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Abstract: Recommender systems (RS) analyze user rating information and recommend items that may
interest users. Item-based collaborative filtering (IBCF) is widely used in RSs. However, traditional
IBCF often cannot provide recommendations with good predictive and classification accuracy at the
same time because it assigns equal weights to all items when computing similarity and prediction.
However, some items are more relevant and should be assigned greater weight. To address this
problem, we propose a niche approach to realize item-variance weighting in IBCF in this paper.
In the proposed approach, to improve the predictive accuracy, a novel time-related correlation
degree is proposed and applied to form time-aware similarity computation, which can estimate
the relationship between two items and reduce the weight of the item rated over a long period.
Furthermore, a covering-based rating prediction is proposed to increase classification accuracy, which
combines the relationship between items and the target user’s preference into the predicted rating
scores. Experimental results suggest that the proposed approach outperforms traditional IBCF and
other existing work and can provide recommendations with satisfactory predictive and classification
accuracy simultaneously.

Keywords: recommender system; item-based collaborative filtering; predictive accuracy; classification
accuracy; item-variance weighting

1. Introduction

Recommender systems (RS) can provide personalized recommendations for various types of
users [1–4]. Thus, such systems are widely used, have significant commercial value and have been
studied extensively [5–8].

RSs rate items that users have not yet purchased and recommend items based on user
preferences [9,10]. Consequently, recommendation accuracy directly affects RS service quality and
user experience, because it measures how well an RS can predict an exact rating value for a specific
item. Generally, RS accuracy metrics include predictive accuracy and classification accuracy [11,12].
Predictive accuracy indicates the average error between predictions and real values. For example,
in the MovieLens dataset, a user will give each movie rating stars which represent the user’s reference
degree, the predictive accuracy will evaluate how close predictions are to the user’s true number of
stars given to each movie. On the other hand, classification accuracy indicates the extent to which the
user agrees with the recommendations; it does not attempt to directly measure the ability of an RS
to accurately predict ratings [11]. Note that high predictive accuracy of recommendations does not
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necessarily imply high classification accuracy, vice versa. It is because even if an RS can correctly rank
a user’s movie recommendations, it could fail if the predicted rating scores are incorrect.

Collaborative filtering (CF) approaches are often used in RSs because they perform well [13–15].
Item-based collaborative filtering (IBCF) assumes that a user will prefer an item if it is similar to past
preferences. Recently, IBCF has demonstrated success in both research and practical applications [16,17],
for example, Amazon. In traditional IBCF, all items are assigned the same weight when computing
similarity and predictions; however, it is widely recognized that some items are more important
than others and should be given relatively higher weight. It will result in the traditional IBCF often
cannot provide recommendations with satisfactory accuracy. Currently, many approaches have been
proposed to improve the recommendation accuracy of IBCF; however, their results indicate that they
can enhance predictive accuracy or classification accuracy but not in both [18–22]. Therefore, how to
achieve improvements in both predictive and classification accuracy of IBCF is a difficult problem
faced by researchers.

Motivated by this, in this paper, to provide recommendations with good predictive and
classification accuracy at the same time, a new approach named TCIBCF was proposed, which
implements the time-aware similarity computation and covering-based rating prediction to realize
item-variance weighting in traditional IBCF. Figure 1 indicates the flow chart of our proposed approach.
We present a time-related correlation degree and apply it to the item-item similarity computation
to improve predictive accuracy, that is, recent user ratings are assigned greater weight. We also
propose a covering degree and implement it into rating prediction to increase classification accuracy.
Items that are closer to a target user’s preference will have a larger covering degree and higher weight.
Experimental results demonstrate that the proposed approach outperforms traditional IBCF and other
related work and can provide recommendations with satisfactory predictive and classification accuracy.
The novel contributions of our approach are featured as follows:

• Different from most related approaches that applied the time factor into rating prediction
step [18–20], a novel time-related correlation degree function proposed in this paper employs the
time factor to compute item-item similarity computation and it can work effectively on the sparse
datasets that often occur in real RSs. The predictive accuracy of recommending results can be
enhanced effectively by using it and experimental results in Section 4.2 confirm this.

• Unlike the traditional IBCF that utilizes the information of a target item’s similar items to predict
rating scores [21,22], the proposed approach further selects neighborhood for each similar item of
the target item and presents a new covering degree function to increase the weights of items that are
closer to the target user’s preference. By this way, the classification accuracy of recommendations
can be improved effectively and experimental results in Section 4.2 confirm this.

• Both predictive and classification accuracy of recommendations are improved. Unlike most
related work that can enhance either predictive accuracy or classification accuracy but not in
both [18–22], the proposed approach can provide recommendations with satisfactory predictive
and classification accuracy simultaneously and experimental results in Section 4 confirm this.

