Respiratory Syndrome Coronavirus (MERS-CoV)

Hisham Momattin¹, Anfal Y. Al-Ali², and Jaffar A. Al-Tawfiq Tawfiq^{3,4,5}*,

¹Deparment of Pharmacy Services, King Khalid Hospital, Najran ,Saudi Arabia

² Department of Pharmacy Services, Dhahran Eye Specialist Hospital, Dhahran, Saudi Arabia

³ Infectious Disease Unit, Specialty Internal Medicine Department, Johns Hopkins Aramco

Healthcare, Dhahran, Saudi Arabia; ⁴ Department of Medicine, Indiana University School of

Medicine, Indianapolis, IN; USA ⁵ Department of Medicine, Johns Hopkins University School of

Medicine, Baltimore, MD, USA

*Corresponding author:

Dr. Jaffar A. Al-Tawfiq; P.O. Box 76, Room A-428-2, Building 61, Dhahran Health Center,

Dhahran 31311, Saudi Arabia.

Email address: jaffar.tawfiq@jhah.com; jaltawfi@yahoo.com

Tel: +966-13-870-9748; Fax: +966-13-870-3790

Key words: MERS; therapy; Middle East Respiratory Syndrome Coronavirus

Financial support: None

Conflicts of Interest: None

.....

This is the author's manuscript of the article published in final edited form as:

Abstract:

Background: The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was first described in 2012 and attracted a great international attention due to multiple healthcare associated outbreaks. The disease carries a high case fatality rate of 34.5%, and there is no internationally or nationally recommended therapy.

Method: We searched MEDLINE, Science direct, Embase and Scopus databases for relevant papers published till March 2019 describing in vitro, in vivo or human therapy of MERS.

Results: Initial search identified 62 articles: 52 articles were from Medline, 6 from Embase, and 4 from science direct. Based on the inclusions and exclusions criteria, 30 articles were included in the final review and comprised: 22 in vitro studies, 8 studies utilizing animal models, 13 studies in humans, and one study included both in vitro and animal model. There are few promising therapeutic agents in the horizon. The combination of lopinavir/ritonavir and interferon- beta- 1b showed excellent results in common marmosets and currently is in a randomized control trial. Ribavirin and interferon were the most widely used combination and experience comes from a number of observational studies. Although, the data are heterogenous, this combination might be of potential benefit and deserve further investigation. There were no randomized clinical trials to recommend specific therapy for the treatment of MERS-CoV infection. Only one such study is planned for randomization and is pending completion. The study is based on a combination of lopinavir/ritonavir and interferon- beta- 1b. A fully human polyclonal IgG antibody (SAB-301) was safe and well tolerated in healthy individuals and this agent may deserve further testing for efficacy.

Conclusion: Despite multiple studies in humans there is no consensus on the optimal therapy for MERS-CoV. Randomized clinical trials are needed and potential therapies should be evaluated only in such clinical trials. In order to further enhance the therapeutic aroma for MERS-CoV infection, repurposing old drugs against MERS-CoV is an interesting strategy and deserves further consideration and use in clinical settings.

Introduction:

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was first identified in 2012 and since then the disease attracted an increased international interest to resolve issues related to the epidemiology, clinical features, and therapy. This interest is further enhanced by the fact that MERS-CoV infection resulted in 2428 cases in 27 countries around the world as of June 23, 2019 [1] and most of the cases are linked to the Middle East [2]. So far there had been three patterns of the transmission of MERS-CoV virus mainly: sporadic cases [3], intra-familial transmissions [4–6] and healthcare-associated transmission [3,7–26]. The disease carries a high case fatality rate of 34.5% [1] and so far there had been no proven effective therapy and no approved therapies for MERS-CoV infection by international or national societies. Few therapeutic agents were reported in the literature but all were based on retrospective analysis. In this study, we review available literature on the current therapeutic options for the disease including in vitro, animal studies, and studies in human.

Search strategy

We searched four electronic databases: MEDLINE, Science direct, Embase and Scopus for articles in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [27]. We used the following terms:

#1: "Middle East Respiratory Syndrome Coronavirus" OR "MERS virus" OR "MERS Viruses" OR "MERS-CoV" OR "Novel Coronavirus" AND

#2: "Drug effect" OR "Drug Therapy" OR "Combination drug therapy" OR "Drug Ther*" OR "Combination drug ther*"

In addition, we reviewed the references of retrieved articles in order to identify additional studies or reports not retrieved by the initial search. The included studies were arranged as: *in vitro* studies, animal studies and human studies. We included studies conducted in the vitro, animal, or humans that measured the impact of drug therapy against MERS-CoV. We excluded studies that examined the impact of drug therapy against Coronaviruses other than MERS-CoV, any study that focused on drug synthesis and extractions, review articles, studies of supplemental therapy, and articles focused on the mechanism of action of medications.

Results:

Initial search identified 62 articles: 52 articles were from Medline, 6 articles from Embase, and 4 articles from science direct. Of those, 32 studies were excluded: review studies (n=16), drug synthesis and extraction (n=3), supplemental therapy (n=1), drug therapy in Coronavirus in general (n=4), and site of action of different drugs modalities (n=8). Based on the inclusions and exclusions criteria, only 30 articles were included in the final review: 13 studies were conducted in vitro, 8 studies were done in animal models, 8 studies were done in humans, and one study included both in vitro and animal model (Figure 1).

In Vitro Studies:

There were many in *vitro* studies evaluating various agents against MERS-CoV such as: interferon (INF), ribavirin, and HIV protease inhibitors (nelfinavir, ritonavir and lopinavir) as summarized in table 1. *In vitro* studies showed that IFN- β has a lower 50% inhibitory concentration (IC₅₀) for MERS-CoV compared with IFN-a2b [28].. In addition, IFN- β has a superior anti-MERS-CoV activity in the magnitude of 16-, 41-, 83- and 117-fold higher compared to IFN- α 2b, IFN- γ , IFN-universal type 1 and IFN- α 2a, respectively [28]. Pegylated

Interferon-α (PEG-IFN-α) inhibited the effect of MERS-CoV at a dose of 1 ng/ml with complete inhibition of cytopathic effect (CPE) at doses of 3-1000 ng/ml in MERS-CoV infected Vero cells [29].

Ribavirin, a nucleoside analog requiring activation by host kinases to a nucleotide, required high *in vitro* doses to inhibit MERS-CoV replications and these doses are too high to be achieved *in vivo* [30,31]. The combination of interferon- alfa 2b (INF- α 2b) and ribavirin in Vero cells resulted in a an 8-fold reduction of the IFN- α 2b dose and a 16-fold reduction in ribavirin dose [30].

The HIV protease inhibitors, Nelfinavir and lopinavir, were thoughts to inhibit MERS-CoV based on results from SARS [32]. Nelfinavir mesylate hydrate and lopinavir showed suboptimal 50% effective concentration (EC₅₀) in the initial CPE inhibition assay and were not evaluated further [31]. In another study, the mean EC₅₀ of lopinavir using Vero E6 and Huh7 cells was 8.0 μ M [33].

MERS-CoV requires fusion to the host cells to replicate, thus MERS-CoV fusion inhibitors such as camostat and the Heptad Repeat 2 Peptide (HR2P) were evaluated *in vitro* [34,35]. Camostat inhibited viral entry into human bronchial submucosal gland-derived Calu-3 cells but not immature lung tissue [34]. HR2P was shown to inhibit MERS-CoV replication and the spike protein-mediated cell-cell fusion [35]. Camostat was effective in reducing viral entry by 15-folds in the Vero-TMPRSS2 cells infected with MERS-CoV [36].

Nitazoxanide, a broad-spectrum antiviral agent, and teicoplanin, an inhibitor of Cathepsin L in the Late Endosome/Lysosome cycle and a blocker of the entry of MERS-CoV, showed inhibitory effects of MERS-CoV *in vitro* [37,38].

