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Abstract

Right ventricular (RV) function is the primary prognostic factor for both morbidity and mortality in
pulmonary hypertension (PH). RV hypertrophy is initially an adaptive physiological response to increased
overload; however, with persistent and/or progressive afterload increase, this response frequently
transitions to more pathological maladaptive remodeling. The mechanisms and disease processes
underlying this transition are mostly unknown. Angiogenesis has recently emerged as a major modifier of
RV adaptation in the setting of pressure overload. A novel paradigm has emerged that suggests that
angiogenesis and angiogenic signaling are required for RV adaptation to afterload increases and that
impaired and/or insufficient angiogenesis is a major driver of RV decompensation. Here, we summarize our
current understanding of the concepts of maladaptive and adaptive RV remodeling, discuss the current

literature on angiogenesis in the adapted and failing RV, and identify potential therapeutic approaches
targeting angiogenesis in RV failure.

INTRODUCTION

Pulmonary hypertension (PH) is a chronic and progressive disease of the lung vasculature and right heart
that is characterized by pulmonary artery (PA) vasoconstriction and remodeling, resulting in increased
afterload on the right ventricle (RV) (68, 160, 175, 176). Many common cardiopulmonary diseases, such as
chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, sleep disordered breathing, and left
heart disease (systolic or diastolic dysfunction as well as valvular heart disease) are complicated by PH
and/or RV failure (68, 98, 99, 137, 166). Approximately 70 million patients with these conditions in the US
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alone are estimated to have PH (27, 71, 95, 102, 103, 128). These patients either have overt RV dysfunction
or are at a major risk for developing this condition. In addition, 3.8% of patients with pulmonary embolism
develop chronic thromboembolic PH and are therefore at major risk for developing RV failure (121). Last,

pulmonary arterial hypertension (PAH), one of the most aggressive types of PH and a condition that arises
spontaneously, hereditarily or as a complication of such frequent entities as liver cirrhosis, HIV infection,
congenital heart disease, and drug and toxin use, commonly leads to profound and refractory RV failure
(148).

Abnormal angiogenic processes in the lung have been recognized as a critical player in PH etiology (123,
184). More recently, the vasculature of the RV has emerged as a critical modulator of RV adaptation to the
increased afterload in PH. The objective of this review is to highlight the role of angiogenesis in RV failure.
In particular, we 1) briefly introduce the concepts of adaptive and maladaptive remodeling in the RV, 2)
discuss our current understanding of angiogenesis in the adapted and failing RV, and 3) identify potential
therapeutic approaches targeting angiogenesis in RV failure.

THE CRITICAL ROLE OF RV FUNCTION IN PATIENTS WITH PH

The RV initially compensates for the PH-induced increase in afterload through hypertrophy and increased
contractile function (125, 176). However, as PH continues to worsen, the RV’s compensatory mechanisms
fail, leading to RV failure and death (175, 176). Consequentially, in many different types of PH,
deteriorating RV function is one of the strongest predictors of mortality (11, 35, 54, 70, 130, 169). RV-
directed therapies would strengthen the ability of the RV to adapt to the increased afterload, would inhibit
maladaptive responses, and would be predicted to improve the functional capacity, quality of life, and
longevity of patients with PH (133, 175). However, despite the critical importance of RV function to
outcomes in PH, no RV-directed therapies exist. For example, in PAH, current therapies predominantly

focus on the pulmonary artery (PA) vasoconstriction component of the disease, indicating a significant
treatment gap (17, 45, 90, 152). Furthermore, in PH due to chronic left heart or lung disease, pulmonary
vasodilators have been used to decrease RV afterload; however, their use is associated with worse
outcomes, such as fluid retention, worsening ventilation-perfusion mismatch, and even death (137, 166).
Last, therapies developed for the failing left ventricle (LV) cannot be extrapolated to the RV due to their
embryological and anatomic differences (51). This indicates a critical need to develop better therapeutic
strategies for patients with PH-induced RV failure.

THE CONCEPT OF ADAPTIVE VS. MALADAPTIVE RV REMODELING

To understand the role of the macro- and microvasculature in the failing RV, it is important to understand
how the RV responds to increases in afterload. The specific mechanisms of RV failure development have
been elegantly discussed in detail elsewhere (133, 174, 175) and are beyond the scope of this review.
Briefly, as RV afterload increases during the development of PH, the RV exhibits compensatory
mechanisms that include structural changes, neurohormonal activation, and increased contractility (133,
175) (Fig. 1). On a cellular level, these changes are accompanied by increased angiogenesis, changes in
mitochondrial function and substrate utilization, increased production of reactive oxygen species, changes
in myosin isoform expression, and altered sarcomere organization (133). These mechanisms allow for a
state of adaptive (or compensated) RV hypertrophy (RVH), characterized by a cardiac output that is still
sufficient to meet the metabolic demands of the body (175, 176). However, once the RV’s compensatory
mechanisms are exhausted, the RV will transition from adaptive to maladaptive (or decompensated) RVH,

and RV failure with decreased cardiac output and decreased oxygen delivery develops (175, 176) (Fig. 1).
At cellular and molecular levels, maladaptive RVH purportedly is characterized by marked inflammation,
oxidative stress, metabolic dysfunction, and impaired calcium handling, with an end result of cell death and
profound fibrosis (12, 174, 175). There currently is an unmet need in PH to prevent, delay, or reverse the
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transition from adaptive to maladaptive RVH (133, 174–176). Impaired angiogenesis may be one of the key
processes leading to RV decompensation, and modulating angiogenic signaling may be a novel approach to
maintain, prolong, or even reestablish adaptive RVH (14, 124). In the remainder of this review, we will 1)

provide a brief overview of angiogenesis, 2) identify potential novel modulators of angiogenic signaling in
the RV, and 3) discuss the pros and cons of angiogenic signaling as a target in RV failure.

OVERVIEW OF ANGIOGENESIS

To better understand the regulation of angiogenesis in the RV, it is important to understand key concepts of
this process. Angiogenesis initiates and directs the proper formation of new, functional blood vessels from
existing vessels. It is important to note that angiogenesis is distinct from vasculogenesis; the latter is the de
novo formation of vessels through recruitment of circulating hemangioblasts or endothelial progenitor cells
(reviewed in Refs. 24, 53, 118, 129). In adult systems, angiogenesis is thought to be the driving mechanism
for vessel repair and regeneration. Angiogenesis occurs through two processes: 1) intussusceptive
microvascular growth, where new vessels are formed through the splitting of preexisting vessels or 2)
sprouting angiogenesis, which consists of endothelial cell (EC) migration, proliferation and tube formation
(53). Of these two angiogenic processes, sprouting angiogenesis is the best characterized. Sprouting
angiogenesis primarily utilizes two distinct vascular EC phenotypes: tip cells and stalk cells. The tip cell
extends, or “sprouts” filopodia and migrates toward a hypoxic or ischemic area. Tip cells induce the
migration of the stalk cells into the newly forming vessel branch. Stalk cells are highly proliferative and
primarily form the new vessel and lumen. During vessel maturation, excess vessels are pruned in a process
known as vessel regression (9, 24, 141). Each vascular endothelial cell (EC) is intrinsically capable of
becoming a tip or stalk cell, or to remain as a quiescent EC, or phalanx cell, in the stable vessel (9).
Individual ECs actively rotate between each phenotype through rapid induction and repression of a distinct

transcriptome (41, 150). This active shuffling between phenotypes involves rapid integration of
extracellular pro- and antiangiogenic chemotactic cues from surrounding tissues as well as neighboring
vascular ECs (9). The vascular endothelial growth factor (VEGF) family is important for the induction of
both cell phenotypes. Not only does VEGF drive tip cell phenotype and migration, it also regulates stalk
cell proliferation (10). The ratio of tip cells to stalk cells is crucial for proper formation of new vessels and
is tightly regulated by integration of several pathways, including ephrin, notch, bone morphogenetic protein
(BMP), Wnt, and VEGF signaling (24, 74). These mechanisms are discussed in greater detail elsewhere
(8–10, 24, 112).

