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Abstract

Health-related quality of life assessment is important in the clinical evaluation of patients with metastatic disease that may

offer useful information in understanding the clinical effectiveness of a treatment. To assess if a set of explicative variables

impacts on the health-related quality of life, regression models are routinely adopted. However, the interest of

researchers may be focussed on modelling other parts (e.g. quantiles) of this conditional distribution. In this paper,

we present an approach based on quantile and M-quantile regression to achieve this goal. We applied the methodologies

to a prospective, randomized, multi-centre clinical trial. In order to take into account the hierarchical nature of the data

we extended the M-quantile regression model to a three-level random effects specification and estimated it by maximum

likelihood.
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1 Introduction

Assessing the health-related quality of life (HRQOL) forms an important part in the clinical evaluation of patients
suffering from a metastatic disease and offers useful information for understanding the clinical effectiveness of a
therapeutic option. For this reason, HRQOL is nowadays considered as an important endpoint in oncological
studies, helping physicians and patients to better understand the treatment outcomes, balancing among intent to
cure, survival, side effects and quality of life, and to make appropriate decisions. HRQOL is a subjective, dynamic
and multidimensional measure that includes physical, psychological and social domains. Its measurement
evaluates the overall clinical benefit that a particular treatment offers to a patient.

HRQOL is evaluated through self-assessment questionnaires measuring various aspects of quality of life. Data
are frequently collected at various time points for investigating how the disease and treatment impact upon an
individual’s well-being over time.

Many clinical trials also enroll patients from different medical centres since conducting a multi-centre trial
enhances the generalisation of findings, allowing researchers to evaluate the efficacy of a therapy in a variety of
patients and settings, and makes it possible to investigate the effect of treatments when it is difficult, or even
impossible, for a single centre to recruit the required number of patients. However, multi-centre studies involve an
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2Clinical Trials and Biostatistics Unit, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
3Dipartimento di Economia e Management, Università di Pisa, Pisa, Italy
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inter-centre variability as a result of differences in applying the study protocol procedures.1,2 Hence, a relevant
issue in HRQOL is centre heterogeneity. The clustered structure of a multi-centre trial is neither accidental nor
ignorable and ignoring it may lead to erroneous statistical inference.

Studies of multi-centre clinical trials quantify centre differences by using either a fixed effect or a random effect
approach. In clinical trials with a relatively large number of centres each with a small number of patients the
estimated centre-specific treatment effects may be unstable and the loss of efficiency can be severe.3,4

Centre effects can therefore be more conveniently specified by using a multilevel (random effects) modelling
approach5 where patients are hierarchically clustered within centres. Methods to design and analyse HRQOL
studies, including the use of random effect models, are thoroughly discussed by Fairclough.6

Typically, a regression model offers a summary of the expected value of the conditional distribution of the
outcome variable given the set of explanatory variables. Researchers, however, may be interested in modelling
other parts (e.g. quantiles) of this conditional distribution. This may be the case if one is interested for example in
understanding whether a treatment has a differential impact on patients with different HRQOL status. For
instance, patients with a poor HRQOL status might suffer more when receiving one of the treatments under
evaluation, than those who are in a better HRQOL state, as a consequence of a different toxicity or adverse events
of the treatment itself. Identifying this effect provides relevant information particularly in those cases where the
improvement in the survival (or in the primary end point of the trial) due to a new treatment is moderate. In this
case, to expose patients to a new treatment may be ethically and economically appropriate if this does not have a
detrimental effect on their HRQOL. On the other hand, adopting a new treatment can be inappropriate for those
patients who, being in a poorer HRQOL state, may suffer side effects as a result of the new treatment beyond what
is considered to be ethical, given the expected improvement in the survival. Some further actions should have been
considered for the latter kind of patients who have been medicated with the new treatment, such as explaining to
them the potential consequences of the therapy, planning appropriate supporting actions when in therapy and so
on.

This type of analysis is not possible by using conventional regression models for the conditional expectation but
it can be obtained using quantile regression models. Quantile regression was introduced in the econometrics
literature by Koenker and Bassett7 and thoroughly described by Koenker.8 Since then, quantile regression has
been applied in many and different areas of research. Recently, it has been successfully employed in medical
applications.9–14 Only few applications of quantile regression to modelling HRQOL currently exist in
literature,15–17 but the studies do not take into account the hierarchical structure of the data. Recently, Geraci
and Bottai12,18 propose a conditional two-level quantile regression model (LQMM) that assumes an Asymmetric
Laplace Distribution (ALD) for modelling the conditional likelihood given the random effects. Inference for the
model parameters is performed by using a bootstrap approach based on resampling the sample data. Estimation
and inference is facilitated by the lqmm package in R.

