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ABSTRACT 

Mechanical stimulation is a key regulator of bone mass, maintenance and turnover. Wnt 

signaling is a key regulator of mechanotransduction in bone, but the role of β-catenin—an 

intracellular signaling node in the canonical Wnt pathway—in disuse mechanotransduction is not 

defined. Using the β-catenin exon 3 flox (constitutively active; CA) mouse model, in conjunction 

with a tamoxifen inducible, osteocyte selective Cre driver, we evaluated the effects of 

degradation-resistant β-catenin on bone properties during disuse. We hypothesized that if β-

catenin plays an important role in Wnt-mediated osteoprotection, then artificial stabilization of β-

catenin in osteocytes would protect the limbs from disuse-induced bone wasting. Two disuse 

models were tested – tail suspension, which models fluid shift, and botulinum-toxin (botox)-

induced muscle paralysis, which models loss of muscle force. Tail suspension was associated 

with a significant loss of tibial bone mass and density, reduced architectural properties, and 

decreased bone formation indices in uninduced (control) mice, as assessed by DXA and µCT, 

and histomorphometry. Activation of the βcatCA allele in tail suspended mice resulted in little to 
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no change in those properties, i.e. these mice were protected from bone loss. Similar protective 

effects were observed among botox-treated mice when the βcatCA was activated. RNAseq 

analysis of altered gene regulation in tail suspended mice yielded 35 genes including Wnt11, 

Gli1, Nell1, Gdf5 and Pgf that were significantly differentially regulated between tail-suspended 

β-catenin stabilized mice and tail suspended non-stabilized mice. Our findings indicate that 

selectively targeting/blocking of β-catenin degradation in bone cells could have therapeutic 

implications in mechanically induced bone disease. 

Mechanical stimulation is a key regulator of bone mass, maintenance and turnover. 

Increased mechanical simulation (e.g., exercise) increases bone mass and formation, while 

decreased mechanical stimulation (e.g., prolonged bedrest) increases bone resorption/turnover 

and deceases bone mass. One pathway implicated in the response of bone mass to mechanical 

environment is the canonical Wnt pathway. Numerous studies highlight the role of Wnt in bone 

cell mechanotransduction. The membrane-localized Wnt co‐receptor Lrp5 is required for load‐

induced bone formation (1, 2). A secreted inhibitor of Lrp5, sclerostin, is decreased following 

mechanical loading (3); and transgene-induced increases in Sost expression during mechanical 

loading result in inhibition of mechanotransduction (4). Postnatal expression of Sost is localized 

almost exclusively to the osteocyte cell population, the mechanosensitive cell type in bone tissue 

(5, 6).  

Similar to overuse-associated mechanotransduction, disuse mechanotransduction also 

involves alterations in the Wnt signaling pathway. For example, Sost expression is increased in 

osteocytes soon after the inception of limb disuse (7). Further, expression of High Bone Mass 

(HBM)-causing missense mutations in Lrp5, or loss-of-function Sost alleles leads to an 

osteoprotective phenotype in mice when mechanical stimulation is removed by disuse models 

(tail suspension or botox-induced muscle paralysis)(8).  

Portions of the extracellular and membrane components of Wnt signaling, such as Sost 

and Lrp5, have received considerable experimental attention in the context of bone 

mechanotransduction in both overuse and disuse models. However, intracellular downstream 

nodes in the canonical Wnt pathway, such as β‐catenin, have a more poorly defined role in 

mechanical signaling in bone cells, particularly in an in vivo context. β‐catenin is a downstream 

mediator of canonical Wnt; activation of Lrp5/6 leads to stabilization and accumulation of β‐

catenin, which promotes target gene expression. It is unclear how, and the extent to which, β-
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catenin is altered in this response, or if increased levels/activation of β‐catenin would generate 

the same osteoprotective phenotype as reported for upstream components. Recent studies have 

evaluated the role of β-catenin in osteocytes (9, 10), but have not evaluated its actions in disuse 

mechanotransduction. We and others have reported that deletion of β-catenin in osteocytes 

results in decreased response to enhanced loading (11, 12), but the potential osteoprotective 

effects of β-catenin stabilization on disuse-induced bone wasting are not known.  

Given the important role of more upstream canonical Wnt pathway components in 

response to loading or disuse, we explored the role of β-catenin in disuse-associated mechanical 

signaling. Specifically, we investigated whether postnatal induction of a β-catenin allele 

encoding a degradation-resistant (ie. constitutively active) mutant protein in osteocytes could 

protect the skeleton from bone loss during mechanical disuse. We used the β-catenin exon3 flox 

mouse model (13), in conjunction with the tamoxifen-inducible Dmp1-CreERt2 driver line (14), 

to stabilize β-catenin in osteocytes in adult mice just prior to disuse (tail suspension or botox-

induced muscle paralysis). We hypothesized that if β-catenin plays an important role in Wnt-

mediated osteoprotection, then genetically engineered stabilization of β-catenin in osteocytes 

would protect the limbs from disuse induced bone wasting. 

MATERIALS AND METHODS 

Experimental mice 

All mice enrolled in the experiments harbored one floxed gain-of function β-catenin 

allele (exon 3 flox, hereafter referred to as constitutively active, or “CA”) and one floxed loss-of-

function β-catenin allele (exon 1-6 flox, hereafter referred to as loss-of-function, or “LOF”). 

