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Abstract

High-grade serous carcinoma (HGSC) is the most common and deadliest ovarian cancer 

(OC) type, accounting for 70–80% of OC deaths. This high mortality is largely due to late 

diagnosis. Early detection is thus crucial to reduce mortality yet tumor pathogenesis of HGSC 

remains poorly understood making early detection exceedingly difficult. Faithfully and reliably 

representing the clinical nature of human HGSC, a recently-developed triple knockout (TKO) 

mouse model offers a unique opportunity to examine the entire disease spectrum of HGSC. 

Metabolic alternations were investigated by applying Ultra Performance Liquid Chromatography 

Mass Spectrometry (UPLC-MS) to serum samples collected from these mice at premalignant, 

early, and advanced stages of HGSC. This comprehensive analysis revealed a panel of 29 serum 

metabolites that distinguished mice with HGSC from controls and mice with uterine tumors with 

over 95% accuracy. Meanwhile, our panel could further distinguish early stage HGSC from 

controls with 100% accuracy, and from advanced stage HGSC with over 90% accuracy. Important 

identified metabolites included phospholipids, sphingomyelins, sterols, N-acyl taurine, 

oligopeptides, bilirubin, 2(3)-hydroxysebacic acids, uridine, N-acetylneuraminic acid, and 

pyrazine derivatives. Overall, our study provides insights into dysregulated metabolism associated 

with HGSC development and progression, and serves as a useful guide toward early detection.
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Introduction

Ovarian cancer (OC) is the most lethal gynecologic malignancy and the seventh most 

commonly diagnosed cancer among women in the world 1. The overall 5-year survival rate of OC 

is 47% 2. Due to the lack of specific symptoms, however, ovarian cancer is frequently diagnosed 

in late stages 3, 4 where 5-year survival rates are only 29% 2. Among all the OC subtypes, high-

grade serous carcinoma (HGSC), also known as high-grade serous ovarian cancer, is the most 

common and deadliest type, accounting for 70–80% of OC deaths 2, 5, 6. The high mortality of 

HGSC is largely attributable to advanced-stage diagnosis. Approximately 80% of HGSC cases are 

diagnosed at advanced stage (stage III or IV), in which the 5-year and 10-year survival rates are 

32.1% and 15%, respectively. Though only about 20% of HGSCs are detected at early stage (stage 

I or II), the early-stage diagnosis of HGSC dramatically raises patient survival to 71.4% (5-year) 

and 53% (10-year) 6, 7. Hence, early detection of HGSC would be crucial to improving OC patients’ 

survival. Unfortunately, the cellular origin and tumor pathogenesis of HGSC still remain poorly 

understood, making early detection difficult 5, 8, 9.

Presently, no diagnostic tests are available for detecting HGSC at an early stage among at-

risk patients, let alone screening tests for asymptomatic women in the general population 6, 10-13. 

The conventional strategy for OC risk evaluation includes trans-vaginal ultrasound and 

measurement of the serum tumor biomarker cancer antigen 125 (CA125) levels. However, this 

biomarker is of limited use as serum elevations of CA125 can be observed in a number of different 

conditions unrelated to OC 14. In addition to CA125, there have been several biomarker-based tests 

approved by FDA in ovarian cancer 15. However, these FDA-approved tests are neither diagnostic 

tests nor screening tests for OC. They are merely for referral purposes after ovarian tumor 

diagnosis is established. For example, the multivariate index assay OVA1 test is applied mainly to 
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evaluate the likelihood of malignancy in women presenting an ovarian adnexal mass prior to 

surgery 15, 16. 

Metabolomics has emerged as a promising tool for biomarker discovery leading to 

enhanced diagnostics as well as providing insight into the molecular underpinnings of disease 

biology 17.  Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the 

two techniques that have been most used for profiling metabolic alterations associated with OC in 

serum 18-23, plasma 24-27, urine 28-31, tissue 32-34, and ovarian cyst fluid 35. Dysregulation in 

nucleotide, histidine, tryptophan, mucin 28, phospholipid, and piperidine metabolic pathways 24, 

fatty acid β-oxidation, and glycolysis 33 have been associated with OC development and 

progression. The majority of these new metabolic markers, however, are non-HGSC related. 

One major impediment to HGSC early detection is the lack of knowledge of early tumor 

development and progression. To better understand the pathogenesis of ovarian cancer, we 

developed two mouse models of HGSC: (1) a double-knockout (DKO) mice (Dicer1 flox/flox Pten 

flox/flox Amhr2 cre/+) by inactivating the Dicer1 and Pten genes, and (2) a triple-mutant (TKO) mice 

(p53 LSL-R172H/+ Dicer1 flox/flox Pten flox/flox Amhr2 cre/+) by adding a p53 mutation (R172H), which is 

equivalent to human p53-R175H mutant, one of the frequent p53 mutations found in human OC 

36, 37. As p53 mutations are observed in almost all human HGSC cases (96%) 38, 39, the TKO mouse 

model would be genetically closer to human HGSC than the DKO model we previously studied 

20. These mice develop metastatic HGSC that faithfully model human HGSC phenotypically, 

histopathologically, and at the molecular level 37. Remarkably, HGSC from these mice reproduces 

the clinical metastasis of human HGSC in 100% of cases. In these models, HGSC originates and 

develops progressively in the fallopian tube, envelops the ovaries, and then aggressively 

metastasizes throughout the peritoneal cavity, including the omentum, diaphragm, mesentery, and 
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peritoneal membrane. These extensive metastases invariably induce massive ascites and inevitably 

kill the mice (100%). These mouse models therefore present a rare and unique opportunity to study 

the entire disease spectrum of HGSC—from inception to early progression to metastasis—

particularly early-stage progression.

