UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLI 2003

THE NATURAL OPERATORS LIFTING k–PROJECTABLE VECTOR FIELDS TO PRODUCT-PRESERVING BUNDLE FUNCTORS ON k–FIBERED MANIFOLDS

by Włodzimierz M. Mikulski and Jiři M. Tomáš

Abstract. For any product-preserving bundle functor F defined on the category $k - \mathcal{F}M$ of k–fibered manifolds, we determine all natural operators transforming k–projectable vector fields on $Y \in Ob(k - \mathcal{F}M)$ to vector fields on FY . We also determine all natural affinors on FY . We prove a composition property analogous to that concerning Weil bundles.

0. Preliminaries. The classical results by Kainz and Michor [[6](#page-8-0)], Luciano [[11](#page-8-1)] and Eck [[3](#page-8-2)] read that the product-preserving bundle functors on the category $\mathcal{M}f$ of manifolds are just Weil bundles, [[17](#page-9-0)]. Let us remind Kolář's result [[7](#page-8-3)].

For a bundle functor F on $\mathcal{M}f$, denote by F the flow operator lifting vector fields to F. Further, consider an element c of a Weil algebra A and let $L(c)_M : TT^A M \rightarrow TT^A M$ denote the natural affinor by Koszul ([[7](#page-8-3)], [[8](#page-8-4)]). Then we have a natural operator $L(c)_M \circ T^A : TM \leadsto TT^A M$ lifting vector fields on a manifold M to a Weil bundle $T^A M$.

The Lie algebra associated to the Lie group $Aut(A)$ of all algebra automorphisms of A is identified with the algebra of derivations $Der(A)$ of A. For any $D \in Der(A)$ consider its one-parameter subgroup $\delta(t) \in Aut(A)$. It determines the vector field $D_M = \frac{d}{dt}$ $\frac{d}{dt}$ ₀ $\delta(t)_M$ on $T^A M$, where we identify Weil algebra homomorphisms with the corresponding natural transformations. Finally, we

²⁰⁰⁰ Mathematics Subject Classification. 58A20.

Key words and phrases. (product-preserving) bundle functors, natural transformations, natural operators.

This paper is the final form, which will not be published elsewhere.

obtain a natural operator $\Lambda_{D,M} : TM \rightsquigarrow TT^{A}M$ defined by $\Lambda_{D,M}(X) = D_M$ for any vector field X on M . Then Kolář's result reads as follows.

All natural operators TM $\rightsquigarrow TT^{A}M$ are of the form $L(c)_{M} \circ T^{A} + \Lambda_{D,M}$ for some $c \in A$ and $D \in Der(A)$.

Let us remind some results concerning product-preserving bundle functors on the category $\mathcal{F}M$ of fibered manifolds, [[12](#page-8-5)], [[2](#page-8-6)], [[16](#page-9-1)]. They are just of the form T^{μ} for a homomorphism $\mu : A \to B$ of Weil algebras. Bundle functors T^{μ} are defined as follows. Let $i, j : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ be functors defined by $i(M) =$ $id_M : M \to M$ and $j(M) = (M \to pt)$ for a manifold M and the single-point manifold pt. If $F : \mathcal{FM} \to \mathcal{FM}$ preserves the product then so do $G^F = F \circ i$ and $H^F = F \circ j$ and so there are Weil algebras A and B such that $G^F = T^A$ and $H^F = T^B$. Further, there is an obvious natural identity transformation $\tau_M : i(M) \to j(M)$ and thus we have a natural transformation $\mu_M = F \tau_M$: $T^{A}M \rightarrow T^{B}M$ corresponding to a Weil algebra homomorphism $\mu : A \rightarrow B$. Then the functor T^{μ} can be defined as the pull-back $T^{A}M \times_{T^{B}M} T^{B}Y$ with respect to μ and $T^B p$ for a fibered manifold $p: Y \to M$. Then $F = T^{\mu}$ modulo a natural equivalence.

Let \overline{F} be another product-preserving bundle functor on $\mathcal{F}\mathcal{M}$. Then the result of [[12](#page-8-5)] also yields natural transformations $\eta : F \to \overline{F}$ in the form of couples of $(\mu, \overline{\mu})$ -related natural transformations $\nu = \eta \circ i : T^A \to T^A$ and $\rho : \eta \circ j : T^B \to T^B$ for a Weil algebra homomorphisms $\nu : A \to \overline{A}$ and $\sigma \cdot B \rightarrow \overline{B}.$

For a bundle functor F on $\mathcal{F}M$, denote by $\mathcal F$ the flow operator lifting projectable vector fields to F . Further, consider an element c of A and let $L(c)_Y : TT^{\mu}Y \to TT^{\mu}Y, L(c)_Y(y_1, y_2) = (L(c)_M(y_1), L(\mu(c))_Y(y_2)), (y_1, y_2) \in$ $TT^{\mu}Y = TT^{A}M \times_{TT^{B}M} TT^{B}Y$ be the modification of the Koszul affinor. Then we have a natural operator $L(c)_Y \circ T^{\mu}$: $T_{proj}Y \rightsquigarrow TT^{\mu}Y$ lifting projectable vector fields on a fibered manifold Y to $T^{\mu}Y$ for a Weil algebra homomorphism $\mu: A \rightarrow B$.