Both gain-of function and loss-of-function β-catenin alleles have been described previously. 

Briefly, βcatCA mice contain LoxP sites flanking exon 3, which houses the code for the Gsk-3β 

phosphorylation site (required for degradation) of the β-catenin protein. βcatLOF mice harbor loxP 

sites in introns 1 and 6 of the βcat (Ctnnb1) gene, which results in a null allele upon 

recombination of the loxP sites. In the combined βcatCA/LOF mouse model that we bred, both 

alleles behave as wild-type prior to recombination. After Cre-mediated recombination, the mice 

are essentially heterozygous for the CA allele, as the LOF allele becomes null. We chose this 

approach to produce only the degradation-resistant protein in osteocytes, but to do so in a 

haploinsufficient context to avoid very high levels of active β-catenin within the cell. 10kbDmp1-

CreERt2 transgenic mice have been described previously (15). These mice harbor a cDNA for 
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the Cre recombinase–mutant estrogen receptor fusion protein that results in Cre sequestration in 

the cytosol (away from the chromatin) until the selective ligand tamoxifen is encountered (16). 

The CreERt2 gene was driven by a 10 kb fragment of the Dentin Matrix Protein-1 (Dmp1) 

promoter, which provides osteocyte and late osteoblast selectivity of expression (17). βcat+/LOF 

mice were bred to 10 kbDmp1-CreERt2 x βcat+/CA mice to generate littermate βcatCA/LOF mice 

that were either transgenic (hemizygous for CreERt2) or nontransgenic (CreERt2-negative). 

Male mice were selected for the muscle paralysis experiments, and female mice were selected 

for tail suspension experiments. Experimental mice were same-sex housed in cages of three to 

five (independent of Cre genotype) and given standard mouse chow and water ad libitum. All 

animal procedures were performed in accordance with relevant federal guidelines and conformed 

to the Guide for the Care and Use of Laboratory Animals (8th Edition). The Indiana University 

animal facility is an AAALAC-accredited facility. 

Cre induction 

To induce adult-onset recombination of the floxed βcat alleles, 12-week old mice were treated 

with 20 mg/kg tamoxifen free base (M&P Biomedicals, Santa Ana, CA). Tamoxifen powder was 

dissolved in dimethyl formamide (DMF) at a concentration of 100 mg/mL and then suspended in 

~150 μL of corn oil for IP injection. Mice that received vehicle treatment (no Cre induction) 

were injected with an equivalent volume of DMF alone suspended in 150 μL of corn oil. Mice 

were treated with single injections of tamoxifen or vehicle 3 days prior to the first day of disuse. 

Details for the experimental schedule are shown in Fig. 1. 

Droplet digital PCR assay for genomic recombination of the conditional β-catenin alleles 

Droplet digital PCR (ddPCR) was performed as previously described (18). Briefly, epiphyseal 

ends of bone were removed from cleaned long bones, decalcified in EDTA for 48 hours with 

gentle rocking and the bone marrow removed by extensive mechanical abrasion/washing with a 

swab and PBS. DNA was extracted from bone pieces using the DNeasy Blood and Tissue Kit 

(Qiagen) and 30 ng of cortical bone DNA was used in subsequent PCR reactions. Supermix for 

Probes mastermix (BioRad, Hercules, CA) was used following the manufacturer's 

recommendations. PCR was performed using Eppendorf EP gradient S machines, nanodroplets 

were created using an automatic droplet generator, amplimer containing droplets were counted 

with a QX200 sample reader, and data were analyzed using Quantasoft software (all 

instrumentation from BioRad). All reactions were run in duplicate. The primer pairs and probes 
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described below were purchased from IDT (Coralville, IA) and were used to amplify and 

quantify the number conditional and recombined alleles. At least 1300 amplimer-containing 

droplets per sample were created in order to measure Cre-mediated recombination. PCR primers. 

For the LOF allele, three PCR primers (loxP-f: tgaaggcatgcctgcagataacttc, cond-r: 

ctaggctatgtgccccgaca, rec-r: cccttcaatgcttagcaccgt) were used to generate 2 unique amplicons – 

223bp for the conditional allele and 163bp for the recombined mutant allele. Fluorescent probes 

were designed to complement each amplicon (conditional: 5HEX/agagcttcctgacaccgtggct 

/3IABkFQ, recombined: 56-FAM/ cgcgcacacacacacaggctc /3IABkFQ). PCR was performed 

(95°C/10min; 94°C/30sec; 60°C/60sec; 72°C/30sec; 40 cycles; 98°C/10min; 12°C hold) with 

cycling ramp time slowed to 1.2sec/°C. For the CA allele, thee PCR primers (f: 

TATCACGAGGCCCTTTCGTC, cond-r: cctgaagaagccatctacgaca, rec-r: tcattgcatactgcccgtca) 

were used to generate 2 unique amplicons – 327bp for the conditional allele and 273bp for the 

recombined mutant allele. Fluorescent probes were designed to complement each amplicon 

(conditional: 5HEX/ accctcacctgctctccttggct /3IABkFQ, recombined: 56-FAM/ 

catgtgggactccgctaccct /3IABkFQ) (PCR was performed (95°C/10min; 94°C/30sec; 60°C/60sec; 

72°C/30sec; 40 cycles; 98°C/10min; 12°C hold) with cycling ramp time slowed to 1.2sec/°C. For 

both alleles, template-less water controls were run in every assay to ensure consistency and 

identify any background signal.  

