65.60	54.08
13	65.95	54.39
13.5	66.42	54.70
14	66.89	55.02
14.5	67.39	55.34
15	67.89	55.67
15.5	68.40	56.00
16	68.94	56.33
16.5	69.51	56.67
17	70.09	57.01
17.5	70.69	57.35
18	71.31	57.70
18.5	71.95	58.06
19	72.60	58.41
19.5	73.27	58.78
20	73.96	59.15
20.5	74.60	59.52
21	75.36	59.89
21.5	76.07	60.28
22	76.79	60.66
22.5	77.53	61.05
23	78.25	61.45
23.5	79.01	61.85
24	79.76	62.26
24.5	80.50	62.67
25	81.25	63.09
25.5	82.03	63.51
26	82.82	63.94
26.5	83.50	64.38
27	84.19	64.82
27.5	84.90	65.26
28	85.62	65.72
28.5	86.32	66.18
29	87.04	66.64
29.5	87.76	67.12
30	88.50	67.60
30.5	89.22	68.08
31	89.94	68.57
31.5	90.67	69.08
32	91.43	69.58
32.5	92.13	70.10
33	92.85	70.62
33.5	93.55	71.15
34	94.28	71.69
34.5	94.98	72.24
35	95.71	72.80

[^0]
Obtaining Bushels of Grain

Divide total grain weight by appropriate standard bushel weight.

Obtaining Number of Hundredweights (cwts.) of Grain

Divide total grain weight by 100 .

Table 4. Moisture Conversion for Soybeans.
Percent Moisture Soybeans (lbs.) Equivalent to 60 lbs. in Grain of Soybeans at 13.0% Moisture 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Table 6. Moisture Conversion for Grain Sorghum.

Percent Moisture in Grain	Grain Sorghum (lbs.) Equivalent to $\mathbf{5 6}$ lbs. of Grain Sorghum at $\mathbf{1 3 \%}$ Moisture
10	54.13
11	54.74
12	55.36
13	56.00
14	56.65
15	57.32
16	58.00
17	58.70
18	59.41
19	60.15
20	60.90
21	61.67
22	62.46
23	63.27
24	64.11
25	64.96
26	65.83
27	66.74
28	67.67
29	68.62
30	69.60

Calculating Other Conversion Factors.

These conversion tables cover the most widely grown crops and the most common moisture contents. When you need other conversions, the calculations are relatively simple.

Use percent dry matter in making conversions because the problem is to obtain the same weight of dry matter as is found in a standard bushel. For example, a standard bushel of wheat contains 60 lbs . at 13.5% moisture. Thus, 86.5% dry matter $(100-13.5) \times 60 \mathrm{lbs} .=$ 51.9 lbs of dry matter.

Example. How many pounds of 20.5% moisture wheat is equivalent to a standard bushel?

- 13.5% Standard Moisture Content $=100-13.5=$ 86.5\% Dry Matter
- 20.5% Moisture Content $=100-20.5=79.5 \%$ Dry Matter
- $86.5 \div 79.5=108.8 \%$
- $\frac{108.8 \times \text { Standard Bu. Wt. (} 60 \text { for wheat) }}{100}=$
- 65.28 lbs. equivalent to a standard bushel

To check your answer, $65.28 \times 79.5 \%$ dry matter $=$ 51.9 lbs . of dry matter.

Table 7. Common Measures and Approximate Metric Equivalents.
1 liquid teaspoon $=5$ milliliters (ml .)
3 liquid teaspoons $=1$ liquid Tablespoon $=15 \mathrm{ml}$.
2 liquid tablespoons $=1$ liquid ounce $=30 \mathrm{ml}$.
8 liquid ounces $\quad=1$ liquid cup $=0.24$ liter (1.)
2 liquid cups $\quad=1$ liquid pint $=0.471$.
2 liquid pints $\quad=1$ liquid quart $=0.9463 \mathrm{l}$.
4 liquid quarts $\quad=1$ liquid gallon (U.S.)
$=3.78541$.

Table 8. Conversion Factors for Metric and English Units.

| To Convert
 Column 1 into
 Column 2,
 Multiply by | Column 1 |
| :--- | :--- | :--- | :--- |

Table 9. Mixing Small Quantities of Liquid Spray.

Concentration of
Active Ingredient per Gallon

1 lb .
2 lbs.
3 lbs.
4 lbs.

Checking Planting Rate or Stand Per Acre

This table may be useful in checking actual planting rate when planting a crop. It can also be used in obtaining stand counts.

Determine average spacing in inches between seeds (or plants) in the row. Then divide the appropriate figure in the right hand column by this figure to determine planting rate (or stand).

Example. Grain sorghum planted in $30^{\prime \prime}$ rows is found to average 2.5 inches between seeds.
$209,088 \div 2.5=83,635$ seeds being planted per acre.
Or the grain sorghum stand averages 1 plant per $3.5^{\prime \prime}$ of row. Then $209,088 \div 3.5=59,379$ plants per acre.

Amount to Mix for
1000 sq. ft. to get $1 \mathrm{lb} . /$ acre of Active Ingredient 7 tablespoons or 103 ml . 3.5 tablespoons or 51.5 ml . 2.3 tablespoons or 34.3 ml . 1.7 tablespoons or 25.8 ml .

You can use this method without the table as long as you remember that there are 43,560 sq. ft. per acre and that 144 sq. in. $=1$ sq. ft.

Example. $43,560 \times 144=6,272,640$ sq. inches per acre. Divide $6,272,640$ by inches of row width to obtain inches of row per acre $(6,272,640 \div 30=209,088)$.

Row Spacing (inches)

40
Inches of Row Per Acre
155,682
165,069
174,240
209,088
224,023
261,360
313,632
348,480
418,176
448,046
522,720
627,264
784,080
896,091

- Issued in furtherance of Cooperative Extension Work Acts of May 8 and June 30, 1914 in cooperation with the United States Department of Agriculture. Leonard C. Douglas, Director, Cooperative Extension Service, University of Missouri and Lincoln University, Columbia, Missouri 65211. An equal opportunity institution.

[^0]: * Ear corn values supplied by Dr. Marcus Zuber, University of Missouri Agronomy Department. Ear corn values apply with greatest accuracy at harvest because differences in cob and grain moisture will change in storage. Shelled corn figures apply at any time.