When the dynamic regulation of angiogenesis is disrupted or hijacked, it can become a contributing factor
to pathogenic processes (24). For example, multiple cancers exploit angiogenic pathways to supply oxygen
and nutrients to tumors, driving their growth and fueling inflammatory responses (23, 63, 104). In addition,
angiogenesis is relevant to many noncancerous conditions. For example, impaired and/or inappropriate
angiogenesis has been linked to multiple cardiovascular diseases such as peripheral vascular disease (33),
coronary artery disease (171), and diabetic retinopathy (2, 36).

POTENTIAL RELATIONSHIP BETWEEN THE CARDIAC VASCULATURE AND THE
TRANSITION FROM ADAPTIVE TO MALADAPTIVE RVH

Macrovascular Dysfunction in PH

Increased RV afterload results in increased RV wall tension, a process associated with compromised
coronary perfusion. This was shown by van Wolferen et al., (170) who demonstrated in patients with PAH
that perfusion of the right coronary artery (RCA) was markedly decreased in diastole, whereas this was
maintained in control patients. Moreover, increases in RV systolic pressure correlated inversely with
decreases in systolic-to-diastolic flow ratio in the RCA. A recent study by Melonche et al. (101)
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demonstrated that coronary artery remodeling in human and experimental models of PAH was associated
with increased RV DNA damage, inflammation, and bromodomain protein-4 (BRD4) overexpression.
These data suggest that coronary artery remodeling and flow impairment contribute to a decrease in RV

perfusion and clinically relevant mascrovascular impairment in PAH. This phenomenon is likely
exacerbated by increased myocardial oxygen demand as a result of increased RV workload.

Microvascular Dysfunction in PH

In addition to RV macrovascular impairment, evidence exists that microvascular alterations occur in the RV
as well. Increased RV afterload leads to increased cardiac workload and cardiomyocyte hypertrophy (175,
176). We know from studies of the LV that adequate angiogenesis is critical to maintaining substrate
delivery to the hypertrophied myocardium (112, 178). In addition, the endothelium serves as a paracrine
“machine” that regulates the function of the surrounding myocardium (108, 175). Capillary dropout and
microvascular ischemia therefore have long been postulated to be critical contributors to RV failure
development (174). Indeed, analysis of two-dimensional sections in PH models associated with RV failure
demonstrates reduced RV vascular density, and this has been identified as a critical mediator of the
transition from adaptive to maladaptive RVH (14, 43, 117, 122, 124). Collectively, these studies
(summarized in Tables 1 and 2) suggest that the RV microvasculature in PH is dysfunctional and rarefied,
rendering it unable to meet the increased substrate demand of the hypertrophied myocardium, thus resulting
in clinically relevant RV ischemia (59). A similar paradigm has been proposed in LV failure (112, 147,
178). However, a recent analysis of human RV tissue by a stereological approach noted an increase in total
vascular length in PH RVs vs. controls (61). It should be noted, however, that clinical background
information about the donor patients was limited. These studies demonstrate that, while there undoubtedly

has been progress in the field, controversies exist, and the mechanisms responsible for RV vascular
rarefaction and microvascular ischemia remain incompletely understood. The following section reviews the
currently known mechanisms and modifiers of angiogenesis in adaptive and maladaptive RV remodeling in
more detail.

MECHANISMS AND MODIFIERS OF MICROVASCULAR FUNCTION IN ADAPTIVE
AND MALADAPTIVE RV REMODELING

Here, we describe our current understanding of angiogenesis in adaptive and maladaptive RV remodeling.
As in the LV, it has been speculated (though not definitively shown) that RV adaptive responses are induced
or mediated through increased angiogenesis and that transition to maladaptive remodeling is characterized
in part by loss of capillaries. We review the pertinent literature in more detail in the following sections. A
summary is outlined in Tables 1 and 2.

Modulators of Microvascular Function of Relevance to the RV

This section discusses molecular mechanisms and pathways that are of interest to the study of angiogenesis
in the RV (Fig. 2). We focus on mediators and pathways that either have been identified in the RV already
or play a major role in the LV. For comprehensive reviews of the molecular mechanisms driving
angiogenesis in health and disease in general, we refer the reader to Refs. 9, 24, 139, 173.

Hypoxia-Inducible Factors

Hypoxia-inducible factors (HIFs) are major regulators of angiogenesis, vasculogenesis, and EC
homeostasis (139). Under homeostatic conditions, quiescent ECs express oxygen sensors prolyl
hydroxylase domain proteins 1–3 (PHD1–3), which regulate the expression of HIF-1α and HIF-2α (139).
Under hypoxic or ischemic conditions, these sensors become inactive, resulting in the stabilization and
accumulation of HIF-1α and HIF-2α. The accumulation of HIFs rapidly regulates the transcriptional
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expression of a large number of target genes. One purpose of the HIF transcriptome is to stimulate
sprouting angiogenesis in an effort to repair or prevent injury by increasing oxygen supply to ischemic or
hypoxic tissues (97).

Although the role of HIF-1α and HIF-2α in stimulating angiogenic responses is complex and tightly
regulated, in general, HIF-1α promotes vessel sprouting, while HIF-2α mediates vascular homeostasis (50).
HIFs are necessary for proper vascular and cardiac development, as demonstrated in mice homozygous for
a germline Hif1α-null allele, which is embryonically lethal due to cardiac and vascular defects (85, 132).
Furthermore, mice heterozygous for this allele demonstrate impaired vascular development and decreased
revascularization of injured or ischemic tissues (22). Cardiomyocyte-specific deletion of Hif1α in mice
results in decreased capillary density (69), whereas transgenic mice overexpressing Hif1α in the heart have
increased capillary density after myocardial infarction (78), demonstrating the importance of HIF-1α in the
response to cardiovascular injury. Similarly, homozygous Hif2α germline null mutations are embryonically
lethal and are associated with defects in vascular formation (34, 120, 159). Given the prominent role of
HIFs in cardiac development and maintenance of cardiac homeostasis, it is not surprising that several
studies have implicated regulators of HIF signaling in heart failure development (107, 134, 183).

In the pulmonary vasculature of PH models, HIF-1α plays a complex role but has been implicated in
pathogenic angiogenesis and smooth muscle cell proliferation (reviewed in Refs. 140, 146, 162, 172).
Similarly, HIF-2α in ECs has been implicated as a driver of pulmonary vascular remodeling (37, 76, 87).
Although studies of HIFs in the LV and pulmonary vasculature have greatly increased our understanding of

their roles in these compartments, the role of HIFs in the RV remains largely unexplored, leading to several
questions, including (but not limited to) the following. 1) Are HIFs necessary and sufficient to promote
angiogenesis in the RV? 2) Is activation of HIFs sufficient to delay the transition to maladaptive
remodeling? 3) What is the effect of acute vs. chronic HIF signaling in the RV? While hypoxia-induced
angiogenesis suggests a HIF-1α-mediated response in the RV (14, 84, 117, 151, 164), studies directly
manipulating the HIF signaling pathway have only begun. Given this pathway’s role in promoting
angiogenesis in other ischemic tissues, including the LV and the pulmonary vasculature, it is likely that, at
least acutely (84), HIFs are promoting angiogenesis in the RV. However, one should note that HIF-1α also
affects RV metabolism (14, 122, 151), thereby regulating RV adaptive and maladaptive responses
independently of angiogenesis and demonstrating that this pathway plays a role in regulating RV function
that is complex and multifaceted.