Here, using a “deep” ultra performance liquid chromatography−mass spectrometry 

(UPLC-MS) approach, we characterize serum metabolic profiles of p53-Dicer1-Pten TKO mice 

at premalignant stage, early stage, and advanced stage of HGSC. Among the identified are 

metabolites closely associated with HGSC, which discriminate HGSC from controls and from 

uterine tumors (UT) with over 95% accuracy, sensitivity, and specificity. The same metabolite 

panel is able to further distinguish early-stage HGSC from advanced-stage HGSC with over 90% 

accuracy, sensitivity, and specificity, and distinguish early stage HGSC against control samples 

with 100% sensitivity, specificity, and accuracy, respectively. The biological relevance of the 

differential metabolites is discussed, gaining insights into disease development and progression. 

This 29-feature panel enables effective detection of early-stage as well as advanced-stage HGSCs, 

offering potential to diagnose HGSC at early stages.

Materials and Methods

Chemicals

LC-MS grade methanol, LC-MS grade isopropanol, LC-MS grade acetonitrile, LC-MS 

grade water, formic acid (99.5+%), ammonium acetate, and ammonium hydroxide were purchased 

from Fisher Chemical (Fisher Scientific International, Inc. Pittsburgh, PA, USA) and used to 

prepare mobile phases and solutions.

Mice and Serum Sampling
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In this study, triple-mutant (TKO) mice (p53 LSL-R172H/+ Dicer1 flox/flox Pten flox/flox Amhr2 

cre/+) were generated by mating p53 LSL-R172H/+ Dicer1 flox/flox Pten flox/flox female with Dicer1 flox/flox 

Pten flox/flox Amhr2 cre/+ male mice. Serum samples were collected from TKO mice at different 

stages of tumor progression: from premalignant stage to early stage to advanced stage. Precursor 

lesions are fallopian tubes at premalignant stage, when no tumors are yet present. TKO mice with 

precursor (i.e. premalignant stage) lesions in the fallopian tubes are referred to as “TKO-Pre”; 

TKO-ET (early tumor) are TKO mice with early-stage tumors in the fallopian tube without 

evidence of metastasis; TKO-AT (advanced-stage tumor) are TKO mice with ovarian and 

peritoneal metastases accompanied by ascites; and TKO-ctrl are control mice (p53 LSL-R172H/+ 

Dicer1 flox/flox Pten flox/flox), which have the same genetic background as TKO mice but develop no 

tumors. All TKO mice developed high-grade serous carcinoma (HGSC, i.e. high-grade serous 

ovarian cancer). To enhance the selectivity for HGSC-specific metabolite markers, a tumor control 

group was also included. These were uterine tumor (UT) mice (p53 LSL-R172H/+ Pten flox/flox Amhr2 

cre/+) that developed uterine tumors, but no HGSC.

Blood samples were collected via retro-orbital bleeding after anesthesia, from 22 TKO-Pre 

mice (average age, 2.0m; age range, 1.3–3.1), 10 TKO-ET mice (4.8m: 2.5–5.9), 16 TKO-AT mice 

(6.4m: 4.3–10.1), 19 TKO-ctrl mice (3.0m: 3.0–8.2), and 17 UT mice (5.4m: 3.7–6.8). Blood 

samples were centrifuged at 14,000 rpm for 5 minutes at room temperature, and serum was 

collected and stored at -80 °C until UPLC-MS analysis. 

Sample Preparation 

Serum samples were thawed on ice and subject to two different sample preparation 

protocols to obtain profiles of both non-polar and polar sub-metabolomes. Reverse phase (RP) and 
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hydrophilic interaction liquid chromatography (HILIC) UPLC-MS analysis in both positive and 

negative ion modes were combined for these different polarity metabolite fractions to obtain 

complementary and “deeper’ metabolome information. Methanol (for polar) or iso-propanol (for 

non-polar) was added to a 50 μL serum sample in a 3:1 ratio to precipitate proteins. Samples were 

vortex mixed for 10 s and centrifuged at 13,000 rpm for 7 min. Then, 150 μL supernatant was 

frozen at -80 °C for UPLC-MS analysis. A sample blank was prepared with 50 μL of LC-MS grade 

water, and a pooled quality control (QC) sample was created by mixing 10 μL aliquot of each 

serum sample. Both the sample blank and the pooled sample were processed with the same 

procedure as the murine serum samples. Samples were run in randomized order on consecutive 

days. Solvent blanks and sample blanks were analyzed together with murine serum samples. QC 

samples were analyzed every 12 runs to assess UPLC-MS system stability, and were used to 

compensate for time-dependent batch effects with a QC-based regression curve for each detected 

compound. 

