
  

Abstract— Weather and illumination are critical factors in 
vision tasks such as road detection, vehicle recognition, and 
active lighting for autonomous vehicles and ADAS. 
Understanding the weather and illumination type in a vehicle 
driving view can guide visual sensing, control vehicle headlight 
and speed, etc. This paper uses sparse coding technique to 
identify weather types in driving video, given a set of bases 
from video samples covering a full spectrum of weather and 
illumination conditions. We sample traffic and architecture 
insensitive regions in each video frame for features and obtain 
clusters of weather and illuminations via unsupervised 
learning. Then, a set of keys are selected carefully according to 
the visual appearance of road and sky. For video input, sparse 
coding of each frame is calculated for representing the vehicle 
view robustly under a specific illumination. The linear 
combination of the basis from keys results in weather types for 
road recognition, active lighting, intelligent vehicle control, etc.  

I. INTRODUCTION
In current autonomous driving, many tasks cannot 

perform well under poor illuminations and the algorithms are 
not even aware of what type of weather a vehicle is driving in 
(Fig. 1). Some weather changes the appearance of road even 
more significantly than scene color (surface materials), and 
thus it is critical to vision tasks such as road and traffic 
detection. This paper deals with weather modeling and 
recognition in driving views for automatic driving.  

   Sunny                                    Night                              Dark-lit/night 
Figure 1 Various road appearances in driving videos under different weather 
and illumination conditions.  

Weather and illuminations have a great diversity and they 
lack discriminative features in images. Previous methods on 
weather recognition have assumed that weather category falls 
into separable classes, mostly two-classes, among huge 
differences in illumination. For example, recognizable 
individual weather types are fog [10], rain [11], snow [12], 
shadow [13], and night. Raindrops were detected on 
windshield as a clue of raining [2]. Though to some extent, 
those methods work well, they are unable to satisfy real 
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demand of multiclass weather classification in autonomous 
driving. To achieve a robust recognition of road environment 
and surrounding traffic in vision, remind driver safety 
actions, and even control the vehicle in a hazard weather, 
identifying weather and illumination is indispensable. Based 
on that, we can adapt thresholds in road segmentation, report 
a poor illumination and alert drivers a proper speed, and 
apply active lighting in night. Another effort on weather 
study is to estimate physical parameters, which is hard to 
connect to sensing and decision systems of the vehicle 
directly. Some assumptions and devices are not realistic to 
acquire on vehicles, which is difficult to fit into the real 
scenario for ADAS.  

We adopt the data mining approach to describe multi-
class weather and illuminations using a large set of 
naturalistic driving videos [5] captured by many cars. The 
related works so far on weather identification through in-
vehicle cameras use color HIS and gradient features [1]. K-
NN is further employed in the classification of raining 
weather [3]. The weathers are more daily used category 
measured in the entire view, rather than our road related 
category including illuminations.  

Different from above works, this paper uses sparse 
representation that has dictionary learning and sparse coding 
for multiple-class weather classification. We classify 
different weather classes based on multiple features such as 
intensity and chroma from traffic-insensitive regions in 
driving videos. For a video frame, we extract its principal 
weights as a linear combination of typical views from 
weather and illumination classes. With these sparse 
coefficients obtained using a carefully learned dictionary, we 
classify the weather and illumination in every frame during 
the vehicle motion. Our input data consists of weather data 
profile [5] and road profile [6, 8] obtained from driving video 
in real time. As reported in other research [14], sparse coding 
is less influenced from partial corruption in image 
recognition. Our experiment also shows that the sparse 
coding approach is robust in the weather and illumination 
classification. 

 In the following Sec. II, we introduce vehicle views under 
various weather and illumination as preparation. Section III 
describes sparse coding applied to the view representation. 
Section IV discusses the weather and illumination 
classification, followed with experiments in Section V. 