The remainder of this paper is organized as follows. In Section 2, we introduce the traditional
IBCF approach and the problem setting. In Section 3, we present the proposed time-aware similarity
computation and covering-based rating prediction and provide detailed information about the proposed
approach. We describe experiments and compare the results to the traditional IBCF approach and
other work in Section 4. Conclusions and suggestions for future work are presented in Section 5.
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Figure 1. The flow chart of proposed approach. Our approach comprises the following main phases:
1O combine user-item rating matrix and user-item time matrix; 2O apply the proposed item-related

correlation degree function into similarity measure to compute item-item similarity; 3O further select
the neighborhood for each similar item of a target item; 4O insert proposed covering degree function
into rating prediction; 5O recommend top N items with highest predicted rating scores.

2. Related Work

2.1. Overview of the Traditional IBCF

First, we explain the notations and terms related to RSs. Given an RS, U and I denote finite sets
of users and items, respectively, R∪ {?} denotes the set of possible item rating scores and RM is the
user-item rating matrix. T ∪ {◦} represents the set of possible item rating time and TM is the user-item
time matrix. The rating score of user u for item x is denoted ru,x ∈ R∪ {?}, where (?) represents a
missing rating and tu,x ∈ T ∪ {◦} is the time at which item x was rated by user u, where (◦) indicates a
missing rating time. The average of the valid ratings of item x is denoted rx.

The IBCF approach was first proposed by Sarwar [16] and it is widely used in RSs. IBCF has
good scalability and can be applied to extremely large numbers of items and users that are typical of
modern RSs. In contrast to user-based CF, IBCF can perform well even for RSs that have many items
but comparatively few ratings. Furthermore, the IBCF approach can compute item-item similarity
offline, which reduces online time and results in more effective recommendations. The IBCF procedure
is described in the following.

Step 1: Item-item similarity computation. On the basis of the user-item rating matrix RM, IBCF
computes the similarity between all items. Note that several measures can be used to compute
similarity; however, we used the Pearson correlation coefficient, which was widely used in IBCF.
Similarity computed using the Pearson correlation coefficient is expressed as follows.

sim(x, y) =
Σu∈Ux∩Uy(ru,x − rx) ∗

(
ru,y − ry

)
√

Σu∈Ux∩Uy(ru,x − rx)
2

√
Σu∈Ux∩Uy

(
ru,y − ry

)2
(1)
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Here, Ux =
{
u ∈ U

∣∣∣ru,x , ?
}

is a set of users who have rated item x and ry denotes the average
rating of item y.

Step 2: Neighborhood selection. After computing item-item similarity, for each target item ti that
has not been rated by target user tu, items with high similarity with target item ti will be selected as its
neighborhood. Generally, in traditional IBCF, after all items are sorted in descending order of similarity
values, the k most similar (nearest) items will comprise the neighborhood for target item ti.

Step 3: Rating prediction. Note that ratings are normalized and according to the rating information
of the target item’s neighborhood for target user tu, a rating score is predicted for each target item ti.
Note that the weighted sum is a useful measure often used in the IBCF approach:

ptu,ti =
Σq∈Nti(k)∩Itusim(ti,q) ∗ rtu,q

Σq∈Nti(k)∩Itu

∣∣∣sim(ti,q)
∣∣∣ (2)

Here, Itu =
{
x ∈ I

∣∣∣rtu,x , ?
}

is the set of items rated by target user tu, Nti(k) is the neighborhood
of target item ti and Ptu,ti is the prediction made about target item ti for target user tu.

2.2. Recommendation Accuracy Problem in Traditional IBCF Approach

In the traditional IBCF approach, all items have equal weights for both the item-item similarity
computation and rating prediction procedures, that is, item weight is not considered. However, it
is widely recognized that some items with greater contribution should be assigned relatively higher
weight. Therefore, the traditional IBCF often cannot provide recommendations with good predictive
and classification accuracy simultaneously. Figure 2 utilizes two items to describe the comparison
between predictive accuracy and classification accuracy. If we treat items rated no less than 3 as
relevant items, then, in (a) of Figure 2, both item 1 and item 2 have same classification accuracy;
however, because error between prediction and real rating of item 1 is bigger than item 2, item 1 will
have worse predictive accuracy than item 2. In (b) of Figure 2, the real rating of item 1 is less than 3
but the predicted rating pu,1 is higher than 3, it will result in the classification accuracy of item 1 is
worse than item 2. In (c) of Figure 2, both predicted rating and real rating for two items are higher
than 3 and errors between them are also the same, so item 1 and item 2 have same results on both
predictive accuracy and classification accuracy. From the Figure 2, we can conclude that improving
predictive accuracy does not indicate classification accuracy is also improved, vice versa (e.g., (a) and
(b) of Figure 2). How to improve predictive and classification accuracy of IBCF simultaneously (e.g., (c)
of Figure 2) is a significant problem in the traditional IBCF approach.
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Figure 2. The description of predictive accuracy and classification accuracy using example items.
(a) with the same classification accuracy, item 1 has worse predictive accuracy than item 2; (b) with the
same predictive accuracy, item 1 has worse classification accuracy than item 2; (c) item 1 and item 2
have same results on both predictive accuracy and classification accuracy.

