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ON NEGATIVE ESCAPE TIME IN SEMIDYNAMICAL

SYSTEMS

by Krzysztof Ciesielski

Abstract. We present the correction of some incorrectness in the pa-
per [12].

The paper [12] is of fundamental meaning in the theory of semidynami-
cal systems. In this paper R.C. McCann defined the negative escape time in
semidynamical systems which is, intuitively, “the minimum time length of all
negative trajectories through x” . This concept is of great importance in many
investigations in the theory. In [12] several results concerning the negative
escape time are presented. Four of them are particularly interesting. The first
theorem gives the sufficient condition for the system to be isomorphic to a sys-
tem (on the same space) which has an infinite negative escape time for each
x ∈ X (Theorem 2.2). Then this theorem is used for the further results. In
Chapter 3 and 4 of the paper, semidynamical systems without start points on
locally compact spaces are considered. There are shown the theorem about a
lower semicontinuity of the negative escape time function (Theorem 3.10) and
the theorem on the isomorphism of a system to a system with infinite negative
escape time for each x (Theorem 4.1). Finally, the necessary and sufficient
condition for the existence of the extension of a semidynamical system to the
one-point-compactification space for non-compact phase spaces (Theorem 4.2)
is proved. Those results were applied by many authors in many papers; some
of them are cited in the references.

However, in the paper [12] there are two gaps. Two lemmas which are used
in the proofs of main results are false. The first lemma is formulated in the
very beginning of the paper (it is left without a proof) and used in the proof
of Theorem 2.2. Another false lemma appears in Chapter 3 and is used in the
proof of the main theorems of its chapter, and, consequently, is applied also in
the proof of the last theorem of the paper.
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In this paper we present the correction of those errors. Note that the
mistakes are not involved with the most important and difficult parts of the
proofs. The main idea of an interesting and stimulating proofs of [12] does not
change.

We start from basic definitions.
A semidynamical system (a semiflow) on a topological space X (called a

phase space) is a pair (X, π) where π : R+ ×X → X is a continuous function
such that π(0, x) = x for any x ∈ X and π(t, π(s, x)) = π(t+s, x) for every t, s ∈
R, x ∈ X. We define a positive trajectory of x as π+(x) = π([0,+∞)×{x}). For
t > 0 and y ∈ X by F (t, y) we mean {z ∈ X : π(t, z) = y}. In an analogous way
we define F (∆, D) for ∆ ⊂ [0,+∞) and D ⊂ X. A point x ∈ X is said to be a
start point if F (t, x) = ∅ for t > 0. By a solution through x we mean a function
σ : ∆ → M (where ∆ is an interval equal to [α, 0] or (α, 0], in the second case
α may be equal to −∞) such that σ(0) = x and π(t, σ(u)) = σ(t + u) for any
t, u with u ∈ ∆, t > 0, t + u ∈ ∆. If a solution σ is maximal (relative to the
property of being a solution, with respect to inclusion), we call it a left maximal
solution through x and its image is called a negative trajectory through x. For
the basic notions and elementary properties of semidynamical systems, see [1],
[11], [13], [14], [15].

Now we come to the paper [12].
In a semidynamical system (X, π) on a Hausdorff space the author intro-

duces the negative escape time of a point x ∈ X in the following way. The
number m(x) is defined as inf{t > 0 : π(t, y) = x for some start point y} if
the set of all negative trajectories through x which originate at start points is
nonempty and +∞ if this set is empty. Further, n(x) is defined as inf{t > 0 :
there exist sequences (ti) in R+ and (xi) in X such that ti → t−, π(ti, xi) →
x, xi ∈ π+(xi+1) and (xi) has no convergent subsequence} if the set of all neg-
ative trajectories through x which do not originate at start points is nonempty
and as +∞ if this set is empty (ti → t− means that ti → t with each
ti 6 t). Then the negative escape time N(x) of x is introduced as N(x) =
min{n(x),m(x)}.

First of all notice that in this definition some formal problems may appear.
We mean that it may happen that there are negative trajectories through x
which do not originate at start points, however n(x) cannot be defined as
we had to take the infimum of the empty set. This is, in particular, in the
case where the phase space is compact. Then we cannot find any sequence (xi)
satisfying the required conditions, as any such a sequence contains a convergent
subsequence. This is not a serious problem, as is it obvious from the intuitive
introduction that in such a case we want n(x) to be equal to infinity, however,
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the definition should be stated formally with all details pointed out precisely.
Thus, we suggest the following definition.

