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Abstract

Background: Long thought “relics” of evolution, not until recently have pseudogenes been of medical interest regarding
regulation in cancer. Often, these regulatory roles are a direct by-product of their close sequence homology to
protein-coding genes. Novel pseudogene-gene (PGG) functional associations can be identified through the integration of
biomedical data, such as sequence homology, functional pathways, gene expression, pseudogene expression, and
microRNA expression. However, not all of the information has been integrated, and almost all previous pseudogene studies
relied on 1:1 pseudogene–parent gene relationships without leveraging other homologous genes/pseudogenes. Results: We
produce PGG families that expand beyond the current 1:1 paradigm. First, we construct expansive PGG databases by (i)
CUDAlign graphics processing unit (GPU) accelerated local alignment of all pseudogenes to gene families (totaling 1.6 billion
individual local alignments and >40,000 GPU hours) and (ii) BLAST-based assignment of pseudogenes to gene families.
Second, we create an open-source web application (PseudoFuN [Pseudogene Functional Networks]) to search for integrative
functional relationships of sequence homology, microRNA expression, gene expression, pseudogene expression, and gene
ontology. We produce four “flavors” of CUDAlign-based databases (>462,000,000 PGG pairwise alignments and 133,770 PGG
families) that can be queried and downloaded using PseudoFuN. These databases are consistent with previous 1:1 PGG
annotation and also are much more powerful including millions of de novo PGG associations. For example, we find multiple
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2 PseudoFuN: Deriving functional potentials of pseudogenes

known (e.g., miR-20a-PTEN-PTENP1) and novel (e.g., miR-375-SOX15-PPP4R1L) microRNA-gene-pseudogene associations in
prostate cancer. PseudoFuN provides a “one stop shop” for identifying and visualizing thousands of potential regulatory
relationships related to pseudogenes in The Cancer Genome Atlas cancers. Conclusions: Thousands of new PGG
associations can be explored in the context of microRNA-gene-pseudogene co-expression and differential expression with
a simple-to-use online tool by bioinformaticians and oncologists alike.

Keywords: pseudogenes; database; functional prediction; gene regulation; network analysis; high-performance computing;
graphics processing unit; competing endogenous RNA

Background

Pseudogenes were previously considered unimportant relics of
evolution that played an unclear role in biological processes
[1]. However, more pseudogenes have been discovered to be in-
volved in gene regulation [2–4]. These regulatory relationships
between pseudogenes and genes have increasingly been ex-
plored, such as the transcriptional regulation of PTEN by pseu-
dogene PTENP1 in several cancer conditions [5]. PTEN acts as a
tumor suppressor gene, which is underexpressed in gastric can-
cer. However, by overexpressing PTENP1 in gastric cancer, both
PTEN underexpression and cell proliferation are mitigated via
the regulatory relationship between PTEN and PTENP1 [6]. Re-
lationships between these pseudogenes and their parent genes
have been found to play critical roles indicating functional po-
tentials of these pseudogenes [7, 8]. This point can most clearly
be seen in the importance of the role that sequence homology
between pseudogenes and coding genes plays in competing en-
dogenous RNA (ceRNA) networks [9, 10]. In ceRNA networks the
pseudogenes act as decoy targets for the microRNAs (miRNAs)
targeting a protein-coding gene. In short, researchers have made
huge strides in understanding pseudogenes from genomic vari-
ation to functional potentials [11, 12], and from “deciphering”
the mechanism of ceRNA networks [13] to experimental valida-
tion [14].

With this progress, there has been renewed interest in
pseudogenes, especially in relation to cancer [15]. This inter-
est has even uncovered biomarkers in human cancer includ-
ing but not limited to SUMO1P3 upregulation as a diagnostic
biomarker in gastric cancer and OCT4-pg4 expression as a prog-
nostic biomarker in hepatocellular carcinoma [16–18]. Pseudo-
gene expression has been used to stratify tumor subtypes in
seven distinct cancer types [19]. However, owing to the close se-
quence homology between pseudogenes and their parent genes,
identifying the expression profile unique to a pseudogene or
highly homologous gene can be challenging. Efforts have been
made to address these technical challenges in estimating pseu-
dogene expression using modified alignment and quantification
techniques [20]. Perhaps more intriguing is that pseudogenes
can be somatically acquired in cancer development effectively
“representing a new class of mutations” [21, p.1] that can be
either activating or inactivating mutations which function as
an on/off switch [22]. Specific pseudogenes have been impli-
cated in specific cancers. For example, FTH1 regulates tumori-
genesis in prostate cancer [23], TP73-AS1 regulates proliferation
in esophageal squamous cell carcinoma [24], and pseudogenes
NKAPP1, MSTO2P, and RPLP0P2 are associated with poor progno-
sis in lung adenocarcinoma [25].

For these reasons, having a complete understanding of these
pseudogene-gene (PGG) relationships is important. While study-
ing these relationships, a common conception is to only con-
sider the pseudogenes in relation to their parent genes with
highest homology [7–9, 26]. There have also been pioneering
studies probing pseudogene functions through aligning them to

parent proteins (corresponding to the parent genes) and then to
parent protein domains [7, 27, 28].

