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Abstract. This paper presents the number of results concerning prob-

lems of asymptotic densities in the variety of propositional logics. We

investigate, for propositional formulas, the proportion of tautologies of

the given length n against the number of all formulas of length n. We

are specially interested in asymptotic behavior of this fraction. We show

what the relation between a number of premises of an implicational for-

mula and asymptotic probability of finding a formula with this number

of premises is. Furthermore we investigate the distribution of this as-

ymptotic probabilities. Distribution for all formulas is contrasted with

the same distribution for tautologies only.
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1. Introduction

The research described in this paper is a part of the project1 of quantita-
tive investigations in logic. This paper summarizes the research in which we
develop methods of finding the asymptotic probability in some propositional

1Supported by the State Committee for Scientific Research (KBN), research grant
7T11C 022 21.
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logics. We investigate, for propositional formulas, the proportion between
the number of valid formulas of the given length n against the number of all
formulas of length n for propositional formulas. Our interest lays in finding
limit of that fraction when n → ∞. If the limit exists it represents the real
number which we may call the density of truth for the logic investigated. In
general we are interested in finding also the ”density” of some other classes
of formulas.

We assume that the set of formulas F of a given propositional calculus
is equipped with norm ‖.‖ which is a function ‖.‖ : F 7→ N. Moreover,
we assume that for any n the set of formulas {φ ∈ F : ‖φ‖ = n} is finite.
Typical norms are presented in Definitions 5 and 8. In the Definition 5 norm
‖φ‖ means the total number of appearances of propositional variables in the
formula φ while in the Definition 8 ‖φ‖ is the number of characters in formula
φ without parentheses.

In the whole paper we present some properties of numbers characterizing
the amount of formulas in different classes defined in our language and we are
concerned with the asymptotic behavior of those numbers. The main tools
we use for dealing with asymptotics of sequences of numbers are known in
combinatorics as generating functions. A nice exposition of the method can
be found in [4] and [1]. Also see papers [5, 6, 2, 3] for the presentation of this
method in logics.

Definition 1. We associate the density µ(A) with a subset A of for-
mulas as:

µ(A) = lim
n→∞

#{t ∈ A : ‖t‖ = n}
#{t ∈ F : ‖t‖ = n} (1)

if the appropriate limit exists.

The number µ(A), if exists, is an asymptotic probability of finding a
formula from the set A among all formulas. It also may be interpreted as the
asymptotic density of the set A. It can be seen immediately that the density
µ is finitely additive so if A and B are disjoined classes of formulas such that
µ(A) and µ(B) exist, then µ(A ∪ B) exists also and

µ(A ∪ B) = µ(A) + µ(B). (2)

It is straightforward to observe that for any finite set A the density µ(A)
exists and is 0, and dually for co-finite sets A the density µ(A) = 1. Unfor-
tunately, the density µ is not countably additive so in the general formula
(3) below
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µ

(

∞
⋃

i=0

Ai

)

=
∞
∑

i=0

µ (Ai) (3)

it is not true for all pairwise disjoint classes of sets {Ai}i∈N
. The good

counterexample for the equation (3) is to take as Ai the singleton consisting
of i-th formula from our language. On the left hand side of (3) we get 1
but on the right hand side µ (Ai) = 0 for all i ∈ N. In the paper we also
discuss the distribution of densities with respect to some numerical property
of formulas.

Definition 2. By a random variable X we understand the function

X : F 7→ N

which assigns a number n ∈ N to the formula in such a way that for any n
the density µ ({φ : X(φ) = n}) exists and moreover

∞
∑

n=0

µ ({φ : X(φ) = n}) = 1.

Definition 3. By the distribution of a random variable X we mean the
function X : N 7→ R defined by:

X : N ∋ n 7→ µ ({φ : X(φ) = n}) ∈ R.

Definition 4. The expected value, variance and standard deviation are
defined in the conventional way by:

E(X) =

∞
∑

p=0

p X(p), (4)

D2(X) = E((X − E(X))2) = E(X2) − (E(X))2 (5)

=

∞
∑

p=0

p2X(p) − (E(X))2

so the standard deviation of X is
√

D2(X).
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2. Densities in logics

In this section we present some results obtained in [2, 3, 5] and [6] char-
acterizing the density of tautologies in some propositional languages.