UPLC-MS Analysis

Chromatography was performed with an Ultimate 3000 UPLC (Thermo Fisher Scientific, 

Inc., Waltham, MA, USA) system equipped with a Waters ACQUITY UPLC BEH C18, 2.1mm x 

50mm, 1.7 μm particle column or a Waters ACQUITY UPLC BEH HILIC, 2.1mm x 75mm, 1.7 

μm particle column.  A Q Exactive HF Orbitrap mass spectrometer (Thermo Fisher Scientific, Inc., 

Waltham, MA, USA) was used in all cases. For reverse phase (RP) separations, mobile phase A 

was water/acetonitrile (40:60 v/v), and mobile phase B was acetonitrile/isopropanol (10:90 v/v). 

Both mobile phases included 10 mM ammonium formate and 0.1% formic acid additives to 

improve peak shape and ionization efficiency. For hydrophilic interaction chromatography (HILIC) 
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separations, mobile phase A was water/acetonitrile (95:5 v/v), 10 mM ammonium acetate and 0.05 

% ammonium hydroxide. Mobile phase B was acetonitrile with 0.05 % ammonium hydroxide. 

Chromatographic gradients are described in Table S1. The column temperature was 55 °C, while 

samples were maintained at 5 °C in the autosampler. Injection volumes of 5 μL and 2 μL were 

used in RP and HILIC methods, respectively. RP and HILIC chromatography were performed both 

in positive and negative ion modes, MS parameters can be found in supplemental information 

(Table S2).

For metabolite identification purposes, top 5 data dependent acquisition (DDA) 

experiments were used to collect MS/MS spectra using stepped normalized collision energy (NCE) 

of 10, 30 and 50 V.  For compounds missed by DDA, parallel reaction monitoring (PRM) 

experiments were performed at collision energies ranging from 10 V to 40 V to obtain 

fragmentation data for identification purposes.

Data Processing

Spectral features were extracted from the raw data using Compound Discoverer v2.1 

software (Thermo Fisher Scientific, Inc., Waltham, MA, USA). This procedure included 

chromatographic alignment, peak picking, peak area integration and QC-based compound area 

normalization. Features that eluted with the chromatographic solvent front with retention times < 

0.5 min in RP datasets and < 0.9 min in HILIC datasets were considered unreliable due to potential 

ion suppression effects 40 and were thus removed. Further filtering was carried out by removing 

features that were not present in 50 % of at least one of the serum sample groups at ten times the 

baseline abundance, defined as the peak area of the sample blank run. Welch’s t-test with a 

Benjamini Hochberg correction was applied to TKO vs. TKO-ctrl mouse groups, and TKO vs. UT 
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mouse groups. The union of differential features from both control and UT comparisons were 

chosen for down-selecting HGSC-specific features. The most useful set of features for 

classification were produced with genetic algorithms41 (GAs, MATLAB R2016a, The 

MathWorks, Natick, MA with PLS_Toolbox v.8.1.1, Eigenvector Research, Wenatchee, WA). 

GAs are evolutionary algorithms that generates solutions to optimization problems. They have 

been widely used in feature selection due to their high performance in large-scale feature selection 

rate and classification accuracy 41. Parameters for GA variable selection are provided in the 

supplemental information (Table S3). After the GA variable selection process, features were 

chosen based on frequency criteria. Principal component analysis (PCA) and orthogonal Partial 

Least Square Discriminant Analysis (oPLS-DA) 42 were performed to assess the discriminating 

power of metabolite datasets in non-supervised and supervised manners, respectively. Data were 

preprocessed by autoscaling prior to PCA and oPLS-DA analysis, and cross-validated using 10 

iterations of random sample subsets. Data generated in this work are available through the NIH 

Metabolomics Workbench (http://www.metabolomicsworkbench.org/) with project ID PR000784 

(doi: 10.21228/M8BH6F, study ID ST001172).

Discriminant Feature Identification

Metabolite identification was attempted for the panel of best discriminant features. Mass 

spectral ion adduct analysis was first performed to ensure the unambiguous assignment of the 

feature of interest in each mass spectrum. Elemental formulas were then generated based on exact 

masses with a maximum mass error of 10 mDa and isotopic patterns using Compound Discoverer 

v2.1. The elements included in the elemental formula search were constrained to C, H, N, O, P, 

and S. Tentative identities were searched against the human metabolome database (HMDB) 43, 
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Lipid Maps database 44 and Metlin database 45 using both the accurate mass and generated 

elemental formulae with a mass error of 10 mDa. Tandem MS databases such as Metlin, mzCloud 

46, and MassBank 47 were used together with literature searches to further confirm the identity of 

the metabolite candidates for which tandem MS/MS data were successfully acquired. 