The conventional idea of single parent genes may not be
comprehensive enough to model the complex phylogenetic re-
lationships involving multiple genes and pseudogenes in a ho-
molog family. While pseudogenes diverged from their parent
genes distantly in the past, only the daughter protein-coding
genes other than the original parent gene may now exist. The
result is that aligning to the true phylogenetic parent gene it-
self may not be possible. For this reason, we advocate the use
of homologous gene families rather than single parent genes to
compare against pseudogenes. By viewing the homologies as a
weighted network instead of a single scalar value, we believe
that new relationships can be uncovered.

We build the PGG family databases using two methods:
(i) CUDAlign [29] based local alignment of all pseudogenes to
gene families (totaling 1.6 billion individual local alignments
and >40,000 graphics processing unit [GPU] hours). By align-
ing all pseudogenes to all gene families (CUDAlign), we can
study underlying sequence homology and more easily set cut-
offs to assign pseudogenes to gene families. (ii) Basic Local
Alignment and Search Tool (BLAST) [30] based assignment of
pseudogenes to gene families. This provides a fast heuristic
search option. BLAST derivative methods have been commonly
used to find parent genes in previous pseudogene studies [31,
32]. Using these two methods, we show that these pseudo-
genes are usually assigned to the gene family of their parent
genes but are often not exclusively so. Besides, most pseudo-
genes can be categorized into processed pseudogenes and un-
processed pseudogenes depending on whether they came from
retrotranscription of messenger RNAs [11, 33, 34]. We take these
differences into account using both of our methods (CUDAlign
and BLAST).

Furthermore, we make these data publicly downloadable
from GitHub [35]. We also created an R Shiny web application
called PseudoFuN (Pseudogene Functional Networks) [36] that
supports querying the PGG databases, interactive visualization
and functional analysis of the PGG networks, and visualization
of PGG co-expression and miRNA binding (including binding
prediction with Miranda [37], PicTar [38], and TargetScan [39])
using The Cancer Genome Atlas (TCGA) and GTEx (Genotype-
Tissue Expression) Project–derived public data [20, 40, 41]. Be-
sides, we provide another interactive web application hosted by
the Ohio Supercomputer Center (OSC), which supports querying
novel sequences against any of our PGG databases and visual-
ization of the resulting PGG networks.

The PGG databases can be used to study pseudogene-gene-
miRNA co-expression indicative of ceRNA networks across the
entire TCGA. With these diverse tools provided by PseudoFuN,
it is possible to generate hypotheses regarding (i) the regulatory
roles of pseudogenes across tumor and normal tissue, (ii) PGG
relationships through de novo reassignment of pseudogenes to
gene families, and (iii) functional annotation of pseudogenes.
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We expect these databases and tools to have more use in cancer
studies.

Methods
Construction of PGG database

To generate these gene families, we use two methods: (i)
CUDAlign-based local alignment of pseudogenes against con-
sensus sequences representing gene families and (ii) BLAST-
based search of pseudogene sequences against all gene se-
quences (Fig. 1). These two approaches can be thought of as
heuristic but different processes. The local sequence align-
ment approach is heuristic in that only two gene sequences
are used from each gene family to reduce the search space.
These sequences are the most similar and representative
sequences to all the other gene sequences in the family.
The BLAST-based approach is heuristic in that not all se-
quences are fully aligned during the process due to the
seed-and-extend steps of BLAST [42]. The result is that not
every relationship between pseudogene and gene family is
recorded, which is an advantage in runtime but a disadvantage
in studying underlying sequence homology.

CUDAlign-based local alignment of gene families
Gene homolog families were generated using the Ensembl
biomart gene homolog database [43, 44]. The pairs of homolo-
gous genes were separated into connected components using
the Python networkx package [45]. These connected component
sub-graphs are considered gene families in this study. To reduce
the number of alignments that needed to be performed, we se-
lected consensus genes from each family that would be used to
represent the entire family.

The consensus sequences were selected by aligning every
member of the gene family to every other member using local
alignment with CUDAlign [29]. The two members of the fam-
ily with the largest sum alignment scores across all other fam-
ily members were selected as the consensus sequences to in-
crease the number of candidate sequences. If only one mem-
ber existed in the family, then that member was the consen-
sus sequence. Using the list of these consensus sequences we
then aligned every consensus sequence to every pseudogene in
the human genome GRCh38 annotated by GENCODE Release 25
(GENCODEv25) [46].

Specifically the pseudogenes are split up into processed,
unprocessed, and other (unclear whether processed or unpro-
cessed) on the basis of their mechanisms of formation [47]. We
performed different alignment procedures for processed and
unprocessed pseudogenes. The processed pseudogenes were
aligned to all consensus gene transcripts with the highest local
alignment score recorded. The unprocessed pseudogenes were
aligned to the full genomic sequences of each of the consensus
genes with the highest local alignment score recorded. Theo-
retically unprocessed pseudogenes can align to both exonic and
intronic regions of DNA, while processed pseudogenes can only
align to exonic regions. In our previous database we did not per-
form this two-procedure strategy in part to reduce the runtime
of the problem [48]. These changes make the database much
more complete and biologically relevant. The other pseudogenes
were aligned to both the transcripts and the genomic sequence
recording the highest score.