There are, however, alternatives to quantile regression, such as M-quantile regression,19 which integrates the
concepts of quantile regression and expectile regression20 within a framework defined by a ‘quantile-like’
generalization of regression based on influence functions (M-regression). The M-quantile of order q for the
conditional density of y given the set of covariates X, f ð yjXÞ, is defined as the solution MQyðqjX; Þ of the
estimating equation

R
 qfy�MQyðqjX; Þgf ð yjXÞdy ¼ 0, where  q denotes an asymmetric influence function,

which is the derivative of an asymmetric loss function �q. A linear M-quantile regression model for yi given xi
is one where we assume that

MQyi ðqjxi; Þ ¼ xTi bq

and estimates of bq are obtained by minimising

Xn
i¼1

�qfriqg ð1Þ

where riq ¼
yi�x

T
i bq

� , � is a scale parameter, �qfriqg ¼ 2�friqg½qIðriq 4 0Þ þ ð1� qÞIðriq � 0Þ� and I(�) is the indicator
function. Different set of regression parameters can be defined for each value of q. In particular, by varying the
specifications of the asymmetric loss function � we obtain the expectile, M-quantile and quantile regression models
as special cases. When � is the square loss function, �qfriqg ¼ 2r2iq½qIðriq 4 0Þ þ ð1� qÞIðriq � 0Þ�, we obtain the
linear expectile regression model if q 6¼ 0:520 and the standard linear regression model if q¼ 0.5 (�0:5fri0:5g ¼ r2i0:5).
When � is the loss function described by Koenker and Bassett,7 �qfriqg ¼ jriqj½qIðriq 4 0Þ þ ð1� qÞIðriq � 0Þ�, we
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obtain the linear quantile regression. Throughout this paper we take the linear M-quantile regression model to be
defined by using as � the Huber loss function.21 In particular, the tilted version of the popular Huber loss function
can be written as

�qfriqg ¼ 2
ðcjriqj � c2=2Þjq� Iðriq � 0Þj jriqj4 c

r2iq=2jq� Iðriq � 0Þj jriqj � c

(
ð2Þ

where c is a cutoff constant. M-quantile regression models allow us to trade robustness for efficiency by properly
tuning the constant c: robustness is increased as c decreases, while efficiency is increased as c increases.

Tzavidis et al.22 extended M-quantile regression to include random effects (MQRE-2L) to account for a two-
level hierarchical structure in the data and used maximum likelihood (ML) to estimate the parameters of the
model.

This paper is, to the best of our knowledge, the first attempt to apply a quantile-like random effects model to
complex data from longitudinal and multi-centre studies (three-level models). In order to account for the
hierarchical nature of the data we include two random effects to capture the between centre variability and to
account simultaneously for unobserved individual heterogeneity, i.e. the variability due to repeated measurements
on the same patient. Therefore, we extend the MQRE-2L to a three-level random effects model (MQRE-3L). From
an applied point of view, the paper presents a methodology (MQRE-3L) to investigate potential centre
heterogeneity caused as a result of differences in applying the study protocol procedures. The conditional
distribution of HRQOL in advanced melanoma patients is modelled by LQMM, MQRE-2L and MQRE-3L
using the data of the randomized multi-centre clinical trial.

Quantiles have a more intuitive interpretation than M-quantiles even if they target essentially the same part
of the distribution of interest.23 In this paper, we use M-estimation because it offers some advantages: (i) it
easily allows for robust estimation of both fixed and random effects; (ii) it can trade robustness for efficiency in
inference by selecting the tuning constant of the influence function; (iii) it can offer computational stability
because it can use a wide range of continuous influence functions instead of the absolute value used in the
quantile regression.

The paper is structured as follows. The data are introduced in Section 2. In Section 3, we present the results
from the application of two and three-level M-quantile random effects regression model and quantile random
effects regression to the HRQOL data. Therefore, we introduce in Section 3.2 the extension to three-level M-
quantile random effects regression. The results of the application are discussed and concluding remarks are
presented in Section 4.

2 The data: HRQOL of advanced melanoma patients in a multi-centre clinical trial

The study considered in this paper is a prospective, randomized, multi-centre phase III clinical trial that aimed at
comparing the efficacy of two treatments, Cisplatin 75mg/m2 and DTIC 800mg/m2 (CT) versus the same regimen
plus IL-2 and IFN-2b (bio-CT), in advanced melanoma patients, who had not been previously treated with
systemic chemotherapy. Both treatments were administered for six cycles or until disease progression. The
primary objective of the trial was overall survival, while HRQOL evaluation was planned as a secondary
objective. Further details on the clinical analysis and the HRQOL analysis are reported elsewhere.24,25

The HRQOL status was assessed by a self-reported questionnaire, the Rotterdam Symptom Checklist (RSCL).
In this paper, we focus on the physical symptom distress scale (PSDS) score as the primary HRQOL outcome. The
questionnaire was administered to all patients for completion prior to the first cycle of chemotherapy (baseline
assessment), and subsequently just before each successive cycle of chemotherapy. The HRQOL evaluation was not
planned after disease progression or during the follow-up period. Since a large part of the sample experienced
disease progression starting from the fourth assessment onwards, we limited our analysis to the data collected in
the first four occasions, since the sample became too small after this assessment.