II. WEATHER AND ILLUMINATION IN VEHICLE VIEW

The weather and illumination we considered are not
identical to the daily used categories in weather forecasting. 
They are related to the road view from a vehicle captured by 
a forward camera and recorded in driving video. The 
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weather and illumination affect driver perception of road and 
traffic ahead, and influence vision tasks for autonomous 
driving. According to computer vison theorems, the light 
intensity casted on objects is additive for multiple light 
sources. The camera sensed irradiance is a linear 
combination of different light components ranging from 
ambient light, diffused reflection on object surfaces, specular 
reflection, and direct light from illuminants. For a vehicle on 
road, these light sources do not appear at the same moment. 
The specular reflection is from wet and asphalt road surface. 
Direct light comes into the camera at sunrise and sunset. The 
diffused reflection component is also determined from the 
surface reflectance as coefficients, and the specular 
reflection on wet road is further related to the light source 
direction. Night is another scenario where active lighting can 
be casted from vehicle headlight. Moreover, surface 
reflectance is determined from materials even related to 
seasons, e.g., grass turns to green and yellow in spring and 
fall respectively. In addition, all camera views are affected 
by intervened water particles in rain, snow, and fog, which 
blurs, whitens, and darken scenes.  

To reduce the number of cases for consideration, we 
combine weather and illumination in our categorization, 
leaving material changeable on road and off-road as in Table 
I [5]. More sunny cases are included here as in Fig. 2, where 
the sun has directions from back, side, and front with respect 
to a vehicle. Figure 3 intuitively shows the spectrum of 
weather and illuminations in vehicle views with possible 
highlight and specular reflection. Most vision tasks on 
vehicles work well for the cases from sunny to cloudy so far. 

Figure 2 Direction of light source (the sun) with respect to the forward 
vehicle camera. 

Figure 3 Iconic vehicle views of weather and illumination spectrum [5] 
summarized from a large naturalistic driving dataset.  

To quantify the weather and illumination in vehicle 
views, we sample several traffic insensitive regions in video 
frames for color properties. The road and off-road colors are 
correlated with sky light, while the sky may vary drastically 
according to viewing distance and direction. We thus 

consider the sky and ground together [5]. 
Table I Human categorized weather and illuminations 

W & I Qualitative description of road 
appearance 

Appearance of 
vehicles on road 

Sunny 
back to the 
sun (BS) 

Including the sun in back and side 
directions without shadow, rich 
color, diffused reflection on road.  

Vehicles and 
pedestrians have 
saturated color. 

Sunny 
facing the 
sun (FS) 

Sun in the camera forward 
direction, may have specular 
reflection on asphalt road surface. 
The scene is not colorful due to a 
narrow dynamic range of 
cameras. Large shadow areas are 
on objects. 

Frontal vehicles 
have less color and 
dark shadows 
against bright road 
regions. Strong 
highlight spots on 
vehicles.  

Cloudy Including overcast and partly 
cloudy. Mostly ambient light 
from sky illuminate scenes. 

Vehicle colors are 
well visible except 
the overcast. 

Shadow  Shadow on road surface casted 
from trees, buildings, etc. Other 
vehicles may also cast shadow on 
road. Soft shadow from sparse 
trees and small objects has less 
influences on appearance, while 
hard shadow from high buildings 
and upper bridge coverage make 
the road area like dark lit. 

Vehicles have small 
shadow regions 
casted by their 
bodies. The shadow 
regions below 
bumpers become an 
important clue for 
vehicle detection. 

Dark lit At dusk or after sun set, sky is 
still bright as ambient light, but 
road and background are dark 
without sufficient illumination. 
No color visible on road.  

Vehicle lower 
boundary is not 
clear, and a vehicle 
is identified from 
tail or headlights. 

Direct 
light  

Sun at front with glare in image. 
Even hard for human driver to see 
road. May have highlight on road 
surface. Camera may close 
exposure due to strong sun light 
such that the ground becomes 
very dark. 

A vehicle can be 
seen on top partially 
but less details in its 
region. Some direct 
light from opposite 
vehicle headlight 
happens in night. 

Rainy  Dark illumination, low sensitivity 
of camera. Some cannot be 
separated from overcast. We look 
at wiper on/off to decide rainy 
state. Wet road surface has 
specular reflection of scenes (dark 
gray) and sky (bright).  