Fragmentation patterns were also manually analyzed in a few cases to distinguish between 

different isobaric species.

Results and Discussion

Multivariate Classification Performance 

A dataset comprising a total of 5937 spectral features that were above background and 

chromatographically retained was produced by combining the RP ESI(+), RP ESI(-), HILIC 

ESI(+), and HILIC ESI(-) datasets. Initially, the extent by which UPLC−MS metabolic profiling 

could differentiate serum of 19 TKO-Pre, 10 TKO-ET and 16 TKO-AT mice, against 22 TKO-ctrl 

and 17 UT mice was investigated. An unsupervised PCA exploration of these datasets showed 

large overlap between TKO-Pre and TKO-Ctrl mice (Figure 1), indicating that, as expected, only 

subtle differences exist between the two groups because TKO-Pre mice had not yet developed any 

tumors and were phenotypically closer to the healthy controls. Thus, for the following data 

analysis, the TKO mouse group was combined by TKO-ET and AT mice. 

The set of 5937 features was utilized to build an oPLS-DA model that distinguished serum 

samples from TKO mice against TKO-Ctrl and UT mice. Performance characteristics of this model 

(Figure 2A,B) were 88.1, 92.8, and 90.4% for the cross-validated sensitivity, specificity, and 

accuracy, respectively. Five serum samples were systematically misclassified, including two 

TKO-ET mice with ID No.42 and 51, one TKO-AT mouse labeled No.62, and two UT mice 
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labeled No.69 and 78. Sample cohort information can be found in the supplemental information. 

The model employed a total of four latent variables and interpreted 42.1% and 54.48% variance 

from the X (feature peak area) and Y (sample class membership) blocks, respectively. Although 

this model’s performance was acceptable, GA feature selection was used to obtain a smaller, more 

robust, metabolic feature set that could better discriminate TKO mice against TKO-Ctrl and UT 

mice. GA variable selection led to a 29-feature panel (Figure 2 C,D) with 96.2, 97.2, and 96.7% 

cross-validated sensitivity, specificity and accuracy, respectively. In this case, only two serum 

samples were systematically misclassified. The two misclassified samples were collected from a 

TKO-ET mouse labeled No.42 and a UT mouse labeled No.68. The TKO-ET mouse was 

repeatedly misclassified as a TKO-Ctrl mouse. This could be due to the age of the mouse, 2.5m 

when sample was collected, was much younger than the rest of the TKO-ET mice (average age: 

4.8m) and close to the average age of the TKO-Pre mice (average age: 2.0m). As TKO-Pre mice 

were phenotypically closer to the TKO-Ctrl mice, this may explain why the young TKO-ET mouse 

was classified as a TKO-Ctrl mouse in the models. The three latent variable model interpreted 

58.7% and 56.1% variance from the X and Y blocks, respectively. Binary comparisons (TKO vs. 

TKO-Ctrl, TKO vs. UT) were also performed (Figure 3 A,B), indicating that the 29-feature panel 

was strongly HGSC-specific and could differentiate TKO mice from control and UT mice with 

high performance at the same time. In these cases, the classification accuracy ranged from 95.3 – 

98.1%, with cross-validated sensitivity of 96.2 – 96.5% and specificity of 94.1 – 100%. PCA was 

utilized to further evaluate the discriminant performance of the 29-feature panel in an unsupervised 

manner and rule out any overfitting. Score plots were generated for both the initial 5937-feature 

set and the selected 29-feature panel (Figure S1). Good group clustering and increased variance 

captured were observed with the 29-feature panel, even in an unsupervised fashion. 
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As accurate staging and early-stage disease detection greatly improves clinical outcome, 

we investigated the performance of the 29-feature panel in discriminating early- and late-stages of 

HGSC. This panel of 29 metabolites distinguished TKO-ET from TKO-AT mice with 90.0%, 

93.8%, and 91.9% for the cross-validated sensitivity, specificity, and accuracy, respectively 

(Figure 3 C). Permutation tests with 2,000 iterations returned p-value of 0.017 measured using 

group separation distance 48, avoided overfitting and further validated the model. We further 

explored the potential of the 29-feature panel in disease early detection. The oPLS-DA model 

successfully discriminated TKO-ET against TKO-Ctrl mice with 100% cross-validated sensitivity, 

specificity, and accuracy, respectively. This panel, however, was indistinguishable between 

precursors and controls. We used the 22 precursor (TKO-Pre) samples as an unknown sample set 

and input into this classification model, 18 out of 22 TKO-Pre samples were predicted as being 

similar to TKO-Ctrl samples (Figure 4), echoing our previous statement that the TKO-Pre mice 

were phenotypically closer to the TKO-Ctrl mice. Nevertheless, this 29-feature panel enabled 

effective detection of early-stage as well as advanced-stage HGSCs, offering potential to diagnose 

HGSC at early stage. 