Definition 5. The set of formulas F→

k over a k propositional variables
is a minimal set consisting of those variables and closed for implication only.
In this definition the norm ‖.‖ measure the total number of appearances of
propositional variables in the formula.

The theorem bellow describes the asymptotic density of the set of tau-
tologies in the simplest possible language of implicational formulas over one
propositional variable (see [3]). The natural inspiration for research comes
from the typed lambda calculus in which the set of simple types can be iden-
tified with formulas under so called Curry-Howard isomorphism. Under this
isomorphism the class of provable formulas can be understood as the class
of inhabited types. Notice that the density of provable formulas in this lan-
guage is surpassingly hight. Notice also that the classical tautologies in this
language coincide with intuitionistic ones. The proof by counting is sketched
in Theorem 7.

Theorem 6. (see [3] page 592) For k = 1 the asymptotic density of the
set of intuitionisticaly provable formulas T →

1 exists and is:

µ(T →

1 ) =
1

2
+

√
5

10
≈ 0.7236067978 . . .

Theorem 7. The implicational classical and intuitionistic logic of one
variable are identical.

Proof by counting can be found in [6]. Proof is based on the fact that
generating functions for classical and intuitionistic logics are identical.

In the next two theorems we change the language. We consider formulas
built by means of implication and negation from one variable. We can see
that adding negation has a negative impact on the density of tautologies.
Moreover, as a result of paper [2] we are able to find the exact density of an
intuitionistic fragment of the classical logic for this language. We can also see
by Theorem 12 that within the reacher language with negation the density
of purely implicational tautologies is 0 in the class of all tautologies.
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Definition 8. The set F→,¬
k over a k propositional variables is a mini-

mal set consisting of those variables and closed for implication and negation.
In this definition the norm ‖φ‖ means the total number of characters in for-
mula φ without parentheses.

Theorem 9. (see Zaionc [6]) For k = 1 the asymptotic density of the
set of classical tautologies Cl→,¬

1
exists and is:

µ(Cl→,¬
1

) =
1

(

4
√

13
) +

1
(

4
√

17
) +

1

2
√

2
(√

221 − 9
)

+
15

2
√

442
(√

221 − 9
)

= 0.423238538401941...

Theorem 10. (see Kostrzycka, Zaionc in [2]) For k = 1 the asymptotic
density of the set of intuitionisticaly provable formulas I→,¬

1
exists and is:

µ(I→,¬
1

) ≈ 0.395205.

In the paper [2] the reader can find the analytical formula for µ(I→,¬
1

).
Putting together Theorems 9 and 10 we obtain:

Theorem 11. [Relative density (see Kostrzycka, Zaionc in [2])]
The relative density of intuitionistic tautologies among classical ones in

the language F→,¬
1

is more than 93 %.

µ((I→,¬
1

)/(Cl→,¬
1

)) ≈ 0.93.

In the paper [2] the reader can find the analytical formula for µ((I→,¬
1

)/(Cl→,¬
1

)).
We may also compare classical fragments of the languages F→,¬

1
and F→

1 .

Theorem 12. Probability of finding an implicational tautology among
implicational, negational tautologies is 0 (in the sense of the norm in Defin-
ition 8).
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3. Probability distribution, typical formulas, typical tautologies

In this section we will discuss the questions concerning probability distri-
bution of formulas written in the implicational language F→

k (see Definition
5) equipped with the norm ‖·‖ measuring the total number of appearances
of propositional variables in the formula

Definition 13. By F→

k (p) we mean the set of formulas having p
premises, i.e. formulas which are of the form: τ = τ1 → (. . . → (τp → α)),
where α is a propositional variable.

Definition 14. A simple tautology is a formula τ ∈ F→

k on the form

τ = τ1 → (. . . → (τp → α)),

such that there is at least one component τi identical with α. Let Gk be the
set of all simple tautologies in F→

k and Gk(p) be the set of simple tautologies
with p premises

Evidently, a simple tautology is a tautology. Our goal is to find how
big asymptotically is the fragment of simple tautologies within the set of
all formulas and also how big is the fragment of simple tautologies with p
premises in the set of all simple tautologies.

Definition 15. Let us define a random variable X : F→

k 7→ N (see Def-
inition 2) which assigns a number of premisses to an implicational formula.

In Theorem 17 we check the correctness of the definition above since for
any n the density µ ({φ : X(φ) = n}) exists and moreover

∞
∑

n=0

µ ({φ : X(φ) = n}) = 1.