Frontal vehicles may 
have unclear shape 
at lower part 
because of water 
spray. 

Snowy Snow intervene the scene and 
camera, makes image noisy. Road 
sides are more snow-covered and 
melt later than road surface. Road 
edges may not be straight. 

Vehicle boundary 
may not clear when 
snow-covered. 

Fogy A half-transparent layer in front 
of camera blurs scenes. Camera 
exposure can enhance contrast to 
a certain extent. 

Vehicles at front 
may have low 
contrast. 

Night  Night is tagged by human when 
vehicle headlights are on. It 
includes rural night in dark, city 
night under street light, and wet 
ground with strong reflection 
from other cars and street lights. 

The complete 
vehicle shape is hard 
to obtain; vehicle 
lights become main 
clue for vehicle 
detection. 

In all video frames where the horizon is fixed by camera 
calibration (Fig. 4), we sample the road surface at a line 
below the horizon, which reaches approximately 15m ahead 
for road detection. The linear data are stored temporally in 
the road profile image [8] as shown in Fig. 5. The road 
region sampled in the road profile covers the width of one 
lane. Additional three regions in the frame such as sky, left 
and right roadsides between the horizon and the sampling 
line are also sampled. The sky region is set at the very top of 

SSuunnnnyy  bbaacckk  ttoo  ssuunn  
((SSuunnnnyyBBSS)) 

SSuunnnnyy  ffaacciinngg  tthhee  ssuunn  
((SSuunnnnyyFFSS)) 

Direct light 

Dark lit 

 Shadow 

  Snowy 

Cloudy 
(rainy, fog) 

Night 

SSuunnnnyy  ssiiddee 



frames to avoid buildings in forward direction. Roadside 
regions cover large areas from 15m to infinity. Although 
they may still capture opposite vehicles on the left, and 
passing vehicles on both sides, the time duration in the video 
is relatively short. 

  y 

x
Figure 4 Sampling video frames to obtain the road profile and feature data 
related to weather and illuminations. Video frame where horizon and 
sampling line are indicated. 

From these four regions, intensity and chroma are 
calculated and recorded along the time axis. We are not 
using saturation to describing color because of its singular 
value with zero-intensity in night scenario. The color 
variation on the road surface is computed as well from the 
road profile. All these nine features, fi, i = 1, …9, form a 
feature vector and the whole video sequence generates a 
feature matrix, fi(j), proportional to the video length, where j 
is the frame number of the video clip. We use these features 
to measure the weather and illumination conditions, which 
avoids far road beyond 15m (bothered by other vehicles 
frequently) and roadside buildings, trees, and mountains as 
much as possible.  

Rather than relying on the semantic weather and 
illumination categories C annotated by humans, our previous 
work has investigated the discriminable clusters among the 
feature space to describe the weather and illuminations. K-
mean clustering method was applied to large naturalistic 
driving videos [9] to obtain seven stable clusters K as shown 
in Fig. 6. These data mining clusters in K are not the exact 
overlaps with classes C but have an 80% consistency by 
classifying human tagged video clips [5]. As a result, cloudy 
and rainy are indistinguishable in the feature space [5], 
though they can be separated from wiper movement or rain 
drop on windshield in the videos. Direct light and dark lit 
are in the same category. More clusters will increase the 
difficulty of classification, while fewer clusters may not 
provide sufficient information to road and object 
recognition. The chroma are all low, except for sunny back 
to the sun in daytime and on night road surface (lit by 
yellow headlight in the dataset). The further detailed changes 
in materials and illumination can be considered as their sub-
clusters further. 

III. SPARSE CODING OF WEATHERS IN VEHICLE VIEWS

A. Sparse Coding by Sample Basis
With the clusters learned from large naturalistic driving

videos in the feature space, new views from driving video 
can be classified into one of these clusters. The obtained 
cluster can be further used to retrieve the visual properties 
for guiding the road segmentation [6], active lighting in 

night, control the vehicle in poor weather, and report the 
invisibility of road edges for switching to other modes such 
as vehicle following.  