The Lie algebra associated to the Lie group $Aut(\mu) = \{(\nu, \rho) \in Aut(A) \times$ Aut(B) | $\rho \circ \mu = \mu \circ \nu$ of all automorphisms of μ is identified with the algebra of derivations $Der(\mu) = \{D = (D_1, D_2) \in Der(A) \times Der(B) \mid D_2 \circ$ $\mu = \mu \circ D_1$ of μ . For any $D \in Der(\mu)$ consider its one-parameter subgroup $\delta(t) \in Aut(\mu)$. It determines the vector field $D_Y = \frac{d}{dt}$ $\frac{d}{dt}$ ₀ $\delta(t)$ _Y on $T^{\mu}Y$, where we identify homomorphisms of μ with the corresponding natural transformations. Finally, we obtain a natural operator $\Lambda_{D,Y}$: $T_{proj}Y \rightsquigarrow TT^{\mu}Y$ defined by $\Lambda_{D,Y}(X) = D_Y$ for any projectable vector field X on Y. Then a result of Tomáš [[16](#page-9-1)] reads

All natural operators $T_{proj}Y \rightsquigarrow TT^{\mu}Y$ are of the form $L(c)_Y \circ T^{\mu} + \Lambda_{D,Y}$ for some $c \in A$ and $D \in Der(\mu)$.

Let us recall the concept of k –fibered manifolds. It is a sequence of surjective submersions

(1)
$$
Y = Y_k \xrightarrow{p_k} Y_{k-1} \xrightarrow{p_{k-1}} \dots \xrightarrow{p_1} Y_0
$$

between manifolds. Given another *k*–fibered manifold $\overline{Y} = \overline{Y}_k \xrightarrow{\overline{p}_k} \overline{Y}_{k-1} \xrightarrow{\overline{p}_{k-1}}$ −−→ $\ldots \stackrel{\overline{p}_1}{\longrightarrow} \overline{Y}_0$, a map $f: Y \to \overline{Y}$ is called a morphism of k–fibered manifolds if there are the so-called underline maps $f_j : X_j \to \overline{X}_j$ for $j = 0, \ldots, k - 1$ such that $f_{j-1} \circ p_j = \overline{p}_j \circ f_j$ for $j = 1, \ldots, k$, where $f_k = f$. Thus we have the category $k - \mathcal{F}M$ of k–fibered manifolds which is local and admissible in the sense of [[8](#page-8-4)]. Clearly, the category $1 - \mathcal{F}M$ of 1–fibered manifolds coincides with the category $\mathcal{F}M$ of fibered manifolds.

Let us remind some results concerning product-preserving bundle functors on the category $k - \mathcal{F}M$ of k–fibered manifolds, [[13](#page-8-7)]. They are just of the form T^{μ} for a sequence

(2)
$$
\mu = (A_k \xrightarrow{\mu^k} A_{k-1} \xrightarrow{\mu^{k-1}} \dots \xrightarrow{\mu^1} A_0)
$$

of k Weil algebra homomorphisms. Bundle functors T^{μ} are defined as follows. Let $i^{[l]} : \mathcal{M}f \to k - \mathcal{F}\mathcal{M}$ for $l = 0, \ldots, k$ be a sequence of functors defined by $i^{[l]}(M) = pt_M^{[l+1]} = (M \stackrel{id_M}{\longrightarrow} M \stackrel{id_M}{\longrightarrow} \dots \stackrel{id_M}{\longrightarrow} M \rightarrow pt \rightarrow \dots \rightarrow pt), k-l$ times of the single-point manifold pt, and $i^{[l]}(f) = f$. If $F : k - \mathcal{F}\mathcal{M} \rightarrow$ $\mathcal{F} \mathcal{M}$ preserves the product then so do $G^{l,F} = F \circ i^{[l]}$ and so there are Weil algebras A_l such that $G^{l,F} = T^{A_l}$ for $l = 0, \ldots, k$. Further, there are obvious identity natural transformations $\tau_M^l : i^{[l]}(M) \to i^{[l-1]}(M)$ and thus we have a sequence of natural transformations $\mu_M^l = F \tau_M^l$ corresponding to a sequence $\mu = (A_k \xrightarrow{\mu^k} A_{k-1} \xrightarrow{\mu^{k-1}}$ $\stackrel{\mu^{k-1}}{\longrightarrow} \dots \stackrel{\mu^1}{\longrightarrow} A_0$ of Weil algebra homomorphisms. For any k–fibered manifold Y of the form (1) we have