The ability of recombinant receptor-binding domain (RBD-Fd) to inhibit MERS-CoV has been studied in DPP-4 expressing Huh-7 infected cells. The 50% inhibition dose (ID₅₀) for RBD-Fd was $1.5 \,\mu\text{g/ml}$ compared with no inhibitory activity in untreated cells even at highest dose [39].

Cyclosporin affects the function of many cyclophilins that act as chaperones and facilitate protein folding [29,40]. *In vitro*, cyclosporine inhibited MERS-CoV replication [29,40]. Three days post infection, cytopathic effects (CPE) of MERS-CoV was inhibited by Cyclosporine Vero cells and mock-infected Huh7 cells [29].

Toremifene, Chlorpromazine, and Chloroquine were evaluated using Vero cells, human monocyte-derived macrophages (MDMs) and immature dendritic cells (MDDCs) [41]. These drugs were transferred to cells one hour prior to infection with MERS-CoV. After 48 hours, viral replication was inhibited by Toremifene with 50% effective concentration (EC50) of 12.9 μ M) but the MDMs dose was too low to have a calculated EC50. Chlorpromazine inhibited MERS-CoV in Vero cells with an EC50 of 9.5 μ M and no cytotoxicity. In MDMs cells, the EC50 was 13.58 μ M with high 50% cytotoxicity concentration (CC₅₀) of 25.64 μ M. Chloroquine showed no antiviral activity in the MDMs. Toremifene reduced virus by 1–1.5 log10 at a dose more than 20 μ M. Chlorpromazine reduced MERS-CoV by 2 log10 and had a narrow therapeutic window and a high toxicity [41].

Chloroquine, Chloropromazine, and loperamide were tested on Huh7 cells [43]. The cells were treated 1-hour prior to infection. Antiviral activity of chloroquine was dose-dependent. Chloropomazine showed activity against MERS-CoV with EC50 of $4.9 \pm 1.2 \,\mu\text{M}$ and CC50 of $21.3 \pm 1.0 \,\mu\text{M}$. Loperamide, an antidiarrheal drug, inhibited MERS-CoV and induced CPE. Two kinase signaling (ABL1) pathway inhibitors (Imatinib mesylate and Dasatinib) were active

against MERS-CoV in vitro [42]. In Vero E6 and MRC5 cells imatinib had a dose dependent killing [43].

Saracatinib has a broad-spectrum antiviral activity against different strain of MERS-CoV. After 72 hours of infection of Huh-7 cells, Saracatinib exhibited an EC50 of 2.9 μ M and CC50 of more than 50 μ M [44]. Whereas, gemcitabine was shown to be effective against MERS-CoV infected Huh-7 cells with an EC50 of 1.2 μ M and a complete viral depletion at a dose of \geq 1 μ M [44]. Inhibitory effect of resveratrol against MERS-CoV was tested using infected Vero E6 cells. After 48 hours, cell death was significantly reduced in the treatment group with resveratrol. The study showed that resveratrol inhibited MERS-CoV after entry in the cells and when resveratrol was added at same time of MERS-CoV, there was no difference in cell proliferations and viral titers compared with cells treated after infections [45].

The antiviral activity of GS-441524 and its pro-drug GS-5734 (Remdesivir) were tested on MERS-CoV infected human airway epithelial cell (HAE) [46]. GS-441524 has a mean EC50 of 0.86 μ M and GS-5734 has a mean EC50 of 0.074 μ M with more reduction in viral titer if the drug was added 24-72 hours post infection [46].

Utilizing HAE cells infected with MERS-CoV, there was a significant reduction in viral replication and dsRNA level when cells were treated with K22 compound [47]. A novel peptide (P9) showed an in vitro activity against MERS-CoV at an IC50 of 5 µg/ml and more than 95% infection reduction at concentration higher than 25 µg/ml [48]. The two neurotransmitter antagonists (Chlorpromazine hydrochloride and triflupromazine hydrochloride) inhibit MERS-CoV infected Vero E6 cells [42]. The DNA synthesis and repair inhibitor, Gemcitabine Hydrochloride, and an Estrogen receptor I antagonist, Toremifene citrate, had antiviral activity

against MERS-CoV [42]. An Estrogen receptor I antagonist, Toremifene citrate, had activity against MERS-CoV [42]. In addition, MERS-CoV is inactivated by amotosalen and ultraviolet light in fresh frozen plasma [49].

Animal Studies:

Monoclonal antibodies against MERS-CoV had been tested in animal models of MERS-CoV infection. The monoclonal antibodies, 3B11-N and 4E10-N, were compared with no treatment in Rhesus Monkey model [50]. Antibodies, 3B11-N, were administered as a prophylaxis one-day prior to animal inoculation and showed significant reduction in lung disease radiographically. However, there was no significant diffrence when 3B11-N and 4E10-N were compared in term of lung pathology (P=0.1122) [50].

Interferon alfa-2a in conjunction with ribavirin were tested in rhesus macaques model of MERS-CoV infection. The animals were randomly assigned to either treatment or control groups and therapy was started eight hours post-infection. Necropsy showed a normal appearance of the lung in the treatment group compared with the control group. Virus replication was significantly reduced in the lung of treated animal. Serum interferon alfa was 37 times the level in untreated group by day 2. In addition, the treated group showed reduced systemic and local levels of proinflammatory markers such as interleukin-2, monocyte chemotactic protein-1, interleukin-2 receptor antagonist, interleukin-6, interleukin-15, and interferon-gamma [51].

Another study was conducted utilizing 12 healthy common marmosets inoculated with MERS-Cov and then assigned to four groups (control group; Mycophenolate mofetil intraperitoneally 8 hours after inoculation; Lopinavir with Ritonavir at 6, 30, and 54 hours after inoculation; or Interferon- Beta-1b subcutaneous at 8- and 56-hours post inoculation) [52]. Lopinavir/Ritonavir

and Interferon- beta- 1b treated groups had better clinical scores, less weight reduction, less pulmonary infiltrate, and lower viral load than the untreated group. The Mycophenolate group had a higher viral load with severe disease compared with the control group. The fatality rate was higher in untreated, and Mycophenolate treated groups (67%) than Lopinavir/Ritonavir treated and Interferon-Beta-1 b treated groups (0-33%) after 36 hours of inoculation [52].

The human dipeptyl peptidase-4 (hDPP4) is a receptor for cell binding and entry of MERS-CoV. A transgenic mouse model with hDPP4 was utilized to test the effects of humanized mAb (hMS-1). In the model, a single dose of hMS-1 protected the transgenic mouse from MERS-CoV infection and all control mice died ten days post-infection [53].

The Humanized antibodies mAb 4C2h are mouse-derived neutralizing spike receptor-binding domain of MERS-CoV (MERS-RBD) that were further humanized [54]. A single intravenous dose was injected one day pre and post MERS-CoV inoculation and showed that h-mAb-4C2h significantly decreased viral titer in the lungs in the mouse model (p <0.05) [54].

Another study was done on adenoviruses expressing hDPP4 in mouse lungs (Ad5-hDPP4-Transduced mice) utilizing intranasal peptide derived from the heptad repeat (HR) 2 domain in S2 subunit known as HR2P analogue (HR2P-M2) [55]. The animals were either given intranasal HR2P-M2 six hours before infections or a control group with no treatment. The treated group showed decreased in the viral titer compared with the control group. The combination of HR2P-M2 with interferon β showed further reduction of infection [55].

The human-Fc-fused version of neutralizing nanobody (NbMS10-Fc) was tested using hDPP-4 transgenic mice model of MERS-CoV infection. The mice were injected with a single dose

NbMS10-FC or Trastuzumab (control group) before a lethal dose of MESR-CoV. The treatment group had a 100% survival rate compared with 0% survival rate in the control group [56].