These scores, one for each combination of pseudogene to
gene family, were stored for further analysis. Pseudogenes were
assigned to families using a cutoff score (i.e., percentiles of the

alignment scores per PGG alignment matrix) and a maximum
number of assignments (i.e., the top four alignments above a
cutoff). If greater than the top four alignments were used, the
PGG families were too large to calculate the pairwise alignment
matrix. The resulting sets of pseudogenes and genes are called
PGG families. This method was used to allow a pseudogene to be
assigned multiple families as well as prevent pseudogenes from
being assigned families if their alignment score was low. We
used the 99th percentile cutoff (corresponding alignment score
54), 99.9th percentile cutoff (135), and the 99.99th percentile
cutoff (198) to generate three resultant databases named CUD-
Align54, CUDAlign135, and CUDAlign198, respectively. A fourth
database that is less stringent, CUDAlign18, is also included in
the web applications using a 97.5th percentile cutoff (18). All
these flavors of databases are available for search in our web ap-
plications.

BLAST-based generation of PGG families
In contrast to the local alignment of every combination of pseu-
dogene to gene family, PGG families were also created by as-
signing the pseudogenes to the family containing its closest
BLAST search match. This approach was used to contrast with
the CUDAlign method, which uses up to the top four matches.
The pseudogenes were separated into processed, unprocessed,
and other. Then, all genes in the GENCODE Release 25 anno-
tation were used to generate genomic, transcript, and com-
bined BLAST databases (BlastDB). The processed pseudogenes
would be BLAST searched against transcript BlastDB, unpro-
cessed against the genomic sequence BlastDB, and the other
pseudogenes were BLAST searched against the combined ge-
nomic/transcript BlastDB. The pseudogene was assigned to the
gene family containing the best match from the BLAST search.

Comparison between PGG families and
pseudogene–parent gene pairs

We also conduct a comparison to the Pseudogene.org resource
[49]. In this comparison, we consider pseudogenes and parent
gene pairs from the Pseudogene.org psiDr [31] database (old) [50]
and on GENCODE Release 10 from the Pseudogene.org psiCube
[11] database (new) [51]. From our databases, we consider every
combination of pseudogene to gene within a PGG family as a
pair (e.g., a family with 3 genes and 2 pseudogenes would have
C3

2 = 6 pairs). Because we have multiple flavors of PGG databases
including the BLAST-based version and the CUDAlign-based
versions, we compare the intersections between two Pseudo-
gene.org versions and our BLAST/CUDAlign-based versions. We
show the intersections of PGG pairs in Venn diagrams.

Development of PseudoFuN web applications

Aside from generating different flavors of the PGG databases, we
assemble them into an online R Shiny application called Pseudo-
FuN [36], which supports gene and pseudogene symbol queries
against our PGG databases, generates dynamic networks, pro-
duces gene ontology [52] (GO) tables, and provides additional
functional analysis features (Table 1). The functionalities, such
as calculating the gene co-expression for any resultant PGG net-
work in any of the TCGA [53] cancer types, are important for
ceRNA network hypothesis generation in human cancers. More
information can be found in the README file and tutorial on the
PseudoFuN website.

Additionally we created another web application hosted by
the OSC OnDemand [54] platform. This application has multi-
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Figure 1: Workflow for both CUDAlign and BLAST databases. Left side PGG families are produced using the BLAST matches. Right side PGG families are produced using
the PGG family alignment matrix with percentile cutoffs using CUDAlign.

ple functionalities including the query of Ensembl gene ID or a
novel sequence against one selected flavor of our databases. For
each of these features we provide a simple-to-use interface that
allows users to select which database to query, allows download
of the query hits, and allows users to interactively explore the
PGG family networks including GO information.

Use cases in multiple cancers

Furthermore, three use cases are provided to show the poten-
tial utility of PseudoFuN to researchers and oncologists look-
ing for functional relationships between pseudogenes, genes,
and miRNAs. Use Case I validates known PGG functional rela-
tionships. Use Case II identifies high-confidence novel miRNA-
pseudogene-gene relationships. Use Case III is primarily fo-

cused on agreement with a validation study. We focused on
pseudogenes/genes that were differentially expressed (DE) in
low RARG/low TACC1/high miR-96 compared to the reverse in
prostate cancer cell lines and also DE in our PGG networks in
TCGA prostate cancer samples.

Results
Local alignment of gene families

We performed 1.6 billion local alignments between all pseudo-
genes and all gene family consensus sequences. The process re-
quired >40,000 GPU hours on the Oakley cluster at the OSC. The
highest scores for each gene family and pseudogene were stored
in a 17,273 × 26,754 matrix of pseudogene-to-gene-family align-
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Table 1: Summary of features that are freely available at the PseudoFuN website

PseudoFuN feature Additional description

Interactive visualization of PGG family networks
including the query pseudogene/gene

Users can query any single gene or pseudogene symbol, e.g., PTENP1. Nodes
are colored by sub-clusters within the network.