(3)
$$
T^{\mu}Y = \{y = (y_k, y_{k-1}, \dots, y_0) \in T^{A_k}Y_0 \times T^{A_{k-1}}Y_1 \times \dots \times T^{A_0}Y_k \mid
$$

$$
\mu_{Y_l}^{k-l}(y_{k-l}) = T^{A_{k-l-1}}p_{l+1}(y_{k-l-1}), \ l = 0, \dots, k-1\}.
$$

For a $k - \mathcal{F}\mathcal{M}$ -map $f: Y \to \overline{Y}, T^{\mu}f : T^{\mu}Y \to T^{\mu}\overline{Y}$ is the restriction and correstriction of $T^{A_k} f_0 \times T^{A_{k-1}} f_1 \times \cdots \times T^{A_0} f_k$. Then $F = T^{\mu}$ modulo a natural equivalence.

Let \overline{F} be another product-preserving bundle functor on $k - \mathcal{F}M$. Then the results of [[13](#page-8-7)] also yield natural transformations $\eta : F \to \overline{F}$ in the form of sequences $\nu = (\nu^k, \dots, \nu^0)$ of $(\mu, \overline{\mu})$ -related natural transformations $\nu^l =$ $\eta \circ i^{[l]} : T^{A_l} \to T^{A_l}$ for Weil algebra homomorphisms $\nu^l : A_l \to \overline{A}_l$.

We shall investigate k–projectable vector fields. A vector field X on a k – fibered manifold Y of the form (1) is called k–projectable if there are vector fields X_l on Y_l for $l = 0, \ldots, k-1$ which are related to X by the respective compositions of projections of Y. The flow of X is formed by local $k - \mathcal{F} \mathcal{M}$ – isomorphisms. The space of all k –projectable vector fields on Y will be denoted by $\mathcal{X}_{k-proj}(Y)$.

Natural operators lifting vector fields are used in practically each paper in which the problem of prolongations of geometric structures was studied. For example A. Morimoto [[15](#page-8-8)] used liftings of functions and vector fields has been to define the complete lifting of connections. That is why such natural operators are classified in [[4](#page-8-9)], [[7](#page-8-3)], [[16](#page-9-1)] and other papers (over 100 references). For example, in the case of the tangent bundle TM of a manifold M (in our notation, $k = 0$, any natural operator lifting vector fields from M to TM is a linear combination of the complete lifting, the vertical lifting and the Liouville (dilatation) vector field.

A torsion of a connection Γ on TM is the Nijenhuis bracket $[\Gamma, J]$ of Γ with the almost tangent structure J on TM . This fact has been generalized in [[9](#page-8-10)] in such a way that a torsion of a connection Γ with respect to a natural affinor A is $[\Gamma, A]$. Thus natural affinors can be used to study torsions of connections. That is why they have been classified in $\mathbf{1}, \mathbf{5}, \mathbf{10}$ and other papers (over 20 references). For example, any natural affinor on TM is a linear combination of the identity affinor and the almost tangent structure on TM.

1. Some properties of product preserving bundle functors on $k \mathcal{F}\mathcal{M}$. According to the Weil theory [[6](#page-8-0)], for Weil algebras A and B there is the canonical identification $T^A \circ T^B M = T^{B \otimes A} M$. We generalize this fact on $k - \mathcal{F}\mathcal{M}$. This extends the respective result of Tomáš's [[16](#page-9-1)].

Consider $T^{\mu}Y$ in the form [\(3\)](#page-2-1), where μ is of the form [\(2\)](#page-2-2) and Y is of the form [\(1\)](#page-2-0). It is easy to see that $T^{\mu}Y$ is a k-fibered manifold if we consider it in the form