Discriminant Metabolite Identification

Following multivariate analysis, metabolite identification was carried out for the species 

in the 29-feature panel. Twenty-four of the 29 metabolic features were identified by both high 

resolution MS and MS/MS (Table 1). Table S4 provides detailed MS/MS fragmentation 

information and confidence level for each identified species. Metabolites in the panel included 

lipids, oligopeptides, and other small molecules such as bilirubin, uridine, hydroxysebacic acids, 

and N-acetylneuraminic acid (NeuAc). For features that did not yield informative MS/MS 
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information, tentative assignments were made based on high-resolution MS and isotopic relative 

ion abundances only (Table 1, italicized), and should be considered tentative until further research 

is pursued. 

HGSC-Related Metabolic Alternations

Understanding the biological role of specific metabolites is also crucial to enhance our 

understanding of HGSC metabolism. Discussed below is the potential role of the differential 

metabolites that were altered in different HGSC stages (Ctrl, Pre, ET and AT). The biological roles 

of the rest identified metabolites can be found in the supplemental information. 

Alterations in metabolism of phosphatidylcholine (PC) and its ester-bond hydrolysis 

product, lysophosphatidylcholine (LysoPC), have been reported in several gynecological cancers, 

including ovarian cancer studies 49-53, cervical cancer 54, and breast cancer 55. Our findings of 

decreased PC(P-40:6) (Table 1; fold change: -0.36) and elevated LysoPC(20:0) (Table 1; fold 

change: +0.93) serum levels in TKO-AT mice are in agreement with published work of ovarian 

cancer studies 51, 53. The alternations are likely due to the activation of PC-cycle enzymes, 

including choline kinase (ChoK) and PC-specific phospholipase C (PC-plc) 50, 56. Moreover, the 

significantly decreased PC and elevated LysoPC alternations were found in advanced-stage 

(Figure 5), suggesting these changes were related to tumor metastasis and progression. This 

observation awaits further validation and investigation. 

Cardiolipins (CLs) are a unique mitochondrial phospholipid class that regulates 

bioenergetic processes and signaling events related to apoptosis and aging 57, 58. An increase of 

CL(67:2) serum levels in TKO-ET mice was observed (Figure 5). However, further studies are 
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still needed to understand the role of CL in cellular function and signaling pathways as they relate 

to ovarian cancer. 

One of the identified features in the 29-metabolite panel was the sphingomyelin (SM) 

SM(d32:1) (Table 1). SM is an essential element of plasma membrane structure and plays 

important roles in cancer biology, with the hydrolysis by sphingomyelinases resulting in the 

formation of ceramides, key players in cellular proliferation, growth and apoptosis 59, 60. 

Consequently, changes in SM levels can have a profound effect on the biophysical properties of 

cellular membranes and signaling 61. We observed decreased levels of SM(d32:1) in HGSC mice, 

especially in advanced-stage (Table 1; Figure 5; fold change: -1.75). Along the same lines, Braicu 

et al. have detected a decrease of SM levels in serum samples from ovarian cancer patients 62, 

strengthening the findings of our study.

Sterol metabolites derived from the cholesterol biosynthetic pathway are important 

structural components of cell membranes 63. They regulate membrane fluidity and permeability as 

well as biological activities, including lipid synthesis, cell growth and apoptosis 64. One 

discriminant feature was identified as a sterol metabolite: cholesteryl ester (CE(20:5)). CEs are 

formed by the esterification of cholesterol with long-chain fatty acids and are transported through 

the blood by lipoproteins. Over-expression of CEs has been reported in multiple malignant tumors 

65, including ovarian cancer 66. We observed a significant increase in serum level of CE(20:5) in 

TKO-AT mice (Table 1; Figure 5; fold change: +1.26), which is line with these findings. Another 

cholesterol derivative C27H43O [7-Dehydrodesmosterol, 5a-Cholesta-8,24-dien-3-one, or 

Cholesta-4,6-dien-3-one] was identified in our 29-feature panel. Gradually decreased serum level 

of 7-Dehydrodesmosterol (and/or its isomers) was detected in TKO with different stages (Table 1; 

Figure 5; fold change: -1.06). 7-Dehydrodesmosterol (and/or its isomers) is an intermediate in the 
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cholesterol biosynthesis pathway. The decrease can be attributed to the enhanced biosynthesis 

activity of cholesterol, as increased serum cholesterol level is associated with ovarian cancer 67.

N-acyl taurines (NATs) are molecules with fatty acids conjugated to taurine. We observed 

decreased serum levels of NAT(30:1) in HGSC mice, especially in advanced-stage (Table 1; 

Figure 5; fold change: -0.84). Limited research has been reported on this species, and their 

biological role remains largely unexplored. In support of our findings, Chatzakos et al. found that 

NAT reduced proliferation in human prostate cancer cells 68. Therefore, one likely explanation is 

the diminished anti-proliferative effect with decreased levels of NAT, resulting in further disease 

progression. 

A tripeptide (Glu-His-Leu or Glu-His-Ile) was found to be higher in TKO-ET mice (Table 

1; Figure 5; fold change: +0.80). Literature searches revealed no known roles for small peptides in 

ovarian cancer. Some proteases such as protease M, however, have been reported to be 

overexpressed in serum of ovarian cancer patients 69-72, and could therefore increase the levels of 

small circulating peptides in HGSC. 