VEGF

Members of the VEGF family, comprising three main receptors (VEGFR1, VEGFR2, and VEGFR3) and
five ligands (VEGF-A, VEGF-B, VEGF-C, VEGF-D, and PIGF), are major regulators of EC function,
playing diverse and largely nonredundant roles in vascular homeostasis (23, 48, 173).

VEGF-A is the major ligand associated with stimulating angiogenesis during homeostasis and disease
through interaction with its receptor, VEGFR2 (Flk1), leading to the induction of pro-survival and
proangiogenic signaling (155, 187). VEGF-B binds primarily to VEGFR1 and prevents angiotensin II–

induced cardiac diastolic dysfunction (142) and facilitates fatty acid transport in vascular ECs (62). VEGF-
C, which signals through VEGFR2 and VEGFR3, activates endothelial tip cells and is necessary for
embryogenesis (165) and is also a key regulator in adult lymphangiogenesis (20). VEGF receptors are
critical for VEGF signaling. Germline deletion of Vegfr2 in mouse models is embryonically lethal due to
lack of vascular bed formation (143). Interestingly, VEGFR1 (Flt-1) and VEGFR2 exhibit an antagonistic
relationship, with VEGFR1 functioning as a decoy receptor to prevent activation of VEGFR2 (49). Along
those lines, germline deletion of Flt1 is embryonically lethal due to excessive proliferation of angioblasts
(49). Furthermore, a soluble, alternatively spliced variant of VEGFR1, s-Flt1, can repress VEGF signaling
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by sequestering VEGF, thus demonstrating another mechanism by which the activity of VEGFR2 can be
tightly controlled (77).

Interestingly, VEGF-A plasma levels are elevated in patients with severe angioobliterative PAH (44, 116,

138). Plexiform lesions and pulmonary ECs from the lungs of PAH patients also strongly express VEGF-A
and VEGFR2 (66, 156). However, whether VEGF-A is necessary for driving pulmonary vascular
remodeling has not been elucidated. Like HIF-1α, the role of VEGF signaling in PAH is complex, and
contradictory effects have been described (173). These differences are likely due to context- and time-
dependent effects. For example, while VEGF signaling in general is thought to be a major contributor to
PAH development (31, 156, 161), VEGFR2 blockade with Su5416 is used to induce experimental PH in
rodents (32, 110, 156).

In the RV, VEGF-A has frequently, but not always, been reported as upregulated in animal models with
adaptive RV remodeling (14, 43, 117, 124, 151) and decreased in animal models with RV failure (14, 15,
122), paralleling the decrease in capillarization shown in RV failure (14, 15, 43, 122, 151). In the rat
Su546/hypoxia (SuHx) model of PH, treatment with the adrenergic receptor blocker carvedilol was
associated with increased RV VEGF-A expression and RV capillarization (15). Recently, in the same
model, it was shown that the antioxidant defense system, heme oxygenase-1, upregulated VEGF-A and
increased RV capillarization (14). However, a direct causative link between decreased VEGF expression
and capillary rarefaction has not yet been established. On the other hand, it was shown in RVs from patients
with decompensated RV function that VEGF-A and VEGFR2 were not decreased compared with

compensated RVs (124). Instead, it was shown that the capillary rarefaction observed in the decompensated
RVs was due to upregulation of Sprouty-related EVH1 domain-containing protein-1 (SPRED-1), an
inhibitor of the VEGF downstream target phospho-ERK1/2 (p42/44 MAPK) (124). This resulted in
impaired angiogenic activity in cardiac ECs isolated from decompensated human RVs, which could be
chemically and biologically rescued by inhibiting SPRED-1 (124). Together, these observations link VEGF
signaling to angiogenesis in the RV. However, further study defining the role of VEGF signaling in
adaptive and maladaptive remodeling in the RV is still needed. Furthermore, the role of other VEGF family
members (e.g., VEGF-B), has not yet been studied in the RV.

Apelin and Elabela/Toddler

Apelin is a secreted peptide expressed in the vasculature and heart that exerts its effects via the G protein-
coupled apelin receptor (APLNR) (6, 79–82, 91). Apelin and APLNR play a critical role in cardiac
development (79, 86), angiogenesis (94, 182), pro-survival signaling (4), nitric oxide-dependent
vasodilation (186), and inotropic signaling (153). Important for angiogenesis, apelin is expressed in tip and
stalk cells, while APLNR is expressed only in stalk cells (94). APLNR is purported to play a role in
vasculogenesis and is strongly expressed in circulating endothelial progenitor cells (157). Both hypoxia and
VEGF-A induce the expression of APLNR in vascular ECs (94, 145), suggesting significant cross-talk
between hypoxia, VEGF signaling, and apelin signaling.

Several lines of evidence suggest a role for apelin in PAH (reviewed in Refs. 6, 80) and cardiovascular

disease (reviewed in Refs. 38, 72, 73). For example, apelin-null mice exhibit worsening PH (26), and
plasma apelin levels are decreased in PAH patients (26, 55). Furthermore, treatment with APLNR ligand
attenuates PH in multiple animal models (4, 46, 47). Finally, hypoxic mice infused with apelin exhibit
increased cardiac output (4). Together, these data make a strong case for targeting this pathway
therapeutically in cardiopulmonary diseases.

Despite the reported protective effects of apelin in PH, very little is known about its effects in the RV. It
was reported in two experimental models of PH of adaptive RV remodeling [chronic hypoxia and
pulmonary artery banding (PAB) without RV failure] that RV apelin mRNA and protein expression is
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increased (43). On the other hand, in models of maladaptive RV remodeling (SuHx, PAB with copper-
depleted diet), apelin protein was decreased (43). Our group has recently shown that apelin mRNA is
decreased in RVs from male and female SuHx-PH rats and that this decrease was more pronounced in male

animals (52). These effects were linked to the female sex steroid 17β-estradiol (E ), as ovariectomy (OVX)

decreased the level of apelin in female RVs to the same level found in male RVs, whereas E  repletion in

OVX females restored apelin levels (52). Interestingly, the increase in apelin abundance in intact females
and E -replete OVX females was associated with an increase in RV capillary density (unpublished data),

suggesting that E  and apelin have proangiogenic effects in the RV. Combined, these data suggest a role for

apelin in modifying angiogenic responses in the RV. However, the specific mechanisms of apelin-mediated
signaling responses in RV vascular homeostasis and adaptive as well as maladaptive remodeling are
unknown. This is currently under investigation in our laboratory.

In addition to apelin, Elabela/Toddler is an endogenous ligand of APLNR and is strongly expressed in the
pulmonary and cardiac vasculature. For a more in-depth overview of this signaling pathway, we refer the
reader to several excellent reviews (28, 29, 180). Recently, exogenous treatment with Elabela/Toddler and
apelin were shown to have significant beneficial effects on the pulmonary vasculature and RV function in a
monocrotaline rat model of PH, reducing RV systolic pressure, RVH, and pulmonary vascular remodeling
(181). PAH patients also exhibited decreased Elabela/Toddler expression in the pulmonary vasculature, LV,
and coronary arteries (181). However, as with apelin, the effects of Elabela/Toddler signaling on the RV
vasculature remain unknown. Taken together, these data make a compelling case for apelin/APLNR and
Elabela/Toddler/APLNR pathways as clinically promising targets in both the pulmonary vasculature and
RV in PH.