(4)
$$
T^{\mu}Y = T^{\mu^{[k]}}Y_{[k]} \to T^{\mu^{[k-1]}}Y_{[k-1]} \to \cdots \to T^{\mu^{[0]}}Y_{[0]},
$$

where $\mu^{[l]} = (A_k \xrightarrow{\mu^k} A_{k-1} \xrightarrow{\mu^{k-1}}$ $\xrightarrow{\mu^{k-1}} \dots \xrightarrow{\mu^{k-l+1}}$ $\longrightarrow A_{k-l}$) is the truncation of μ (it is a sequence of l Weil algebra homomorphisms) and $Y_{[l]} = Y_l \xrightarrow{p_l} Y_{l-1} \xrightarrow{p_{l-1}}$... $\stackrel{p_1}{\longrightarrow} Y_0$ is the truncation of Y (it is an *l* – *FM*–object) and where $T^{\mu^{[l]}}Y_{[l]}$ is defined as in [\(3\)](#page-2-1) (in particular, $T^{\mu^{[0]}} Y_{[0]} = T^{A_0} Y_0$). Here the arrows in [\(4\)](#page-3-0) are the restrictions and correstrictions of the obvious projections $T^{A_k} Y_0 \times \cdots \times$

 $T^{A_{k-l}}Y_l \to T^{A_k}Y_0 \times \cdots \times T^{A_{k-l+1}}Y_{l-1}$. Then $T^{\mu}: k-\mathcal{F}\mathcal{M} \to \mathcal{F}\mathcal{M}$ is a functor $k-\mathcal{F}M \rightarrow k-\mathcal{F}M$. Thus we can compose product-preserving bundle functors on $k - \mathcal{F}\mathcal{M}$.

PROPOSITION 1. Let $T^{\mu}, T^{\overline{\mu}}: k-\mathcal{F}\mathcal{M} \rightarrow \mathcal{F}\mathcal{M}$ be product-preserving bundle functors corresponding to sequences μ and $\overline{\mu}$ of the form [\(2\)](#page-2-2). Then $T^{\mu} \circ T^{\overline{\mu}} =$ $T^{\overline{\mu}\otimes\mu},\;where\;\left(of\;\:course\right) \;\overline{\mu}\otimes\mu=\left(\overline{A}_{k}\otimes A_{k}\;\xrightarrow{\overline{\mu}^{k}\otimes\mu^{k}}\overline{A}_{k-1}\otimes A_{k-1}\;\xrightarrow{\overline{\mu}^{k-1}\otimes\mu^{k-1}}\right.$ ———————→
———————→ $\ldots \xrightarrow{\overline{\mu}^1\otimes\mu^1} \overline{A}_0 \otimes A_0).$

Proof. Let $\tilde{\mu} = (\tilde{A}_k)$ $\stackrel{\tilde{\mu}^k}{\longrightarrow} \tilde{A}_{k-1}$ $\tilde{\mu}^{k-1}$ $\stackrel{\tilde{\mu}^{k-1}}{\longrightarrow}$... $\stackrel{\tilde{\mu}^1}{\longrightarrow}$ \tilde{A}_0 be the sequence of the form [\(2\)](#page-2-2) corresponding to the composition $T^{\mu} \circ T^{\overline{\mu}}$. It can be computed as described in Section [0.](#page-0-0) Thus by the mentioned Weil theory [[6](#page-8-0)], there is $\tilde{A}_l = \overline{A}_l \otimes A_l$ (as there is the identification $\tilde{A}_l = T^{A_l} \circ T^{\overline{A}_l}(\mathbf{R}) = T^{\overline{A}_l \otimes A_l}(\mathbf{R}) =$ $\overline{A}_l \otimes A_l$. This identification is $(\tilde{\mu}, \overline{\mu} \otimes \mu)$ –related.

We describe some special case of T^{μ} . Let μ be of the form [\(2\)](#page-2-2), where $A_k = A_{k-1} = \ldots = A_0 = A$ and $\mu^l = id_A$ for $l = 1, \ldots, k$. We will write id^A for such μ . Then $T^{id}Y = T^AY$. In particular, $T^{id}Y = TY$, where $id = id^D$ and D is the Weil algebra of dual numbers.

2. Natural vector fields on bundle functors T^{μ} . Consider a sequence μ of the form [\(2\)](#page-2-2). The group

$$
Aut(\mu) = {\nu = (\nu^k, \nu^{k-1}, \dots, \nu^0) \in Aut(A_k) \times Aut(A_{k-1}) \times \dots \times Aut(A_0) |
$$

$$
\nu^{l-1} \circ \mu^l = \mu^l \circ \nu^l, l = 1, \dots, k}
$$

of all automorphisms of μ is a closed subgroup in $Aut(A_k) \times Aut(A_{k-1}) \times \cdots \times$ $Aut(A_0)$. Thus $Aut(\mu)$ is a Lie group. Let

$$
Der(\mu) = \{D = (D^k, D^{k-1}, \dots, D^0) \in Der(A_k) \times Der(A_{k-1}) \times \dots \times Der(A_0) \mid D^{l-1} \circ \mu^l = \mu^l \circ D^l, l = 1, \dots, k\}
$$

be the Lie algebra of all derivations of μ .