Bilirubin, the end product of heme catabolism in mammals, exhibits antioxidant properties 

by scavenging peroxyl radicals 73, 74. Increased serum bilirubin concentration has been found to be 

associated with decreased risk for cancer mortality 75. We observed decreased serum levels of 

bilirubin in HGSC mice, with further decrease in advanced-stage (Table 1; Figure 5; fold change: 

[M-H]-: -0.88). This finding agrees with previous work by our group, showing lowered 

concentration of bilirubin for early-stage ovarian cancer in Dicer-Pten double-knockout (DKO) 

mice compared with controls 20. One likely explanation of this finding is the diminished protection 

of bilirubin against oxidative stress in ovarian cancer, leading to further disease progression. 
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Two (3)-hydroxysebacic acids have been found to be important diagnostic markers for 

impaired peroxisomal fatty acid oxidation disorders 76. Their levels are regulated by medium chain 

acyl-CoA dehydrogenase in the fatty acid β-oxidation pathway. Increased excretion of 2 (3)-

hydroxysebacic acids is associated with acyl-CoA dehydrogenase deficiency and decreased β-

oxidation of fatty acids 76-78. Our experiments reported lower serum levels of 2 (3)-hydroxysebacic 

acids in TKO-AT mice (Table 1; Figure 5; fold change: -0.90), suggesting increased activity of 

acyl-CoA dehydrogenase and fatty acid β-oxidation. In support of this hypothesis, both Fong et al. 

and Ke et al. have observed increased fatty acid β-oxidation in ovarian cancer patients 24, 33.

We observed significantly decreased serum levels of uridine in HGSC mice, especially in 

early-stage (Table 1, Figure 5; fold change: -2.21). The level of circulating uridine is a reflection 

of de novo pyrimidine biosynthesis and the utilization of uridine by tissue via the salvage pathway 

79. As cell proliferation in tumors requires a large pool of pyrimidines for rapid DNA and RNA 

synthesis, the observed relative decrease in serum uridine levels could be due to either tissue 

uridine uptake or rapid uridine catabolism in ovarian cancer. 

N-Acetylneuraminic acid (NeuAc), also known as sialic acid (SA), is a major constituent 

of glycoproteins and glycolipids 80. We observed significantly increased serum NeuAc levels in 

TKO-AT mice (Table 1, Figure 5, fold change: 0.94). In agreement with this finding, increased 

SA serum levels have been reported in ovarian cancer patients compared to healthy controls 81, 82. 

This elevation of NeuAc serum levels could be attributed to high levels of glycoprotein and 

glycolipid release due to the high turnover of malignant tumor cells 80, 83. Moreover, the detected 

elevation of NeuAc levels in TKO-AT mice suggests its strong association with disease 

progression, confirming its potential application as a diagnostic indicator for HGSC malignancy 

81, 84, 85. 
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One feature in the discriminant metabolite panel was identified as a C6H8N2, likely a 

pyrazine derivative, with lower abundance in TKO-AT mice (Table 1; Figure 5; fold change: -

0.19). Many pyrazines are exogenous metabolites that originate from food sources, such as cereals, 

soybeans, potatoes, cocoa products and other natural products 86, and have been reported to exhibit 

anticancer activities 87. Although all mice in this study were fed the same diet, it is plausible that 

altered metabolism in HGSC mice led to differences in abundance of dietary metabolites following 

disease progression. 

Conclusions

Serum from TKO p53-Dicer1-Pten mice with both early- and advanced-stage HGSC 

tumors was successfully profiled using a UPLC-MS-based non-targeted metabolomics strategy. 

Identified are a panel of 29 metabolites that distinguishes TKO mice from TKO-Ctrl and UT mice, 

and further distinguishes TKO-ET from TKO-AT and TKO-Ctrl. Metabolic alterations in TKO 

mice, mainly characterized by aggressive fatty acid β-oxidation, abnormal metabolism in 

phospholipids, glycoproteins and glycolipids, heme catabolism, cholesterol biosynthesis and 

pyrimidine biosynthesis, were found to be associated with HGSC development and progression. 

Identified biomarkers that differentially expressed in HGSC early- and late-stages were 

phospholipids, sphingomyelin, sterol, N-acyl taurine, oligopeptide, and other small molecules 

including bilirubin, 2(3)-hydroxysebacic acids, uridine, N-acetylneuraminic acid, and pyrazine 

derivatives. Taken together, our deep metabolomics study provided insights into dysregulated 

metabolism in HGSC, which could aid in disease diagnosis, as well as support our understanding 

of disease development and progression. In particular, this panel of 29 metabolites will serve as a 

useful guide toward early detection of high-grade serous ovarian cancer. 
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Supporting Information

Multi-group and binary PCA score plots of TKO, TKO-Ctrl and UT samples using initial 5937-

feature set and the 29-feature panel (Figure S1).