MicroRNAs

Evidence suggesting the epigenetic control of angiogenesis has been accumulating, particularly through
noncoding microRNAs (miRNAs), which induce messenger RNA degradation or block translation (21).
Since they target multiple genes rapidly, miRNAs are well positioned to regulate complex processes such

as angiogenesis (30, 67, 92, 177). ECs express several miRNAs that are induced by hypoxia or VEGF
during adaptive remodeling or acute ischemia (111, 135). Most of those stimulate angiogenesis by
repressing angiostatic pathways and stimulating proangiogenic cascades (111). For example, expression of
miR-126 is induced by the mechanosensitive transcription factor KLF2A and integrates the
mechanosensory stimulus of blood flow (109). Furthermore, this miRNA was shown to play a major role in
the transition from adaptive RV remodeling to maladaptive remodeling in PAH (124). Likewise, in
monocrotaline PH rats with RV failure, downregulation of miR-208 lead to upregulation and activation of
the complex mediator of transcription 13/nuclear receptor corepressor 1 axis and subsequently the
inhibition of its target MEF2C (119). Although this mechanism was demonstrated in RV cardiomyocytes,
MEF2C is also expressed in ECs, and the targeted deletion of Mef2c in mice is embryonically lethal due to
cardiovascular defects and severe vascular abnormalities, making this axis potentially relevant for the RV
vasculature (93, 96). Building on the idea that miRNAs are epigenetic regulators of angiogenesis, studies
profiling miRNA expression patterns during progressive RV failure identified four RV-specific miRNAs
that were upregulated in RV failure: miR-34a, −28, −93, and −148a (126, 127). These miRNAs were
associated with DNA repair impediment, oxidant damage, and downregulation of proangiogenic regulatory
networks (127, 154). In summary, several miRNAs seem to offer significant pro- or antiangiogenic

potential and could rapidly affect adaptive and maladaptive signaling networks in the RV (19, 158). More
work is needed to understand the role of miRNAs in RV angiogenesis, adaptive remodeling and failure.

Structural and Molecular Studies of Microvascular Function in Adaptive RVH

Although early studies did not always specifically assess RV function, they provided important information
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about angiogenic responses in the RV during adaptive remodeling (studies investigating angiogenesis in
adaptive RVH are summarized in Table 1). For example, in a chronic rat hypoxia model of PH (10% FI ),

VEGF mRNA expression was potently induced within 12 h after hypoxia exposure in both the RV and LV
(117). After prolonged exposure to hypoxia, VEGF mRNA remained elevated in the RV, but not in the LV,
peaking at 30 days. This was associated with an increased number of capillaries per RV myocyte in rats
exposed to 30 days of hypoxia (117). In another rat model of chronic hypoxia (simulated altitude of 3,500
m for 4 wk), there was an increase of capillary density and decrease of muscle fiber density and fiber-to-
capillary ratio in RVs but not in LVs (163). Similarly, our group previously demonstrated increased
capillary-to-myocyte ratio in RVs from chronically hypoxic rats (88). Another early study assessed the gene
expression profile in chronically hypoxic mouse RVs (12% FI  for 4 wk). To directly test the role of

HIF-1α in this model, Bohuslavova et al. (16) analyzed a panel of eleven hypoxia-responsive candidate
genes, six of which were HIF-1α target genes. Of those six HIF-1α target genes, two are known regulators

of angiogenesis: Vegfa and Flt1. In Hif1a partially deficient hypoxic male mice, the authors found that
Vegfa mRNA was the only significantly decreased HIF1-α target gene in the RV (16). This suggests that
VEGF is highly dependent on HIF-α mediated induction under chronic hypoxic conditions in the RV. And
finally, a study using the rat monocrotaline model of PH (60 mg/kg for 3 wk) demonstrated an increase in
RV capillary proliferation relative to muscle fibers (83). Together, these data lead to the observation that
early RV adaptive responses are characterized by increased capillarization driven by early hypoxic
responses. Whether these responses are driven primarily by VEGF-A and HIF-1α, or if there are also HIF-
independent mechanisms at play, is currently not known.

More recent studies revealed that when following the monocrotaline rat model over time (60 mg/kg for 2–6
wk), compensated RVs exhibit increased HIF-1α activity [demonstrated by increased nuclear localization
and upregulation of the target protein glucose transporter 1 (Glut1)] as well as increased expression of the
proangiogenic regulators VEGF-A and stromal cell-derived factor 1 (SDF1) (151). This was associated
with increased RV capillarization, with lectin fluorescence and von Willebrand factor expression peaking at
3 wk after monocrotaline injection. Another study used a stereological analysis approach to determine
capillarization in an adaptive mouse model of PH (10% FI  for 3 wk) (84). This study found correlations

in RV angiogenesis, RVH, and RV function (assessed by echocardiography and pressure-volume loop
measurement). In fact, within 7 days of hypoxia exposure, RV-specific increases in capillary length, surface
area, and volume were detected and found to be accompanied by increased RV EC proliferation.
Interestingly, whereas continued exposure to hypoxia led to a further increase in hypertrophy, this did not
lead to an additional increase in angiogenesis. Finally, while Vegf-a and Vegf-b mRNA were not
significantly changed, VEGF-A protein was significantly increased after 3 wk of hypoxia. To better
understand the transcriptome that might be mediating RV adaptive responses, Drake et al. (43) performed
gene expression microarray analyses in two models of RV adaptive remodeling (chronic hypoxia and PAB).
Signaling networks upregulated in adaptive RV remodeling were associated with growth and cellular
maintenance, angiogenesis, and energy metabolism. Of particular interest, apelin mRNA and protein were
significantly increased in both models, whereas VEGF and insulin-like growth factor 1 (IGF-1) mRNA
were significantly increased in at least one model of compensated RVH. Finally, in a PAB model of
compensated RVH (6 wk of banding), RV function (evaluated by echocardiography) was preserved,
accompanied by a trend for increased Vegf-a mRNA and by significantly upregulated HIF-1α protein and

activity (evaluated by nuclear localization) (14). However, neither capillary volume nor density was
significantly affected.

However, there are also studies in which RV adaptive remodeling was not associated with increased
vascular density or proangiogenic signaling. For example, in a model of stable PH (40 mg/kg
monocrotaline; defined as preserved cardiac output assessed by echocardiography), RV remodeling was
characterized by decreased capillarization (131). Additionally, in a rat PAB study (PAB for 4 wk, defined as

O2
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adaptive remodeling by less severe ischemia, and preserved TAPSE), whereas there was a trend for
increased VEGF-A, there was a significant decrease RV microvasculature (measured by CD31 staining)
and blood flow compared with controls (122).

One published study evaluated vascularization and EC function in human RVs and isolated human RV ECs.
That study demonstrated that human ECs isolated from compensated human RVs displayed increased
angiogenic potential compared with control human RVs (124). Furthermore, it was shown that antagomir-
mediated downregulation of miR-126 decreased angiogenesis and tube formation in compensated human
RV ECs.

Taken together, these data indicate an increase in vascularization and proangiogenesis signaling in several
models of adaptive RVH. Data are most consistent and most convincing for chronic hypoxia models,
whereas data for monocrotaline or PAB models are somewhat more mixed. This may either indicate that
hypoxia is a particularly potent angiogenesis stimulator in the RV, or reflect inconsistencies in models
and/or experimental approaches [e.g., tightness of band and duration of banding in the PAB model or
differences in the metabolization of monocrotaline between rat strains (58, 115)]. Finally, data from human
RV tissue and isolated RV ECs suggest that angiogenesis and EC function are maintained in cases of
adaptive RV remodeling.