The impact of a trans-chromosomic (Tc) bovine, fully human polyclonal immunoglobulin G (IgG) antibodies were tested on Ad5-hDPP4-transduced mice five days after transduction and 12 hours before inoculated MERS-CoV. Animals received either intraperitoneal SAB-301 or control or Tc hIgG group. Viral load was lower in mice treated with SAB-301 at day 1 and 2 post-infection [57].

A recombinant trimeric receptor-binding protein (RBD-Fd) was tested on hDPP4 transgenic mice infected with MERS-CoV. The animals received RBD-Fd subcutaneously and were boosted at 3 weeks, 6 weeks, and 6 months. RBD-Fd induced S1-specific IgG antibodies against MERS-CoV and was maintained for at least 6 months. The survival rate in RBD-Fd immunized mice was 83% [39].

Human Studies:

The first use of antiviral agents to treat MERS-CoV infection was observed in 5 patients in 2013 in Saudi Arabia [58]. All patients received ribavirin orally and subcutaneous interferon alfa-2b. Unfortunately, all patients died at 1-2 months due to respiratory and multi-organ failure and four patients experienced adverse drug reaction such as thrombocytopenia, anemia and pancreatitis [58].

In 2015, two patients with MERS-Cov infection in Kuwait were treated with pegylated interferon alfa-2b subcutaneously and oral ribavirin [59]. One patient was discharged home after 42 days of starting antiviral therapy and ribavirin was stopped after one week of therapy due to anemia.

The second patient recovered from MERS-CoV and he subsequently died two months later with multidrug-resistant organism [59].

A large retrospective cohort study included 44 adult patients. Of those patients, 24 patients (control group) did not receive antiviral treatment, and 20 patients received subcutaneous pegylated interferon alfa-2a and oral ribavirin [60] per previously developed protocol [61]. The survival rate after 14 days from the date of diagnosis was statistically higher in the treatment group compared with the control group (70% versus 29%; P= 0.004). However, the survival rate did not differ in the two groups at 28 days (30% versus 17%; P= 0.054) [60].

In 2014, a retrospective cohort study was conducted on 24 confirmed MERS cases in Jeddah, Saudi Arabia and were started on day one of MERS-CoV confirmation [62]. Of those patients, 13 received interferon α -2a subcutaneous per week and 11 patients received interferon β -1a subcutaneous three times weekly. Both groups also received ribavirin orally. The case fatality rate was 85% in INF- α -2a versus 64% in INF- β -1a (p= 0.24). The fatality rate in patients using INF with positive MERS-CoV RT-PCR was 90% versus 44% in those with negative MERS-CoV RT-PCR test [62].

In 2015, pegylated interferon- α -2b and ribavirin was given to two confirmed cases in Riyadh. One patient was treated PEG-INF- α -2b and ribavirin and start to improve day 6 and had complete recovery at day 18. The second case was not a confirmed case and was started on these medication as a prophylaxis. On the fourth day, the patient started to improve and was discharged home after two weeks [63]. The combination therapy was also used in other case reports, (table 3) [64,65].

In a large cohort study of 51 patients, various combinations of interferon and ribavirin were used with different outcomes (table 3) [66]. Another small study utilized ribavirin and interferon-alfa 2b in three patients who received therapy within 1-2 days of admission and were compared to three other patients who received therapy 12-19 days after admission [67]. The first group survived and the latter group died [67]. The use of interferon beta, interferon alpha, and ribavirin was associated with survival rates of 78.3%, 75%, and 68.4%, respectively [66].

Oral lopinavir and ritonavir were used for the treatment of a 64 years old Korean male with confirmed MERS-CoV infection. These medications were started on the fourth day of admission and the patient achieved full recovery after nine days of treatment [63]. One patient was treated with pegylated interferon, ribavirin and lopinavir/ritonavir and viremia was detected for two days following therapy with triple therapy [64]. In a case series, eight patients received mycophenolate mofetil and all survived [66].

A phase 1 randomized placebo-controlled study utilized a fully human polyclonal IgG antibody (SAB-301) and evaluated the safety and tolerability of this agent in 28 adults compared with 10 adults who received placebo [68]. The trial was registered with ClinicalTrials.gov, number NCT02788188. SAB-301 was well tolerated and the most reported adverse events were headache, elevated creatinine kinase, and albuminuria [68].

Discussion:

Since the emergence of MERS-CoV infection there was a large interest in the development of an effective therapy for this disease. In this review, we summarized the available literature on possible therapeutic options including *in vitro*, animal and human studies. In vitro studies showed superiority of IFN- β compared to IFN- α 2b, IFN- γ , IFN-universal type 1 and IFN- α 2a

[28] and PEG-IFN-α had excellent CPE inhibition [29]. Moreover, the combination of INF-α2b and ribavirin in Vero cells showed augmentation of action and facilitates the reduction of the doses of IFN-α2b and ribavirin to lower concentrations suggesting possible utility in clinical use [30]. Saracatinib with Gemcitabine had no difference in cytotoxicity compared with Saracatinib alone but was less cytotoxic compared with gemcitabine alone [44]. There were many drugs that were used in vitro and showed effectiveness, however, translating the findings from these studies into clinical trial remains of particular importance especially taking into consideration availability, pharmacokinetic properties, pharmacodynamic characteristics and possible side effects [69].

Avaiable clincial experience regarding the therapy for MERS-CoV relies on limited case reports and observational case-series. The most widely used combination is ribavirin and IFN and experience comes from limited case reports and a number of observational studies. These studies are non-homogeneous in nature and thus a common conclusion could not be obtained to make firm recommendations for the use of this combination in routine clinical practice outside of prospective clinical studies [69].

The combination of lopinavir/ritonavir and interferon- beta- 1b was used in common marmosets [52] and was used in two patients with good outcome [63–65]. This combination is being considered in a randomized control trial in Saudi Arabia. The enrollment for the study began in November 2016 and the results are not available yet [70]. The study was registered on 27 July 2016 at ClinicalTrials.gov, with an ID: NCT02845843. And this is the only currently ongoing clinical therapeutic trial for MERS-CoV therapy.

In conclusion, despite multiple studies in humans there is no consensus on the optimal therapy for MERS-CoV. Randomized clinical trials are needed and potential therapies should be evaluated only in such clinical trials. Thus, any such therapy should be used in conjunction with clinical trials. An interesting strategy is repurposing old drugs against MERS-CoV and this deserves further consideration and use in clinical setting

References:

- [1] WHO. Middle East respiratory syndrome coronavirus (MERS-CoV) update: 2

 DECEMBER 2013 2013. http://www.who.int/csr/don/2013_12_02/en/.
- [2] Al-Tawfiq JA, Auwaerter PG. Healthcare-associated Infections: The Hallmark of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) With Review of the Literature. J Hosp Infect 2018. doi:10.1016/j.jhin.2018.05.021.
- [3] Al-Tawfiq JA, Memish ZA. Drivers of MERS-CoV transmission: what do we know? Expert Rev Respir Med 2016;10:331–8. doi:10.1586/17476348.2016.1150784.
- [4] Omrani AS, Matin MA, Haddad Q, Al-Nakhli D, Memish ZA, Albarrak AM. A family cluster of middle east respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case. Int J Infect Dis 2013;17:e668-72. doi:10.1016/j.ijid.2013.07.001.
- [5] Memish Z a, Zumla AI, Al-Hakeem RF, Al-Rabeeah A a, Stephens GM. Family cluster of Middle East respiratory syndrome coronavirus infections. N Engl J Med 2013;368:2487–94. doi:10.1056/NEJMoa1303729.
- [6] Memish ZA, Cotten M, Watson SJ, Kellam P, Zumla A, Alhakeem RF, et al. Community Case Clusters of Middle East Respiratory Syndrome Coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: A Descriptive Genomic study. Int J Infect Dis 2014;23:63–8.