Box plots showing changes of the 29 selected spectral features in TKO-Ctrl, TKO-ET, TKO-AT 

and UT samples (Figure S2). 

Liquid chromatography gradients for RP and HILIC separation methods (Table S1).

MS acquisition parameters (Table S2).

GA variable selection parameters (Table S3).

Detailed MS/MS annotation of the 29-feature panel (Table S4). 

Sample cohort information (Table S5)

Biological roles of identified features not discussed in main manuscript. 

Figure Captions

Figure 1. PCA score plot including all sample groups using the total initial set of 5937 spectral 

features. The clustering of samples in this plot reveals clear separation between TKO-ET mice 
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from TKO-AT mice and UT mice, a moderate separation between TKO-ET mice and TKO-Ctrl 

mice with some overlap, and complete overlap of TKO-Pre and TKO-Ctrl mice. Pooled QC 

samples, represented by orange stars, clustered towards the center of the plot, indicating technical 

variance was minimal. 

Figure 2. (A) oPLS-DA score plot depicting clustering of samples using the initial set of 5937 

spectral features. (B) oPLS-DA cross-validated classification plot using 5937 spectral features. 

The X-axis represents randomized sample number, and y-axis represents the cross-validated 

predicted scores of the oPLS-DA classification model. (C) oPLS-DA scores plot using the GA-

selected 29-feature panel. (D) oPLS-DA cross-validated classification plot using the 29-feature 

panel. TKO, TKO-Ctrl and UT samples are represented by black squares, red circles and blue 

triangles, respectively. The threshold for sample classification is represented by the green dashed 

line. Cross-validated sensitivity, specificity and accuracy values are given for each model. TKO 

samples are a combination of TKO-ET and TKO-AT samples.

Figure 3. oPLS-DA scores plot depicting clustering of samples between (A) TKO and TKO-Ctrl 

samples, (B) TKO and UT samples, and (C) TKO-ET and TKO-AT samples using the 29-feature 

panel. Variance between classes is captured across the X-axis. TKO, TKO-Ctrl, UT, TKO-ET and 

TKO-AT samples are represented by black squares, red circles, blue triangles, green diamonds and 

pink triangles, respectively. The threshold for sample classification is represented by the green 

dashed line. Cross-validated sensitivity, specificity and accuracy values are given for each model. 

TKO samples are combined with TKO-ET and TKO-AT samples. 

Page 20 of 35

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



21

Figure 4. oPLS-DA cross-validated classification plot between ET and Ctrl samples using the 29-

feature panel. The X-axis represents the randomized sample number, and y-axis represents the 

cross-validated predicted scores of the binary oPLS-DA classification model. ET and Ctrl samples 

are represented by green diamonds and red circles, respectively. Precursor (Pre) samples projected 

into the model are represented by orange triangles. The threshold for sample classification is 

represented by the green dashed line. Cross-validated sensitivity, specificity and accuracy values 

are given for the model.

Figure 5. Box plots showing changes of the selected identified metabolites in Ctrl (n=19), Pre 

(n=22), ET (n=10) and AT (n=16) samples. The mean, median, upper and lower quartiles, outliers, 

and minimum and maximum (whiskers) values are displayed. *Features have isomers. 
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Table 1. Annotation of metabolites in the 29-feature panel. Acquisition mode, retention time, 

observed exact mass and mass error, theoretical mass, predicted elemental formula, observed 

adduct, p-value of abundances between TKO and TKO-Ctrl samples, and between TKO and UT 

samples, and fold changes (FC, calculated as the base 2 logarithm of the average abundance ratios 

between TKO and TKO-Ctrl samples) are included. Positive FC values indicate increased 

abundance in TKO samples, while negative values indicate higher abundance in TKO-Ctrl samples. 

All p-values are calculated using an FDR-corrected t-test. For additional fragmentation 

information and level of confidence for each identification, please refer to Table S4. Abbreviations: 

Glu: Glutamic acid; His: Histidine; Leu: Leucine; Ile: Isoleucine; CE: cholesteryl ester; PC: 

phosphatidylcholine; CL: cardiolipin; NAT: N-acyl taurine; SM: sphingomyelin; PS: 

phosphatidylserine; NeuAc: N-Acetylneuraminic acid. 
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Feature 
No.

Acquisition 
Mode

Retention 
Time (min)

Experimental 
m/z

Theoretical 
m/z

Elemental 
Formula

Adduct 
Type

Mass Error 
(ppm)

Fold 
Change

p-value 
HGSC vs. control / 

HGSC vs. UT
Metabolite Identity

208 HILIC ESI+ 4.96 109.0765 109.0760 C6H8N2 [M+H]+ 4.58 -0.19 0.00347 / 8.45e-7
Dimethypyrazine

Ethylpyrazine 
2-Picolylamine

202 HILIC ESI+ 2.67 271.1151 271.1149 C9H14N6O4 [M+H]+ 0.74 1.08 0.000261 / 1.52e-6 --
385 HILIC ESI- 1.65 516.7524 -- -- [M+Br]- -- 0.68 0.00116 / 2.86e-6 --
277 RP ESI- 1.02 583.2576 583.2562 C33H36N4O6 [M-H]- 2.40 -0.88 1.10e-7 / 5.57e-6 Bilirubin
494 HILIC ESI- 1.58 514.7545 -- -- [M+Br]- -- 1.33 0.000762 / 2.51e-5 --