Definition 1. Let x ∈ X. Denote by Mx the set of all α such that [−α, 0] is
the domain of a left maximal solution through x (of course, Mx 6= ∅ if and only
if there exists a negative trajectory through x which originates at a start point).
Define Nx = {t > 0 : there exist sequences (ti) in R+ and (xi) in X such that
ti → t−, π(ti, xi) → x, xi ∈ π+(xi+1) and (xi) has no convergent subsequence}.
Then m(x) is defined as inf Mx if Mx 6= ∅ and as +∞ if Mx = ∅; n(x) is defined
as inf Nx if Nx 6= ∅ and as +∞ if Nx = ∅. By the negative escape time N(x) of
x we mean N(x) = min{n(x),m(x)}. For M ⊂ X we put n(M) = inf{n(x) :
x ∈ M}, m(M) = inf{m(x) : x ∈ M} and N(M) = min{n(M),m(M)}.

In [12], after the basic definitions are introduced, the following Lemma is
stated.

Lemma ([12, Lemma 1.1]). Let x ∈ X and (xi), (ti) be sequences
in X, R+, respectively, such that ti → t−, π(ti, xi) = x, xi ∈
π+(xi+1), and (xi) has no convergent subsequence. Then n(xi) 6
t− ti.

This Lemma is not true. Consider the following

Example 2. Let X be equal to the interval (0, 2] and define π(t, x) =
min{t+x, 2}. Then 2 is a stationary point, each positive trajectory is eventually
stationary. Take x = 2, xn = 1

n , n > 1 and tn = 2 − 1
n+1 . We have: tn →

2−, π(tn, xn) = 2, xn ∈ π+(xn+1) and n(xn) = 1
n > 1

n+1 = t− tn.

The lemma is important for the further reasoning in [12]. Below we present
the correction.

First we show

Lemma 3. Let x ∈ X and (xi), (si) be sequences in X, R+, respectively,
such that (xi) has no convergent subsequence and π(si, xi) = x, x /∈π([0, si), xi),
xi /∈ π((0,+∞), xi) and xi ∈ π+(xi+1) for all i. Then sn 6 sn+1 and π(sn+1−
sn, xn+1) = xn for all n.

Proof. Put τn = inf{τ > 0 : π(τ, xn+1) = xn}. The number τn is well
defined as xi ∈ π+(xi+1); we have τn > 0. By the continuity of π we have
π(τn, xn+1) = xn; indeed, if (τ j) is a sequence such that τ j → τn when j → +∞
and π(τ j , xn+1) = xn, then π(τn, xn+1) = xn.

Note that:

x = π(sn, xn) = π(sn + τn, xn+1),(3.1)
x /∈ π([0, sn),xn) = π([τn, τn + sn), xn+1),(3.2)
x /∈ π([0, τn), xn+1).(3.3)
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The properties (3.1) and (3.2) are obvious. To show (3.3) note that if x ∈
π([0, τn], xn+1) then there exists a λn ∈ [0, τn) with π(λn, xn+1) = x. From
this we have π(sn + τn − λn, xn) = π(τn − λn, x) = π(τn − λn + λn, xn+1) = xn

which contradicts the assumption that xn /∈ π((0,+∞, xn).
From (3.1), (3.2) and (3.3) we have x = π(sn + τn, xn+1) and x /∈ π([0, sn +

τn), xn+1). On the other hand, x = π(sn+1, xn+1) and x /∈ π([0, sn+1), xn+1).
Thus sn+1 6sn+τn 6sn+1, so sn 6 sn+1 and π(sn+1−sn, xn+1) = π(τn, xn+1) =
xn. We have proved Lemma 3.

Let us state

Definition 4. We put:
N∗

x = {s > 0 : there exist sequences (xi), (si) contained in X and R+,
respectively, such that (xi) has no convergent subsequence, π(si, xi) = x,
xi ∈ π+(xi+1), and π(λ, xi) 6= x for any λ ∈ [0, si)}.