Hindlimb Suspension 

Eighty 12-week-old female mice were used for the hindlimb suspension experiments, comprising 

40 mice of each genotype (i.e., 40 Cre+; βcatCA/LOF and 40 Cre-; βcatCA/LOF). Each genotype was 

further divided into control and hindlimb-suspended mice with half of each of those subgroups 

receiving tamoxifen and half receiving vehicle (n = 10/group). All mice were individually 

housed following Cre induction/vehicle injection and a tail harness was used to suspend the 

experimental mice as previously described (8). Control mice were permitted unencumbered 

normal movement in their cages. Mice received intraperitoneal injections of alizarin (20 mg/mL) 

6 days prior to sacrifice and calcein (10 mg/kg) 3 days prior to sacrifice. Mice were suspended 

for a total of 4 weeks, and euthanasia was performed at the end of the 4th week of suspension.  
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Botulinum toxin (Botox)-induced muscular paralysis 

Eighty 12-week-old male mice were used for the Botox experiments, comprising 40 mice of each 

genotype (i.e., 40 Cre+; βcatCA/LOF and 40 Cre-; βcatCA/LOF). Each genotype was further divided 

into control (saline-injected) and Botox-treated mice, with half of each of those subgroups 

receiving tamoxifen and half receiving vehicle (n = 10/group). The right hindlimb musculature 

(quadriceps, triceps surae, tibialis anterior, hamstrings) was injected with 20 μL of Botulinum 

Toxin A (Botox; Allergan Inc., Irvine, CA), while the left hindlimb musculature was left alone 

and served as an internal control. Control mice received 20 μL injections of saline in the right 

hindlimb in an identical fashion as the Botox-treated mice. The injections (both Botox and 

saline) were repeated one week later to ensure paralysis in the Botox-treated group (8). Botox 

efficacy was qualitatively evaluated for each mouse every 3-4 days, based on the inability of the 

treated mice to use the limb in normal cage locomotion. 

Protein extraction and Western Blotting 

Protein extraction from mouse bones. Immediately after sacrifice, mouse femur, tibia and fibula 

were dissected, stripped of soft tissue, flushed to remove bone marrow. The remaining cortical 

bone tissue was immediately snap frozen in liquid nitrogen and pulverized to a fine powder in a 

mortar and pestle. 800 uL of 4X SDS-PAGE sample buffer was added directly to the mortar 

containing the bone powder, which immediately froze. The extract was thawed, collected, heated 

at 95oC for 5 min, centrifuged at 14,000 x g for 10 min, and the supernatant was retained to run 

directly on gels.  

Gel electrophoresis and transfer to nitrocellulose. Approximately 20 µg of protein from each 

sample was run on a 4-12% polyacrylamide gradient gel (GenScript) along with pre-stained 

molecular weight markers (Bio-Rad). Separated proteins were transferred to nitrocellulose 

overnight, after which the membranes were stained with PonceauS to visualize total protein and 

qualitatively evaluate protein loading consistency. Membranes were blocked for 2 hours in 5% 

powdered milk in TBST (wash buffer) then incubated with primary antibodies (diluted in 5% 

milk/TBST) at 4oC overnight, washed 6X in TBST, then incubated with species-appropriate 

HRP-conjugated 2o antibody for 1 hr at R/T. After a final 6X wash in TBST, the nitrocellulose 

was rinsed in deionized water and bound HRP was reacted with ECL reagent for 5 min 

(Amersham, ECL Prime Reagent). Blots were imaged using an iBrightCL1000 (Invitrogen). 
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Antibodies; mouse anti-β-catenin (Novus Biologicals) diluted 1:2000; mouse monoclonal anti-

vinculin (vin11-5, Sigma) diluted 1:5000; HRP donkey anti-goat IgG antibody (Jackson) 

1:10,000 or goat anti-mouse IgG antibody (Jackson) 1:10,000.  

Dual-energy x-ray absorptiometry (DEXA) 

Whole-body DEXA scans were collected on isolfuorane-anesthatized mice using a PIXImus II 

(GE Lunar) densitometer. All mice were scanned 3 days prior to disuse, and again after 4 weeks 

of disuse, immediately before euthanasia. From the whole-body scans, areal bone mineral 

density (BMD) and bone mineral content (BMC) were calculated for the right and left hindlimbs 

using the Lunar ROI tools. The coefficient of variation using the mouse hindlimb ROI (5 

consecutive DXA scans of the same mouse) is 0.013 in our hands. 

Micro-computed tomography (μCT)  

After sacrifice, the proximal half of formalin-fixed tibiae were scanned, reconstructed, and 

analyzed on a Scanco µCT-35 desktop microcomputed tomographer (Scanco Medical AG, 

Brüttisellen Switzerland) as previously described (8). Briefly, samples were scanned at 10-μm 

resolution, 50-kV peak tube potential and 151-ms integration time. Standard output parameters 

related to cancellous and cortical bone mass, geometry, and architecture were measured (19). 