Structural and Molecular Studies of Microvascular Function in Maladaptive RVH

Studies in models of maladaptive RVH generally demonstrate impairments in angiogenesis and
microvascular function (summarized in Table 2). However, discrepancies between studies exist. For
example, one study using a monocrotaline model of RV failure (60 mg/kg) found RV VEGF mRNA
expression decreased by 50% in the RV after 30 days; however, the number of capillaries per RV myocyte

was unchanged (117). Conversely, other studies found that monocrotaline (60 mg/kg with a 4-wk
experimental period) decreased RV capillary density vs. controls (131), decreased VEGF-A abundance, and
RV capillarization compared with controls or PAB rats (122), and reduced coronary blood flow compared
with control rats (122). In another study, Sutendra et al. (151) investigated the mechanism of adaptive and
maladaptive RV remodeling using the monocrotaline model (60 mg/kg and duration of 5–6 wk). Those
authors defined decompensated (maladaptive) remodeling as the point at which RV systolic pressure and
cardiac output started decreasing. Interestingly, decompensated RVs were characterized by an inhibition of
HIF-1α, activation of p53, and a decrease in angiogenic proteins (VEGF-A, SDF-1) and angiogenesis
(evaluated by lectin stain), compared with compensated RVs but, importantly, not controls.

Despite this progress in defining maladaptive RV remodeling, studies have only begun to assess the
mechanisms that might be driving the transition from adaptive to maladaptive remodeling. For instance, the
previously mentioned study by Potus et al., (124) using a monocrotaline model (60 mg/kg), monitored the
development of PH weekly by echocardiography. Between 3 and 4 wk, RV size and RV end-diastolic
pressure increased, while TAPSE, stroke volume, and cardiac output significantly decreased. This stage
was defined as decompensated RVH. It was observed that in decompensated RVs miR-126 was
downregulated, associated with increased expression of SPRED-1, an inhibitor of the VEGF target

ERK1/2. The authors concluded that upregulation of SPRED-1 in decompensated RVs inhibits VEGF
signaling (despite an increase in VEGF protein), thus inhibiting angiogenesis. Interestingly, treatment with
a miR-126 mimic increased angiogenesis in vitro and increased vascular density in vivo.

A study using different rat models of RV failure [SuHx (Su5416 injection followed by 4 wk of 10% O  and

2 wk of 21% O ) or PAB with dietary copper depletion to inhibit HIF-1α] noted capillary rarefaction,

associated with decreased mRNA of the angiogenic factors VEGF-A, IGF-1, apelin, and angiopoietin-1
compared with adaptive models (chronic hypoxia and PAB). Interestingly, apelin and IGF-1 protein
expression, but not VEGF-A or angiopoietin-1, were decreased compared with animals with adaptive RV

2

2
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remodeling (43). This study defined decompensation by reduced cardiac output, echo measurements of
decreased RV function (e.g., TAPSE), septal shift, presence of pericardial effusion, as well as loss of
capillaries and presence of RV fibrosis. Similarly, our group found capillary numbers were decreased in the

SuHx rat model vs. controls (Fig. 3). Subsequent studies found that SuHx-RVs exhibited decreased
capillary density as well as VEGF-A mRNA and protein, whereas HIF-1α stabilization and nuclear
accumulation remained intact, suggesting an uncoupling of VEGF-A and HIF-1α (14). This study also
found that the RV vasculature was morphologically heterogeneous, with vessels being narrow and pruned
in some areas and dilated and irregularly shaped in other areas. Interestingly, stimulation of heme
oxygenase-1 with dietary supplementation with protandim prevented capillary loss, recoupled VEFG-A and
HIF-1α, and preserved RV function. Finally, in another study, upregulation of VEGF-A and reduction in
capillary rarefaction were achieved in SuHx rats after treatment with the β-adrenergic receptor antagonist
carvedilol, accompanied by improved RV function (15).

Studies using human RV tissues are rare (boldface text in Tables 1 and 2). Initial studies in human PAH
RVs demonstrated that the myocardial tissue of 10 PAH patients exhibited decreased capillary density
compared with RV tissue from patients with myocardial infarction (131). Another study reported RV
myocyte hypertrophy and capillary rarefaction in patients with scleroderma-associated PAH (122). Potus et
al. studied RV free wall tissues from humans with normal RVs, compensated RVH, and PAH patients with
decompensated RV failure and found that patients with decompensated RV failure exhibited decreased
capillary density, functionally impaired ECs (defined as inability to form networks in vitro), and decreased

miR-126 expression compared with controls and compensated RVs (124). Although these studies suggest a
decrease in vascular density in human RV failure, a recent study utilizing stereological approaches in
human RV tissue from PAH patients (n = 4), found that RV volume and length were actually increased in
PAH vs. control (n = 3) tissue (61). These findings are important, as they are the first to use unbiased
stereological approaches in human RV; however, it should be noted that clinical parameters from these
patients were not reported, ischemia tissue was not detected in the RVs, and the sample size was limited,
making it challenging to determine whether these RVs were decompensated at the time of patient death.

Taken together, the majority of these studies demonstrate that vascular density decreased and angiogenesis
is impaired in maladaptive RVH. The current body of evidence suggests that proangiogenic mediators such
as VEGF or miR-126 are either decreased or insufficiently increased, or are inhibited in the setting of
maladaptive RVH. However, we have only started to identify the drivers of these processes. Furthermore,
not all studies demonstrate these findings. Differences in techniques (e.g., two-dimensional analysis vs.
unbiased stereology), control groups, animal models used (see Table 3 for an overview), animal strains,
disease stage, and RV region (e.g., apex vs. outflow tract) may explain such discrepancies in results.
Clearly, further study of the role of angiogenesis in adaptive and maladaptive RV remodeling while paying
meticulous attention to these factors is needed.

POTENTIAL ROLE OF PROANGIOGENIC THERAPEUTIC INTERVENTIONS FOR
THE FAILING RV

Although the role of angiogenesis in adaptive vs. maladaptive remodeling of the RV is not yet fully
understood, preliminary evidence exists that regulation of angiogenesis may be a potential therapeutic
intervention to attenuate RV failure. Treatment strategies shown to be associated with increased RV
vascularization and/or increased proangiogenic mediator expression include carvedilol (associated with

increased VEGF-A protein and RV vascularization) (15), the soy phytoestrogen genistein (associated with
increased RV vascularization) (100), steroid dehydroepiandrosterone (DHEA; associated with prevention of
capillary rarefaction) (5), exercise training (associated with increased RV capillarization in a model of
stable PH but not progressive PH) (64), protandim (associated with prevention of capillary loss through
regulation of heme oxygenase-1) (14) or prostacyclin therapy (associated with an increase in capillary-to-
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cardiomyocyte ratio in a rat model of flow-associated PH) (168). However, since these strategies were
pursued in PH models where they also attenuated pulmonary vascular remodeling, it is unclear whether the
beneficial effects on the RV vasculature were due to a direct effect on the RV or merely a consequence of

RV afterload reduction.

As mentioned above, treatment with miR-126 mimic restored RV vascularization and RV function in a rat
monocrotaline model of PH (124). Since these effects occurred without any significant changes in the
pulmonary vasculature, and since miR-126 enhances the angiogenic potential of ECs isolated from human
decompensated RVs, it is likely that miR-126 exerts direct protective effects on the RV vasculature.

A variety of proangiogenic interventions have been shown to be beneficial in LV failure (reviewed in Refs.
112, 178). However, it is unknown whether such strategies would also be beneficial in the failing RV. It
remains to be determined whether proangiogenic strategies are able to delay the progression from adaptive
to maladaptive RVH. Another important question is how therapeutic approaches aimed at enhancing
angiogenesis in the RV would affect the pulmonary vasculature in PAH. This is an important point, since
dysregulated and possibly exaggerated angiogenesis has been linked to PAH pathogenesis (39, 167, 173).