The data were collected between March 1997 and December 1999. The trial enrolled 178 patients from 23
different clinical centres; half of them were randomized to receive CT and the remaining 89 to receive bio-CT. The
median time to progression was 3.6 months for bio-CT and 3 months for CT, showing a moderate effect of the
treatment under evaluation.

We considered 137 patients for the HRQOL analysis discarding 16 patients who did not have a baseline
measurement, 22 patients who never completed any form and three who died before the start of treatment. In
total, there were 508 measurements of PSDS, the average being 83.98 (SD¼ 12.27). Summary statistics of PSDS
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stratified by treatment are shown in Table 1. A difference between the two groups is evident in the left tail of the
PSDS distribution whereas the discrepancy is negligible at the centre as well as the right tail of it.

Table 2 shows key sample quantiles of PSDS stratified by the temporal occasion at which patients were
evaluated. From Figure 1, it clearly appears that the HRQOL, as measured by PSDS, tended to decline,
roughly linearly, at all quantiles as the study progresses. As mentioned above, the number of patients in the
study declined as the study continued.

Figure 2 shows the centre-specific distribution of PSDS scores at baseline. The distribution appears to vary from
centre to centre, suggesting that a certain degree of variability in PSDS measures can be attributed to the centres
which participated in the trial.

3 M-quantile modelling of HRQOL

In this section, the conditional distribution of HRQOL in advanced melanoma patients is modelled using the data
of the randomized multi-centre clinical trial presented in Section 2. The aim of the trial was to compare the efficacy
of CT versus bio-CT as a primary end-point. Here, we considered the impact of the two treatments on the
HRQOL. In particular, we modelled the change of the HRQOL score at each time point from the baseline as a
function of the treatment. In addition to the treatment effect, the model includes a linear trend since a reduction in
the quality of life is expected as the exposure to the treatment increases. To account for the hierarchical nature of
the data we also included a random effect to capture the between centre variability and a random effect to account
for unobserved individual heterogeneity, i.e. the variability due to repeated measurements on the same patient.

As far as the random component at the patient level is concerned it can be noted that modeling the change from
the baseline adjusts for the within patients heterogeneity due to baseline differences. However, it is expected that
other sources of variability can act at the individual level such as the tolerance of patients to the drug, the
emotional support they receive and the health status related to other aspects than those under study. All these
sources of variability are clearly not adjusted by modeling the change from the baseline. These factors can strongly
impact on the perceived quality of life inducing correlation between the individual HRQOL measurements and
motivate the random component at the patient level in the first place.

There is also a substantive and policy-related reason as to why one may wish to test for a centre effect. The
study related to the implementation of a clinical trial protocol and it is important to test that the protocol has been
implemented consistently across different centres in the trial. Lack of a harmonized implementation of such a
protocol will raise serious ethical issues. Hence, a three-level model is needed for testing for such an effect.

The LQMM and the MQRE-2L do not allow to capture simultaneously the between centre variability and the
individual heterogeneity due to repeated measurements by random effects. For this reason we extend in Section 3.2

Table 2. Summary statistics of PSDS at different temporal occasions.

Order of sample quantiles

Temporal occasions N. Obs 0.10 0.25 0.50 0.75 0.90 Mean SD

0 137 69.70 82.61 90.91 96.97 98.55 87.80 11.25

1 121 65.08 76.81 86.36 92.42 95.65 83.20 12.02

2 98 63.64 74.89 86.04 92.32 97.10 83.00 12.36

3 68 61.84 75.76 84.85 89.86 94.36 81.07 13.07

Table 1. Summary statistics of PSDS stratified by treatment.

Order of sample quantiles

Treatment N. Obs 0.10 0.25 0.50 0.75 0.90 Mean SD

CT 264 68.70 78.26 87.88 93.94 97.10 84.73 11.82

Bio-CT 244 64.26 75.76 86.66 92.75 97.10 83.17 12.72
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the MQRE-2L to a three-level MQRE. Although the extension of the two-level model given in Tzavidis et al.22 to
three-level MQRE is conceptually straightforward, the description of the MQRE-3L requires the introduction of
some technical details.