The µCT coefficient of variation using BV/TV from the mouse femur distal metaphysis (5 

consecutive scans of the same femur) is 0.071 in our hands. 

Quantitative cortical bone histomorphometry 

Mice received injections of demeclocycline (90 mg/kg) 3 days prior to disuse, alizarin 

complexone (20 mg/mL) 6 days prior to sacrifice and calcein (10 mg/kg) 3 days prior to 

sacrifice. Mice were sacrificed 4 weeks after the initiation of disuse. After µCT scanning, the 

fixed tibiae were dehydrated in graded ethanols, cleared in xylene, and embedded in 

methylmethacrylate. Thick sections were collected at the tibial midshaft using a diamond-

embedded wafering saw. Sections were ground and polished to ~30 μm, mounted and 

coverslipped, then digitally imaged on a fluorescent microscope. Periosteal and endocortical 

bone formation parameters were calculated at the midshaft by measuring the extent of unlabeled 

perimeter (nL.Pm), single-labeled perimeter (sL.Pm), double-labeled perimeter (dL.Pm), and the 

area between the double labeling (dL.Ar) with Image-Pro Plus software (MediaCybernetics Inc., 

Gaithersburg, MD). The derived histomorphometric parameters mineralizing surface (MS/BS), 
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mineral apposition rate (MAR), and bone formation rate (BFR/BS) were calculated using 

standard procedures described elsewhere (20). Relative bone formation parameters were 

calculated by subtracting the disuse (right) limb value from the control (left) limb value for each 

mouse. 

RNA sequencing of osteocyte-enriched cortical bone lysates in tail suspended mice 

Female Cre+ and Cre- βcatCA/LOF (n=4-6/group) mice were used for transcriptional analysis. At 

12 weeks of age, Cre-mediated recombination of the βcat alleles was induced with tamoxifen as 

described above. Three days after Cre induction, mice were tail suspended (n=4-6) for 3 days or 

left alone as ground controls. On the 4th day, mice were euthanized and the tibia and femur 

cortical tubes (without marrow, periosteum, or epiphyses) were prepared for RNA extraction as 

previously described (21). Total RNA was purified using a Trizol/Qiagen RNeasy Kit prep. RNA 

quality was assessed using a bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). cDNA 

libraries were generated from Poly(A)+-enriched RNA using the Illumina TruSeq RNA Library 

Prep kit v2 (Illumina Inc., Hayward, CA, USA) and the libraries were sequenced using Illumina 

NextSeq. 550 sequencer (Illumina Inc., Hayward, CA, USA). RNAseq data (n=3/group) quality 

was checked using FastQC (version 0.11.5) software 

[http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc]. Sequence reads were mapped to the 

mouse reference genome (mm10) using STAR (version 2.6) (22).. After read mapping, 

“featureCounts” from Rsubread package (version 1.30.5) (23) was used to perform 

summarization of reads mapped to RefSeq genes, and gene-wise read counts were generated. 

Genes were filtered from downstream analysis if they did not have CPM (counts per million) 

value of at least 1 in at least three libraries. The data was normalized using TMM normalization 

method (24). Differentially expressed genes were identified using edgeR (version 3.22.3) (25). A 

gene was considered significantly differentially expressed when its false discovery rate (FDR) 

corrected p-value was less than 0.05 and fold change was greater than 2. Heatmaps were 

generated using heatmap.2 function in R package ‘gplots’.  

Statistical analysis 

Statistical analyses were conducted with SigmaPlot. The radiographic, histomorphometric, and 

biochemical endpoints were analyzed using one- or two-way (within transgene) ANOVA, with 

induction agent (oil/tamoxifen) and mechanical environment (control/disuse) as main effects. 

Post hoc comparisons within ANOVAs that achieved overall significance were made using 
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Fisher's protected least significant difference tests. If the Shapiro-Wilks Normality test failed, 

ANOVA on Ranks was run instead. Droplet digital PCR data were compared across alleles using 

the paired samples Wilcoxon test, based on the percent of droplets yielding a positive signal for 

recombination. Statistical significance was taken at p<0.05. Two-tailed distributions were used 

for all analyses. Data are presented as means ± SEM.  

RESULTS 

Recombination of β-catenin in bone following tamoxifen injection  

We first sought to validate the experimental mouse model by assessing whether the tamoxifen-

inducible Cre strategy we employed was efficient at recombining the floxed constitutively active 

(CA) β-catenin allele. Specifically, we tested at the protein level whether tamoxifen treatment 

induced the CA allele, and conversely, whether unprovoked recombination of the CA allele 

occurred in the absence of tamoxifen. To this end, β-catCA/LOF mice that were positive or negative 

for CreERt2 were raised to 10 weeks of age, treated with a single dose of tamoxifen, and 

sacrificed 3 days later. Protein was extracted from long bone cortices, subjected to SDS-PAGE, 

transferred to nitrocellulose, and blotted for β-catenin (Fig. 1B). Only mice that were both Cre-

positive and exposed to tamoxifen produced a significant lower molecular weight band, which is 

consistent with an internally truncated β-catenin protein that is 8.5kD lighter when lacking the 

amino acid sequence of exon 3. To assess whether the rates of recombination for the 

constitutively active (CA) and loss-of-function (LOF) alleles were similar, cortical bone genomic 