363 HILIC ESI+ 2.21 398.2022 398.2034 C17H27N5O6 [M+H]+ -3.01 0.80 0.00148 / 3.13e-5 Glu-His-Leu 
Glu-His-Ile

427 RP ESI+ 8.15 693.5567 693.5581 C47H74O2 [M+Na]+ -2.02 1.26 0.00104 / 0.000112 CE(20:5)
303 RP ESI+ 1.42 552.4015 552.4024 C28H58NO7P [M+H]+ -1.63 0.93 0.00546 / 0.000114 LysoPC(20:0)
751 HILIC ESI+ 1.28 696.4993 696.5012 C76H144O17P2 [M+2H]2+ -2.73 0.57 0.0116 / 0.000124 CL(67:2)
37 HILIC ESI- 2.20 217.1075 217.1081 C10H18O5 [M-H]- -2.76 -0.42 0.00697 / 0.000137 2(3)-Hydroxysebacic acid
572 HILIC ESI+ 4.56 454.8905 -- -- [M+H]+ -- -1.50 9.44e-7 / 0.000149 --
651 HILIC ESI- 1.27 281.0358 281.0360 C9H12N2O6 [M+Cl]- -0.71 -0.22 0.00934 / 0.000351 Uridine (isotopic peak)
557 HILIC ESI- 3.22 308.0988 308.0987 C11H19NO9 [M-H]- 0.32 0.94 0.00316 / 0.000360 NeuAc
88 RP ESI+ 1.22 607.2522 607.2527 C33H36N4O6 [M+Na]+ -0.82 -1.10 1.34e-6 / 0.000491 Bilirubin
274 RP ESI+ 1.25 540.4465 540.4445 C32H63NO4S [M+H-H2O]+ 3.70 -0.84 3.19e-6 / 0.000718 NAT(30:1)
696 HILIC ESI- 1.27 279.0387 279.0389 C9H12N2O6 [M+Cl]- -0.72 -2.21 9.20e-14 / 0.000865 Uridine
449 RP ESI- 6.88 673.5272 673.5290 C37H75N2O6P [M-H]- -2.67 -1.75 0.000209 / 0.00121 SM(d32:1)
189 RP ESI+ 1.20 585.2700 585.2708 C33H36N4O6 [M+H]+ -1.37 -0.21 0.0161 / 0.00152 Bilirubin
210 HILIC ESI+ 4.31 619.1976 -- -- [M+H]+ -- 0.18 0.00958 / 0.00214 --
98 HILIC ESI- 2.68 247.1184 247.1187 C11H20O6 [M-H]- -1.21 -1.98 3.57e-10 / 0.00237 Fatty acyl glucoside
191 RP ESI+ 4.47 818.6049 818.6058 C48H84NO7P [M+H]+ -1.10 -0.36 0.0145 / 0.00384 PC(P-40:6)

485 RP ESI+ 6.27 978.7103 978.7158 C56H100NO10P [M+H]+ -5.62 0.16 0.000306 / 0.00413
PS(50:5)

PS(O-50:6(OH))
PS(P-50:5(OH)) 

700 RP ESI- 1.06 472.1559 472.1586 C20H23N7O7 [M-H]- -5.72 0.75 0.00116 / 0.00680
Folinic acid

10-Formyltetrahydrofolate
Pteroyl-D-glutamic acid

22 RP ESI- 3.70 491.3419 491.3412 C26H52O6S [M-H]- 1.42 3.03 0.00225 / 0.00711 Fatty acid ester derivatives

644 HILIC ESI+ 3.93 276.1190 276.1190 C10H17N3O6 [M+H]+ 0.00 2.93 0.00293 / 0.00867 Norophthalmic acid
Gamma-Glutamyl Glutamine

725 HILIC ESI- 1.25 219.0187 219.0193 C5H8N4O4S [M-H]- -2.74 -0.29 0.0120 / 0.00890 Taurine derivatives

48 RP ESI- 0.93 462.0594 462.0616 C14H25NO11 [M+Br]- -4.76 2.78 0.00269 / 0.00963

N-Acetyllactosamine

Beta-1,4-mannose-N-
acetylglucosamine

Lacto-N-biose I
772 HILIC ESI- 3.61 217.1075 217.1081 C10H18O5 [M-H]- -2.76 -0.90 0.00114 / 0.0117 2(3)-Hydroxysebacic acid

29 RP ESI+ 3.27 383.3306 383.3308 C27H42O [M+H]+ -0.52 -1.06 1.25e-9 / 0.0127
7-Dehydrodesmosterol

5a-Cholesta-8,24-dien-3-one
Cholesta-4,6-dien-3-one
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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