To enhance the accuracy of IBCF, a number of approaches have been explored. According to the
performance of these approaches, they can be classified into two lines. In the first line, researchers aim
to improve the predictive accuracy of IBCF. Gao et al. [21] incorporated the weighted user-rank into the
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computation of item similarities and differentials to propose a PageRank-based ranking approach, this
approach can improve the predictive accuracy of IBCF. Koren [22] proposed a niche approach starting
from the dynamic preferences of the target user and extracting the influence on user preferences during
the entire time period of user modeling; the predictive accuracy of IBCF has been enhanced clearly by
this approach. On the other hand, classification accuracy tries to be improved as a target. Ding et al. [18]
applied the time weights for different items in the rating prediction step and increased the weights
of the influence of ratings relative to time; this approach could improve the classification accuracy
of IBCF effectively. Feng et al. [19] developed a temporal overlapping community detection method
based on time-weighted association rule mining; this approach can improve classification accuracy by
modeling dynamic user interests. However, even approaches mentioned above can enhance predictive
accuracy or classification accuracy of IBCF effectively but they cannot enhance them in both.

3. Proposed Approach

Here, we describe the motivation of the proposed approach. Then, we introduce the time-aware
similarity computation and covering-based rating prediction. In addition, we discuss the detailed
process and innovative aspects of the proposed approach.

3.1. Motivation

To provide recommendations with better predictive and classification accuracy, the proposed
approach attempts to realize item-variance weighting in traditional IBCF, that is, items with
greater contribution will have higher weight values in the similarity computation and rating
prediction procedures.

In this paper, to increase the predictive accuracy of recommendations, in the similarity computation
procedure, we propose a novel time-related correlation function and utilized it to reduce the influence
of items rated in the past. Furthermore, to improve the classification accuracy of recommendations,
in the rating prediction procedure, for items that have characteristic that are more similar to the
target user’s preference, we present a new covering degree to ensure that such items are assigned
greater weight.

3.2. Time-Aware Similarity Computation

In an RS, user preferences may change as time goes on, so ratings rated in different period should
be assigned different weight [18–20]. For example, consider movies 1, 2 and 3 rated by a single person
with the same rating scores, where movie 1 was rated one year ago and movies 2 and 3 were rated
one day ago. Recall that, in the traditional IBCF, rating weights are equal; thus, here, the similarity
between movies 1 and 2 will be the same as that between movies 2 and 3. However, although the
ratings have equal values, they may have different contributions because user preferences may change
over time. Here, if this user’s preferences have changed, even though movies 1 and 2 are assigned the
same rating scores, they may have very different characteristics. Typically, preferences do not change
over a single day; thus, movies 2 and 3 should have high similarity. In a similar period, we assume
that item ratings can reflect correlation between items more precisely. Therefore, when computing
similarity, an effective CF algorithm should gradually reduce the influence of ratings relative to time,
that is, recent ratings should be assigned greater weight.

To express the degree of correlation between two items over time, a number of time functions
were proposed but most related approaches applied time factor to rating prediction of traditional IBCF
(e.g., (a) of Figure 3). However, in this case, the time function was ineffective because, in practical
applications, RSs must handle a large amount of data that include significant numbers of users and
items. Here, each user has rated only a small number of items compared to the huge number of
unrated items. Thus, most RSs have sparse datasets. In the IBCF approach, to maintain real-time
performance, the neighborhood size must be limited [23–25], that is, the number of items available to
rate is limited. The time function is only applied to items that the target user has rated in the target
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To express the degree of correlation between two items over time more effectively, we propose the
following time-related correlation degree in (Equation (3)) that computes time weights for different
items such that smaller weight values are assigned to items rated in the past and apply it to the
similarity computation in traditional IBCF because, when computing the similarity between each item,
it is easy to find two items rated by the same user (e.g., (b) of Figure 3); thus, we can take full advantage
of the time-related correlation degree, which is expressed as

f (u, x, y) = e−λ∗|tu,x−tu,y |, (3)

where λ = 1
T0

is the decay rate. Here, if T0 = 30 days, the time weight is reduced by one month.
f (u, x, y) is a gradually decreasing function that tracks the degree of correlation between items x and y
for target user u. The behavior of the function f (u, x, y) differs with different values for parameter T0

Thus, we should select different T0 values under different circumstances. For example, consider a
dataset with a long-time span (10 years). If we set T0 to one day, most time function values will be 0
and the meaning of the time weight will be lost. In contrast, if a dataset has a short time span (two
months) and T0 is set to 30 days, most time function values will be close to 1 and the effect of the time
function will be limited.