DNA was extracted from transgenic (TG) and non-transgenic (NTG) βcatCA/LOF mice treated 

with tamoxifen. ddPCR was performed to generate 1,500 amplimer-containing droplets/sample 

in 3 animals with each genotype. Primer and probe sets were designed to distinguish recombined 

and non-recombined CA and LOF alleles. Each ddPCR assay was performed in duplicate. LOF 

allele recombination rate was 15±3.6% for the βcat LOF allele and 11±2.9% for the βcat CA 

allele in TG tamoxifen treated mice. The different rates of recombination did not differ 

significantly between the LOF and the CA allele (p=0.13) and there was no recombination for 

either allele in the non-transgenic mice. Thus activation of the CA allele occurred at comparable 

rates as inactivation of the LOF allele in the experimental assays. However, ddPCR cannot 

measure the frequency with which recombination of each allele occurred in the same cell, nor 

can it distinguish recombination occurred in gDNA recovered from osteocytes or from other cell 

types (e.g., endothelial cells) in the cortical bone extracts. This latter point is important given the 
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recent report of numerous vascular channels in the mouse femoral cortex (26), which might 

easily escape removal during centrifugation and periosteal stripping.  

Tail Suspension Induced Bone Wasting 

 To evaluate the bone-wasting effects of a fluid-shift disuse model in mice that have 

impaired ability to degrade β-catenin in osteocytes, we measured the effects of tail suspension on 

hindlimb bone mass and density in β-catenin stabilized and control mice. During the 

experimental period, recombination of the βcatCA/LOF alleles in ground control mice resulted in 

an 8.7% increase in tibial BMD whereas uninduced (corn-oil treated) ground control mice 

exhibited a 3% increase in tibial BMD mice (Figure 2A). Tail suspension was associated with an 

8% loss in tibial BMD among uninduced mice, whereas activation of the β-cat CA allele in tail 

suspended mice resulted in no change (2.5% increase, NS) in tibial BMD, though the activated 

tail-suspended mice failed to gain as much BMD as their activated ground control littermates. To 

account for the potential confounding effects of tamoxifen on the osteoprotective effects of β-

catenin stabilization during disuse, we conducted additional but identical tail suspension 

experiments using Cre-negative mice. The control experiments revealed that tamoxifen alone 

resulted in an 8.3% increase in tibial BMD (Figure S1), whereas the corn-oil treated ground 

control mice exhibited a 4% increase in tibial BMD. While this tamoxifen-induced change in 

ground control mice is similar to that observed among Cre-positive mice (a 5.7% increase over 

oil-treated among the Cre-positive group vs. 4.3% increase over oil-treated mice among the Cre-

negative group), the osteoprotective effects of tamoxifen treatment were completely absent in the 

absence of Cre (and by inference, absent β-catenin activation) as revealed by an 8.5% decrease 

in tibial BMD among tamoxifen-treated tail-suspended mice not expressing Cre-recombinase in 

osteocytes. Tibial bone mineral content (BMC) followed a similar pattern of bone wasting during 

disuse, and rescue in induced mice (Figures 2B and S1B). One exception to the pattern was a 

stronger effect of β-catenin activation in ground control mice, independent of tamoxifen. In 

summary, induction of constitutively active β-catenin alleles in Dmp1-expressing cells results in 

protection from tail-suspension induced bone loss of whole bone BMD and BMC, which is not 

attributable to direct skeletal effects of tamoxifen treatment. 

Following 4 weeks of tail suspension, tibia were evaluated for compartment-specific 

changes in bone mass, architecture, and dynamic formation indices. As expected, in non-

activated mice, proximal tibia cancellous bone volume fraction (BV/TV) was reduced 
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significantly by tail suspension (24.2% reduction, p<0.05; Fig. 3A). Activation of β-catenin in 

ground control mice induced a slight but non-significant increase in BV/TV (12.7% increase, 

NS), which was not significantly affected by tail suspension (5.8% increase, NS). In contrast, the 

parallel experiment conducted in Cre-negative mice revealed a significant loss of BV/TV in 

tamoxifen treated mice (Fig S2A), which suggests that the bone-sparing effects of β-catenin 

activation seen in the tail-suspended Cre-positive mice was not a result of tamoxifen. Other µCT 

parameters (Tb.N, Tb.BMC) showed similar effects as noted for BV/TV, with the exception of 

trabecular thickness (Tb.Th), which was not rescued in induced tail-suspended mice. In 

summary, induction of constitutively active β-catenin alleles in Dmp1-expressing cells results in 

protection from tail-suspension induced deterioration of trabecular bone structural parameters, 

most of which is not attributable to direct skeletal effects of tamoxifen treatment.  