3.1 Preliminary data analyses

Before showing the results from the study we present some preliminary data analysis. We applied a model with the
following three-level hierarchical structure because in the multi-centre clinical trial data set, occasions (repeated
measures denoted by k – level 1) are nested within patients (npz, denoted by j – level 2), and patients are nested
within centres (denoted by i – level 3):

yijk ¼ �0 þ �1bio� CTijk þ �2temporal occasionijk þ centre idi þ npzij þ "ijk

i ¼ 1, . . . ,m ¼ 23, j ¼ 1, . . . , ni, k ¼ 1, . . . , tij
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Figure 2. Distribution of PSDS scores at baseline. The width of each box is proportional to the number of patients in each centre

showing the different sample sizes in each of them.

Figure 1. PSDS quantiles versus temporal occasions. The quantiles considered are 0.10, 0.25, 0.50, 0.75 and 0.90.
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where yijk is the change of the HRQOL score at each time point from the baseline,
Pm

i¼1 ni ¼ 137 andPm
i¼1

Pni
j¼1 tij ¼ 508. Figure 3 shows normal probability plots of level 1 – plot (a), level 2 – plot (b), and level 3

– plot (c) – residuals obtained by fitting a three-level mixed model to the data. The normal probability plots
indicate that the Gaussian assumptions of the mixed model are not met. This is confirmed by a Shapiro-Wilk
normality test, which rejects the null hypothesis that the residuals follow a normal distribution (p-values: level
1¼ 2.42e-06, level 2¼ 0.05771, level 3¼ 0.02672).

Figure 4 shows two plots of standardized mixed model residuals. The histogram, plot (a), depicts a skewed
distribution of the residuals. This is confirmed by plot (b) which shows the distribution of standardized mixed
model residuals by centre: some centres have many positive residuals, whereas others have many negative

(a) (b)

Figure 4. A histogram of standardized mixed model residuals (a) and the distribution of standardized mixed model residuals by

centre (b).

(a) (b) (c)

Figure 3. Normal probability plots of level 1 (a) level 2 (b) and level 3 residuals (c) derived by fitting a three-level linear mixed model

to the survey data.
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residuals. From this second plot we can observe some high residuals r in absolute value (jrj> 2). This indicates the
presence of influential observations in the data. Figure 5 shows the Cook’s Distance by centre, plot (a), and by
patient, plot (b). These graphs also suggest the presence of influential observations in the data. Our preliminary
analysis hence indicates that the estimates of model parameters can be potentially driven by the influential
observations and hence robust estimation may improve inference under the random effects model.

3.2 Three-level M-quantile random effects regression

In what follows, we present a three-level M-quantile random effects regression. A conventional three-level random
effects model in matrix form is described by

y ¼ XbþDuþ Z� þ " ð3Þ

where y denotes the values of the variable of interest y, X is a N� p matrix of auxiliary variables, Z and D are
auxiliary contextual matrices. We assume that X contains 1 as its first component and Z and D are incidence
matrices which specify the random intercepts specification of model. Here, b is a p vector of fixed effect parameters
and u, �, " represents the random effects (centre specific, patient and the occasion random effects). Model (3)
conventionally assumes that u � Nð0, �2uImÞ, � � Nð0, �2�InÞ, " � Nð0, �2" INÞ and mutually independent. Ig is an
identity matrix of size g.

ML estimation based on the marginal distribution of y is widely used for estimating the unknown parameters of
model (3).26 In particular, estimates of b, �2u , �

2
� and �

2
" are obtained by first differentiating the log-likelihood with

respect to these parameters and then solving the estimating equations defined by setting these derivatives equal to
zero.5 Estimates of the random effects are then obtained by using the ML estimates of the fixed effects and the
variance components.

Data may contain outliers that invalidate the Gaussian assumptions as it occurs in the case study analyzed in
this paper. In such a case, the estimated model parameters under equation (3) will be biased and inefficient.27 A
number of papers27–30 proposed robust estimation of the random effects model, which offers protection against
departures from normality. This is achieved by using an alternative loss function in the log-likelihood that grows
along with the regression residuals at a slower rate than the squared loss function.

For describing the relationship between y and a set of covariates X at other parts of a conditional distribution
we extend the two level M-quantile random effects regression model22 to a three-level M-quantile random effects
regression model. In particular, we propose using asymmetric loss functions for this purpose when the data are
hierarchically structured. The main differences with respect to the MQRE-2L in Tzavidis et al.22 are: (1) an
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additional equation for estimating the variance component due to the presence of centre effect and (2) a more
complex variance covariance-matrix of y. According to Sinha and Rao31 and Tzavidis et al.,22 we can extend the
idea of asymmetric weighting of residuals to hierarchical data by defining modified estimating equations obtained
by changing the estimating equations of the robust ML proposal II by Richardson and Welsh27 as follows