- doi:10.1016/j.ijid.2014.03.1372.
- [7] Drosten C, Muth D, Corman VM, Hussain R, Al Masri M, HajOmar W, et al. An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014. Clin Infect Dis 2015;60:369–77. doi:10.1093/cid/ciu812.
- [8] Memish ZA, Al-Tawfiq JA, Alhakeem RF, Assiri A, Alharby KD, Almahallawi MS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): A cluster analysis with implications for global management of suspected cases. Travel Med Infect Dis 2015;13:311–4. doi:10.1016/j.tmaid.2015.06.012.
- [9] El Bushra HE, Abdalla MN, Al Arbash H, Alshayeb Z, Al-Ali S, Latif ZA-A, et al. An outbreak of Middle East Respiratory Syndrome (MERS) due to coronavirus in Al-Ahssa Region, Saudi Arabia, 2015. East Mediterr Health J 2016;22:468–75.
- [10] Balkhy HH, Alenazi TH, Alshamrani MM, Baffoe-Bonnie H, Al-Abdely HM, El-Saed A, et al. Notes from the Field: Nosocomial Outbreak of Middle East Respiratory Syndrome in a Large Tertiary Care Hospital--Riyadh, Saudi Arabia, 2015. MMWR Morb Mortal Wkly Rep 2016;65:163–4. doi:10.15585/mmwr.mm6506a5.
- [11] Balkhy HH, Alenazi TH, Alshamrani MM, Baffoe-Bonnie H, Arabi Y, Hijazi R, et al.

 Description of a Hospital Outbreak of Middle East Respiratory Syndrome in a Large

 Tertiary Care Hospital in Saudi Arabia. Infect Control Hosp Epidemiol 2016;37:1147–55.

 doi:10.1017/ice.2016.132.
- [12] Assiri AM, Biggs HM, Abedi GR, Lu X, Bin Saeed A, Abdalla O, et al. Increase in Middle East Respiratory Syndrome-Coronavirus Cases in Saudi Arabia Linked to Hospital

- Outbreak With Continued Circulation of Recombinant Virus, July 1-August 31, 2015.

 Open Forum Infect Dis 2016;3:ofw165. doi:10.1093/ofid/ofw165.
- [13] Nazer RI. Outbreak of Middle East Respiratory Syndrome-Coronavirus Causes High Fatality After Cardiac Operations. Ann Thorac Surg 2017;104:e127–9. doi:10.1016/j.athoracsur.2017.02.072.
- [14] Assiri A, Abedi GR, Bin Saeed AA, Abdalla MA, al-Masry M, Choudhry AJ, et al. Multifacility Outbreak of Middle East Respiratory Syndrome in Taif, Saudi Arabia. Emerg Infect Dis 2016;22:32–40. doi:10.3201/eid2201.151370.
- [15] Hunter JC, Nguyen D, Aden B, Al Bandar Z, Al Dhaheri W, Abu Elkheir K, et al.

 Transmission of Middle East Respiratory Syndrome Coronavirus Infections in Healthcare

 Settings, Abu Dhabi. Emerg Infect Dis 2016;22:647–56. doi:10.3201/eid2204.151615.
- [16] Cauchemez S, Van Kerkhove MD, Riley S, Donnelly CA, Fraser C, Ferguson NM.

 Transmission scenarios for middle east respiratory syndrome coronavirus (MERS-CoV) and how to tell them apart. Euros Urveillance 2013;18:pii: 20503.
- [17] Cauchemez S, Fraser C, Van Kerkhove MD, Donnelly CA, Riley S, Rambaut A, et al. Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility. Lancet Infect Dis 2014;14:50–6. doi:10.1016/S1473-3099(13)70304-9.
- [18] Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DAT, et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med 2013;369:407–16. doi:10.1056/NEJMoa1306742.

- [19] Chowell G, Abdirizak F, Lee S, Lee J, Jung E, Nishiura H, et al. Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study. BMC Med 2015;13:210. doi:10.1186/s12916-015-0450-0.
- [20] Al-Abdallat MM, Payne DC, Alqasrawi S, Rha B, Tohme RA, Abedi GR, et al. Hospital-Associated Outbreak of Middle East Respiratory Syndrome Coronavirus: A Serologic, Epidemiologic, and Clinical Description. Clin Infect Dis 2014;59:1225–33. doi:10.1093/cid/ciu359.
- [21] Hijawi B, Abdallat M, Sayaydeh A, Alqasrawi S, Haddadin A, Jaarour N, et al. Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation. East Mediterr Heal J 2013;19 Suppl 1:S12-8.
- [22] Oboho IK, Tomczyk SM, Al-Asmari AM, Banjar AA, Al-Mugti H, Aloraini MS, et al. 2014 MERS-CoV outbreak in Jeddah--a link to health care facilities. N Engl J Med 2015;372:846–54. doi:10.1056/NEJMoa1408636.
- [23] Alraddadi B, Bawareth N, Omar H, Alsalmi H, Alshukairi A, Qushmaq I, et al. Patient characteristics infected with Middle East respiratory syndrome coronavirus infection in a tertiary hospital. Ann Thorac Med 2016;11:128–31. doi:10.4103/1817-1737.180027.
- [24] Fagbo SF, Skakni L, Chu DKW, Garbati MA, Joseph M, Peiris M, et al. Molecular Epidemiology of Hospital Outbreak of Middle East Respiratory Syndrome, Riyadh, Saudi Arabia, 2014. Emerg Infect Dis 2015;21:1981–8. doi:10.3201/eid2111.150944.
- [25] Almekhlafi GA, Albarrak MM, Mandourah Y, Hassan S, Alwan A, Abudayah A, et al. Presentation and outcome of Middle East respiratory syndrome in Saudi intensive care unit patients. Crit Care 2016;20:123. doi:10.1186/s13054-016-1303-8.

- [26] Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Matin MA, et al. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int J Infect Dis 2014;29:301–6. doi:10.1016/j.ijid.2014.09.003.
- [27] Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Open Med 2009;3:e123-30.
- [28] Hart BJ, Dyall J, Postnikova E, Zhou H, Kindrachuk J, Johnson RF, et al. Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. J Gen Virol 2014;95:571–7. doi:10.1099/vir.0.061911-0.
- [29] de Wilde AH, Raj VS, Oudshoorn D, Bestebroer TM, van Nieuwkoop S, Limpens RWAL, et al. MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment. J Gen Virol 2013;94:1749–60. doi:10.1099/vir.0.052910-0.
- [30] Falzarano D, de Wit E, Martellaro C, Callison J, Munster VJ, Feldmann H. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep 2013;3:1686. doi:10.1038/srep01686.
- [31] Chan JF, Chan KH, Kao RY, To KK, Zheng BJ, Li CP, et al. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infect 2013;67:606–16. doi:10.1016/j.jinf.2013.09.029.
- [32] Wu C-Y, Jan J-T, Ma S-H, Kuo C-J, Juan H-F, Cheng Y-SE, et al. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci

- 2004;101:10012–7. doi:10.1073/pnas.0403596101.
- [33] de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bestebroer TM, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 2014;58:4875–84. doi:10.1128/AAC.03011-14.
- [34] Shirato K, Kawase M, Matsuyama S. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection Mediated by the Transmembrane Serine Protease TMPRSS2. J Virol 2013;87:12552–61. doi:10.1128/JVI.01890-13.
- [35] Lu L, Liu Q, Zhu Y, Chan K-H, Qin L, Li Y, et al. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun 2014;5:3067. doi:10.1038/ncomms4067.
- [36] Shirato K, Kawase M, Matsuyama S. Middle East Respiratory Syndrome Coronavirus Infection Mediated by the Transmembrane Serine Protease TMPRSS2. J Virol 2013;87:12552–61. doi:10.1128/JVI.01890-13.
- [37] Rossignol J-F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Public Health 2016;9:227–30. doi:10.1016/j.jiph.2016.04.001.
- [38] Zhou N, Pán T, Zhang J, Li Q, Zhang X, Bai C, et al. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). J Biol Chem 2016;291:9218–32.