Dynamic cortical bone formation parameters were measured over the experimental period 

using fluorochrome labels administered throughout the treatment period. Bone formation 

parameters on both endocortical and periosteal surfaces were minimal in uninduced mice 

subjected to tail suspension (Fig. 4). Activation of β-catenin had an effect on bone formation at 

the periosteal (2-fold increase, p<0.05) but not endocortical surface in ground control mice, 

which could be fully explained by tamoxifen effects (Fig. S3). However, as reported for the 

DXA measurements, tamoxifen treatment alone had no protective effects on tail-suspension-

induced suppression of bone formation parameters. In summary, induction of constitutively 

active β-catenin alleles in Dmp1-expressing cells results in protection from tail-suspension 

induced reduction in endocortical and periosteal bone formation rates, which is not attributable to 

direct skeletal effects of tamoxifen treatment.  

Botulinum Toxin (Botox)-Induced Bone Wasting  

After learning that activating β‐catenin alleles in Dmp1-expressing cells conferred 

protection from the bone-wasting effects of tail suspension, we employed a second model of 

bone wasting to evaluate whether degradation-resistant β-catenin had more broad efficacy for 

disuse in general. We measured the bone-wasting effects of muscle paralysis-induced disuse, 

using intramuscular injection of botulinum toxin (Botox) in Dmp1-CreERt2 × βcatCA/LOF mice. 

During the experimental period, recombination of the β-catCA/LOF alleles in saline-injected control 

mice resulted in a 9.1% increase in tibial BMD in the treated limb, whereas uninduced saline 

injected control mice exhibited a 1.8% (NS) increase in tibial BMD (Figure 5A). Botox injection 
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was associated with a 10.8% loss in tibial BMD among uninduced (corn oil treated) mice, 

whereas activation of the β-cat CA allele in mice treated with Botox resulted in a slight loss (-

5.6%, NS) in tibial BMD. To account for the potential confounding effects of tamoxifen, we 

conducted identical Botox experiments in Cre-negative mice. Tamoxifen alone resulted in a 

3.9% increase (NS) in tibial BMD (Figure S4A), whereas the corn-oil treated saline control mice 

exhibited a 0.4% reduction (NS) in tibial BMD. The tamoxifen-induced change in Cre-negative 

ground control mice is about half of the effect seen Cre-positive ground control mice, suggesting 

that induction of the β-cat CA allele has positive effects on BMD in ground control mice. 

However, as reported for the tail suspension studies, the osteoprotective effects of tamoxifen 

treatment alone on Botox-induced bone loss were completely absent (14% decrease in tibial 

BMD in tamoxifen-treated vs. 15.7% decrease in corn oil treated), again, suggesting that the 

protection from botox-induced bone loss was attributable to activation of β-cat CA. Tibial bone 

mineral content (BMC) followed a similar pattern of bone wasting during disuse, and rescue in 

induced mice (Figures 5B and S4B). In summary, induction of constitutively active β-catenin 

alleles in Dmp1-expressing cells results in protection from paralysis-induced loss of whole bone 

BMD and BMC, which is not attributable to direct skeletal effects of tamoxifen treatment.  

  Following 4 weeks of muscle paralysis induced by treatment with Botox, tibia were 

evaluated for compartment-specific changes in bone mass and architecture indices. As expected, 

in uninduced mice, proximal tibia cancellous bone volume fraction (BV/TV) was reduced 

significantly by Botox injection (43% reduction, p<0.01; Fig. 6A), relative to the contralateral 

control limb. Activation of β-catenin in saline-injected control mice induced a slight but 

nonsignificant decrease in BV/TV (8% decrease, P=0.784), which was not significantly affected 

by Botox treatment (12.8% decrease, P=.483). In contrast, the parallel experiment conducted in 

Cre-negative mice revealed a significant loss of BV/TV in tamoxifen treated mice that also 

received Botox injection (Fig S5A), which suggests that the bone-sparing effects of β-catenin 

activation seen in the Botox-injected Cre-positive mice was not a result of tamoxifen effects. 

Tb.BMC showed similar effects as noted for BV/TV, with the exception of trabecular thickness 

(Tb.Th), which was not rescued in induced tail-suspended mice, and Tb.N, which was not 

different among groups. In summary, induction of constitutively active β-catenin in Dmp1-

expressing cells results in protection from muscle-paralysis induced deterioration of trabecular 

bone structural parameters, most of which is not attributable to direct skeletal effects of 

tamoxifen treatment.  
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Gene Expression in Osteocyte-Enriched Lysates 

Differential gene expression analysis using RNAseq identified 396 genes up- and 222 

genes down-regulated in mice with stabilized β‐catenin following tail suspension compared to 

stabilized β‐catenin ground controls (Figure 7A, Table S1). Eighty-one genes were up- and 27 

genes were down-regulated in tail-suspended uninduced mice compared to induced ground 

controls (Figure 7A, Table S1). Sixty-nine of these genes including Calcr (up), Apod (up) and 

Ostn (down) were commonly changed in both stabilized β‐catenin mice and non-stabilized mice 

in response to tail suspension (Table S1). Thirty-five genes including Wnt11, Gli1, Nell1, Gdf5 

and Pgf were significantly differentially regulated between tail-suspended β-catenin stabilized 

mice and tail suspended non-stabilized mice (7B). Many of these genes were also differentially 

regulated between stabilized and non-stabilized ground controls (Figure 7C), suggesting that 

these genes are likely β-catenin targets. These genes might play a role in the β-catenin-mediated 

osteoprotective effects of disuse-induced bone wasting. 