XTV�1q U1=2
q  qfrqg ¼ 0 ð4Þ

1

2
 qfrqg

TU1=2
q V�1q DDTV�1q U1=2

q  qfrqg �
K2q

2
tr V�1q DDT
h i

¼ 0

1

2
 qfrqg

TU1=2
q V�1q ZZTV�1q U1=2

q  qfrqg �
K2q

2
tr V�1q ZZT
h i

¼ 0

1

2
 qfrqg

TU1=2
q V�1q V�1q U1=2

q  qfrqg �
K2q

2
tr V�1q

h i
¼ 0 ð5Þ

where rq ¼ U�1=2q ðy� XbqÞ is a vector of scaled residuals with components rijkq, Uq is a diagonal matrix with
diagonal elements uijq equal to the diagonal elements of the covariance matrix Vq and
 qðrÞ ¼ 2 ðrÞfqIðr4 0Þ þ ð1� qÞIðr � 0Þg is a bounded influence function obtained as the derivative of a loss
function �q. Here, Vq ¼ DDuqD

T þ ZD�qZ
T þ D�q , Duq ¼ �

2
uq
Im, D�q ¼ �

2
�q
In, D�q ¼ �

2
�q
IN, �uq , ��q and �"q are the

quantile-specific variance parameters, and bq is the p� 1 vector of M-quantile regression coefficients. Finally, K2q

is E½ qð"Þ qð"Þ
T
� with " � Nð0, INÞ.

With equation (5), we extend the idea of weighting positive residuals by q and negative residuals by (1– q),
where 0< q< 1 is the quantile order, used in fitting the single-level M-quantile regression,21 to M-quantile
regression for hierarchically structured data. ML equations of model (3) and their robust version are a special
case of the estimating equations in equation (5) for a specific choice of �q and q. See Tzavidis et al.22 for a detailed
discussion.

As discussed in Jones,23 under specific distributions the relationship between quantiles and M-quantiles is
known and both quantiles and M-quantiles model the same part of the distribution of interest. In this case,
estimates of the fixed effects bq can be practically interpreted, for example, as the effect of a one unit increase
in x on the lower quartile, middle or upper quartile of the distribution of y. The variance parameters show the
between-and within-group dispersion around the M-quantile being estimated.

Estimating equations (4) and (5) can be solved iteratively to obtain estimators of bq, �uq , ��q and �"q . Here,
we adopt Newton-Raphson algorithm for solving equation (4) and the fixed-point iterative method32 for
solving estimating equations (5). The steps of the estimation algorithm are outlined in the supplementary
material. We have also worked on studying the algorithmic stability that is, ensuring that the convergence
of the algorithm does not depend on the starting values. For the data we used in this paper, we studied the
convergence and we can confirm that, when initialising the algorithm from different starting values, it always
converged to the same point also for the extreme quantiles. However, there may be cases in real data
applications where due to the sparsity of the data convergence is not stable at extreme quantile. Hence,
users of the method should always test the convergence of the algorithm with their datasets to ensure that
there are no convergence problems. The estimation of extreme quantiles is sometimes challenging when there is
a small number of groups or when groups contain a small number of observations. However, in this case, an
alternative estimation approach that can potentially lead to more efficient estimates of the variance components
is the restricted ML approach.27,33

A function that fits the three-level M-quantile random effects regression has been in written in R.34 Some
asymptotic properties of the estimators and their variance parameters for the MQRE models of order q are
discussed in Tzavidis et al.22

In order to compare the performance of the estimators from Section 3.2, a Monte-Carlo simulation was
conducted. In this simulation, we evaluate the performance of the MQRE-3L at two quantiles, q¼ 0.25 and
q¼ 0.5. The aim here is two-fold. For one thing, we investigate the ability of the MQRE to account for the
dependence structure of hierarchical data beyond two levels and for another thing, we assess the asymptotic
approximations of the standard errors of the regression parameters and the variance parameters (level 2 and
level 3). The results are reported in supplementary material and they show that MQRE-3L is a good compromise
between efficiency under normality and robust properties under contamination. Furthermore, the MQRE-3L
performs on a higher level than the MQRE-2L when three-level clustering is present in the data. Finally, for all
scenarios we have implemented, the asymptotic standard error of the fixed effects and the variance parameters at
q¼ 0.25 and q¼ 0.5 provides a good approximation to the true variances.
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3.3 Results

Table 3 shows the estimated three-level MQRE regression coefficients for five quantiles: 0.1, 0.25, 0.5, 0.75 and
0.90. We used the Huber influence function for the MQRE-2L and MQRE-3L with a fixed tuning constant
c¼ 1.345. This value gives reasonably high efficiency under normality and protects against outliers.21 The
estimates of the bio-CT coefficient measure the effect of bio-CT, as opposed to CT, on the PSDS at a given
quantile.