Generally, user preferences do not change significantly over a short period. Thus, for a single user,
the score assigned to an item rated at approximately the same time as the target item will make a greater
contribution to effective similarity computation. With the function f (u, x, y), as the times at which
two items were rated by the target user become closer and the value of

∣∣∣tu,x − tu,y
∣∣∣ becomes smaller,

the degree of correlation between the two items increases. Therefore, the time-related correlation
degree function can effectively estimate the relationship between two items and reduce the weight of
the item rated over a long period.

3.3. Covering-Based Rating Prediction

In the traditional IBCF, when predicting the rating score for a target item, items in the neighborhood
of the target item will be assigned the same weight values; however, if most of the items in the
neighborhood have characteristics that are similar to the target user’s preference, the target item
may also be preferred by the target user and should be assigned a relatively higher weight value.
The weight differential will result in more accurate prediction results and better recommendations.
For example, assume that items a and b are candidates for the target user and that, after sorting items
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in the neighborhood in descending order of similarity, the similarity values and rating scores for the
items in item a’s neighborhood will be equal to those of item b. However, most items in item a’s
neighborhood are similar to the target user’s preference and most items in item b’s neighborhood
have very different characteristics. In traditional IBCF, items a and b will have the same predicted
rating scores. However, because the characteristics of item a’s neighborhood are more similar to the
target user’s preference than those of item b, it is more likely that the target user will prefer item a.
Thus, item a should have a higher predicted rating score than item b. In other words, items whose
characteristics are more similar to target user’s preference should have higher weight.

In this paper, to measure the relationship between items and the target user’s preference, we
present a niche covering degree function (Equation (6)) and further utilize it to propose a covering-based
rating prediction method according to the theory of covering-based rough set. As illustrated in Figure 4,
different from the traditional IBCF that utilizes the information of a target item’s similar items to
predicted rating scores (i.e., (a) of Figure 4), the proposed method further select neighborhood for each
similar item of the target item (i.e., (b) of Figure 4) and utilizes proposed covering degree function to
increase the weights of items that are closer to the target user’s preference (i.e., (c) of Figure 4).
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First, we give the definitions of covering and the covering approximation space. More detailed
information can be found in References [26–29].

Let T be the domain of discourse and {Ci}(i = 1, 2, . . . , n) be a family of subsets of T. If Ci , ∅
and ∪Ci = T, {Ci} is a covering of T, denoted by C and we call the ordered pair 〈T, C〉 a covering
approximation space.

In a covering approximation space 〈T, C〉, the family sets

Md(t) =
{
K ∈ C

∣∣∣t ∈ K ∧ (∀H ∈ C∧ t ∈ H ∧H ⊆ K⇒ K = H)
}

(4)

is called the minimal description of t, which represents a main characteristics description of element t.
In order to describe the relationship between an element t ∈ T with a set X ⊆ T, Xu and Zhang [26]
present a roughness measure in classical rough sets induced by a covering, the definition is as follows.

Let T be the domain of discourse, C be a covering of T and X ⊆ T be a subset of T, for every
element t ∈ T, degree of rough membership of t in X, denote by D(t, X), is defined by

D(t, X) =
card((∩Md(t))∩ X)

card(∩Md(t))
(5)

Clearly, for any t ∈ T, D(t, X) ∈ [0, 1].
In an RS, an item’s neighborhood is most relevant to the item itself and can express common

characteristics of the item. In addition, a target user’s relevant item set can reflect this user’s preference.
Here, let Rtu be the relevant item set of the target user tu, Ni(n) represents the neighborhood of item
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i ∈ I which is comprised by the top n items from the similarity list of item i. The covering degree of
item i in Rtu is defined as

CD(i, Rtu) =
card(Ni(n)∩ Rtu)

card(Ni(n))
(6)

It is clear that CD(i, Rtu) ∈ [0, 1] and the value of CD(i, Rtu) can be interpreted as the correlation
between element i and set Rtu. Then, we can apply it to the rating prediction procedure and utilize
it to measure the relationship between items and the target user’s preference. If an item has a high
covering degree, CD(i, Rtu) has a greater value, which means that this item is similar to the target
user’s preference; thus, the item should be given greater contribution when predicting the rating score
for the target item.

3.4. Procedures of the Proposed Approach

Here, we propose the TCIBCF approach. In the proposed approach, the time-related correlation
and covering degree are applied to compute item-item similarity and rating prediction, respectively.
Here, θ is set as the rating score threshold and items with ru,x ≥ θ are defined as relevant items for user
u. The detailed procedures are described in the following.