- doi:10.1074/jbc.M116.716100.
- [39] Tai W, Zhao G, Sun S, Guo Y, Wang Y, Tao X, et al. A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection. Virology 2016;499:375–82. doi:10.1016/j.virol.2016.10.005.
- [40] de Wilde AH, Zevenhoven-Dobbe JC, van der Meer Y, Thiel V, Narayanan K, Makino S, et al. Cyclosporin A inhibits the replication of diverse coronaviruses. J Gen Virol 2011;92:2542–8. doi:10.1099/vir.0.034983-0.
- [41] Cong Y, Hart BJ, Gross R, Zhou H, Frieman M, Bollinger L, et al. MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells. PLoS One 2018;13:e0194868. doi:10.1371/journal.pone.0194868.
- [42] Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother 2014;58:4885–93. doi:10.1128/AAC.03036-14.
- [43] Coleman CM, Sisk JM, Mingo RM, Nelson EA, White JM, Frieman MB. Abelson Kinase Inhibitors Are Potent Inhibitors of Severe Acute Respiratory Syndrome Coronavirus and Middle East Respiratory Syndrome Coronavirus Fusion. J Virol 2016;90:8924–33. doi:10.1128/JVI.01429-16.
- [44] Shin JS, Jung E, Kim M, Baric RS, Go YY. Saracatinib Inhibits Middle East Respiratory Syndrome-Coronavirus Replication In Vitro. Viruses 2018;10:283. doi:10.3390/v10060283.

- [45] Lin S-C, Ho C-T, Chuo W-H, Li S, Wang TT, Lin C-C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis 2017;17:144. doi:10.1186/s12879-017-2253-8.
- [46] Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. MBio 2018;9:pii: e00221-18.

 doi:10.1128/mBio.00221-18.
- [47] Lundin A, Dijkman R, Bergström T, Kann N, Adamiak B, Hannoun C, et al. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus. PLoS Pathog 2014;10:e1004166. doi:10.1371/journal.ppat.1004166.
- [48] Zhao H, Zhou J, Zhang K, Chu H, Liu D, Poon VK-M, et al. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Sci Rep 2016;6:22008. doi:10.1038/srep22008.
- [49] Hindawi SI, Hashem AM, Damanhouri GA, El-Kafrawy SA, Tolah AM, Hassan AM, et al. Inactivation of Middle East respiratory syndrome-coronavirus in human plasma using amotosalen and ultraviolet A light. Transfusion 2018;58:52–9. doi:10.1111/trf.14422.
- [50] Johnson RF, Bagci U, Keith L, Tang X, Mollura DJ, Zeitlin L, et al. 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012. Virology 2016;490:49–58. doi:10.1016/j.virol.2016.01.004.
- [51] Falzarano D, de Wit E, Rasmussen AL, Feldmann F, Okumura A, Scott DP, et al.

- Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med 2013;19:1313–7. doi:10.1038/nm.3362.
- [52] Chan JF-W, Yao Y, Yeung M-L, Deng W, Bao L, Jia L, et al. Treatment With Lopinavir/Ritonavir or Interferon-β1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset. J Infect Dis 2015;212:1904–13. doi:10.1093/infdis/jiv392.
- [53] Qiu H, Sun S, Xiao H, Feng J, Guo Y, Tai W, et al. Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection.

 Antiviral Res 2016;132:141–8. doi:10.1016/j.antiviral.2016.06.003.
- [54] Li Y, Wan Y, Liu P, Zhao J, Lu G, Qi J, et al. A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Res 2015;25:1237–49. doi:10.1038/cr.2015.113.
- [55] Channappanavar R, Lu L, Xia S, Du L, Meyerholz DK, Perlman S, et al. Protective Effect of Intranasal Regimens Containing Peptidic Middle East Respiratory Syndrome Coronavirus Fusion Inhibitor Against MERS-CoV Infection. J Infect Dis 2015;212:1894– 903. doi:10.1093/infdis/jiv325.
- [56] Zhao G, He L, Sun S, Qiu H, Tai W, Chen J, et al. A Novel Nanobody Targeting Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Receptor-Binding Domain Has Potent Cross-Neutralizing Activity and Protective Efficacy against MERS-CoV. J Virol 2018;92. doi:10.1128/JVI.00837-18.
- [57] Luke T, Wu H, Zhao J, Channappanavar R, Coleman CM, Jiao J-A, et al. Human

- polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo. Sci Transl Med 2016;8:326ra21. doi:10.1126/scitranslmed.aaf1061.
- [58] Tawalah H, Al-Qabandi S, Sadiq M, Chehadeh C, Al-Hujailan G, Al-Qaseer M. The Most Effective Therapeutic Regimen for Patients with Severe Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection. J Infect Dis Ther 2015;03:1–5. doi:10.4172/2332-0877.1000223.
- [59] Al-Tawfiq JA, Momattin H, Dib J, Memish ZA. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis 2014;20:42–6. doi:10.1016/j.ijid.2013.12.003.
- [60] Omrani AS, Saad MM, Baig K, Bahloul A, Abdul-Matin M, Alaidaroos AY, et al.

 Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis 2014;14:1090–5.

 doi:10.1016/S1473-3099(14)70920-X.
- [61] Momattin H, Mohammed K, Zumla A, Memish ZA, Al-Tawfiq JA. Therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV)--possible lessons from a systematic review of SARS-CoV therapy. Int J Infect Dis 2013;17:e792-8. doi:10.1016/j.ijid.2013.07.002.
- [62] Shalhoub S, Farahat F, Al-Jiffri A, Simhairi R, Shamma O, Siddiqi N, et al. IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study. J Antimicrob Chemother 2015;70:2129–32. doi:10.1093/jac/dkv085.
- [63] Kim UJ, Won E-J, Kee S-J, Jung S-I, Jang H-C. Combination therapy with

- lopinavir/ritonavir, ribavirin and interferon-alpha for Middle East respiratory syndrome: a case report. Antivir Ther 2015. doi:10.3851/IMP3002.
- [64] Spanakis N, Tsiodras S, Haagmans BL, Raj VS, Pontikis K, Koutsoukou A, et al. Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen. Int J Antimicrob Agents 2014;44:528–32. doi:10.1016/j.ijantimicag.2014.07.026.
- [65] Khalid M, Al Rabiah F, Khan B, Al Mobeireek A, Butt TS, Al Mutairy E. Ribavirin and interferon-α2b as primary and preventive treatment for Middle East respiratory syndrome coronavirus: a preliminary report of two cases. Antivir Ther 2015;20:87–91. doi:10.3851/IMP2792.
- [66] Al Ghamdi M, Alghamdi KM, Ghandoora Y, Alzahrani A, Salah F, Alsulami A, et al.

 Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus

 (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia.

 BMC Infect Dis 2016;16:174. doi:10.1186/s12879-016-1492-4.
- [67] Khalid M, Khan B, Al Rabiah F, Alismaili R, Saleemi S, Rehan-Khaliq AM, et al. Middle Eastern Respiratory Syndrome Corona Virus (MERS CoV): Case reports from a tertiary care hospital in Saudi Arabia. Ann Saudi Med 2014;34:396–400. doi:10.5144/0256-4947.2014.396.
- [68] Beigel JH, Voell J, Kumar P, Raviprakash K, Wu H, Jiao J-A, et al. Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study. Lancet Infect Dis 2018;18:410–8. doi:10.1016/S1473-3099(18)30002-1.

- [69] Al-Tawfiq JA, Memish ZA. Update on therapeutic options for Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Expert Rev Anti Infect Ther 2017;15:269–75. doi:10.1080/14787210.2017.1271712.
- [70] Arabi YM, Alothman A, Balkhy HH, Al-Dawood A, AlJohani S, Al Harbi S, et al.

 Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial.