KNOWLEDGE GAPS AND PATHWAYS FORWARD

Despite recent progress, several knowledge gaps remain. A summary of the current knowledge gaps in RV
angiogenesis is provided in Table 4. Most of our knowledge regarding cardiomyocyte hypertrophy,
remodeling, and angiogenesis comes from models of LV failure (112). We currently do not yet know if
angiogenesis is necessary or sufficient for myocyte hypertrophy in the RV, as it is in the LV (112).
Expanding on this, we currently do not know for sure if decreased angiogenesis is contributing to
maladaptive remodeling. Recent studies have begun to link impaired angiogenesis to RV decompensation
(14, 43, 124), but a clear causal relationship has yet to be established. To address this knowledge gap, we

propose a move from studies using loss of RV capillaries as a descriptive characteristic of RV failure to
mechanistic studies with the goal of altering angiogenesis to determine its role in the progression to RV
failure.

A better characterization of the molecular regulators of RV angiogenesis is needed. Studies have only
begun to identify such mechanisms, and further mechanistic studies are needed to identify upstream
regulators and downstream targets responsible for regulating beneficial and detrimental angiogenic
processes in the RV in health and disease. Mechanistic studies, including both unbiased screens for
angiogenic and angiostatic mediators and hypothesis-driven assessment of specific regulatory candidates
during multiple stages of RV remodeling will advance the field. Identification of plasma or imaging
biomarkers reflecting angiogenic signaling in the RV would be of great value.

A particular problem in the field is that the RV functional stage is not fully characterized in many studies
and that the terms “adaptive” and “maladaptive” are used differently by different investigators, making
comparisons between studies challenging. A uniform definition of adaptive and maladaptive RVH is
needed. This inconsistency is further confounded by differences in animal models and animal strains (
Table 3). A “best” animal model of RV failure probably does not exist. Rather, the model used should be a
function of the experimental question asked. For example, SuHx-PH shares features of human PAH and RV

failure, but interventions aimed at modulating angiogenesis in the RV may also affect the pulmonary
vasculature (and thus RV afterload). PAB avoids this problem, but the RV remodeling in this model is not
always maladaptive. Therefore, whenever possible, results should be corroborated in more than one animal
model. Finally, thorough RV phenotyping in preclinical (via echo and pressure-volume loop assessment)
and clinical (via serial echos or MRI throughout the patient’s disease progression as well as right heart
catheterization) studies would be a step forward.
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Building on the challenge of incomplete RV phenotyping, another important knowledge gap is the absence
of RV vascular assessment in preclinical and clinical interventions targeting the pulmonary vasculature.
This is important, since RV function and RV vascular health may be negatively affected by interventions

targeting the pulmonary vasculature in PAH. An example is the use of use of histone deacetylase (HDAC)
inhibitors in PAH. Several HDAC inhibitors have been shown to be beneficial for the pulmonary
vasculature in models of PAH (18, 25, 185). On the other hand, the HDAC inhibitors trichostatin A and
valproic acid exerted negative effects on the RV vasculature (13). Specifically, in a 4-wk PAB rat model,
animals treated with either agent for 2 wk exhibited decreased RV capillarization as well as decreased
VEGF-A and angiopoietin-1 expression (13). Other studies of HDAC inhibition in experimental PH did not
evaluate RV capillarization (18, 25, 40, 185). Careful evaluation of any potential cardiotoxic effects of
HDAC inhibitors is therefore warranted before use in human PH patients. However, it should be noted that
effects of HDAC inhibitors are highly class specific and that results from one class cannot be extrapolated
to other classes or more selective HDAC inhibitors. Similarly, endothelin-1 blockade in PAH may be
associated with negative effects on RV inotropic signaling (106). Future studies will need to evaluate
whether and how the pulmonary vasculature can be safely targeted in PAH without negatively affecting the
RV vasculature (and vice versa). Experts have suggested that RV function should be closely monitored in
clinical trials of PAH drugs (7).

One important point of consideration is that RV angiogenesis has been evaluated in multiple animal models
of PH using traditional two-dimensional approaches to quantify capillary counts. This approach can lead to

underestimation of effective capillary length and surface area and unintentional sampling bias and has led
to inconsistent findings (75, 105). On the other hand, data reporting capillary rarefaction in the failing RV
obtained from several laboratories are consistent and are in line with data reporting vascular rarefaction in
LV hypertrophy. Further studies are needed to define the “best” way of assessing RV vascularization in
tissues. Such studies should be accompanied by the development of noninvasive imaging markers of RV
vascularization (e.g., via CT, MRI, or PET) that could be used in animal studies as well as clinical studies.

Last, studies employing human RV tissue are rare. More investigations using clinically well-characterized
human RV tissues, in particular from patients with adaptive remodeling, are clearly needed and would
advance the field. Additionally, the development of new technologies such as the “heart on a chip” (to
study RV EC-cardiomyocyte interactions) and cardiomyocytes or ECs differentiated from human PH-
induced pluripotent stem cells (to screen drugs and determine cytotoxicity) may help overcome limitations
of RV tissue rarity and allow for greater molecular and biochemical characterization of the cell types
comprising the RV.

CONCLUSION

RV failure is a major determinant of morbidity and mortality in various types of PH. An important clinical
need exists to identify the mechanisms that lead to RV failure development in PH and that facilitate the
transition from adaptive to maladaptive RV remodeling. Angiogenesis has emerged as a clinically relevant
modulator of RV failure development. The current body of evidence suggests that impaired angiogenesis
and vascular rarefaction are major drivers of RV decompensation. However, we are only beginning to

understand the underlying mechanisms leading to EC dysfunction and vascular rarefaction in the failing
RV. Further studies are needed to identify regulators and downstream targets of angiogenic modulators in
the RV. Ultimately, such investigations may lead to the development of novel therapeutic approaches that
maintain or restore vascular health in the pressure-overloaded RV, thus enhancing RV function and
improving patient outcomes.
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Fig. 1.

Right ventricle (RV) vasculature during transition from adaptive to maladaptive RV remodeling. Current evidence
associates RV adaptive remodeling (characterized by maintained RV contractile function) with increased proangiogenic

signaling and capillary density, whereas the transition to maladaptive remodeling (characterized by decreased RV

contractile function) is marked by RV endothelial cell dysfunction and capillary rarefaction. In addition to capillary
rarefaction, the transition from adaptive to maladaptive RV remodeling is characterized by decreased calcium handling,

mitochondrial function, and sarcomere organization and increased hypertrophy, ischemia, inflammation, fibrosis, oxidative

stress, apoptosis, and metabolic dysfunction. The exact contribution of each of these molecular processes is currently
unknown and remains to be determined. Functionally, this process is characterized by worsening cardiac output and

increasing RV dilation with increasing wall stress. Functional/structural changes shown in red font; biochemical/molecular

changes shown in blue font.
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Table 1.

Studies evaluating the RV vasculature in adaptive RV hypertrophy
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Reference Adaptive

Model(s)

How Was Adaptive

Remodeling Defined?

RV Function

Measured by

Main Results

Partovian et

al. (117)

Rats: Hx (10%

FI , 1–30

days)

DNE RVSP, RVH, RV

function by right heart

catheterization

↑VEGF mRNA at 12 hrs,

peaking at 30 days,

↑capillary to myocyte ratio

Turek et al.

(163)

Rats: Hx

(simulated

elevation at

3,500 m, 4 wk)

DNE RVH ↑Capillary density

Lahm et al.

(88)

Rats: Hx (10%

FI , 3 wk)

DNE RVSP, RVH RV

function by

echocardiograph, right

heart catheterization,

exercise capacity

↑Capillary to myocyte

ratio

Bohuslavovia

et al. (16)

Hif1α  mice:

Hx (12% FI ,

4 wk)

DNE RVSP, RVH, RV

function by right heart

catheterization

↓VEGF

Kobayashi et

al. (83)

Rats: MCT (60

mg/kg, 3 wk)

DNE DNE ↑RV capillarization

relative to muscle fibers

Sutendra et al.