Here we explore the sparse coding representation of 
weather and illuminations in the vehicle views. A new 
vehicle view (features) is formed as a linear combination of 
typical views (features) among various weather clusters, 
according to the light additive principle under multiple light 
sources. A few non-zero coefficients in this linear 
combination indicate the belonging cluster of this new view, 
and the properties of the clusters can also be inherited to the 
view directly.  

In image recognition, sparse coding [7] has been widely 
applied in finding group presentations of data sets, either 
labeled or unlabeled. The process is divided into two phases: 

t 

 x 

 Night 

 Direct light / dark lit 

 Cloudy / rainy / fogy 

 Sunny facing the sun 

 Snowy 

 Sunny back to the sun 

 Shadow 
Figure 6 Typical views of seven clusters 
related to weather and illuminations. This 
figure shows the intensity from the sampled 
regions. The chroma is not displayed due to 
its low values in all views. The central bar in 
each road area shows the variation on road 
surface due to shadow, highlight, and material 
damage/ difference.  

Figure 5 A road profile from sunny day that 
contains 5 min driving and 9000 frames taken 
by HD video camera on vehicle at 30 fr./sec. 
About every 2m, the road is sampled with one 
line. 

Horizon 

Sampling line at h  

Sky 

Left    Right 



dictionary learning and sparse coding. The former plays a 
role in extracting keys from input data (samples) to form base 
vectors of a code book. While the latter results sparse 
coefficients through optimization. This captures a sparse 
expression of a data sample based on the dictionary. There 
are two points distinguishable from PCA: (1) All the keys in 
the dictionary have no requirement to be orthogonal. (2) The 
dictionary can be an over-complete spanning set. As an 
unsupervised method, the sparse coding aims at representing 
input data by sample basis in the dictionary space. More 
precisely, given a set of bases, Φi, i = 1, 2, …, k in the 
dictionary learning process, sparse coding aims at 
representing an input set X as a linear combination of Φi with 
corresponding coefficients ai as: 

 (1) 
Note that the number of basis Φi usually is larger than the 
dimension of feature space. This over-completeness ensures a 
full possibility to present various patterns in input data. In 
addition, we need a restriction to fulfill the “sparseness” on 
coefficients, i.e. the coefficients far from zero should be as 
few as possible. Therefore, a cost function is added to Eq. (1) 
to penalize ai for being non-zero. For all input samples X j, 
j=1, …, m, we obtain coefficients ai

(j) of the linear 
combination by 

    (2) 
where m is the number of input samples and S(ai

(j)) is the 
penalty for sparse coefficients. In sparse coding, S(ai

(j)) is 
measured with L1 norm, since L1 overrides L0 in the property 
of differentiable and is easier to be optimized in general. For 
example, we can adopt S(ai

(j)) = |ai|1 and its log penalty is 
S(ai

(j)) = log(1+ai
2). 

Moreover, the sparsity penalty can be affected by the 
scale of Φi, such that the basis or the dictionary learned have 
an impact on L1 norm. Here we constrain the value of basis. 
The full sparse coding cost function thus becomes 

  (3) 

B. Dictionary from Weather Views and Sparse Coding
Now we introduce the view representation under different

weather and illuminations with sparse coefficients combined 
from a set of base views. With the whole spectrum of weather 
and illumination K obtained in K-mean clustering [4], we try 
to compute a fewer number of coefficients that can adapt 
typical views to an arbitrary frame in the driving video.  