DISCUSSION 

 The bone-wasting effects of disuse have been well characterized, and are commonly 

associated with clinical conditions such as prolonged bedrest, spinal cord injury, muscle 

paralysis, and immobilization (casting), among others. Treatments for disuse-induced bone loss 

are limited. The importance of canonical Wnt signaling in the response of osteocytes to altered 

mechanical environments prompted us to investigate whether manipulating β-catenin during 

disuse might have therapeutic potential for skeletal preservation. We focused on an adult onset 

mouse model of β-catenin constitutive activation (CA) in osteocytes, in conjunction with two 

disuse-associated mechanotransduction models, to address the efficacy of β-catenin activation in 

preventing bone loss. We consistently found that while uninduced mice subjected to disuse lost 

bone mass as expected, mice with induction of β-cat CA were protected from the bone wasting 

effects of disuse.  

 Recombination of the β-CatCA/LOF alleles was driven by the Dmp1-Cre:ERt2 transgene. 

This allele codes for a Cre fusion protein that remains cytosolic until the tamoxifen ligand 

encountered, which induces translocation to the nucleus where the Cre recombinase activity can 

have its effect on LoxP sites. The direct effects of tamoxifen in bone are well known (27, 28); 

therefore extensive control experiments were included in the design to account for the 
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anabolic/anti-catabolic effects of tamoxifen in bone. Although treatment with tamoxifen 

increased bone mass in both Cre-positive and Cre-negative mice, the presence of tamoxifen 

alone (Cre-negative, disuse treated mice) offered no measureable protection against the bone 

wasting effects of either disuse model. Those control experiments suggest that the skeletal rescue 

seen in Cre-positive, tamoxifen treated mice subjected to disuse were the result of β-catenin 

activation rather than tamoxifen. Additionally, the increase in bone parameters following 

tamoxifen administration alone (i.e., in ground control mice) appears to be similar in both Cre-

positive and Cre-negative mice, though this result was inconsistent (e.g., tibial BMC exhibited 

additional increases beyond the tamoxifen effect in Cre-positive ground mice), suggesting little 

additional benefit of βcat CA activation beyond the increases induced by tamoxifen. Although 

that effect was inconsistent (e.g., tibial BMC exhibited additional increases beyond the 

tamoxifen effect in Cre-positive ground mice), at least for some endpoints, βcat CA activation 

can have negligible effects that are only manifest when challenged by a disuse stimulus. 

 Both the fluid shift (tail suspension) and muscle paralysis (Botox) models of disuse 

support the conclusion that that induction of β-catenin mitigates the bone wasting effects during 

disuse. However, we did note some differences in the responses to each model. The rescue effect 

of inducing β-cat CA during disuse was stronger in the tail suspension than in the Botox 

experiment when evaluated based on the DXA result (which is largely a cortical bone 

measurement). For example, Botox-induced bone loss (hindlimb BMD) was not statistically 

different between induced and uninduced mice (though the former was not different from 

controls whereas the latter was). However, when evaluated based on the µCT results (a 

trabecular compartment measurement), both models yielded roughly equal efficacy of the β-cat 

CA rescue effect. Thus, β-catenin activation might be a better strategy for preserving whole bone 

properties (cortical and trabecular) in disuse conditions involving fluid shift than for paralysis-

based disuse, where cortical bone might be more susceptible to loss.  

 The results of this study indicate that β-catenin is a key regulator of the bone-wasting 

response in a disuse mechanical environment, matching similar findings in studies of other key 

Wnt signaling molecules in disuse. Mice with gain of function missense mutations in Lrp5 are 

protected from disuse-induced bone wasting (8), as are as mice with deletion of the Wnt inhibitor 

Sost (29, 30). Additionally, pharmacological neutralization of Sost prevents bone wasting during 

disuse (31). Targeting of the Wnt signaling pathway as a therapy for osteoporosis and other bone 

diseases has been explored, with the use of Sost antibody as a potential therapeutic target. 
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Lithium chloride (LiCl) is a clinically approved treatment for depression, schizophrenia, bipolar 

disorder, and other mood disorders. LiCl inhibits GSK3β, a major component of the β-catenin 

degradation complex (32), which is responsible for phosphorylating β-catenin at serine-threonine 

residues in exon 3. Thus, while LiCl is probably an inappropriate choice for patients subjected to 

disuse (due to side effects), epidemiological analysis of patients taking LiCl for other reasons, 

who happen to also encounter a disuse event, might reveal the translational capacity of β-catenin 

activation for preserving bone mass.  

 As part of our study, we also performed high-throughput RNA sequencing on osteocyte-

enriched hindlimb bone lysates from tail suspended mice. Our aim for those studies was geared 

toward hypothesis generation, to determine whether there were candidate genes or pathways that 

were associated with the protective effects of β-catenin activation on disuse induced bone loss 

that might serve as better targets for skeletal therapies in disuse. Those mice were sacrificed after 

4 days to capture more acute changes in gene expression. We found a number of genes that were 

significantly upregulated in activated tail suspended mice that were either not affected or 

downregulated in the uninduced suspended controls. We are currently pursuing some of these 

candidates to understand their potential role in protection from disuse osteopenia as part of the 

Wnt signaling pathway.  