Step 1: Time-aware similarity computation. According to user-item rating matrix RM, we insert
the time-related correlation degree (Equation (3)) into the Pearson correlation coefficient to compute
item-item similarity. Here, we obtain the following:

sim(x, y) =
Σu∈Ux∩Uy(ru,x − rx) ∗

(
ru,y − ry

)
∗ f (u, x, y)√

Σu∈Ux∩Uy(ru,x − rx)
2

√
Σu∈Ux∩Uy

(
ru,y − ry

)2
(7)

Step 2: Neighborhood selection. When obtaining the item-item similarity, for each target item
ti that has not been rated by target user tu, after sorting all items in descending order of similarity,
we select the top k items as the neighborhood Nti(k) of target item ti. Furthermore, for each similar
item p ∈ Nti(k), we select the top n items from the similarity list of item p, which comprises the item set
Np(n).

Step 3: Covering-based rating prediction. In domain I, relevant items for each target user tu
comprise the relevant set Rtu, where

Rtu =
{
x ∈ I

∣∣∣rtu,x ≥ θ
}

(8)

Then, on the basis of the covering degree function (Equation (6)), we compute the covering degree
CD(p, Rtu) between each item p and Rtu and apply it to the weighted sum approach to predict the
rating score of item ti from target user tu:

ptu,ti =
Σp∈Nti(k)∩Itusim(ti,p) ∗ rtu,p ∗CD(p, Rtu)

Σp∈Nti(k)∩Itu

∣∣∣sim(ti,p) ∗CD(p, Rtu)
∣∣∣ (9)

Step 4: Item recommendations. When all predictions for target items are complete, the proposed
approach sorts all target items in descending order of predicted rating scores and the top N items are
selected as the recommended items for target user tu.

3.5. Example of TCIBCF Approach in RSs

Here, we present an example to explain the TCIBCF approach more clearly. Table 1 shows a
user-item rating matrix by four users for seven items. The user set is comprised by {U1, U2, U3, Utu},
where Utu means the target user. The item set consists of {I1, I2, I3, I4, I5, I6, I7}. The rating value is from
1 to 5, where a higher value indicates that the user likes the given item more. Table 2 illustrates a
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user-item time matrix which shows the time that the user gave the rating in Table 1 and we take one
day as a unit of rating time.

Table 1. Example of user-item rating matrix.

U1 U2 U3 Utu

I1 3 4 5 1
I2 3 4 5 4
I3 3 4 5 3
I4 3 4 5 2
I5 3 4 5 5
I6 3 4 5 *
I7 3 4 5 *

Table 2. Example of user-item time matrix.

U1 U2 U3 Utu

I1 6/1/2018 6/1/2018 6/1/2018 6/1/2018
I2 5/1/2018 5/1/2018 5/1/2018 5/1/2018
I3 4/1/2018 4/1/2018 4/1/2018 4/1/2018
I4 3/1/2018 3/1/2018 3/1/2018 3/1/2018
I5 2/1/2018 2/1/2018 2/1/2018 2/1/2018
I6 2/1/2018 2/1/2018 2/1/2018 ◦

I7 6/1/2018 6/1/2018 6/1/2018 ◦

In the traditional IBCF approach, because I6 and I7 have the same rating scores from {U1, U2, U3},
respectively, thus they will have the same neighborhood and predicted rating scores. However, I6 and
I7 may have different rating time and characteristics, so they should have different recommended
order for the target user tu. In our proposed TCIBCF approach, after the time-aware similarity and
covering-based rating prediction, neighborhood and predicted rating scores are quite different between
I6 and I7. The detailed procedures of TCIBCF are as follows.

Step 1: Time-aware similarity computation. In order to compute the time-related correlation
degree (Equation (3)), we treat T0 = 30 days in λ = 1

T0
, it means the time weight is reduced by one

month. Then, we use Equation 7 to compute item-item similarity, Table 3 shows the result of item-item
similarity with time-related correlation degree.

Table 3. Example of item-item similarity with time-related correlation degree.

I1 I2 I3 I4 I5 I6 I7

I1 1 0.176 0.091 0.049 −0.001 0.013 0.736
I2 0.176 1 0.314 0.086 0.016 0.050 0.368
I3 0.091 0.314 1 0.288 0.062 0.129 0.129
I4 0.049 0.086 0.288 1 0.050 0.314 0.042
I5 −0.001 0.016 0.062 0.050 1 0.956 0.017
I6 0.013 0.050 0.129 0.314 0.956 1 0.368
I7 0.736 0.368 0.129 0.042 0.017 0.368 1

Step 2: Neighborhood selection. After obtaining the item-item similarity, we set the size of item’s
neighborhood as 3, then, the neighborhood of each item is as follows:

N1(3) = {I7, I2, I3}; N2(3) = {I7, I3, I1};

N3(3) = {I2, I4, I6}; N4(3) = {I6, I3, I2};

N5(3) = {I6, I3, I4}; N6(3) = {I5, I7, I4};



Appl. Sci. 2019, 9, 1928 10 of 17

N7(3) = {I1, I2, I6}

Step 3: Covering-based rating prediction. Here, we treat item whose rating is great than or equal
to 3 as the target user’s preferred item, then, the target user’s preferred item set is Rtu = {I2, I3, I5}.
According to the covering degree we proposed, we compute the covering degree between each item
and the target user’s preferred item set Rtu:

CD(I1, Rtu) = 2/3; CD(I2, Rtu) = 1/3;

CD(I3, Rtu) = 1/3; CD(I4, Rtu) = 2/3;

CD(I5, Rtu) = 1/3; CD(I6, Rtu) = 1/3;

CD(I7, Rtu) = 1/3.