Although various algorithms of sparse coding learn the 
dictionary from input data, we expect the basis to be as 
primitive as they can so that any complex input can be 
represented as a sparse combination of them. On the other 
hand, the number of basis in the dictionary also plays a role. 
Here, we select the centroids of clusters from K-means [5] 
for the basis. In addition, we use K-mean clustering in the 
obtained clusters to further obtain sub-clusters, which 
implement a hierarchical and sequential learning. The sub-
clusters cover the further variations in the clusters due to the 

different roadside materials, illumination styles, and weather 
differences. The basis we extract from K-means clusters 
should have as small overlap as possible in the feature 
distributions. Among the clusters and sub-clusters, we pick 
up their peak values as the basis for codebook. In the high-
dimension feature space, the larger the distance between the 
basis, the sparser in representing each weather view, and the 
easier for classification. Based on the volume of each cluster 
and its distribution, we obtained k=17 basis as the atoms in 
codebook from seven clusters (K=7). They are displayed in 
Fig. 7 in views. We put them into the sparse coding algorithm 
to produce the sparse coefficients for input samples. Here the 
term “sparse” mostly refers to the division of zero and non- 
zero values of coefficients in the expression. 

 Sunnyback 

 Cloudy/Rainy/Fog 

 Directlight/Darklit 

 Shadow 

 SunnyFC 

 Night (rural road, wet road with reflection) 

 Snowy (roadside snow brighter than road) 
Figure 7 Intensity of 17 sub-cluster keys from K-means clustering based on 
300 sample videos of different weathers. The brightness of central bar in 
each image indicates the variation within road area. 

 For example, we took 300 profiles in the K-Means (K=7) 
clustering into this sparse coding model. Each frame with 9 
features is expressed as a linear combination of 17 basis, 
among which only a few are non-zero values. For examining 
the results, we seek for a visualization to compare the original 
road profile with the view approximated by sparse coding. 
Figure 8 compares the ground in estimated views with the 
road profiles. We can notice that they are close, although the 
sky is not displayed. Ten road profiles from different weather 
categories are selected for comparison. Non-zeros 
coefficients are associated with the corresponding basis. 

IV. WEATHER AND ILLUMINATION CLASSIFICATION

Given a batch of unlabeled view frames, we have learned
their sparse representation in terms of the dictionary. Each 
input will yield a projection to the basis. Sparse coding uses 
the dictionary to learn sparse coefficients, among which only 
a few of them are non-zero. The following supervised 
learning in a pipeline is done for weather classification of 
video frames. We take another 300 labeled profiles for 



experiments, and adopt sparse coding for the testing of 
weather recognition: 
a) Learning sparse coefficients. Input the 9-feature vector

of a frame and project it onto the dictionary space. The
sparse coding algorithm minimizes the difference of linear
combination with the input view (features), and this
generates sparse coefficients with only a few non-zero
values.
b) Classification: Use non-zero coefficients to classify the

input into a related weather cluster, which has the basis that
non-zero coefficients associated with.
c) Visualization and Verification: the classified frame is

compared with the road profile briefly and small differences
indicate a good approximation by the linear combination.

  Sunnyback      Cloudy      Rainy    Fog     Direct-light  

  Dark-lit     SunnyFS     Shadow     Night    Snowing 
Figure 8 Comparison of road profile with approximated views on road and 
off-road for different weather clusters. Left of each figure is road profile and 
right column is a series of frames generated from sparse coding (linear 
combination of 17 basis). The sky is brighter than lower ground except night. 
The frame top is aligned with the frame position in road profile. 

Several recognition results covering different weather 

clusters are displayed with the road profiles in Fig. 9. 
Different colors are marked as the weather ID on both sides 
of a road profile for verification of weather and illumination 
types. Along with the final classification and road profile on 
left and middle columns, the right column consists of three 
small columns that represent the most obvious three sparse 
coefficients. We can notice that the second coefficient is 
much smaller than the first one, and it may still be correct if 
the first coefficient is wrong.  

 SunnyBS    |Partial shadow |     Cloudy      |     Rainy      |      Fog 

Direct-light   |      Dark-lit     |   SunnyFC      |      Night        |      Snowy 
Figure 9 Classification results of all weather and illuminations for all frames 
in video clips. Yellow-Sunny back to the sun, Green-Shadow, Magenta-
Sunny facing the sun, Blue-Cloudy/raining/fog, Cyan-Snow, Red-Dark 
lit/direct light, Black-Night. The cluster each frame belongs to is colored on 
left side of road profile. Right of each road profile shows top three sparse 
coefficients in consecutive narrow columns. Their scales are displayed by 
horizontal lengths with the remaining part painted in gray. 