The intercept of the model associated with each conditional quantile represents the value of the change from the
baseline of PSDS at the first occasion, i.e. the effect of the first cycle of chemotherapy on each patient after
controlling for the centre and patient heterogeneity.

The plots in Figure 6 show the estimated effect of each explanatory variable we included in the model by
quantiles. Estimates far from the centre of the distribution usually cannot be evaluated with high precision. To
display the sampling variation, a confidence band across the quantiles was constructed by estimating the point-
wise 95% confidence interval for the regression coefficients associated with the selected quantiles. Grey-shaded
areas around the line represent confidence bands. It appears that variation differs among quantiles, sometimes
substantially, and generally increases as the quantile order approaches 0 or 1. On the edges of the probability
range, such an increase can be quite large as shown in Figure 6.

Table 3 shows that the centre effect (�2centreq ) is low at the tail of the distribution and it is high in the centre of the
distribution. However this effect is not significant for all the locations. As it has also been mentioned in the
introduction in randomized clinical trial studies, patients are recruited at multiple centers to accrue large
enough samples within an acceptable period. This raises an issue concerning the heterogeneity induced by

(a) (b) (c)

Figure 6. MQRE-3L parameter estimates and corresponding 95% confidence interval estimates: (a) intercept, (b) bio-CT treatment

and (c) temporal occasion.

Table 3. Parameter estimates and corresponding standard error estimates in parentheses for the data.

q¼ 0.10 q¼ 0.25 q¼ 0.50 q¼ 0.75 q¼ 0.90

Intercept �7.69 (2.56) �4.51 (1.73) �1.91 (1.30) 0.67 (1.58) 2.63 (2.51)

Bio-CT �4.37 (2.62) �3.52 (1.58) �2.99 (1.06) �2.64 (1.06) �2.10 (1.98)

Temporal occasions �3.33 (1.48) �2.25 (0.87) �0.97 (0.51) �0.15 (0.56) 0.48 (0.88)

�2
centreq

3.24 (4.08) 6.58 (7.51) 11.97 (7.66) 5.19 (2.59) 0.08 (1.99)

�2
npzq

17.10 (9.28) 35.32 (15.14) 33.03 (7.86) 27.81 (12.05) 20.32 (11.70)

�2
"q

32.28 (13.52) 36.25 (10.00) 22.99 (4.95) 17.39 (6.39) 14.59 (6.19)

Note: MQRE-3L.
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potentially different procedures for data gathering. To standardize the procedures, a common study protocol is
usually adopted by participating centres. If the protocol has been properly planned and applied the centre
heterogeneity is expected to be negligible. Hence, this result confirms the quality of the multi-centric design
implemented for collecting the data used in this paper.

For this reason, we have also fitted the MQRE-2L and the LQMM. Table 4 reports the estimated parameters for
the MQRE-2L: the magnitude and the sign of the regression coefficients do not change with respect to the MQRE-
3L, as well as the values of the estimated variance parameters for the patient and temporal occasion levels. Table 5
shows the estimates of the regression coefficients and variance component for the two-level LQMM (random
intercept). Note that the lqmm package does not report the standard errors of the variance components for the
LQMM. It is evident that there are no differences in the sign of the regression coefficients with respect to the MQRE
models. This means that the effect of the covariates do not change between the MQRE and LQMM models at
different quantiles. The major difference is in the magnitude of the estimated variance parameter. The estimate of the
patient effect level by LQMM shows higher values of variability with respect to the estimate given by MQRE
especially at the tail of the conditional distribution. The MQRE allows the estimation of a two-level and three-
level random intercepts model but it does not allow for more complex correlation structures, including random
coefficient models. In contrast, the lqmm in R allows for the specification of both random intercepts and random
coefficients for the two-level models. For this reason, we have used the LQMM with random intercepts specified at
the level of the patient and random slopes (coefficients) specified for time. Random intercepts imply a uniform
(exchangeable) correlation structure whereas random slopes allow the correlation structure to depend on time, which
may offer a more realistic structure for repeated measures data. Table 6 reports the estimated parameter for this

Table 4. Parameter estimates and corresponding standard error estimates in parentheses for the data.

q¼ 0.10 q¼ 0.25 q¼ 0.50 q¼ 0.75 q¼ 0.90

Intercept �8.06 (3.18) �4.71 (1.94) �2.20 (1.29) 0.27 (1.51) 2.61 (2.52)

Bio-CT �4.00 (3.04) �3.34 (2.07) �2.88 (1.61) �2.46 (1.72) �2.10 (2.56)

Temporal occasions �3.43 (1.58) �2.32 (0.93) �1.06 (0.54) �0.22 (0.56) 0.47 (0.86)

�2
npzq

19.10 (9.93) 42.07 (13.72) 45.10 (8.83) 31.99 (12.50) 20.53 (12.33)

�2
"q

32.11 (14.78) 36.73 (9.64) 24.10 (4.88) 16.36 (5.40) 14.65 (5.46)

Note: MQRE-2L.