 Trials 2018;19:81. doi:10.1186/s13063-017-2427-0.
- [71] Khalid I, Alraddadi BM, Dairi Y, Khalid TJ, Kadri M, Alshukairi AN, et al. Acute Management and Long-Term Survival Among Subjects With Severe Middle East Respiratory Syndrome Coronavirus Pneumonia and ARDS. Respir Care 2016;61:340–8. doi:10.4187/respcare.04325.
- [72] Malik A, El Masry KM, Ravi M, Sayed F. Middle East Respiratory Syndrome

 Coronavirus during Pregnancy, Abu Dhabi, United Arab Emirates, 2013. Emerg Infect

 Dis 2016;22. doi:10.3201/eid2203.151049.

Figure 1: A flow diagram of the search strategy according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [27]

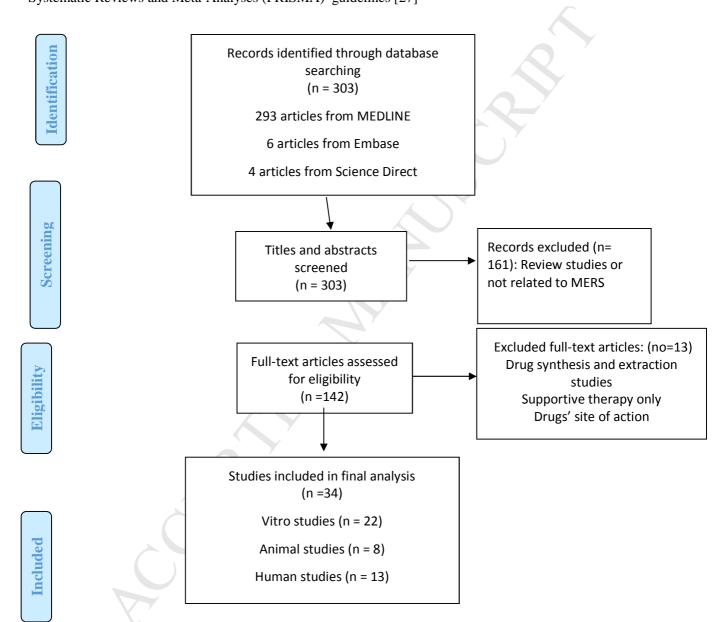


Table 1: A summary of in Vitro Studies evaluating medications against MERS-CoV

	Study type	Cell Type	Treatment	Outcome
[29]	In vitro	MERS-CoV infected	Cyclosporin 3 µg	No change in CPE
	Comparator	Vero cells and mock-	DMSO (a solvent	
	study	infected Huh7 cells.	control Control)	
			Cyclosporin 9 µg	CPE inhibited and no change on the cell viability on the infected
			DMSO (a solvent	Vero cells compared with mock-infected cells
			control Control)	
		MERS-CoV infected	Cyclosporin 3.75 μg,	CPE reduced or inhibited by 7.5 μg and 15 μg Cyclosporine.
		Huh7 cells and mock-	7.5 µg, and 15 µg	
		infected Huh7 cells.		
		MERS-CoV infected	PEG-INF- α 2b at t= -	CPE reduced at 1 ng/ml and complete inhibition at doses 3, 10, 30,
		Vero cells	4h, $t=0h$, or $t=4h$ of	100, 300, or 1000 ng/ml.

			infection at doses	
			range from 0 ng/ml to	
			1000 ng/ml	
[30]	In vitro	hCoV-EMC infected	INF-α2b	$IC_{50} = 58.08 \text{ U/ml}, IC_{90} = 320.11 \text{ U/ml}, and IC_{99} = 2061.89 \text{ U/ml}$
	Comparator	Vero cells		CPE reduced at 250 U/ml and complete inhibition at ≥ 1000 U/ml
	study			Genome copies reduced by 0.53-log at 500 U/ml and highest
				reduction by 1.84-log at 5000 U/ml.
				Viral titer reduced by 0.57-log at 500 U/ml and highest reduction
				by 1.31-log at 5000 U/ml.
			Ribavirin	$IC_{50} = 41.45 \ \mu g/ml, \ IC_{90} = 92.15 \ \mu g/ml, \ and \ IC_{99} = 220.40 \ \mu g/ml$
				CPE reduced at 100 μg/ml and complete inhibition at ≥ 200 μg/ml.
			8	Genome copies reduced by 0.82-log at 500 µg/ml and highest
				reduction by 2.04-log at 2000 μg/ml.
				Viral titer reduced by 1.24-log at 100 μg/ml and highest reduction
				by 4.05-log at 2000 μg/ml.

		INF-α2b + Ribavirin	CPE reduced at 12 μg/ml Ribavirin and 62 U/ml INF-α2b and
			complete inhibition at 25 μg/ml Ribavirin and 125 U/ml INF-α2b
			Ribavirin + INF-α2b at 1:5, Viral titer reduced by 0.4 to 2.16-log
			compared with INF-α2b alone.
	LLC-MK 2 infected	INF-α2b	$IC_{50} = 13.26 \text{ U/ml}, IC_{90} = 44.24 \text{ U/ml}, and IC_{99} = 164.73 \text{ U/ml}.$
	cells		Reduced viral protein level with increased dose starting at 250
			U/ml.
			Viral titer reduced by 3.97-log at 2000 U/ml
		Ribavirin	$IC_{50} = 16.33 \ \mu/ml, \ IC_{90} = 21.15 \ \mu g/ml, \ and \ IC_{99} = 28.02 \ \mu g/ml.$
		À	Reduced viral protein level with dose 50 μg/ml (Not dose
			dependent)
			Viral titer reduced below the detection threshold of 13.7
			TICD ₅₀ /ml at 200 μg/ml
		INF-α2b + Ribavirin	Reduced viral protein level with dose INF-α2b 250U/ml and
		<u>K</u>	Ribavirin at 50 μg/ml.

[41]	In vitro	Vero cells	Toremifene	$EC_{50} = 12.9 \mu\text{M}$ with no virus reduction
	Comparator		Chlorpromazine	$EC_{50} = 9.5 \mu\text{M}$ with no cytotoxicity
	study			Virus reduction by $3.1 \log_{10}$ if dose $>15\mu M$
			Chloroquine	No virus reduction
		MDMs	Toremifene	Dose treated too low to determine EC ₅₀ with high cytotoxicity.
				Virus reduction by 1-1.5 \log_{10} if dose >20 μ M with increased in the
				toxicity.
			Chlorpromazine	$EC_{50} = 13.58 \mu\text{M}$ with high cytotoxicity $CC_{50} = 25.64 \mu\text{M}$, SI was
			A	1.9
			R	Virus reduction by 2 log ₁₀ with narrow therapeutic window and
				high toxicity
			Chloroquine	No antiviral activity and no cytotoxicity.
		MDDCs	Toremifene	Virus reduction by 1-1.5 \log_{10} if dose >20 μ M with increased in the
				toxicity.
			Chlorpromazine	Virus reduction by 2 log ₁₀ with narrow therapeutic window and

				high toxicity
			Chloroquine	No antiviral activity and no cytotoxicity
[33]	In vitro	Huh7 cells	Chloroquine	Chloroquine: dose-dependent, EC ₅₀ = $3.0 \pm 1.1 \mu M$ and CC ₅₀ =
	Comparator		Chlorpromazine	58.1 ±1.1 μM, SI was 19.4
	study		Loperamide	Chlorpromazine: Complete inhibition at 12 μ M, EC ₅₀ = 4.9 \pm 1.2
			Lopinavir	μM and $CC_{50} = 21.3 \pm 1.0 \mu M$, SI was 4.3
			Pre-infection	Loperamide: Complete inhibition at 8 μ M, EC ₅₀ = 4.8 \pm 1.5 μ M
				and $CC_{50} = 15.5 \pm 1.0 \mu\text{M}$, SI was 3.2
			4	Lopinavir: Complete inhibition at 12 μ M, EC ₅₀ = 8 \pm 1.5 μ M and
			A	$CC_{50} = 24.4 \pm 1.0 \mu\text{M}, \text{SI was } 3.1$
[43]	In vitro	Vero E6	Imatinib in the first	Iamtinib at time of infection is dose dependent.
	Comparator	MRC5	4hrs of infection	Viral level higher at post-infection compared to before infection
	study		versus 5 hrs post	(P< 0.05)
			infection	Genomic RNA inhibited if drug added before infection (P< 0.05)
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	but no effect if added post-infection