Functional enrichment analysis of PGG family Functional enrichment can be conducted on the genes within the PGG family
on Biological Process, Molecular Function, or Cellular Components
annotations. The GO functional enrichment is calculated with (i) Fisher exact
test [55], (ii) Kolmogorov-Smirnov Classic [56], or (iii) Kolmogorov-Smirnov
Elim [56].

Genomic loci mapping of PGG family The genes in the PGG family can be mapped back to the genome using a circus
plot to identify potential loci of interest.

Data download for all of the figures Users can also download results including (i) the DPgE table for all
pseudogenes in the selected cancer, (ii) the gene and pseudogene expression,
(iii) miRNA correlation table.

Links to other gene databases for more
information

By directly clicking the node in the network, users can open the GeneCards
and Ensembl websites [43, 57] for detailed gene information.

Gene/pseudogene co-expression analysis across
the entire TCGA

Once a PGG family has been identified the gene/pseudogene co-expression
matrix is calculated across 1 of the 32 available TCGA cancer types.

Tumor vs normal DE of genes/pseudogenes
across all TCGA cancer types

The gene/pseudogene DE is calculated for all members of the selected PGG
family. There is also an option to run DE on a specified cancer for all
pseudogenes, which can be viewed or downloaded as a table.

Predicted miRNA targets involved in the PGG
families across all TCGA cancer types

The miRNA targets involved in the selected cancer and PGG family are
displayed to show which miRNAs could regulate the PGG family members
using the miRNA correlation tables from TCGA.

DPgE analysis Differential pseudogene expression is calculated for each of the pseudogenes
in TCGA cancers using dreamBase expression information [20]. The online
tool allows for manipulation and download of the table.

DE: differential expression; DPgE: differential pseudogene expression.

ment scores (∼462 million elements). From this matrix, we are
able to explore global PGG family homology relationships and
assign pseudogenes to ≥1 gene families with high sequence ho-
mology.

As one might expect, the number of pseudogenes with high
alignments (defined as above a percentile threshold) to many
gene families is relatively low. It can be seen that the major-
ity of pseudogenes will align to one gene family in the CUD-
Align databases (Fig. 2). We evaluate alignment of pseudogenes
to genes using the Smith-Waterman local pairwise alignment
score [58] between a pseudogene and a gene. These scores in-
dicate the highest score possible for two sequences based on
their specific dynamic programing matrix, which is solved by
the Smith-Waterman algorithm. The cutoffs we use, 18, 54, 135,
and 198, indicate the 97.50th, 99.0th, 99.90th, and 99.99th per-
centiles of alignment scores in our alignment matrix between
all pseudogenes and consensus sequences. Another feature of
note is that there are some pseudogenes that align to many
gene families (e.g., nine pseudogenes, UBE2Q2P1, RP11-313J2.1,
TPTEP1, BMS1P1, CTD-2245F17.3, SCAND2P, GTF2IP7, WHAMMP3,
and IGLV3-2, have alignment scores >54 in 15,000 gene families
and 571 pseudogenes [see Supplementary Table 2] have align-
ment scores >54 in 1,000 gene families).

In contrast to previous belief in single PGG homology, some
pseudogenes are related to many genes. It is worth considering
that these high-homology pseudogenes (e.g., FTLP10 with 3,006
gene family pairwise alignments over a 54 threshold) may play
a role in regulating major biological processes [59] and disease
[60]. Of the nine highest homology pseudogenes (Supplementary
Table 2), one, RP11-313J2.1, is a zinc finger pseudogene and two,
CTD-2245F17.3 and SCAND2P, are located in the promoters of
zinc finger genes. Four pseudogenes in the nine highest homol-
ogy pseudogenes ( RP11-313J2.1 , CTD-2245F17.3, SCAND2P, and

WHAMMP3) also have 92–96% sequence identity with zinc finger
genes (ZNF72P , ZNF518A, ZNF37A, and ZNF788P / ZNF20 , respec-
tively) when BLAST searched against the human genome. Of the
571 highest homology pseudogenes (Supplementary Table 2),
we found 27 zinc finger pseudogenes. Using EnrichR [61] we
identified enrichment in GO Molecular Function GO:0 004430 1-
phosphatdylinositol 4-kinase activity (Fisher exact test P-value
= 0.001), and enrichment for GO Biological Process GO:00 70475
rRNA base methylation (Fisher exact test P-value = 0.003). In
the ARCHS4 database [62] 324 transcription factors were signifi-
cantly co-expressed (Benjamini-Hochberg adjusted Fisher exact
test P-value < 0.05) with members of the 571 highest homol-
ogy pseudogenes. Of those 324 transcription factors, 228 were
zinc finger genes. These findings show that the highest homol-
ogy pseudogenes, like zinc finger genes, likely contain repetitive
elements that align to many genomic loci.

BLAST generation of PGG families

The BLAST-generated database was larger than the CUDAlign-
generated databases, with 68,578 total connections. This
database was also much simpler to compute because it was
not an exhaustive search. These conclusions make it a simple
method for quickly estimating the pseudogene-to-gene relation-
ships.