Table 6. Parameter estimates and corresponding standard error estimates in parentheses for the data.

q¼ 0.10 q¼ 0.25 q¼ 0.50 q¼ 0.75 q¼ 0.90

Intercept �7.27 (2.70) �5.30 (2.24) �1.34 (2.21) 1.45 (1.66) 2.81 (2.58)

Bio-CT �3.88 (4.10) �1.82 (2.50) �4.10 (2.68) �0.89 (1.87) �0.30 (2.73)

Temporal occasions �2.49 (1.09) �3.02 (0.87) �1.50 (0.64) �1.45 (0.57) �1.42 (0.80)

�2
npzq

59.94 (—) 55.20 (—) 31.78 (—) 29.46 (—) 49.78 (—)

�2
time 10.40 (—) 10.73 (—) 7.68 (—) 7.04 (—) 5.50 (—)

Note: LQMM (two-level) – random slopes.

Table 5. Parameter estimates and corresponding standard error estimates in parentheses for the data.

q¼ 0.10 q¼ 0.25 q¼ 0.50 q¼ 0.75 q¼ 0.90

Intercept �10.22 (2.53) �6.38 (2.13) �0.65 (2.14) 0.72 (1.68) 2.38 (2.65)

Bio-CT �1.92 (4.07) �4.45 (2.43) �2.83 (2.88) �1.52 (1.99) �1.76 (3.05)

Temporal occasions �1.90 (1.13) �1.29 (0.83) �0.86 (0.61) �0.72 (0.60) �0.64 (0.67)

�2
npzq

77.21 (—) 61.33 (—) 50.96 (—) 52.52 (—) 48.46 (—)

Note: LQMM (two-level) – random intercepts.
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model. The estimates are comparable in terms of magnitude with those obtained by the other models. The estimated
variance component for the time does not show high variability between temporal occasions. Considering that
allowing for random slopes in quantile random effects models is complex and can potentially result in
convergence problems when fitting the model and that quantile models with a random intercepts specification
have a correlation structure that is simpler to estimate whilst allowing for modelling the entire conditional
distribution of the outcome; the two and three-level random intercepts MQRE and two-level LQMM could be
appropriate for this application.

4 Discussion and conclusion

The estimates reported in Table 3 and depicted in Figure 6 indicate that the bio-CT effect on PSDS score changed
quite substantially at different quantiles. At the lower end of the distribution of PSDS, the effect is strongly
negative meaning that bio-CT reduces the PSDS score of patients compared to the standard treatment (CT).
At the upper part of the distribution of PSDS, the effect of bio-CT declined becoming negligible and not
statistically significant. This offers some evidence that patients can in fact benefit from the bio-CT (although
this is not statistically significant). Hence, for those patients, the experiment regimen can be
highly recommended, given the positive effect that this also has on the survival. In the case that one had
considered only a conventional random effects linear model, this picture we get out of the quantile random
effects model would have been completely lost. The treatment effect on the expected value of PSDS is negative
(�3.29, SD¼ 1.73) and not significant at the 5% level (p-value¼ 0.0583).

Similarly, we also found that the effect of time changed at different quantiles. The exposure to treatments
reduced the PSDS score much more at the lower quantiles than at the highest ones, where this effect is not
significant. This means that those patients who are in a better HRQOL state tolerated the treatment reasonably
well whereas those who are in a poorer state suffered from the exposure to the therapy. In addition, this
information is completely lost, if the data were analyzed using a standard hierarchical linear random effects
model. In this case, one can only conclude that the HRQOL tends to decline on average as the study goes on
with the slope being �1.38 (SD¼ 0.60, p-value 0.0214).

As mentioned above, the MQRE allows for the estimation of a two- and three-level random intercepts model
but it does not allow for more complex correlation structures, including random coefficient models. To evaluate
the stability of our results as compared to other model allowing for more complicate correlation structures, we
have also estimated an LQMM two-level random slope model via the lqmm package of R. Although the MQRE
and LQMM results are not directly comparable, as these models are targeting different location parameters, both
models attempt to model location parameters that are associated with the same part of the conditional distribution
of HRQOL scores. We found that the bio-CT coefficients obtained from lqmm have the same sign as the MQRE
hence confirming our results.

In a multi-centre longitudinal trial, heterogeneity is often an issue and participating centres usually resort to a
common study protocol to standardize the procedures and identifying eligible patients. Despite this, a large
variability is often observed; hence, one of the goal of this paper was to evaluate if a centre effect impacts on
the outcome distribution resorting to a MQRE-3L model.