(151)

Rats: MCT (60

mg/kg, 3–4 wk)

RVH, maintained cardiac

output and RVSP

RVSP, RVH, RV

function by

echocardiography, right

heart catheterization

↑HIF1 nuclear

localization/activity

↑VEGF-A, ↑SDF1↑RV

capillarization

Kolb et al.

(84)

Mice: Hx (10%

FI , 7 days-3

wk)

RVH, preserved RV

function (ie contractility,

PA-RV coupling)

RVH Stereological assessment

RV function and

hemodynamics by

pressure-volume loops

↑RV length, ↑volume, and

↑surface area at 7 days

↑RV EC proliferation

↑VEGFA protein at 3 wk

Drake et al.

(43)

Rats: Hx (10%

FI , 6 wk)

Preserved cardiac output,

TAPSE,

preservation/increase of

capillaries, absence of

fibrosis

DNE Microarray analysis

revealed pathways

associated with cell

maturation, angiogenesis,

and energy metabolism.

Rats: PAB (6

wk)

     ↑Apelin mRNA

and protein in Hx, PAB

     ↑VEGF mRNA

in Hx

     ↑IGF1 mRNA

in Hx, PAB

O2

O2

+/−

O2

O2

O2
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Reference Adaptive

Model(s)

How Was Adaptive

Remodeling Defined?

RV Function

Measured by

Main Results

Bogaard et al.

(14)

Rats: PAB (6

wk)

RVH, preserved cardiac

output, TAPSE

RVSP, RVH, RV

function by

echocardiography,

pressure-volume loops,

thermodilution

↑HIF-1 nuclear

accumulation

Ruiter et al.

(131)

Rats: MCT (40

mg/kg, 6 wk)

Preserved cardiac output RVSP, RVH, RV

function by right heart

catheterization,

endurance testing and

echocardiography

↓Capillarization

Piao et al.

(122)

Rats: PAB (4

wk)

RVH, preserved function

(TAPSE), less severe

ischemia

RVSP, RVH RV

function by

echocardiography, right

heart catheterization

thermodilution,

Langendorff

↓RV microvasculature

Potus et al.

(124)

Rats: MCT (60

mg/kg, 2–3 wk)

Rats: RVH, ↑RVSP, slight

↓TAPSE, preserved stroke

volume, cardiac output,

and RV end-diastolic

pressure

Rats: RVSP, RVH, RV

function by pressure-

volume loops,

echocardiograph,

endurance testing

Trend for ↑capillary

density vs controls

ECs isolated

from Human

compensated

RVs

Humans: RVH, absence of

LV hypertrophy, preserved

TAPSE

Humans:

Echocardiography

↑Tube

formation/angiogenic

potential mediated through

mIR-126

Handoko et

al. (64)

Rats: MCT (40

mg/kg, 6 wk-

last 4 wk

exercise

training)

Preserved cardiac output RVSP, RVH, RV

function by right heart

catheterization,

endurance testing and

echocardiography

Exercise training

↑capillarization

Bogaard et al.

(13)

Rats: PAB (4

wk + 2 wk TSA

or VPA)

RVH, ↑RVSP, preserved

cardiac output, TAPSE

RVSP, RVH, RV

function by

echocardiography,

pressure-volume loops

HDAC inhibition ↓RV

capillarization, ↓VEGF,

↓Ang1

Open in a separate window

Studies using human tissue are in boldface. Ang1, angiopoietin-1; DNE, did not evaluate adaptive vs. malaptive
remodeling; ↑, increase; ↓, decrease; EC, endothelial cell; HIF1, hypoxia-inducible factor 1; Hif1α , Hif1α

heterozygous knockout mouse; Hx, Chronic hypoxia; IGF-1, insulin-like growth factor 1; MCT, monocrotaline; PAB,
pulmonary artery banding; PABCu , pulmonary artery banding + copper-depleted diet; RVH, right ventricular

hypertrophy; RVSP, right ventricular systolic pressure; SDF1, stromal derived factor 1; SuHx, Sugen5416 + hypoxia;
TAPSE, tricuspid annular plane systolic excursion; TSA, trichostatin A; VEGF, vascular endothelial growth factor;
VPA, valproic acid.

+/−

2+
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Table 2.

Studies evaluating RV vasculature in maladaptive RV hypertrophy
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Reference Maladaptive

Model(s)

How Was Maladaptive

Remodeling Defined?

RV Parameters Evaluated Main Results

Partovian

et al. (117)

Rats: MCT (60

mg/kg, 1–30 days)

DNE RVSP, RVH, RV function by

right heart catheterization

↓RV VEGF mRNA

Ruiter et

al. (131)

Rats: MCT (60

mg/kg, 4 wk)

↓cardiac output, ↓body

weight

RVSP, RVH, RV function by

right heart catheterization,

endurance testing and

echocardiography

↓RV capillary

density

Human PAH RVs

Piao et al.

(122)

Rats: MCT (60

mg/kg, 4 wk)

RVH, more severe

ischemia, autonomic

remodeling, ↓TAPSE,

↓RV dysfunction

compared with PAB

RVSP, RVH RV function by

echocardiography, right

heart catheterization

thermodilution, exercise

capacity Contractile function

by Langendorff

↓VEGFA

Human PAH and

Scleroderma-PAH

RVs

↓RV capillarization

↓Coronary blood

flow

↓Capillarization in

human scleroderma-

PAH RVs

Sutendra et

al. (151)

Rats: MCT (60

mg/kg, 5–6 wk)

↓RVSP and ↓cardiac

output but ↑mean

pulmonary artery

pressure, continued RV

remodeling, development

of ascites, weight loss,

fluid retention

RVH, RVSP, RV function by

right heart catheterization,

echocardiograph

Inhibition of HIF1

Activation of p53

↓VEGFA, ↓SDF1

↓RV angiogenesis

compared with

compensated RVs

Potus et al.

(124)

Rats: MCT (60

mg/kg, 3–4 wk)

Rats-↑RV size, ↑RV end-

diastolic pressure

increased, ↓TAPSE,

↓stroke volume, and

↓cardiac output

Rats-RVSP, RVH, RV

function by pressure-volume

loops, echocardiograph,

endurance testing Humans-

Echocardiography, right

heart catheterization

↓mIR-126

Human

decompensated

RVs and RV ECs

↓SPRED1

↓ RV angiogenesis

↓Capillary density

Humans-↓TAPSE, RV

dilation

Functionally

impaired ECs

Drake et

al. (43)

Rats: SuHx ↓cardiac output,

↓TAPSE, paradoxical

movement of

interventricular septum,

pericardial fluid,

↓capillaries, ↑fibrosis

DNE ↓Apelin protein

Rats: PABCu  (6

wk)

↓VEGF-A, IGF1,

apelin and Ang1

mRNA

Bogaard et

al. (14)

Rats: SuHx RVH, pericardial fluid,

paradox movement of

septum, RV dilation,

RVSP, RVH, RV function by

echocardiography, pressure-

volume loops,

↓Capillary density

↓VEGFA mRNA and

protein

2+
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Reference Maladaptive

Model(s)

How Was Maladaptive

Remodeling Defined?