Direct comparison to pseudogene parents

We compare our databases to the previous pseudogene–
parent gene databases retrieved from Pseudogene.org resources
(Fig. 3). This shows that our methods reconstruct most of the
pseudogene–parent gene relationships identified by Pseudo-
gene.org. The overall consistency of our databases (BLAST and
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Figure 2: The number pseudogenes that align to gene families. The x-axis is the number of gene families, which have an alignment score above a specified cutoff (the
different colored lines). The y-axis is the number of pseudogenes with an alignment score higher than the cutoff to the number of gene families on the x-axis. The

inset gray box is a closer view of the low-range gene family numbers (1–10) to show higher-resolution patterns.

CUDAlign) with both Pseudogene.org databases (new and old)
was 75% (i.e., all our databases combined). Individually, the
BLAST-based database contained 61% of the Pseudogene.org
relationships (both new and old) and the CUDAlign 54 cutoff
contained 60% of the Pseudogene.org relationships (both new
and old). Our databases also generated a larger pool of possi-
ble interactions. It is worth noting that 391 pseudogenes and
152 genes in the new Pseudogene.org (GENCODE Release 10)
are not present in the GENCODE Release 25 annotation used in
our analysis. These genes and pseudogenes together account
for 1,030 edges that were used in our comparison. Accounting
for these differences in the annotation, we are able to recon-
struct 85% of the PGG relationships in the new Pseudogene.org
database. Because these associations were generated without
prior PGG relationship information and the annotations have
changed slightly since Pseudogene.org, our methods prove to in-
dependently identify known and unknown PGG relationships at
a high rate.

Development of a pseudogene query tool

The R Shiny application is a comprehensive hypothesis-
generating tool that is freely available on the internet [36]. This
tool provides a wide array of functionality that a researcher can
access quickly and download results as the raw data for more in-
depth analysis. These features are outlined in detail in Table 1.

Use cases: Assisting functional study of ceRNA networks in cancer
To illustrate the utility of our databases and tools we present

three use cases.

Use Case I: to validate known PGG relationships, we first
identified 31 benchmark PGG relationships from three stud-
ies [ 15, 16, 23] and query our databases. These studies rep-
resent prominent regulatory pseudogenes in cancers by estab-
lished laboratories. We query a gene/pseudogene name one at
a time, and PseudoFuN will return the top PGG network(s) that
contain the query (Table 2). In general, we found that our
databases together were able to identify 87% of the benchmark-
ing cases (Table 2) and the CUDAlign versions were able to iden-
tify 65% of the benchmarking cases. Perhaps most importantly,
three of the cases identified by CUDAlign ( ATP8A2 , CXADR,
PERP) were not identified by the more traditional BLAST ap-
proach (Table 2), showing that consensus sequence alignment
can identify some overlooked relationships. Next, individual
benchmark cases were evaluated in more detail (Supplementary
Fig. 2).

PTENP1 is a processed pseudogene homologous to PTEN, a
tumor suppressor gene. PTENP1 is selectively lost in cancer and
may regulate PTEN expression as a miRNA decoy target [5, 6]. We
have observed differential co-expression patterns of PGG fami-
lies in tumor vs normal tissue for PTENP1 network in multiple
cancers including breast cancer (Supplementary Fig. 3B and C).
We identified known miRNAs (hsa-miR-93 targets PTEN in breast
cancer [63]) targeting PTEN PGG network nodes, providing in-
sights into ceRNA regulation (Supplementary Fig. 3D). These in-
sights are important because some pseudogenes competitively
bind to miRNAs and thus regulate gene expression. We also
identify hsa-miR-103a-3p, known to regulate PTEN in endometrial
[64] and colorectal cancers [65], in breast cancer (Supplemen-
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Table 2: Benchmarking analysis of PseudoFuN databases

Gene BlastDB CUDAlign18 CUDAlign54 CUDAlign135 CUDAlign198 PMID

PTEN Yes No No No No 26442270
TUSC No No No No No 26442270
INTS6 Yes No No No No 26442270
OCT4 Yes Yes Yes Yes Yes 26442270
HMGA1 Yes Yes Yes Yes Yes 26442270
CYP4Z1 No No No No No 26442270
BRAF Yes No No No No 26442270
KLK4 No No No No No 22726445
ATP8A2 No Yes Yes No No 22726445
CXADR No Yes Yes Yes Yes 22726445
CALM2 Yes Yes Yes Yes Yes 22726445
TOMM40 Yes Yes Yes Yes Yes 22726445
NONO Yes Yes Yes Yes Yes 22726445
PERP No Yes Yes Yes Yes 22726445
DUSP8 Yes Yes No No No 22726445
YES1 Yes Yes No No No 22726445
GJA1 Yes No No No No 22726445
AURKA Yes Yes Yes Yes Yes 22726445
RHOB No No No No No 22726445
HMGB1 Yes Yes Yes Yes Yes 22726445
EIF4A1 Yes Yes No No No 22726445
EIF4H Yes Yes Yes Yes Yes 22726445
SNRP6 Yes Yes Yes Yes Yes 22726445
RAB1 Yes No No No No 22726445
VDAC1 Yes Yes No No No 22726445
RCC2 Yes No No No No 22726445
PTMA Yes Yes Yes Yes Yes 22726445
NDUFA9 Yes Yes Yes Yes Yes 22726445
CES7 Yes No No No No 22726445
EPCAM Yes Yes Yes Yes Yes 22726445
FTH1 Yes Yes Yes Yes Yes 29240947
Hits 24/31 20/31 16/31 15/31 15/31
Total hits 27/31