PROPOSITION 2. Let $Lie(Aut(\mu))$ be the Lie algebra of the Lie group $Aut(\mu)$ of all automorphisms of μ of the form [\(2\)](#page-2-2). Then $Lie(Aut(\mu)) = Der(\mu)$.

PROOF. We know that $Lie(Aut(A)) = Der(A)$ for any Weil algebra A ([[7](#page-8-3)]). Consequently, the proposition follows dirrectly from the application of exponential mapping concept. \Box

Let us recall that a natural operator $\Lambda_Y : T_{k-moj}Y \rightsquigarrow TT^{\mu}Y$ is a system of regular $k - \mathcal{F}\mathcal{M}$ –invariant operators

$$
\Lambda_Y: \mathcal{X}_{k-proj}(Y) \to \mathcal{X}(T^{\mu}Y)
$$

for any $k - \mathcal{F}M$ –object Y. The $k - \mathcal{F}M$ –invariance means that for any $k \mathcal{F}\mathcal{M}\text{-objects }Y,\overline{Y},$ any k–projectable vector fields $X \in \mathcal{X}_{k-proj}(Y)$ and $\overline{X} \in$ $\mathcal{X}_{k-proj}(\overline{Y})$ and any $k-\mathcal{F}\mathcal{M}-\text{map }f:Y\to\overline{Y}$, if X and \overline{X} are f-related (i.e. $Tf \circ X = \overline{X} \circ f$ then $\Lambda_Y(X)$ and $\Lambda_{\overline{Y}}(\overline{X})$ are $T^{\mu}f$ -related. The regularity means that Λ_Y transforms smoothly parametrized families of k –projectable vector fields into smoothly parametrized families of vector fields.

A natural operator $\Lambda_Y: T_{k-proj}Y \to TT^{\mu}Y$ is called absolute (or a natural vector field on T^{μ}) if Λ_Y is a constant function for any $Y \in Obj(k - \mathcal{F}\mathcal{M})$.

Proposition [2](#page-4-0) enables us to modify the definition of an absolute operator $\Lambda_Y : T_{k-proj}Y \rightsquigarrow TT^{\mu}Y$ as follows. Let $D \in Der(\mu) = Lie(Aut(\mu))$ and let $\delta(t) \in Aut(\mu)$ be a one-parameter subgroup corresponding to D. It determines the vector field $D_Y = \frac{d}{dt}$ $\frac{d}{dt_0}\delta(t)_Y$ on $T^{\mu}Y$, where we identify homomorphisms of μ with the corresponding natural transformations. Finally, we obtain a natural operator $\Lambda_{D,Y} : T_{k-proj}Y \rightsquigarrow TT^{\mu}Y$ defined by $\Lambda_{D,Y}(X) = D_Y$ for any k–projectable vector field X on $Y \in Ob(k - \mathcal{F} \mathcal{M})$.

PROPOSITION 3. Let F be a product-preserving bundle functor on $k-\mathcal{F}\mathcal{M}$. Then every absolute operator $\Lambda_Y : T_{k-proj}Y \rightsquigarrow TFY$ is of the form $\Lambda_{D,Y}$ for some $D \in Der(\mu)$, where μ is the sequence of the form [\(2\)](#page-2-2) corresponding to F.

PROOF. The flow $Fl_t^{\Lambda_Y}$ of $\Lambda_Y \in \mathcal{X}(FY)$ is $k - \mathcal{F}\mathcal{M}$ -invariant and (thus) global, because FY is a $k - \mathcal{F}M$ –orbit of any open neighbourhood of $0 \in$ $\widetilde{A}^{m_k}_k\times \cdots \times A^{m_0}_0=F((i^{[k]}({\bf R})^{m_k}\times \cdots \times (i^{[0]}({\bf R}))^{m_0})$ for some $m_k,\ldots,m_0.$ Thus $Fl_t^{\Lambda_Y}: FY \to FY$ is a natural transformation. Let $\eta_t \in Aut(\mu)$ correspond to $Fl_t^{\Lambda_Y}$. Then $D = \frac{d}{dt}$ \Box $\frac{d}{dt_0}\eta_t \in Der(\mu)$ and $\Lambda_{D,Y} = \Lambda_Y$.

3. Natural affinors on T^μ and natural operators $T_{k-proj}Y\rightsquigarrow TT^\mu.$ Let μ be a sequence of the form [\(2\)](#page-2-2) and let Y be a k–fibered manifold of the form (1) .