RV Parameters Evaluated Main Results

↓TAPSE, ↓cardiac output thermodilution Uncoupling of HIF1

and VEGF

Bogaard et

al. (15)

Rats: SuHx +

Carvedilol

RVH, pericardial fluid,

paradox movement of

septum, RV dilation,

↓TAPSE, ↓cardiac output

RVSP, RVH, RV function by

echocardiography, exercise

endurance, hemodynamic

assessment

Carvedilol treated

rats had ↑capillary

density

Graham et

al. (61)

Human PH RVs DNE DNE Stereological

assessment of human

revealed RVs had

↑capillary length and

volume

Matori et

al. (100)

Rats: MCT (60

mg/kg 30 days

+Genistein last

10days)

↓RV ejection fraction RVSP, RVH, RV function by

right heart catheterization,

echocardiograph

↓ RV capillarization

in MCT rats,

Genistein treatment

↑capillarization

Alzoubi et

al. (5)

Rats: SuHx + 5 wk

DHEA

↓TAPSE RVSP, RVH, RV function by

right heart catheterization,

echocardiograph

↓RV capillarization

in SuHx rats,

treatment with

DHEA ↑ RV

capillarization

↓Cardiac Index

Handoko

et al. (64)

Rats: MCT (60

mg/kg, last 4 wk

exercise training as

able)

↓cardiac output, RVSP, RVH, RV function by

right heart catheterization,

endurance testing and

echocardiography

Exercise training

↓capillarization

↓body weight

van Albada

(168)

Rats: aortocaval

shunt + MCT (60

mg/kg + iloprost or

aspirin for 30 days)

DNE Mean pulmonary artery

pressure, RVSP, RVH, RV

function by right heart

catheterization and

echocardiograph

MCT ↓capillary to

cardiomyocyte ratio

Prostacyclin

treatment ↑ capillary

to cardiomyocyte

ratio

Open in a separate window

Studies using human tissue are in boldface. Ang1, angiopoietin-1; DNE, did not evaluate adaptive vs. malaptive
remodeling; ↑, increase; ↓, decrease; DHEA, dehydroepiandrosterone; EC, endothelial cell; HIF1, hypoxia-inducible
factor 1; Hif1α , Hif1α heterozygous knockout mouse; Hx, chronic hypoxia; IGF1, insulin-like growth factor 1;

MCT, monocrotaline; PAB, pulmonary artery banding; PABCu2+, pulmonary artery banding + copper depleted diet;
RVH, right ventricular hypertrophy; RVSP, right ventricular systolic pressure; SDF1, stromal derived factor 1; SuHx,
Sugen5416 + hypoxia; TAPSE, tricuspid annular plane systolic excursion; TSA, trichostatin A; VEGF, vascular
endothelial growth factor; VPA, valproic acid.

+/−
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Fig. 2.

Simplified schematic of currently known pathways regulating angiogenesis in the right ventricle (RV). Proangiogenic

factors such as hypoxia or ischemia increase activation and/or abundance of proangiogenic mediators such as hypoxia-

inducible factors, VEGF, apelin, and micro-RNAs. Significant cross-talk exists between angiogenic pathways. For
example, hypoxia-inducible factors (HIFs) are master regulators that regulate the expression of other regulators to induce

angiogenesis during adaptive remodeling of the RV. However, vascular endothelial growth factor (VEGF), apelin, and

micro-RNAs are likely also activated independently of HIFs. Decreased or insufficient upregulation of proangiogenic
pathways, as well as defects in their downstream signaling pathways are purported to contribute to maladaptive RV

remodeling and decompensation.
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Fig. 3.

RV vascular rarefaction in Sugen5416 + Hypoxia- pulmonary hypertension (SuHx-PH) rats. A: immunofluorescence
overlay of WGA (wheat germ agglutinin, green, cardiomyocytes), Lectin Griffonia simplicifolia (red, endothelial cells)

and DAPI (blue, nuclei) stains in female normoxic control or SuHx-PH rats. B: capillaries were quantified from 4 fields

per animal; n = 4 animals /group. Images were taken at ×20 magnification; scale bars, 50 µm. Data are expressed as means
± SE *P < 0.05 vs. normoxic control. Note that this analysis used traditional 2-D analysis similar to previous studies in the

field.
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Table 3.

Commonly used animal models to assess RV hypertrophy and failure

Hypoxia PA Banding Monocrotaline Sugen/Hypoxia

Method used Exposure to FI

10% (or ½

atmosphere) for 3–5

wks

Suture or clip around

main PA

Subcutaneous injection

of alkaloid

monocrotaline (40–60

mg/kg, 2–6 wk)

Subcutaneous injection of

VEGFR2 antagonist

Su5416 + hypoxia (2–4

wks) + room air (≥2 wks)

Type of RV

remodeling

Adaptive Adaptive or

maladaptive

(depending on

tightness of band and

duration of banding)

In general, maladaptive

(may be adaptive in

early stages)

Maladaptive

Cardiac output Maintained or

slightly decreased

Maintained or

decreased (dependent

on tightness of band

and duration of

banding)

Decreased Decreased

Effect of

model on RV

ECs

Strong induction of

EC proliferation

and chronic hypoxia

responses

Increased shear-stress

signaling responses

due to changes in RV

load

Strong EC toxin, initial

injection likely induces

robust EC apoptosis

VEGFR2 inhibition, likely

preventing initial pro-

angiogenic response to

hypoxia

RV vascular

effects

Capillary

proliferation

Capillary volume and

density maintained or

slightly decreased

Vascular inflammation,

decreased capillary

density

Decreased capillary

volume and density

Pulmonary

vascular

effects

Yes No Yes Yes

Strains used Rats, Mice Rats Rats Rats

Factors

affecting

disease

phenotype

Sex, age, animal

strain, degree and

duration of hypoxia

Sex, age, animal

strain, tightness and

duration of banding

Sex, age, animal strain,

MCT dose and duration

of model

Sex, age, animal strain,

Su5416 vendor, duration of

model

Human

condition

modeled

Chronic hypoxia,

high altitude, some

aspects of chronic

lung disease

RV afterload increase

without pulmonary

vascular injury (e.g.,

pulmonary stenosis)

Inflammatory PAH

with RV dysfunction

PAH resulting from EC

injury

Animal models of RV hypertrophy and failure from References (1, 3, 14, 15, 42, 56–58, 60, 65, 89, 113, 114, 136, 144,
149, 156, 179). MCT, monocrotaline; PA, pulmonary artery; PAH, pulmonary arterial hypertension; PH, pulmonary
hypertension; RV, right ventricle; RVSP, right ventricular systolic pressure; VEGFR2, vascular endothelial growth
factor receptor 2; PH development is more pronounced in younger animals.

O2
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Table 4.

Key knowledge gaps in the assessment of angiogenesis in the RV

What are the molecular regulators of RV angiogenesis (proangiogenic and angiostatic)?

Is angiogenesis necessary and sufficient to induce RV cardiomyocyte hypertrophy?

Does decreased angiogenesis contribute to maladaptive remodeling in the RV?

How should we define adaptive remodeling in the RV?

How should we define maladaptive remodeling in the RV?

What methodological approach should we use to measure RV function vs failure?

What is the most accurate methodological approach to quantifying RV vascularization?

Are we introducing unintentional sampling bias into our traditional approaches to capillary density?

Does the use of different RV endothelial cell markers (CD31, von Willebrand factor, or lectin) between researchers

introduce bias to our quantification of capillaries?

How do interventions targeting the pulmonary vasculature affect the vasculature of the RV? How do interventions

targeting the RV vasculature affect the pulmonary vasculature? Can these compartments be targeted separately?

How can we maximize results from the study of RV angiogenesis in vitro? What can we learn from studies of RV

cardiomyocyte-endothelial cell interactions on a chip or from iPSC-cardiomyocytes from PH patients?

How can we maximize the collection of human RV tissue from well phenotyped patients and controls?

How can we best monitor RV vascular function in clinical studies?

RV, right ventricle.

Articles from American Journal of Physiology - Lung Cellular and Molecular Physiology are provided here courtesy

of American Physiological Society
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