Genes indicate the gene with which the pseudogenes are associated in the literature. BLAST and CUDAlign columns indicate the specific databases. PMID indicates
the literature from which the PGG relationship was derived. Benchmark totals are included at the bottom of the table.

tary Fig. 3D). The miRNA hsa-miR-20a, known to regulate PTEN
by the ceRNA mechanism in prostate cancer [66], was also iden-
tified in breast cancer. The ceRNA network regulatory relation-
ship is governed by effect modulation of miRNA on gene expres-
sion by pseudogene expression (Supplementary Fig. 1A, C, E).
This leads to a correlation between pseudogene (miRNA decoy
targets) and gene (miRNA targets) expression (Supplementary
Fig. 1D), where pseudogenes and homologous genes competi-
tively bind to miRNAs. KRAS-KRASP1 regulatory network was
also identified by our database (Supplementary Fig. 2). KRAS and
KRASP1 are known to be involved in ceRNA network regulation
[5, 10, 66]. PseudoFuN query of KRAS identified co-expression
patterns in prostate cancer consistent with ceRNA network reg-
ulation by hsa-miR-145, a known modulator of KRAS in prostate
cancer [67]. The FTH1 query also resulted in the identification of
pseudogenes (FTH1P2, FTH1P8, FTH1P11, FTH1P16) that regulate
FTH1 in prostate cancer [23] as well novel miRNAs that may be
involved in ceRNA network regulation of FTH1 in prostate cancer.
GBP1 is an IFN-α–induced transcript that is involved in immune
response in prostate cancer [68]. The GBP1-involved PGG net-
work also contained the pseudogene GBP1P1, which may have
a ceRNA regulatory role in breast cancer [69] and in some neu-
rodegenerative diseases [70].

Use Case II: We wanted to identify possible gene-miRNA re-
lationships of interest within our database. We chose to study

these relationships with respect to miR-96, a known cancer reg-
ulator miRNA in prostate cancer [71]. Through DE analysis be-
tween tumors in the TCGA-PRAD cohort with lower expression
of RARG and TACC1 (also a miR-96 target) and high expression of
miR-96 (low RARG/low TACC1/high miR-96), compared to the re-
verse, we previously identified that altered SOX15 gene expres-
sion is significantly associated with worse disease-free survival.
We visualized expression patterns of SOX15 PGG families, and
corresponding miRNA associations, where miR-96 is included as
a validation.

Interestingly we identified the pseudogene PPP4R1L as a po-
tential member of a SOX15 ceRNA network (Fig. 4A). PPP4R1L and
SOX15 are both significantly DE between tumor and normal con-
trols (Bonferroni-corrected P-value = 3.42 × 10−7, 2.01 × 10−14,
respectively; Fig. 4E). PPP4R1L and SOX15 are significantly co-
expressed (Pearson correlation coefficient = 0.51, P-value < 2.2 ×
10−16) in tumor tissue but much less correlated in normal con-
trols in prostate cancer (Pearson correlation coefficient = 0.24,
P-value = 0.09; Fig. 4B and C). Positively correlated expression
is an assumption when determining ceRNA network relation-
ships [72] (Supplementary Fig. 1). Both SOX15 and PPP4R1L are
likely regulated by hsa-miR-375 based on the TCGA prostate can-
cer dataset. hsa-miR-375 is associated with docetaxel resistance
in prostate cancer [73, 74] and PPP4R1L knock-down in HeLa
cells induces taxol resistance [75]. These findings are intriguing
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Figure 3: Comparison of database members. The top six plots are comparisons between the CUDAlign databases using different cutoffs, the BLAST database, and
the Pseudogene.org parent genes. The bottom row shows intra-database comparisons, left: Pseudogene.org, middle: CUDAlign database of different alignment score
cutoffs, right: relative size of all databases.

because taxol and docetaxel are closely related chemical com-
pounds. PPP4R1L is also located in a region associated with high
mutation rates in cancer cell lines [75], which could be indicative
of mutational “on/off switches” in pseudogene regulation.