Then, we utilize Equation 9 to predict the rating score for I6 and I7. Here PUtu,I6 = 3.811, PUtu,I7

= 1.600.
Step 4: Item recommendations. Because PUtu,I6 > PUtu,I7 , if we select the top one movie as

recommendation, I6 will be recommended to the target user tu.

3.6. Discussion

The most significant innovation in the proposed approach is its ability to realize item-variance
weighting in traditional IBCF. Here, as a key item can play a more significant role in
RSs, the recommendations provided to the target user could have satisfactory predictive and
classification accuracy.

The proposed approach employs two techniques to utilize item-variance weighting to improve
predictive and classification accuracy in traditional IBCF.

1. The time-related correlation degree is applied to the similarity computation procedure to improve
predictive accuracy.

2. The covering degree is applied to the rating prediction procedure to improve classification accuracy.

Relative to the first technique, we note that a user’s interests may change over time. In traditional
IBCF, items rated at different times have the same weight. Thus, some items rated by the user in the
past will have the same weight as recently rated items, even if the target user has changed his or her
preferences. The time-related correlation degree function can most effectively reduce the weight of
items rated by a user over a long period. Thus, we can reduce the effects of changing user preferences
over time. After applying the time-related correlation degree to the similarity computation, items
recently rated by the same user will have greater weight than items rated in the past. Thus, the
similarity can reflect the relationship between items more precisely. Therefore, errors between the
predicted and real ratings are reduced and predictive accuracy is improved.

Relative to the second technique, in traditional IBCF, items in the neighborhood of the target item
will have the same weight. In other words, when predicting the rating score for a target item based
on rating information from the item’s neighborhood, items that are more similar to the target user’s
preference will have the same weight as items that differ significantly from the target user’s preference.
Therefore, some items preferred by the target user cannot have higher predicted rating scores than
others and it will be difficult to be recommend such items to the target user. The covering degree
can measure the relationship between items and the target user’s preference. Thus, after applying
the covering degree to rating prediction, items that are more similar to the target user’s preference
will have greater weight than others, which means that these items will have greater contribution
when predicting rating scores. As a result, target items with more neighborhoods that are similar to
the target user’s preference and may be preferred by the user will have relatively higher predicted
rating scores. Consequently, it becomes easy to recommend such items to the target user. Therefore,
the proposed approach can improve the classification accuracy of recommendations.
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Note that, different from some related approaches which require additional information (e.g., user
profiles) that is often not available or incomplete [18–23], our proposed TCIBCF approach can output
recommended items for target user tu without needing other special information.

4. Experiments and Evaluation

In this section, we introduce the evaluation datasets and metrics, examine the effects of the
proposed approach and compare the performance of the proposed approach to that of other work.

4.1. Experimental Setup and Evaluation Metrics

Here, we used two popular real-world datasets that are often used to evaluate RSs. One is the
MovieLens10M dataset [30], which was collected by the GroupLens Research Project from January
1995 to January 2009 (168 months). This dataset contains 10,681 movies, 69,878 users and a total of
10 million ratings on a scale of {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. In this dataset, each user has rated
at least 20 movies. The other dataset is the Netflix dataset obtained from the Netflix Prize website
(http://www.netflixprize.com). This dataset was collected between October 1998 and December 2005
(85 months) and it contains a total of 100 million ratings of 17,770 movies from 480,189 users. The ratings
are on a {1, 2, 3, 4, 5} scale and each user has rated a different number of movies.

In this paper, considering the huge number of items and users in the MovieLens10M and Netflix
dataset, to obtain a manageable size, for each dataset, we randomly selected 2000 items as the
experimental data. In our experiment, in order to mimic real-world conditions, we utilized one of the
most popular rating orders: the user-centered and time-dependent ordering conditions combination to
build the training and test sets [20]. For each item, we ordered the ratings by timestamps separately
and the most recent 20% of the ratings were treated as test data and the remaining 80% were treated
as training data. We used the training data to compute the item-item similarity and predicted rating
scores for the test data and the test data were used to evaluate the performance of the proposed
approach. As the MovieLens10M dataset was collected over 168 months, we used two months period
(60 days) as the time decay rate. As the Netflix data were collected over 85 months, we utilized a month
period (30 days) as the time decay rate. To avoid the impact of accidental phenomena, we repeated
experiments for each dataset 20 times and computed the average values as the results.