Figure 7 shows the estimated intra-class correlation (ICC) of the MQRE-3L at different quantiles. It is
interesting to note that the ICC follows an inverted U curve. That is, both intra-centre and intra-patient
correlation are higher in the middle of the outcome distribution where, proportionally, the within variability is
smaller. Differences between centres and between patients, therefore, might play a less important role in explaining
the total variability in below- and above-the-average quality of life of patients.

Via the MQRE-3L analysis reported in the previous section we have demonstrated that centre
heterogeneity is not an issue for the data at hand since it has been found negligible at all quantiles
suggesting that the implemented protocol has succeeded in standardizing the data collection amongst
centres. Nonetheless, the methodology proposed in the present paper allows one to investigate centre
heterogeneity in depth. Hence, it is worth to consider further this point.

Figure 8 depicts the ranks of the centre effect estimated at a low quantile order (0.10) plotted versus the ranks of
the same effect estimated at a high quantile order (0.90). If the centre effect were the same at both quantiles, this
would imply that the points were aligned on the first bisector which is also reported in the graph as a dashed line.

On the contrary, from our analysis it turns out that some centres had a big effect (low rank) on the HRQOL at the
higher quantile whereas they ranked very highly at the lower quantile. Motivations for this may be various. One may
speculate that the recruitment of patients might have been different, at least to some extent, for different hospitals.
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Physicians, for instance, might have cared differently in administering questionnaires in some centres. One may argue
that it is easier to obtain reliable information from patients in a reasonably good health, whereas this can be more
problematic from those in poor health, particularly if and where appropriate staff, i.e. psychologists or ad hoc
prepared hospital nurses, are not available as it often occurs in smaller centres. This could result in a positive
effect on HRQOL of some centres at the lower tail and may disappear at the higher quantiles where the
performance of the hospitals can be sometimes reversed. This would also be consistent with the largest centre
variability at the highest quantile modelled observed above.

This seems somehow confirmed by observing that the four centres which lay closer to the first bisector of
Figure 8, i.e. those which preserved the ranks performing in a similar manner both at the lower and at the upper
quantile, are in fact leading centres of the trial considered in this paper, all of them having a reasonably large
number of enrolled patients (at least 10). Looking at the estimated residuals of centres of the M-quantile regression
of order 0.9, one may also notice that all of the centres which enrolled at least 10 patients (the larger ones) show

Figure 7. Estimated intra-class correlation of the MQRE-3L at quantiles.

Figure 8. Plot of centre random effect ranks (MQRE-3L for q¼ 0.10, 0.90).
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estimates below the average of the estimated residuals. This proportion drops to 15.8% for centres with less than
10 patients. On the contrary, while exactly a half of the bigger centres are above the average of estimated residuals
when the M-quantile regression of order 0.1 is considered, the proportion of estimated residuals above the average
drops to 36.8% (less than what happened for quantile 0.9) for smaller centres. This consideration seems to be
consistent with a sort of enrollment bias that may have occurred in some of the participating centres.

This also suggests that a plot like the one reported in Figure 8 can also be usefully employed in ad interim
analysis to point out potential anomalous behaviours or situations which may deserve some more in-depth ad hoc
investigation. Finally, box-centile plots of the predicted random effects are shown in Figure 9.

We can observe that the drop out in this study is not negligible as in many other longitudinal studies on
HRQOL (see amongst others a recent work of le Cessie et al.35) particularly in chronic diseases where the
survivorship is extremely short. In our dataset, only a minor part withdrew from the study for reasons other
than the trial design. In fact, nearly all of them dropped out of the study due to disease progression and hence the
treatment was interrupted and their quality of life measurements were no longer collected. A usual way to
compensate a disproportioned drop-out is via sampling weights as far as the drop out mechanism can be
considered at random.36 Lipsitz et al.37 and Yi and He38 investigated the use of weighting within a generalized
equation estimation framework in quantile and median regression respectively, an approach akin to what Robins
et al.39 proposed for estimating mean regression. Apart from these two remarkable pieces of work, no other
attempts have been made to adjust for non-response in fixed effect quantile models. No papers have dealt with
this issue in fixed effect M-quantile modelling. Embedding weights in usual mixed model is a difficult task firstly
addressed by Pfeffermann et al.40 Estimated weights may heavily affect the inference procedures both for the
estimation of the model and for hypotheses testing. Weighting-adjusted inferential procedures in random effect M-
quantile modelling have not been addressed so far to the best of our knowledge. Investigating drop out adjustment
in fixed as well as random effect M-quantile models is a challenging issue which was, however, far beyond the aim
of the present paper and it is a matter for future research.
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