				CCF2 cleavage reduced by 80% (P< 0.001)
[49]	In vitro	Pooled Plasma	Amotosalen and	Viral titer reduced by $4.67 \pm 0.25 \log \text{ pfu/ml}$ with no detection of
	Comparator	inoculated with	Ultraviolet A light	the viable viruses.
	study	MERS-CoV		Viral genomic titer by RT-qPCR: no viral RNA had been detected
				on the treated cells
[44]	In vitro	Huh-7 cells infected	Saracatinib	MERS-CoV infected cells: $EC_{50} = 2.9 \mu M$ and $CC_{50} > 50 \mu M$, SI
	Comparator	with MERS-CoV		>17,
	study			Dose 1 μ M: viral titer reduced by > 50% (P<0.05) with no effect
				on viral N protein after 24 hrs
			<i>(</i>)	Dose 10 μM: reduced by 90% (P<0.05) with complete depletion
				on the viral N protein after 24 hrs.
			3	Complete inhibition of viral genomic RNA and mRNA synthesis
				(P<0.0001)
				Viral titer:
			No.	Pretreatment: no difference
			,	At time of infection: marked reduction with significant a decrease

				of viral genomic RNA and mRNA synthesis.
				Post treatment (within 2 hrs.): complete inhibition (P< 0.0001)
				Post treatment (after 4hrs): less effect (P<0.05)
		Huh-7 cells infected	Saracatinib	rMERS-CoV infected cells: $EC_{50} = 9.3 \mu M$
		with rMERS-Cov.		
		Huh-7 cells infected	Saracatinib	rMERS-CoV-S2 infected cells: $EC_{50} = 9.0 \mu M$
		with rMERS-Cov-S2.		
		Huh-7 cells infected	Gemcitabine	$EC_{50} = 1.2 \ \mu M$ with complete viral depletion at dose $\geq 1 \ \mu M$
		with MERS-CoV	Saracatinib +	Synergistic effect at combination index of 0.529
			Gemcitabine	Cytotoxicity: no difference compared with Saracatinib and less
				compared with Gemcitabine
[45]	In vitro	Vero E6	Resveratrol	Reduced cell death at 125-250 µM (MTS assay P<0.05, neutral red
	Comparator			uptake assay P< 0.005)
	study			Less cytotoxicity even at higher concentration.
				Viral RNA level:
				At concentration 31.25-250 μM: after 48hr lower than after 24 hrs

				After 48 hr at concentration 150µM: lower (P<0.05), at
				concentration 200μM (P<0.01), at concentration 250μM
				(P<0.001).
				If the drug added at time of infection: no difference in the cell
				proliferations and viral titers.
				After 24hr, the inhibition of N protein is dose dependent manner.
				At concentration 150μM: limited decrease in the N protein
				At concentration 250μM: elimination of N protein.
			,	Inhibited Caspase 3 cleavage: dose dependent manner.
			4	If drug administered consecutively at lower dose:
				Ever 24 hrs, dose \leq 62.5 μ M: the cell proliferation and cells
			8	viability were higher compared with untreated group (P < 0.001).
				The cytotoxicity and viral titer were lower (P < 0.001)
[46]	In vitro	HAE infected with	GS-441524 or	GS-44152: $EC_{50} = 0.86 \mu\text{M}$
	Comparator	MERS-CoV	Remdesivir (GS-5734)	Remdesivir: $EC_{50} = 0.074 \mu M$
	study			

				More reduction in viral titer if the drug were added 24-72 hrs. post
				infection.
[47]	In vitro	HAE infected with	K22	Significant reduction in the viral replication and dsRNA level.
	Comparator	MERS-CoV		
	study			45
[48]	In vitro	MERS-CoV infected	Novel peptide (P9)	$IC_{50} = 5 \mu g/ml$
	Comparator	cells		>95% reduction at concentration > 25 µg/ml
	study			
[36]	In vitro	Vero-TMPRSS2	Camostat	At dose 10 μM, decreased viral entry by 15-fold
	Comparator	infected cells	\(\hat{\sigma}\)	
	study	Vero-TMPRSS2-	Camostat	At dose 10 μM, no effect on the viral entry
		negative infected cells		
		Calu-3 cells	Camostat	At dose 10 μM, decreased viral entry by 10-fold
				Viral RNA suppressed by 90-fold
				Cell death delayed by 2 days post infection
				At dose 100 μM, Viral RNA suppressed by 270 folds 3 days post

			infection
			Cell death delayed by 5 days post infection
	MRC-5 cells or WI-38	Camostat	No effect on the viral RNA at 3 days post infection.
	cells		At dose 10 μM, there was no effect on the cell death
			At dose 100 μM, the cell death partially suppressed.
	Vero-TMPRSS2	EST (an inhibitor of	At dose 10 μM, slight inhibition of viral entry
	infected cells	endosomal cathepsins)	
	Vero-TMPRSS2-	EST (an inhibitor of	At dose 10 μM, inhibit viral entry
	negative infected cells	endosomal cathepsins)	
	Calu-3 cells	EST (an inhibitor of endosomal cathepsins)	At dose 10 μM, slight inhibition of viral entry
	Vero-TMPRSS2	Camostat + EST (an	Decreased viral entry by 180-fold
	infected cells	inhibitor of endosomal cathepsins)	
	Calu-3 cells	Camostat + EST+	No significant difference in the viral entry
	MRC-5 cells	Leupeptin	

		WI-38 cells	Single treatment +	
			Leupeptin	
		Vero-TMPRSS2-	Cathepsin L inhibitor	Inhibit the viral entry by 40-fold
		negative infected cells	Cathepsin K inhibitor	
		Vero-TMPRSS2-	Cathepsin B inhibitor	No effect on the viral entry
		negative infected cells	Cathepsin S inhibitor	
		Calu-3 cells	Leupeptin	Dose dependent effect Blocked viral entry at 10-100 μM
		MRC-5 cells	Leupeptin	No effect on the viral entry
		WI-38 cells	Leupeptin	No effect on the viral entry
[42]	In vitro	Vero E6 cells infected	Chlorpromazine	$EC_{50} = 9.51 \mu M$ with low toxicity
	Comparator	with MERS-CoV	Triflupromazine	$EC_{50} = 5.76 \mu\text{M}$ with low toxicity
	study		Imatinib	$EC_{50} = 14.69 \mu M$ with low toxicity

	Dasatinib	$EC_{50} = 5.47 \mu M$ with low toxicity
	Nilotinib	No significant inhibition of MERS-CoV
	Gemciatbine	$EC_{50} = 1.22 \mu M$ with low toxicity
	Toremifene	$EC_{50} = 12.92 \mu M$ with low toxicity

^{*} CPE: cytopathic effect; PEG-INF: pegylated interferon; INF: interferon; IC₅₀: inhibitory concentration of 50% of cells, IC₉₀: inhibitory concentration of 90% of cells; IC₉₀: inhibitory concentration of 99% of cells; EC₅₀ and EC₉₀: 50% and 90% maximal effective concentration; CC₅₀: cytotoxicity concentration that kills 50% of cells; RT-qPCR: Real time Quantitative polymerase chain reaction;

Table 2: A summary of the use of anti-viral agents for the treatment of MERS-CoV infection in animal model