In RSs, the customer’s confidence in the system depends on both the predictive accuracy and
classification accuracy. Therefore, in our experiments, we used the mean absolute error (MAE) and
root-mean-square error (RMSE) to represent the predictive accuracy of recommendations. In addition,
we used precision, recall and F1 measures to represent the classification accuracy of recommendations.

The MAE and RMSE metrics demonstrate the average error between predictions and real values;
therefore, lower values represent higher accuracy. The MAE and RMSE are expressed as follows:

MAE =
1

card(U)

∑
u∈U

(
1

card(Ou)

∑
x∈Ou

∣∣∣pu,x − ru,x
∣∣∣) (10)

RMSE =
1

card(U)

∑
u∈U

√
1

card(Ou)

∑
x∈Ou

(pu,x − ru,x)
2 (11)

where Ou =
{
x ∈ I

∣∣∣pu,x , ?∧ ru,x , ?
}

indicates a set of items rated by user u with prediction values.
Precision refers to the proportion of relevant recommended items from the total number of

recommended items for the target user. Here, higher values indicate better performance. Assuming
that Ns is the number of recommended items for the target user, Nrs denotes the amounts of items the
target user likes that appear in the recommended list. The precision metric is defined as follows:

Precision =
Nrs

Ns
(12)

http://www.netflixprize.com
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Recall indicates the proportion of relevant recommended items from all relevant items for the
target user. Similar to precision, higher recall values indicate better performance. Here, Nr denotes the
number of items preferred by the target user. The recall metric is computed as follows:

Recall =
Nrs

Nr
. (13)

F1 is a combination of precision and recall expressed as follows:

F1 =
2 ∗ Precision ∗Recall
Precision + Recall

(14)

Note that neighborhood size has a significant impact on recommendation quality [23–25].
According to previous research [16], 30 is an optimal neighborhood size; thus, in our experiments,
we set n = 30 for each item in the target item’s neighborhood, which means that we utilized an item’s
top 30 most similar items to represent the given item’s characteristics. However, to indicate changes in
the evaluation metrics as the size of the target item’s neighborhood increases, we also used different
neighborhood sizes {10, 20, 30, 40, 50}. Furthermore, to calculate the precision, recall and F1 values,
we treated items rated no less than 3 as relevant items and the number of recommendations was set to
2, 4, 6, 8, 10 and 12.

4.2. Experimental Results and Comparisons

We further define TCIBCF to represent the proposed approach using the time-aware similarity
computation and covering-based rating prediction, TRIBCF to represent IBCF only using the time-aware
similarity computation and CDIBCF to represent IBCF only using the covering-based rating prediction.
To demonstrate the performance of the proposed TCIBCF approach and the effect of TCIBCF’s different
components, we compared our results to TRIBCF approach and CDIBCF approach. In addition,
we also compared the proposed approach to the traditional IBCF approach and time-weight item-based
collaborative filtering (TWIBCF) proposed by Ding [13]. In all experiments, we used the Pearson
correlation coefficient as the similarity measure and the weighted sum was used to predict the
rating score.

Figures 5 and 6 show the MAE and RMSE results for the MovieLens and Netflix datasets. As can
be seen, with increasing neighborhood size, both MAE and RMSE initially decrease then increase with
both datasets. With the MovieLens dataset, the MAE and RMSE values between IBCF and CDIBCF are
almost the same and the same performance happens in TCIBCF and TRIBCF approaches; however,
the MAE and RMSE values of the TCIBCF approach are less than IBCF and TWIBCF approaches.
As lower values indicate better predictive accuracy, these results show that time-related correlation can
enhance the predictive accuracy, covering degrees have no effect on enhancing the predictive accuracy,
so TCIBCF has improved predictive accuracy compared to the traditional IBCF and TWIBCF approaches.
With the Netflix dataset, although the values of the evaluation metrics differed, the performance of
those approaches was nearly the same as that with the MovieLens dataset. From the above results,
we conclude that the time-related correlation can improve predictive accuracy effectively and the
predictive accuracy of the proposed TCIBCF approach is better than that of the traditional IBCF and
TWIBCF approaches.
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Figure 7 shows the precision results obtained with the MovieLens and Netflix datasets, respectively.
As can be seen, the precision values for those approaches decreased as the neighborhood size increased.
Furthermore, the precision values of the IBCF, TRIBCF and TWIBCF approaches were nearly the same
and the same performance for TCIBCF and CDIBCF; however, the precision of the TCIBCF and CDIBCF
approaches were clearly greater than that of IBCF, TRIBCF and TWIBCF approaches.
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Figure 8 shows the recall results obtained with the MovieLens and Netflix datasets, respectively.
As can be seen, recall increased as the neighborhood size increased with both datasets. TWIBCF and
TRIBCF approaches demonstrated nearly the same performance as traditional IBCF, indicating that
TWIBCF and TRIBCF cannot improve recall compared to traditional IBCF. However, the recall of
TCIBCF and CDIBCF increased faster than the traditional IBCF approach. Moreover, the improvement
became larger as the neighborhood size increased. Thus, TCIBCF and CDIBCF can improve the
recall of traditional IBCF and outperforms TWIBCF and TRIBCF approaches. Figure 9 shows the F1
results for the MovieLens and Netflix datasets, respectively. As shown, the F1 value increased as
the neighborhood size increased with both the MovieLens and Netflix datasets. With the MovieLens
dataset, first, all of those approaches showed nearly the same F1 values; however, as the neighborhood
size increased, the F1 value of TCIBCF and CDIBCF increased faster than that of the traditional IBCF,
TRIBCF and TWIBCF approaches. With the Netflix dataset, the F1 values of TCIBCF and CDIBCF were
almost the same; however, the F1 values of TCIBCF and CDIBCF were always greater than that of the
other three approaches. Thus, the proposed TCIBCF improved F1 results compared to the traditional
IBCF and other related work.
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The precision, recall and F1 results obtained with the MovieLens and Netflix datasets indicate
that, through the use of covering degrees, classification accuracy can be enhanced effectively, so the
proposed TCIBCF can improve the classification accuracy of the traditional IBCF and other related
work, which means that the recommendations provided by the proposed TCIBCF approach will be
more relevant to the users.