Remark. In the above definition the condition π(λ, xi) 6= x for any λ ∈
[0, si) is put in the purpose of a suitable change of Lemma 1.1 from [12].

Now we show

Lemma 5. The set Nx is empty if and only if the set N∗
x is empty. Moreover,

if any of those sets is nonempty we have inf Nx = inf N∗
x .

Proof. We show that

(5.1) for any t ∈ Nx there exists an s ∈ N∗
x such that s 6 t.

Let t ∈ Nx. There exist sequences (ti) in R+ and (xi) in X such that ti →
t−, π(ti, xi) → x, xi ∈ π+(xi+1) and (xi) has no convergent subsequence. Define
sn = inf{s > 0 : π(s, xn) = x}. Since π(tn, xn) = x, a number sn is well defined
and sn 6 tn for any n. If any sequence sk

n converges to sn when k → +∞ and
π(sk

n, xn) = x for any k, then π(sn, xn) = x. Thus the sequences (xn) and (sn)
satisfy the assumptions of [12, Lemma 2.2], so xn /∈ π((0,+∞), xn) for n large
enough. Applying Lemma 3 we conclude that (sn) is an increasing sequence,
so it is convergent to s (where s may be also equal to +∞); we have sn → s−.
Thus s 6 t as sn 6 tn for any n. We have proved (5.1).

Obviously N∗
x ⊂ Nx, so if N∗

x 6= ∅ then Nx 6= ∅ and inf Nx 6 inf N∗
x . From

(5.1) we conclude that if Nx 6= ∅ then N∗
x 6= ∅ and inf N∗

x 6 inf Nx. This
finishes the proof of the Lemma.

Now we may define n∗(x) as inf N∗
x if inf N∗

x 6= ∅ and as +∞ if inf N∗
x = ∅.

According to Lemma 5 we have n∗(x) = n(x).
Now we have the following
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Lemma 6. Let x ∈ X and (xi), (ti) be sequences in X, R+, respectively,
such that π(ti, xi) = x, xi ∈ π+(xi+1), x /∈ π([0, ti), xi) for all i, ti → t− and
(xi) has no convergent subsequence. Then n(xi) 6 t− ti for n large enough.

Proof. The sequence (ti) satisfies the assumptions of Lemma 1.2 in [12],
so we can find an i0 such that xi /∈ π((0,+∞), xi) for i > i0. The sequences
(xi)+∞i=i0

, (ti)+∞i=i0
satisfy the assumptions of Lemma 3, so (ti)+∞i=i0

is increasing
and

(6.1) π(tn+1 − tn, xn+1) = xn.

Let i > i0. If we find sequences (yn), (sn) satisfying the conditions from the
definition of n(x) and such that sn → (t− ti)−, we will have n(xi) 6 t− ti and
finish the proof.

Obviously, yn ∈ π+(yn+1), (yn) has no convergent subsequence and sn =
tn+i− ti → (t− ti)− as n → +∞. We only need to show that π(sn, yn) = xi for
any n. We prove this by induction. By (6.1), π(ti+1 − ti, xi+1) = xi. Now let
π(ti+k − ti, xi+k) = xi. Then π(ti+k+1 − ti, xi+k+1) = π(ti+k+1 − ti+k + ti+k −
ti, xi+k+1) which by (6.1) is equal to π(ti+k − ti, xi+k) = xi.

Now, if in the reasoning in [12] we use Lemma 6 instead of [12, Lemma
1.1], and apply the equality between n(x) and n∗(x), the proofs in Chapter 1
and Chapter 2 follow.

Now we state

Lemma 7. Put ñ(x) = inf{α : (−α, 0] is the domain of a left maximal
solution through x}. Then ñ(x) = n(x).

Proof. Denote by Dx the set {α : (−α, 0] is the domain of a left maximal
solution through x}. According to [1, Lemma 2.2], if α ∈ Dx and α < +∞,
then α ∈ Nx. Thus, if ñ(x) = inf Dx < +∞, then ñ(x) > n(x). This obviously
yields to the inequality ñ(x) > n(x) in any case.