 Our study had several limitations that should be acknowledged. First, tamoxifen is not the 

ideal choice for a chemical inducer of Cre activity, as discussed earlier, due to its direct effects 

on bone metabolism. Our aim was to start the disuse experiments in adult mice that had a 

relatively normal skeleton (i.e., avoid a constitutive Cre that might generate an HBM phenotype 

before the disuse experiment was initiated). There are limited choices for adult-onset (inducible) 

Cre induction in osteocytes. We did a battery of additional experiments to account for the 

increases in bone mass following treatment with tamoxifen, but there might be other effects of 

tamoxifen that we could not resolve. Another limitation of the study was the use of a single sex 

for each disuse treatment (females for disuse, males for Botox). This study design was chosen 

due to the high number of mice required for each experiment (including all the tamoxifen 

controls) as well as animal welfare concerns. Previous disuse studies have found no sex-

dependent differences in response to disuse, suggesting that use of a single sex for each stimulus 

probably has little effect on the general conclusions. Third, our studies cannot distinguish 

between the nuclear role and the plasma membrane role of β-catenin. β-catenin plays a very 

important role in modulating cell mechanics via its function at cell–cell junctions, where it 
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interacts with p120 catenin, vinculin, and the actin cytoskeleton, among other structural proteins. 

It is also critical for mediating transcription of Wnt target genes in the nucleus, via its interaction 

with Tcf and Lef1 transcription factors. Constitutive activation of β-catenin would presumably 

have effects on protein longevity and function at both sites, but the relative contribution of these 

loci cannot be addressed by our experiments.  

 In conclusion, our findings indicate that targeting/blocking of β-catenin degradation in 

bone cells could have therapeutic implications in mechanically induced bone disease. The 

advancement of nanotechnology has made organ targeting of compounds more precise and 

effective, and the potential to target b-catenin selectively in bone might be a viable approach to 

preserving bone mass during disuse. More broadly, our data support the crucial role of Wnt 

signaling in bone metabolism, and highlight the therapeutic value of manipulating a downstream 

node in the canonical pathway to improve skeletal disease.  

FIGURES 

Figure 1. A) Timeline of tail suspension and Botox experiments. B) Western blot of osteocyte-
enriched bone from Dmp1-CreERt2-positive (Cre: +) or Dmp1-CreERt2-negative (Cre: -) mice 
treated with tamoxifen (Tam: +) or corn oil (Tam: -) for 3 days.  
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Figure 2. Percent change in tibial bone mineral (A) density and (B) content, calculated from 
DXA scans collected just prior to the start of the experiment and again at sacrifice following 4 
weeks of tail suspension. N=10/group * p<0.05 from uninduced ground control group; † p<0.05 
from uninduced tail suspension group. 

 

Figure 3. μCT measurements of cancellous bone properties in the tibiae of ground control and 
tail suspended Cre-positive β-cat CA mice. (A) Bone volume fraction, (B) trabecular number, 
(C) trabecular thickness, and (D) trabecular bone mineral content were measured in the proximal 
tibia. N=8-10/group* p<0.05 from uninduced ground control; † p<0.05 from uninduced tail 
suspension 
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Figure 4. Dynamic histomorphometry of Cre-positive β-cat CA mice following tail suspension. 
Fluorochrome labels were administered 3 days apart and measured for single label length, double 
label length and double label area on endosteal and periosteal bone surfaces. Endosteal (A) 
mineralizing surface, (B) mineral apposition rate, and (C) bone formation rate, as well as 
periosteal (D) mineralizing surface, (E) mineral apposition rate, and (F) bone formation rate were 
calculated. N=3/6/group. (G) Representative endosteal (Ec) surface of fluorochrome-labeled 
tibia, red=alizarin, green=calcein. * p<0.05 from uninduced ground control; † p<0.05 from 
uninduced tail suspension 

 

Figure 5. Percent change in right tibial (A) bone mineral density and (B) content calculated from 
DEXA scans collected just prior to the start of the experiment and again at sacrifice following 4 
weeks Botox in β-cat CA Cre-positive mice. N=10/group * p<0.05 from uninduced saline 
control; † p<0.05 from uninduced Botox  
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Figure 6. μCT measurements of cancellous bone properties in the tibiae of saline-injected control 
and Botox in βcatCA Cre-positive mice. (A) Bone volume fraction, (B) trabecular number, (C) 
trabecular thickness, and (D) trabecular bone mineral content were measured in the proximal 
tibia. Right limb values were compared pair-wise to the contralateral (left leg) non-injected 
control. N=10/group * p<0.05 from uninduced saline control; † p<0.05 from uninduced Botox 

 

Figure 7. A) Number of genes up- and down-regulated in tail suspended stabilized β-catenin 
(βcatCA) mice and uninduced (control) mice compared to respective ground controls. B) 
Number of genes up- and down-regulated in tail suspended βcatCA mice compared to tail 
suspended uninduced mice. C) Heatmap showing the expression profiles of protein coding genes 
differentially expressed between tail suspended βcatCA mice and tail suspended WT mice. N=3.  
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