We wish to answer two questions:

Question 1: What is a probability that a randomly chosen implicational
formula admits p premises.

Question 2: What is a probability that a randomly chosen implicational
simple tautology admits p premises.
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Lemma 16. (see [3]) The asymptotic density of the set of all formulas
with p premisses F→

k (p) exists and is:

µ(F→

k (p)) =
p

2p+1
. (6)

Theorem 17. The random variable X has the following distribution
(see Definition 3):

X(p) =
p

2p+1
.

Expected value E(X) = 3, variance D2(X) = 4. The standard deviation
of X is 2.

From the whole discussion we can see that surprisingly a typical implica-
tional formula suppose to have exactly 3 premisses. For example, the amount
of formulas with number of premises laying between 1 and 5, i.e. which are
typical ± standard deviation is 57/64 which is about 89%.

Now we will start to answer the second question. We will see the difference
between distribution of the number of premises for all formulas contrasted
with the same distribution for simple tautologies only.

Definition 18. For every k ≥ 1 separately let us define a random
variable Yk which assigns to an implicational simple tautology in the language
F→

k the number of its premises.

Theorem 19. (Zaionc [5]) The random variable Yk has the following
distribution:

Yk(p) =

(

(2k + 1)2

4k + 1

)(

p

2p+1
− p

(2k − 1)p−1

4pkp−1

)

.

The natural question is how the distribution of true sentences looks like
for very large numbers k or if there exists an uniform asymptotic distribution
when k, the number of propositional variables in the logic, tends to infinity.
The answers are following:

Lemma 20. (Zaionc [5]) In this lemma the number of premises p ≥ 0
is fixed.

lim
k→∞

(

(2k + 1)2

4k + 1

)(

p

2p+1
− p

(2k − 1)p−1

4pkp−1

)

=
p(p − 1)

2p+2
. (7)
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Let us name the limit distribution by Y∞(p) =
p(p − 1)

2p+2
since:

∞
∑

p=0

p(p − 1)

2p+2
= 1. (8)

Expected value of Y∞ is:

E(Y∞) =

∞
∑

p=0

p
p(p − 1)

2p+2
= 5. (9)

The variance of Y∞ is:

D2(Y∞) =

∞
∑

p=0

p2 p(p − 1)

2p+2
− 25 = 31 − 25 = 6.

Comparing this with the distribution X(p) the reader can easily check
that starting with k = 1 the expected value of the number of premises for
simple tautologies is substantially greater then 3 and is growing asymptoti-
cally to 5 and

lim
k→∞

E(Yk) = 5. (10)

Also asymptotical behavior of D2(Yk) is

lim
k→∞

D2(Yk) = 6. (11)

So it is clear now that:

∀p ≥ 0 lim
k→∞

Yk(p) = Y∞(p), (12)

lim
k→∞

E(Yk) = E(Y∞), (13)

lim
k→∞

D2(Yk) = D2(Y∞). (14)

The componentwise convergence presented in Lemma 20 and summarized
by the formula (12) can be extended to the much stronger uniform conver-
gence. Therefore, in fact the distribution Y∞ can be treated as a good model
of distribution for simple tautologies for the language F when the number k
of atomic propositional variables is large.
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Theorem 21. (Zaionc [5]) The sequence of distributions Yk uniformly
converges to the distribution Y∞.

We can also see surprising result

Theorem 22. (Zaionc [5]) For fixed k > 0 and p > 0

µ[(Gk)/(F→

k (p))] = 1 −
(

2k − 1

2k

)p−1

. (15)

This result is somehow intriguing. It shows how asymptotically big the
size of the fraction of simple tautologies with p premises among all formulas
of p premises is. We can see that with p growing this fraction becomes closer
and closer to 1. Of course, the fraction of all, not only simple, tautologies
with p premises is even larger. So the “density of truth” within the classes of
formulas of p premises can be as big as we wish. For every ε > 0 we can effec-
tively find p such that among formulas with p premises almost all formulas
(except the tiny fraction of the size ε) asymptotically are tautologies. This
should be contrasted with the results proved in Theorem 6.3 and Corollary
6.10 page 587 at [3]. It shows that the density of truth for all p′s together is
always of the size O(1/k). The result for every p treated separately is very
different.
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