Use Case III: We were most interested in the DE genes (and
related pseudogenes) that both appeared in our PGG database
and were contained in networks with genes DE in low RARG/low
TACC1/high miR-96 compared to vice versa. We searched the
DE genes in our PGG database and identified the top networks
with enriched number of DE genes. As a result, parent genes
HTR7, CNN2, MSN, and TAGLN2 are DE; they generate pseudo-

genes, which are specifically expressed in prostate cancer sam-
ples [16]. These four parent genes are also detected in our five
top PGG families involving miR-96–regulated (direct or indirect)
DE genes. We identified HTR7P1 pseudogene in the same PGG
family as HTR7 gene, which is potentially regulated by hsa-miR-
607 and hsa-miR-3654 in the TCGA prostate cancer dataset (Sup-
plementary Fig. 4). Eleven CNN2 pseudogenes (CNN2P1-CCN2P4,
CNN2P6-CNN2P12) were identified in the CNN2 PGG family along
with TAGLN2 and TAGLN2P1. TAGLN2P1 is DE between the tu-
mor and normal samples in the prostate dataset (Supplemen-
tary Fig. 5; Bonferroni-corrected P-value = 6.23 × 10−4). MSN and
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Figure 4: PseudoFuN online output for SOX15 PGG family. A, Interactive graph visualization of the SOX15 PGG network. B, TCGA prostate co-expression matrix for

SOX15 PGG family genes and pseudogenes across normal samples. C, TCGA prostate co-expression matrix for SOX15 PGG family genes and pseudogenes across tumor
samples. D, Negatively correlated miRNAs for all members of the SOX15 PGG family. E, Differential gene and pseudogene expression for tumor and normal samples
for each member of the SOX15 PGG family in the prostate cancer TCGA dataset. FPKM: fragments per kilobase million.

MSNP1 were in the same PGG family and hsa-miR-96 potentially
regulates MSN in the TCGA prostate cancer dataset (Supplemen-
tary Fig. 5). In addition, although our DE genes were detected
from prostate cancer, we further compared them with DE pseu-
dogenes identified in four other cancer types and we observed
interesting results (see Supplementary Materials—Potential reg-
ulatory roles in cancer).

Discussion

We identify 133,770 PGG families that have significant potential
to reveal important information about regulatory PGG relation-
ships in health and disease. Within these families we identify
both new and existing regulatory networks that contain pseu-
dogenes such as PTENP1, KRAS1P, FTH1P8/11/16, and GBP1P1
(Fig. 4). Because all genes and all pseudogenes are included in
our database, there are thousands of opportunities to identify
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new regulatory relationships. These thousands of opportunities
can be easily stratified using gene name, pseudogene name, and
cancer type. Our PseudoFuN web application makes it a simple
and intuitive process to query pseudogenes (or genes) to identify
which gene families they may be regulating as well as the func-
tions that are attributed to the members of the network. We also
have an application hosted by the OSC that allows the querying
of novel sequences against our database.

From these networks, we can also identify possible rela-
tionships of DE pseudogenes in various cancers. For instance,
both PPP4R1L pseudogene and SOX15 are DE in prostate cancer
and associated with hsa-miR-375. These types of relationships
should be further evaluated along with more complex regula-
tion with multiple miRNAs, pseudogenes, and genes. It is ex-
perimentally shown that SOX15 is regulated by hsa-miR-96 [71]
and it may be important to include hsa-miR-96 in the hsa-miR-
375-SOX15-PPP4R1L potential ceRNA network. Aside from PGG
family-specific differential pseudogene expression, the Pseud-
oFuN application allows for comprehensive differential pseu-
dogene expression (DPgE) analysis in any of the TCGA cancer
datasets.

The use of this database also has utility in integrative anal-
ysis where the databases can be used as a mask for other data
modalities. Some examples would be using the nodes (genes and
pseudogenes) in each of the PGG families as groups in gene ex-
pression experiments. Similarly, these groups could be used for
feature reduction when visualizing data. We hope researchers
can use these relationships we have identified to reduce large
numbers of candidate associations down to numbers that can
be easily validated and generate new candidates when query-
ing novel sequences. For instance, miRNA-gene pairs filtered
through the sets of PGG families would identify high-priority
ceRNA candidates.

Conclusions

We generate multiple large databases of PGG family relation-
ships and the tools to study them for use by biomedical re-
searchers. These databases are more comprehensive than pre-
vious PGG databases by including many more homology rela-
tionships in PGG families, thus more powerful for experiment
validation and knowledge discovery. These databases are useful
in identifying PGG regulatory relationships in 32 cancer types
and show high similarity with known PGG relationships. Aside
from the known relationships we identify many unknown rela-
tionships. Furthermore, these databases and associated analy-
ses can be easily accessed online or through the OSC OnDemand
platform, allowing for novel hypotheses to be assessed quickly
by biomedical researchers. We find evidence of both known reg-
ulatory PGG relationships and novel hypothesized relationships
that we plan to validate. PseudoFuN is a comprehensive, dy-
namic tool that allows any bioinformatician or oncologist to find
novel regulatory pseudogenes within their cancer or gene net-
work of interest.

Availability of supporting data and materials

We have made the PGG family data publicly downloadable
from GitHub [35]. We also created an R Shiny web applica-
tion called PseudoFuN [36] that supports querying the PGG
databases, interactive visualization and functional analysis of
the PGG networks, and visualization of PGG co-expression and
miRNA binding. Apache License 2.0 is associated with Pseud-

oFuN (R Shiny web application). These data are also available
in GigaDB [76]. In addition, we provide another interactive web
application hosted on Ohio Supercomputer Center (OSC) OnDe-
mand, which supports querying novel sequences against any
of our PGG databases and visualization of the resulting PGG
networks.