	Study type	Total #	Supportive	Treatment plan	Outcome
			therapy		
[50]	Comparator	Rhesus	No	3B11-N antibody, 4E10-N antibody,	Less abnormal lung volume and less
	trial	monkey		or no treatment 1 day before	Lung pathology
				inoculation (prophylaxis)	
[53]	Comparator	hDPP4-Tg	No	After 1 day of inoculation	hMS-1 vs Tractuzumab:
	trial	mice		IV hMS-1 2mg/kg versus	Less viral titer Less lung injury
				Trastuzumab (Treatment)	Fewer histopathological changes
			V		Less decrease in the body weight

					More survival rate
[54]	Comparator	Ad5-	No	Either 1d before or 1 d after	Decreased Viral titer
	trial	hCD26-		inoculation	
		transduced		IV mAb 4C2h (Prophylaxis and	
		mice		treatment) or no treatment	
[51]	Comparator	Rhesus	No	Treatment group (#3): INF-α-2a SQ	Decreased in oxygen saturation,
	trial	macaques		+ Ribavirin IV	increased white blood cells and
				No treatment group (#3)	neutrophils on day one more in no
					treatment
					Chest radiograph in the treated group
				R	showed light infiltration in a single lobe
					by day 2, and 3.
					Decrease viral load in treatment group.
					Untreated groups: increased in

					perivascular infiltrates.
[55]	Comparator	Ad5-	No	Treatment group: Intranasal peptide	Decreased viral titer
	trial	hCD26-		HR2P-M2 200mcg 6h before	\$
		transduced		inoculation (Prophylaxis)	
		mice		Control group (no treatment)	
				1 st gp: 200 mcg intranasal HR2P-M2	Decreased viral titer in all treated group
				2 nd gp: 2000 U intranasal INF-β	compared with the control group with
				3 rd gp: Combination	complete clearance in mice which
				4 th gp: no treatment	received combination treatment.
				6h before inoculation	
				(prophylaxis)	
				1 st gp: 200 mcg intranasal HR2P-M2	Viral inhibition in all treated group with
				2 nd gp: 2000 U intranasal INF-β	the greatest reduction in the combination
				3 rd gp: Combination	group. greater reduction in viral titer in

				4 th gp: no treatment	the HR2P-M2 alone vs INF-β alone.
				12 and 36 h after inoculation	Reduced histopathologic change in INF-
				(treatment)	β and HR2P-M2 treated group with the
					greatest reduction in the combination
				\$	group
[56]	Comparator	hDPP-4	No	1 st gp: NbMS10-Fc single dose	Better survival rate
	trial	Tg mice		2 nd gp: Trastuzumab	Steady weight compared with sharply
				Before inoculation (prophylaxis)	decreased in the weight on the control
					group
				1 st gp: NbMS10-Fc single dose	Better survival rate
				2 nd gp: Trastuzumab	Less weight loss
				3d after inoculation (treatment)	
[52]	Comparator	12 healthy	No	1 st gp: no treatment	Lopinavir/Ritonavir and INF- β-1b have
	trial	common	No.	2 nd gp: Mycophenolate mofetil	a better clinical score, less weight

		Marmosets		intraperitoneal after 8hr of	reduction, less radiological and
				inoculation	pathological finding, and lower viral load
				3 rd gp: + Ritonavir PO at 6, 30, and	in the lung and in the extrapulmonary
				54 hrs after inoculation,	The Mycophenolate has a higher viral
				4 th gp: INF- β-1b SQ at 8 and 56 hrs	load vs control group.
				post inoculation.	The fatality rate was higher in untreated,
				(Treatment)	and Mycophenolate vs treated groups
[57]	Comparator	Ad5-	No	1 st gp: Intraperitoneal 100 or 500 mcg	viral load was lower in SAB-301 vs Tc
	trial	hDPP4-		(5 or 25 mg/kg) of SAB-301	hIgG group at day 1
		transduced		2 nd gp: negative control Tc hIgG 500	The viral titer was lowest in the 500mcg
		mice		mcg	vs Tc hIgG and control
				3 rd gp: no treatment	
				12 hr before inoculation	
				(prophylaxis)	

	1 st gp: intraperitoneally single dose	On day 1 and 2 post infection:
	500 mcg SAB-301 antibody,	Viral titer in SAB-301 antibody group
	2 nd gp: intraperitoneally single dose	was below the detection level vs
	Tc hIgG	control or Tc hIgG
	3 rd gp: no treatment	•
	1-2 hrs of inoculation (Treatment)	

^{*} mAb: monoclonal antibodies; INF: interferon; gp: group;

Table 3: A summary of human studies of the use of anti-viral therapy for the treatment of MERS-CoV infection

	Study type	Total #	Supportive therapy	Treatment plan	Outcome
[60]	Retrospective	44	Yes	SQ PEG-INF α-2a +	Survival rate after 14 days
	cohort study	patients		PO Ribavirin for 8-10 days:	was 70% versus 29% (P=
	Treatment				0.004) but no change after
	group (n=20)		_		28 days (30% versus 17%;
	versus control		A		P= 0.054)
	group (n=24)				Decreased hemoglobin
		,			level as a side effect of
			>		ribavirin

[58]	Retrospective	Two	Yes	1 st patient: SQ PEG-INF α- 2b + PO Ribavirin	There was a drop in
	observational	patients			hemoglobin level
	studies				The patient improved and
					discharge home
			Yes	2 nd patient: SQ PEG-INF α- 2b 1 for 3 days +	After 14 days the patient
				Ribavirin PO	recovered from MERS-
					CoV.
					Died after two months as a
					result of MDR and hospital-
					acquired infections
[59]	Retrospective	5 patients	Yes	Ribavirin for 5 days + SQ INF α-2b	Died from multi-organ
	observational				failure
	studies		Yes	Ribavirin for 5 days + SQ INF α-2b for 2	Drop in in platelet
				doses.	Died from multi-organ
			<i>Y</i> ′		failure

			Yes	Ribavirin PO for 5 days + SQ INF α-2b.	Patient developed
					pancreatitis
					Died from multi-organ
					failure
			Yes	Ribavirin PO for 5 days + SQ INF α-2b for 2	hemoglobin dropped and
				doses.	bilirubin increased and
					dialysis was required
					Died from multi-organ
					failure
			Yes	Ribavirin PO for 5 days + SQ INF α-2b for 2	Increased lipase
				doses.	Died from multi-organ
					failure
[63]	Case report	1 patient	No	Lopinavir/Ritonavir PO + Ribavirin PO +	Improved
				PEG-INF α-2a SQ	No fever after 2 days
			<i>Y</i> '		Discharge after 9 days

					Developed hemolytic
					anemia, electrolyte
					disturbance, and kidney and
					liver dysfunction.
[62]	Retrospective	24	Yes	1 st gp: 13 pts INF- α-2a SQ + PO Ribavirin	The fatality rate was 85% in
	Cohort Study	patients		2 nd gp: 11 pt INF-β-1a + PO Ribavirin	INF-α-2a vs 64% in INF-β-
					1a.
[65]	Case series	2 patients	Yes	1 st patient as treatment and 2 nd patient as	Complete recovery and
				prophylaxis	discharge home.
				SQ PEG-INF- α-2b:	
				Ribavirin PO	
			4		
[71]	case series	11		ribavirin and interferon-alfa 2a	Survival of all patients

[70]	Randomized	The enrollment began	100mg Lopinavir/100mg Ritonavir PO q12h	Result is not yet published
	control trial	in Nov. 2016	for 14 days + INF- β 1b 0.25mg/ml SQ on	
			alternative days for 14 days.	
[66]	Case series	23	Interferon beta	18/23 (78.3)
[66]	Case series	8	Interferon alpha	6/8 (75)
[66]	Case series	19	Ribavirin	13/19 (68.4)
[66]	Case series	8	Mycophenolate mofetil	8/8 (100)

[72]	case report	1	ribavirin and interferon-alfa 2a	died
			day 12 from onset	
			S	
[67]	case series	6	ribavirin and interferon-alfa 2b	3/6 (50)

^{*} PEG-INF: pegylated interferon; gp: group