If ñ(x) < +∞, then applying the definition of Nx and again Lemma 2.2
from [1] we deduce that for any ε > 0 there is a β ∈ (−n(x), n(x)+ε) such that
(β, 0] is the domain of a left maximal solution through x. Hence ñ(x) 6 n(x).
On the other hand, if ñ(x) = +∞ then each left maximal solution through
x is defined on the interval (−∞, 0], so either Nx = ∅ or Nx = {−∞} and,
consequently, n(x) = +∞. We have finished the proof.

According to the above results, we get immediately

Proposition 8. The negative escape time N(x) of x is equal to
inf{α : (−α, 0] or [−α, 0] is the domain of a left maximal solution through x}.

Remark. For many applications, it is more convenient to take as the def-
inition of the negative escape the condition formulated in Proposition 8.
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In [12], to prove important Theorems 4.1 and 4.2, the author defines
t(x) = sup{F ([0, t], x) is compact} (for a compact set M we have t(M) =
sup{F ([0, t],M) is compact}) and proves that N(M) = t(M) for a compact set
M (Th.3.8). However, earlier the following Lemma is stated and used in the
proof of Theorem 3.8.

Lemma ([12, Lemma 3.7]). Let (X, π) be a semidynamical sys-
tem without start points on a locally compact space X and M ⊂
X be compact. Assume that t(M) < +∞. Then F (t(M),M) is
not compact.

This lemma is not true, as can be shown in the following

Example 9. Consider X = (R× {0}) ∪ ({0} × (−2, 0]) ⊂ R2 and define π
as follows:

π(t, (x, 0)) = (t + x, 0)

π(t, (0, y)) =

{
(0, t + y) for t + y 6 0
(t + y, 0) for t + y > 0

Obviously X is locally compact and the system has no start points.
Consider p = (0, 0). We have N(p) = t(p) = 2, F (2, p) = {(−2, 0)}, so

F (t(p), p) is compact. In fact, for any s the set F (s, p) is compact as it is either
a singleton set or it contains two elements.

Below we present the Lemma in corrected version and the correct proof of
Theorem 3.8 in [12].

We have

Lemma 10. Let (X, π) be a semidynamical system without start points on
a locally compact space X and M ⊂ X be compact. Assume that t(M) < +∞.
Then F ([0, t(M)],M) is not compact.

Proof. Suppose for the contrary that F ([0, t(M)],M) is compact. Then
also F (t(M),M) is compact as it is a closed subset of a compact set (we use [12,
Lemma 3.3], ). Take a compact neighbourhood U of F (t(M),M). According
to [1, Prop. 4.4] there is an ε > o such that F ([0, ε], F (t(M),M)) ⊂ U . Thus
F ([0, ε], F (t(M),M)) is compact as a closed subset of U and F ([0, t(M) +
ε],M)) = F ([0, t(M)],M) ∪ F ([0, ε], F (t(M),M)) (see [12, Lemma 3.5] ) is
compact. This contradicts the definition of t(M).

Let us recall [12, Theorem 3.8].

Theorem 11. Let (X, π) be a semidynamical system without start points
on a locally compact space X and M ⊂ X be compact. Then N(M) = t(M).
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Proof. The system has no start points, so N(M) = n(M). For the proof,
two inequalities are to be shown: t(M) 6 N(M) and N(M) 6 t(M). The proof
of the first inequality follows as in [12, 3.8]. To prove the second inequality
suppose to the contrary that t(M) < n(M). Thus t(M) < +∞. According to
Lemma 10, the set F ([0, t(M)],M) is not compact. Thus there exists a net (zi)
contained in F ([0, t(M)],M) which has no convergent subnet. For any i there
are an si ∈ [0, t(M)] and a zi ∈ M such that π(si, zi) ∈ M . Now according to
Proposition 8, for any i there is an yi ∈ F (t(M),M) such that π(t(M)−si, yi) =
zi. We claim that (yi) has no convergent subnet. Indeed, for any i the number
t(M)− si belongs to the compact interval [0, t(M)], so if (yik) is a convergent
subnet of (yi) we may assume without loss of generality that t(M) − sik is a
convergent subnet of t(M)−si. Then zik = π(t(M)−sik , yik) → π(t(M)−s, y)
for some s ∈ [0, t(M)] and y ∈ F (t(M),M), so (zi) has a convergent subnet, a
contradiction.

We have shown that there exists a net (yi) contained in F (t(M),M) which
has no convergent subnet. Now the proof follows further as in the paper [12].
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