Availability of supporting source code and
requirements

Project name: PseudoFuN
Project home page: https://github.com/yanzhanglab/PseudoF
uN app, https://github.com/OSC/pseudofun, https://integrativ
eomics.shinyapps.io/pseudofun app/
Operating system: platform independent
Programming language: R, Python, JavaScript
Other requirements: not applicable
License: CC, MIT
RRID:SCR 017095
OSC OnDemand application access: contact
yan.zhang@osumc.edu.

Additional files

There is an additional Supplementary Materials file containing
additional information on the data and additional analyses. It
includes the following figures and tables:

Supplementary Figure 1. Example of ceRNA network regula-
tion of gene expression. A, A graphical view of how pseudogene
expression can regulate gene expression. B, A cellular view of
ceRNA network regulation. C, Equations used to model the cor-
relation between gene and pseudogene expression in a ceRNA
network. D, The distribution of the PGG correlations based on
the models in C. E, The effect that pseudogene expression has
on the miRNA-induced change in gene expression.

Supplementary Figure 2. PseudoFuN online output for PTEN
PGG family. A, Interactive graph visualization of the PTEN PGG
network. B, TCGA prostate co-expression matrix for PTEN PGG
family genes and pseudogenes across normal samples. C, TCGA
prostate co-expression matrix for PTEN PGG family genes and
pseudogenes across tumor samples. D, Negatively correlated
miRNAs for all members of the PTEN PGG family. E, Differential
gene and pseudogene expression for tumor and normal samples
for each member of the PTEN PGG family in the prostate cancer
TCGA dataset.

Supplementary Figure 3. PseudoFuN online output for HTR7
PGG family. A, Interactive graph visualization of the HTR7 PGG
network. B, TCGA breast cancer co-expression matrix for HTR7
PGG family genes and pseudogenes across normal samples. C,
TCGA breast cancer co-expression matrix for HTR7 PGG fam-
ily genes and pseudogenes across tumor samples. D, Negatively
correlated miRNAs for all members of the HTR7 PGG family in
breast cancer. E, Differential gene and pseudogene expression
for tumor and normal samples for each member of the HTR7 PGG
family in the breast cancer TCGA dataset.

Supplementary Figure 4. PseudoFuN online output for
CNN2/TAGLN2 PGG family. A, Interactive graph visualization of
the CNN2/TAGLN2 PGG network. B, TCGA prostate co-expression
matrix for CNN2/TAGLN2 PGG family genes and pseudogenes
across normal samples. C, TCGA prostate co-expression matrix
for CNN2/TAGLN2 PGG family genes and pseudogenes across
tumor samples. D, Negatively correlated miRNAs for all mem-
bers of the CNN2/TAGLN2 PGG family. E, Differential gene and

https://github.com/yanzhanglab/PseudoFuN_app
https://github.com/OSC/pseudofun
https://integrativeomics.shinyapps.io/pseudofun_app/
https://scicrunch.org/resolver/RRID:SCR_017095
mailto:yan.zhang@osumc.edu
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pseudogene expression for tumor and normal samples for each
member of the CNN2/TAGLN2 PGG family in the prostate cancer
TCGA dataset.

Supplementary Figure 5. PseudoFuN online output for MSN
PGG family. A, Interactive graph visualization of the MSN PGG
network. B, TCGA prostate co-expression matrix for MSN PGG
family genes and pseudogenes across normal samples. C, TCGA
prostate co-expression matrix for MSN PGG family genes and
pseudogenes across tumor samples. D, Negatively correlated
miRNAs for all members of the MSN PGG family. E, Differential
gene and pseudogene expression for tumor and normal samples
for each member of the MSN PGG family in the prostate cancer
TCGA dataset.

Supplementary Figure 6. The PGG families in our network
with the most DE genes after miR-96 treatment. The line weights
indicate the sequence homology between members of the PGG
family. Red nodes indicate miR-96 targets. Yellow nodes with
names indicate other genes contained in the PGG family. Yel-
low nodes without names are pseudogenes contained within the
network.

Supplementary Figure 7. The user interface of the OSC On-
Demand web application. A, Main query page where a user can
search either sequences or Ensembl gene IDs. B, Representative
output of one of the gene searches. This includes an interactive
network and the GO information.

Supplementary Figure 8. GBP1P1 DE in TCGA prostate cancer
(information retrieved from Han et al.).

Supplementary Table 1. DE parent gene/pseudogenes poten-
tially regulated by miR-96 in prostate cancer vs TCGA-derived DE
pseudogenes.
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BLAST: Basic Local Alignment and Search Tool; ceRNA: compet-
ing endogenous RNA; DE: differential expression/differentially
expressed; DPgE: differential pseudogene expression; FPKM:
fragments per kilobase million; GO: gene ontology; GPU: graph-
ics processing unit; miRNA: microRNA; OSC: Ohio Supercom-
puter Center; PGG: pseudogene-gene; PseudoFuN: Pseudogene
Functional Networks; TCGA: The Cancer Genome Atlas.
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