Let us recall that a natural affinor on $T^{\mu}Y$ is a system of $k-\mathcal{F}\mathcal{M}$ –invariant affinors (i.e., tensor fields of type $(1,1)$)

$$
L_Y : TT^\mu Y \to TT^\mu Y
$$

on $T^{\mu}Y$ for any $k - \mathcal{F}M$ –object Y. The $k - \mathcal{F}M$ –invariance means that for any $k - \mathcal{F}\mathcal{M}$ -map $f: Y \to \overline{Y}$, there is $L_{\overline{Y}} \circ TT^{\mu} f = TT^{\mu} f \circ L_{Y}$.

For $(y_k, y_{k-1}, \ldots, y_0) \in T(T^{A_k}Y_0 \times T^{A_{k-1}}Y_1 \times \cdots \times T^{A_0}Y_k) \bigcap TT^{\mu}Y$ and $c \in A_k$ we put

(5)
$$
L(c)_{Y}(y_k, y_{k-1}, \dots, y_0) =
$$

$$
(L(c)_{Y_k}(y_k), L(\mu^k(c))_{Y_{k-1}}(y_{k-1}), \dots, L(\mu^1 \circ \dots \circ \mu^{k-1} \circ \mu^k(c))_{Y_0}(y_0)),
$$

where $L(a)_M : T T^A M \to T T^A M$ is the Koszul affinor, [[7](#page-8-3)]. We call $L(c)_Y$ the modified Koszul affinor on $T^{\mu}Y$.

The following theorem characterizes all natural affinors on $T^{\mu}Y$.

THEOREM 1. Let μ be a sequence of the form [\(2\)](#page-2-2) and $Y \in Ob(k-\mathcal{F}\mathcal{M})$ be of the form [\(1\)](#page-2-0). Then every natural affinor on $T^{\mu}Y$ is of the form $L(c)_{Y}$ for some $c \in A_k$.

Theorem [1](#page-6-0) generalizes the result of $[1]$ $[1]$ $[1]$ for Weil functors on $\mathcal{M}f$ and the result of Tomáš's [[16](#page-9-1)] for product-preserving bundle functors on $\mathcal{F}\mathcal{M}$ to all product-preserving bundle functors on $k - \mathcal{F}M$. A proof of Theorem [1](#page-6-0) will follow a proof of Theorem [2.](#page-6-1)

For a k–projectable vector field $X \in \mathcal{X}_{k-proj}(Y)$, one can define its flow prolongation $\mathcal{F}X = \frac{d}{dt}$ $\frac{d}{dt} {}_0F(Fl_t^X) \in \mathcal{X}(FY)$ to a product-preserving bundle functor $F = T^{\mu}$ on $k - \mathcal{F} \widetilde{\mathcal{M}}$. (We know that the flow of X is formed by local $k - \mathcal{F} \mathcal{M}$ isomorphisms, and then we can apply $F = T^{\mu}$ and obtain a flow on FY.) One can verify the Kolář formula

(6) FX = η^Y ◦ F X ,

where $\eta_Y : FTY = T^{id \otimes \mu} Y = T^{\mu \otimes id} Y = TFY$ is the exchange isomorphism and X is considered as $k - \mathcal{F}M$ -map $X: Y \to TY = T^{id}Y$. We will not use this formula.

The following theorem modifies Kolář's result [[7](#page-8-3)] for Weil functors on $\mathcal{M}f$ and Tomás's result [[16](#page-9-1)] for product-preserving bundle functors on $\mathcal{F}\mathcal{M}$ to all product-preserving bundle functors on $k - \mathcal{F}M$.

THEOREM 2. Let F be a product-preserving bundle functor on $k - \mathcal{F}\mathcal{M}$. Further, let X be a k–projectable vector field on a k–fibered manifold Y of the form [\(1\)](#page-2-0). Then any natural operator $\Lambda_Y : T_{k-proj}Y \rightsquigarrow TFY$ is of the form

$$
L(c)_Y \circ \mathcal{F} X + \Lambda_{D,Y}
$$

for some $c \in A_k$ and $D \in Der(\mu)$, where μ is the sequence of the form [\(2\)](#page-2-2) associated to F.

PROOF OF THEOREM [2.](#page-6-1) $\Lambda_Y(0)$ is an absolute operator. Thus replacing Λ_Y by $\Lambda_Y - \Lambda_Y(0)$ and appling Proposition [3](#page-5-0) we can assume that $\Lambda_Y(0) = 0$.