4.3. Discussion

In the proposed approach, items are assigned different weights in the item-item similarity
computation. For example, consider two items x and y with the same rating scores from user u (i.e.,
ru,x = ru,y). Here, the time at which the user u rated target item ti is tu,ti. In addition, item x is more
recent than the rating time of item y, that is,

∣∣∣tu,ti − tu,x
∣∣∣ < ∣∣∣tu,ti − tu,y

∣∣∣. In a traditional IBCF, items x and
y will be given the same similarity as target item ti, because they received the same rating score from
the user u. However, the preferences of user u may have changed over time; thus, the rating of item x
will have greater influence than that of item y. In the proposed approach, f (u, ti, x) > f (u, ti, y); thus,
item x will obtain higher similarity with the target item than item y after computing the item-item
similarity. In this manner, items that have greater influence on the target item will be selected for the
target item’s neighborhood. Here, the items selected as the neighborhood of the target item are more
reliable; thus, the neighborhood selected by TCIBCF is more similar to the target item than that of
traditional IBCF and this reduces error between the predicted and real ratings. Therefore, the proposed
TCIBCF approach provided recommendations with better predictive accuracy than traditional IBCF
and other related work for both the MovieLens and Netflix datasets.

After computing the similarity, items that are similar to the target item were selected to predict
the rating score. Here, we used the covering degree function to compute the weight of each similar
item. For each item p in the target item’s neighborhood, item set Np(n) captured its characteristics.
If Np(n) has a greater degree of inclusion in the target user’s preferences Rtu, such that the value of
CD

(
Np(n), Rtu

)
is high, this suggests that the characteristics of item p are nearer to the target user’s

preferences. If the target item’s neighborhood includes many such items, this target item is more likely
to be preferred by the target user. For this target item to obtain a higher predicted rating score, item p
will therefore be assigned greater weight than other items when performing rating prediction. Thus,
if a target item’s neighborhood includes more items with a high covering degree, the target item is
more likely to be preferred by the target user and as this item will have a higher predicted rating score,
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it becomes easy to recommend this item to the target user. Therefore, most of items in the target user’s
recommendation list will be preferred items and the classification accuracy of the proposed approach
will be better than that of traditional IBCF and other related work. In summary, recommendations
obtained by the proposed approach show accurate predicted rating scores and are preferred by the
target user; thus, the proposed approach is more suitable for real-world RS application.

5. Conclusions and Future Work

In this paper, we have proposed the TCIBCF approach to realize item-variance weighting
in traditional IBCF. The proposed TCIBCF applies time-related correlation and covering degrees
to traditional IBCF to ensure that item weights make a significant contribution to the similarity
computation and rating prediction processes. We have shown that the proposed approach outperforms
the traditional IBCF approach and other related work experimentally, relative to both predictive
accuracy and classification accuracy. To ensure that items with greater impact will have higher
weight, the proposed approach realizes the item-variance weighting for traditional IBCF and achieves
significant improvements in predictive and classification accuracy while utilizing only the user-item
rating matrix rather than any other special information.

The proposed approach can be applied to the new item cold-start issue, which is a very difficult
problem in RSs, where a new item has only been rated by a few users; thus, sufficient information
cannot be obtained from the new item, which increases the difficulty of making recommendations.
Applying the proposed approach to the new item cold-start issue will be our next work. Besides that,
more detailed analysis of the proposed approach with data scalability and comparison with more
complex recommendation approaches (e.g., graph analysis, deep learning, etc.) will be our future work.
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