V. EXPERIMENTS AND DISCUSSION

The naturalistic driving video [9] uses 110 cameras of 
the same type. Auto-exposure is applied based on the 
average brightness in the view. Among the dataset, 300 
videos covering all spectrums of weather and illumination 
described in Table I were selected for experiment. Each clip 
has 5 min driving and the 9 features are extracted from every 
frame for over 9000 frames along with the road profile [6]. 
The road types include urban, rural, highway, and local 
roads in different seasons. For narrow streets with high 
buildings on sides, they have more chance to be categorized 
as shadow in sunny day if road is casted with shadow. 

The software used for sparse coding is CVX tool in 
Matlab and running time in calculating the sparse 
coefficients for a road profile with 9027 frames is about 929 
seconds, i.e., 0.1 sec/fr in average. This means that the 
weather identification is sufficient for real time video 
processing before other modules start working. The λ in Eq. 
(3) is set to 100 in the minimization. Using 60 testing videos
including all weather and illuminations, the recognition
accuracy by sparse coding is given in Table II resulting F1
score around 90% as compared to the recognition accuracy
from 60%-85% using K-mean distance in the feature space
[5]. That is, the sparse coding result using K codebook is
more consistent to the human annotation C than using K-
mean distance from clusters K.

As shown in Table II and Fig. 9, some miss-classification 
with the largest coefficient can be examined further with the 
second coefficient, which may be correct. The error can be 
considered as corruption due to the sampling regions 
affected by buildings, surrounding vehicles, and unexpected 
scenes. Direct light and sunnyFS can be mixed as they are 
adjacent cases with different sun position in the view. The 
frame-level result also shows a sensitive change to 
illumination on road. We are not considering a temporal 
filtering to remove inconsistent frames locally with the 
results from frames before and after; thus, we can capture 
real details on road.  

The merits using the sparse coding are (1) only a few 
non-zero coefficients are used in the linear combination to 
represent a single frame, which has more robust results in 
some corruption [14]. (2) the direct use of the coefficients in 
determining the sensing strategy and parameters. For 
example, it can guide the road edge detection with a proper 
threshold for different weather and illuminations. For side 
area with only a weak contrast in the image, a vehicle could 

not judge so far whether an edge exists in dark, or it is a 
wide road of the same material if no weather and 
illumination above the ground was identified. By referencing 
the sky and surroundings, the illumination is classified and 
then thresholds can be set accordingly [6]. If it is a direct 
light, or night driving on wet road, the system should report 
the invisibility of road edges, and switch to tracking mode to 
follow other frontal vehicles. 

VI. CONCLUSION

This paper challenges weather recognition in a vehicle view 
with the sparse coding for a robust result. The weather and 
illumination have been modeled through clustering in an 
unsupervised learning. Based on the additive nature of 
lights, the sparse coding identifies a weather type, as a road 
image is input from the forward camera on vehicle, using a 
series of basis from sample views. The coefficients can be 
used to guide road segmentation in ADAS, active lighting in 
dark illumination, and driving speed control in a poor 
weather and illumination. 
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Table II Confusion matrix of weather and illumination recognition using 
{C}. CRF stands for Cloudy/Rain/Fog, and DL/DL stands for direct light 
and dark lit. The result counts frame numbers. The F1 score is 89.9%. 

Sunny 
BS 

Shadow Sunny 
FS 

CRF Snowy DL/ 
DL 

Night 

SunnyBS 80636 835 22 321 1950 58 21 
Shadow 1006 7590 154 97 0 99 42 
SunnyFS 103 0 8675 818 604 0 0 
CRF 15 252 1584 55797 3216 886 44 
Snowy 7 737 978 81 36090 11 1 
DL/DL 82 277 552 4130 658 82052 143 
Night 293 514 22 85 226 27 62193 
Recall 0.96 0.84 0.85 0.90 0.95 0.93 0.98 
Precision 0.98 0.74 0.72 0.90 0.84 0.98 0.99 
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