Since any k–projectable vector field X on $Y \in Ob(k - \mathcal{F}M)$ covering non-vanishing vector field on Y_0 is $\frac{\partial}{\partial x}$ on $i^{[k]}(\mathbf{R}) \subset i^{[k]}(\mathbf{R}) \times \ldots$ in some $k - F$ M–cordinates (where the dots denote the respective multiproduct of $i^{[l]}(\mathbf{R})$'s), Λ_Y is uniquely determined by $\Lambda_{i^{[k]}(\mathbf{R})\times...}(\rho\frac{\partial}{\partial x}): A_k \times \cdots \to A_k \times ...$ $\rho \in \mathbf{R}$. Using the invariance with respect to the homotheties being $k - \mathcal{F}\mathcal{M}$ morphisms $i^{[k]}(\mathbf{R}) \times \cdots \to i^{[k]}(\mathbf{R}) \times \ldots$ and the homogeneous function theorem and $\Lambda_{i^{[k]}(R)\times\dots}(0) = 0$ we deduce that for any ρ the map $\Lambda_{i^{[k]}(R)\times\dots}(\rho\frac{\partial}{\partial x})$: $A_k \times \ldots \rightarrow A_k \times \ldots$ is constant and linearly dependent on ρ . Then using the invariance with respect to $tid_{i^{[k]}(R)} \times id$ we deduce that the map $\Lambda_{i^{[k]}(R)\times\ldots}(\rho\frac{\partial}{\partial x}): A_k\times\cdots\to A_k\times\{0\}$ is constant and linearly dependent on ρ. Then the vector space of all natural operators $Λ_Y$ as above with $Λ_Y(0) = 0$ is at most $\dim_{\mathbf{R}} A_k$ -dimensional. But all natural operators $L(c)_Y \circ \mathcal{F}$ form a $\dim_{\mathbf{R}} A_k$ -dimensional vector space. Thus the proof is complete. \Box

PROOF OF THEOREM [1.](#page-6-0) The vectors $T^{\mu}X_v$ for $X \in \mathcal{X}_{k-proj}(Y)$ and $v \in T^{\mu}Y$ form a dense subset in $TT^{\mu}Y$ for sufficiently high fiber-dimensional Y_k, \ldots, Y_0 . (It is a simple consequence the rank theorem imlying that for any Weil algebra A with $width(A) = k$ the vector $T^{A} \frac{\partial}{\partial x^{1}}_{j} A_{(t^{1},...,t^{k},0,...,0)} =$ $j^{A\otimes D}(t^1,\ldots,t^k,0,\ldots,0,t)$ has dense $\mathcal{M}f_m$ -orbit in $TT^A\mathbf{R}^m = T^{A\otimes D}\mathbf{R}^m$ if $m \geq k+1$.) Thus a natural affinor L_Y on $T^{\mu}Y$ is determined by $L_Y \circ T^{\mu}X$ for X as above. But $\Lambda_Y : X \to L_Y \circ T^\mu X$ is a natural operator with $\Lambda_Y(0) = 0$. Thus by the proof of Theorem 2 there is $\Lambda_Y(X) = L(c)_Y \circ T^\mu X$ for some $c \in A_k$. Then $L_Y = L(c)_Y$. For arbitrary Y, we locally decompose id_Y by $p \circ j$ for $k - \mathcal{F}M$ –maps, where $j : Y \to \overline{Y}$ with sufficiently high fiber-dimensional Y. Next, we use the equality $L_{\overline{Y}} = L(c)_{\overline{Y}}$ and the invariance of natural affinors with respect to j . \Box

According to formula [\(6\)](#page-6-2), it is sufficient to verify it for $X = \frac{\partial}{\partial x}$; see proof of Theorem [2.](#page-6-1) But then this is simple to verify.

4. Final remarks. Let $m = (m_k, m_{k-1}, \ldots, m_0) \in (\mathbf{N} \cup \{0\})^{k+1}$. A k–fibered manifold Y of the form [\(1\)](#page-2-0) is m–dimensional if $dim(Y_0) = m_0$, $dim(Y_1) = m_0 + m_1, \ldots, dim(Y_k) = m_0 + m_1 + \cdots + m_k$. All k–fibered manifolds of dimension $m = (m_k, \ldots, m_0)$ and their local $k - \mathcal{F}\mathcal{M}$ –isomorphisms form a category which we will denote by $k - \mathcal{F}\mathcal{M}_m$. It is local and admissible in the sense of [[8](#page-8-4)].

Let $F = T^{\mu}: k - \mathcal{F}\mathcal{M} \to \mathcal{F}\mathcal{M}$ be a product preserving bundle functor and let $\eta: F_{|k-\mathcal{F}M_m} \to F_{|k-\mathcal{F}M_m}$ be a $k-\mathcal{F}M_m$ -natural transformation. Assume that $m_k, m_{k-1}, \ldots, m_0$ are positive integers. Then by a similar method as for Weil bundles on $\mathcal{M}f$ one can show that there exists one and only one natural transformation $\tilde{\eta}: F \to F$ extending η . Thus by Theorem [1,](#page-6-0) one can obtain the $k - \mathcal{F}\mathcal{M}_m$ –version of Theorem [1.](#page-6-0)

THEOREM 1'. Let μ be a sequence of the form [\(2\)](#page-2-2) and $Y \in Ob(k-\mathcal{F}\mathcal{M}_m)$ be of the form [\(1\)](#page-2-0), $m = (m_k, \ldots, m_0), m_k, \ldots, m_0$ positive integers. Then every $k-\mathcal{F}\mathcal{M}_m$ –natural affinor on $T^{\mu}Y$ is of the form $L(c)_Y$ for some $c \in A_k$.

By a simple modification of the proof of Theorem [2](#page-6-1) one can obtain the $k - \mathcal{F} \mathcal{M}_m$ –version of Theorem [2.](#page-6-1)

THEOREM 2'. Let μ , Y, m be as in Theorem 1'. Further, let X be a kprojectable vector field on a k–fibered manifold Y of the form (1) and dimension m. Then any $k - \mathcal{F} \mathcal{M}_m$ -natural operator $\Lambda_Y : T_{k-proj}Y \rightsquigarrow TT^{\mu}Y$ is of the form $L(c)_Y \circ T^\mu X + \Lambda_{D,Y}$ for some $c \in A_k$ and $D \in Der(\mu)$.

The authors would now like to announce that in [[14](#page-8-14)] they describe all product preserving bundle functors on the category $\mathcal{F}^2\mathcal{M}$ of fibered-fibered manifolds (i.e. fibered surjective submersions between fibered manifolds) and in a paper being in preparation they extend Kolář's result $[7]$ $[7]$ $[7]$ to productpreserving bundle functors on $\mathcal{F}^2\mathcal{M}$.

References

- 1. Doupovec M., Kolář I., Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno), 27 (1991), 205–209.
- 2. Doupovec M., Kolář I., On the jets of fibered manifold morphisms, Cahiers Topologie Géom. Différentielle Catégoriques, XL (1999), 21–30.
- 3. Eck D., Product preserving functors on smooth manifolds, J. Pure Appl. Algebra, 42 (1986), 133–140.
- 4. Gancarzewicz J., Liftings of functions and vector fields to natural bundles, Dissertationes Math., CCXII, Warsaw, 1983.
- 5. Gancarzewicz J., Kolář I., Natural affinors on the extended r –th order tangent bundles, Suppl. Rend. Circ. Mat. Palermo, 30 (1993), 95–100.
- 6. Kainz G., Michor P.W., Natural transformations in differential geometry, Czechoslovak Math. J., 37 (1987), 584–607.
- 7. Kolář I., On the natural operators on vector fields, Ann. Global Anal. Geometry, 6 (1988), 109–117.
- 8. Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
- 9. Kolář I., Modugno M., Torsions of connections on some natural bundles, Differential Geom. Appl., 2 (1992), 1–16.
- 10. Kurek J., Natural affinors on higher order cotangent bundles, Arch. Math. Brno, (28) (1992), 175–180.
- 11. Luciano O., Categories of multiplicative functors and Weil's infinitely near points, Nagoya Math. J., 109 (1988), 69–89.
- 12. Mikulski W.M., Product preserving bundle functors on fibered manifolds, Arch. Math. (Brno), 32 (1996), 307–316.
- 13. Mikulski W.M., On the product preserving bundle functors on k–fibered manifolds, Demonstratio Math., 34 (2001), 693–700.
- 14. Mikulski, W.M., Tomáš J., Product preserving bundle functors on fibered-fibered mani $folds,$ Colloq. Math., $96(1)$ (2003), 17-26.
- 15. Morimoto, A., Prolongations of connections to bundles of infinitely near points, J. Differential Geom., 11 (1976), 476–498.
- 16. Tomáš J., Natural operators transforming projectable vector fields to product preserving bundles, Suppl. Rend. Circ. Mat. Palermo, 59(II) (1999), 181–187.
- 17. Weil A., Théorie des points proches sur les variétés différientiables, in: Géométrie Différentielle (Strasbourg, 1953), Colloq. Internat. CNRS 52, Paris, 1953, 111–117.

Received December 3, 2002

Jagiellonian University Institute of Mathematics Reymonta 4 30-059 Kraków, Poland $e\text{-}mail:$ mikulski@im.uj.edu.pl

Technical University Brno Faculty of Chemical Engineering Department of Mathematics Purkyňova 118 602 00 Brno, The Czech Republic e-mail: Tomas.J@fce.vutbr.cz